


- Our First Problem
- Stable Matching

Class/Exam Timings

- Timings
 - Monday , Wednesday
 (5:15pm 6:30pm) Love 0101
- Midterm: 22nd Feb, Love 0101, Class Time
- Final Exam
 - Apr 26th, Wednesday, 5:30 to 7:30pm.
 Love 0101

References

- Klienberg / Tardos

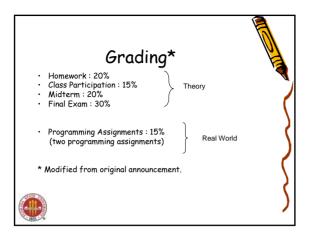
 Algorithm Design
- Other References
 - [CLRS] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. <u>Introduction to Algorithms</u> (2nd edition).
 - My slides and notes

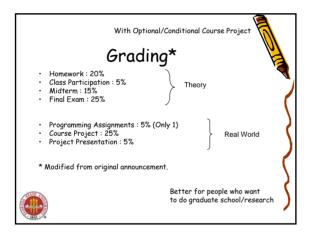
PreReq

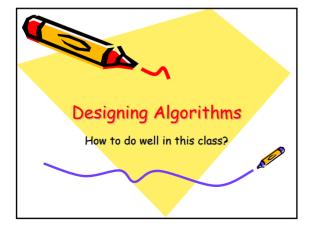
Data Structures

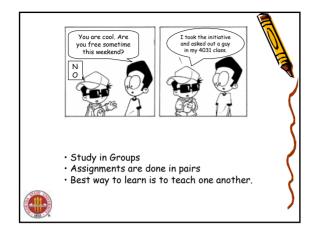
.

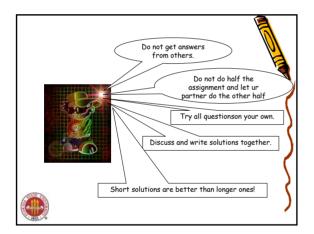
- Introduction to Probability (STA 4442/STA 3032) . . C++
- Discrete Mathematics II (MAD 3105) or Mathematics in Computing (MAD 3107) .
- Basic Math skills
- Lots of Time...
- ToDo List:
 - Get a LinProg Account
 Get a copy of the text book.

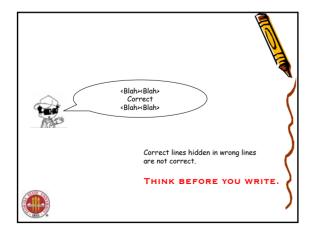


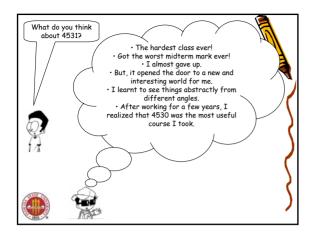


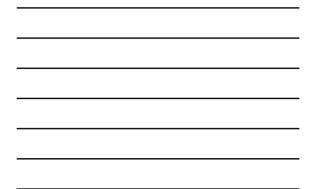

- Binary Trees, Heaps.
- STL, containers/iterators.
- Mathematical Induction.
- Basic Probability/Expectations.

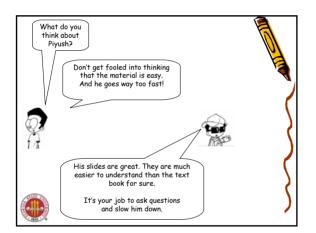

What can you expect?

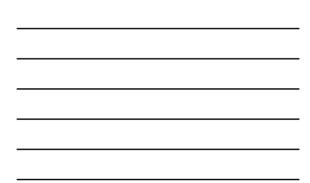

- After the course expect to
 - Know more about algorithms (of course)
 - Think algorithmically
 - Know how to solve real world algorithmic problems
 - Both in theory (algorithm) and practice (code)
 - Be better at applications that require algorithms:
 - and apply algorithms to places you never imagined...

