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Central Idea

 To go from Tallahassee to Gainesville*:

◦ Get to the I-10 (8.8 mi)

◦ Drive on the I-10 (153 mi)

◦ Get to Gainesville (1.8 mi)

 ~94% of the driving is done on the I-10

*According to Google Maps



Central Idea

 This suggests a reasonable approach:

◦ To go from A to B:

 From A, get to the next reasonable highway

 Drive until we are close enough to B

 Search for B starting from the highway’s exit



Central Idea

 This approach gives approximate answers

 A variant of this is method is used by 

most commercial planning systems

 It suggests a way of computing shortest 

paths faster



Detour – Bidirectional Search

 From S to T

 Search from S

 Search from T

(reversed graph)

 Halt when searches 

meet 

Total area decreases by a factor 

of ~2.67



Central Idea – Suggested Approach

 To go from A to B:

◦ Perform a search in a local area around A and 
around B

◦ Search in a (thinner) highway graph*

◦ Iterate

* A shortest path preserving graph



Local Area - Concept

 The local area associated with a vertex v

is a set of vertices

 All vertices in such local area are 

relatively close to v

 For some parameter H, the local area 

must be big enough as to cover the 

closest H vertices

 We refer to such local area as 

neighborhood (of v using H) or NH(v).



Neighborhood (Local Area) - Definition

Given a graph G = (V, E)

Given a vertex A

L ← Sort V \ A by their distance from A

Let rA be the distance from A to the H-th vertex in L

S ← [ x in V if distance from A to x ≤ rA ]

NH(A) ← S



Neighborhood (Local Area)

In this case H = 5



Neighborhood (Local Area) - Implementation

 In practice, to determine the 

neighborhood of v we do not compute 

its distance to all other vertices

 Instead, a Dijkstra is ran from v

 The H-th vertex to be popped from the 

queue determines the radius of NH(v)



Highway Network - Definition

 A highway network of a graph G = (V, E) is a 
graph G* = (V*, E*)

 V* is a subset of V

 E* is a subset of E

 E* consists of all the highway edges in E

 V* consists of all the vertices in E*



Highway Edge – Definition

◦ e = (u, v) is an edge in the original graph

◦ e belongs to the shortest path from s to t, for 
some s and t

◦ e is not inside the neighborhood of s

◦ e is not inside the neighborhood of t

 If all of the above hold, then e is a highway 
edge



Highway Network

All blue edges and vertices are in the highway network

Search from s and t

When the frontier of the neighborhood is reached continue                             
searching on the highway only



Highway Network - Contraction

 We want to reduce the number of nodes

 If we are on the I-10, we shouldn’t care 

much about exits nor road segments

 These are low degree vertices that can be 

bypassed

 (Almost) only the I-10 should belong to 

the HN

 The structure is preserved by adding 

shortcuts



Highway Network - Contraction

To compute the core:

• Remove all bypassed nodes

•Add all shortcut edges



Some terms

 Creating the highway network is also 

referred to as edge reduction

 Computing the core is also referred to as 

node reduction



Highway Hierarchy

 Given a graph G = (V, E)

 Given a parameter H

 We can iteratively reduce edges and nodes 
to create a hierarchy

 By introducing shortcut edges the average 
degree increases

 It increases slowly enough



Highway Hierarchy - Process

 Compute highway edges

 Bypass nodes and introduce shortcuts

 Compute highway edges

 Bypass nodes and introduce shortcuts

 …



Highway Hierarchy - Definition

 Let G0 be the original graph and L be a 
parameter

 A highway hierarchy of L + 1 levels is 
given by L + 1 graphs: G0, …, GL

 How is each Gk defined?

