

Divide and Conquer

- Inversions
- Closest Point problems
- Integer multiplication
- Matrix Multiplication
- Cache Aware algorithms/ Cache oblivious Algorithms
- Static Van Emde Boas Layout

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes

Similarity metric: number of inversions between two rankings.

- My rank: $1,2, \ldots, n$.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

Inversions
3-2, 4-2

Counting Inversions: Divide-and-Conquer

- Divide-and-conquer.
- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

\section*{| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Counting Inversions: Divide-and-Conquer

- Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3

1	5	4	8	10	2	6	9	12	11	3	7

Divide: $O(1)$.

> separate list into two pieces.

Counting Inversions: Divide-and-Conquer

- Divide-and-conquer.
- Divide: separate list into two pieces.
: recursively count inversions in

1	5	4	8	10	2	6	9	12	11	3	7

Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$
blue-blue inversions
8 green-green inversions
$5-4,5-2,4-2,8-2,10-2 \quad 6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7$
ilil

Counting Inversions:

 Divide-and-Conquer
Divide-and-conquer.

- Divide: separate list into two pieces.

Conquer: recursively count inversions in each half.
Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum
of three quantities.

Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$
5 blue-blue inversions
8 green-area

9 blue-green inversions
$5-3,4-3,8-6,8-3,8-7,10-6,10-9,10-3,10-7$
Combine: ???

Total $=5+8+9=22$.
Divide: $O(1)$.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in diffenentihntivesorted invariant Merge two sorted halves into sorted whole.

\section*{| 3 | 7 | 10 | 14 | 18 | 19 | | 2 | 11 | 16 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 23}

13 blue-green inversions: $6+3+2+2+0+0$
Count: $O(n)$

2	3	7	10	11	14	16	17	18	19	23	25

Merge: $O(n)$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L
        Divide the list into two halves A and B
        (r}\mp@subsup{A}{A}{\prime}A)\leftarrow\mathrm{ Sort-and-Count(A)
    (r }\mp@subsup{r}{B}{},B)\leftarrow\mathrm{ Sort-and-Count(B)
    (r, L) \leftarrow Merge-and-Count (A, B)
    return r = ra}+\mp@subsup{r}{B}{}+r\mathrm{ and the sorted list L
```


Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance

 between them.Fundamental geometric primitive
Graphics, computer vision, geographic information systems, molecular modeling air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problem
Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.
1-D version. $O(n \log n)$ easy if points are on a line.
Assumption. No two points have same \times coordinate.
\uparrow
to make presentation cleaner
\qquad
\qquad

Closest Pair of Points:

 First Attempt- Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side

Closest Pair of Points

Closest Pair of Points

Conquer: find closest pair in each side recursively.

Algorithm

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Conquer: find closest pair in each side recursively
Combine: find closest pair with one point in each side
Return best of 3 solutions.

Closest Pair of Points

- Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side

- Observation: only need to consider points within δ of line L
- Sort points in 28-strip by their y coordinate.

Closest Pair of Points

- Find closest pair with one point in each side, assuming that distance < δ.
- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$,

- Observation: only need to consider points within δ of line L.
- Sort points in 28-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $i^{\text {th }}$ smallest y-coordinate

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ
Pf.
No two points lie in same $\frac{1}{2} \delta$-by- $\frac{1}{2} \delta$ box. Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$.

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

```
losest-Pair(p
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between
    each point and next }11\mathrm{ neighbors. If any of these
    distances is less than \delta, update \delta
    return \delta
```


Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a+b$.

- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$. - Brute force solution: $\Theta\left(n^{2}\right)$ bit operations.

To multiply two n-digit integers:

- Multiply four $\frac{1}{2} n$-digit integers

Divide-and-Conquer Multiplication: Warmup

- Add two $\frac{1}{2} n$-digit integers, and shift to obtain result.

```
|
```


Karatsuba Multiplication

- To multiply two n-digit integers:
- Add two $\frac{1}{2} n$ digit integers.
- Multiply three $\frac{1}{2} n$-digit integers.
- Add, subtract, and shift $\frac{1}{2} n$-digit integers to obtain result.

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.

$T(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {Tn }}$	$+\frac{\Theta(n)}{\text { alit shanc tinit }}$
$\Rightarrow \mathrm{T}(n)=O\left(n^{\text {log } 3}\right)=O\left(n^{1285}\right)$	

Karatsuba: Recursion Tree

Matrix Multiplication

- Matrix multiplication. Given two n-by-n matrices A and B,
compute $C=A B$.

