Graphs

An Introduction

Graphs

- A graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ is composed of:
$-V$: set of vertices \qquad
$\mathrm{E} \subset \mathrm{V} \times \mathrm{V}$: set of edges connecting the vertices \qquad
An edge $\boldsymbol{e}=(u, v)$ is a _ pair of vertices
- Directed graphs (ordered pairs)
- Undirected graphs (unordered pairs)

Directed Graph

Applications

- Air Flights, Road Maps, Transportation.
- Graphics / Compilers \qquad
Electrical Circuits
Networks
Modeling any kind of relationships (between people/web pages/cities/...)

Ecological Food Web

\qquad
\qquad
\qquad
\qquad

Terminology

- \mathbf{a} is adjacent to \mathbf{b} iff $(\mathbf{a}, \mathbf{b}) \in \mathbf{E}$.
degree(\mathbf{a}) = number of adjacent vertices (Self loop counted twice)
Self Loop: (a, a)

- Parallel edges: $\mathrm{E}=\{\ldots(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{b}) \ldots\}$

Terminology

- A Simple Graph is a graph with no self loops or parallel edges. \qquad ncidence: v is incident to e if v is an end vertex of e.

Question

- Max Degree node? Min Degree Node? Isolated Nodes? Total sum of degrees \qquad over all vertices? Number of edges?

\qquad
\qquad
\qquad
\qquad

Question

- Max Degree $=4$. Isolated vertices $=1$.
$|\mathrm{V}|=8,|\mathrm{E}|=8$ \qquad
Sum of degrees $=16=$?
(Formula in terms of $|\mathrm{V}|,|\mathrm{E}|$?)

\qquad
\qquad
\qquad
\qquad

Question

- Max Degree $=4$. Isolated vertices $=1$.
$|\mathrm{V}|=8,|\mathrm{E}|=8$
Sum of degrees $=2|E|=\sum_{\mathrm{v} \in \mathrm{V}}$ degree(v)
Handshaking Theorem. Why?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION

- How many edges are there in a graph with 100 vertices each of degree 4 ? \qquad
\qquad
\qquad
\qquad
\qquad

QUESTION

- How many edges are there in a graph with 100 vertices each of degree 4 ? \qquad
- Total degree sum $=400=2 \mid$ ㅌ
-200 edges by the handshaking theorem. \qquad
\qquad
\qquad
\qquad

Handshaking:Corollary
The number of vertices with odd degree is always even.
Proof: Let V_{1} and V_{2} be the set of vertices of even and odd degrees, respectively (Hence $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\varnothing$, and $\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$). \qquad

- Now we know that
even. $=\sum_{\mathrm{v} \in \mathrm{V} 1} \operatorname{degree}(\mathrm{v})+\sum_{\mathrm{v} \in \mathrm{V} 2}$ degree(v)
- Since degree(v) is odd for all $v \in V_{2},\left|V_{2}\right|$ must be even.

Path and Cycle

- An alternating sequence of vertices and edges beginning and ending with vertices
- each edge is incident with the vertices preceding and following it.
No edge / vertex appears more than once
- A path is simple if all nodes are distinct.
- Cycle
- A path is a cycle if and only if $v_{0}=v_{k}$
- The beginning and end are the same vertex.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Connected graph

- Undirected Graphs: If there is at least one path between every pair of vertices. (otherwise disconnected)
Directed Graphs: \qquad
- Strongly connected
- Weakly connected \qquad
\qquad
\qquad

hamiltonian cycle

- Closed cycle that transverses every vertex exactly once. \qquad
\qquad
\qquad
\qquad
In general, the problem of finding a Hamiltonian circuit is NP-Complete.

complete graph

- Every pair of graph vertices is connected by an edge.

Directed Acyclic Graphs

\qquad A DAG is a directed graph with no cycles

Often used to indicate precedences among events, i.e., event a must happen before b
-Where have we seen these graphs before?

Trees

- An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n hodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has $\mathrm{n}-1$ edges.

