
1

Graphs

An Introduction

Ouline

• What are Graphs?
• Applications
• Terminology and Problems
• Representation (Adj. Mat and Linked Lists)
• Searching

– Depth First Search (DFS)
– Breadth First Search (BFS)

Graphs

• A graph G = (V,E) is composed of:
– V: set of vertices
– E ⊂ V × V: set of edges connecting the

vertices
• An edge e = (u,v) is a __ pair of vertices

– Directed graphs (ordered pairs)
– Undirected graphs (unordered pairs)

2

Directed graph

Directed Graph

Undirected GRAPH

3

Undirected Graph

Applications

• Air Flights, Road Maps, Transportation.
• Graphics / Compilers
• Electrical Circuits
• Networks
• Modeling any kind of relationships

(between people/web pages/cities/…)

Some More Graph Applications

transportation

Graph
street intersections

Nodes Edges
highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

4

World Wide Web
• Web graph.

– Node: web page.
– Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

9-11 Terrorist Network
• Social network graph.

– Node: people.
– Edge: relationship between

two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web
• Food web graph.

– Node = species.
– Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

5

Terminology

• a is adjacent to b iff (a,b) ∈ Ε.
• degree(a) = number of adjacent

vertices (Self loop counted twice)
• Self Loop: (a,a)

• Parallel edges: E = { ...(a,b), (a,b)...}

a

a b

Terminology

• A Simple Graph is a graph with no self
loops or parallel edges.

• Incidence: v is incident to e if v is an
end vertex of e.

v
e

More…

6

Question

• Max Degree node? Min Degree Node?
Isolated Nodes? Total sum of degrees
over all vertices? Number of edges?

Question

• Max Degree = 4. Isolated vertices = 1.
• |V| = 8 , |E| = 8
• Sum of degrees = 16 = ?

– (Formula in terms of |V|, |E| ?)

Question

• Max Degree = 4. Isolated vertices = 1.
• |V| = 8 , |E| = 8
• Sum of degrees = 2|E| = ∑v∈V degree(v)

– Handshaking Theorem. Why?

7

QUESTION

• How many edges are there in a graph
with 100 vertices each of degree 4?

QUESTION

• How many edges are there in a graph
with 100 vertices each of degree 4?
– Total degree sum = 400 = 2 |E|
– 200 edges by the handshaking theorem.

Handshaking:Corollary
The number of vertices with odd degree is

always even.
Proof: Let V1 and V2 be the set of vertices of

even and odd degrees, respectively
(Hence V1 ∩ V2 = ∅, and V1 ∪ V2 = V).

• Now we know that
2|E| = ∑v∈V degree(v)

= ∑v∈V1 degree(v) + ∑v∈V2 degree(v)
• Since degree(v) is odd for all v∈ V2, | V2 | must

be even.

8

Terminology

Path and Cycle

• An alternating sequence of vertices and
edges beginning and ending with vertices
– each edge is incident with the vertices preceding

and following it.
– No edge / vertex appears more than once.
– A path is simple if all nodes are distinct.

• Cycle
– A path is a cycle if and only if v0= vk

• The beginning and end are the same vertex.

Path example

9

Connected graph

• Undirected Graphs: If there is at least
one path between every pair of vertices.
(otherwise disconnected)

• Directed Graphs:
– Strongly connected
– Weakly connected

hamiltonian cycle

• Closed cycle that transverses every
vertex exactly once.

In general, the problem of finding a Hamiltonian circuit
is NP-Complete.

complete graph

• Every pair of graph vertices is
connected by an edge.

10

Directed Acyclic Graphs
• A DAG is a directed graph with no cycles

• Often used to indicate precedences among
events, i.e., event a must happen before b

• Where have we seen these graphs before?

Tree

A connected
graph with n
nodes and n-1
edges

A Forest is a
collection of
trees.

Trees

• An undirected graph is a tree if it is connected
and does not contain a cycle.

• Theorem. Let G be an undirected graph on n
nodes. Any two of the following statements
imply the third.
– G is connected.
– G does not contain a cycle.
– G has n-1 edges.

11

Rooted Trees

• Rooted tree. Given a tree T, choose a
root node r and orient each edge away
from r.

• Importance. Models hierarchical
structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

Phylogeny Trees

• Phylogeny trees. Describe evolutionary
history of species.

