Problem Set 1

Name: Your Name
Collaborated with: Partner's Name

- You have to answer only 2 out of 24 questions.
- The particular exercises you have to solve will be determined using $f_{1}()$ and $f_{2}()$ as specified below.

Example: My fsu email address: pkumar@fsu.edu
First 2 characters in hex: pk gives 706B.
$f_{1}()=(706 B \bmod 3 D) \bmod 18+1=(30 \bmod 18)+1=0+1=1$. In Decimal $=1$.
$f_{2}()=\left(f_{1}()+C\right) \bmod 18=D$. Converted to Decimal $=13$.

Exercise 1

Suppose the people who own page 3 in the web of Figure 1 are infuriated by the fact that its importance score computed using formula(2.1), is lower than the score of page 1. In an attempt to boost page 3's score,they create a page 5 that links to page 3 ; page 3 also links to page 5 . Does this boost page 3 's score above that of page 1?

Solution:

insert solution here

Exercise 13

Show more generally that $\left(\mathbf{A}^{p}\right)_{i j}>0$ iff page i can be reached from page j in exactly p steps.

Solution:

insert solution here. Some sample lines that might help when you typeset the math, don't forget to remove them after you are done...
$x_{k} \geq 0$ and $x_{j}>x_{k}$ means page j is more important than page k.

$$
x_{1}=x_{3}+x_{4}
$$

$x_{1}=\frac{x_{3}}{1}+\frac{x_{4}}{2}$
Let $L_{k} \subset\{1,2, \ldots, n\}$ denote the set of pages with a link to page k. Then:

$$
\begin{align*}
& x_{1}=x_{3} / 1+x_{4} / 2 \tag{1}\\
& x_{2}=x_{1} / 3 \tag{2}\\
& x_{3}=x_{1} / 3+x_{2} / 2+x_{4} / 2 \tag{3}\\
& x_{4}=x_{1} / 3+x_{2} / 2 \tag{4}\\
& \qquad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{align*}
$$

We seek an eigenvector \mathbf{x} for eigenvalue 1. Let $V_{1}(\mathbf{A})$ be the eigenspace for the eigenvalue 1 of the column stochastic matrix \mathbf{A}. dimension $\left(V_{1}(\mathbf{A})\right)=2$ in this case.

$$
\begin{aligned}
& \mathbf{x}=[1 / 2,1 / 2,0,0,0]^{T} \\
& \mathbf{y}=[0,0,1 / 2,1 / 2,0]^{T}
\end{aligned}
$$

Web W consisting of r connected components forces dimension $\left(V_{1}(\mathbf{A})\right) \geq r$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{A}_{1} & 0 \\
0 & \mathbf{A}_{2}
\end{array}\right]\binom{\mathbf{v}_{1}}{0}=\binom{\mathbf{v}_{1}}{0}} \\
& {\left[\begin{array}{cc}
\mathbf{A}_{1} & 0 \\
0 & \mathbf{A}_{2}
\end{array}\right]\binom{0}{\mathbf{v}_{2}}=\binom{0}{\mathbf{v}_{2}}}
\end{aligned}
$$

Let \mathbf{S} denote an $n \times n$ matrix with all entries $1 / n$.
Lemma 1: If \mathbf{M} is positive and column stochastic, then any eigenvector in $V_{1}(\mathbf{M})$ has all positive or all negative components.

Lemma 2: Let \mathbf{v} and \mathbf{w} be linearly independent vectors in $\mathbf{R}^{m}, m \geq 2$. Then for some values of s and t, the vector $\mathbf{x}=s \mathbf{v}+t \mathbf{w}$ has both positive and negative components.

A straightforward induction shows: $\left\|\mathbf{M}^{k} \mathbf{v}\right\|_{1} \leq c^{k}\|\mathbf{v}\|_{1}$.

