
Piyush Kumar

Computational Geometry, CIS 5930, Spring 2009

Assignment #2
Due: Jan 27th 2009

Each of the problems should be solved on a separate sheet of paper to facilitate grading. Staple
all these sheets together! Please don’t wait until the last minute to look at the problems.

Problem 1 [Source: David Mount]
The objective of this problem is to consider an alternative approach for an O(n log h) time algorithm
for computing the upper hull of a set of points in the plane. Given two nonempty planar point sets
A and B, which lie on opposite sides of a vertical line, the upper tangent of A and B is defined
to be a nonvertical line T that passes through one point a ∈ A and one point b ∈ B such that no
point of A∪B lies above this line. (See Figure 1.) It is a fact (which you need not prove) that the
upper tangent exists and is unique.

Consider the following variation of the divide and conquer convex hull algorithm, which given
an n-element planar point set P computes its upper hull H(P).

T

a
b

A B

Figure 1: The upper hull of point sets A and B

1. If |P | ≤ 3, then compute the upper convex hull by brute force in O(1) time and return.

2. Otherwise, partition the point set P into two sets A and B, where A consists of bn/2c the
points with the lowest x-coordinates and B consists of dn/2e of the points with the highest
x-coordinates.

3. Compute the upper tangent T between A and B and let a ∈ A and b ∈ B be the contact
point with these sets. (Note: This is done without knowing the upper hulls.)

4. Remove from A and B all the points whose x-coordinates lies strictly between ax and bx. (Do
not remove a and b.) Let A′ and B′ be the respective subsets of remaining points.

5. Recursively compute the upper hulls H(A′) =upperHull(A′) and H(B′) =upperHull(B′).

6. Merge the two upper convex hulls H(A′) and H(B′) along with the segment ab to form the
final upper hull.

The main difference between this algorithm and the divide-and-conquer algorithm given in
class is that this algorithm computes the upper tangent before it computes the two hulls, rather
than after. You may assume (without proving) that the computations of Steps (2) and (3) can
be performed in O(n) time, where n = |P |. (Step (2) follows from the well-known fast median
algorithm and we will discuss Step (3) later this semester.) Using these facts, show that the
algorithm described here takes O(n log h) time, where h is the number of points in the final upper
convex hull.
Extra Credit : Implement this algorithm for your convex hull implementation and engineer it to
be faster than Graham Scan or QuickHull at least for uniformly distributed points.

Problem 2
Given a set of points P = {p1, p2, . . . , pn} in two dimensions, implement a class in C++ that
outputs the Convex hull of this point cloud. It should be able to handle degeneracies of any kind.
You will be using the predicates implemented in predicates.c from inside dpoint.hpp for the
implementation. Your algorithm should run in O(n log n). You are encouraged to use openmp or
pthreads to speed your implementation up. I will be running your implementations on a 8-core
machine. For starters, download assignment2.cpp, predicates.c and the Makefile from the
useful code page to get started. You should then download all the header files that you need (I
usually use wget to do this). Once you have a compilable version, start modifying it.

Your code should be well documented using Doxygen.

