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Analysis of AlgorithmsAnalysis of AlgorithmsAnalysis of Algorithms
PiyushPiyush KumarKumar

(Lecture 4: Compression)(Lecture 4: Compression)

Welcome to 4531 Source: Guy E. Blelloch,
Emad, Tseng …

Compression Programs
• File Compression: Gzip, Bzip
• Archivers :Arc, Pkzip, Winrar, …
• File Systems: NTFS

Multimedia
• HDTV (Mpeg 4)
• Sound (Mp3)
• Images (Jpeg)
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Compression Outline
Introduction: Lossy vs. Lossless
Information Theory: Entropy, etc.
Probability Coding: Huffman + 

Arithmetic Coding

Encoding/Decoding

Encoder Decoder

Will use “message” in generic sense to 
mean the data to be compressed

Input
Message

Output
Message

Compressed
Message

The encoder and decoder need to understand 
common compressed format.

CODEC

Lossless vs. Lossy
Lossless: Input message = Output message
Lossy: Input message ≈ Output message

Lossy does not necessarily mean loss of quality. In fact the 
output could be “better” than the input.
– Drop random noise in images (dust on lens)
– Drop background in music
– Fix spelling errors in text.  Put into better form.

Writing is the art of lossy text compression.
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Lossless Compression Techniques

• LZW (Lempel-Ziv-Welch) compression
– Build dictionary
– Replace patterns with index of dict.

• Burrows-Wheeler transform
– Block sort data to improve compression

• Run length encoding
– Find & compress repetitive sequences

• Huffman code
– Use variable length codes based on 

frequency

How much can we 
compress?

For lossless compression, assuming all 
input messages are valid, if even one 
string is compressed, some other 
must expand.  

Model vs. Coder

To compress we need a bias on the probability of 
messages.  The model determines this bias 

Example models:
– Simple: Character counts, repeated strings
– Complex: Models of a human face

Model Coder
Probs. BitsMessages

Encoder
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Quality of Compression
Runtime vs. Compression vs. Generality
Several standard corpuses to compare algorithms
Calgary Corpus
• 2 books, 5 papers, 1 bibliography, 

1 collection of news articles, 3 programs, 
1 terminal session, 2 object files, 
1 geophysical data, 1 bitmap bw image

The Archive Comparison Test maintains a 
comparison of just about all algorithms publicly 
available

Comparison of 
Algorithms 

Program Algorithm Time BPC Score
BOA PPM Var. 94+97 1.91 407

PPMD PPM 11+20 2.07 265
IMP BW 10+3 2.14 254
BZIP BW 20+6 2.19 273
GZIP LZ77 Var. 19+5 2.59 318
LZ77 LZ77 ? 3.94 ?

Information Theory
An interface between modeling and 

coding
• Entropy

– A measure of information content
• Entropy of the English Language

– How much information does each 
character in “typical” English text 
contain?
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Entropy (Shannon 1948)
For a set of messages S with probability p(s), 

s ∈S, the self information of s is:

Measured in bits if the log is base 2.
The lower the probability, the higher the 

information
Entropy is the weighted average of self 

information.

H S p s
p ss S

( ) ( ) log
( )

=
∈
∑ 1

i s
p s

p s( ) log
( )

log ( )= = −
1

Entropy Example
p S( ) {. ,. ,. ,. ,. }= 25 25 25 125 125

H S( ) . log . log .= ⋅ + ⋅ =3 25 4 2 125 8 2 25

p S( ) {. ,. ,. ,. ,. }= 5 125 125 125 125

p S( ) {. ,. ,. ,. ,. }= 75 0625 0625 0625 0625

H S( ) . log . log= + ⋅ =5 2 4 125 8 2

H S( ) . log( ) . log .= + ⋅ =75 4 3 4 0625 16 13

Entropy of the English Language
How can we measure the information per 

character?
ASCII code = 7
Entropy  = 4.5 (based on character 

probabilities)
Huffman codes (average) = 4.7
Unix Compress = 3.5
Gzip = 2.5
BOA = 1.9 (current close to best text 

compressor)
Must be less than 1.9.
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Shannon’s experiment
Asked humans to predict the next character 

given the whole previous text.  He used 
these as conditional probabilities to 
estimate the entropy of the English 
Language.

