Homework 2

* A4*4 image with 16 pixels
 Borders unaltered

Color of B2 = Average color of (B1,A2,B3,C2)

Swap function

Example: (swap buggy.py)
>>> a =1

. b=2
. def swap(tl, t2):
t2, t1 = t1, t2
. return
. swap(a, b)
.. print "a=",a
. print "b=",b

S L -
| .
N =

Swap function

Example: swap right.py

>>> a =1

... b=2
. def swap(tl, t2):
.. return t2, t1
. a, b = swap(a, b)
. print "a=",a

print "b=",b

oo -
TR
kN

Cryptography

Plaintext — A message In its natural format readable by

an attacker

Ciphertext — Message altered to be unreadable by anyone
except the intended recipients

Key — Sequence that controls the operation and behavior
of the cryptographic algorithm

Keyspace — Total number of possible values of keys in a
crypto algorithm

Substitution Ciphers

\ 4

Monoalphabetic cipher Polyalphabetic cipher
* (aesar cipher * Vigenere cipher

Caesar Cipher

Example:

Before: RETURN TO ROME

Atter: UHWXUA WR URPH

Vigenere Cipher

* HExample:
Message = SEE ME IN MALL
* Take keyword as INFOSEC

* Vigenere cipher works as follows:

S _E E M E I N M A L L_
1 N F O/ S E C I NF O

A R _J A W M P UNQZ_

Cryptanalysis

* The study of methods to break cryptosystems
» Often targeted at obtaining a key
» Attacks may be passive or active

Cryptanalysis

« Kerckhoff’s Principle:
The only secrecy involved with a cryptosystem

should be the key

* Cryptosystem Strength:
How hard is it to determine the secret associated

with the system?

Cryptanalysis attacks

Brute force

Trying all key values in the keyspace
Frequency Analysis

Guess values based on frequency of occurrence
Dictionary Attack

Find plaintext based on common words

Cryptanalysis attacks

Replay Attack

Repeating previous known values
Factoring Attacks

Find keys through prime factorization
Ciphertext-Only

Known Plaintext

Format or content of plaintext available

Cryptanalysis attacks

Chosen Plaintext

Attack can encrypt chosen plaintext
Chosen Ciphertext

Decrypt known ciphertext to discover key
Social Engineering

Humans are the weakest link

Network Security

« SSL/TLS

Supports mutual authentication

Secures a number of popular network services
* |[PSec

Security extensions for TCP/IP protocols

Supports encryption and authentication
Used for VPNs

to be continued...

Strings in Python

» Strings in Python can be created using single
guotes, double quotes and triple quotes.

>>> a = "Alert”
>>> b = "Alert’

>>> C — 1 n llAler‘tll 11 11

String Functions

Finding substrings:

« find(str, beg=0, end=len(string))
* rfind(str, beg=0, end=len(string))
 index(str, beg=0, end=len(string))

 rindex(str, beg=0, end=len(string))

For more string functions
http://zetcode.com/lang/python/strings/

http://zetcode.com/lang/python/strings/

Exception Handling

try:

You do your operations here;
except ExceptionI:

If there is ExceptionI, then execute this block.
except ExceptionII:

If there is ExceptionII, then execute this block.
else: If there is no exception then execute this block.

Exception Handling

try:
fh = open("testfile", "w")
fh.write("This is my test file for exception handling!!")
except IOError:

print "Error: can\'t find file or read data"
else:

print "Written content in the file successfully”
fh.close()

userNumber

userNumber

userNumber

print 'The

User Inputs

raw_input('Give me an integer number: ')

int(userNumber)

userNumber**2

square of your number is: + str(userNumber)

User Inputs

Ask for the number and store it in userNumber
userNumber = raw input('Give me an integer number: ')

try:

userNumber = int(userNumber)
except ValueError:

userNumber = 0

else:

userNumber = userNumber**2

print 'The square of your number is: ' + str(userNumber)

Classes

class name:
"documentation”
statements

-O r-

class name(basel, base2, ...):

Most, statements are method definitions:
def name(self, argl, arg2, ...):

May also be class variable assignments

Classes

Example class:
class Stack:
def init (self):
self.items = []
def push(self, x):
self.items.append(x)
def pop(self):
X = self.items[-1]
del self.items[-1]
return x
def empty(self):
return len(self.items) ==

Using Classes

* TJo create an instance, simply call the class object:
X = Stack() # no 'new' operator!

* To use methods of the instance, call using dot notation:

x.empty() #-> 1

X.push(1) # [1]

x.empty() #->0
x.push("hello") # [1, "hello"]
X.pop() # -> "hello” # [1]

* To Iinspect instance variables, use dot notation:
X.items #->[1]

to be continued...

