	_
GRAPHS	
digat his	
An Introduction	
]
OULINE	
COLINE	
What are Graphs?	
Applications Terminology and Problems	
Representation (Adj. Mat and Linked Lists)	
Searching	
Depth First Search (DFS)Breadth First Search (BFS)	
	1
CDADUC	
GRAPHS	
• A graph G = (V,E) is composed of:	
 V: set of vertices E ⊂ V × V: set of edges connecting the vertices 	
An edge $e = (u,v)$ is a pair of vertices	
- Directed graphs (ordered pairs)	
– Undirected graphs (unordered pairs)	

UNDIRECTED GRAPH

APPLICATIONS

- Air Flights, Road Maps, Transportation.
- Graphics / CompilersElectrical Circuits
- Networks
- Modeling any kind of relationships (between people/web pages/cities/...)

SOME MORE GRAPH **APPLICATIONS** transportation street intersections highways fiber optic cables computers communication hyperlinks World Wide Web web pages people species predator-prey food web function calls precedence constraints scheduling tasks

TERMINOLOGY

- a is adjacent to b iff $(a,b) \in E$.
- degree(a) = number of adjacent vertices(Self loop counted twice)

Self Loop: (a,a)

• Parallel edges: E = { ...(a,b), (a,b)...}

TERMINOLOGY

- A Simple Graph is a graph with no self loops or parallel edges.
- Incidence: v is incident to e if v is an endertex of e.

QUESTION

 Max Degree node? Min Degree Node? Isolated Nodes? Total sum of degrees over all vertices? Number of edges?

QUESTION

- Max Degree = 4. Isolated vertices = 1.
- |V| = 8, |E| = 8
- Sum of degrees = 16 = ?
 - (Formula in terms of |V|, |E| ?)

QUESTION

- Max Degree = 4. Isolated vertices = 1.
- |V| = 8, |E| = 8

Sum of degrees = $2|E| = \sum_{v \in V} degree(v)$

Handshaking Theorem. Why?

QUESTION

• How many edges are there in a graph with 100 vertices each of degree 4?

QUESTION

- How many edges are there in a graph with 100 vertices each of degree 4?
 - Total degree sum = 400 = 2 |E|
 - 200 edges by the handshaking theorem.

HANDSHAKING:COROLLARY

The number of vertices with odd degree is always even.

Proof: Let V_1 and V_2 be the set of vertices of even and odd degrees, respectively (Hence $V_1 \cap V_2 = \emptyset$, and $V_1 \cup V_2 = V$).

Now we know that

• Since degree(v) is odd for all $v \in V_2$, $\mid V_2 \mid$ must be even.

PATH AND CYCLE

- An alternating sequence of vertices and edges beginning and ending with vertices
 - each edge is incident with the vertices preceding and following it.
 - No edge appears more than once.
 - A path is *simple* if all nodes are distinct.
- Cycle
 - A path is a cycle if and only if $v_0 = v_k$
 - The beginning and end are the same vertex.

PATH EXAMPLE

CONNECTED GRAPH

- Undirected Graphs: If there is at least one path between every pair of vertices.
 (otherwise disconnected)
 - Directed Graphs:
 - Strongly connected
 - Weakly connected

HAMILTONIAN CYCLE

• A cycle that transverses every vertex exactly once.

In general, the problem of finding a Hamiltonian circuit is NP-Complete.

COMPLETE GRAPH

• Every pair of graph vertices is connected by an edge.

n(n-1)/2 edges

DIRECTED ACYCLIC GRAPHS A DAG is a directed graph with no cycles Often used to indicate precedences among events, i.e., event a must happen before b

TREES An undirected graph is a tree if it is connected and does not contain a cycle. Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third. G is connected. G does not contain a cycle. G has n-1 edges.

ROOTED TREES • Rooted tree. Given a tree T, choose a root node r and orient each edge away from r. root r parent of v re. a tree the same tree, rooted at 1

PHYLOGENY TREES • Phylogeny trees. Describe evolutionary history of species. gut bacteria trees mannhoms fish namels birds dragonflies beetles

SPANNING TREE Connected subset of a graph G with n-1 edges which contains all of V

• An independent set of *G* is a subset of the vertices such that no two vertices in the subset are adjacent.

TOUGH PROBLEM

- Find the maximum cardinality independent set of a graph G.
 - NP-Complete
 - Unknown if a poly time algorithm exists unless
 P = NP.

