

Compression Programs

- File Compression: Gzip, Bzip
- Archivers :Arc, Pkzip, Winrar, ...
- File Systems: NTFS
- HDTV (Mpeg 4)
- Sound (Mp3)
- Images (Jpeg)

$$
\begin{aligned}
& \text { Compression Outline } \\
& \text { Introduction: Lossy vs. Lossless } \\
& \text { Information Theory: Entropy, etc. } \\
& \text { Probability Coding: Huffman + } \\
& \text { Arithmetic Coding }
\end{aligned}
$$

Encoding/Decoding

Will use "message" in generic sense to mean the data to be compressed

The encoder and decoder need to understand common compressed format.

Lossless vs. Lossy

Lossless: Input message $=$ Output message Lossy: Input message \approx Output message

Lossy does not necessarily mean loss of quality. In fact the output could be "better" than the input.

- Drop random noise in images (dust on lens)
- Drop background in music
- Fix spelling errors in text. Put into better form. Writing is the art of lossy text compression.

Lossless Compression Techniques

- LZW (Lempel-Ziv-Welch) compression
- Build dictionary
- Replace patterns with index of dict.
- Burrows-Wheeler transform
- Block sort data to improve compression
- Run length encoding
- Find \& compress repetitive sequences
- Huffman code
- Use variable length codes based on frequency

Model vs. Coder

To compress we need a bias on the probability of messages. The model determines this bias

Example models: - Complex: Models of a human face

- Simple: Character counts, repeated strings

How much can we compress?

For lossless compression, assuming all input messages are valid, if even one string is compressed, some other must expand.

Quality of Compression

Runtime vs. Compression vs. Generality

Several standard corpuses to compare algorithms Calgary Corpus

- 2 books, 5 papers, 1 bibliography, 1 collection of news articles, 3 programs, 1 terminal session, 2 object files, 1 geophysical data, 1 bitmap bw image
The Archive Comparison Test maintains a comparison of just about all algorithms publicly available

Program	Algorithm	Time	BPC	Score
BOA	PPM Var.	$94+97$	1.91	407
PPMD	PPM	$11+20$	2.07	265
IMP	BW	$10+3$	2.14	254
BZIP	BW	$20+6$	2.19	273
GZIP	LZ77 Var.	$19+5$	2.59	318
LZ77	LZ77	$?$	3.94	$?$

Information Theory

An interface between modeling and coding

- Entropy
- A measure of information content
- Entropy of the English Language
- How much information does each character in "typical" English text contain?

Entropy (Shannon 1948)

For a set of messages S with probability $p(s)$, $s \in S$, the self information of s is:

$$
i(s)=\log \frac{1}{p(s)}=-\log p(s)
$$

Measured in bits if the \log is base 2.
The lower the probability, the higher the information
Entropy is the weighted average of self information.

$$
H(S)=\sum_{s \in S} p(s) \log \frac{1}{p(s)}
$$

Entropy of the English Language
How can we measure the information per character?

ASCII code $=7$
Entropy $=4.5$ (based on character probabilities)
Huffman codes (average) $=4.7$
Unix Compress $=3.5$
Gzip $=2.5$
BOA $=1.9$ (current close to best tex \dagger compressor)
Must be less than 1.9.

Shannon's experiment

Asked humans to predict the next character given the whole previous text. He used these as conditional probabilities to estimate the entropy of the English Language.
The number of guesses required for right

From the experiment he predicted
$H($ English $)=.6-1.3$

Coding

How do we use the probabilities to code messages?

- Prefix codes and relationship to Entropy
- Huffman codes
- Arithmetic codes
- Implicit probability codes...

Assumptions

Communication (or file) broken up into pieces called messages.
Adjacent messages might be of a different types and come from a different probability distributions
We will consider two types of coding:

- Discrete: each message is a fixed set of bits - Huffman coding, Shannon-Fano coding
- Blended: bits can be "shared" among messages - Arithmetic coding

Uniquely Decodable Codes

A variable length code assigns a bit string (codeword) of variable length to every message value
e.g. $a=1, b=01, c=101, d=011$

What if you get the sequence of bits 1011?
Is it aba, ca, or, ad?
A uniquely decodable code is a variable length code in which bit strings can always be uniquely decomposed into its codewords.

Prefix Codes

A prefix code is a variable length code in which no codeword is a prefix of another word
e. $9 a=0, b=110, c=111, d=10$ Can be viewed as a binary tree with message values at the leaves and 0 or 1s on the edges.