Rooted Trees

- Rooted tree. Given a tree T, choose a root node r and orient each edge away \qquad

a tree

the same tree, rooted at 1
\qquad
\qquad
\qquad
\qquad

Phylogeny Trees

- Phylogeny trees. Describe evolutionary history of species. \qquad
\qquad
\qquad
\qquad
\qquad

Spanning tree

Connected subset of a graph G with n -1 edges which contains all of V

independent set

- An independent set of G is a subset of the vertices such that no two vertices in the subset are adjacent.

cliques

- a.k.a. complete subgraphs.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

tough Problem

- Find the maximum cardinality independent set of a graph G. \qquad
NP-Complete

tough problem

- Given a weighted graph G, the nodes of which represent cities and weights on the edges, distances; find the shortest four that takes you from your home city o all cities in the graph and back.
- Can be solved in $\mathrm{O}(\mathrm{n}!$) by enumerating all cycles of length n.
- Dynamic programming can be used to reduce it in $\mathrm{O}\left(\mathrm{n}^{2} 2^{n}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

representation

- Two ways
- Adjacency List
- (as a linked list for each node in the graph to represent the edges)
- Adjacency Matrix
- (as a boolean matrix)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
adjacency list
$1 \rightarrow 2 \rightarrow 3$
2
3
$4 \rightarrow 1$ 4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AL Vs AM

- AL: Takes $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ space

AM: Takes $\mathrm{O}(|\mathrm{V}| *|\mathrm{~V}|)$ space \qquad
Question: How much time does it take
o find out if $\left(v_{i}, v_{i}\right)$ belongs to E ?

- AM ?
-AL?

AL Vs AM

- AL: Takes $\mathrm{O}(|\mathrm{V}|+|E|)$ space

AM: Takes $\mathrm{O}\left(|\mathrm{V}|^{*}|\mathrm{~V}|\right)$ space \qquad
Question: How much time does it take
lo find out if $\left(v_{i}, v_{j}\right)$ belongs to E ? \qquad
-AM: O(1)

- $\mathrm{AL}: \mathrm{O}(|\mathrm{V}|)$ in the worst case.

AL Vs AM

- AL : Total space $=4|\mathrm{~V}|+8 \mid$ ㅌ bytes (For undirected graphs its $4|\mathrm{~V}|+16|E|$ bytes) \qquad AM : $|\mathrm{V}|$ * $|\mathrm{V}| / 8$

Question: What is better for very sparse graphs? (Few number of edges)

Connectivity

$s-t$ connectivity problem. Given two node s and t, is there a path between s and
s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t ?
\qquad
\qquad
\qquad

BFS/DFS

- Breadth-first search (BFS) and depthfirst search (DFS) are two distinct \qquad orders in which to visit the vertices and dges of a graph. \qquad
BFS: radiates out from a root to visit vertices in order of their distance from \qquad the root. Thus closer nodes get visited first. \qquad
\qquad

Breadth first search

Question: Given G in AM form, how do we say if there is a path between nodes \qquad a and b ?
Note: Using AM or AL its easy to \qquad answer if there is an edge (a,b) in the graph, but not path questions. This is one of the reasons to learn BFS/DFS.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Dequeue 3.
-- place neighbor 5 on the queue.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Time Complexity of BFS
 (Using adjacency list)

\qquad
Assume adjacency list

$$
\text { - } \mathrm{n}=\text { number of vertices } \mathrm{m}=\text { number of edges }
$$

\qquad

Algorithm BFS(s)
Input: s is the source vertex
$O(n+m)$
for each vertex :
do flag $[\mathrm{l}]:=\mathrm{false}$;
$Q=$ empty queue;
flog $[8]:=$ true;
enouevo (Q, s);
while Q is not empty
do $\mathrm{v}:=$ dequeve($($):
No more than n vertices are ever
put on the queue.
 do if $\operatorname{fug}[\omega]=$ false
the number of edges. How
the number of edges. How
many edges are there?
$\Sigma_{\text {vertex } v} \operatorname{deg}(v)=2 m^{*}$
${ }^{*}$ Note: this is not per iteration of the while loop.

Time Complexity of BFS

(Using adjacency matrix) \qquad
Assume adjacency matrix

- $n=$ number of vertices $m=n u m b e r$ of edges

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.