```
c}\mp@subsup{c}{ij}{}=\mp@subsup{\sum}{k=1}{n}\mp@subsup{a}{ik}{}\mp@subsup{b}{kj}{
\(c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}\)
```


- Brute force. $\Theta\left(n^{3}\right)$ arithmetic operations.
- Fundamental question. Can we improve upon brute force?

Matrix Multiplication

 (MM)$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Recursive Matrix Multiplication

Divide and conquer on $n \times n$ matrices.

$$
\begin{aligned}
\hline C_{11} & C_{12} \\
\hline C_{21} & C_{22} \\
\hline & =\begin{array}{|l|l|}
\hline A_{11} & A_{12} \\
\hline A_{21} & A_{22} \\
\hline
\end{array} \\
& =\begin{array}{|l|l|l|}
\hline A_{11} B_{11} & A_{11} B_{12} \\
\hline A_{21} B_{11} & A_{21} B_{12} \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline A_{21} B_{21} & A_{22} B_{22} \\
\hline A_{22} B_{21} & A_{22} B_{22} \\
\hline
\end{array}
\end{aligned}
$$

8 multiplications of $(n / 2) \times(n / 2)$ matrices. 1 addition of $n \times n$ matrices.

$\Theta\left(\mathrm{n}^{3}\right)$-Matrix Multiplication $(n, n) \times(n, n)$

450-MHz AMD K6-III processor with 32kB L1-cache,
64 kB L2-cache, and 1 MB L3-cache.
64 kB L2-cache, and 1MB L3-cache.

Matrix Multiplication: Warmup

Divide-and-conquer.

- Divide: partition A and B into $\frac{1}{2} n$-by $-\frac{1}{2} n$ blocks.
- Conquer: multiply $8 \frac{1}{2} n$-by- $\frac{1}{2} n$ recursively.
- Combine: add appropriate products using 4 matrix additions.

$$
\mathrm{T}(n)=\underbrace{8 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, form submatrices }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{3}\right)
$$

Matrix Multiplication: Key Idea
Key idea. multiply 2 -by- 2 block matrices with only 7 multiplications.

$C_{11}=P_{5}+P_{4}-P_{2}+P_{6}$
$C_{12}=P_{1}+P_{2}$
$C_{21}=P_{3}+P_{4}$
$C_{22}=P_{5}+P_{1}-P_{3}-P_{7}$
$P_{1}=A_{11} \times\left(B_{12}-B_{22}\right)$
$P_{2}=\left(A_{11}+A_{12}\right) \times B_{22}$
$P_{3}=\left(A_{21}+A_{22}\right) \times B_{11}$
$P_{4}=A_{22} \times\left(B_{21}-B_{11}\right)$
$P_{5}=\left(A_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right)$
$P_{6}=\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right)$
$P_{7}=\left(A_{11}-A_{21}\right) \times\left(B_{11}+B_{12}\right)$

Fast Matrix Multiplication

- Fast matrix multiplication. (Strassen, 1969)
- Divide: partition A and B into $\frac{1}{2} n-b y-\frac{1}{2} n$ blocks.
- Compute: $14 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices via 10 matrix additions.
- Conquer: multiply $7 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2.
- $T(n)=\#$ arithmetic operations.

$$
\mathrm{T}(n)=\underbrace{7 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, subtract }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

7 multiplications.
$18=10+8$ additions (or subtractions).

Implementation issues

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports $8 x$ speedup on $G 4$ Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $A x=b$, determinant, eigenvalues, and other matrix ops.

Fast Matrix Multiplication in Practice

Fast Matrix Multiplication in Theory

- Q. Multiply two 2 -by- 2 matrices with only 7 scalar multiplications?
- A. Yes! [Strassen, 1969]
$\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2}\right.$
- Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr, 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

- Q. Two 3-by-3 matrices with only 21 scalar multiplications?
- A. Also impossible.
$\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)$
- Q. Two $70-$ by- 70 matrices with only 143,640 scalar multiplications?
- A. Yes! [Pan, 1980]

Decimal wars.
$\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)$

$$
\Theta\left(n^{*}\right)=O\left(n^{20}\right)
$$

- December, 1979: $O\left(n^{2.521813}\right)$.
- January, 1980: $O\left(n^{2.521801}\right)$.