Average Bit Length

For a code C with associated probabilities $p(c)$ the average length is defined as

$$
A B L(C)=\sum_{c \in C} p(c) l(c)
$$

We say that a prefix code C is optimal if for all prefix codes C^{\prime},

$$
A B L(C) \leq A B L\left(C^{\prime}\right)
$$

Some Prefix Codes for Integers

n	Binary	Unary	Split
1	. .001	0	$1 \mid$
2	. .010	10	$10 \mid 0$
3	. .011	110	$10 \mid 1$
4	. .100	1110	$110 \mid 00$
5	. .101	11110	$110 \mid 01$
6	. .110	111110	$110 \mid 10$

Many other fixed prefix codes: Golomb, phased-binary, subexponential, ...

Theorem (Kraft-McMillan): For any uniquely decodable code C,

$$
\sum_{c \in C} 2^{-l(c)} \leq 1
$$

Also, for any set of lengths L such that

$$
\sum_{l \in L} 2^{-l} \leq 1
$$

there is a prefix code C such that

$$
l\left(c_{i}\right)=l_{i}(i=1, \ldots,|L|)
$$

Proof of the Upper Bound (Part 1) Assign to each message a length $l(s)=[\log (1 / p$ We then have

$$
\begin{aligned}
\sum_{s \in S} 2^{-l(s)} & =\sum_{s \in S} 2^{-\lceil\log (1 / p(s))\rceil} \\
& \leq \sum_{s \in S} 2^{-\log (1 / p(s))} \\
& =\sum_{s \in S} p(s) \\
& =1
\end{aligned}
$$

So by the Kraft-McMillan ineq. there is a prefix code with lengths $/(s)$.

Proof of the Upper Bound (Part 2)

Now we can calculate the average length given $l(s)$

$$
\begin{aligned}
A B L(S) & =\sum_{s \in S} p(s) l(s) \\
& =\sum_{s \in S} p(s) \cdot\lceil\log (1 / p(s))\rceil \\
& \leq \sum_{s \in S} p(s) \cdot(1+\log (1 / p(s))) \\
& =1+\sum_{s \in S} p(s) \log (1 / p(s)) \\
& =1+H(S)
\end{aligned}
$$

And we are done.

Corollary

- The p_{i} is smallest over the code, then $I\left(c_{i}\right)$ is the largest.

Another property of optimal codes
Theorem: If C is an optimal prefix code for the probabilities $\left\{p_{1}, \ldots, p_{n}\right\}$ then $p_{i}>p_{j}$ implies $\left\|\left(c_{i}\right) \leq\right\|\left(c_{j}\right)$
Proof: (by contradiction)
Assume $/\left(c_{i}\right)>/\left(c_{j}\right)$. Consider switching codes c_{i} and c_{j}. If l_{a} is the average length of the original code, the length of the new code is

$$
\begin{aligned}
l_{a}^{\prime} & =l_{a}+p_{j}\left(l\left(c_{i}\right)-l\left(c_{j}\right)\right)+p_{i}\left(l\left(c_{j}\right)-l\left(c_{i}\right)\right) \\
& =l_{a}+\left(p_{j}-p_{i}\right)\left(l\left(c_{i}\right)-l\left(c_{j}\right)\right)
\end{aligned}
$$

This is ${ }^{a}$ a contradiction since $/ a$ was supposed to be optimal

Binary trees for compression

Huffman Code

- Approach
- Variable length encoding of symbols
- Exploit statistical frequency of symbols
- Efficient when symbol probabilities vary widely
- Principle
- Use fewer bits to represent frequent symbols
- Use more bits to represent infrequent symbols

Huffman Code Example

Symbol	Dog	Cat	Bird	Fish
Frequency	$1 / 8$	$1 / 4$	$1 / 2$	$1 / 8$
Original	00	01	10	11
Encoding	2 bits	2 bits	2 bits	2 bits
Huffman	110	10	0	111
	3 bncoding	3 bits	2 bits	1 bit

- Expected size
- Original $\Rightarrow 1 / 8 \times 2+1 / 4 \times 2+1 / 2 \times 2+1 / 8 \times 2=2$ bits $/$ symbol - Huffman $\Rightarrow 1 / 8 \times 3+1 / 4 \times 2+1 / 2 \times 1+1 / 8 \times 3=1.75$ bits $/$ symbol

Example

$\circ a(.1) \quad \circ b(.2) \circ c(.2) \quad \circ d(.5)$

$a=000, b=001, c=01, d=1$

Huffman Codes

Invented by Huffman as a class assignment in 1950.
Used in many, if not most compression algorithms

- gzip, bzip, jpeg (as option), fax compression,...

Properties:

- Generates optimal prefix codes
- Cheap to generate codes
- Cheap to encode and decode
- Ia $=$ Hif probabilities are powers of 2

Huffman Codes

Huffman Algorithm

- Start with a forest of trees each consisting of a single vertex corresponding to a message s and with weight $p(s)$
- Repeat:
- Select two trees with minimum weight roots p_{1} and p_{2}
- Join into single tree by adding root with weight $p_{1}+p_{2}$

Encoding and Decoding

Encoding: Start at leaf of Huffman tree and follow path to the root. Reverse order of bits and send.
Decoding: Start at root of Huffman tree and take branch for each bit received. When at leaf can output message and return to root.

