
Highway Hierarchies (Dominik Schultes)

Presented by: Andre Rodriguez

Central Idea

 To go from Tallahassee to Gainesville*:

◦ Get to the I-10 (8.8 mi)

◦ Drive on the I-10 (153 mi)

◦ Get to Gainesville (1.8 mi)

 ~94% of the driving is done on the I-10

*According to Google Maps

Central Idea

 This suggests a reasonable approach:

◦ To go from A to B:

 From A, get to the next reasonable highway

 Drive until we are close enough to B

 Search for B starting from the highway’s exit

Central Idea

 This approach gives approximate answers

 A variant of this is method is used by

most commercial planning systems

 It suggests a way of computing shortest

paths faster

Detour – Bidirectional Search

 From S to T

 Search from S

 Search from T

(reversed graph)

 Halt when searches

meet

Total area decreases by a factor

of ~2.67

Central Idea – Suggested Approach

 To go from A to B:

◦ Perform a search in a local area around A and
around B

◦ Search in a (thinner) highway graph*

◦ Iterate

* A shortest path preserving graph

Local Area - Concept

 The local area associated with a vertex v

is a set of vertices

 All vertices in such local area are

relatively close to v

 For some parameter H, the local area

must be big enough as to cover the

closest H vertices

 We refer to such local area as

neighborhood (of v using H) or NH(v).

Neighborhood (Local Area) - Definition

Given a graph G = (V, E)

Given a vertex A

L ← Sort V \ A by their distance from A

Let rA be the distance from A to the H-th vertex in L

S ← [x in V if distance from A to x ≤ rA]

NH(A) ← S

Neighborhood (Local Area)

In this case H = 5

Neighborhood (Local Area) - Implementation

 In practice, to determine the

neighborhood of v we do not compute

its distance to all other vertices

 Instead, a Dijkstra is ran from v

 The H-th vertex to be popped from the

queue determines the radius of NH(v)

Highway Network - Definition

 A highway network of a graph G = (V, E) is a
graph G* = (V*, E*)

 V* is a subset of V

 E* is a subset of E

 E* consists of all the highway edges in E

 V* consists of all the vertices in E*

Highway Edge – Definition

◦ e = (u, v) is an edge in the original graph

◦ e belongs to the shortest path from s to t, for
some s and t

◦ e is not inside the neighborhood of s

◦ e is not inside the neighborhood of t

 If all of the above hold, then e is a highway
edge

Highway Network

All blue edges and vertices are in the highway network

Search from s and t

When the frontier of the neighborhood is reached continue
searching on the highway only

Highway Network - Contraction

 We want to reduce the number of nodes

 If we are on the I-10, we shouldn’t care

much about exits nor road segments

 These are low degree vertices that can be

bypassed

 (Almost) only the I-10 should belong to

the HN

 The structure is preserved by adding

shortcuts

Highway Network - Contraction

To compute the core:

• Remove all bypassed nodes

•Add all shortcut edges

Some terms

 Creating the highway network is also

referred to as edge reduction

 Computing the core is also referred to as

node reduction

Highway Hierarchy

 Given a graph G = (V, E)

 Given a parameter H

 We can iteratively reduce edges and nodes
to create a hierarchy

 By introducing shortcut edges the average
degree increases

 It increases slowly enough

Highway Hierarchy - Process

 Compute highway edges

 Bypass nodes and introduce shortcuts

 Compute highway edges

 Bypass nodes and introduce shortcuts

 …

Highway Hierarchy - Definition

 Let G0 be the original graph and L be a
parameter

 A highway hierarchy of L + 1 levels is
given by L + 1 graphs: G0, …, GL

 How is each Gk defined?