IS

© MPI Saarbruecken, Germany.

TOUGH PROBLEM

TSP

- Given a weighted graph G, the nodes of which represent cities and weights on the edges, distances; find the shortest tour that takes you from your home city to all cities in the graph and back.
 - Can be solved in O(n!) by enumerating all cycles of length n.
 - Dynamic programming can be used to reduce it in $O(n^22^n)$.

REPRESENTATION

- Two ways
 - Adjacency List
 - (as a linked list for each node in the graph to represent the edges)
 - Adjacency Matrix
 - (as a boolean matrix)

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			

ANOTHER EX	KAMPLE
1. Adjacency Matrix	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2. Adjacency List	a c b c c c c c c c c c c c c c c c c c

AL VS AM

- AL: Takes O(|V| + |E|) space
- AM: Takes O(|V|*|V|) space
 - Question: How much time does it take to ind out if (v_i, v_i) belongs to E?
 - AM ?
 - AL ?

AL VS AM

- AL: Takes O(|V| + |E|) space
- AM: Takes O(|V|*|V|) space

Question: How much time does it take to

ind out if (v_i,v_i) belongs to E?

- AM : O(1)
- AL $\,:$ O(|V|) in the worst case.

AL VS AM

- AL: Total space = 8|V| + 16|E| bytes (For undirected graphs its 8|V| + 32|E| bytes)
 AM: |V| * |V| / 8
- Question: What is better for very sparse graphs? (Few number of edges)

GRAPH TRAVERSAL

CONNECTIVITY

- s-t connectivity problem. Given two node s and t, is there a path between s and t?
- s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?
 - Applications.
 - Maze traversal.
 - Kevin Bacon number / Erdos number
 - Fewest number of hops in a communication network.
 - Friendster.

BFS/DFS	
Oceanith-First Search Oppth-First Search Wo.com/contents.com Ww.com/contents.com Ww.com/contents.com Ww.com/contents.com	
BFS : Breadth First Search DFS : Depth First Search © Steve Skiena	

BFS/DFS

 Breadth-first search (BFS) and depth-first search (DFS) are two distinct orders in which to visit the vertices and edges of a graph.

BFS: radiates out from a root to visit vertices in order of their distance from the root. Thus closer nodes get visited first.

BREADTH FIRST SEARCH

 Question: Given G in AM form, how do we say if there is a path between nodes a and h?

Note: Using AM or AL its easy to answer if there is an edge (a,b) in the graph, but not path questions. This is one of the reasons to learn BFS/DFS.

BFS

 A Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree.

Source: Lecture notes by Sheung-Hung POON

BFS Algorithm BFS(s)Input: s is the source vertexOutput: Mark all vertices that can be visited from s. 1. ${f for}$ each vertex v $\mathbf{do}\ \mathit{flag}[v] := \mathsf{false};$ 3. $Q={\it empty queue};$ flag[s] := true;4. enqueue(Q, s);while Q is not empty **do** v := dequeue(Q);8. $\quad \text{for each } w \text{ adjacent to } v$ 9. $\ \, \text{do if} \, \mathit{flag}[w] = \mathsf{false}$ 10. then flag[w] := true;11. enqueue(Q, w)

TIME COMPLEXITY OF BFS (USING ADJACENCY LIST)		
(USING MDJMCE)	NCT LIST)	
Assume adjacency list		
 n = number of vertices m = number of 	of edges	
Algorithm BFS(s)		
Input: s is the source vertex Output: Mark all vertices that can be visited from a		
Output. Wark all vertices that can be visited from s.		
1. for each vertex v		
 do flag[v] := false; 		
3. $Q = \text{empty queue};$		
 flag[s] := true; 		
enqueue(Q, s);	No more than n vertices are ever	
	while Q is not empty	
7. do $v := dequeue(Q);$		
 for each w adjacent to v ◆ 	How many adjacent nodes will we ever visit. This is related to	
9. do if $flag[w] = false$	the number of edges. How	
10. then flag[w] := true;	many edges are there?	
11. $enqueue(Q, w)$	$\Sigma_{\text{vertex } v} \text{deg}(v) = 2\text{m}^*$	
	*Note: this is not per iteration of the while loop.	
	"Note: this is not per iteration of the while loop. This is the sum over all the while loops!	