There are even faster methods that can process 8 or 32 bits at a time

Lemmas

- L1 : Let p_{i} be the smallest over the code, then $I\left(c_{i}\right)$ is the largest and hence a leaf of the tree. (Let its parent be u)
- L2 : If p_{j} is second smallest over the code, then $I\left(c_{j}\right)$ is the child of u in the optimal code.
- L3: There is an optimal prefix code with corresponding tree T^{\star}, in which the two lowest frequency letters are siblings.

Proof:

- Let y^{*} and z^{*} be the two lowest frequency letters merged in w^{\star}. Le \dagger T be the tree before merging and T after merging.
- Then : $A B L\left(T^{\prime}\right)=A B L(T)-p\left(w^{*}\right)$
- T^{\prime} is optimal by induction.

Proof:

- Let Z be a better tree compared to T

Theorem: The Huffman algorithm generates an optimal prefix code.
In other words: It achieves the minimum average number of bits per letter of any prefix code.

Proof: By induction
Base Case: Trivial (one bit optimal)
Assumption: The method is optimal for all alphabets of size k-1.

Huffman codes are optimal

produced using Huffman's alg.

- Implies ABL(Z) < ABL(T)
- By lemma $L 3$, there is such a tree Z^{\prime} in which the leaves representing y^{*} and z^{*} are siblings (and has same $A B L$ as Z).
By previous page $A B L\left(Z^{\prime}\right)=A B L(Z)-p\left(w^{\star}\right)$ are siblings (and has same $A B L$ as Z).
- By previous page $A B L\left(Z^{\prime}\right)=A B L(Z)-p\left(w^{\star}\right)$
- Contradiction!
, 5

Adaptive Huffman Codes

Huffman codes can be made to be adaptive without completely recalculating the tree on each step.

- Can account for changing probabilities
- Small changes in probability, typically make small changes to the Huffman tree
Used frequently in practice

Huffman Coding Disadvantages

- Integral number of bits in each code.
- If the entropy of a given character is 2.2 bits, the Huffman code for that character must be either 2 or 3 bits , not 2.2.

Towards Arithmetic coding

- An Example: Consider sending a message of length 1000 each with having probability .999
- Self information of each message
$-\log (.999)=.00144$ bits
- Sum of self information $=1.4$ bits.
- Huffman coding will take at least 1 k bits.
- Arithmetic coding $=3$ bits!

Assign each probability distribution to an interval range from 0 (inclusive) to 1 (exclusive).
e.g.

$$
\left.\begin{array}{l}
1.0 \\
0.7 \\
0.2 \\
0.0
\end{array}\right] \begin{aligned}
& \mathrm{c}=.3 \quad f(i)=\sum_{j=1}^{i-1} p(j) \\
& \mathrm{b}=.5 \\
& \begin{array}{l}
\text { The interval for a particular message will be called } \\
\text { the message interval (e.g for } \mathrm{b} \text { the interval is }[.2, .7))
\end{array}
\end{aligned}
$$

Arithmetic Coding: Encoding Example

Coding the message sequence: bac

The final interval is [.27,.3)

Arithmetic Coding: Introduction

Allows "blending" of bits in a message sequence.
Can bound total bits required based on sum of self information:

$$
l<2+\sum_{i=1}^{n} s_{i}
$$

Used in PPM, JPEG/MPEG (as option), DMM
More expensive than Huffman coding, but integer implementation is not too bad.

Arithmetic Coding (sequence intervals)
To code a message use the following:

$$
\begin{array}{ll}
l_{1}=f_{1} & l_{i}=l_{i-1}+s_{i-1} f_{i} \\
s_{1}=p_{1} & s_{i}=s_{i-1} p_{i}
\end{array}
$$

Each message narrows the interval by a factor of p_{i}. Final interval size:

$$
s_{n}=\prod_{i=1}^{n} p_{i}
$$

The interval for a message sequence will be called the sequence interval

Uniquely defining an interval

Important property: The sequence intervals for distinct message sequences of length n will never overlap
Therefore: specifying any number in the final interval uniquely determines the sequence.
Decoding is similar to encoding, but on each step need to determine what the message value is and then reduce interval

Arithmetic Coding: Decoding Example
Decoding the number .49 , knowing the message is of length 3:

The message is bbc.

