GRAPHS

An Introduction

OULINE

- What are Graphs?
- Applications \qquad
Terminology and Problems
Representation (Adj. Mat and Linked Lists)
Searching
- Depth First Search (DFS)
- Breadth First Search (BFS)

GRAPHS

- A graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ is composed of:
-V : set of vertices \qquad
$-\mathrm{E} \subset \mathrm{V} \times \mathrm{V}$: set of edges connecting the vertices
An edge $\boldsymbol{e}=(u, v)$ is a __ pair of vertices \qquad
- Directed graphs (ordered pairs)
- Undirected graphs (unordered pairs)
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

APPLICATIONS

- Air Flights, Road Maps, Transportation.
- Graphics / Compilers \qquad
Electrical Circuits
Networks
- Modeling any kind of relationships (between people/web pages/cities/...)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TERMINOLOGY

- \mathbf{a} is adjacent to \mathbf{b} iff $(\mathbf{a}, \mathbf{b}) \in \mathbf{E}$.
degree $(a)=$ number of adjacent vertices \qquad (Self loop counted twice)
Self Loop: (a, a)

Parallel edges: $\mathrm{E}=\{$...(a,b), (a,b)... $\}$

TERMINOLOGY

- A Simple Graph is a graph with no self loops or parallel edges.
ncidence: v is incident to e if v is an end ertex of e. \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION

- Max Degree node? Min Degree Node?

Isolated Nodes? Total sum of degrees over \qquad all vertices? Number of edges?

\qquad
\qquad
\qquad
\qquad

QUESTION

- Max Degree $=4$. Isolated vertices $=1$.
- $|V|=8,|E|=8$

Sum of degrees $=16=$?
(Formula in terms of $|\mathrm{V}|,|\mathrm{E}|$?)

QUESTION

- Max Degree $=4$. Isolated vertices $=1$.
- $|V|=8,|E|=8$ \qquad
\qquad
Handshaking Theorem. Why?
\qquad
\qquad
\qquad

QUESTION

- How many edges are there in a graph with 100 vertices each of degree 4 ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION

- How many edges are there in a graph with 100 vertices each of degree 4? \qquad
Total degree sum $=400=2|\mathrm{E}|$
200 edges by the handshaking theorem. \qquad
\qquad
\qquad
\qquad

HANDSH AKING:COROLLARY

The number of vertices with odd degree is always even.
Proof: Let V_{1} and V_{2} be the set of vertices of even and odd degrees, respectively
(Hence $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\varnothing$, and $\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{V}$).

- Now we know that
even. $\quad \sum_{\mathrm{v} \in \mathrm{V} 1} \operatorname{degree}(\mathrm{v})+\sum_{\mathrm{v} \in \mathrm{V} 2}$ degree(v)
- Since degree(v) is odd for all $v \in V_{2},\left|V_{2}\right|$ must be even.

PATH AND CYCLE

- An alternating sequence of vertices and edges beginning and ending with vertices
- each edge is incident with the vertices preceding and following it.
No edge appears more than once.
- A path is simple if all nodes are distinct.
- Cycle
- A path is a cycle if and only if $v_{0}=v_{k}$
- The beginning and end are the same vertex.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CONNECTED GRAPH

- Undirected Graphs: If there is at least one path between every pair of vertices. (otherwise disconnected)
pirected Graphs:
- Strongly connected
- Weakly connected

\qquad
\qquad
\qquad
\qquad

HAMILTONIAN CYCLE

- A cycle that transverses every vertex exactly once. \qquad
\qquad
\qquad
\qquad In general, the problem of finding a Hamiltonian circuit is NP-Complete. \qquad

COMPLETE GRAPH

- Every pair of graph vertices is connected by an edge.

$\mathrm{n}(\mathrm{n}-1) / 2$ edges
\qquad
A DAG is a directed graph with no cycles

\qquad
\qquad
\qquad
Often used to indicate precedences among events, i.e., event a must happen before b \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TREES

- An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n hodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has $\mathrm{n}-1$ edges.

ROOTED TREES

- Rooted tree. Given a tree T, choose a root node r and orient each edge away from r. \qquad

re.
\qquad
\qquad
\qquad the same tree, rooted at 1

PHYLOGENY TREES

- Phylogeny trees. Describe evolutionary history of species. \qquad
\qquad
\qquad
\qquad
\qquad

SPANNING TREE

INDEPENDENT SET

- An independent set of G is a subset of the vertices such that no two vertices in the subset are adjacent.