TIME COMPLEXITY OF BFS (USING ADJACENCY MATRIX)			
Assume adjacency matrix			
- n = number of vertices m = num	mhor of odgos		
= II = IIdilibei oi vertices III = IId	inber of edges		
Algorithm BFS(s) Input: s is the source vertex Output: Mark all vertices that can be visited from s. 1. for each vertex s 2. do [lug[s] := false; 3. Q = empty queue; 4. flug[s] := true; 5. enqueue(Q,s);	O(n²) So, adjacency matrix is not good for BFS!!!		
6. while Q is not empty ◆	No more than n vertices are ever put on the queue. O(n)		
7.	Using an adjacency matrix. To find the neighbors we have to visit all elements in the row of v. That takes time O(n).		

PATH RECORDING • BFS only tells us if a path exists from source s, to other vertices v. - It doesn't tell us the path! - We need to modify the algorithm to record the path. Not difficult - Use an additional predecessor array pred[0..n-1] - Pred[w] = v • Means that vertex w was visited by v

BFS TREE • We often draw the BFS paths as a m-ary tree, where s is the root. Question: What would a "level" order traversal tell you?

CONNECTED COMPONENT • Connected component. Find all nodes reachable from s.

CONNECTED COMPONENT • Connected component. Find all nodes reachable from s. $\frac{R \text{ will consist of nodes to which } s \text{ has a path Initially } R = |s| \\ \text{While there is an edge } (u, v) \text{ where } u \in R \text{ and } v \notin R \\ \text{Add } v \text{ to } R \\ \text{Endwhile}$ it's safe to add v

MORE ON
PATHS AND TREES
IN GRAPHS

BFS

- Another way to think of the BFS tree is the physical analogy of the BFS Tree.
- Sphere-String Analogy: Think of the nodes as spheres and edges as unit length strings. Lift the sphere for vertex s.

SPHERE-STRING ANALOGY

BFS: PROPERTIES

- At some point in the running of BFS, **Q** only contains vertices/nodes at layer **d**.
- If \mathbf{u} is removed before \mathbf{v} in BFS then \mathbf{v} dist(\mathbf{u}) \leq dist(\mathbf{v})
- At the end of BFS, for each vertex **v** reachable from **s**, the dist(v) equals the shortest path length from s to v.

OLD WINE IN NEW BOTTLE forall v ε V: dist(v) = ∞; prev(v) = null; dist(s) = 0 Queue q; q.push(s); while (!Q.empty()) v = Q.dequeue(); for all e=(v,w) in E if dist(w) = ∞: - dist(w) = dist(v)+1 - Q.enque(w) - prev(w)= v

DIJKSTRA'S SSSP ALG BFS WITH POSITIVE INT WEIGHTS

- for every edge e=(a,b) ϵ E, let w_e be the weight associated with it. Insert w_e -1 dummy nodes between a and b. Call this lew graph G'.
 - Run BFS on G'. dist(u) is the shortest path length from s to node u.
- Why is this algorithm bad?

HOW DO WE SPEED IT UP?

- If we could run BFS without actually creating G', by somehow simulating BFS of G' on G directly.
 - Bolution: Put a system of alarms on all the nodes. When the BFS on G' reaches a node of G, an alarm is sounded. Nothing interesting can happen before an alarm goes off.

ALARM CLOCK ALG

alarm(s) = 0

until no more alarms

- wait for an alarm to sound. Let next alarm that goes off is at node v at time t.
 - dist(s,v) = t
 - for each neighbor w of v in G:
 - If there is no alarm for w, alarm(w) = t+weight(v,w)
 - If w's alarm is set further in time than t+weight(v,w), reset it to t+weight(v,w).

RECALL BFS

forall $v \in V$: $dist(v) = \infty$; prev(v) = null; dist(s) = 0Queue q; q.push(s); while (!Q.empty()) v = Q.dequeue(); for all e=(v,w) in E if $dist(w) = \infty$: - dist(w) = dist(w)+1 - Q.enque(w)- prev(w) = v

DIJKSTRA'S SSSP

forall $v \in V$: $dist(v) = \infty$; prev(v) = null; dist(s) = 0Magic_DS Q; Q.insert(s,0); while (!Q.empty()) $v = Q.delete_min()$; for all e=(v,w) in E if dist(w) > dist(v)+weight(v,w) : - dist(w) = dist(v)+weight(v,w)- Q.insert(w, dist(w))

- prev(w)= v

THE MAGIC DS: PQ

- What functions do we need?
 - insert(): Insert an element and its key. If the element is already there, change its key (only if the key decreases).
 - delete_min(): Return the element with the smallest key and remove it from the set.

