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Analysis of AlgorithmsAnalysis of AlgorithmsAnalysis of Algorithms
PiyushPiyush KumarKumar
(Lecture 9: NP Completeness)(Lecture 9: NP Completeness)

Welcome to COP 4531
Based on Kevin Wayne’s slides

Announcements

• Programming Assignment due: April 
25th

• Submission: email your project.tar.gz
to Vinod Akula:  akula at cs dot fsu dot 
edu

• Last Homework due: April 19th ? 

• Project presentations : April 27th. 
(1/2 hour) 

• Final Exams : April 26th

NP
• Certification algorithm intuition.

– Certifier views things from "managerial" viewpoint.
– Certifier doesn't determine whether s ∈ X  on its own;

rather, it checks a proposed proof t that s ∈ X.

• Def.  Algorithm C(s, t) is a certifier for problem X if for every 
string s,  s ∈ X  iff there exists a string t such that C(s, t) = yes.

• NP.  Decision problems for which there exists a poly-time certifier.

• Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and
|t| ≤ p(|s|) for some polynomial p(⋅).

"certificate" or "witness"

Certifiers and Certificates:  Composite
• COMPOSITES.  Given an integer s, is s composite?

• Certificate.  A nontrivial factor t of s.  Note that such a 
certificate exists iff s is composite.  Moreover |t| ≤ |s|.

• Certifier.  

• Instance.  s = 437,669.
• Certificate.  t = 541 or 809.

• Conclusion.  COMPOSITES is in NP.

437,669 = 541 × 809

boolean C(s, t) {
if (t ≤ 1 or t ≥ s)

return false
else if (s is a multiple of t)

return true
else 

return false
}

Certifiers and Certificates:  3-
Satisfiability

• SAT. Given a CNF formula Φ, is there a satisfying assignment?

• Certificate.  An assignment of truth values to the n boolean 
variables.

• Certifier.  Check that each clause in Φ has at least one true literal.

• Ex.

• Conclusion.  SAT is in NP.

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( ) ∧ x1  ∨ x3  ∨ x4( )

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t

Certifiers and Certificates:  
Hamiltonian Cycle

• HAM-CYCLE. Given an undirected graph G = (V, E), does there 
exist a simple cycle C that visits every node?

• Certificate.  A permutation of the n nodes.

• Certifier.  Check that the permutation contains each node in V 
exactly once, and that there is an edge between each pair of 
adjacent nodes in the permutation.

• Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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P, NP, EXP
• P.  Decision problems for which there is a poly-time algorithm.
• EXP.  Decision problems for which there is an exponential-time 

algorithm.
• NP.  Decision problems for which there is a poly-time certifier.

• Claim.  P  ⊆ NP.
• Pf.  Consider any problem X in P.

– By definition, there exists a poly-time algorithm A(s) that solves X.
– Certificate: t = ε, certifier C(s, t) = A(s). ▪

• Claim.  NP  ⊆ EXP.
• Pf.  Consider any problem X in NP.

– By definition, there exists a poly-time certifier C(s, t) for X.
– To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|).
– Return yes, if C(s, t) returns yes for any of these. ▪

The Main Question:  P Versus NP
• Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the certification problem?
– Clay $1 million prize.

• If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
• If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

• Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P ≠ NP If  P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)

Quantum 
machines can 
FACTOR in 
poly time!! 

But….

NP CompletenessNP CompletenessNP Completeness

Polynomial Transformation
• Def.  Problem X polynomial reduces (Cook) to problem Y if arbitrary 

instances of problem X can be solved using:
– Polynomial number of standard computational steps, plus
– Polynomial number of calls to oracle that solves problem Y.

• Def.  Problem X polynomial transforms (Karp) to problem Y if given any 
input x to X, we can construct an input y such that x is a yes instance of X 
iff y is a yes instance of Y. 

• Note.  Polynomial transformation is polynomial reduction with just one call 
to oracle for Y, exactly at the end of the algorithm for X.  Almost all 
previous reductions were of this form. 

• Open question.  Are these two concepts the same?

we require |y| to be of size polynomial in |x|

we abuse notation ≤ p and blur distinction

NP-Complete
• NP-complete.  A problem Y in NP with the property that for every 

problem X in NP, X ≤ p Y. (Hardest problems in NP)

• Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable 
in poly-time iff P = NP.