CLIQUES

- a.k.a. complete subgraphs.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

IS
 TOUGH PROBLEM

- Find the maximum cardinality independent set of a graph G. \qquad
NP-Complete
Unknown if a poly time algorithm exists unless \qquad $P=N$.

TOUGH PROBLEM

TSP

- Given a weighted graph G, the nodes of which represent cities and weights on the edges, distances; find the shortest tour that takes you from your home city to all cities in the graph and back.
- Can be solved in O(n!) by enumerating all cycles of length n.
- Dynamic programming can be used to reduce it in $\mathrm{O}\left(\mathrm{n}^{2} 2^{n}\right)$.

REPRESENTATION

- Two ways
- Adjacency List
- (as a linked list for each node in the graph to represent the edges)
- Adjacency Matrix
- (as a boolean matrix) \qquad
\qquad
\qquad

ADJACENCY LIST

AL VS AM

- AL: Takes $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ space
- AM: Takes $\mathrm{O}\left(|\mathrm{V}|^{*}|\mathrm{~V}|\right)$ space

Question: How much time does it take to
find out if $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ belongs to E ?

- AM ?
- AL ?

AL VS AM

- AL: Takes $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ space
- AM: Takes O(|V|*|V|) space \qquad
Question: How much time does it take to
find out if $\left(v_{i}, v_{j}\right)$ belongs to E ? \qquad
- AM : O(1)
- AL : $\mathrm{O}(|\mathrm{V}|)$ in the worst case.
\qquad
\qquad
\qquad

AL VS AM

- AL : Total space $=8|\mathrm{~V}|+16|\mathrm{E}|$ bytes (For undirected graphs its $8|V|+32|E|$ bytes) \qquad AM : $|\mathrm{V}| *|\mathrm{~V}| / 8$

Question: What is better for very sparse graphs? (Few number of edges)

CONNECTIVITY

- s -t connectivity problem. Given two node s and t , is there a path between s and t ?
\qquad
- s - t shortest path problem. Given two node s and t , what is the length of the shortest path between s and t ?
\qquad
\qquad

Applications.

- Maze traversal.
- Kevin Bacon number / Erdos number
- Fewest number of hops in a communication network.

Friendster.

\qquad
\qquad
\qquad

BFS/DFS

- Breadth-first search (BFS) and depth-first search (DFS) are two distinct orders in which to visit the vertices and edges of a raph.
BFS: radiates out from a root to visit vertices in order of their distance from the root. Thus closer nodes get visited first.

BREADTH FIRST SEARCH

- Question: Given G in AM form, how do we say if there is a path between nodes a and \qquad
\qquad
Note: Using AM or AL its easy to answer if
\qquad path questions. This is one of the reasons
\qquad to learn BFS/DFS.

BFS

- A Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree.

Source: Lecture notes by Sheung-Hung POON

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

TIME COMPLEXITY OF BFS (USING ADJACENCY LIST)

\qquad
Assume adjacency list

- $n=$ number of vertices $m=n u m b e r$ of edges \qquad

Algorithm BFS (s)
Input: s is the source vertex
$O(n+m)$

1. for each vertex v
do $\operatorname{fug}[v]:=$ false;
$Q=$ empty queue;
fag $[s]:=$ true;
while Q is not empty \longleftarrow No more than n vertices are ever
do $v:=\operatorname{dequeue}(Q)$ put on the queue
for each w adjacent to v do if flag $[w]=$ false
we ever visit. This is related to the number of edges. How many edges are there? $\Sigma_{\text {vertex } v} \operatorname{deg}(v)=2 m^{*}$ *Note: this is not per iteration of the while loop.
This is the sum over all the while loons!

TIME COMPLEXITY OF BFS

 (USING ADJACENCY MATRIX) \qquadAssume adjacency matrix

- $n=$ number of vertices $m=n u m b e r ~ o f ~ e d g e s ~$ \qquad

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.

So, adjacency matrix is not good for BFS!! do flag $[v]:=$ false;
$Q=$ empty queue;
flag $[s]:=$ true;
enqueue (Q, s);
while Q is not empty No more than n vertices are ever
while Q is not empty
do $v:=$ dequeue (Q); put on the queue. $O(n)$
\qquad
for each w adjacent to v
Using an adjacency matrix. To find do ir fiag $[w]=$ false the neighbors we have to visit all elements then f fag $[w]:=$ true In the row of v. That takes time $O(n)$. \qquad
\qquad

PATH RECORDING

- BFS only tells us if a path exists from source s, to other vertices v .
- It doesn't tell us the path!

