

P, NP, EXP

- P. Decision problems for which there is a poly-time algorithm.
 EXP. Decision problems for which there is an exponential-time
- NP. Decision problems for which there is a poly-time certifier.
- Claim. $P \subseteq NP$.
- Pf. Consider any problem X in P.
 - By definition, there exists a poly-time algorithm A(s) that solves X.
 - Certificate: $t = \varepsilon$, certifier C(s, t) = A(s).
- Claim. NP \subseteq EXP.

.

- Pf. Consider any problem X in NP.
- By definition, there exists a poly-time certifier C(s, t) for X.
- To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
- Return yes, if C(s, t) returns yes for any of these. .

The Main Question: P Versus NP
 Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 Is the decision problem as easy as the certification problem?
 Clay \$1 million prize.

More Hard Computational Problems Aerospace engineering: optimal mesh partitioning for finite elements. Biology: protein folding. Chemical engineering: heat exchanger network synthesis. Civil engineering: equilibrium of urban traffic flow. Economics: computation of arbitrage in financial markets with friction. Electrical engineering: VLSI layout. Environmental engineering: optimal placement of contaminant sensors. Financial engineering: find minimum risk portfolio of given return. Game theory: find Nash equilibrium that maximizes social welfare. Genomics: phylogeny reconstruction. Mechanical engineering: structure of turbulence in sheared flows. Medicine: reconstructing 3-D shape from biplane angiocardiogram. Operations research: optimal resource allocation Physics: partition function of 3-D Ising model in statistical mechanics. Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency

Statistics: optimal experimental design.

.

. Pf.

