
Divide-and-Merge
Methodology for

Clustering
D. Cheng, R. Kannan, S. Vempala, and G. Wang

Presented by: Arturo Donate

Outline

• Intro to data clustering

• Eigencluster algorithm

• Web search engine example

• Analysis

• Conclusion

Data Clustering
• Classification/labeling

• Input: data composed of elements

• Output: classification of elements into
groups with similar objects

• Distance measure

• Machine learning, data mining, pattern
recognition, statistical analysis, etc...

Cluster distance
• Distance between clusters given by

distance measure

• Several measures available

• euclidean

• manhattan

• mahalanobis

Data Clustering
• Hierarchical

• Tree

• Divisive vs Agglomerative

• Partitional

• K-Means

• Spectral

K-Means
• Randomized centroids (K groups)

• Object membership determined by
distance to centroids

• Centroid location recalculated

• Repeated until convergence

• Fuzzy c-Means, QT clustering, etc...

Eigencluster
• Clustering algorithm using “divide-and-

merge” approach

• Published in Journal of the ACM, 2004

• Combination of clustering approaches

• Used for web searches, but can be applied
to any clustering problem

• http://www-math.mit.edu/cluster/

Eigencluster

• Divide and Merge methodology

• Phase 1: divide data

• Phase 2: merge divided data

Divide Phase
• Create hierarchical clustering of data (tree)

• Input: set of objects w/ distances

• Algorithm recursively divides sets until
singletons

• Output: tree with singleton leaves

• internal nodes represent subsets

• Authors suggest spectral clustering

Spectral Clustering
• Input matrix A has objects as rows

• Uses similarity matrix (AAT)

• similarity given by dot product:

• sparse

• knn, etc

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

1

Spectral Clustering
• Normalize sparse matrix

• Calculate second eigenvector

• eigenvector defines “cut” on original
matrix

• cut based on: sign, mean, median,
etc...

Divide Phase
• Main idea

• divide an initial cluster into sub-
clusters using spectral clustering

• compute 2nd eigenvector of
similarity matrix via power
method

• find best cut in n-1 possible cuts

Divide Phase

• Definitions:

• Let be a vector of the row
sums of AAT

• Let

• Let R be a diagonal matrix so that

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

1

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

1

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

Rii = ρi

1

Divide Phase
• Authors propose the use of the spectral

algorithm in []

• second largest eigenvalue of normalized
similarity matrix B = R-1AAT

• For efficiency, eigenvector is computed
from symmetric matrix Q = DBD-1

• Symmetric Q, power method

Divide Phase
• Power method steps:

• let v be an arbitrary vector orthogonal
to πTD-1

• repeat:

• normalize v (v = v / ||v||)

• set v = Qv

• Converges in O(log n) (proof in paper)

Divide Phase
• Power method

• used to estimate 2nd largest
eigenvector

• fast matrix-vector multiplication

• Q = DR-1AATD-1

• For v = Qv, perform four individual
sparse matrix-vector multiplications
(ie., v = D-1v, etc...)

Divide Phase
• Problem:

• spectral clustering requires
normalized similarity matrix (for
calculating)

• expensive!

• solution: do not compute explicitly

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

1

Divide Phase
• Rewrite row sums as:

• does not depend on i, so
runtime is O(M), where M is # of
nonzero entries

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

Rii = ρi

ρi =
∑n

j=1 A(i) · A(j)

=
∑n

j=1

∑m
k=1 AikAjk

=
∑m

k=1 Aik

(∑n
j=1 Aik

)

1

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

Rii = ρi

ρi =
∑n

j=1 A(i) · A(j)

=
∑n

j=1

∑m
k=1 AikAjk

=
∑m

k=1 Aik

(∑n
j=1 Aik

)

1

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

Rii = ρi

ρi =
∑n

j=1 A(i) · A(j)

=
∑n

j=1

∑m
k=1 AikAjk

=
∑m

k=1 Aik

(∑n
j=1 Aik

)

1

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

Rii = ρi

ρi =
∑n

j=1 A(i) · A(j)

=
∑n

j=1

∑m
k=1 AikAjk

=
∑m

k=1 Aik

(∑n
j=1 Aik

)

1

Divide Phase
• Current steps:

• Let be a vector of the row-sums
of AAT

• Let

• Compute 2nd largest eigenvector v’ of
Q = DR-1AATD-1

• Let v = D-1v’, and sort v so vi < vi+1

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

1

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

ρ ∈ Rn

π = 1
Σiρi

ρ

1

Divide Phase
• N-dimensional eigenvector v defines

n-1 possible cuts

• Original matrix is sorted according to
v, and must be cut

• Find t such that the cut (S, T) =
({1, ..., t}, {t+1, ..., n}) minimizes the
conductance across the cut

Divide Phase
• Best cut: min-conductance vs min-cut

• min-cut = cut with minimum weight
across it

• assumes this means 2 resulting groups
are least similar of possible cuts

• problem: resulting cut may not provide
best groups

Divide Phase

• Example: cut C2 may
have minimum weight
across 2 edges, but cut
C1 provides better
grouping

Divide Phase
• Conductance:

• find a cut such that

• minimize:

• where

Divide Phase
• Conductance:

• helps find cuts with approximately equal
size

• eg., t=2 vs t=n/2

• t=2 yields large numerator, small
denominator

• larger overall fraction, not minimizing
conductance

Divide Phase
• Complete divide algorithm:

Merge Phase

• Applied to tree produced by divide
phase

• Idea: find best classification
produced by divide phase

Merge Phase
• Input: hierarchical tree T

• Output: partition C1, ..., Ck where Ci is a node
in T

• Dynamic program to evaluate objective
function g

• Bottom up traversal: OPT for interior nodes
computed by merging OPT in Cl, Cr

Merge Phase
• Properties of tree T:

• each node is a subset of objects

• L,R children form partition for parent

• Clustering: subset S of nodes in T s.t.
every leaf node is covered (leaf-root path
encounters exactly 1 node in S)

Merge Phase
• Objective function g

• describes optimal merge

• choice of g may vary, crucial!

• note: g(COPT) may not be OPT clustering

• choice of g

• OPT may not respect tree

Merge Phase
• K-Means objective function

• k-clustering minimizing sum of squared
distances of the pts in each cluster to the
centroid pi

• pi = mean of points in a cluster Ci

• NP-Hard!

Merge Phase
• K-Means objective functions

• Let OPT-TREE(C,i) be optimal tree-
respecting clustering for C with i clusters

• OPT-TREE(C,1) = {C}

• OPT-TREE(C,i) =
OPT-TREE(Cl,j) ∪ OPT-TREE(Cr,i-j)

• where j = argmini≤j<i g(OPT-TREE(Cl,j) ∪
OPT-TREE(Cr,i-j))

Merge Phase
• Compute OPT clustering for leaf nodes

first

• Interior nodes computed efficiently via
dynamic programming

• OPT-TREE(root, k) gives optimal
clustering of data

• root = root node of divide phase tree

Merge Phase
• Min-diameter objective function

• k-clustering minimizing max diameter

• diameter - max distance between pair of
objects in Ci

• defined as:

Merge Phase
• Min-sum objective function

• minimize sum of pairwise distances within Ci

• computed via dynamic program

• approximation algorithms exist, but not
useful in practice

Merge Phase
• Correlation clustering objective function

• G = {V, E}; for each ei∈E, ei is red (similar
vertices) or blue (dissimilar vertices)

• find partition maximizing red edges within
cluster, and blue edges between clusters

Merge Phase

• Time complexity

• Divide

• Merge

• choice of g

• iterations

Web Search

• Sample implementation: web search

• Typical search engine: linear rank

• fails to show inherent correlation when
ambiguity is present (ie, “Mickey” -
Rooney, Mantle, Mouse, ...)

Web Search
• Input query: retrieve 400 results from

Google

• title, location, snippet

• Construct document-term matrix:

You like hate Bob
D1 1 1 0 1
D2 1 0 2 1

D1 = “You like Bob”
D2 = “You hate hate Bob”

Web Search

• Divide phase - spectral algorithm

• Merge phase - relaxed correlation
clustering

• similar to correlation clustering but
relaxed components α, β remove
dependency on predefined k

Web Search
• Relaxed correlation objective function:

• first component: dissimilarity within cluster

• second component: similarity failed to be
captured

• eigencluster: α = 0.2, β = 0.8

Web Search

Web Search

Analysis
• Experiment on Boley dataset

• 185 web pages

• 10 classes

• different objective functions

• quality of results measured by entropy

• randomness within cluster

• lower value

Web Search

• k-means and min-sum typically
outperform min-diam

• 7 of 11 - k-means or min-sum found best
possible clustering

Conclusion
• clustering based on divide-merge

• idea: divide groups data
hierarchically, merge finds best
cluster within

• divide phase: spectral clustering

• merge: objective functions