We need to modify the algorithm to record the path.

Not difficult

- Use an additional predecessor array pred[0..n-1] \qquad
- Pred[w] = v
- Means that vertex w was visited by v \qquad
\qquad

BFS + PATH FINDING

BFS TREE

- We often draw the BFS paths as a m-ary tree, where s is the root.

Question: What would a "level" order traversal tell you?

CONNECTED COMPONENT

- Connected component. Find all nodes reachable from s. \qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FLOOD FILL

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.

Blob: connected component of lime pixels.

CONNECTED COMPONENT

- Connected component. Find all nodes reachable from s . \qquad
\qquad
R will consist of nodes to which s has a path
Initially $R=|s|$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
Add v to R
Endwhile

it's safe to add v

MORE ON
PATHS AND TREES IN GRAPHS \qquad
\qquad
\qquad
\qquad

BFS

- Another way to think of the BFS tree is the physical analogy of the BFS Tree.
Sphere-String Analogy : Think of the nodes s spheres and edges as unit length strings. \qquad Lift the sphere for vertex s.

BFS : PROPERTIES

- At some point in the running of BFS, \mathbf{Q} only contains vertices/nodes at layer d. \qquad $\mathrm{f} \mathbf{u}$ is removed before \mathbf{v} in BFS then $\operatorname{dist}(\mathrm{u}) \leqslant \operatorname{dist}(\mathrm{v})$
At the end of BFS, for each vertex \mathbf{v} reachable from s, the $\operatorname{dist}(v)$ equals the \qquad shortest path length from s to v.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DIJKSTRA'S SSSP ALG

8FS WITH POSITIVE INT WEIGHTS

\qquad

- for every edge $e=(a, b) \varepsilon E$, let w_{e} be the weight associated with it. Insert $\mathrm{w}_{\mathrm{e}}-1$ \qquad dummy nodes between a and b . Call this ew graph G^{\prime}.

Run BFS on G^{\prime}. dist(u) is the shortest path length from s to node u.
\qquad

- Why is this algorithm bad?
\qquad
\qquad
\qquad

HOW DO WE SPEED IT UP?

- If we could run BFS without actually creating G^{\prime}, by somehow simulating BFS of \qquad G^{\prime} on G directly.
\$olution: Put a system of alarms on all the \qquad nodes. When the BFS on G^{\prime} reaches a node of G, an alarm is sounded. Nothing \qquad interesting can happen before an alarm goes off. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ALARM CLOCK ALG

alarm(s) $=0$
until no more alarms \qquad
wait for an alarm to sound. Let next alarm that goes off is at node v at time t. \qquad

- $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{t}$
- for each neighbor w of v in G :
- If there is no alarm for w, alarm $(w)=t+w e i g h t(v, w)$
- If w 's alarm is set further in time than $t+w e i g h t(v, w)$, reset it to $\mathrm{t}+\mathrm{weight}(\mathrm{v}, \mathrm{w})$. \qquad
\qquad

RECALL BFS

forall $\vee \varepsilon \mathrm{V}$: \qquad
$\operatorname{dist}(v)=\infty ; \operatorname{prev}(v)=n u l l ;$
$\operatorname{dist}(s)=0$ \qquad
Queue q; q.push(s);
while (!Q.empty())
\qquad
$\mathrm{v}=\mathrm{Q}$. dequeue();
for all $e=(v, w)$ in E if $\operatorname{dist}(w)=\infty$:
$-\operatorname{dist}(w)=\operatorname{dist}(w)+1$

- Q.enque(w)
$-\operatorname{prev}(w)=v$
$\operatorname{dist}(v)=\infty ; \operatorname{prev}(v)=$ null;
$\operatorname{dist}(\mathrm{s})=0$
Magic_DS Q; Q.insert(s,0);
while (!Q.empty())
$\mathrm{v}=\mathrm{Q}$. delete_min();
for all $\mathrm{e}=(\mathrm{v}, \mathrm{w})$ in E
if $\operatorname{dist}(w)>\operatorname{dist}(v)+$ weight (v, w)
$-\operatorname{dist}(w)=\operatorname{dist}(v)+$ weight (v, w)
- Q.insert(w, dist(w))
$-\operatorname{prev}(w)=v$
\qquad
\qquad
\qquad
\qquad

THE MAGIC DS: PQ

- What functions do we need?
- insert() : Insert an element and its key. If the element is already there, change its key (only if the key decreases).
delete_min() : Return the element with the smallest key and remove it from the set.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ANOTHER VIEW

\qquad

REGION GROWTH

1. Start from s
2. Grow a region R around s such that the \qquad SPT from s is known inside the region.
Add v to R such that v is the closest node \qquad to s oưtside R.
3. Keep building this region till $\mathrm{R}=\mathrm{V}$.
\qquad
\qquad
\qquad
\qquad

HOW DO WE FIND V?