等

Fast Matrix

 Multiplication in Theory- Best known. O(n.376)
[Coppersmith-Winograd, 1987.]
- Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.
- Caveat. Theoretical improvements to Strassen are progressively less practical.

Towards faster matrix multiplication... (Blocked version)

- Advantages

- Exploit locality using blocking
- Do not assume that each access to memory is $O(1)$
- Can be extended to multiple levels of cache
- Usually the fastest algorithm after tuning.

- Disadvantages

- Needs tuning every time it runs on a new machine.
- Usually " s " is a voodoo parameter that is unknown.

Cache-Aware Matrix Multiplication

Three-Level Cache

Recursive Transpose

[^0]
Recursive Matrix Multiplication

Cache Oblivious
Divide and conquer on $n \times n$ matrices.

8 multiplications of $(n / 2) \times(n / 2)$ matrices. 1 addition of $n \times n$ matrices.

Storage Capacity

Disk Access Time

- Block X Request \rightarrow Block in Memory
- Time = Seek Time +

Rotational Delay +
Transfer Time +
Other
Typical Numbers (for random block access) Seek Time $=10 \mathrm{~ms}$
Rot Delay $=4 \mathrm{~ms}$ (7200 rpm)
transfer rate $=50 \mathrm{MB} / \mathrm{sec}$
Other $=$ CPU time to access delays+ Contention for controllers Contention for Bus Multiple copies of the same data

Rules for EM Algorithms

- Sequential IO is cheap compared to Random IO
- 1kb block
- Seq:1ms
- Random: 20ms
- The difference becomes smaller and smaller as the block size becomes larger.

The DAM Model

- Count the number of IOs.
- Explicitly control which Blocks are in memory.
- Two level memory model.
- Notation:
- $M=$ Size of memory.
- $\mathrm{B}=$ size of disk block.
- N = size of data.

Problem

- Mergesort
- How many Block IOs does it need to sort N numbers (when the size of the data is extremely large compared to M)
- Can we do better?

External Memory Sorting

- Penny Sort Competition

EM Sorting

- Two pass external memory merge

The CO Memory Model

- Cache-oblivious memory model
- Reason about two-level, but prove results for unknown multilevel memory models
- Parameters B and M are unknown, thus optimized for all levels of memory hierarchy
- $B=L, M=Z$?

Matrix Transpose:

 DAM n CO- What is the number of blocks you need to move in a transpose of a large matrix?
- In DAM
- In CO

Static Searches

- Only for balanced binary trees
- Assume there are no insertions and deletions
- Only searches
- Can we speed up such seaches?

What is a layout?

- Mapping of nodes of a tree to the Memory
- Different kinds of layouts
- In-order
- Post-order
- Pre-order
- Van Emde Boas
- Main Idea: Store Recursive subtrees in contiguous memory

.

Theoretical Guarantees?

- Cache Complexity $Q(n)=O\left(\log _{L} n\right)$
- Work Complexity $W(n)=O(\log n)$

From Prokop's Thesis

In Practice!

- Matrix Operations by Morton Ordering, David S.Wise (Cache oblivious Practical Matrix operation results)
- Bender, Duan, Wu (Cache oblivious dictionaries)
- Rahman, Cole, Raman (CO B-Trees)

Known Optimal Results

- Matrix Multiplication
- Matrix Transpose
- n-point FFT
- LUP Decomposition
- Sorting
- Searching ,

	Other Resul	Known
	Priority Q	$o\left(\frac{1}{B} \log _{\frac{H}{B}} \frac{N}{B}\right)$
	List Ranking	O(sort(V))
	Tree Algos	$O($ sort(V) $)$
	Directed BFS/DFS	$o\left(V\left(V+\frac{E}{B}\right) \log _{2} V+\operatorname{sor}(E)\right)$
	Undirected BFS	$O(V+\operatorname{sort}(E))$
	MSF	$O\left(\right.$ sort(E) $\left.+\log _{2} \log _{2} V\right)$

Brain Teaser

- Let $P=\{1 \ldots n\}$. Let $P^{\prime}=P \backslash\{x\}$ $-x$ in P
- Paul shows Carole elements from P^{\prime}
- Carole can only use $O(\log n)$ bits memory to answer the question in the end.

Streaming Algorithms

- Data that computers are being asked to process is growing astronomically.
- Infeasible to store