ANOTHER VIEW REGION GROWTH

- 1. Start from s
- Grow a region R around s such that the SPT from s is known inside the region.
 Add v to R such that v is the closest node to s outside R.
- 4. Keep building this region till R = V.

HOW DO WE FIND V?

Pick v & R st.

min dist(s, x) + weight(x, v) $x \in \mathbb{R}$ Let (x*, v*) be the opt.

OLD WINE IN NEW BOTTLE

forall $v \in V$: $dist(v) = \infty$; prev(v) = null; dist(s) = 0 $R = \{\}$; while R != VPick v not in R with smallest distance to sfor all edges $(v,z) \in E$ if(dist(z) > dist(v) + weight(v,z) dist(z) = dist(v) + weight(v,z) prev(z) = v; Add v to R

RUNNING TIME?

delete-min =? insert =?

RUNNING TIME?

RUNNING TIME?

• If we used a linked list as our magic data structure?

BINARY HEAP?

delete-min()
$$\rightarrow O(\log |V|)$$

insert() $\rightarrow O(\log |V|)$
Total $\rightarrow O(|E| \log |V|)$

D-ARY HEAP

delete_min()
$$\rightarrow O(d \log_d |V|)$$

insert() $\rightarrow O(\log_d |V|)$
 $7.5 \text{ To } |V| \rightarrow O(|V| + |E|) \log_d |V|)$

FIBONACCI HEAP

delete-min()
$$\rightarrow O(1)$$

Amortized
(next() $\rightarrow O(\log |V|)$
Toke $\rightarrow O(|V| \log |V| + |E|)$

A SPANNING TREE

- Recall?
- Is it unique?
 Is shortest path tree a spanning tree?
 Is there an easy way to build a spanning tree for a given graph G?
- Is it defined for disconnected graphs?

SPANNING TREE Connected subset of a graph G with n-1 edges which contains all of V.

EASY ALGORITHM To build a spanning tree: Step 1: T = one node in V, as root. Step 2: At each step, add to tree one edge from a node in tree to a node that is not yet in the tree.

C	D	A. KIKI	INC	TDEE	$\mathbf{DD} \cap$	DEDTV
	T.	WININ	DIL	INEL	TIVU	PERTY

Adding an edge **e**=(**a**,**b**) not in the tree creates a cycle containing only edge **e** and edges in spanning tree.

Why?

SPANNING TREE PROPERTY

- Let c be the first node common to the path from a and b to the root of the spanning tree.
 - he concatenation of (a,b) (b,c) (c,a) gives us the desired cycle.

LEMMA 1

In any tree, T = (V,E), |E| = |V| - 1Why?

17	N / I N /	J.A. 4
1 T	1/1 11/	17AE

- In any tree, T = (V,E),|E| = |V| 1
 - Why?
- ree T with 1 node has zero edges.
- For all n>0, P(n) holds, where
- P(n): A Tree with n nodes has n-1 edges.
- Apply MI. How do we prove that given P(m) true for all 1..m, P(m+1) is true?

UNDIRECTED GRAPHS N TREES

- An undirected graph G = (V,E) is a tree iff
 (1) it is connected
 - (2) |E| = |V| 1

LEMMA 2

Let C be the cycle created in a spanning tree T by adding the edge e = (a,b) not in the tree.

Then removing any edge from C yields nother spanning tree.

Why? How many edges and vertices does the new graph have? Can (x,y) in G get disconnected in this new tree?

LEMMA 2

- Let T' be the new graph
- T' has n nodes and n-1 edges, so it must be a tree if it is connected.
- Let (x,y) be not connected in T'. The only problem in the connection can be the removed edge (a,b).
 But if (a,b) was contained in the path from x to y, we can use the cycle C to reach y (even if (a,b) was deleted from the graph).

TA	/ ET 1	CII	re b	CDA	NINIINIO	TREES
AV.	/ T. I	CTH.	エモルノ	STM	EDIVING	185.5

Let w_e be the weight of an edge e in G=(V,E).

Weight of spanning tree = Sum of edge weights.

stion: How do we find the spanning tree with minimum weight. This spanning tree is also called the Minimum Spanning Tree.

Is the MST unique?