Pick $v \notin R$ st.
$\min _{x \in R} \operatorname{dist}(s, x)+\operatorname{weight}(x, v)$
Let $\left(x^{*}, v^{*}\right)$ be the opt.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\operatorname{dist}(v)=\infty ; \operatorname{prev}(v)=$ null;
$\operatorname{dist}(\mathrm{s})=0$
R $=\{ \} ;$
while R ! $=\mathrm{V}$
Pick v not in R with smallest distance to s
for all edges $(\mathrm{v}, \mathrm{z}) \varepsilon \mathrm{E}$
if(dist(z) > dist(v) + weight(v, z) $\operatorname{dist}(z)=\operatorname{dist}(v)+$ weight (v, z) $\operatorname{prev}(z)=\mathrm{v}$;
Add v to R
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RUNNING TIME?

delete-min $=|V|$ insert $=|E|$

RUNNING TIME?

- If we used a linked list as our magic data structure? \qquad
delete_minl) \rightarrow O(IVI) insert ()$\rightarrow O(T) O(w)$
Total $=|v|$ deletemin ()

$$
+|E|_{\text {insert }}()=0\left(\left.| |^{2}\right|^{2}\right)
$$

BINARY HEAP?

delete-min ()$\rightarrow O(\log |v|)$ insert ()$\rightarrow O(\log |V|)$ Total $\rightarrow O(|E| \log |v|)$

FIBONACCI HEAP

delete_min ()$\rightarrow O(1)$ Amortized
insert $C) \rightarrow O(\log |V|)$
$T_{\text {total }} \rightarrow O(|V| \log |V|+|E|)$

A SPANNING TREE

- Recall?
- Is it unique? \qquad
shortest path tree a spanning tree?
s there an easy way to build a spanning
\qquad tree for a given graph G?
- Is it defined for disconnected graphs?
\qquad
\qquad
\qquad

SPANNING TREE

Connected subset of a graph G with $\mathrm{n}-1$ edges which contains all of V.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EASY ALGORITHM

To build a spanning tree:
Step 1: $\mathrm{T}=$ one node in V , as root.
tep 2: At each step, add to tree one edge \qquad from a node in tree to a node that is not yet in the tree. \qquad
\qquad
\qquad

PPANNING TREE PROPERTY

\qquad

Adding an edge $\mathbf{e}=(\mathbf{a}, \mathbf{b})$ not in the tree creates a cycle containing only edge \mathbf{e} and
\qquad creates a cycle containing only edge e and
\qquad edges in spanning tree.

Why?
\qquad
\qquad
\qquad
\qquad

SPANNING TREE PROPERTY

- Let c be the first node common to the path
from a and b to the root of the spanning \qquad tree.

The concatenation of $(a, b)(b, c)(c, a)$ gives
\qquad us the desired cycle. \qquad
\qquad
\qquad

LEMMA 1

- In any tree, $\mathrm{T}=(\mathrm{V}, \mathrm{E})$,
$|E|=|V|-1$ \qquad
Why?

LEMMA 1

- In any tree, $\mathrm{T}=(\mathrm{V}, \mathrm{E})$,

$$
|E|=|V|-1
$$

Why?
free T with 1 node has zero edges.
For all $n>0, P(n)$ holds, where

- $P(n)$: A Tree with n nodes has $n-1$ edges.
- Apply MI. How do we prove that given $P(m)$ true for all $1 . . m, P(m+1)$ is true?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

UNDIRECTED GRAPHS N TREES

- An undirected graph $G=(V, E)$ is a tree iff
(1) it is connected \qquad
(2) $|E|=|V|-1$

LEMMA 2

Let C be the cycle created in a spanning tree T by adding the edge $e=(a, b)$ not in the tree. \qquad
Then removing any edge from C yields nother spanning tree.

Why? How many edges and vertices does the
\qquad
\qquad new graph have? Can (x, y) in G get disconnected in this new tree?