1. for each vertex v
do flag[v] := false:
$Q=$ emoty queve;
Plog $[s]:=$ true;
enouved (Q, s);
while Q is not empty
for each w adjacent to v
do if flog $(\omega)=$ false
then flog $[\omega]:=$ true;
enaueve (Q, w)

$O\left(n^{2}\right)$

So, adjacency matrix is not good for BFS!!!

No more than n vertices are ever put on the queue. O(n)
Using an adjacency matrix. To find the neighbors we have to visit all elements In the row of v . That takes constant time $\mathrm{O}(\mathrm{n})$!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Path Recording

- BFS only tells us if a path exists from source
s , to other vertices v .
- It doesn't tell us the path!

We need to modify the algorithm to record the path.

Not difficult

- Use an additional predecessor array pred[0..n-1]
$-\operatorname{Pred}[w]=v$
- Means that vertex w was visited by v

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BFS tree

- We often draw the BFS paths are a m-ary tree, where s is the root. \qquad

Question: What would a "level" order traversal tell you?

Connected Component

- Connected component. Find all nodes reachable from s . \qquad
\qquad

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.

Edge: two neighboring lime pixels.

${ }_{8}$

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.
\qquad - Node: pixel.

- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels. recolor lime green blob to blue \qquad
\qquad
\qquad
\qquad
\qquad

Connected Component

- Connected component. Find all nodes reachable from s. \qquad
\qquad
R will consist of nodes to which s has a path
Initially $R=|s|$
While there is an edge (u, v) where $u \in R$ and $v\{$
Add ν to R
Endvhile

it's safe to add v

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BFS

- Another way to think of the BFS tree is the physical analogy of the BFS Tree. Sphere-String Analogy : Think of the hodes as spheres and edges as unit length strings. Lift the sphere for vertex
s.

bfs: Properties

- At some point in the running of BFS, Q only contains vertices/nodes at layer \mathbf{d}. \qquad
f \mathbf{u} is removed before \mathbf{v} in BFS then dist(u) $\leq \operatorname{dist}(\mathrm{v})$
At the end of BFS, for each vertex \mathbf{v} reachable from \mathbf{s}, the $\operatorname{dist}(\mathrm{v})$ equals the shortest path length from s to v .

old wine in new bottle
forall $v \varepsilon \vee$: \qquad
$\operatorname{dist}(\mathrm{v})=\infty ; \operatorname{prev}(\mathrm{v})=$ null;
$\operatorname{dist}(\mathrm{s})=0$
Queue q; q.push(s);
while (!Q.empty())
$\mathrm{v}=\mathrm{Q}$.dequeue();
for all $e=(v, w)$ in E
if $\operatorname{dist}(w)=\infty$:
$-\operatorname{dist}(w)=\operatorname{dist}(v)+1$
- Q.enque(w)
$-\operatorname{prev}(w)=\mathrm{v}$

\qquad
\qquad
\qquad

how do we speed it up?

- If we could run BFS without actually creating G^{\prime}, by somehow simulating \qquad BFS of G' on G directly.
Solution: Put a system of alarms on all \qquad the nodes. When the BFS on G' reaches a node of G, an alarm is \qquad sounded. Nothing interesting can happen before an alarm goes off.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

alarm clock alg

alarm(s) $=0$
until no more alarms \qquad
wait for an alarm to sound. Let next alarm that goes off is at node v at time t. \qquad

- $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{t}$
- for each neighbor w of v in G :
- If there is no alarm for $w, \operatorname{alarm}(w)=t+w e i g h t(v, w)$
- If w 's alarm is set further in time than $t+$ weight (v, w), reset it to $\mathrm{t}+$ weight (v, w).

recall bfs

forall $\vee \varepsilon \mathrm{V}$:

$$
\operatorname{dist}(v)=\infty ; \operatorname{prev}(v)=\text { null; }
$$

$\operatorname{dist}(s)=0$
Queue q; q.push(s);
while (!Q.empty())

