

Announcements

- Programming Assignment due: April $25^{\text {th }}$

- Submission: email your project.tar.gz to Vinod Akula: akula at cs dot fsu dot edu
- Last Homework due: April 19th ?
- Project presentations : April $27^{\text {th }}$. (1/2 hour)
Final Exams : April 26th

Certifiers and Certificates: Composite

- COMPOSITES. Given an integer s, is s composite?
- Certification algorithm intuition.
- Certifier views things from "managerial" viewpoint.
- Certifier doesn' t determine whether $s \in X$ on its own: rather, it checks a proposed proof t that $s \in X$.
- Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|t| \leq|s|$.

Def. Algorithm $C(s, t)$ is a certifier for problem X if for every string $s, s \in X$ iff there exists a string \dagger such that $C(s, t)=$ yes.

$$
_{\text {"certificate" or "witness" }}
$$

- NP. Decision problems for which there exists a poly-time certifier
$C(s, t)$ is a poly-time algorithm and
$|t| \leq p(|s|)$ for some polynomial $p(\cdot)$

Remark. NP stands for nondeterministic polynomial-time.

- Certifier.

Instance. $s=437,669$

- Certificate. $t=541$ or $8 \mathbf{8 0 9} .437,669=541 \times 809$

Conclusion. COMPOSITES is in NP.

Certifiers and Certificates: 3-

 Satisfiability- SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

- Certifier. Check that each clause in Φ has at least one true literal.

- Ex.

certificate \dagger

Conclusion. SAT is in NP.

P, NP, EXP

- P. Decision problems for which there is a poly-time algorithm. The Main Question: P Versus NP
- EXP. Decision problems for which there is an exponential-time

Does P NP? [Cook 1971,Edronds,Lev, Kablonski,Godel] algorithm.

- NP. Decision problems for which there is a poly-time certifier.
- Claim. $P \subseteq N P$
- Pf. Consider any problem X in P.
- By definition, there exists a poly-time algorithm $A(s)$ that solves X
- Certificate: $t=\varepsilon$, certifier $C(s, t)=A(s)$. .
- Claim. NP \subseteq EXP
- Pf. Consider any problem X in NP
- By definition, there exists a poly-time certifier $C(s, t)$ for X.
- To solve input s, run $C(s, t)$ on all strings \dagger with $|t| \leq p(|s|)$.
- Return yes, if $C(s, t)$ returns yes for any of these. .

4ins

The Main Question: P Versus NP

- Is the decision problem as easy as the certification problem
- Clay $\$ 1$ million prize.

would break RSA cryptography (and potentially collapse economy)
- If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
- If no: No efficient algorithms possible for 3-COLOD, TSP, SAT,

Consensus opinion on $P=N P$? Probably no.

Polynomial Transformation

- Def. Problem X polynomial reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
- Def. Problem X polynomial transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that x is a yes instance of X iff y is a yes instance of y
\dagger
we require $|y|$ to be of size polynomial in $|x|$
- Note. Polynomial transformation is polynomial reduction with just one cal to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Open question. Are these two concepts the same?

NP-Complete

- NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \leq_{p} Y$. (Hardest problems in NP)

Theorem. Suppose Y is an $N P$-complete problem. Then Y is solvable in poly-time iff $P=N P$.
Pf. \Leftarrow If $P=N P$ then Y can be solved in poly-time since Y is in $N P$.

- Pf. \Rightarrow Suppose Y can be solved in poly-time.
- Let X be any problem in $N P$. Since $X \leq_{p} Y$, we can solve X in poly-time. This implies NP $\subseteq P$.
- We already know $P \subseteq N P$. Thus $P=N P$. .

Fundamental question. Do there exist "natural" NP-complete problems?

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1 ?
yes: 101

hard-coded inputs
inputs

The "First" NP-Complete Problem

- Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973

Pf. (sketch)

- Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is of poly-size.
sketchy part of proof: fixing the number of bits is important and reflects
- Consider some problem X in NP. It has a poly-time certifier $C(s, t)$. To determine whether s is in X, need to know if there exists a certificate t of length $p(|s|)$ such that $C(s, t)=y e s$.
- View $C(s, t)$ as an algorithm on $|s|+p(|s|)$ bits (input s, certificate t) and convert it into a poly-size circuit K
- first |s| bits are hard-coded with s
- remaining $p(|s|)$ bits represent bits of \dagger
- Circuit K is satisfiable iff $C(s, t)=$ yes.

