Due: September 3, 2009

Problem Set 1

Name: Your Name Collaborated with: Partner's Name

- You have to answer only 2 out of 24 questions.
- The particular exercises you have to solve will be determined using $f_1()$ and $f_2()$ as specified below.

Example: My fsu email address: pkumar@fsu.edu

First 2 characters in hex: **pk** gives 706B.

 $f_1() = (706B \mod 3D) \mod 18 + 1 = (30 \mod 18) + 1 = 0 + 1 = 1$. In Decimal = 1.

 $f_2() = (f_1() + C) \mod 18 = D$. Converted to Decimal = 13.

Exercise 1

Suppose the people who own page 3 in the web of Figure 1 are infuriated by the fact that its importance score computed using formula(2.1), is lower than the score of page 1. In an attempt to boost page 3's score, they create a page 5 that links to page 3; page 3 also links to page 5. Does this boost page 3's score above that of page 1?

Solution:

insert solution here

Exercise 13

Show more generally that $(\mathbf{A}^p)_{ij} > 0$ iff page *i* can be reached from page *j* in exactly *p* steps.

Solution:

insert solution here. Some sample lines that might help when you typeset the math, don't forget to remove them after you are done...

 $x_k \ge 0$ and $x_j > x_k$ means page j is more important than page k.

$$x_1 = x_3 + x_4$$

$$x_1 = \frac{x_3}{1} + \frac{x_4}{2}$$

Let $L_k \subset \{1, 2, ..., n\}$ denote the set of pages with a link to page k. Then:

$$x_1 = x_3/1 + x_4/2 \tag{1}$$

$$x_2 = x_1/3 \tag{2}$$

$$x_3 = x_1/3 + x_2/2 + x_4/2 (3)$$

$$x_4 = x_1/3 + x_2/2 \tag{4}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

We seek an eigenvector \mathbf{x} for eigenvalue 1. Let $V_1(\mathbf{A})$ be the eigenspace for the eigenvalue 1 of the column stochastic matrix \mathbf{A} . dimension $(V_1(\mathbf{A})) = 2$ in this case.

$$\mathbf{x} = [1/2, 1/2, 0, 0, 0]^T$$

 $\mathbf{y} = [0, 0, 1/2, 1/2, 0]^T$

Web W consisting of r connected components forces dimension $(V_1(\mathbf{A})) \geq r$.

$$\begin{bmatrix} \mathbf{A}_1 & 0 \\ 0 & \mathbf{A}_2 \end{bmatrix} \begin{pmatrix} \mathbf{v}_1 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ 0 \end{pmatrix}$$
$$\begin{bmatrix} \mathbf{A}_1 & 0 \\ 0 & \mathbf{A}_2 \end{bmatrix} \begin{pmatrix} 0 \\ \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{v}_2 \end{pmatrix}$$

Let **S** denote an $n \times n$ matrix with all entries 1/n.

Lemma 1: If M is positive and column stochastic, then any eigenvector in $V_1(\mathbf{M})$ has all positive or all negative components.

Lemma 2: Let \mathbf{v} and \mathbf{w} be linearly independent vectors in $\mathbf{R}^m, m \geq 2$. Then for some values of s and t, the vector $\mathbf{x} = s\mathbf{v} + t\mathbf{w}$ has both positive and negative components.

A straightforward induction shows: $||\mathbf{M}^k \mathbf{v}||_1 \le c^k ||\mathbf{v}||_1$.