

Greedy Algorithms

- For some problems, "Greed is good" works.
- For some, it finds a good solution which is not global opt
- Heuristics
- Approximation Algorithms
- For some, it can do very bad.

Interval Scheduling

- Interval scheduling.
- Job j starts at s_{j} and finishes at f_{j}
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
    Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
    jobs selected
    A}\leftarrow
    for j}=1\mathrm{ to n {
    if (job j compatible with A)
    }
    return A
```

Implementation. $O(n \log n)$.

- Remember job j^{\star} that was added last to A.

Job j is compatible with A if $s_{\mathrm{j}} \geq \mathrm{f}_{\mathrm{j}}$.

Interval Scheduling: Analysis

- Theorem. Greedy algorithm is optimal
- Pf. (by contradiction)
- Assume greedy is not optimal, and let's see what happens.
- Let $i_{1}, i_{2}, \ldots i_{k}$ denote set of jobs selected by greedy
- Let $j_{1}, j_{2}, \ldots j_{m}$ denote set of jobs in the optimal solution with $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}=j_{r}$ for the largest possible value of r.

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.
Ex: This schedule uses only 3.

- Lecture j starts at s_{j} and finishes at f_{j}
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Interval Partitioning

- Interval partitioning

位

. 1

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$. $\mathbf{d} \leftarrow 0 \leftarrow$ number of allocated classrooms
for $\mathbf{j}=1$ to \mathbf{n} \{
if (lecture j is compatible with some classroom k) schedule lecture j in classroom k
else
allocate a new classroom d + 1 schedule lecture j in classroom $d+1$ $d \leftarrow d+1$

Implementation. $O(n \log n)$

- For each classroom k, maintain the finish time of the last job added Keep the classrooms in a priority queue.

Interval Partitioning: Greedy Analysis

- Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

- Pf.
- Let d = number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}.
- Thus, we have d lectures overlapping at time $s_{j}+\varepsilon$
- Key observation \Rightarrow all schedules use \geq d classrooms. -
(inns

Scheduling to Minimizing Lateness

- Minimizing lateness problem.
- Single resource processes one job at a time.
- Job j requires t_{j} units of processing time and is due at time d_{j}.
- If j starts at time s_{j}, it finishes at time $f_{j}=s_{j}+t_{j}$.
- Lateness: $\quad=\max \left\{0, f_{j}-d_{j}\right\}$.
- Goal: schedule all jobs to minimize maximum lateness $L=\max$

Ex:

- [Smallest slack] Consider jobs in ascending order of slack d_{j} -

Minimizing Lateness: Greedy Algorithms

- Greedy template. Consider jobs in some order.
- [Shortest processing time first] Consider jobs in ascending order of processing time \dagger_{j}
- [Earliest deadline first] Consider jobs in ascending order of deadline d_{j}. \dagger_{j}.

Minimizing Lateness: Greedy Algorithms

- [Shortest processing time first] Consider jobs in ascending order of processing time \dagger_{j}
counterexample
- [Smallest slack] Consider jobs in ascending order of slack d_{j} \dagger_{j}.

Minimizing Lateness: Greedy Algorithm

- Greedy algorithm. Earliest deadline first.

Sort n jobs by deadline so that $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$
$\mathrm{t} \leftarrow 0$
for $j=1$ to n
Assign job \mathbf{j} to interval [$\mathrm{t}, \mathrm{t}+\mathrm{t}_{\mathrm{j}}$] $s_{j} \leftarrow t, f_{j}$
$t \leftarrow t+t_{j}$
output intervals [s_{j}, f_{j}]

Minimizing Lateness: No Idle Time

- Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

- Def. An inversion in schedule S is a pair of jobs i and j such that: $\mathrm{i}<\mathrm{j}$ but j scheduled before i .

- Observation. Greedy schedule has no inversions.
- Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that i < j but j scheduled before i .

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let be the lateness before the swap, and let ' be it afterwards.

- ${ }_{k}={ }_{k}$ for all $k \neq i, j$
- If job j is late:

λ_{j}^{\prime}	$=f_{j}^{\prime}-d_{j}$		$\left(\begin{array}{l}\text { definition }) \\ \\ \end{array} f_{i}-d_{j}\right.$
		$\left(j\right.$ finishes at time $\left.f_{i}\right)$	
	$\leq f_{i}-d_{i}$		$(i<j)$
	$\leq \lambda_{i}$		(definition)

Minimizing Lateness: Analysis of Greedy Algorithm

- Theorem. Greedy schedule S is optimal.
- Pf. Define S^{\star} to be an optimal schedule that has the fewest number of inversions, and let's see what happens.
