Class Participation Quiz

Complete and submit this within 15 minutes.

General Information

Last Name _____ First Name _____

ID Number _____ Email _____

Fill in the blanks (or select T/F):

 $\underline{\qquad} T(n) = T(\sqrt{n}) + O(1)$

 $\underline{\qquad} T(n) = 2T(\sqrt{n}) + O(1)$

_____ IOs are necessary and sufficient to sort n comparable objects of O(1) size in the IO Efficient model.

_____ is an upper bound on the query time of a point in kd-tree in fixed dimensions.

_____ is an upper bound on the sorting time in the PRAM model of computation.

Show proof on the back of this page.

 ${\bf T} \quad {\bf F} \mbox{ For all weighted input graphs (with positive capacities), The Preflow push algorithm can be sped up by using capacity scaling. }$

 ${\bf T} - {\bf F}$ Unit weight bipartite matching can be done using max flow algorithm.

 \mathbf{T} **F** In every directed graph with nodes s and t (and all edges having unit weight), the maximum number of edge-disjoint s-t paths is equal to the minimum number of edges whose removal separates s from t.

T F If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then |N(S)| < |S| for all subsets $S \subseteq L$.

T F Factor is not in NP \cap co-NP.

 ${\bf T} - {\bf F}$ In fixed dimensions, LP can be solved in linear time.

T F LRU is 2k-competitive.

Show in a two line proof, LP Feasibility and LP optimization are equivalent. (Use the following space on this page)