
1

Analysis of AlgorithmsAnalysis of AlgorithmsAnalysis of Algorithms
PiyushPiyush KumarKumar

(Lecture 8: Reductions)(Lecture 8: Reductions)

Welcome to COP 4531
Based on Kevin Wayne’s slides

Algorithm Design Patterns and Anti-Patterns

• Algorithm design patterns. Ex.
– Greed. O(n2) Dijkstra’s SSSP (dense)
– Divide-and-conquer. O(n log n) FFT.
– Dynamic programming. O(n2) edit distance.
– Duality. O(n3) bipartite matching.
– Reductions.
– Approximation.
– Randomization.

• Algorithm design anti-patterns.
– NP-completeness. O(nk) algorithm unlikely.
– PSPACE-completeness. O(nk) certification algorithm

unlikely.
– Undecidability. No algorithm possible.

8.1 Polynomial-Time
Reductions

8.1 Polynomial8.1 Polynomial--Time Time
ReductionsReductions

Classify Problems According to Computational
Requirements

• Q. Which problems will we be able to solve in practice?

• A working definition. [Cobham 1964, Edmonds 1965, Rabin
1966] Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

Classify Problems
• Desiderata. Classify problems according to those that can be

solved in polynomial-time and those that cannot.

• Provably requires exponential-time.
– Given a Turing machine, does it halt in at most k steps?
– Given a board position in an n-by-n generalization of chess, can

black guarantee a win?

• Frustrating news. Huge number of fundamental problems have
defied classification for decades.

• This chapter. Show that these fundamental problems are
"computationally equivalent" and appear to be different
manifestations of one really hard problem.

Polynomial-Time Reduction
• Desiderata'. Suppose we could solve X in polynomial-time. What

else could we solve in polynomial time?

• Reduction. Problem X polynomial reduces to problem Y if arbitrary
instances of problem X can be solved using:
– Polynomial number of standard computational steps, plus
– Polynomial number of calls to oracle that solves problem Y.

• Notation. X ≤ P Y.

• Remark:
– We pay for time to write down instances sent to black box ⇒

instances of Y must be of polynomial size.

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

2

Polynomial-Time Reduction

• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If X ≤ P Y and Y can be solved in polynomial-
time, then X can also be solved in polynomial time.

• Establish intractability. If X ≤ P Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

• Establish equivalence. If X ≤ P Y and Y ≤ P X, we use notation X ≡ P
Y.

up to cost of reduction

Reduction By Simple
Equivalence

Reduction By Simple Reduction By Simple
EquivalenceEquivalence

Basic reduction strategiesBasic reduction strategies..
Reduction by simple equivalence.

Reduction from special case to general case.
Reduction by encoding with gadgets.

Independent Set
• INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is

there a subset of vertices S ⊆ V such that |S| ≥ k, and for each
edge at most one of its endpoints is in S?

• Ex. Is there an independent set of size ≥ 6? Yes.
• Ex. Is there an independent set of size ≥ 7? No.

independent set

Vertex Cover
• VERTEX COVER: Given a graph G = (V, E) and an integer k, is

there a subset of vertices S ⊆ V such that |S| ≤ k, and for each
edge, at least one of its endpoints is in S?

• Ex. Is there a vertex cover of size ≤ 4? Yes.
• Ex. Is there a vertex cover of size ≤ 3? No.

vertex cover

Vertex Cover and Independent Set

• Claim. VERTEX-COVER ≡P INDEPENDENT-SET.
• Pf. We show S is an independent set iff V − S is a vertex

cover.

vertex cover

independent set

Vertex Cover and Independent Set
• Claim. VERTEX-COVER ≡P INDEPENDENT-SET.
• Pf. We show S is an independent set iff V − S is a vertex cover.

• ⇒
– Let S be any independent set.
– Consider an arbitrary edge (u, v).
– S independent ⇒ u ∉ S or v ∉ S ⇒ u ∈ V − S or v ∈ V − S.
– Thus, V − S covers (u, v).

• ⇐
– Let V − S be any vertex cover.
– Consider two nodes u ∈ S and v ∈ S.
– Observe that (u, v) ∉ E since V − S is a vertex cover.
– Thus, no two nodes in S are joined by an edge ⇒ S independent

set. ▪

3

Reduction from Special
Case to General Case

Reduction from Special Reduction from Special
Case to General CaseCase to General Case

Basic reduction strategiesBasic reduction strategies..
Reduction by simple equivalence.