- If I cant store the data I am looking at, how do I compute a summary of this data?

Another Brain Teaser

- Given a set of numbers in a large array.
- In one pass, decide if some item is in majority (assume you only have constant size memory to work with).
 $N=12$; item 9 is majority

Misra-Gries Algorithm ('82)

A counter and an ID.

- If new item is same as stored ID, increment counter.
- Otherwise, decrement the counter
- If counter 0 , store new item with count $=1$.
- If counter >0, then its item is the only candidate for majority.

	2	9	9	9	7	6	4	9	9	9	3	9
ID		2	9	9	9	9		4	9	9	9	
count		0	1	2	1	0		0	1	2	1	

Data Stream Algorithms

- Majority and Frequent are examples of data stream algorithms.
- Data arrives as an online sequence x_{1}, x_{2}, \ldots, potentially infinite.
- Algorithm processes data in one pass (in given order)
- Algorithm's memory is significantly smaller than input data
- Summarize the data: compute useful patterns

Streaming Data Sources

- Internet traffic monitoring
- New Computer Graphics hardware
- Web logs and click streams
- Financial and stock market data
- Retail and credit card transactions
- Telecom calling records
- Sensor networks, surveillance
- RFID
- Instruction profiling in microprocessors
- Data warehouses (random access too expensive).

Fast Fourier Transform: Applications

- Applications.

- Optics, acoustics, quantum physics, telecommunications, control systems, signal processing, speech recognition, data compression, image processing.

The FFT is one of the truly great computational developments of this [20th] century. It has changed the face of science and engineering so much that it is not an face of science and engineering so much that it is not an
exaggeration to say that life as we know it would be very exaggeration to say that life as we know it woul
different without the FFT. -Charles van Loan

Fast Fourier Transform: Brief History

- Gauss $(1805,1866)$. Analyzed periodic motion of asteroid Ceres.
- Runge-König (1924). Laid theoretical groundwork.
- Danielson-Lanczos (1942). Efficient algorithm.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.
III) 19

\qquad
)

Polynomials: Coefficient Representation

- Polynomial. [coefficient representation]

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\otimes+a_{n-1} x^{n-1}
$$

$B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\odot+b_{n-1} x^{n-1}$

- Add: $O(n)$ arithmetic operations.
$A(x)+B(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\theta+\left(a_{n-1}+b_{n-1}\right) x^{n-1}$
- Evaluate: $O(n)$ using Horner's method.
$A(x)=a_{0}+\left(x\left(a_{1}+x\left(a_{2}+\otimes+x\left(a_{n-2}+x\left(a_{n-1}\right)\right) \otimes\right)\right)\right.$
- Multiply (convolve): $O\left(n^{2}\right)$ using brute force.

-

$$
A(x) \times B(x)=\sum_{i=0}^{2 n-2} c_{i} x^{i} \text {, where } c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}
$$

Polynomials: Point-Value Representation

- Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n polynomial with complex coefficients has n complex roots.
- Corollary. A degree $n-1$ polynomial $A(x)$ is uniquely specified by its evaluation at n distinct values of x

Polynomials: Point-Value Representation

- Polynomial. [point-value representation]
$A(x):\left(\mathrm{x}_{0}, y_{0}\right), \Theta,\left(\mathrm{x}_{\mathrm{n}-1}, y_{n-1}\right)$
$B(x):\left(\mathrm{x}_{0}, z_{0}\right), \Theta_{,}\left(\mathrm{x}_{\mathrm{n-1}}, z_{n-1}\right)$
- Add: $O(n)$ arithmetic operations.

$$
A(x)+B(x):\left(\mathrm{x}_{0}, y_{0}+z_{0}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}-1}, y_{n-1}+z_{n-1}\right)
$$

- Multiply: $O(n)$, but need $2 n-1$ points.
$A(x) \times B(x):\left(\mathrm{x}_{0}, y_{0} \times z_{0}\right), \Theta,\left(\mathrm{x}_{2 n-1}, y_{2 n-1} \times z_{2 n-1}\right)$
- Evaluate: $O\left(n^{2}\right)$ using Lagrange's formula.