GUI Containment Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

• GUI containment hierarchy. Describe organization of GUI widgets.

12

Spanning tree

Connected subset
of a graph G with
n-1 edges which
contains all of V

independent set

• An independent set of G is a subset of
the vertices such that no two vertices in
the subset are adjacent.

cliques

• a.k.a. complete subgraphs.

13

tough Problem

• Find the maximum cardinality
independent set of a graph G.
– NP-Complete

tough problem

• Given a weighted graph G, the nodes of
which represent cities and weights on
the edges, distances; find the shortest
tour that takes you from your home city
to all cities in the graph and back.
– Can be solved in O(n!) by enumerating all

cycles of length n.
– Dynamic programming can be used to

reduce it in O(n22n).

representation

• Two ways
– Adjacency List

• (as a linked list for each node in the graph to
represent the edges)

– Adjacency Matrix
• (as a boolean matrix)

14

Representing Graphs
11

22

33
44

11
22

33

44

1, 42

1, 43

1, 2, 34

2, 3, 41

Adjacent
Vertices•Vertex

12

3

1, 2, 34

31

Terminal
Vertices

Initial
Vertex

adjacency list

adjacency matrix

15

Another example

AL Vs AM

• AL: Takes O(|V| + |E|) space
• AM: Takes O(|V|*|V|) space
• Question: How much time does it take

to find out if (vi,vj) belongs to E?
– AM ?
– AL ?

AL Vs AM

• AL: Takes O(|V| + |E|) space
• AM: Takes O(|V|*|V|) space
• Question: How much time does it take

to find out if (vi,vj) belongs to E?
– AM : O(1)
– AL : O(|V|) in the worst case.

16

AL Vs AM

• AL : Total space = 4|V| + 8|E| bytes (For
undirected graphs its 4|V| + 16|E| bytes)

• AM : |V| * |V| / 8

• Question: What is better for very sparse
graphs? (Few number of edges)

Graph Traversal

Connectivity
• s-t connectivity problem. Given two node s and t, is there a path between s and

t?

• s-t shortest path problem. Given two node s and t, what is the length of the
shortest path between s and t?

• Applications.
– Maze traversal.
– Kevin Bacon number / Erdos number
– Fewest number of hops in a communication network.
– Friendster.

17

BFS/DFS

© Steve Skiena

BFS : Breadth First Search
DFS : Depth First Search

BFS/DFS

• Breadth-first search (BFS) and depth-
first search (DFS) are two distinct
orders in which to visit the vertices and
edges of a graph.

• BFS: radiates out from a root to visit
vertices in order of their distance from
the root. Thus closer nodes get visited
first.

Breadth first search

• Question: Given G in AM form, how do
we say if there is a path between nodes
a and b?

• Note: Using AM or AL its easy to
answer if there is an edge (a,b) in the
graph, but not path questions. This is
one of the reasons to learn BFS/DFS.

18

BFS

• A Breadth-First Search (BFS)
traverses a connected component of a
graph, and in doing so defines a
spanning tree.

Source: Lecture notes by Sheung-Hung POON

BFS

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited
table (all empty F)

Initialize Q to be empty

19

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited.

Place source 2 on the queue.

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited.

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Mark new visited
Neighbors.

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

20

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors.

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

Neighbors

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

Neighbors

21

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

Neighbors

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }
Dequeue 3.
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

22

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5.

Neighbors

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6.

Neighbors

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!

Neighbors

What did we discover?

Look at “visited” tables.

There exist a path from source
vertex 2 to all vertices in the graph!

23

Time Complexity of BFS
(Using adjacency list)

• Assume adjacency list
– n = number of vertices m = number of edges

Σvertex vdeg(v) = 2m*

No more than n vertices are ever
put on the queue.

How many adjacent nodes will
we every visit. This is related to
the number of edges. How
many edges are there?

*Note: this is not per iteration of the while loop.
This is the sum over all the while loops!

O(n + m)

Time Complexity of BFS
(Using adjacency matrix)

• Assume adjacency matrix
– n = number of vertices m = number of edges

No more than n vertices are ever
put on the queue. O(n)

Using an adjacency matrix. To find
the neighbors we have to visit all elements
In the row of v. That takes constant time
O(n)!

O(n2)
So, adjacency matrix is not good for BFS!!!