LEMMA 2

- Let T' be the new graph
- T^{\prime} has n nodes and $n-1$ edges, so it must be a tree if it is connected.
Let (x, y) be not connected in T^{\prime}. The only problem in the connection can be the removed edge (a, b). But if (a, b) was contained in the path from x to y, we can use the cycle C to reach y (even if (a, b) was deleted from the graph).

WEIGHTED SPANNING TREES

Let w_{e} be the weight of an edge e in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Weight of spanning tree $=$ Sum of edge weights.
estion: How do we find the spanning tree with minimum weight. is spanning tree is also called the Minimum Spanning Tree.

Is the MST unique?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CUT PROPERTY

- Let X be a subset of V. Among edges crossing between X and $V \backslash X$, let e be the edge of minimum weight. Then e belongs o the MST.

- Proof?

\qquad
\qquad
\qquad

CYCLE PROPERTY

- For any cycle C in a graph, the heaviest edge in C does not appear in the MST. \qquad
\qquad
\qquad
\qquad
\qquad

QUESTION

- Is the SSSP Tree and the Minimum spanning tree the same? \qquad
s one the subset of the other always? \qquad
\qquad
\qquad
\qquad

QUESTION

- Is the SSSP Tree and the Minimum spanning tree the same?
one the subset of the other always?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A SLIGHT MODIFICATION

JARNIK'S OR PRIM'S ALG.
forall $v \varepsilon \mathrm{~V}$: \qquad
$\operatorname{dist}(\mathrm{v})=\infty ; \operatorname{prev}(\mathrm{v})=$ null;
dist(s) $=0$ \qquad
Heap Q; Q.insert(s,0);
while (!Q.empty()) \qquad
$\mathrm{v}=\mathrm{Q}$. delete_min();
for all $e=(v, w)$ in E \qquad
if dist(w) $>$ dists(v) weight (v, w)
$-\operatorname{dist}(w)=\operatorname{dist}(v)+$ weight (v, w)

- Q.insert(w, dist(w))
$-\operatorname{prev}(w)=v$
\qquad
\qquad

OUR FIRST MST ALG.

forall $\vee \varepsilon \vee$:
$\operatorname{dist}(v)=\infty ; \operatorname{prev}(v)=$ null;
$\operatorname{dist}(\mathrm{s})=0$ \qquad
Magic_DS Q; Q.insert(s,0);
while (!Q.empty())
v = Q.delete_min();
for all $e=(v, w)$ in E
if $\operatorname{dist}(w)>$ weight (v, w) :
$-\operatorname{dist}(w)=$ weight(v,w)

- Q.insert(w, $\operatorname{dist}(w))$
$-\operatorname{prev}(w)=v$
\qquad DEPEND ON THE MAGIC_DS? \qquad
- heap?
insert()? \qquad delete_min()? otal time?
What if we change the Magic_DS to
\qquad
\qquad fibonacci heap?

PRIM'S/JARNIK'S ALGORITHM

- best running time using fibonacci heaps
- O(E + VlogV) \qquad
Why does it compute the MST? \qquad
\qquad
\qquad
\qquad

NOTHER ALG: KRUSHKAL'S

- sort the edges of G in increasing order of weights
- Let $\mathrm{S}=\{ \}$
- for each edge e in G in sorted order \qquad - if the endpoints of e are disconnected in S - Add e to S \qquad
\qquad
\qquad

HVE U SEEN THIS BEFORE?

- Sort edges of G in increasing order of weight
- $T=\{ \} / /$ Collection of trees
- For alle in E
- If T union $\{e\}$ has no cycles in T
- then $T=T$ union $\{e\}$ \qquad
\qquad
\qquad
\qquad

HOW TO SPEED IT UP?

- To O(E + VlogV)
- Using union find data structures. \qquad
- Surprisingly the idea is very simple. \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set) Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

\qquad
\qquad
\qquad
\qquad

N OBSTRUCTION TO BIPARTITENESS

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

- Pf. Not possible to 2 -color the odd cycle, let alone G .

\qquad
\qquad
\qquad
\qquad
\qquad

BIPARTITE GRAPHS

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers \qquad produced by BFS starting at nodes. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an \qquad
odd-length cycle (and hence is not bipartite).

\qquad
\qquad
\qquad
\qquad

BIPARTITE GRAPHS

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite. \qquad
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf.

- Suppose no edge joins two nodes in the same layer.
- By previous lemma, this implies all edges join nodes on same level.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

BIPARTITE GRAPHS

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s . Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite. (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Suppose (x, y) is an edge with x, y in same level L. Let $\mathrm{z}=\operatorname{lca}(\mathrm{x}, \mathrm{y})=$ lowest common ancestor.