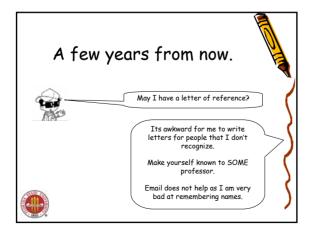


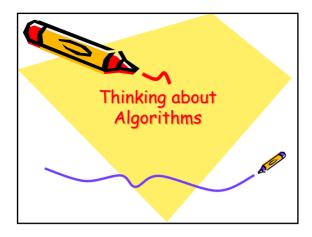


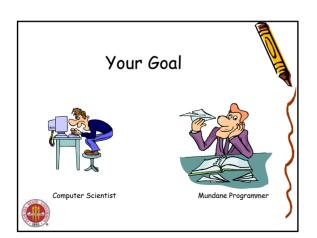




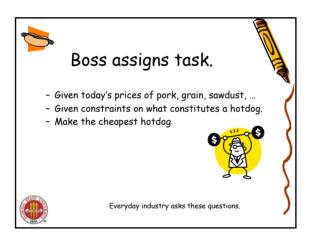


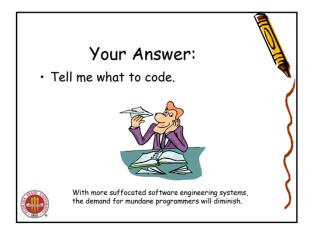


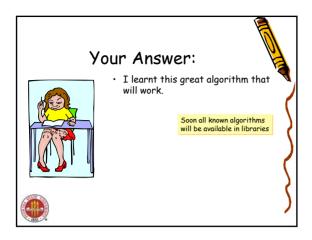


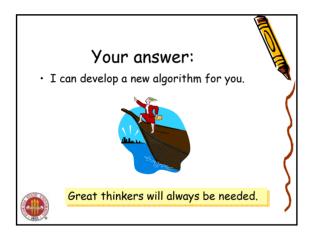


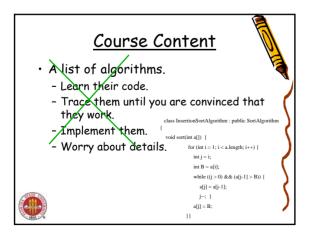
Be Creative

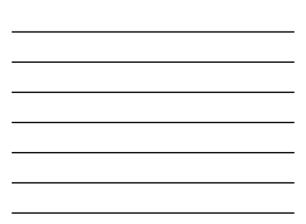

- Ask questions
- Why is this done this way and not that way?
- Guess potential methods to solve the problem
- Look for counterexamples.
- Start Day dreaming: Allow the essence of the material to seep into your subconscious.

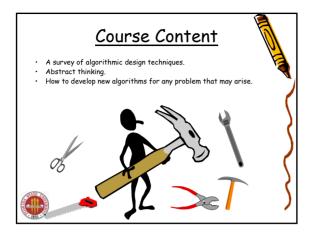


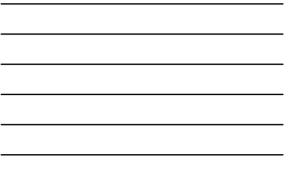


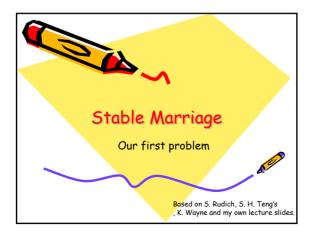






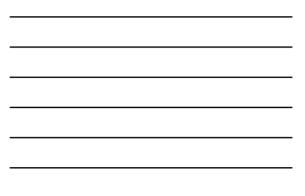






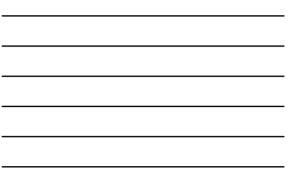
Syllabus*

- Asymptotic Analysis and Recursions
- Graph Algorithms
- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows
- Complexity Classes and Approximation Algorithms
- Computational Geometry



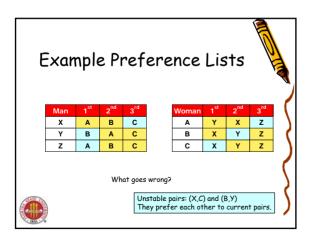
* Tentative

The problem

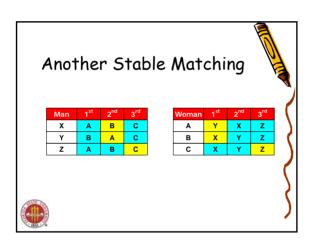

- There are n men and n women
- Each man has a preference list, so does the woman.
- These lists have no ties.
- Devise a system by which each of the n men and n women can end up getting married.