Path Recording

• BFS only tells us if a path exists from source
s, to other vertices v.
– It doesn’t tell us the path!
– We need to modify the algorithm to record the

path.

• Not difficult
– Use an additional predecessor array pred[0..n-1]
– Pred[w] = v

• Means that vertex w was visited by v

24

BFS + Path Finding

Set pred[v] to -1 (let -1 means
no path to any vertex)

Record who visited w

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited
table (all empty F)

Initialize Pred to -1

Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

Pred

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited.

Place source 2 on the queue.

-

-

-

-

-

-

-

-

-

-

Pred

25

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited.

Record in Pred
who was visited
by 2.

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

-

2

-

-

2

-

-

-

2

-

Pred

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

8

2

-

-

2

-

-

-

2

8

Pred
Mark new visited
Neighbors.

Record in Pred
who was visited
by 8.

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors.

Record in Pred
who was visited
by 1.

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

26

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

27

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in Pred
who was visited
by 3.

8

2

-

1

2

3

-

1

2

8

Pred

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in Pred
who was visited
by 7.

8

2

-

1

2

3

7

1

2

8

Pred

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

28

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!

Neighbors

Pred now stores the path!

8

2

-

1

2

3

7

1

2

8

Pred

Pred array represents paths
8

2

-

1

2

3

7

1

2

8

0

1

2

3

4

5

6

7

8

9

nodes visited by

Try some examples.
Path(0) ->
Path(6) ->
Path(1) ->

29

BFS tree

• We often draw the BFS paths are a m-ary tree,
where s is the root.

Question: What would a “level” order traversal tell you?

Connected Component

• Connected component. Find all nodes
reachable from s.

Flood Fill
• Flood fill. Given lime green pixel in an image, change color of entire blob of

neighboring lime pixels to blue.
– Node: pixel.
– Edge: two neighboring lime pixels.
– Blob: connected component of lime pixels. recolor lime green blob to blue

30

Flood Fill
• Flood fill. Given lime green pixel in an image, change color of entire blob of

neighboring lime pixels to blue.
– Node: pixel.
– Edge: two neighboring lime pixels.
– Blob: connected component of lime pixels. recolor lime green blob to blue

Connected Component

• Connected component. Find all nodes
reachable from s.

s

u v

R

it's safe to add v

More on
Paths and trees

in graphs

31

BFS

• Another way to think of the BFS tree is
the physical analogy of the BFS Tree.

• Sphere-String Analogy : Think of the
nodes as spheres and edges as unit
length strings. Lift the sphere for vertex
s.

Sphere-String Analogy

bfs : Properties

• At some point in the running of BFS, Q
only contains vertices/nodes at layer d.

• If u is removed before v in BFS then
– dist(u) dist(v)

• At the end of BFS, for each vertex v
reachable from s, the dist(v) equals the
shortest path length from s to v.

32

BFS

BFS:advancing wavefront

old wine in new bottle
forall v ε V:

dist(v) = ∞; prev(v) = null;
dist(s) = 0
Queue q; q.push(s);
while (!Q.empty())

v = Q.dequeue();
for all e=(v,w) in E

if dist(w) = ∞:
– dist(w) = dist(v)+1
– Q.enque(w)
– prev(w)= v

33

dijkstra’s SSSP Alg
BFS With positive int weights

• for every edge e=(a,b) ε E, let we be the
weight associated with it. Insert we-1
dummy nodes between a and b. Call
this new graph G’.

• Run BFS on G’. dist(u) is the shortest
path length from s to node u.

• Why is this algorithm bad?

how do we speed it up?

• If we could run BFS without actually
creating G’, by somehow simulating
BFS of G’ on G directly.

• Solution: Put a system of alarms on all
the nodes. When the BFS on G’
reaches a node of G, an alarm is
sounded. Nothing interesting can
happen before an alarm goes off.

an example

34

Another Example

alarm clock alg

alarm(s) = 0
until no more alarms

– wait for an alarm to sound. Let next alarm
that goes off is at node v at time t.