RealArith Encoding and Decoding

RealArithEncode:

- Determine / and susing original recurrences
- Code using $/+s / 2$ truncated to $1+\lceil-\log s\rceil$ bits

RealArithDecode:

- Read bits as needed so code interval falls within a message interval, and then narrow sequence interval.
- Repeat until n messages have been decoded

Bound on Length

Theorem: For n messages with self information $\left\{s_{1}, \ldots, s_{n}\right\}$ Real ArithEncode will generate at most $2+\sum_{i=1}^{n} s_{i} \quad$ bits.

$$
\begin{aligned}
1+\lceil-\log s\rceil & =1+\left[-\log \left(\prod_{i=1}^{n} p_{i}\right)\right] \\
& =1+\left\lceil\left[\sum_{i=1}^{n}-\log p_{i}\right\rceil\right. \\
& =1+\left\lceil\sum_{i=1}^{n} s_{i}\right\rceil \\
& <2+\sum_{i=1}^{n} s_{i}
\end{aligned}
$$

Run Length Coding

Code by specifying message value followed by number of repeated values:
e.g. abbbaacccca $=$ >
($a, 1$), (b, 3), ($a, 2$), ($c, 4),(a, 1)$
The characters and counts can be coded based on frequency.
This allows for small number of bits overhead for low counts such as 1.

Applications of Probability Coding

How do we generate the probabilities?
Using character frequencies directly does not work very well (e.g. 4.5 bits/char for text).
Technique 1: transforming the data

- Run length coding (ITU Fax standard)
- Move-to-front coding (Used in Burrows-Wheeler)
- Residual coding (JPEG LS)

Technique 2: using conditional probabilities

- Fixed context (JBIG...almost) Partial matching (PPM)

Facsimile ITU T4 (Group 3)

Standard used by all home Fax Machines
ITU = International Telecommunications Standard Run length encodes sequences of black+white pixels

Fixed Huffman Code for all documents. e.g

Run length	White	Black
1	000111	010
2	0111	11
10	00111	0000100

Move to Front Coding

Transforms message sequence into sequence of integers, that can then be probability coded
Start with values in a total order:

$$
\text { e.g.: }[a, b, c, d, e, \ldots .]
$$

For each message output position in the order and then move to the front of the order.
e.g.: c => output: 3 , new order: $[c, a, b, d, e, \ldots$.
a => output: 2 , new order: $[a, c, b, d, e, \ldots]$
Codes well if there are concentrations of message values in the message sequence.

Residual Coding

Used for message values with meaningfull order e.g. integers or floats.

Basic Idea: guess next value based on current context. Output difference between guess and actual value. Use probability code on the output.

JPEG-LS

JPEG Lossless (not to be confused with lossless JPEG) Just completed standardization process.
Codes in Raster Order. Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE. Works in two stages

JPEG LS: Stage 2
Uses 3 gradients: W-NW, NW-N, N-NE

- Classifies each into one of 9 categories.
- This gives $9^{3}=729$ contexts, of which only 365 are needed because of symmetry.
- Each context has a bias term that is used to adjust the previous prediction
After correction, the residual between guessed and actual value is found and coded using a Golomblike code.

JPEG LS: Stage 1

Uses the following equation:

$$
P= \begin{cases}\min (N, W) & \text { if } N W \geq \max (N, W) \\ \max (N, W) & \text { if } N W<\min (N, W) \\ N+W-N W & \text { otherwise }\end{cases}
$$

Averages neighbors and captures edges. e.g.

Using Conditional Probabilities: PPM

Use previous k characters as the context.
Base probabilities on counts:
e.g. if seen th 12 times followed by e 7 times, then the conditional probability $p(e / t h)=7 / 12$.
Need to keep k small so that dictionary does not get too large.

Ideas in Lossless compression

- That we did not talk about specifically
- Lempel-Ziv (gzip)
- Tries to guess next window from previous data
- Burrows-Wheeler (bzip)
- Context sensitive sorting
- Block sorting transform

LZ77: Sliding Window Lempel-Ziv

Dictionary and buffer "windows" are fixed length and slide with the cursor
On each step:

- Output (p,l,c)
$p=$ relative position of the longest match in the dictionary
I = length of longest match
$c=$ next char in buffer beyond longest match
Advance window by I + 1

Lossy compression

Scalar Quatization

- Given a camera image with 12 bit color, make it 4-bit grey scale.
- Uniform Vs Non-Uniform Quantization
- The eye is more sensitive to low values of red compared to high values.

Vector Quantization

- How do we compress a color image ($\mathrm{r}, \mathrm{g}, \mathrm{b}$)?
- Find k - representative points for all colors
- For every pixel, output the nearest representative
- If the points are clustered around the representatives, the residuals are small and hence probability coding will work well.

Other Transform codes

- Wavelets
- Fractal base compression
- Based on the idea of fixed points of functions.