Coefficient to Point-Value Representation: Intuition

- Coefficient to point-value. Given a polynomial $a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-}$ ${ }^{1}$, evaluate it at n distinct points x_{0}, \ldots, x_{n-1}.
- Divide. Break polynomial up into even and odd powers.
$-A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$
$-A_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+a_{6} x^{3}$.
$-A_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+a_{7} x^{3}$.
- $A(x)=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)$.
- $A(-x)=A_{\text {even }}\left(x^{2}\right)-x A_{\text {odd }}\left(x^{2}\right)$.
- Intuition. Choose two points to be ± 1.
$-A(1)=A_{\text {even }}(1)+1 A_{\text {odd }}(1)$.
- $A(-1)=A_{\text {even }}(1)-1 A_{\text {odd }}(1)$ of degree $\leq \frac{1}{2} n$ at 1 point.

Coefficient to Point-Value Representation:

 IntuitionCoefficient to point-value. Given a polynomial $a_{0}+a_{1} x+\ldots+a_{n-1}$ 1 , evaluate it at n distinct points x_{0}, \ldots, x_{n-1}.

- Divide. Break polynomial up into even and odd powers.
$-A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.
$-A_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+a_{6} x^{3}$.
- $A_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+a_{7} x^{3}$.
- $A(x)=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)$.
- $A(-x)=A_{\text {even }}\left(x^{2}\right)-x A_{\text {odd }}\left(x^{2}\right)$.

Intuition. Choose four points to be $\pm 1, \pm \mathrm{i}$.
$-A(1)=A_{\text {even }}(1)+1 A_{\text {odd }}(1)$.

- $A(-1)=A_{\text {even }}(1)-1 A_{\text {odd }}(1)$.
- $A(i)=A_{\text {even }}(-1)+i A_{\text {odd }}(-1)$.
$A(-i)=A_{\text {even }}(-1)-\mathrm{i} A_{\text {odd }}(-1)$.

Can evaluate polynomial of degree $\leq n$ at 4 points by evaluating two polynomials of degree $\leq \frac{1}{2} n$ at 2 points.
$A(-i)=A_{\text {even }}(-1)-i A_{\text {odd }}(-1)$

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial $a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-}$ ${ }^{1}$, evaluate it at n distinct points x_{0}, \ldots, x_{n-1}.

Key idea: choose $x_{k}=\omega^{k}$ where ω is principal $n^{\text {th }}$ root of unity.

Discrete Fourier transform Fourier matrix F_{n}

Roots of Unity

- Def. An $n^{\text {th }}$ root of unity is a complex number x such that $x^{n}=1$
- Fact. The $n^{\text {th }}$ roots of unity are: $\omega^{0}, \omega^{1}, \ldots, \omega^{n-1}$ where $\omega=e^{2 \pi i / n}$ - Pf. $\left(\omega^{k}\right)^{n}=\left(e^{2 \pi i k / n}\right)^{n}=\left(e^{\pi i}\right)^{2 k}=(-1)^{2 k}=1$.
- Fact. The $\frac{1}{2} n^{\text {th }}$ roots of unity are: $v^{0}, v^{1}, \ldots, v^{n / 2-1}$ where $v=e^{4 \pi i / n}$.
- Fact. $\omega^{2}=v$ and $\left(\omega^{2}\right)^{k}=v^{k}$.

Fast Fourier Transform

Goal. Evaluate a degree $n-1$ polynomial $A(x)=a_{0}+\ldots+a_{n-1} x^{n-1}$ at its $n^{\text {th }}$ roots of unity: $\omega^{0}, \omega^{1}, \ldots, \omega^{n-1}$.

- Divide. Break polynomial up into even and odd powers.
- $A_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{n / 2-2} x^{(n-1) / 2}$
- $A_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{n / 2-1} x^{(n-1) / 2}$.
$-A(x)=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)$
- Conquer. Evaluate degree $A_{\text {even }}(x)$ and $A_{\text {odd }}(x)$ at the $\frac{1}{2} n^{\text {th }}$ roots of unity: $v^{0}, v^{1}, \ldots, v^{n / 2-1}$.

Combine

- $A\left(\omega^{k}\right)=A_{\text {even }}\left(v^{k}\right)+\omega^{k} A_{\text {odd }}\left(v^{k}\right), \quad 0 \leq k<n / 2$
- $A\left(\omega^{k+n / 2}\right)=A_{\text {even }}\left(v^{k}\right)-\omega^{k} A_{\text {odd }}\left(v^{k}\right), \quad 0 \leq k<n / 2$
$\omega^{k+n / 2}=-\omega^{k}$
$v^{k}=\left(\omega^{k}\right)^{2}=\left(\omega^{k+n / 2}\right)^{2}$

FFT Algorithm

}