• dist(s,v) = t
• for each neighbor w of v in G:

– If there is no alarm for w, alarm(w) = t+weight(v,w)
– If w’s alarm is set further in time than t+weight(v,w),

reset it to t+weight(v,w).

recall bfs
forall v ε V:

dist(v) = ∞; prev(v) = null;
dist(s) = 0
Queue q; q.push(s);
while (!Q.empty())

v = Q.dequeue();
for all e=(v,w) in E

if dist(w) = ∞:
– dist(w) = dist(w)+1
– Q.enque(w)
– prev(w)= v

35

dijkstra’s SSSP
forall v ε V:

dist(v) = ∞; prev(v) = null;
dist(s) = 0
Magic_DS Q; Q.insert(s,0);
while (!Q.empty())

v = Q.delete_min();
for all e=(v,w) in E

if dist(w) > dist(v)+weight(v,w) :
– dist(w) = dist(v)+weight(v,w)
– Q.insert(w, dist(w))
– prev(w)= v

the magic ds: PQ

• What functions do we need?
– insert() : Insert an element and its key. If

the element is already there, change its
key (only if the key decreases).

– delete_min() : Return the element with the
smallest key and remove it from the set.

Example

0

∞∞

∞∞

s

u v

x y

10

1

9

2

4 6

5

2 3

7

36

Example

0

∞5

∞10

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

148

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

138

s

u v

x y

10

1

9

2

4 6

5

2 3

7

37

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

another view
region growth

1. Start from s
2. Grow a region R around s such that

the SPT from s is known inside the
region.

3. Add v to R such that v is the closest
node to s outside R.

4. Keep building this region till R = V.

38

how do we find v?

Example

S,V

Is this the shortest path to V

39

old wine in new bottle
forall v ε V:

dist(v) = ∞; prev(v) = null;
dist(s) = 0
R = {};
while R != V

Pick v not in R with smallest distance to s
for all edges (v,z) ε E

if(dist(z) > dist(v) + weight(v,z)
dist(z) = dist(v)+weight(v,z)
prev(z) = v;

Add v to R

updates

Running time?

40

Running time?

Running time?

• If we used a linked list as our magic
data structure?

Binary Heap?

41

d-ary heap

Fibonacci Heap

a Spanning tree

• Recall?
• Is it unique?
• Is shortest path tree a spanning tree?
• Is there an easy way to build a spanning

tree for a given graph G?
• Is it defined for disconnected graphs?

42

Spanning tree

Connected subset of a
graph G with n-1
edges which
contains all of V.

spanning tree

A connected, undirected graph

Some spanning trees of the graph

easy algorithm

To build a spanning tree:

Step 1: T = one node in V, as root.

Step 2: At each step, add to tree one
edge from a node in tree to a node that
is not yet in the tree.

43

Spanning tree property

Adding an edge e=(a,b) not in the tree
creates a cycle containing only edge e
and edges in spanning tree.

Why?

Spanning tree property

• Let c be the first node common to the
path from a and b to the root of the
spanning tree.

• The concatenation of (a,b) (b,c) (c,a)
gives us the desired cycle.

lemma 1

• In any tree, T = (V,E),
|E| = |V| - 1

• Why?

44

lemma 1

• In any tree, T = (V,E),
|E| = |V| - 1

• Why?
• Tree T with 1 node has zero edges.
• For all n>0, P(n) holds, where
• P(n) : A Tree with n nodes has n-1 edges.
• Apply MI. How do we prove that given P(m)

true for all 1..m, P(m+1) is true?

undirected graphs n trees

• An undirected graph G = (V,E) is a tree
iff

(1) it is connected
(2) |E| = |V| – 1

Lemma 2

Let C be the cycle created in a spanning
tree T by adding the edge e = (a,b) not
in the tree. Then removing any edge
from C yields another spanning tree.

Why? How many edges and vertices does
the new graph have? Can (x,y) in G get
disconnected in this new tree?

45

LEMMA 2
• Let T’ be the new graph
• T’ has n nodes and n-1 edges, so it must be a

tree if it is connected.
• Let (x,y) be not connected in T’. The only

problem in the connection can be the
removed edge (a,b). But if (a,b) was
contained in the path from x to y, we can use
the cycle C to reach y (even if (a,b) was
deleted from the graph).

weighted spanning trees

Let we be the weight of an edge e in
G=(V,E).

Weight of spanning tree = Sum of edge weights.

Question: How do we find the spanning tree with minimum weight.
This spanning tree is also called the Minimum Spanning Tree.

Is the MST unique?

minimum spanning trees

• Applications
– networks
– cluster analysis

• used in graphics/pattern recognition
– approximation algorithms (TSP)
– bioinformatics/CFD

46

cut property

• Let X be a subset of V. Among edges
crossing between X and V \ X, let e be
the edge of minimum weight. Then e
belongs to the MST.