◦ An inductive definition is given

Highway Hierarchy – Definition

(base)

 Suppose G0 = (V0, E0) is the original graph

 Define G’0 ← G0

Highway Hierarchy – Induction

 For 0 <= k <= L:

◦ Let Gk+1 be the highway network of G’k
◦ Let G’k+1 be the core of Gk+1

 So, at each level, we compute the highway
network of the previous level’s graph and
then we compute its core

 We then pass this to the next level

 Terminate after computing G’L

Highway Network - Computation

 Given G’k = (E’k, V’k)
 We want to find Gk+1 = (Ek+1, Vk+1)

 Let Ek+1 be an empty set of edges

 For each node s0 in V’k:

◦ Construct a partial SPDAG* from s0

◦ Perform a backward evaluation on all nodes from the
SPDAG and decide whether or not to add each edge to Ek+1

* Shortest Path Directed Acyclic Graph

Highway Network – Computation (SPDAG)

Given G’k = (E’k, V’k)

For each s0 in V’k:

Mark s0 as active

Perform a SSSP search from s0

When a node is pushed into the queue, it inherits the state of its parent

If a node satisfies the abort condition, mark it as passive

Abort the search when all queued nodes are passive

SPDAG Abort Condition

•When a node p is popped from the queue consider all SPs from s0 to it

•When s1 (the second node on a SP) and p are very close their

neighborhoods will have many nodes in common

•As the search progresses, they will have less and less nodes in common

•When they have less than two nodes in common, abort (p still belongs to

the SPDAG)

SPDAG Abort Condition

After a while, all queued nodes will be passive since they will be far

enough from the source

Highway Network - Evaluation

 Remainder: we were given G’k = (E’k, V’k)

 For each vertex p a partial SPDAG SP(p)
was computed

 Let Ek+1 be empty

Highway Network - Evaluation

 For each node s0:

◦ For each edge e = (u, v) on SP(s0):

 If the following conditions hold:
 e belongs to some shortest path between s0 and p

 u is not in the neighborhood of p

 v is not in the neighborhood of s0

 Then e is added to Ek+1

 Let Vk+1 be the set of all vertices in Ek+1

 So, from G’k we have computed Gk+1

 We now need to compute G’k+1

Core

 We get G’k+1 = (V’k+1, E’k+1) by computing
the core of Gk+1

 Remainder: we get the core of a graph by
removing its bypassed nodes and adding
shortcut edges

 How is the core computed?

Core - computation

 We are given Gk+1 = (Vk+1, Ek+1)

 Let Bk+1 be a stack of all nodes that could
be bypassed

 Initially Bk+1 contains all vertices in Vk+1

 Until the Bk+1 is empty:

◦ Pop the top node, u

◦ If u satisfies the bypassability criteria:

 Add shortcuts to Ek+1 and erase u from Vk+1

Core – computation (cont)

 Bypassability Criteria (Heuristic):

◦ #shortcuts ≤ c (degin(u) + degout(u))

 Given a node u and a parameter c, we compare
the number of shortcuts introduced by erasing u
and the number of edges we save

 If the net gain is positive → bypass it (add
shortcuts)

 Theorem: if c < 2, |E’k| = O(|Vk + Ek|)

Core – computation (cont)

 After a node u is bypassed, the degrees of

adjacent nodes change

 Therefore, nodes adjacent to u may now

be bypassable.

 Reevaluate the criteria for all nodes

adjacent to u (that have been popped but

not bypassed)

 If they are now bypassable, add them to

the stack

Highway Hierarchy - Contraction

 We now have (0 ≤ k ≤ L):

◦ Gk = (Ek, Vk)

◦ G’k = (E’k, V’k)

 This defines the highway hierarchy

Highway Hierarchy – Some Results

Queries on each level will use a reduced search space

Highway Hierarchy – Query

 Now we have a hierarchy of graphs

 How do we retrieve a shortest path?

◦ A variation of bidirectional searching is used (I will
talk about the forward search only since backward is
similar)

 Definition: the level of an edge is the highest level
in the hierarchy in which the edge appears

Query – From s to t

 For each vertex u keep three values

◦ d(u) ← distance from the source

◦ l(u) ← level of the u in the search

◦ g(u) ← gap to the next applicable

neighborhood border
 shortest distance from this node to the closest applicable

border

Query – From s to t

 Initialization:

◦ d(s) ← 0

◦ l(s) ← 0

◦ g(s) ← rs

 rs is the radius of the neighborhood of s

 A local search in the neighborhood of s is

performed

Query – From s to t

 A local search from s is performed

 When a node v with parent u is popped,

set its gap value to g(v) = g(u) – w((u, v))

