Introduction

What is cryptography?

Crypto core

Secret key establishment:

Secure communication:

confidentiality and integrity

But crypto can do much more

- Digital signatures
- Anonymous communication

But crypto can do much more

- Digital signatures
- Anonymous communication
- Anonymous digital cash
- Can I spend a "digital coin" without anyone knowing who I am?
- How to prevent double spending?

Protocols

- Elections
- Private auctions

Protocols

- Elections
- Private auctions

Goal: compute $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
"Thm:" anything the can done with trusted auth. can also be done without

- Secure multi-party computation

Crypto magic

- Privately outsourcing computation

Google

- Zero knowledge (proof of knowledge)

I know the factors of N !!

A rigorous science

The three steps in cryptography:

- Precisely specify threat model
- Propose a construction
- Prove that breaking construction under threat mode will solve an underlying hard problem

Introduction

History

History

David Kahn, "The code breakers" (1996)

Symmetric Ciphers

Few Historic Examples

(all badly broken)

1. Substitution cipher

Caesar Cipher
 (no key)

What is the size of key space in the substitution cipher assuming 26 letters?

$$
\begin{aligned}
& |\mathcal{K}|=26 \\
& |\mathcal{K}|=26!\quad \text { (26 factorial) } \\
& |\mathcal{K}|=2^{26} \\
& |\mathcal{K}|=26^{2}
\end{aligned}
$$

How to break a substitution cipher?

What is the most common letter in English text?

```
"X"
"L"
"E"
"H"
```


How to break a substitution cipher?

(1) Use frequency of English letters
(2) Use frequency of pairs of letters (digrams)

An Example

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVUFO FEIKNWFRFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRVNIWN CPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZPUKBZPUNVPWPCYVF ZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOPYXPUBNCUB OYNRVNIWNCPOJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCYVFZIXUPUNFCPWZPUKBZPUNVR

B	36	$\rightarrow E$
N	34	
U	33	$\rightarrow \mathrm{T}$
P	32	$\rightarrow \mathrm{A}$
C	26	

NC	11
PU	10
UB	\rightarrow IN
	\rightarrow AT
UN	9

UKB	6
RVN	6
FZI	4

trigrams
digrams

2. Vigener cipher

(16'th century, Rome)

$$
\begin{aligned}
& k=C R Y P T O C R Y P T O C R Y P T \\
& m=W H A T A N I C E D A Y T O D A Y \\
& C=Z Z Z J U C L U D T U N W G C Q S
\end{aligned}
$$

suppose most common $=$ " H " \Longrightarrow first letter of key $=$ " $H "-$ " $E "=$ "C"

3. Rotor Machines
 (1870-1943)

Early example: the Hebern machine (single rotor)

Rotor Machines (cont.)

Most famous: the Enigma (3-5 rotors)

$\#$ keys $=26^{4}=2^{18} \quad$ (actually 2^{36} due to plugboard)

4. Data Encryption Standard
 (1974)

DES: \# keys $=2^{56}$, block size $=64$ bits

Today: AES (2001), Salsa20 (2008) (and many others)