• Proof?

cycle property

• For any cycle C in a graph, the heaviest
edge in C does not appear in the MST.

• Proof?

double chocolate question

• Is the SSSP Tree and the Minimum
spanning tree the same?

• Is one the subset of the other always?

47

double chocolate question

• Is the SSSP Tree and the Minimum
spanning tree the same?

• Is one the subset of the other always?

4 4

1

4 4 4

1

SSSP Tree MST

old wine in new bottle
forall v ε V:

dist(v) = ∞; prev(v) = null;
dist(s) = 0
Heap Q; Q.insert(s,0);
while (!Q.empty())

v = Q.delete_min();
for all e=(v,w) in E

if dist(w) > dist(v)+weight(v,w) :
– dist(w) = dist(v)+weight(v,w)
– Q.insert(w, dist(w))
– prev(w)= v

a slight modification
jarnik’s or prim’s alg.

forall v ε V:
dist(v) = ∞; prev(v) = null;

dist(s) = 0
Heap Q; Q.insert(s,0);
while (!Q.empty())

v = Q.delete_min();
for all e=(v,w) in E

if dist(w) > dist(v)+ weight(v,w) :
– dist(w) = dist(v) + weight(v,w)
– Q.insert(w, dist(w))
– prev(w)= v

48

our first MST alg.
forall v ε V:

dist(v) = ∞; prev(v) = null;
dist(s) = 0
Magic_DS Q; Q.insert(s,0);
while (!Q.empty())

v = Q.delete_min();
for all e=(v,w) in E

if dist(w) > weight(v,w) :
– dist(w) = weight(v,w)
– Q.insert(w, dist(w))
– prev(w)= v

how does the running time
depend on the magic_Ds?

• heap?
• insert()?
• delete_min()?
• Total time?
• What if we change the Magic_DS to

fibonacci heap?

prim’s/jarnik’s algorithm

• best running time using fibonacci heaps
– O(E + VlogV)

• Why does it compute the MST?

49

another alg: KRushkal’s

• sort the edges of G in increasing order
of weights

• Let S = {}
• for each edge e in G in sorted order

– if the endpoints of e are disconnected in S
– Add e to S

have u seen this before?

• Sort edges of G in increasing order of weight
• T = {} // Collection of trees
• For all e 0 E

– If Tc {e} has no cycles in T, then T = Tc {e}

return T

Naïve running time O((|V|+|E|)|V|) = O(|E||V|)

how to speed it up?

• To O(E + VlogV)
– Note that this is achieved by fibonacci

heaps.
• Surprisingly the idea is very simple.

50

Other Applications

3.4 Testing Bipartiteness

Bipartite Graphs
• Def. An undirected graph G = (V, E) is bipartite if the nodes can be

colored red or blue such that every edge has one red and one blue
end.

• Applications.
– Stable marriage: men = red, women = blue.
– Scheduling: machines = red, jobs = blue.

a bipartite graph

51

Testing Bipartiteness
• Testing bipartiteness. Given a graph G, is it bipartite?

– Many graph problems become:
• easier if the underlying graph is bipartite (matching)
• tractable if the underlying graph is bipartite (independent set)

– Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

An Obstruction to Bipartiteness

• Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

• Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Bipartite Graphs

• Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds.
(i) No edge of G joins two nodes of the same layer, and G is

bipartite.
(ii) An edge of G joins two nodes of the same layer, and G

contains an
odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

52

Bipartite Graphs
• Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains

an
odd-length cycle (and hence is not bipartite).

• Pf. (i)
– Suppose no edge joins two nodes in the same layer.
– By previous lemma, this implies all edges join nodes on same level.
– Bipartition: red = nodes on odd levels, blue = nodes on even

levels.

Case (i)

L1 L2 L3

Bipartite Graphs
• Lemma. Let G be a connected graph, and let L0, …, Lk be the layers produced

by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

• Pf. (ii)
– Suppose (x, y) is an edge with x, y in same level Lj.
– Let z = lca(x, y) = lowest common ancestor.
– Let Li be level containing z.
– Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.
– Its length is 1 + (j-i) + (j-i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

Obstruction to Bipartiteness

• Corollary. A graph G is bipartite iff it
contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

53

3.5 Connectivity in Directed
Graphs

Directed Graphs
• Directed graph. G = (V, E)

– Edge (u, v) goes from node u to node v.