 As long as we stay on the same level

there is nothing new. Otherwise …

Query – From s to t

 Suppose a node v with parent u is popped
and (u, v) crosses the neighborhood
 In other words, w((u, v)) ≥ g(u)

 If the level of the edge is less than the
current level, the edge is not relaxed
(speedup, first restriction)

 Otherwise, the edge is relaxed:
◦ l(v) ← new search level k

◦ g(v) ← radius of N(v) on level k
 Since we are at the border of the neighborhood

Query – From s to t

If the entrance point of level k does not belong to level-k’s core:

• Continue by using bypassed nodes (Vk) until the core is reached
• That is, when we reach a node in V’k

• Therefore, once the core is reached we forget about bypassed

nodes (speedup, second restriction)

Query – From s to t

Differences:

•4: correctness does not depend

on direction chosen but running

time does

• 7: entrance point does not

belong to the core at the

current level (we are on

bypassed nodes)

• 9: it might be necessary to go

upwards more than one level in

a single step

Query – From s to t

• Red nodes: Level 0

• Blue nodes: Level 1

• Green nodes: Level 2

• Dark shades: core nodes

• Light shades: Bypassed nodes

Query – From s to t – path

 The distance from s to t has been

computed

 What about the actual path?

 In the search, each node stores a pointer

to its parent

 Problems:

◦ Introduced shortcuts need to be expanded so

that the path is from the original graph

Query – From s to t – path

 How is a shortcut transformed back to its
original form?

◦ Let (u, v) be one of these shortcuts on G’k
 G’k is the graph with shortcuts (the core)

◦ Perform a search from u to v on Gk and find a
path from u to v of the same length
 Gk is the graph that is compressed to find the core (so here we

must find such a path)

◦ Repeat this recursively since the shortcut could
have been introduced at a much earlier level

Theorems – (1)

 An edge (u, v) in Ek’ (the core of the

previous level) is added to Ek+1 if (u, v)

belongs to some shortest path P = [s, …,

u, v, …t] and:

◦ v does not belong to the neighborhood of s

◦ u does not belong to the neighborhood of t

 True by construction

Theorems – (II)

 The query gives a correct shortest path

 Difficult proof:

◦ Potentially, there are many correct shortest

paths

◦ Other algorithms assume uniqueness. This

cannot be done here since road networks are

inherently ambiguous and shortcuts introduce

even more ambiguity

◦ We give an outline of the proof

Theorems – Query – Outline

1. Show that the algorithm terminates

2. Deal with the special case that no path from

the source to the target exists

3. Define
i. Contracted path: sub-paths in the original graph are

replaced by shortcuts

ii. Expanded path: shortcuts in the given graph are

replaced by the original edges

4. Define:
i. Last neighbor: last node before leaving a neighborhood

ii. First core node: first node when entering a

neighborhood

Theorems – Query – Outline

5. The definition of last neighbor and first

core node lead to a unidirectional labeling

of a given path

6. Apply a forward labeling and a backward

labeling to define:
i. Meeting level: the level at which both searches

meet

ii. Meeting point: the node at which both searches

meet

Theorems – Query – Outline

7. Distinguish between two cases:
i. Searches meet inside some core

ii. Searches meet in a component of bypassed nodes

8. Define highways path to be a path that

complies with all restrictions of the

query algorithm
• In other words, highway paths are defined to be

all the paths expanded by the query

Theorems – Query – Outline

9. Use these definitions and some lemmas
to show that the algorithm is correct

◦ Show that at any point the query is in some
valid state consisting of a shortest s-t-path
that is broken in three pieces by some
vertices. These parts of the path consist of:

 Edges in the forward search

 Edges in the middle, contracted

 Edges in the backward search

◦ Show the first and third parts are settled
with the correct distance values

Results – Speedups

References

 [1] Schultes, D., Route Planning in Road

Networks. Doctoral Dissertation. 2008

 [2] Sanders, P., Schultes, D., Engineering

Highway Hierarchies. Master’s Thesis

Presentation. 2006 (most images are

from here)