MINIMUM SPANNING TREES

- Applications
 - networks
 - cluster analysis
 - used in graphics/pattern recognition
 - approximation algorithms (TSP)
 - bioinformatics/CFD

Mary	DD	OD	T O	WITE .
	₽R	()P	t.K	TY

- Let X be a subset of V. Among edges crossing between X and V \ X, let e be the edge of minimum weight. Then e belongs o the MST.
- Proof?

CYCLE PROPERTY

• For any cycle C in a graph, the heaviest edge in C does not appear in the MST.

roof?

QUESTION

- Is the SSSP Tree and the Minimum spanning tree the same?
- Is one the subset of the other always?

QUESTION

- Is the SSSP Tree and the Minimum spanning tree the same?
- Is one the subset of the other always?

SSSP Tree MS

OLD WINE IN NEW BOTTLE

forall $v \in V$: $dist(v) = \infty$; prev(v) = null; dist(s) = 0Heap Q; Q.insert(s,0); while (!Q.empty()) $v = Q.delete_min()$; for all e=(v,w) in E if dist(w) > dist(v)+weight(v,w): - dist(w) = dist(v)+weight(v,w)- Q.insert(w, dist(w))

- prev(w)= v

A SLIGHT MODIFICATION JARNIK'S OR PRIM'S ALG.

$$\begin{split} & \text{for all } v \in V: \\ & \text{dist}(v) = \infty; \ prev(v) = null; \\ & \text{dist}(s) = 0 \\ & \text{Heap } Q; \ Q.insert(s,0); \\ & \text{while } (!Q.empty()) \\ & v = Q.delete_min(); \\ & \text{for all } e=(v,w) \ in \ E \\ & \text{if } \text{dist}(w) > \frac{\text{dist}(v)+}{\text{dist}(v)} \text{ weight}(v,w) : \\ & - \frac{\text{dist}(w)}{\text{dist}(v)} = \frac{\text{dist}(v)+}{\text{dist}(v)} \\ & - \frac{Q.insert(w, \text{dist}(w))}{\text{dist}(v)} = \frac{Q.insert(w, \text{dist}(w))}{\text{dist}(v)} \end{split}$$

_		_				
	ш	FI	DCT	MST	-A. I	
w		T	11/2	VI S	M	

forall v ε V: dist(v) = ∞; prev(v) = null; dist(s) = 0 Magic_DS Q; Q.insert(s,0); while (!Q.empty()) v = Q.delete_min(); for all e=(v,w) in E if dist(w) > weight(v,w) : - dist(w) = weight(v,w) - Q.insert(w, dist(w)) - prev(w) = v

HOW DOES THE RUNNING TIME DEPEND ON THE MAGIC_DS?

- heap?
- insert()?
- delete_min()?
- Total time?
- What if we change the Magic_DS to fibonacci heap?

PRIM'S/JARNIK'S ALGORITHM

best running time using fibonacci heaps
 O(E + VlogV)

Why does it compute the MST?

ANOTHER ALG: KRUSHKAL'S

- sort the edges of G in increasing order of weights
- Let S = {}
- for each edge e in G in sorted order
 - if the endpoints of e are disconnected in S
 - Add e to S

MAVE U SEEN THIS BEFORE?

- Sort edges of G in increasing order of weight
- T = {} // Collection of trees
- For all e in E
 - If T union {e} has no cycles in T
 - then T = T union {e}

return T

Naïve running time O((|V|+|E|)|V|) = O(|E||V|)

HOW TO SPEED IT UP?

- To O(E + VlogV)
 - Using union find data structures.
- Surprisingly the idea is very simple.

-				
_				
_				
_				
_				
_				
_				
_				

OTHER APPLICATIONS	
8.4 TESTING BIPARTITENESS	
BIPARTITE GRAPHS Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.	
Applications. Stable marriage: men = red, women = blue. Scheduling: machines = red, jobs = blue.	
a hinertite annuh	

TESTING BIPARTITENESS Testing bipartiteness. Given a graph G, is it bipartite? - Many graph problems become: • easier if the underlying graph is bipartite (matching) • tractable if the underlying graph is bipartite (independent set) - Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

BIPARTITE GRAPHS

- Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.
 - (i) No edge of G joins two nodes of the same layer, and G is bipartite. (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
- - Suppose no edge joins two nodes in the same layer.
 - By previous lemma, this implies all edges join nodes on same level.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

BIPARTITE GRAPHS

- Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.
 - (i) No edge of G joins two nodes of the same layer, and G is bipartite.
 - (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

 - Suppose (x, y) is an edge with x, y in same level L_i.
 - Let z = lca(x, y) = lowest common ancestor.
 - Let L_i be level containing z.
 - Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
 - Its length is 1 + (j-i) + (j-i), which is odd.