> v = Q.dequeue();
for all $e=(v, w)$ in E
if $\operatorname{dist}(w)=\infty$:
$-\operatorname{dist}(w)=\operatorname{dist}(w)+1$

- Q.enque(w)
$-\operatorname{prev}(w)=\mathrm{v}$

\qquad
\qquad

the magic ds: PQ

- What functions do we need?
- insert() : Insert an element and its key. If \qquad the element is already there, change its key (only if the key decreases). delete_min() : Return the element with the smallest key and remove it from the set.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

another view
 region growth

1. Start from s
2. Grow a region R around s such that \qquad the SPT from s is known inside the region. \qquad
Add v^{*} to R such that v^{*} is the closest node to s outside R.
3. Keep building this region till $\mathrm{R}=\mathrm{V}$.
how do we find v?
Pick $v \notin R$ ot
$\min _{x \in R} \operatorname{dist}(s, x)+\operatorname{weight}(x, v)$ $x \in R$ Let $\left(x^{*}, v^{*}\right)$ be the oft.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Is this the shortest path to V^{*} ?
Why?
\qquad
\qquad

old wine in new bottle

foal $\vee \varepsilon \vee$:
$\operatorname{dist}(\mathrm{v})=\infty ; \operatorname{prev}(\mathrm{v})=$ null;
$\operatorname{dist}(\mathrm{s})=0$
$R=\{ \}$;
while R != V
Pick v not in R with smallest distance to s for all edges $(v, z) \varepsilon E$ if(dist(z) > dist (v) + weight (v, z) $\operatorname{dist}(\mathrm{z})=\operatorname{dist}(\mathrm{v})+$ weight (v, z) $\operatorname{prev}(\mathrm{z})=\mathrm{v}$;
Add v to R
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

updates

Running time?

delete-min $=$?
insert $=$?

Running time?

$$
\begin{aligned}
& \text { delete-min }=|V| \\
& \text { insert }=|E|
\end{aligned}
$$

Running time?

- If we used a linked list as our magic data structure?

$$
\begin{aligned}
\text { delete_min}() & \rightarrow O(|V|) \\
\text { insert }() & \rightarrow O(\mid) O(|v|) \\
\text { Total }= & |v| \text { deletemin }() \\
+|E| \text { insert }() & =O\left(|V|^{2}\right)
\end{aligned}
$$

Binary Heap?

$$
\begin{aligned}
& \text { delete-min }() \rightarrow O(\log |v|) \\
& \text { insert }() \rightarrow O(\log |v|) \\
& \text { Total } \rightarrow O(|E| \log |v|)
\end{aligned}
$$

\qquad

Fibonacci Heap

$\begin{aligned} \text { delete_min }() \rightarrow & O(1) \\ & \text { Amortized }\end{aligned}$ insert ()$\rightarrow O(\log |V|)$ Total $\rightarrow O(|V| \log |V|+|E|)$

a Spanning tree

- Recall?

Is it unique?
s shortest path tree a spanning tree?
s there an easy way to build a spanning tree for a given graph G ?

- Is it defined for disconnected graphs?

Spanning tree

Connected subset of a graph G with $\mathrm{n}-1$ edges which contains all of V .

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

easy algorithm

To build a spanning tree:
Step 1: $T=$ one node in V, as root.
\$tep 2: At each step, add to tree one \qquad edge from a node in tree to a node that is not yet in the tree. \qquad
\qquad
\qquad

Spanning tree property

Adding an edge $\mathbf{e}=(\mathbf{a}, \mathbf{b})$ not in the tree creates a cycle containing only edge \mathbf{e} \qquad and edges in spanning tree.

