# Analysis of Algorithms, Fall 2010 

Assignment \#6
Due: April 22nd

Each of the problems should be solved on a separate sheet of paper to facilitate grading. Please don't wait until the last minute to look at the problems. Please submit your solutions before class on Thursday.

Problem 1 The partition problem is, given a sequence of $n$ non-negative integers as input, to find a way to partition this sequence into two disjoint subsequences so that the sums of the integers in each of the two subsequences are equal. More formally, given non-negative integers $s_{1}, s_{2}, \ldots, s_{n}$ that sum to $S$, find a subset $I$ of $\{1,2, \ldots, m\}$ such that

$$
\Sigma_{i \in I} s_{i}=\Sigma_{j \notin I} s_{j}=S / 2
$$

or determine that there is no such subset. Give a dynamic programming algorithm for the partition problem. Analyze the worst case running time and space requirements of your algorithm as functions of $n$ and $S$.

## Problem 2

IF you have solved Problem 1, solve Problem 6, Chapter 6 of the textbook.
Problem 3 Reduction Problem. Given a set of $n$ points in the plane, find a set of non-intersecting line segments connecting the points which form a closed loop (a polygon).

Describe a linear time reduction from the problem of sorting $n$ numbers to the problem described above.

## Problem 4

Prove that problem 1 is NP-Complete. (You can assume that the subset sum problem is NPComplete. Section 8.8 of the textbook. We did see in class, how to solve this problem using dynamic programming.)