The number of guesses required for right 
answer:

From the experiment he predicted 
H(English) = .6-1.3

#  of guesses 1 2 3 3 5 > 5
Probability .79 .08 .03 .02 .02 .05

Data compression model

Reduce Data Redundancy

Reduction of Entropy

Entropy Encoding

Input data

Compressed Data

Coding
How do we use the probabilities to 

code messages?
• Prefix codes and relationship to 
Entropy

• Huffman codes
• Arithmetic codes
• Implicit probability codes…
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Assumptions
Communication (or file) broken up into pieces called 

messages.
Adjacent messages might be of a different types 

and come from a different probability 
distributions

We will consider two types of coding:
• Discrete: each message is a fixed set of bits 

– Huffman coding, Shannon-Fano coding
• Blended: bits can be “shared” among messages

– Arithmetic coding

Uniquely Decodable Codes

A variable length code assigns a bit string 
(codeword) of variable length to every 
message value

e.g. a = 1, b = 01, c = 101, d = 011
What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?
A uniquely decodable code is a variable length 

code in which bit strings can always be 
uniquely decomposed into its codewords. 

Prefix Codes
A prefix code is a variable length code 

in which no codeword is a prefix of 
another word

e.g a = 0, b = 110, c = 111, d = 10
Can be viewed as a binary tree with 

message values at the leaves and 0 or 
1s on the edges.

a

b c

d

0

0

0 1

1

1
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Some Prefix Codes for Integers

n Binary Unary Split
1 ..001 0 1|
2 ..010 10 10|0
3 ..011 110 10|1
4 ..100 1110 110|00
5 ..101 11110 110|01
6 ..110 111110 110|10

Many other fixed prefix codes: 
Golomb, phased-binary, subexponential, ...

Average Bit Length
For a code C with associated 

probabilities p(c) the average length
is defined as

We say that a prefix  code C is optimal
if for all  prefix codes C’,  

ABL(C) ≤ ABL(C’)

∑
∈

=
Cc

clcpCABL )()()(

Relationship to Entropy
Theorem (lower bound): For any 

probability distribution p(S) with 
associated uniquely decodable code C,

Theorem (upper bound): For any 
probability distribution p(S) with 
associated optimal prefix code C,

)()( CABLSH ≤

1)()( +≤ SHCABL
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Kraft McMillan Inequality

Theorem (Kraft-McMillan): For any uniquely 
decodable code C,

Also, for any set of lengths L such that

there is a prefix code C such that 
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∈
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l c l i Li i( ) ( ,...,| |)= = 1

Proof of the Upper Bound (Part 1)

Assign to each message a length
We then have

So by the Kraft-McMillan ineq. there is a 
prefix code with lengths l(s). 
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Proof of the Upper 
Bound (Part 2)
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Now we can calculate the average length given l(s)

And we are done.
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Another property of optimal codes
Theorem: If C is an optimal prefix code for 

the probabilities {p1, …, pn} then pi > pj
implies l(ci) ≤ l(cj)

Proof: (by contradiction)
Assume l(ci) > l(cj). Consider switching 
codes ci and cj.   If la is the average length 
of the original code, the length of the new 
code is

This is a contradiction since la was 
supposed to be optimal

l l p l c l c p l c l c
l p p l c l c
l

a a j i j i j i

a j i i j

a

' ( ( ) ( )) ( ( ) ( ))
( )( ( ) ( ))

= + − + −
= + − −
<

Corollary
• The pi is smallest over the code, then l(ci) 

is the largest. 

Huffman CodingHuffman CodingHuffman Coding
Binary trees for compressionBinary trees for compression
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Huffman Code
• Approach

– Variable length encoding of symbols
– Exploit statistical frequency of symbols
– Efficient when symbol probabilities vary widely

• Principle
– Use fewer bits to represent frequent symbols 
– Use more bits to represent infrequent symbols 

A A B A

A AA B

Huffman Codes
Invented by Huffman as a class assignment 

in 1950.
Used in many, if not most compression algorithms
• gzip, bzip, jpeg (as option), fax 

compression,…
Properties:

– Generates optimal prefix codes
– Cheap to generate codes
– Cheap to encode and decode 
– la=H if probabilities are powers of 2

Huffman Code Example

• Expected size
– Original  ⇒ 1/8×2 + 1/4×2 + 1/2×2 + 1/8×2 = 2 bits / symbol
– Huffman ⇒ 1/8×3 + 1/4×2 + 1/2×1 + 1/8×3 = 1.75 bits / symbol

Symbol Dog Cat Bird Fish
Frequency 1/8 1/4 1/2

00 01 10 11

110 10 0 111
3 bits 2 bits 1 bit 3 bits

Huffman 
Encoding

2 bits

1/8
Original 
Encoding 2 bits 2 bits 2 bits
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Huffman Codes
Huffman Algorithm
• Start with a forest of trees each 

consisting of a single vertex 
corresponding to a message s and 
with weight p(s)

