
Homework 2

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

• A 4*4 image with 16 pixels

• Borders unaltered

Color of B2 = Average color of (B1,A2,B3,C2)

Swap function

Example: (swap_buggy.py)
>>> a = 1
... b = 2
... def swap(t1, t2):
... t2, t1 = t1, t2
... return
... swap(a, b)
... print "a=",a
... print "b=",b
a=1
b=2

Swap function

Example: swap_right.py
>>> a = 1
... b = 2
... def swap(t1, t2):
... return t2, t1
... a, b = swap(a, b)
... print "a=",a
... print "b=",b
a=2
b=1

Cryptography

Plaintext – A message in its natural format readable by

 an attacker

Ciphertext – Message altered to be unreadable by anyone

except the intended recipients

Key – Sequence that controls the operation and behavior

of the cryptographic algorithm

Keyspace – Total number of possible values of keys in a

crypto algorithm

Substitution Ciphers

Monoalphabetic cipher

• Caesar cipher

Polyalphabetic cipher

• Vigenère cipher

Caesar Cipher

Example:

 Before: RETURN TO ROME

 After: UHWXUA WR URPH

7

Vigenère Cipher

• Example:

 Message = SEE ME IN MALL

• Take keyword as INFOSEC

• Vigenère cipher works as follows:

 I N F O S E C I N F O

S E E M E I N M A L L

A R J A W M P U N Q Z

Cryptanalysis

• The study of methods to break cryptosystems

• Often targeted at obtaining a key

• Attacks may be passive or active

Cryptanalysis

• Kerckhoff’s Principle:

The only secrecy involved with a cryptosystem

should be the key

• Cryptosystem Strength:

How hard is it to determine the secret associated

with the system?

Cryptanalysis attacks

• Brute force

 Trying all key values in the keyspace

• Frequency Analysis

 Guess values based on frequency of occurrence

• Dictionary Attack

 Find plaintext based on common words

Cryptanalysis attacks

• Replay Attack

 Repeating previous known values

• Factoring Attacks

 Find keys through prime factorization

• Ciphertext-Only

• Known Plaintext

 Format or content of plaintext available

Cryptanalysis attacks

• Chosen Plaintext

 Attack can encrypt chosen plaintext

• Chosen Ciphertext

 Decrypt known ciphertext to discover key

• Social Engineering

 Humans are the weakest link

Network Security

• SSL/TLS

Supports mutual authentication

Secures a number of popular network services

• IPSec

Security extensions for TCP/IP protocols

Supports encryption and authentication

Used for VPNs

to be continued...

Strings in Python

• Strings in Python can be created using single

 quotes, double quotes and triple quotes.

>>> a = "Alert"

>>> b = 'Alert'

>>> c = """Alert"""

String Functions

Finding substrings:

• find(str, beg=0, end=len(string))

• rfind(str, beg=0, end=len(string))

• index(str, beg=0, end=len(string))

• rindex(str, beg=0, end=len(string))

For more string functions
http://zetcode.com/lang/python/strings/

http://zetcode.com/lang/python/strings/

Exception Handling

try:
 You do your operations here;
except ExceptionI:
 If there is ExceptionI, then execute this block.
except ExceptionII:
 If there is ExceptionII, then execute this block.
else: If there is no exception then execute this block.

Exception Handling

try:
 fh = open("testfile", "w")
 fh.write("This is my test file for exception handling!!")
except IOError:
 print "Error: can\'t find file or read data"
else:
 print "Written content in the file successfully"
 fh.close()

User Inputs

Ask for the number and store it in user Number
userNumber = raw_input('Give me an integer number: ')

Make sure the input is an integer number
What if the input is not an integer???
userNumber = int(userNumber)

Get the square of the number
userNumber = userNumber**2

Print square of given number
print 'The square of your number is: ' + str(userNumber)

User Inputs

Ask for the number and store it in userNumber
userNumber = raw_input('Give me an integer number: ')

try:
 # Try to convert the user input to an integer
 userNumber = int(userNumber)
Catch the exception if the input was not a number
except ValueError:
 userNumber = 0
else:
 # Get the square of the number
 userNumber = userNumber**2

Print square of given number
print 'The square of your number is: ' + str(userNumber)

Classes

class name:

 "documentation"

 statements

-or-
class name(base1, base2, ...):

 ...

Most, statements are method definitions:
 def name(self, arg1, arg2, ...):
 ...

May also be class variable assignments

Classes

Example class:
class Stack:
 def __init__(self): # constructor
 self.items = []

 def push(self, x):
 self.items.append(x) # the sky is the limit

 def pop(self):
 x = self.items[-1] # what happens if it’s empty?
 del self.items[-1]
 return x

 def empty(self):
 return len(self.items) == 0 # Boolean result

Using Classes

• To create an instance, simply call the class object:

x = Stack() # no 'new' operator!

• To use methods of the instance, call using dot notation:

x.empty() # -> 1

x.push(1) # [1]

x.empty() # -> 0

x.push("hello") # [1, "hello"]

x.pop() # -> "hello" # [1]

• To inspect instance variables, use dot notation:

x.items # -> [1]

to be continued...