Why?
\qquad
\qquad
\qquad
\qquad

Spanning tree property

- Let c be the first node common to the path from a and b to the root of the \qquad spanning tree.
The concatenation of $(a, b)(b, c)(c, a)$ \qquad gives us the desired cycle.

lemma 1

- In any tree, $\mathrm{T}=(\mathrm{V}, \mathrm{E})$,
$|E|=|V|-1$ \qquad
Why?
\qquad
\qquad
\qquad
\qquad

lemma 1

- In any tree, $T=(V, E)$,
$|E|=|V|-1$
Why?
ree T with 1 node has zero edges.
For all $n>0, P(n)$ holds, where
- $P(n)$: A Tree with n nodes has $n-1$ edges.
- Apply MI. How do we prove that given $P(m)$
true for all 1..m, $\mathrm{P}(\mathrm{m}+1)$ is true?

undirected graphs n trees

- An undirected graph $G=(V, E)$ is a tree
iff
(1) it is connected
(2) $|\mathrm{E}|=|\mathrm{V}|-1$

Lemma 2

Let C be the cycle created in a spanning tree T by adding the edge $\mathrm{e}=(\mathrm{a}, \mathrm{b})$ not \qquad in the tree. Then removing any edge from C yields another spanning tree.

Why? How many edges and vertices does the new graph have? Can (x, y) in G get disconnected in this new tree?

LEMMA 2

- Let T' be the new graph
- T' has n nodes and $n-1$ edges, so it must be a tree if it is connected.
Let (x, y) be not connected in T^{\prime}. The only problem in the connection can be the removed edge (a, b). But if (a, b) was contained in the path from x to y, we can use the cycle C to reach y (even if (a, b) was deleted from the graph). \qquad
\qquad

weighted spanning trees

Let w_{e} be the weight of an edge e in $G=(V, E)$. \qquad

Weight of spanning tree = Sum of edge weights. \qquad
Question: How do we find the spanning tree with minimum weight. This spanning tree is also called the Minimum Spanning Tree. \qquad
Is the MST unique? \qquad
\qquad
minimum spanning trees

- Applications
- networks
- cluster analysis
- used in graphics/pattern recognition \qquad
- approximation algorithms (TSP)
- bioinformatics/CFD \qquad
\qquad
\qquad

cut property

- Let X be a subset of V . Among edges crossing between X and $\mathrm{V} \backslash \mathrm{X}$, let e be \qquad the edge of minimum weight. Then e pelongs to the MST. \qquad
\qquad
\qquad
\qquad

cycle property

- For any cycle C in a graph, the heaviest edge in C does not appear in the MST. \qquad
\qquad
\qquad
\qquad
\qquad
double chocolate question
- Is the SSSP Tree and the Minimum spanning tree the same? \qquad
s one the subset of the other always?
\qquad
\qquad
\qquad
\qquad

double chocolate question

- Is the SSSP Tree and the Minimum spanning tree the same? \qquad s one the subset of the other always?

old wine in new bottle

forall $v \varepsilon \vee$:

$$
\operatorname{dist}(v)=\infty ; \operatorname{prev}(v)=\text { null; }
$$

$\operatorname{dist}(\mathrm{s})=0$
Heap Q; Q.insert(s,0);
while (!Q.empty())
$\mathrm{v}=$ Q.delete_min();
for all $e=(v, w)$ in E
if $\operatorname{dist}(\mathrm{w})>\operatorname{dist}(\mathrm{v})+$ weight (v, w)
$-\operatorname{dist}(w)=\operatorname{dist}(v)+$ weight (v, w)

- Q.insert(w, $\operatorname{dist}(w))$
$-\operatorname{prev}(w)=\mathrm{v}$

a slight modification

$\underset{\text { jarnik's }}{\text { jar }}$ or prim's alg.
forall $\vee \varepsilon \mathrm{V}$: \qquad
$\operatorname{dist}(\mathrm{v})=\infty ; \operatorname{prev}(\mathrm{v})=$ null;
$\operatorname{dist}(\mathrm{s})=0$
Heap Q; Q.insert(s,0);
while (!Q.empty())
$\mathrm{v}=$ Q.delete_min();
for all $e=(v, w)$ in E
if dist(w) > dist $(v)+$ weight (v, w) :
$-\operatorname{dist}(w)=\operatorname{dist}(v+$ weight (v, w)

- Q.insert(w, dist(w))
$-\operatorname{prev}(w)=v$
\qquad
\qquad

our first MST alg.

forall $\vee \varepsilon \vee$:

$$
\operatorname{dist}(v)=\infty ; \operatorname{prev}(v)=\operatorname{null} ;
$$

$\operatorname{dist}(\mathrm{s})=0$
Magic_DS Q; Q.insert(s,0); while (!Q.empty())
$\mathrm{v}=$ Q. delete $_$min();
for all $e=(v, w)$ in E
if $\operatorname{dist}(w)>$ weight (v, w) :
$-\operatorname{dist}(\mathrm{w})=$ weight (v, w)

- Q.insert(w, dist(w))
$-\operatorname{prev}(w)=\mathrm{v}$

how does the running time depend on the magic_Ds?

