Perceptrons

"From yhe heighys df error, Co yhe valleys of Pruyh"

Piyush Kиmar
Advanced Computational Geometry

Reading Material

$>$ Duda/Hart/Stork : 5.4/5.5/9.6.8
$>$ Any neural network book (Haykin, Anderson...)
> Look at papers of related people

* Santosh Vempala
* A. Blum
* J. Dunagan
* F. Rosenblatt
* T. Bylander

Introduction

- Supervised Learning

Linear discriminant functions

- Definition

It is a function that is a linear combination of the components of x

$$
\begin{equation*}
g(x)=w^{t} x+w_{0} \tag{1}
\end{equation*}
$$

where w is the weight vector and w_{0} the bias

- A two-category classifier with a discriminant function of the form (1) uses the following rule:

Decide ω_{1} if $g(x)>0$ and ω_{2} if $g(x)<0$
\Leftrightarrow Decide ω_{1} if $w^{t} x>-w_{0}$ and ω_{2} otherwise If $g(x)=0 \Rightarrow x$ is assigned to either class

LDFs

- The equation $g(x)=O$ defines the decision surface that separates points assigned to the category ω_{1} from points assigned to the category ω_{2}
- When $g(x)$ is linear, the decision surface is a hyperplane

Classification using LDFs

- Two main approaches
- Fischer's Linear Discriminant

Project data onto a line with 'good' discrimination; then classify on the real line

- Linear Discrimination in d-dimensions Classify data using suitable hyperplanes. (We'll use perceptrons to construct these)

Perceptron: The first NN

* Proposed by Frank Rosenblatt in 1956
* Neural net researchers accuse Rosenblatt of promising 'too much' ©
* Numerous variants
* We'll cover the one that's most geometric to explain $)$
* One of the simplest Neural Network.

Perceptrons: A Picture

Where is the geometry?

Assumption

- Lets assume for this talk that the red and green points in 'feature space' are separable using a hyperplane.

Two Category Li nearly separable case

Whatz the problem?

$>$ Why not just take out the convex hull of one of the sets and find one of the 'right' facets?

* Because its too much work to do in ddimensions.
$>$ What else can we do?
* Linear programming $==$ Perceppranns

Quadratic Programming $==S U M_{5}$

Perceptrons

- Aka Learning Half Spaces
- Can be solved in polynomial time using IP algorithms.
- Can also be solved using a simple and elegant greedy algorithm
(Which I present today)

In Math notation

N samples : $\left\{\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)\right)$
Where $\mathrm{y}=+/-1$ are labels for the data. $\quad \vec{X} \in \mathbf{R}^{d}$
Can we find a hyperplane $\vec{W} \cdot \vec{X}=0$ that separates the two classes? (labeled by y) i.e.

$$
\begin{array}{ll}
\vec{x}_{j} \cdot \vec{w}>0 & : \text { For all } \mathrm{j} \text { such that } \mathrm{y}=+1 \\
\vec{x}_{j} \cdot \vec{w}<0 & : \text { For all } \mathrm{j} \text { such that } \mathrm{y}=-1
\end{array}
$$

Further assumption 1

Lets assume that the hyperplane that we are looking for passes thru the origin

Further assumption 2

- Lets assume that we are looking for a halfspace that contains a set of points

Lets Relax FA 1 now

- "Homogenize" the coordinates by adding a new coordinate to the input.
- Think of it as moving the whole red and blue points in one higher dimension
- From 2D to 3D it is just the $x-y$ plane shifted to $z=1$. This takes care of the "bias" or our assumption that the halfspace can pass thru the origin.

Further Assumption 3

- Assume all points on a unit sphere!
- If they are not after applying transformations for FA 1 and FA 2 , make them so.

Restatement 1

- Given: A set of points on a sphere in d-dimensions, such that all of them lie in a half-space.
- Output: Find one such halfspace
- Note: You can solve the LP feasibility problem. $\Leftrightarrow \quad$ You can solve any general LP !!

```
Take Estie's class if you
vant to know why. ()
```


Restatement 2

- Given a convex body (in V-form), find a halfspace passing thru the origin that contains it.

Support Vector Machines

A small break from perceptrons

Support Vector Machines

- Li near Learni ng Machi nes like perceptrons.
- Map non-l i nearly to hi gher di mension to overcome the linearity constraint.
- Sel ect bet ween hyperplanes, Use margi n as a test (This is what perceptrons don't do)

SVMs

Another Reformulation

Support Vector Machines

- There are very simple algorithms to solve SVMs (as simple as perceptrons) (If there is enough demand, I can try to cover it)
(and If my job hunting lets me ;))

Back to perceptrons

Perceptrons

- So how do we solve the LP ?
- Simplex
- Ellipsoid
- IP methods
- Perceptrons = Gradient Decent

So we could solve the classification problem using any LP method.

Why learn Perceptrons?

- You can write an LP solver in 5 mins !
- A very slight modification can give u a polynomial time guarantee (Using smoothed analysis)!