• Ex. Web graph - hyperlink points from one web page to another.
– Directedness of graph is crucial.
– Modern web search engines exploit hyperlink structure to rank web pages

by importance.

Graph Search
• Directed reachability. Given a node s, find all nodes reachable from s.

• Directed s-t shortest path problem. Given two node s and t, what is the
length of the shortest path between s and t?

• Graph search. BFS extends naturally to directed graphs.

• Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

54

Strong Connectivity
• Def. Node u and v are mutually reachable if there is a path from u to v and also

a path from v to u.

• Def. A graph is strongly connected if every pair of nodes is mutually reachable.

• Lemma. Let s be any node. G is strongly connected iff every node is reachable
from s, and s is reachable from every node.

• Pf. ⇒ Follows from definition.
• Pf. ⇐ Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

ok if paths overlap

Strong Connectivity:
Algorithm

• Theorem. Can determine if G is strongly connected in O(m + n) time.
• Pf.

– Pick any node s.
– Run BFS from s in G.
– Run BFS from s in Grev.
– Return true iff all nodes reached in both BFS executions.
– Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

3.6 DAGs and Topological
Ordering

To be continued.

	Graphs
	Ouline
	Graphs
	Directed graph
	Directed Graph
	Undirected GRAPH
	Undirected Graph
	Applications
	Some More Graph Applications
	World Wide Web
	9-11 Terrorist Network
	Ecological Food Web
	Terminology
	Terminology
	More…
	Question
	Question
	Question
	QUESTION
	QUESTION
	Handshaking:Corollary
	Terminology
	Path and Cycle
	Path example
	Connected graph
	hamiltonian cycle
	complete graph
	Directed Acyclic Graphs
	Tree
	Trees
	Rooted Trees
	Phylogeny Trees
	GUI Containment Hierarchy
	Spanning tree
	independent set
	cliques
	tough Problem
	tough problem
	representation
	Representing Graphs
	adjacency list
	adjacency matrix
	Another example
	AL Vs AM
	AL Vs AM
	AL Vs AM
	Graph Traversal
	Connectivity
	BFS/DFS
	BFS/DFS
	Breadth first search
	BFS
	BFS
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Time Complexity of BFS�(Using adjacency list)
	Time Complexity of BFS�(Using adjacency matrix)
	Path Recording
	BFS + Path Finding
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Pred array represents paths
	BFS tree
	Connected Component
	Flood Fill
	Flood Fill
	Connected Component
	More on�Paths and trees�in graphs
	BFS
	Sphere-String Analogy
	bfs : Properties
	BFS
	BFS:advancing wavefront
	old wine in new bottle
	dijkstra’s SSSP Alg�BFS With positive int weights
	how do we speed it up?
	an example
	Another Example
	alarm clock alg
	recall bfs
	dijkstra’s SSSP
	the magic ds: PQ
	Example
	Example
	Example
	Example
	Example
	Example
	another view �region growth
	how do we find v?
	Example
	 S,V
	old wine in new bottle
	updates
	Running time?
	Running time?
	Running time?
	Binary Heap?
	d-ary heap
	Fibonacci Heap
	a Spanning tree
	Spanning tree
	spanning tree
	easy algorithm
	Spanning tree property
	Spanning tree property
	lemma 1
	lemma 1
	undirected graphs n trees
	Lemma 2
	LEMMA 2
	weighted spanning trees
	minimum spanning trees
	cut property
	cycle property
	double chocolate question
	double chocolate question
	old wine in new bottle
	a slight modification�jarnik’s or prim’s alg.
	our first MST alg.
	how does the running time depend on the magic_Ds?
	prim’s/jarnik’s algorithm
	another alg: KRushkal’s
	have u seen this before?
	how to speed it up?
	Other Applications
	3.4 Testing Bipartiteness
	Bipartite Graphs
	Testing Bipartiteness
	An Obstruction to Bipartiteness
	Bipartite Graphs
	Bipartite Graphs
	Bipartite Graphs
	Obstruction to Bipartiteness
	3.5 Connectivity in Directed Graphs
	Directed Graphs
	Graph Search
	Strong Connectivity
	Strong Connectivity: Algorithm
	3.6 DAGs and Topological Ordering