• Pf.  ⇐ If P = NP then Y can be solved in poly-time since Y is in NP.
• Pf.  ⇒ Suppose Y can be solved in poly-time.

– Let X be any problem in NP.  Since X ≤ p Y, we can solve X in
poly-time. This implies NP  ⊆ P.

– We already know P  ⊆ NP. Thus P = NP. ▪

• Fundamental question.  Do there exist "natural" NP-complete 
problems?

∧

¬

∧ ∨

∧

∨

1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

• CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and 
NOT gates, is there a way to set the circuit inputs so that the output 
is 1?



3

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem
• Theorem.  CIRCUIT-SAT is NP-complete.  [Cook 1971, Levin 1973]
• Pf.  (sketch)

– Any algorithm that takes a fixed number of bits n as input and 
produces a yes/no answer can be represented by such a circuit.
Moreover, if algorithm takes poly-time, then circuit is of poly-size.

– Consider some problem X in NP.  It has a poly-time certifier C(s, t).
To determine whether s is in X, need to know if there exists a 
certificate t of length p(|s|) such that C(s, t) = yes.

– View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate 
t) and convert it into a poly-size circuit K.

• first |s| bits are hard-coded with s
• remaining p(|s|) bits represent bits of t

– Circuit K is satisfiable iff C(s, t) = yes.

∧

¬

u-v

∨

1

independent set of size 2?

n inputs (nodes in independent set)hard-coded inputs (graph description)

∨

∨

∧

u-w

0

∧

v-w

1

∧

u
?

∧

v
?

∧

w
?

∧

∨

set of size 2?

both endpoints of some edge have been chosen?

independent set?

Example
• Ex.  Construction below creates a circuit K whose inputs can be set 

so that K outputs true iff graph G has an independent set of size 
2.

u

v w

n
2

⎛ 

⎝ 
⎜ 

⎞

⎠
⎟

G = (V, E), n = 3

Establishing NP-Completeness
• Remark.  Once we establish first "natural" NP-complete problem,

others fall like dominoes.

• Recipe to establish NP-completeness of problem Y.
– Step 1.  Show that Y is in NP.
– Step 2.  Choose an NP-complete problem X.
– Step 3.  Prove that X ≤ p Y.

• Justification.  If X is an NP-complete problem, and Y is a problem 
in NP with the property that X ≤ P Y then Y is NP-complete.

• Pf.  Let W be any problem in NP.  Then W  ≤ P  X   ≤ P Y.
– By transitivity, W ≤ P Y. 
– Hence Y is NP-complete.  ▪ by assumptionby definition of

NP-complete

3-SAT is NP-Complete
• Theorem.  3-SAT is NP-complete.
• Pf.  Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-

SAT is in NP.
– Let K be any circuit.
– Create a 3-SAT variable xi for each circuit element i.
– Make circuit compute correct values at each node:

• x2 = ¬ x3 ⇒ add 2 clauses:
• x1 = x4 ∨ x5   ⇒ add 3 clauses:
• x0 = x1 ∧ x2   ⇒ add 3 clauses:

– Hard-coded input values and output value.
• x5 = 0  ⇒ add 1 clause:
• x0 = 1  ⇒ add 1 clause:

– Final step:  turn clauses of length < 3 into
clauses of length exactly 3.  ▪

∨

∧

¬

0 ? ?

output

x0

x2x1

  x2 ∨ x3  , x2 ∨ x3

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3x4
x5

  x5

  x0

Final Step?
• We force z1 = z2 = 0
• For single terms t : 
• For two term clauses : 

• How can we force z1 = z2 = 0 in a 3-sat?
• Hence we now have

– 3-SAT ≤ p Independent Set ≤ p Vertex Cover ≤ p Set Cover
– In our NP-Complete Bank

1 2 t z z∨ ∨

1 t w z∨ ∨

X problems?

• X = Hard ? Tough? Herculean? Formidable? Arduous? NPC?
• X = Impractical? Bad? Heavy? Tricky?  Intricate? 

Prodigious ? Difficult? Intractable? Costly ? Obdurate? 
Obstinate ? Exorbitant? Interminable?

Couldn’t find a poly-
time solution bosss

?
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X problems?