Other Similar problems

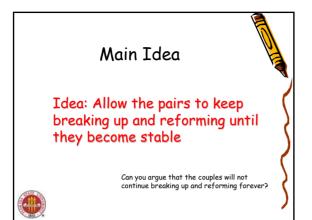
- Given a set of colleges and students pair them. (Internship Company assignments)
- Given airlines and pilots, pair them.
- Given two images, pair the points belonging to the same point in 3D to extract depth from the two images.
- Dorm room assignments.
- · Hospital residency assignments**.
- Your first programming assignment...

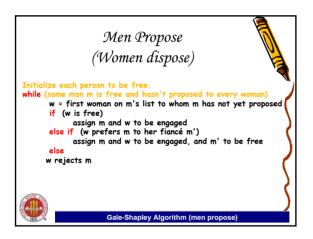


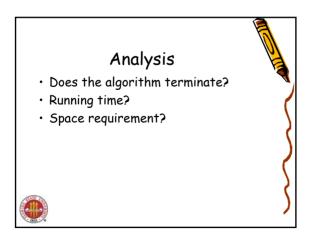
A Good matching/pairing


- Maximize the number of people who get their first match?
- Maximize the av?
- Maximize the minimum satisfaction?
- Can anything go wrong?

Stable Matching										
	Man	1 st	2 nd	3 rd		Woman	1 st	2 nd	3 rd	(
	х	Α	в	С		Α	Y	Х	z	۱ I
	Y	В	Α	С		В	Х	Y	z	(
	z	Α	в	С		С	Х	Y	Z	<u>۱</u>
)	Ν	lo Pairs	creatin	ng <i>insta</i>	bility.				5



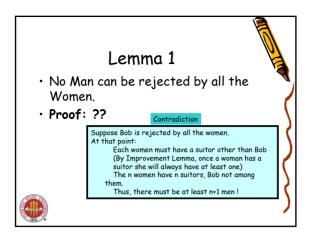


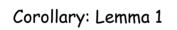

Stability is Primary.

- Any reasonable list of criteria must contain the stability criterion.
- A pairing is doomed if it contains a shaky couple.

Improvement Lemma

• Improvement Lemma: If a woman has a committed suitor, then she will always have someone at least as good, from that point in time onwards (and on the termination of the algorithm).

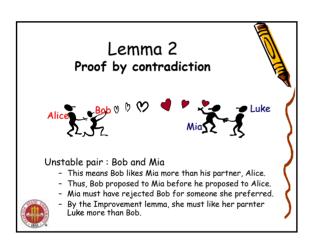

Corollary : Improvement Lemma

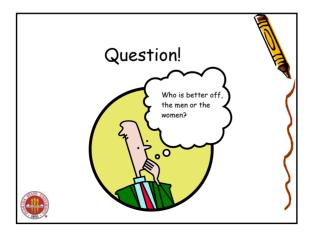

• Each woman will marry her absolute favorite of the men who proposed to her.

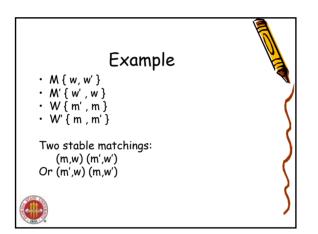
Demotion Lemma

• The sequence of women to whom m proposes gets worse and worse (in terms of his preference list)

• If m is free at some point in the execution of the algorithm, then there is a woman to whom he has not yet proposed.


Corollary: Lemma 1

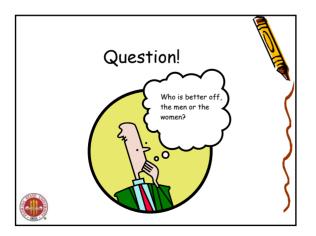

- The algorithm returns a matching. (Since no man is free?)
- The algorithm returns a perfect matching. (Since there is no free man?)


Lemma 2

- Consider the execution of the G-S algorithm that returns a set of pairs
 S. The set S is a stable matching.
- Proof?