Reduction from special case to general case.
Reduction by encoding with gadgets.

Set Cover
• SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm

of subsets of U, and an integer k, does there exist a collection of
≤ k of these sets whose union is equal to U?

• Sample application.
– m available pieces of software.
– Set U of n capabilities that we would like our system to have.
– The ith piece of software provides the set Si ⊆ U of

capabilities.
– Goal: achieve all n capabilities using fewest pieces of software.

• Ex:
U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover
• Claim. VERTEX-COVER ≤ P SET-COVER.
• Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a

set cover instance whose size equals the size of the vertex cover
instance.

• Construction.
– Create SET-COVER instance:

• k = k, U = E, Sv = {e ∈ E : e incident to v }
– Set-cover of size ≤ k iff vertex cover of size ≤ k. ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

8.2 Reductions via
"Gadgets"

8.2 Reductions via 8.2 Reductions via
"Gadgets""Gadgets"

Basic reduction strategiesBasic reduction strategies..
Reduction by simple equivalence.

Reduction from special case to general case.
Reduction via "gadgets."

Ex:

Yes: x1 = true, x2 = true x3 = false.

• Literal: A Boolean variable or its negation.

• Clause: A disjunction of literals.

• Conjunctive normal form: A propositional
formula Φ that is the conjunction of clauses.

• SAT: Given CNF formula Φ, does it have a satisfying truth
assignment?

• 3-SAT: SAT where each clause contains exactly 3 literals.

Satisfiability

 C j = x1 ∨ x2 ∨ x3

 xi or xi

 Φ = C1 ∧ C2 ∧ C3 ∧ C4

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3()

each corresponds to a different variable

3 Satisfiability Reduces to
Independent Set

• Claim. 3-SAT ≤ P INDEPENDENT-SET.
• Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k)

of INDEPENDENT-SET that has an independent set of size k iff
Φ is satisfiable.

• Construction.
– G contains 3 vertices for each clause, one for each literal.
– Connect 3 literals in a clause in a triangle.
– Connect literal to each of its negations.

 x2

 Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()
 x3

 x1

 x1 x2 x4

 x1 x2

 x3

k = 3

G

4

3 Satisfiability Reduces to
Independent Set

• Claim. G contains independent set of size k = |Φ| iff Φ is
satisfiable.

• Pf. ⇒ Let S be independent set of size k.
– S must contain exactly one vertex in each triangle.
– Set these literals to true.
– Truth assignment is consistent and all clauses are satisfied.

• Pf ⇐ Given satisfying assignment, select one true literal from
each triangle. This is an independent set of size k. ▪

 x2 x3

 x1

 x1 x2 x4

 x1 x2

 x3

k = 3

G

and any other variables in a consistent way

 Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Review
• Basic reduction strategies.

– Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.
– Special case to general case: VERTEX-COVER ≤ P SET-COVER.
– Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

• Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.
• Pf idea. Compose the two algorithms.

• Ex: 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-
COVER.

Self-Reducibility
• Decision problem. Does there exist a vertex cover of size ≤ k?
• Search problem. Find vertex cover of minimum cardinality.

• Self-reducibility. Search problem ≤ P decision version.
– Applies to all (NP-complete) problems in this chapter.
– Justifies our focus on decision problems.

• Ex: to find min cardinality vertex cover.
– (Binary) search for cardinality k* of min vertex cover.
– Find a vertex v such that G − { v } has a vertex cover of size ≤

k* - 1.
• any vertex in any min vertex cover will have this property

– Include v in the vertex cover.
– Recursively find a min vertex cover in G − { v }.

delete v and all incident edges

Decision Problems
• Decision problem.

– X is a set of strings.
– Instance: string s.
– Algorithm A solves problem X: A(s) = yes iff s ∈ X.

• Polynomial time. Algorithm A runs in poly-time if for every string
s, A(s) terminates in at most p(|s|) "steps", where p(⋅) is some
polynomial.

• PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }
• Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s

Definition of P
• P. Decision problems for which there is a poly-time

algorithm.