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem others fall like dominoes

Recipe to establish NP-completeness of problem Y .

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} Y$.

Justification. If X is an NP-complete problem, and V is a problem in NP with the property that $\mathrm{X} \leq_{p} \mathrm{Y}$ then Y is NP-complete.

Pf. Let W be any problem in NP. Then $W \leq_{p} X \leq_{p} Y$.

- By transitivity, $W \leq_{p} Y$.
- Hence Y is NP-complete. . \qquad by definition of
NP-complete by assumptio

3-SAT is NP-Complete

- Theorem. 3-SAT is NP-complete.
- Pf. Suffices to show that CIRCUIT-SAT $\leq_{p} 3-$ SAT since 3 SAT is in NP.
- Let K be any circuit.
- Create a 3-SAT variable x_{i} for each circuit element i.
- Make circuit compute correct values at each node:
- $x_{2}=\neg x_{3} \Rightarrow$ add 2 clauses: $x_{2} \vee x_{3}, \overline{x_{2}} \vee \overline{x_{3}}$
- $x_{1}=x_{4} \vee x_{5} \Rightarrow$ add 3 clauses: $x_{1} \vee \overline{x_{4}}, x_{1} \vee \overline{x_{5}}, \overline{x_{1}} \vee x_{4} \vee x_{5}$
- $x_{0}=x_{1} \wedge x_{2} \Rightarrow$ add 3 clauses: $\overline{x_{0}} \vee x_{1}, \overline{x_{0}} \vee x_{2}, x_{0} \vee \overline{x_{1}} \vee \overline{x_{2}}$
- Hard-coded input values and output value.
- $x_{5}=0 \Rightarrow$ add 1 clause: $\overline{x_{5}}$
- $x_{0}=1 \Rightarrow$ add 1 clause: x_{0}
(ili) - Final step: turn clauses of length <3 into clauses of length exactly 3. -

Final Step?

- We force $z 1=z 2=0$
- For single terms $\dagger: t \vee z_{1} \vee z_{2}$
- For two term clauses : $t \vee w \vee z_{1}$
- How can we force $\mathrm{z} 1=\mathrm{z} 2=0$ in a 3-sat?
- Hence we now have
- 3-SAT \leq_{p} Independent Set $\leq{ }_{p}$ Vertex Cover \leq_{p} Set Cover
- In our NP-Complete Bank

X problems?

- $X=$ Hard ? Tough? Herculean? Formidable? Arduous? NPC?
- X = Impractical? Bad? Heavy? Tricky? Intricate? Prodigious? Difficult? Intractable? Costly ? Obdurate? Obstinate? Exorbitant? Interminable?

Couldn't find a poly time solution bosss :

NP-Completeness

- Observation. All problems below are NP-complete and polynomial reduce to one another!

Some NP-Complete Problems

- Six basic genres of NP-complete problems and paradigmatic examples.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE,TSP.
- Partitioning problems: 3D-MATCHING 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.
- Practice. Most NP problems are either known to be in P or NPcomplete.
- Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.
\qquad

Extent and Impact of NPCompleteness

- Extent of NP-completeness. [Papadimitriou 1995]
- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (title, abstract, keywords). - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."
- NP-completeness can guide scientific inquiry.
- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.
- 2000: Istrail proves 3D problem NP-complete.

More Hard Computational Problems

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation

Physics: partition function of 3-D Ising model in statistical mechanics

- il Pop culture: Minesweeper consistency.

Statistics: optimal experimental design.

Asymmetry of NP

- Asymmetry of NP. We only need to have short proofs of yes instances.
- Ex 1. SAT vs. TAUTOLOGY
- Can prove a CNF formula is satisfiable by giving such an assignment.
- How could we prove that a formula is not satisfiable?
- Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.
- Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- How could we prove that a graph is not Hamiltonian?