Why learn Perceptrons

- Multiple perceptrons clubbed together are used to learn almost anything in practice. (Idea behind multi layer neural networks)
- Perceptrons have a finite capacity and so cannot represent all classifications. The amount of training data required will need to be larger than the capacity. We'll talk about capacity when we introduce VC-dimension.

```
Froml earning theory, li mited capacity is good
```


Another twist : Linearization

- If the data is separable with say a sphere, how would you use a perceptron to separate it? (Ellipsoids?)
\square

Linearization

Lift the points to a parabol oid $i n$ one hi gher di mension, For instance if the data is in 2D,

$$
(x, y)->\left(x, y, x^{2}+y^{2}\right)
$$

The kernel Matrix

- Another trick that ML community uses for Linearization is to use a function that redefines distances between points.
- Example : $K(x, z)=e^{-\|x-z\|^{2} / 2 \sigma}$
- There are even papers on how to learn kernels from data !

Perceptron Smoothed
 Complexity

Let L be a linear programand let L^{\prime} be the sare linear programunder a Gaussian perturbation of variance si gma², where si gma ${ }^{2}<=$ 1/ 2d. For any delta, with probability at least 1 - delta either

The perceptron finds a feasi ble

L' is i nfeasible or unbounded

The Algorithm

In one line

The 1 Line LP Solver!

- Start with a random vector w , and if a point is misclassified do:

$$
\vec{w}_{k+1}=\vec{w}_{k}+\vec{x}_{k}
$$

(until done)

One of the most beantiful LP Solvess l've ever come across. .

A better description

I nitial ize w=0, $\quad \mathbf{c}=0$
do $i=(i+1) \quad \bmod n$
if x_{i} is misclassified by w then $w=w+x_{i}$
until al patterns classified
Ret urn w

That's the entire code!
Written in 10 mins.

An even better description

```
function w = perceptron(r,b)
r = [r (zeros(l ength(r), l) +1)]; % Homogenize
b = - [b (zeros(l engt h(b), l) +l)]; % Homogeni ze and flip
data = [r;b]; % Make one poi ntset
s = size(data);
w = zeros(1,s(1, 2));
is_error = true;
whi le is_error
    is_error = false;
    for k=1:s(1, 1)
        if dot(w, data(k,:)) <= O
            w = w+data(k,:); is_error = true;
            end
    end
```

end

An output

In other words

At each step, the algorithm picks any vector x that is misclassified, or is on the wrong side of the halfspace, and brings the normal vector w closer into agreement with that point

Still: Why the hell does it work?

Back to the most advanced presentation tools available on earth !

The blackboard ${ }^{-}$

Wait (Lemme try the whiteboard)

Proof

$$
\omega_{i+1}=\omega_{i}+x_{i}
$$

Let $\hat{\omega}$ be an optimal solution such that $\|\hat{\omega}\|=1$.

$$
\left(\omega_{i+1}-\alpha \hat{\omega}\right)=\left(\omega_{i}-\alpha \hat{\omega}\right)+x_{i}
$$

Proof

$$
\begin{aligned}
\left\|\omega_{i+1}-\alpha \hat{\omega}\right\|^{2}= & \left\|\omega_{i}-\alpha \hat{\omega}\right\|^{2}+\left\|x_{i}\right\|^{2} \\
& +\underbrace{2\left(\omega_{i}-\alpha \hat{\omega}\right) x_{i}}_{2 \omega_{i} x_{i}-2 \alpha \hat{\omega} x_{i}}
\end{aligned}
$$

$\omega_{i} \cdot x_{i}<0$ Since x_{i} was misclassified

$$
\begin{aligned}
\Rightarrow \quad\left\|\omega_{i+1}-\alpha \hat{\omega}\right\|^{2} \leqslant & \left\|\omega_{i}-\alpha \hat{\omega}\right\|^{2}+1 \\
& -2 \alpha \tau
\end{aligned}
$$

Let $x=\min _{x_{i}} x_{i} \cdot \hat{\omega}$

$$
\begin{aligned}
& \text { Let } \alpha=\frac{1}{x} \\
& \Rightarrow \quad\left\|\omega_{i+1}-\alpha \hat{\omega}\right\|^{2} \leqslant\left\|\omega_{i}-\alpha \hat{\omega}\right\|^{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 0 \leqslant\left\|\omega_{i+k}-\alpha \hat{\omega}\right\|^{2} \leqslant\left\|\omega_{i}-\alpha \hat{\omega}\right\|^{2}-k \\
& \Rightarrow \quad 0 \leqslant\left\|\omega_{0}-\alpha \hat{\omega}\right\|^{2}-k
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad k & \leqslant\|\alpha \hat{\omega}\|^{2} \quad\left[\because \omega_{0}=0\right] \\
& \leqslant \alpha^{2} \quad[\because\|\hat{\omega}\|=1] \\
& \leqslant \frac{1}{\gamma^{2}}
\end{aligned}
$$

That's all folks ©