• Repeat:
– Select two trees with minimum weight 

roots p1 and p2
– Join into single tree by adding root with 

weight p1 + p2

Example

p(a) = .1,  p(b) = .2,  p(c ) = .2,  p(d) = .5
a(.1) b(.2) d(.5)c(.2)

a(.1) b(.2)

(.3)

a(.1) b(.2)

(.3) c(.2)

a(.1) b(.2)

(.3) c(.2)

(.5)
(.5) d(.5)

(1.0)

a=000,  b=001,  c=01, d=1

0

0

0

1

1

1
Step 1

Step 2
Step 3

Encoding and Decoding
Encoding: Start at leaf of Huffman tree and 

follow path to the root.  Reverse order of 
bits and send.

Decoding: Start at root of Huffman tree and 
take branch for each bit received.  When 
at leaf can output message and return to 
root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)
(1.0)

0

0

0

1

1

1

There are even faster methods that 
can process 8 or 32 bits at a time
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Lemmas
• L1 : Let pi be the smallest over the code, then 

l(ci) is the largest and hence a leaf of the tree. ( 
Let its parent be u )

• L2 : If pj is second smallest over the code, then 
l(cj) is the child of u in the optimal code.

• L3 : There is an optimal prefix code with 
corresponding tree T*, in which the two lowest 
frequency letters are siblings.

Huffman codes are 
optimal

Theorem: The Huffman algorithm 
generates an optimal prefix code. 

In other words: It achieves the minimum 
average number of bits per letter of 
any prefix code.

Proof: By induction
Base Case: Trivial (one bit optimal)
Assumption: The method is optimal for all 

alphabets of size k-1.

Proof:
• Let y* and z* be the two lowest 

frequency letters merged in w*. Let 
T be the tree before merging and T’
after merging. 

• Then : ABL(T’) = ABL(T) – p(w*)
• T’ is optimal by induction.
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Proof:
• Let Z be a better tree compared to T 

produced using Huffman’s alg.
• Implies ABL(Z) < ABL(T)
• By lemma L3, there is such a tree Z’ in 

which the leaves representing y* and z* 
are siblings (and has same ABL as Z). 

• By previous page ABL(Z’) =ABL(Z) – p(w*)
• Contradiction!

Adaptive Huffman Codes
Huffman codes can be made to be 

adaptive without completely 
recalculating the tree on each step.

• Can account for changing 
probabilities

• Small changes in probability, typically 
make small changes to the Huffman 
tree

Used frequently in practice

Huffman Coding 
Disadvantages

• Integral number of bits in each code.
• If the entropy of a given character 

is 2.2 bits,the Huffman code for that 
character must be either 2 or 3 bits 
, not 2.2.
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Towards Arithmetic 
coding

• An Example: Consider sending a 
message of length 1000 each with 
having probability .999

• Self information of each message
-log(.999)= .00144 bits

• Sum of self information = 1.4 bits.
• Huffman coding will take at least 1k 

bits.
• Arithmetic coding = 3 bits!

Arithmetic Coding: 
Introduction

Allows “blending” of bits in a message sequence.

Can bound total bits required based on sum of  self 
information:

Used in PPM, JPEG/MPEG (as option), DMM
More expensive than Huffman coding, but integer 

implementation is not too bad.  

l si
i

n

< +
=
∑2

1

Arithmetic Coding (message intervals)

Assign each probability distribution to an interval 
range from 0 (inclusive) to 1 (exclusive).

e.g.

a = .2

c = .3

b = .5

0.0
0.2

0.7

1.0

f(a) = .0,   f(b) = .2,   f(c) = .7

f i p j
j

i

( ) ( )=
=

−

∑
1

1

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))
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Arithmetic Coding (sequence intervals)

To code a message use the following:

Each message narrows the interval by a factor of pi.
Final interval size:

The interval for a message sequence will be called 
the sequence interval

l f l l s f
s p s s p

i i i i

i i i

1 1 1 1

1 1 1

= = +
= =

− −

−

s pn i
i

n

=
=
∏

1

Arithmetic Coding: Encoding Example

Coding the message sequence: bac

The final interval is [.27,.3)

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.21

0.27

0.3

Uniquely defining an interval

Important property:The sequence intervals for 
distinct message sequences of  length n will never 
overlap

Therefore: specifying any number in the final 
interval uniquely determines the sequence.

Decoding is similar to encoding, but on each step 
need to determine what the message value is and 
then reduce interval
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Arithmetic Coding: Decoding Example

Decoding the number .49, knowing the message is of 
length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49 0.49

0.49

RealArith Encoding and 
Decoding

RealArithEncode:
• Determine l and s using original recurrences
• Code using l + s/2 truncated to 1+⎡-log s⎤ bits
RealArithDecode:
• Read bits as needed so code interval falls within a 

message interval, and then narrow sequence 
interval.