Remark. SAT is NP-complete and SAT \equiv_{p} TAUTOLOGY, but how do we classify TAUTOLOGY?

NP and co-NP

- NP. Decision problems for which there is a poly-time certifier
- Ex. SAT, HAM-CYCLE, COMPOSITES.
-

- Def. Given a decision problem X, its complement X is the same problem with the yes and no answers reverse.
- Ex. $X=\{0,1,4,6,8,9,10,12,14,15, \ldots\}$
$X=\{2,3,5,7,11,13,17,23,29, \ldots\}$
- co-NP. Complements of decision problems in NP.
- Ex. TAUTOLOGV,NO-HAM-CYCLE, PRIMES.

Reverse the yes/no answers for the decision problem.

NP and co-NP

- NP : Problems that have succinct certificates
- (Ex: Hamiltonian Cycle)
- co-NP : Problems that have succinct disqualifiers.
- (Ex: No-Hamiltonian Cycle)

Good Characterizations

Good characterization. [Edmonds 1965] NP I co-NP.

- If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.

- If yes, can exhibit a perfect matching
- If no, can exhibit a set of nodes S such that $|N(S)|<|S|$.
- If $P=N P$, then $N P$ is closed under complementation.
- In other words, NP = co-NP.
- This is the contrapositive of the theorem.

$N P=c o-N P ?$

- Fundamental question. Does NP = co-NP?
- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.
- Theorem. If $N P \neq$ co-NP, then $P \neq N P$.
- Pfidea.
- P is closed under complementation.
\qquad

Good Characterizations

- Observation. $P \subseteq$ NP I co-NP
- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.
- Fundamental open question. Does $P=N P$ I co-NP?
- Mixed opinions.
- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P.
- linear programming [Khachiyan, 1979] - Still open if its strongly poly!
- primality testing [Agrawal-Kayal-Saxena, 2002]
- Fact. Factoring is in NP I co-NP, but not known to be in P.

PRIMES is in NP \cap co-NP

- Theorem. PRIMES is in NP \cap co-NP
- Pf. We already know that PRIMES is in co-NP, so it suffices to prove that PRIMES is in NP.
integer $1<t<s$ s. t
$\equiv 1(\bmod s)$
for all prime divisors p of $s-1$

Input. $s=437,677$
Certificate. $t=17,2^{2} \times 3 \times 36,473$
rime factorization of s also need a recursive certificate to assert that 3 and 36,473 are prime

Certifier
Check s-1 $=2 \times 2 \times 3 \times 36,473$ Check $17^{\mathrm{s}-1}=1(\bmod \mathrm{~s})$. - Check $17^{(s-1) / 2} \equiv 437,676(\bmod s)$. Check $17(\mathrm{~s}-1) / 3 \equiv 329,415(\bmod \mathrm{~s})$. - Check $17(\mathrm{~s}-1) / 36,473 \equiv 305,452(\bmod s)$.

FACTOR is in NP $\cap \operatorname{co-NP}$

- FACTORIZE. Given an integer x, find its prime factorization

FACTOR. Given two integers x and y, does x have a nontrivial factor less than y ?

Primality Testing and Factoring

Theorem. $\mathrm{FACTOR} \equiv \mathrm{p}$ FACTORIZE.

- We established: PRIMES \leq_{p} COMPOSITES \leq_{p} FACTOR
- Natural question: Does FACTOR $\leq{ }_{p}$ PRIMES ?
- Consensus opinion. No
- Theorem. FACTOR is in NP \cap co-NP
- Pf.
- Certificate: a factor p of x that is less than y
- Disqualifier: the prime factorization of x (where each prime factor is less than y), along with a certificate that each factor is prime.
- State-of-the-art
- PRIMES is in P. \leftarrow proved in 2001
- FACTOR not believed to be in P
- RSA cryptosystem.
- Based on dichotomy between complexity of two problems.
- To use RSA, must generate large primes efficiently
- To break RSA, suffixes to find efficient factoring algorithm. - The first Real Quantum machine will break most Crypto around!