- Let L_{i} be level containing z .
- Consider cycle that takes edge from x to y, then path from y to z , then path from z to x .
Its length is $\underbrace{+(j-i)+(j-i) \text {, which is odd. . }}$

(x, y) path from path from
$\begin{array}{ll}\substack{\text { path from } \\ y \text { to } z} & \left.\begin{array}{l}\text { path from } \\ z\end{array}\right)\end{array}$

OBSTRUCTION TO BIPARTITENESS

- Corollary. A graph G is bipartite iff it
contain no odd length cycle. \qquad
\qquad
\qquad

bipartite
(2-colorable)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

DIRECTED GRAPHS

Directed graph. $\mathrm{G}=(\mathrm{V}, \mathrm{E})$

- Edge (u, v) goes from node u to node v.

- Ex. Web graph - hyperlink points from one web page to another Directedness of graph is crucial.
Modern web search engines exploit hyperlink structure to rank web pages by importance.

GRAPH SEARCH

- Directed reachability. Given a node s , find all nodes reachable from s .

Directed $\mathrm{s}-\mathrm{t}$ shortest path problem. Given two node s and t , what is the \qquad length of the shortest path between s and t ?
\qquad
\qquad
Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly. \qquad
\qquad

STRONG CONNECTIVITY

Def. Node u and v are mutually reachable if there is a path from u to v and also a path \qquad from v to u.
\qquad
Lemma. Let s be any node. G is strongly connected iff every node is reachable from s , and s is reachable from every node.

Pf. $=$ Follows from definition
Pf. Path from u to v : concatenate u-s path with s-v path.
Path from v to u : concatenate v-s path with s-u path. -
ok if paths overlap

STRONG CONNECTIVITY:

 ALGORITHM\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECEDENCE CONSTRAINTS

- Precedence constraints. Edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ means task v_{i} must occur before v_{j}.

Applications.

- Course prerequisite graph: course v_{i} must be taken before v_{i}.

Compilation: module v_{i} must be compiled before v_{j}. Pipeline of computing jobs: output of job v_{i} needed to determine input of job v_{j}

DIRECTED ACYCLIC GRAPHS

Lemma. If G has a topological order, then G is a DAG.

- Pf.
- Suppose that G has a topological order $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ and that G also has a directed cycle C. Let's see what happens.

Let v_{i} be the lowest-indexed node in C , and let v_{i} be the node just before v_{i}; thus $\left(v_{j}, v_{i}\right)$ is an edge.
By our choice of i , we have $\mathrm{i}<\mathrm{j}$.
On the other hand, since $\left(v_{j}, v_{i}\right)$ is an edge and v_{1}, \ldots, v_{n} is a topological order, we must have j i i a contradiction. -
(a)

$\bigcirc v_{n}$
the supposed topological order: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$

DIRECTED ACYCLIC GRAPHS

- Lemma. If G has a topological order, then G is a DAG. \qquad
\qquad
Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

IRECTED ACYCLIC GRAPHS

Lemma. If G is a DAG, then G has a node with no incoming edges.

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk backward to x. Repeat until we visit a node, say w, twice.
Let C denote the sequence of nodes encountered between successive visits to w . C is a cycle. .

IRECTED ACYCLIC GRAPHS

Lemma. If G is a DAG, then G has a topological ordering.
\qquad

- Base case: true if $n=1$
- Given DAG on $n>1$ nodes, find a node v with no incoming edges.
- $\mathrm{G}-\{\mathrm{v}\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $\mathrm{G}-\{\mathrm{v}\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $\mathrm{G}-\{\mathrm{v}\}$
in topological order. This is valid since v has no incoming edges. -

To compute a topological ordering of G :
Find a node v with no incoming edges and order it first Delete v from G
Recursively compute a topological ordering of $G-\{v\}$ and append this order after v
\qquad
\qquad
\qquad

TOPOLOGIC AL SORTING

LLGORITHM: RUNNING TIME

\qquad

Theorem. Algorithm finds a topological order in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time.

Pf.
aintain the following information:

- count $[\mathrm{w}]=$ remaining number of incoming edges
- $S=$ set of remaining nodes with no incoming edges

Initialization: $O(m+n)$ via single scan through graph
Update: to delete v

- remove v from S
- decrement count [w] for all edges from v to w , and add w to S if c
count $[w]$ hits 0
- this is $\mathrm{O}(1)$ per edge .