• Repeat until n messages have been decoded .

Bound on Length
Theorem: For n messages with self information 

{s1,…,sn} RealArithEncode will generate at most

bits. 
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Applications of 
Probability Coding

How do we generate the probabilities?
Using character frequencies directly does not work 

very well (e.g. 4.5 bits/char for text).
Technique 1: transforming the data
• Run length coding (ITU Fax standard)
• Move-to-front coding (Used in Burrows-Wheeler)
• Residual coding (JPEG LS)
Technique 2: using conditional probabilities
• Fixed context (JBIG…almost)
• Partial matching (PPM)

Run Length Coding
Code by specifying message value 

followed by number of repeated 
values:

e.g. abbbaacccca => 
(a,1),(b,3),(a,2),(c,4),(a,1)

The characters and counts can be 
coded based on frequency.

This allows for small number of bits 
overhead for low counts such as 1. 

Facsimile ITU T4 (Group 3)

Standard used by all home Fax Machines
ITU = International Telecommunications Standard
Run length encodes sequences of black+white pixels

Fixed Huffman Code for all documents.  e.g.

Since alternate black and white, no need for values.

Run length White Black
1 000111 010
2 0111 11
10 00111 0000100
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Move to Front Coding
Transforms message sequence into sequence of 

integers, that can then be probability coded
Start with values in a total order:

e.g.: [a,b,c,d,e,….]
For each message output position in the order and 

then move to the front of the order.
e.g.: c => output: 3, new order: [c,a,b,d,e,…]

a => output: 2, new order: [a,c,b,d,e,…]
Codes well if there are concentrations of message 

values in the message sequence.

Residual Coding
Used for message values with 

meaningfull order
e.g. integers or floats.

Basic Idea: guess next value based on 
current context.  Output difference 
between guess and actual value.   Use 
probability code on the output.

JPEG-LS
JPEG Lossless (not to be confused with lossless JPEG)

Just completed standardization process.
Codes in Raster Order.  Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.
Works in two stages

NW

W

N NE

*
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JPEG LS: Stage 1
Uses the following equation:

Averages neighbors and captures edges.  e.g.

⎪⎩

⎪
⎨

⎧

−+
<
≥

=
otherwise

),min( if),max(
),max( if),min(

NWWN
WNNWWN
WNNWWN

P

40

40

3 *

3

30

20

40 *

30

3

40

3 *

40

JPEG LS: Stage 2
Uses 3 gradients: W-NW, NW-N, N-NE
• Classifies each into one of 9 categories.
• This gives 93=729 contexts, of which only 365 are 

needed because of symmetry.
• Each context has a bias term that is used to 

adjust the previous prediction
After correction, the residual between guessed and 

actual value is found and coded using a Golomblike
code.  

Using Conditional 
Probabilities: PPM

Use previous k characters as the context.
Base probabilities on counts:

e.g. if seen th 12 times followed by e 7 times, then the 
conditional probability p(e|th)=7/12.

Need to keep k small so that dictionary does not get too large.
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Ideas in Lossless 
compression

• That we did not talk about 
specifically
– Lempel-Ziv (gzip)

• Tries to guess next window from previous 
data

– Burrows-Wheeler (bzip)
• Context sensitive sorting
• Block sorting transform

LZ77: Sliding Window Lempel-Ziv

Dictionary and buffer “windows” are fixed length 
and slide with the cursor

On each step:
• Output (p,l,c)

p = relative position of the longest match in the 
dictionary
l = length of longest match
c = next char in buffer beyond longest match

• Advance window by l + 1

a a c a a c a b c a b a b a c

Dictionary
(previously coded)

Lookahead
Buffer

Cursor

Lossy compression
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Scalar Quatization
• Given a camera image with 12bit 

color, make it 4-bit grey scale.
• Uniform Vs Non-Uniform 

Quantization
– The eye is more sensitive to low values 

of red compared to high values.

Vector Quantization
• How do we compress a color image 

(r,g,b)?
– Find k – representative points for all 

colors
– For every pixel, output the nearest 

representative
– If the points are clustered around the 

representatives, the residuals are small 
and hence probability coding will work 
well.

Transform coding
• Transform input into another space.
• One form of transform is to choose a set of basis 

functions.

• JPEG/MPEG both
use this idea.
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Other Transform codes
• Wavelets
• Fractal base compression

– Based on the idea of fixed points of 
functions.
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