
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algorithm: What is it?

- An Algorithm a well-defined
\qquad computational procedure that transforms inputs into outputs, achieving the desired input-output relationship.
\qquad
\qquad
\qquad
\qquad
\qquad

Algorithm
 Characteristics

- Finiteness
$\left.\begin{array}{l}\text { - Input } \\ \text { - Output }\end{array}\right\}$ Correctness
- Rigorous, Unambiguous and Sufficiently Basic at each step

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Applications?

- WWW and the Internet
\qquad
- Computational Biology
- Scientific Simulation \qquad
- VLSI Design
- Security
- Automated Vision/Image Processing
- Compression of Data
- Databases
- Mathematical Optimization
\qquad
\qquad
\qquad
\qquad

Sorting

- Input: Array $A[1 . . . n]$, of elements
\qquad
\qquad
- Output: Array $A[1 . . . n]$ of the same elements, but in increasing order
- Given a teacher find all his/her students.
- Given a student find all his/her teachers.
. 185

\qquad
\qquad
\qquad
\qquad
\qquad

The RAM Model

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor random-access machine (RAM)
- All memory equally expensive to access
- No concurrent operations
- All reasonable instructions take unit time
- Except, of course, function calls
- Constant word size
- Unless we are explicitly manipulating bits

Time and Space Complexity

- Generally a function of the input size
- E.g., sorting, multiplication
- How we characterize input size depends:
- Sorting: number of input items
- Multiplication: total number of bits
- Graph algorithms: number of nodes \& edges
- Etc
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Running Time

- Number of primitive steps that are executed
- Except for time of executing a function call most statements roughly require the same amount of time
- $y=m^{*} x+b$
- $c=5 / 9 *(t-32)$
- $z=f(x)+g(y)$
- We can be more exact if need be

Analysis

- Worst case
- Provides an upper bound on running time
- An absolute guarantee
- Average case
- Provides the expected running time
- Very useful, but treat with care: what is "average"?
- Random (equally likely) inputs - Real-life inputs

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binary Search Analysis

- Order Notation
\qquad
- Upper Bounds \qquad
- Search Time = ??
- A better way to look at it, Binary Search Trees
\qquad
\qquad
\qquad
\qquad

In this course

- We care most about asymptotic performance
- How does the algorithm behave as the problem size gets very large?
- Running time
- Memory/storage requirements
- Bandwidth/power requirements/logic gates/etc.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.1 Computational Tractability

"For me, great algorithms are the poetry of computation.

 Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing." - Francis Sullivan $\qquad$$\qquad$
\qquad

Computational Tractability \qquad

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of
\qquad algorithm on input of a given size N .

Generally captures efficiency in practice.

- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N .

Hard (or impossible) to accurately model real instances by random distributions.
Algorithm tuned for a certain distribution may perform poorly on other inputs.
\qquad
\qquad
\qquad
\qquad
\qquad

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

- Justification: It really works in practice!
- Although $6.02 \times 10^{23} \times \mathrm{N}^{20}$ is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.
- Exceptions.
- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because 1
simplex method Unix grep \qquad
.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why not do Exact Analysis?

- It is difficult to be exact.
- Results are most of the time too complicated and irrelevant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Asymptotic Order of Growth

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such
\qquad that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.

Tight bounds. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.
Ex: $T(n)=32 n^{2}+17 n+32$.

- $T(n)$ is $O\left(n^{2}\right), O\left(n^{3}\right), \Omega\left(n^{2}\right), \Omega(n)$, and $\Theta\left(n^{2}\right)$
- $T(n)$ is not $O(n), \Omega\left(n^{3}\right), \Theta(n)$, or $\Theta\left(n^{3}\right)$. \qquad
\qquad
\qquad

Notation

- Slight abuse of notation. $T(n)=O(f(n))$.
- Asymmetric:
- $f(n)=5 n^{3} ; g(n)=3 n^{2}$
$f(n)=O\left(n^{3}\right)=g(n)$
but $f(n) \neq g(n)$
- Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any

- Statement doesn't "type-check."
- Use Ω for lower bounds.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Properties

- Transitivity.
- If $f=O(g)$ and $g=O(h)$ then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$ then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.
- Additivity.
- If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$.
- If $f=\Omega(h)$ and $g=\Omega(h)$ then $f+g=\Omega(h)$.
- If $f=\Theta(h)$ and $g=O(h)$ then $f+g=\Theta(h)$.

The world of $O . .$.