Problem Description Algorithm

MULTIPLE Is x a multiple of y? Grade school
division 51, 17 51, 16

RELPRIME Are x and y relatively
prime?

Euclid (300
BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT-
DISTANCE

Is the edit distance
between x and y less

than 5?

Dynamic
programming

niether
neither

acgggt
ttttta

Is there a vector x that
satisfies Ax = b?

Gauss-Edmonds
eliminationLSOLVE

Yes No

0 1 1
2 4 −2
0 3 15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 ,

4
2

36

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0
1 1 1
0 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 ,

1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5

NP
• Certification algorithm intuition.

– Certifier views things from "managerial" viewpoint.
– Certifier doesn't determine whether s ∈ X on its own;

rather, it checks a proposed proof t that s ∈ X.

• Def. Algorithm C(s, t) is a certifier for problem X if for every
string s, s ∈ X iff there exists a string t such that C(s, t) = yes.

• NP. Decision problems for which there exists a poly-time certifier.

• Remark. NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and
|t| ≤ p(|s|) for some polynomial p(⋅).

"certificate" or "witness"

Certifiers and Certificates: Composite
• COMPOSITES. Given an integer s, is s composite?

• Certificate. A nontrivial factor t of s. Note that such a
certificate exists iff s is composite. Moreover |t| ≤ |s|.

• Certifier.

• Instance. s = 437,669.
• Certificate. t = 541 or 809.

• Conclusion. COMPOSITES is in NP.

437,669 = 541 × 809

boolean C(s, t) {
if (t ≤ 1 or t ≥ s)

return false
else if (s is a multiple of t)

return true
else

return false
}

Certifiers and Certificates: 3-
Satisfiability

• SAT. Given a CNF formula Φ, is there a satisfying assignment?

• Certificate. An assignment of truth values to the n boolean
variables.

• Certifier. Check that each clause in Φ has at least one true literal.

• Ex.

• Conclusion. SAT is in NP.

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4() ∧ x1 ∨ x3 ∨ x4()

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t

Certifiers and Certificates:
Hamiltonian Cycle

• HAM-CYCLE. Given an undirected graph G = (V, E), does there
exist a simple cycle C that visits every node?

• Certificate. A permutation of the n nodes.

• Certifier. Check that the permutation contains each node in V
exactly once, and that there is an edge between each pair of
adjacent nodes in the permutation.

• Conclusion. HAM-CYCLE is in NP.

instance s certificate t

P, NP, EXP
• P. Decision problems for which there is a poly-time algorithm.
• EXP. Decision problems for which there is an exponential-time

algorithm.
• NP. Decision problems for which there is a poly-time certifier.

• Claim. P ⊆ NP.
• Pf. Consider any problem X in P.

– By definition, there exists a poly-time algorithm A(s) that solves X.
– Certificate: t = ε, certifier C(s, t) = A(s). ▪

• Claim. NP ⊆ EXP.
• Pf. Consider any problem X in NP.

– By definition, there exists a poly-time certifier C(s, t) for X.
– To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|).
– Return yes, if C(s, t) returns yes for any of these. ▪

The Main Question: P Versus NP
• Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the certification problem?
– Clay $1 million prize.

• If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
• If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

• Consensus opinion on P = NP? Probably no.

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)

	Analysis of Algorithms
	Algorithm Design Patterns and Anti-Patterns
	8.1 Polynomial-Time Reductions
	Classify Problems According to Computational Requirements
	Classify Problems
	Polynomial-Time Reduction
	Polynomial-Time Reduction
	Reduction By Simple Equivalence
	Independent Set
	Vertex Cover
	Vertex Cover and Independent Set
	Vertex Cover and Independent Set
	Reduction from Special Case to General Case
	Set Cover
	Vertex Cover Reduces to Set Cover
	8.2 Reductions via "Gadgets"
	Satisfiability
	3 Satisfiability Reduces to Independent Set
	3 Satisfiability Reduces to Independent Set
	Review
	Self-Reducibility
	Decision Problems
	Definition of P
	NP
	Certifiers and Certificates: Composite
	Certifiers and Certificates: 3-Satisfiability
	Certifiers and Certificates: Hamiltonian Cycle
	P, NP, EXP
	The Main Question: P Versus NP