Best (Valid?) Parter for Bob? • Best woman for "Bob"? • The woman at the top of Bob's list? A woman wis a <u>valid partner</u> of a man m if there is a Stable matching that contains (m,w). A marks optimal match or <u>best valid partner</u> is the highest ranked woman for whom there is <u>some</u> stable pairing in which they are matched She is the best woman he can conceivably be matched in a stable world. Presumably, she might be better than the woman he gets matched to in the stable pairing output by 65.

Worst Valid Partner Match.


• A Man's *worst valid partner* is the lowest ranked woman in his preference list that is a valid partner.

Dating Dilemma

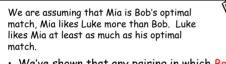
- A pairing is man-optimal if every man gets his best valid partner. This is the best of all possible stable worlds for every man . simultaneously.
- A pairing is man-pessimal if every man gets his worst valid partner. This is the worst of all possible stable worlds for every man simultaneously. •

Dating Dilemmas

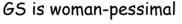
- A pairing is woman-optimal if every woman gets her best valid partner. This is the best of all possible stable worlds for every woman simultaneously.
- A pairing is woman-pessimal if every woman gets her worst valid partner. This is the worst of all possible stable worlds for every woman simultaneously.

Mathematical FACT.

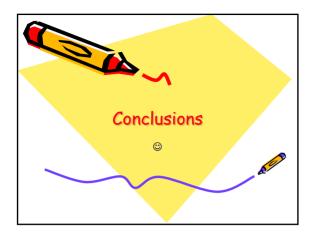
The traditional marriage algorithm (a.k.a. G-S alg.) always produces a **man-optimal** and **woman-pessimal** pairing.

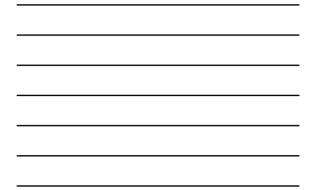

Theorem 1: GS Produces man-optimal pairing.

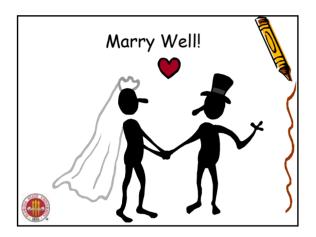
Theorem 2: GS produced pairing is woman-pessimal.

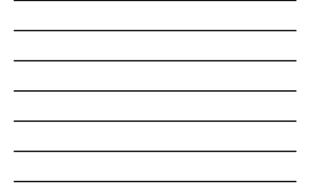

Theorem 1 Proof by contradiction

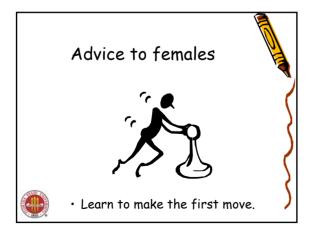
- Suppose not: That some man gets rejected by his best valid partner during the execution of GS.
 (w.l.o.g. Let Bob be the first such man)
- Bob gets rejected by his optimal match Mia who says "maybe" to Luke (whom she prefers)
- Since Bob was the only man to be rejected by his optimal match so far, Luke must like Mia at least as much as his optimal match.




- We've shown that any pairing in which Bob marries Mia cannot be stable.
 - Thus, Mia cannot be Bob's optimal match (since he can never marry her in a stable world).
 - So Bob never gets rejected by his optimal match in GS, and thus GS is man-optimal.




- We know it is man-optimal. Suppose there is a GS stable pairing S* with (Luke, Alice) such that Luke is not the *worst valid partner* of Alice.
- Let Bob be Alice's worst valid partner.
- Then there is a stable matching S with (Bob, Alice)
- Contradiction: S is not stable.
 By assumption, Alice likes Luke better than her partner Bob in S
 - Luke likes Alice better than his partner in S
 We already know that Alice is his optimal match !



REFERENCES

•D. Gale and L. S. Shapley, *College admissions and the stability of marriage*, American Mathematical Monthly 69 (1962), 9-15

•Dan Gusfield and Robert W. Irving, *The Stable Marriage Problem: Structures and Algorithms*, MIT Press, 1989