• X = Hard ? Tough? Herculean? Formidable? Arduous?
• X = Impractical? Bad? Heavy? Tricky?  Intricate? 

Prodigious ? Difficult? Intractable? Costly ? Obdurate? 
Obstinate ? Exorbitant? Interminable?

Couldn’t find a poly-
time solution bosss

because none exists.

Proof?

X problems?

• X = Hard ? Tough? Herculean? Formidable? Arduous?
• X = Impractical? Bad? Heavy? Tricky?  Intricate? 

Prodigious ? Difficult? Intractable? Costly ? Obdurate? 
Obstinate ? Exorbitant? Interminable?

Couldn’t find a poly-time 
solution bosss but neither 

could all thse smart people…

• Observation.  All problems below are NP-complete and 
polynomial reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

3-SAT reduces to
 

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

Some NP-Complete Problems
• Six basic genres of NP-complete problems and paradigmatic 

examples.
– Packing problems:  SET-PACKING, INDEPENDENT SET.
– Covering problems:  SET-COVER, VERTEX-COVER.
– Constraint satisfaction problems:  SAT, 3-SAT.
– Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
– Partitioning problems: 3D-MATCHING 3-COLOR.
– Numerical problems:  SUBSET-SUM, KNAPSACK.

• Practice. Most NP problems are either known to be in P or NP-
complete.

• Notable exceptions.  Factoring, graph isomorphism, Nash 
equilibrium.

Extent and Impact of NP-
Completeness

• Extent of NP-completeness.  [Papadimitriou 1995] 
– Prime intellectual export of CS to other disciplines.
– 6,000 citations per year (title, abstract, keywords).

• more than "compiler", "operating system", "database"
– Broad applicability and classification power.
– "Captures vast domains of computational, scientific, 

mathematical endeavors, and seems to roughly delimit what 
mathematicians and scientists had been aspiring to compute 
feasibly."

• NP-completeness can guide scientific inquiry.
– 1926:  Ising introduces simple model for phase transitions.
– 1944:  Onsager solves 2D case in tour de force.
– 19xx:  Feynman and other top minds seek 3D solution.
– 2000:  Istrail proves 3D problem NP-complete.

More Hard Computational Problems

• Aerospace engineering:  optimal mesh partitioning for finite elements.

• Biology:  protein folding.

• Chemical engineering:  heat exchanger network synthesis.

• Civil engineering:  equilibrium of urban traffic flow.

• Economics:  computation of arbitrage in financial markets with friction.

• Electrical engineering:  VLSI layout. 

• Environmental engineering:  optimal placement of contaminant sensors.

• Financial engineering:  find minimum risk portfolio of given return.

• Game theory:  find Nash equilibrium that maximizes social welfare.

• Genomics:  phylogeny reconstruction.

• Mechanical engineering:  structure of turbulence in sheared flows.

• Medicine:  reconstructing 3-D shape from biplane angiocardiogram.

• Operations research:  optimal resource allocation. 

• Physics:  partition function of 3-D Ising model in statistical mechanics.

• Politics:  Shapley-Shubik voting power.

• Pop culture:  Minesweeper consistency.

• Statistics:  optimal experimental design.
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8.9  co8.9  co--NP and the NP and the 
Asymmetry of NPAsymmetry of NP

Asymmetry of NP
• Asymmetry of NP. We only need to have short proofs of yes

instances.

• Ex 1.  SAT vs. TAUTOLOGY.
– Can prove a CNF formula is satisfiable by giving such an 

assignment.
– How could we prove that a formula is not satisfiable? 

• Ex 2.  HAM-CYCLE vs. NO-HAM-CYCLE.
– Can prove a graph is Hamiltonian by giving such a Hamiltonian 

cycle.
– How could we prove that a graph is not Hamiltonian?

• Remark.  SAT is NP-complete and SAT ≡ P TAUTOLOGY, but how 
do we classify TAUTOLOGY?

not even known to be in NP

NP and co-NP
• NP.  Decision problems for which there is a poly-time certifier.
• Ex.  SAT, HAM-CYCLE, COMPOSITES.

• Def.  Given a decision problem X, its complement X is the same 
problem with the yes and no answers reverse.

• Ex.  X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, … }
• Ex.  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

• co-NP.  Complements of decision problems in NP.
• Ex.  TAUTOLOGY, NO-HAM-CYCLE, PRIMES.