- $F(n)=O(F(n))$
- c $O(f(n))=O(f(n))$
- $O(F(n))=O(O(F(n)))$
- $O(f(n)+g(n))=O(\max (f(n), g(n)))$
- $O(f(n)) O(g(n))=O(f(n) g(n))$
- $O(f(n) g(n))=f(n) O(g(n))$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear Time: $O(n)$

- Linear time. Running time is at most a constant factor times the size of
\qquad the input.

$$
\begin{aligned}
\max & \leftarrow a_{1} \\
\text { for } & =2 \text { to } n \ell \\
\text { if } & \left(a_{i}>\max \right) \\
& \max \leftarrow a_{i}
\end{aligned}
$$

\} \qquad

- Computing the maximum. Compute maximum of n numbers a_{1}, \ldots, a_{n}.
\qquad
\qquad
\qquad

Linear Time: $O(n)$ \qquad
Merge. Combine two sorted lists $A=a_{1}, a_{2}, \ldots, a_{n}$ with $B=$ $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$ into sorted whole.

Merged result
\qquad
\qquad
\qquad if ($a_{i} \leq b_{j}$) ppend a_{i} to output list and increment i else $\left(a_{i} \leq b_{j}\right)$ append b_{j} to output list and increment j
append remainder of nonempty list to output list
Claim. Merging two lists of size n takes $O(n)$ time.
Pf. After each comparison, the length of output list increases by
教
\qquad
\qquad
\qquad

Quadratic Time: $O\left(n^{2}\right)$

- Quadratic time. Enumerate all pairs of elements.
- Closest pair of points. Given a list of n points in the plane $\left(x_{1}, y_{1}\right)$, $\ldots,\left(x_{n}, y_{n}\right)$, find the pair that is closest.
\qquad
- $O\left(n^{2}\right)$ solution. Try all pairs of points.

```
min}\leftarrow(\mp@subsup{x}{1}{}-\mp@subsup{x}{2}{}\mp@subsup{)}{}{2}+(\mp@subsup{y}{1}{}-\mp@subsup{y}{2}{}\mp@subsup{)}{}{2
for i = 1 to n {
    for j = i+1 to n
        if (d< min)
            min}\leftarrow
    }
```

 \(\mathrm{d} \leftarrow\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}\right)^{2} \quad \leftarrow\) don't need to
 Remark. $\Omega\left(n^{2}\right)$ seems inevitable, but this is just an illusion.

Cubic Time: $O\left(\mathrm{n}^{3}\right)$

- Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_{1}, \ldots, S_{n} each of which is a subset of $1,2, \ldots, n$, is there some pair of these which are disjoint?
$O\left(n^{3}\right)$ solution. For each pairs of sets, determine if they are disjoint

```
foreach set Si_
```

 foreach other set \(S_{j}\) \{
 foreach element \(p\) of \(S_{i}\{\)
 determine whether \(p\) also belongs to \(S_{j}\)
 \}
 if (no element of \(S_{i}\) belongs to \(S_{j}\))
 report that \(S_{i}\) and \(S_{j}\) are disjoint
 \}
 \}

\qquad
\qquad
\qquad
\qquad
\qquad report that S_{i} and S_{j} are disjoint
\} \qquad
\qquad

Polynomial Time: $O\left(n^{k}\right)$ Time

${ }^{1} \mathrm{k}$ is a constant

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?
$O\left(n^{k}\right)$ solution. Enumerate all subsets of k nodes.
foreach subset S of k nodes $\{$
check whether S in an independent set
f (S is an independent set) report S is an independent set
\}
\}

- Check whether S is an independent set $=O\left(k^{2}\right)$
- Number of k element subsets =
$O\left(\mathrm{k}^{2} \mathrm{n}^{\mathrm{k}} / \mathrm{k}!\right)=O\left(\mathrm{n}^{\mathrm{k}}\right) . \quad\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots(2)(1)} \leq \frac{n^{k}}{k!}$ poly-time for $\mathrm{k}=17$ poly-time for $k=17$
but not practical

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

- $\Theta(1)$: Constant Time, Can't beat it.
- $\Theta(\log n)$: Typically the speed of mos \dagger efficient data structures (Binary tree search?)
- $\Theta(n)$: Needed by an algorithm to look at all its input.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

- $\Theta\left(n^{x}\right), x>1$: Polynomial running time. Acceptable when exponent (x)/ Input data size is small.
- $\Theta\left(y^{n}\right), y>1$: Used when input is very small or worst case does not happen.
- $\Theta(n!)$ or $\Theta\left(n^{n}\right)$: Useful for really small inputs most of the time. $(n<20)$

Defn.

- A Recurrence is an equation or inequality that describes a function or inequality in terms of its own value on smaller inputs.
$-f(n)=f(n-1)+f(n-2)$

Brain Teaser

- Given a pizza and a knife, what is the maximum number of pieces you can cut the pizza to if you are allowed n straight cuts with the knife?

