

Algorithm: What is it?

• An Algorithm a well-defined computational procedure that transforms inputs into outputs, achieving the desired input-output relationship.

Algorithm Characteristics

- Finiteness
- Input
 Correctness
- Output
- Rigorous, Unambiguous and Sufficiently Basic at each step

Applications?

- WWW and the Internet
- Computational Biology
- Scientific Simulation
- VLSI Design
- Security
- Automated Vision/Image Processing
- $\cdot\,$ Compression of Data
- Databases
- Mathematical Optimization

Sorting

- *Input:* Array A[1...n], of elements in arbitrary order
- **Output:** Array A[1...n] of the same elements, but in increasing order
- Given a teacher find all his/her students.
- Given a student find all his/her teachers.

The RAM Model

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor random-access machine (RAM)
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time • Except, of course, function calls
 - Constant word size

Time and Space Complexity

- Generally a function of the input size
 - E.g., sorting, multiplication
 - How we characterize input size depends:
 - Sorting: number of input items
 - Multiplication: total number of bits
 - Graph algorithms: number of nodes & edges
 - Etc

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time
 - y = m * x + b
 - c = 5 / 9 * (t 32)
 - z = f(x) + g(y)
- \cdot We can be more exact if need be

Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs

Binary Search Analysis

- Order Notation
- Upper Bounds
- Search Time = ??
- A better way to look at it, Binary Search Trees

In this course

- We care most about *asymptotic performance*
 - How does the algorithm behave as the problem size gets very large?
 - Running time
 - Memory/storage requirements
 - Bandwidth/power requirements/logic gates/etc.

2.1 Computational Tractability

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing." - *Francis Sullivan*

Worst-Case Analysis

- Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size $N_{\rm c}$
 - Generally captures efficiency in practice.
 - Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

Worst-Case Polynomial-Time

- Def. An algorithm is efficient if its running time is polynomial.
- Justification: It really works in practice! Although 6.02 \times 10²³ \times N²⁰ is technically poly-time, it would be useless . in practice.
 - In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
 - Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.
- Exceptions.
 - Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
 - Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

simplex method Unix grep

		Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second in cases where the running time exceeds 10^{23} years, we simply record the algorithm as taking a very long time.					
	п	$n \log_2 n$	n^2	n^3	1.5"	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very lon
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
1 = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Why not do Exact Analysis?

It is difficult to be exact.
Results are most of the time too complicated and irrelevant.

- F(n) = O(F(n))
- c O(f(n)) = O(f(n))
- *O*(F(n)) = *O*(*O*(F(n)))
- $O(f(n)+g(n)) = O(\max(f(n),g(n)))$
- O(f(n)) O(g(n)) = O(f(n) g(n))
- O(f(n)g(n)) = f(n)O(g(n))

Summary

- $\Theta(1)$: Constant Time, Can't beat it.
- · (log n): Typically the speed of most efficient data structures (Binary tree search?)
- ⊙ (n) : Needed by an algorithm to look at all its input.

Summary

- •
 •
 (n!) or
 •
 (nⁿ): Useful for really small inputs most of the time. (n < 20)