```
```

}

```
```

```
```

```
fft(n, a a , a , .., an-1 ) {
```

```
```

fft(n, a a , a , .., an-1) {

```
```

```
fft(n, a a , a , .., an-1 ) {
    if ( }n==1)\mathrm{ return a
    if ( }n==1)\mathrm{ return a
    if ( }n==1)\mathrm{ return a
    (\mp@subsup{e}{0}{},\mp@subsup{e}{1,\ldots,}{,},\mp@subsup{e}{n/2-1}{})\leftarrow\operatorname{FFT}(n/2,
    (\mp@subsup{e}{0}{},\mp@subsup{e}{1,\ldots,}{,},\mp@subsup{e}{n/2-1}{})\leftarrow\operatorname{FFT}(n/2,
    (\mp@subsup{e}{0}{},\mp@subsup{e}{1,\ldots,}{,},\mp@subsup{e}{n/2-1}{})\leftarrow\operatorname{FFT}(n/2,
    (\mp@subsup{e}{0}{},\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{n/2-1}{\prime})\leftarrow\operatorname{FFT}(n/2,}\mp@subsup{a}{0}{},\mp@subsup{a}{2}{},\mp@subsup{a}{4}{\prime},\ldots,\mp@subsup{a}{n-2}{}
    (\mp@subsup{e}{0}{},\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{n/2-1}{\prime})\leftarrow\operatorname{FFT}(n/2,}\mp@subsup{a}{0}{},\mp@subsup{a}{2}{},\mp@subsup{a}{4}{\prime},\ldots,\mp@subsup{a}{n-2}{}
    (\mp@subsup{e}{0}{},\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{n/2-1}{\prime})\leftarrow\operatorname{FFT}(n/2,}\mp@subsup{a}{0}{},\mp@subsup{a}{2}{},\mp@subsup{a}{4}{\prime},\ldots,\mp@subsup{a}{n-2}{}
    for k = 0 to n/2 - 1 {
    for k = 0 to n/2 - 1 {
    for k = 0 to n/2 - 1 {
        \omega
        \omega
        \omega
        \mp@subsup{y}{k+n/2}{}}\leftarrow\mp@subsup{\mathbf{e}}{\mathbf{k}}{}+\mp@subsup{\boldsymbol{\omega}}{}{\mathbf{k}}\mp@subsup{\mathbf{d}}{\mathbf{k}}{
        \mp@subsup{y}{k+n/2}{}}\leftarrow\mp@subsup{\mathbf{e}}{\mathbf{k}}{}+\mp@subsup{\boldsymbol{\omega}}{}{\mathbf{k}}\mp@subsup{\mathbf{d}}{\mathbf{k}}{
        \mp@subsup{y}{k+n/2}{}}\leftarrow\mp@subsup{\mathbf{e}}{\mathbf{k}}{}+\mp@subsup{\boldsymbol{\omega}}{}{\mathbf{k}}\mp@subsup{\mathbf{d}}{\mathbf{k}}{
        \mp@subsup{y}{k+n/2}{*}\leftarrow\mp@subsup{\mathbf{e}}{k}{}-\mp@subsup{\omega}{}{k}\mp@subsup{d}{k}{}
        \mp@subsup{y}{k+n/2}{*}\leftarrow\mp@subsup{\mathbf{e}}{k}{}-\mp@subsup{\omega}{}{k}\mp@subsup{d}{k}{}
        \mp@subsup{y}{k+n/2}{*}\leftarrow\mp@subsup{\mathbf{e}}{k}{}-\mp@subsup{\omega}{}{k}\mp@subsup{d}{k}{}
    }
    }
    }
    return ( }\mp@subsup{y}{0}{},\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n-1}{}
```

 return (}\mp@subsup{y}{0}{},\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n-1}{}
    ```
    return ( }\mp@subsup{y}{0}{},\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n-1}{}
```

3115

5

 5

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values y_{0}, \ldots, y_{n-1} of a degree $n-1$ polynomial at the n points $\omega^{0}, \omega^{1}, \ldots, \omega^{n-1}$, find unique polynomial $a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$ that has given values at given points.
Inverse DFT

Inverse FFT

- Claim. Inverse of Fourier matrix is given by following formula.

