

Parallel Models

- An abstract description of a real world parallel machine.
- Attempts to capture essential features (and suppress details?)
- What other models have we seen so far?

RAM? External Memory Model?

RAM

- Random Access Machine Model
 - Memory is a sequence of bits/words.
 - Each memory access takes O(1) time.
 - Basic operations take O(1) time: Add/Mul/Xor/Sub/AND/not...
 - Instructions can not be modified.
 - No consideration of memory hierarchies.
 - Has been very successful in modelling real world machines.

PRAM

Shared Memory

.....

 $\mathsf{EREW}: \mathbf{A}$ program isnt allowed to access the same memory location at the same time.

EREW/ERCW/CREW/CRCW

Parallel RAM aka PRAM

- Generalization of RAM
- P processors with their own programs (and unique id)
- MIMD processors : At each point in time the processors might be executing different instructions on different data.
- Shared Memory
- Instructions are synchronized among the processors

Variants of CRCW

- Common CRCW: CW iff processors write same value.
- Arbitrary CRCW
- Priority CRCW
- Combining CRCW

Why PRAM?

- · Lot of literature available on algorithms for PRAM.
- One of the most "clean" models.
- Focuses on what communication is needed (and ignores the cost/means to do it)

PRAM Algorithm design.

• Problem 1: Produce the sum of an array of n numbers.

Prefix computation

• Suffix computation is a similar

• Assumes Binary op takes O(1)

- RAM = ?
- PRAM = ?

problem.

• In RAM = ?

Problem 2: Prefix Computation

Let $X = \{s_0, s_1, \ldots, s_{n\text{-}1}\}$ be in a set S

Let \otimes be a *binary*, *associative*, *closed* operator with respect to S (usually $\Theta(1)$ time - MIN, MAX, AND, +, ...) The result of $s_0 \otimes s_1 \otimes ... \otimes s_k$ is called the *k*-th prefix

Computing all such *n* prefixes is the *parallel prefix computation*

1st prefix	s ₀
2nd prefix	$s_0 \otimes s_1$
3rd prefix	$\mathbf{s}_0 \otimes \mathbf{s}_1 \otimes \mathbf{s}_2$

(*n*-1)th prefix $s_0 \otimes s_1 \otimes ... \otimes s_{n-1}$

Figure 4.1: Prefix computation on the PRAM.

EREW PRAM Prefix computation

- Assume PRAM has n processors and n is a power of 2.
- Input: s, for i = 0,1, ... , n-1.
- Algorithm Steps:

for j = 0 to (lg n) -1, do for i = 2^j to n-1 do $h = i - 2^j$ $s_i = s_h \otimes s_i$ endfor endfor

Total time in EREW PRAM?

Problem 3: Array packing

Assume that we have

- an array of *n* elements, X = {x₁, x₂, ..., x_n}
 Some array elements are *marked* (or *distinguished*).
- The requirements of this problem are to

 pack the marked elements in the front part of
 the array.
 - place the remaining elements in the back of the array.
- While not a requirement, it is also desirable to
 maintain the original order between the marked elements
 - maintain the original order between the unmarked elements

In RAM?

- · How would you do this?
- Inplace?
- Running time?
- Any ideas on how to do this in PRAM?

Array Packing

- Assume n processors are used above.
- Optimal prefix sums requires O(lg n) time.
- The <u>EREW broadcast</u> of s_n needed in Step 3 takes O(lg n) time using a binary tree in memory
- All and other steps require constant time.
- Runs in O(lg n) time and is cost optimal.
- Maintains original order in unmarked group as well Notes:
- Algorithm illustrates usefulness of Prefix Sums
 There many applications for Array Packing
- algorithm

Problem 4: PRAM MergeSort

- · RAM Merge Sort Recursion?
- · PRAM Merge Sort recursion?
- Can we speed up the merging?
 - Merging n elements with n processors can be done in O(log n) time.
 - Assume all elements are distinct
 - Rank(a, A) = number of elements in A smaller than a. For example rank(8, {1,3,5,7,9}) = 4

EREW PRAM Algorithm

- Set s_i in P_i to 1 if x_i is marked and set s_i = 0 otherwise.
- 2. Perform a prefix sum on S =($s_1, s_2, ..., s_n$) to obtain destination d_i = s_i for each marked x_i .
- All PEs set m = s_n, the total nr of marked elements.
- 4. P_i sets s_i to 0 if x_i is marked and otherwise sets $s_i = 1$.
- 5. Perform a prefix sum on S and set $d_i = s_i + m$ for each unmarked x_i .
- 6. Each P_i copies array element x_i into address d_i in X.

Problem 5: Closest Pair

• RAM Version ?

A List

- Approximation Algorithms
- Online Algorithms
- Learning Algorithms
- Network Algorithms · Advanced Data Structures.
- Flow Algorithms.
- Algorithmic Game Theory
- Quantum Algorithms.
- Geometric Algorithms

Interesting Classes at FSU

In case you liked this class:

- Parallel Algorithms
- Computational Geometry
- Advanced Algorithms

Next Class

- Practice Problem Solving for Finals.
- Extra Office Hours :
 - Wednesday, I will be in office and accessible anytime for questions.