Reverse the yes/no answers for
the decision problem.

NP and co-NP
• NP : Problems that have succinct 

certificates 
– (Ex: Hamiltonian Cycle)

• co-NP : Problems that have succinct 
disqualifiers.
– (Ex: No-Hamiltonian Cycle)

No Hamiltonian Cycle

yes

no
(short proof)

NPcoXNPX −∈⇔∈

• Fundamental question.  Does NP = co-NP?
– Do yes instances have succinct certificates iff no instances 

do?
– Consensus opinion:  no.

• Theorem.  If NP ≠ co-NP, then P ≠ NP.
• Pf idea.

– P is closed under complementation.
– If P = NP, then NP is closed under complementation.
– In other words, NP = co-NP.
– This is the contrapositive of the theorem.

NP = co-NP ? Good Characterizations
• Good characterization.  [Edmonds 1965]   NP  Ι co-NP.

– If problem X is in both NP and co-NP, then:
• for yes instance, there is a succinct certificate
• for no instance, there is a succinct disqualifier

– Provides conceptual leverage for reasoning about a problem.

• Ex.  Given a bipartite graph, is there a perfect matching.
– If yes, can exhibit a perfect matching.
– If no, can exhibit a set of nodes S such that |N(S)| < |S|.
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Good Characterizations
• Observation.  P ⊆ NP  Ι co-NP.

– Proof of max-flow min-cut theorem led to stronger result that 
max-flow and min-cut are in P.

– Sometimes finding a good characterization seems easier than 
finding an efficient algorithm.

• Fundamental open question.  Does P = NP  Ι co-NP?
– Mixed opinions.
– Many examples where problem found to have a non-trivial good 

characterization, but only years later discovered to be in P.
• linear programming [Khachiyan, 1979]

– Still open if its strongly poly !
• primality testing [Agrawal-Kayal-Saxena, 2002]

• Fact.  Factoring is in NP  Ι co-NP, but not known to be in P.
if poly-time algorithm for factoring,
can break RSA cryptosystem

PRIMES is in NP ∩ co-NP
• Theorem.  PRIMES is in NP ∩ co-NP.
• Pf.  We already know that PRIMES is in co-NP, so it suffices to 

prove that PRIMES is in NP.

• Pratt's Theorem.  An odd integer s is prime iff there exists an 
integer 1 < t < s  s.t.

t s−1 ≡ 1 (mod s)
t (s−1) / p ≠ 1 (mod s)

for all prime divisors p of s-1

Certifier.
- Check s-1 = 2 × 2 × 3 × 36,473.
- Check 17s-1 = 1 (mod s).
- Check 17(s-1)/2 ≡ 437,676 (mod s).
- Check 17(s-1)/3 ≡ 329,415 (mod s).
- Check 17(s-1)/36,473 ≡ 305,452 (mod s).

Input.  s = 437,677
Certificate.  t = 17, 22 × 3 × 36,473

prime factorization of s-1
also need a recursive certificate
to assert that 3 and 36,473 are prime

use repeated squaring

FACTOR is in NP ∩ co-NP

• FACTORIZE.  Given an integer x, find its prime factorization.
• FACTOR.  Given two integers x and y, does x have a nontrivial 

factor less than y?

• Theorem.  FACTOR ≡ P FACTORIZE.

• Theorem.  FACTOR is in NP ∩ co-NP.
• Pf.

– Certificate:  a factor p of x that is less than y.
– Disqualifier:  the prime factorization of x (where each prime 

factor is less than y), along with a certificate that each factor 
is prime.

Primality Testing and Factoring

• We established:  PRIMES ≤ P COMPOSITES ≤ P FACTOR.

• Natural question:  Does FACTOR ≤ P PRIMES ?
• Consensus opinion.  No.

• State-of-the-art.
– PRIMES is in P.
– FACTOR not believed to be in P.

• RSA cryptosystem.
– Based on dichotomy between complexity of two problems.
– To use RSA, must generate large primes efficiently.
– To break RSA, suffixes to find efficient factoring algorithm.
– The first Real Quantum machine will break most Crypto around!

proved in 2001

Approximation…
Fixed parameter 

tractable….?
Exponential….Hardene
ss of approximation..? 
Quantum computing? 

Assumptions?

np-hardness proof