◦ An inductive definition is given 



Highway Hierarchy – Definition 

(base)

 Suppose G0 = (V0, E0) is the original graph

 Define G’0 ← G0



Highway Hierarchy – Induction

 For 0 <= k <= L:

◦ Let Gk+1 be the highway network of G’k
◦ Let G’k+1 be the core of Gk+1

 So, at each level, we compute the highway 
network of the previous level’s graph and 
then we compute its core

 We then pass this to the next level

 Terminate after computing G’L



Highway Network - Computation

 Given G’k = (E’k, V’k)
 We want to find Gk+1 = (Ek+1, Vk+1)

 Let Ek+1 be an empty set of edges

 For each node s0 in V’k:

◦ Construct a partial SPDAG* from s0

◦ Perform a backward evaluation on all nodes from the 
SPDAG and decide whether or not to add each edge to Ek+1

* Shortest Path Directed Acyclic Graph



Highway Network – Computation (SPDAG)

Given G’k = (E’k, V’k)

For each s0 in V’k:

Mark s0 as active

Perform a SSSP search from s0

When a node is pushed into the queue, it inherits the state of its parent

If a node satisfies the abort condition, mark it as passive

Abort the search when all queued nodes are passive



SPDAG Abort Condition

•When a node p is popped from the queue consider all SPs from s0 to it

•When s1 (the second node on a SP) and p are very close their 

neighborhoods will have many nodes in common

•As the search progresses, they will have less and less nodes in common

•When they have less than two nodes in common, abort (p still belongs to 

the SPDAG)



SPDAG Abort Condition

After a while, all queued nodes will be passive since they will be far 

enough from the source



Highway Network - Evaluation

 Remainder: we were given G’k = (E’k, V’k)

 For each vertex p a partial SPDAG SP(p)
was computed

 Let Ek+1 be empty



Highway Network - Evaluation

 For each node s0:

◦ For each edge e = (u, v) on SP(s0):

 If the following conditions hold:
 e belongs to some shortest path between s0 and p

 u is not in the neighborhood of p

 v is not in the neighborhood of s0

 Then e is added to Ek+1

 Let Vk+1 be the set of all vertices in Ek+1

 So, from G’k we have computed Gk+1

 We now need to compute G’k+1



Core

 We get G’k+1 = (V’k+1, E’k+1) by computing 
the core of Gk+1

 Remainder: we get the core of a graph by 
removing its bypassed nodes and adding 
shortcut edges

 How is the core computed?



Core - computation

 We are given Gk+1 = (Vk+1, Ek+1)

 Let Bk+1 be a stack of all nodes that could 
be bypassed

 Initially Bk+1 contains all vertices in Vk+1

 Until the Bk+1 is empty:

◦ Pop the top node, u

◦ If u satisfies the bypassability criteria:

 Add shortcuts to Ek+1 and erase u from Vk+1



Core – computation (cont)

 Bypassability Criteria (Heuristic):

◦ #shortcuts ≤ c (degin(u) + degout(u))

 Given a node u and a parameter c, we compare 
the number of shortcuts introduced by erasing u
and the number of edges we save

 If the net gain is positive → bypass it (add 
shortcuts)

 Theorem: if c < 2, |E’k| = O(|Vk + Ek|)



Core – computation (cont)

 After a node u is bypassed, the degrees of 

adjacent nodes change

 Therefore, nodes adjacent to u may now 

be bypassable.

 Reevaluate the criteria for all nodes 

adjacent to u (that have been popped but 

not bypassed)

 If they are now bypassable, add them to 

the stack



Highway Hierarchy - Contraction

 We now have (0 ≤ k ≤ L):

◦ Gk = (Ek, Vk)

◦ G’k = (E’k, V’k)

 This defines the highway hierarchy



Highway Hierarchy – Some Results

Queries on each level will use a reduced search space



Highway Hierarchy – Query

 Now we have a hierarchy of graphs

 How do we retrieve a shortest path?

◦ A variation of bidirectional searching is used (I will 
talk about the forward search only since backward is 
similar)

 Definition:  the level of an edge is the highest level 
in the hierarchy in which the edge appears



Query – From s to t

 For each vertex u keep three values

◦ d(u) ← distance from the source

◦ l(u) ← level of the u in the search

◦ g(u) ← gap to the next applicable 

neighborhood border 
 shortest distance from this node to the closest applicable 

border



Query – From s to t

 Initialization:

◦ d(s) ← 0

◦ l(s)  ← 0

◦ g(s) ← rs

 rs is the radius of the neighborhood of s

 A local search in the neighborhood of s is 

performed



Query – From s to t

 A local search from s is performed

 When a node v with parent u is popped, 

set its gap value to g(v) = g(u) – w((u, v))

 As long as we stay on the same level 

there is nothing new.  Otherwise …



Query – From s to t

 Suppose a node v with parent u is popped 
and (u, v) crosses the neighborhood
 In other words, w((u, v)) ≥ g(u)

 If the level of the edge is less than the 
current level, the edge is not relaxed 
(speedup,  first restriction)

 Otherwise, the edge is relaxed:
◦ l(v) ← new search level k

◦ g(v) ← radius of N(v) on level k
 Since we are at the border of the neighborhood



Query – From s to t

If the entrance point of level k does not belong to level-k’s core:

• Continue by using bypassed nodes (Vk) until the core is reached
• That is, when we reach a node in V’k

• Therefore, once the core is reached we forget about bypassed 

nodes (speedup,  second restriction)



Query – From s to t

Differences:

•4: correctness does not depend 

on direction chosen but running 

time does

• 7: entrance point does not 

belong to the core at the 

current level (we are on 

bypassed nodes)

• 9: it might be necessary to go 

upwards more than one level in 

a single step



Query – From s to t

• Red nodes:    Level 0

• Blue nodes:    Level 1

• Green nodes: Level 2

• Dark shades:  core nodes

• Light shades: Bypassed nodes



Query – From s to t – path

 The distance from s to t has been 

computed

 What about the actual path?

 In the search, each node stores a pointer 

to its parent

 Problems:

◦ Introduced shortcuts need to be expanded so 

that the path is from the original graph



Query – From s to t – path 

 How is a shortcut transformed back to its 
original form?

◦ Let (u, v) be one of these shortcuts on G’k
 G’k is the graph with shortcuts (the core)

◦ Perform a search from u to v on Gk and find a 
path from u to v of the same length
 Gk is the graph that is compressed to find the core (so here we 

must find such a path)

◦ Repeat this recursively since the shortcut could 
have been introduced at a much earlier level



Theorems – (1)

 An edge (u, v) in Ek’ (the core of the 

previous level) is added to Ek+1 if (u, v) 

belongs to some shortest path P = [s, …, 

u, v, …t] and:

◦ v does not belong to the neighborhood of s

◦ u does not belong to the neighborhood of t

 True by construction



Theorems – (II)

 The query gives a correct shortest path

 Difficult proof:

◦ Potentially, there are many correct shortest 

paths

◦ Other algorithms assume uniqueness.  This 

cannot be done here since road networks are 

inherently ambiguous and shortcuts introduce 

even more ambiguity

◦ We give an outline of the proof



Theorems – Query – Outline 

1. Show that the algorithm terminates

2. Deal with the special case that no path from 

the source to the target exists

3. Define
i. Contracted path:  sub-paths in the original graph are 

replaced by shortcuts

ii. Expanded path:  shortcuts in the given graph are 

replaced by the original edges

4. Define:
i. Last neighbor: last node before leaving a neighborhood

ii. First core node: first node when entering a 

neighborhood



Theorems – Query – Outline 

5. The definition of last neighbor and first 

core node lead to a unidirectional labeling 

of a given path

6. Apply a forward labeling and a backward 

labeling to define:
i. Meeting level: the level at which both searches 

meet

ii. Meeting point: the node at which both searches 

meet



Theorems – Query – Outline 

7. Distinguish between two cases:
i. Searches meet inside some core

ii. Searches meet in a component of bypassed nodes

8. Define highways path to be a path that 

complies with all restrictions of the 

query algorithm 
• In other words, highway paths are defined to be 

all the paths expanded by the query



Theorems – Query – Outline 

9. Use these definitions and some lemmas 
to show that the algorithm is correct

◦ Show that at any point the query is in some 
valid state consisting of a shortest s-t-path 
that is broken in three pieces by some 
vertices.  These parts of the path consist of:

 Edges in the forward search

 Edges in the middle, contracted

 Edges in the backward search

◦ Show the first and third parts are settled 
with the correct distance values



Results – Speedups 
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