

Greedy Algorithms

- Optimization problem: Min/Max an objective.
 - Minimize the total length of a spanning tree.
 - Minimize the size of a file using compression
 - ... (The mother of all problems)
- · Greedy Algorithm
 - Attempt to do best at each step without consideration of future consideration
 - · For some problems, Locally optimal choice leads to global opt.
 - Follows "Greed is good" philosophy
 Requires "Optimal Substructure"
- What examples have we already seen?

Greedy Algorithms

- For some problems, "Greed is good" works.
- For some, it finds a good solution which is not global opt
 - Heuristics
 - Approximation Algorithms
- · For some, it can do very bad.

Problem of Change

- Vending machine has quarters, nickels, pennies and dimes. Needs to return N cents change.
- Wanted: An algorithm to return the N cents in minimum number of coins.
- What do we do?

4.1 Interval Scheduling

Interval Scheduling: Greedy Algorithms

- Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
 - [Earliest start time] Consider jobs in ascending order of start time s_i.
 - [Earliest finish time] Consider jobs in ascending order of finish time
 - [Shortest interval] Consider jobs in ascending order of interval length
 - [Fewest conflicts] For each job, count the number of conflicting jobs $c_j.$ Schedule in ascending order of conflicts $c_j.$

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

Sort jobs by finish times so that $f_1 \le f_2 \le ... \le f_n$. / jobs selected M $\begin{array}{l} \lambda \leftarrow \phi \\ \text{for j = 1 to n } \{ \\ \text{if (job j compatible with A)} \\ \lambda \leftarrow \lambda \cup \{j\} \end{array}$ return A

Implementation. O(n log n).

- Remember job j* that was added last to A.

Job j is compatible with A if $s_j \ge f_{j*}$.

Interval Partitioning Interval partitioning. Lecture j starts at s_j and finishes at f_j. Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room. Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Minimizing Lateness: Greedy Algorithms

- · Greedy template. Consider jobs in some order.
 - [Shortest processing time first] Consider jobs in ascending order of processing time $\textbf{t}_j.$
 - [Earliest deadline first] Consider jobs in ascending order of deadline $\mathbf{d}_{\mathrm{i}}.$
 - [Smallest slack] Consider jobs in ascending order of slack $\mathbf{d_{j}}$ $\mathbf{t_{j\cdot}}$

Minimizing Lateness: Greedy Algorithms

- · Greedy template. Consider jobs in some order.
 - [Shortest processing time first] Consider jobs in ascending order of processing time $\mathbf{t}_{\rm i}.$

counterexample

- [Smallest slack] Consider jobs in ascending order of slack d_j - t_i .

counterexample

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

· Observation. The greedy schedule has no idle time

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that: $i \lessdot j$ but j scheduled before i.

- Observation. Greedy schedule has no inversions.
- Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Analysis of Greedy Algorithm

- · Theorem. Greedy schedule S is optimal.
- Pf. Define S* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.
 - Can assume S* has no idle time.
 - If S^* has no inversions, then $S = S^*$.
 - If S* has an inversion, let i-j be an adjacent inversion
 - swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
 - · this contradicts definition of S* .

Greedy Analysis Strategies

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Optimal Offline Caching - Cache with capacity to store k items. Sequence of m item requests d₁, d₂, ..., d_m - Cache hit: item already in cache when requested. Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full. a b a b c b Goal. Eviction schedule that minimizes number of c b c b Ex: k = 2, initial cache = ab, requests: a, b, c, b, c, a, a, b. а Optimal eviction schedule: 2 cache misses. requests

Reduced Eviction Schedules

- Def. A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.
- Intuition Can transform an unreduced schedule into a reduced one with no more cache misses

Farthest-In-Future: Analysis

- · Theorem. FF is optimal eviction algorithm.
- · Pf. (by induction on number or requests j)

Invariant: There exists an optimal reduced schedule S that makes the same eviction schedule as S_{FF} through the first j+1 requests.

- · Let S be reduced schedule that satisfies invariant through j requests. We produce S' that satisfies invariant after j+1 requests.
 - Consider (j+1)st request d = d_{j+1}.
 - Since S and \mathbf{S}_{FF} have agreed up until now, they have the same cache contents before request j+1.
 - Case 1: (d is already in the cache). S' = S satisfies invariant.
 - Case 2: (d is not in the cache and S and S_{FF} evict the same element)

S' = S satisfies invariant

Farthest-In-Future: Analysis

- - Case 3: (d is not in the cache; S_{FF} evicts e; S evicts $f \neq e$).
 - · begin construction of S' from S by evicting e instead of f

now S' agrees with S_{FF} on first j+1 requests; we show that having element f in cache is no worse than having element ε

S

d f

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action, a let g be item requested at time j'.

- l f
- Case 3a: g = e. Can't happen with Farthest-In-Future since there must be a request for f before e.
- Case 3b: g = f. Element f can't be in cache of S, so let e' be the element that S evicts.
 - · if e' = e, S' accesses f from cache; now S and S' have same cache
 - if $e' \neq e$, S' evicts e' and brings e into the cache; now S and S'have the same cache

Note: S' is no longer reduced, but can be transformed into a reduced schedule that agrees with $S_{\rm FF}$ through step $j{*}1$

Caching Perspective

- Online vs. offline algorithms.
 Offline: full sequence of requests is known a priori.
 Online (reality): requests are not known in advance.
 Caching is among most fundamental online problems in C5.
- LIFO. Evict page brought in most recently.
 LRU. Evict page whose most recent access was earliest.

- Theorem. FF is optimal offline eviction algorithm.
 - Provides basis for understanding and analyzing online algorithms.
 - LRU is k-competitive. [Section 13.8]
 - LIFO is arbitrarily bad.