(x, y) path from path from y to z z to x

OBSTRUCTION TO BIPARTITENESS • Corollary. A graph G is bipartite iff it contain no odd length cycle. - 5-cycle C not bipartite (not 2-colorable)

3.5 CONNECTIVITY IN DIRECTED GRAPHS

DIRECTED GRAPHS

- Directed graph. G = (V, E)
 - Edge (u, v) goes from node u to node v.

- Ex. Web graph hyperlink points from one web page to another.
 - Directedness of graph is crucial.
 - Modern web search engines exploit hyperlink structure to rank web pages by importance.

GRAPH SEARCH

- Directed reachability. Given a node s, find all nodes reachable from s.
- Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?
 - raph search. BFS extends naturally to directed graphs.
- Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

STRONG CONNECTIVITY
Def. Node u and v are $mutually reachable if there is a path from u to v and also a path from v to u .$
Def. A graph is strongly connected if every pair of nodes is mutually reachable.
Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.
Pf. Follows from definition.
Pf. — Path from u to v: concatenate u-s path with s-v path. Path from v to u: concatenate v-s path with s-u path.
ok if paths overlap

STRONG CONNECTIVITY: ALGORITHM Theorem. Can determine if G is strongly connected in O(m + n) time. Pf. Pick any node s. Run BFS from s in G. Run BFS from s in G. Run BFS from sin G. Return true iff all nodes reached in both BFS executions. Correctness follows immediately from previous lemma. strongly connected not strongly connected

DIRECTED ACYCLIC GRAPHS Def. An DAG is a directed graph that contains no directed cycles. Ex. Precedence constraints: edge (v, v) means v, must precede v, Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as v₁, v₂, ..., v_n, so that for every edge (v, v) we have i < j.

PRECEDENCE CONSTRAINTS • Precedence constraints. Edge (v_p v_j) means task v_i must occur before v_j. • Applications. - Course prerequisite graph: course v_i must be taken before v_j. - Compilation: module v_i must be compiled before v_j. Pipeline of computing jobs: output of job v_i needed to determine input of job v_j.

DIRECTED ACYCLIC GRAPHS • Lemma. If G has a topological order, then G is a DAG. • Pf. (by contradiction) - Suppose that G has a topological order v₂, ..., v₀ and that G also has a directed cycle C. Let's see what happens. - Let v₀ be the lowest-indexed node in C, and let v₀ be the node just before v₀; thus (v₀, v₀) is an edge. - By our choice of i, we have i < j. - On the other hand, since (v₀, v₀) is an edge and v₂, ..., v₀ is a topological order, we must have j < i, a contradiction. * the directed cycle C **The directed cycle C** **The directed cycle C** **The supposed topological order: v₂, ..., v₀

DIRECTED ACYCLIC GRAPHS

- Lemma. If G has a topological order, then G is a DAG.
- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

DIRECTED ACYCLIC GRAPHS

Lemma. If G is a DAG, then G has a node with no incoming edges.

- Pf. (by contradiction)
 - Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
 - $\ \ \text{Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u,v) we can walk backward to u.}$
 - Then, since $\overset{.}{u}$ has at least one incoming edge (x, u), we can walk backward to x.
 - Repeat until we visit a node, say w, twice.
 - Let C denote the sequence of nodes encountered between successive visits to w.
 C is a cycle.

DIRECTED ACYCLIC GRAPHS

Lemma. If G is a DAG, then G has a topological ordering.

- Pf. (by induction on n)
 - Base case: true if n = 1.
 - $-\$ Given DAG on n > 1 nodes, find a node v with no incoming edges.
 - $\,$ G { v } is a DAG, since deleting v cannot create cycles.
 - By inductive hypothesis, G { v } has a topological ordering.
 - Place v first in topological ordering; then append nodes of G $\{v\}$
 - in topological order. This is valid since v has no incoming edges. •

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G

Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

TOPOLOGICAL SORTING ALGORITHM: RUNNING TIME • Theorem. Algorithm finds a topological order in O(m + n) time.

- - Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges Initialization: O(m + n) via single scan through graph. - Update: to delete v

 - remove v from S
 decrement count[w] for all edges from v to w, and add w to S if c count[w] hits 0
 - this is O(1) per edge •

_			
_			
_			
-			
-			
-			