
Programming Assignment 1

Cure Reconstruction using matchings

January 17, 2006

An instance of the curve reconstruction problem is a finite sample V = {p0, p1, . . . , pN−1}
of an unknown curve γ. The task is to connect the points in V in the order in
which they lie on γ. In this programming assignment we will generate the con-
nections in the samples using a modification of Gale-Shapely. Figure 2 shows
an example output of a curve reconstruction algorithm. For the purposes of
this homework, we will assume that the curve is closed and smooth. Hence
the reconstruction graph that is given as output by the algorithm should have
degree 2 at each vertex.

The Algorithm: The first step in our curve reconstruction algorithm is to con-
nect every point p ∈ V to its nearest neighbor q = nn(p) ∈ V . These edges are
already computed using the function compute_nn_edges() in the main.cpp file
and drawn in the output window using white color. The results of this function
are stored in an array G1. After the execution of this function, Point pi has its
nearest neighbor pj , j 6= i such that G1[i] = j. As you can see by playing with
the program on linprog, this does not complete the curve (and leaves a lot of
connections, yet to be made). The second step of the algorithm is what you
have to implement (compute_matching(void)). This function has to compute
the array G2 and draw all the resulting edges (i, G2[i]) in red using the function
draw_segment(). An example of drawing a red edge is already implemented in
the function compute_matching(void).

In this assignment you will be implementing the compute_matching(void)

function. This function should work in the following way. First the function
computes all the vertices which have only one edge incident on it (after the
nearest nighbor matching of points with other points). We will call these vertices
single and looking, in short an sl-vertex. Similarly, we can define the notion of
an sl-edge which connects two sl-vertices. Let weight wij be the weight of an
sl-edge connecting pi, pj . The function that you will implement, first computes
these weights, then every sl-vertex is paired up with another sl-vertex using
Gale-Shapely. Note that in this case, for some configuration of points, the
weights might lead to a ranking that is same for two sl-vertices. We will ignore
this for now and still run Gale-Shapely on the rankings.

The only thing left to specify is how to compute the weights wij for two
sl-vertices. Let G = (V, Enn) be a graph such that Enn = (i, G2[i]) for all

1

a

b

c

d

θ

Figure 1: An example of a non-admissible edge. Let us assume that we want
to compute wab. (a, b) is an admissible edge if the two edges incident on the sl-
vertices a, b make a large angle on them (You should experiment with different
values of θ in your program. For beginners you can set θ = π/2). In this
example, the edge (a, b) is not admissible, since the angle made by the edge
(b, d) is small with (a, b). For a given θ, the cone of angles allowed is colored in
brown.

i = 0..N − 1. We first will need the definition of an admissible edge (See
figure 1). An admissible edge (a,b) is an edge which makes an angle > θ with
the two edges incident on a and b. Now the weights are defined by the following
formula:

w(i, j) =

{

pi.sqr_dist(pj) if (i, j) is admissible;

∞ otherwise.
(1)

Once the weights are computed for all sl-edges, you have to match all the
sl-vertices and draw the bipartite matching in red.

2

Figure 2: An example output of a curve reconstruction algorithm. (Left): A
curve that is not given to the program as input. (Middle): A sampling of the
curve that is input to the program. (Right): Output of one of the known curve
reconstruction algorithms. Note that the sample points adjacent to each other
on the original curve are the only ones connected in the reconstructed curve.

3