- Can assume S^{\star} has no idle time.
- If S^{\star} has no inversions, then $S=S^{*}$.
- If S^{*} has an inversion, let i-j be an adjacent inversion.
- swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
- this contradicts definition of S^{*} •

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.

- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

4.3 Optimal Caching

28

Optimal Offline Caching:

 Farthest-In-Future- Farthest-in-future. Evict item in the cache that is not requested until farthest in the future.
- Sequence of m item requests $d_{1}, d_{2}, \ldots, d_{m}$.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.
- Goal. Eviction schedule that minimizes number of cache misses.
- Ex: $k=2$, initial cache $=a b$,
requests: a, b, c, b, c, a, a, b.
Optimal eviction schedule: 2 cache misses.

Optimal Offline Caching

- Caching.
- Cache with capacity to store k items.
must
item,
must

future queries

\section*{| a | b | c | d | e | f |
| :--- | :--- | :--- | :--- | :--- | :--- |}

- Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
- Pf. Algorithm and theorem are intuitive; proof is subtle.

Reduced Eviction Schedules

- Def. A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.
- Intuition. Can transform an unreduced schedule into a reduced one with no more cache misses.

Farthest-In-Future: Analysis

- Theorem. FF is optimal eviction algorithm.
- Pf. (by induction on number or requests j)

Invariant: There exists an optimal reduced schedule S that makes the same eviction schedule as S_{FF} through the first $\mathrm{j}+1$ requests.

- Let S be reduced schedule that satisfies invariant through j requests. We produce S^{\prime} that satisfies invariant after $j+1$ requests
- Consider $(j+1)^{\text {st }}$ request $d=d_{j+1}$
- Since S and $S_{F F}$ have agreed up until now, they have the same cache contents before request $j+1$.
- Case 1: (d is already in the cache). $S^{\prime}=S$ satisfies invariant.
- Case 2: (d is not in the cache and S and $S_{F F}$ evict the same element).
$S^{\prime}=$ S satisfies invariant

Farthest-In-Future: Analysis
Pf. (continued)

- Case 3: (d is not in the cache; $S_{F F}$ evicts e; S evicts $f \neq e$). - begin construction of S^{\prime} from S by evicting e instead of f
- now S' agrees with S_{FF} on first $j+1$ requests; we show that having element f in cache is no worse than having element e

Farthest-In-Future: Analysis

Let j ' be the first time after $j+1$ that S and S ' take a different action, and let g be item requested at time j^{\prime}
must involve e or f (or both)
j^{\prime}

\qquad

- Case 3a: $g=e$. Can't happen with Farthest-In-Future since there must be a request for f before e.
- Case 3b: $g=f$. Element f can't be in cache of S, so let e ' be the element that S evicts.
- if $e^{\prime}=e, S^{\prime}$ accesses f from cache; now S and S^{\prime} have same cache - if $e^{\prime} \neq e, S^{\prime}$ evicts e^{\prime} and brings e into the cache; now S and S^{\prime} have the same cache

Note: S^{\prime} is no longer reduced, but can be transformed into a reduced schedule that agrees with S_{fF} through step $\mathrm{j}+1$

Reduced Eviction Schedules

- Claim. Given any unreduced schedule S, can transform it into a reduced schedule S with no more cache misses.
- Pf. (by induction on number of unreduced items) tin
- Suppose S brings d into the cache at time t, without a request
- Let c be the item S evicts when it brings d into the cache.
- Case 1: d evicted at time t', before next request for d.
- Case 2: d requested at time \dagger ' before d is evicted. .

Farthest-In-Future: Analysis

Let j ' be the first time after $j+1$ that S and S ' take a different action, an let g be item requested at time j '.

```
        j' same \er e
```

 otherwise S^{\prime} would take the same action
Case 3c: $g \neq e$, f. S must evict e.
Make S ' evict f : now S and S^{\prime} have the same cache.
j^{\prime}

Caching Perspective

- Online vs. offline algorithms.
- Offline: full sequence of requests is known a priori.

Online (reality): requests are not known in advance

- Caching is among most fundamental online problems in CS.
- LIFO. Evict page brought in most recently

LRU. Evict page whose most recent access was earliest.
Theorem. FF is optimal offline eviction algorithm.

- Provides basis for understanding and analyzing online algorithms.
- LRU is k-competitive. [Section 13.8]

LIFO is arbitrarily bad.

