

Classify Problems According to Computational Requirements

- Q. Which problems will we be able to solve in practice?
- A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms.

Yes	Probably no
Shortest path	Longest path
Matching	3D-matching
Min cut	Max cut
2-SAT	3-SAT
Planar 4-color	Planar 3-color
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

Classify Problems

- Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot.
- Provably requires exponential-time.
- Given a Turing machine, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of chess, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

This chapter. Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
- Notation. $\mathrm{X} \leq_{p} \mathrm{Y}$. $\begin{aligned} & \text { compurational model supplemented by special } \\ & \text { of hardware that solves instances of } \mathrm{Y} \text { in a single step }\end{aligned}$
- Remark:

We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $\mathrm{X} \leq_{p} \mathrm{Y}$ and Y can be solved in polynomialtime, then X can also be solved in polynomial time.

- Establish intractability. If $X \leq_{p} Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_{p} Y$ and $Y \leq_{p} X$, we use notation $X \equiv \equiv_{p}$ y.
\qquad

5is.

Independent Set

- INDEPENDENT SET: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S ?
- Ex. Is there an independent set of size ≥ 6 ? Yes.
- Ex. Is there an independent set of size ≥ 7 ? No.

Basic reduction strategies.

Reduction by simple equivalence.

Vertex Cover and Independent Set

- Claim. VERTEX-COVER \equiv_{ρ} INDEPENDENT-SET.
- Pf. We show S is an independent set iff $V-S$ is a vertex cover.
- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V-S$ or $v \in V-S$
- Thus, V-S covers (u, v).
\Leftarrow
- Let V - S be any vertex cover
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since $V-S$ is a vertex cover
- Thus, no two nodes in S are joined by an edge $\Rightarrow S$ independent set. .
iII
(1315

independent set vertex cover

Vertex Cover Reduces to Set Cover

- Claim. VERTEX-COVER \leq_{p} SET-COVER.
- Pf. Given a VERTEX-COVER instance $G=(V, E)$, k, we construct a set cover instance whose size equals the size of the vertex cover instance.
- Construction.
- Create SET-COVER instance:
- $k=k, U=E, S_{v}=\{e \in E: e$ incident to $v\}$
- Set-cover of size $\leq k$ iff vertex cover of size $\leq k$. .

3 Satisfiability Reduces to Independent Set

- Claim. 3-SAT \leq_{p} INDEPENDENT-SET.
- Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.
- Construction.
- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

G

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size $k=|\Phi|$ iff Φ is satisfiable.

- Pf. \Rightarrow Let S be independent set of size k
- S must contain exactly one vertex in each triangle.
- Set these literals to true. - and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. .

G

$k=3$ $\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right)$

Review

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \equiv_{p} VERTEX-COVER.
- Special case to general case: VERTEX-COVER \leq_{p} SET-COVER.
- Encoding with gadgets: $3-$ SAT \leq_{p} INDEPENDENT-SET

Transitivity. If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$
Pf idea. Compose the two algorithms.

Ex: $3-$ SAT \leq_{p} INDEPENDENT-SET \leq_{p} VERTEX-COVER \leq_{p} SETCOVER
(11)

Self-Reducibility

- Decision problem. Does there exist a vertex cover of size $\leq k$?
- Search problem. Find vertex cover of minimum cardinality.
- Self-reducibility. Search problem \leq_{p} decision version.
- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.
- Ex: to find min cardinality vertex cover
- (Binary) search for cardinality k^{*} of min vertex cover
- Find a vertex v such that $G-\{v\}$ has a vertex cover of size \leq $\mathrm{k}^{\star}-1$.
- any vertex in any min vertex cover will have this property
- Include v in the vertex cover.
- Recursively find a min vertex cover in $G-\{v\}$.

Decision Problems

Decision problem

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem $X: A(s)=$ yes iff $s \in X$.
- Polynomial time. Algorithm A runs in poly-time if for every string $s, A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.
length of s

PRIMES: $X=\{2,3,5,7,11,13,17,23,29,31,37, \ldots .$.
Algorithm. [Agrawal-Kayal-Saxena, 2002] $\mathrm{p}(|s|)=|s|^{8}$.

Definition of P

- P. Decision problems for which there is a poly-time algorithm.

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y ?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	$\begin{gathered} \text { Euclid (300 } \\ B C E) \end{gathered}$	34, 39	34, 51
PRIMES	Is \times prime?	AKS (2002)	53	51
EDITDISTANCE	Is the edit distance between x and y less than 5 ?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination		

- Certifier views things from "managerial" viewpoint
- Certifier doesn' \dagger determine whether $s \in X$ on its own rather, it checks a proposed proof \dagger that $s \in X$.
Def. Algorithm $C(s, t)$ is a certifier for problem X if for every string $s, s \in X$ iff there exists a string \dagger such that $C(s, \dagger)=$ yes
- NP. Decision problems for which there exists a poly-time certifier

$C(s, t)$ is a poly-t
$\leq \mathrm{p}(|\mathrm{s}|)$ for some polynomial $\mathrm{p}($.
Remark. NP stands for nondeterministic polynomial-time.

$\dagger \dagger$
ynomial-time.

Certifiers and Certificates: Composite

- COMPOSITES. Given an integer s, is s composite?