- heap?
insert()? \qquad
delete_min()?
otal time?
What if we change the Magic_DS to fibonacci heap?

prim's/jarnik's algorithm

- best running time using fibonacci heaps
- O(E + VlogV)

Why does it compute the MST?

another alg: KRushkal's

- sort the edges of G in increasing order of weights \qquad
Let $S=\{ \}$
for each edge e in G in sorted order
- if the endpoints of e are disconnected in S - Add e to S

have u seen this before?

- Sort edges of G in increasing order of weight
- $\mathrm{T}=\{ \} / /$ Collection of trees

For all $\mathrm{e} \in \mathrm{E}$
If $T \cup\{e\}$ has no cycles in T, then $T=T \cup\{e\}$
return T

Naïve running time $\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|)|\mathrm{V}|)=\mathrm{O}(|\mathrm{E}||\mathrm{V}|)$

how to speed it up?

- To O(E + VlogV)
- Note that this is achieved by fibonacci heaps.
Surprisingly the idea is very simple. \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bipartite Graphs

Sef. An undirected graph $G=(V, E)$ is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

Stable marriage: $m e n=$ red, women = blue
Scheduling: machines = red, jobs = blue
\qquad

\qquad
\qquad
a bipartite graph

Testing Bipartiteness

Testing bipartiteness. Given a graph G , is it bipartite?

- Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set) - Before attempting to design an algorithm, we need to understand structure of bipartite graphs.
\qquad

a bipartite graph G

\qquad
\qquad
\qquad
\qquad

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle \qquad

- Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)
not bipartite
(not 2-colorab
\qquad
\qquad
\qquad
\qquad
\qquad

Bipartite Graphs

Lemma. Let G be a connected graph, and let $\mathrm{L}_{0}, \ldots, \mathrm{~L}_{\mathrm{k}}$ be the layers produced by BFS starting at node s . Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds (i) No edge of G joins two nodes of the same layer, and G is bipartite \qquad (ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite)

Pf.

- Suppose no edge joins two nodes in the same layer.
- By previous lemma, this implies all edges join nodes on same level
- Bipartition: red = nodes on odd levels, blue $=$ nodes on even levels.

Case (i)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Suppose (x, y) is an edge with x, y in same level L_{j}. - Let $\mathrm{z}=\operatorname{Ica}(\mathrm{x}, \mathrm{y})=$ lowest common ancestor.

- Let L_{i} be level containing z .
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is $\underbrace{1}+(\mathrm{j}-\mathrm{i})+(\mathrm{j}-\mathrm{i})$, which is odd. .

$$
(x, y) \quad \begin{aligned}
& \text { path from } \\
& y+0
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. $G=(V, E)$

- Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another
Directedness of graph is crucial.

- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s
Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t ?
raph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.
\qquad
emma. Let s be any node. G is strongly connected iff every node is reachable fom s , and s is reachable from every node. \qquad
Pf. \Rightarrow Follows from definition.
Pf. \leftrightharpoons Path from u to v : concatenate u-s path with s-v path.
Path from v to u : concatenate v-s path with $s-u$ path.
\qquad
\qquad
\qquad

Strong Connectivity:

\qquad
\qquad
Theorem. Can determine if G is strongly connected in $\mathrm{O}(m+n)$ time. Pf.

- Pick any node s.

Run BFS from s in G. reverse orientation of every edge in G
Run BFS from s in $\mathrm{G}^{\text {rev. }}$
Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma. .

\qquad
\qquad
\qquad
\qquad
\qquad

3.6 DAGs and Topological Ordering

To be continued.