Inverse FFT: Proof of Correctness

Claim. F_{n} and G_{n} are inverses.
Pf.

Summation lemma. Let ω be a principal $n^{\text {th }}$ root of unity. Then

$$
\sum_{j=0}^{n-1} \omega^{k j}= \begin{cases}n & \text { if } k \equiv 0 \bmod n \\ 0 & \text { otherwise }\end{cases}
$$

Pf.

- If k is a multiple of n then $\omega^{k}=1 \Rightarrow$ sums to n.
- Each $n^{\text {th }}$ root of unity ω^{k} is a root of $x^{n}-1=(x-1)\left(1+x+x^{2}+\ldots+\right.$ x^{n-1}).
if $\omega^{k} \neq 1$ we have: $1+\omega^{k}+\omega^{k(2)}+\ldots+\omega^{k(n-1)}=0 \Rightarrow$ sums to 0 . .

Inverse FFT: Algorithm

```
ifft(n, a }\mp@subsup{a}{0}{},\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n-1}{}) 
    if (n == 1) return a
    (e}\mp@subsup{e}{0}{},\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{n/2-1}{})\leftarrow\operatorname{FFT}(n/2,\mp@subsup{a}{0}{},\mp@subsup{a}{2}{},\mp@subsup{a}{4}{},\ldots,\mp@subsup{a}{n-2}{}
    (d}\mp@subsup{d}{0}{},\mp@subsup{d}{1}{},\ldots,\mp@subsup{d}{n/2-1}{})\leftarrow\operatorname{FFT}(n/2, a, a, a, a, a m,\ldots,\mp@subsup{a}{n-1}{}
    for k = 0 to n/2 - 1 {
        生k}\leftarrow\mp@subsup{\textrm{e}}{}{-2\piik/n
        vk+2}\leftarrow(\mp@subsup{e}{k}{}-\mp@subsup{\omega}{}{k}\mp@subsup{d}{k}{}
    }
    return ( }\mp@subsup{y}{0}{},\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n-1}{}
}
```


Polynomial Multiplication

-Theorem. Can multiply two degree $n-1$ polynomials in $O(n \log n)$ steps.

FFT in Practice

- Fastest Fourier transform in the West. [Frigo and Johnson]
- Optimized C library
- Features: DFT, DCT, real, complex, any size, any dimension.
- Won 1999 Wilkinson Prize for Numerical Software
- Portable, competitive with vendor-tuned code.
- Implementation details.
- Instead of executing predetermined algorithm, it evaluates your hardware and uses a special-purpose compiler to generate an optimized algorithm catered to "shape" of the problem.
- Core algorithm is nonrecursive version of Cooley-Tukey radix 2 FFT. $O(n \log n)$, even for prime sizes.

Reference: $h t t p: / / w w w . f f t w . o r g$

Integer Multiplication

Integer multiplication. Given two n bit integers $a=a_{n-1} \ldots a_{1} a_{0}$ and $b=b_{n-1} \ldots b_{1} b_{0}$, compute their product $c=a \times b$.

Convolution algorithm.

- Form two polynomials.
- Note: $a=A(2), b=B(2)$.
- Compute $C(x)=A(x) \times B(x)$.
- Evaluate $C(2)=a \times b$.
- Running time: $O(n \log n$) complex

Theory. [Schönhage-Strassen 1971] $O(n \log n \log \log n)$

- Practice. [GNU Multiple Precision Arithmetic Library] GMP proclaims to be "the fastest bignum library on the planet." It uses brute force,
Karatsuba, and FFT, depending on the size of n.

[^0]: $\Theta\left(\mathrm{n}^{2} / \mathrm{L}\right)$ cache misses, which is optimal. Used as a subroutine in our optimal cache-oblivious FFT [HK81].

