
Recursion??

Asymptotic Notations

Is often used to describe how the size of the
input data affects an algorithm’s usage of
computational resource.

Asymptotic Notations

Algorithms perform f(n) basic operations to
accomplish tasks.
 Identify that function
 Identify the size of problem (n)
 count number of operations in terms on n

Big-O
• Big - O notation is an approximate mathematical

formula to determine how many operations are
necessary to perform the search or sort.

 O(1) “constant”
 O(log n) “logarithmic”
 O(n) “linear”
 O(n log n) “supralinear”
 O(n^2) “quadratic”
 O(n^c) “polynomial”

A buggy code:

>>> def f():
... print s
... s = "Me too."
... print s
... s = "I hate spam."
... f()
... print s
UnboundLocalError: local variable 's' referenced
before assignment

“global”

Correction with global:

>>> def f():
... global s
... print s
... s = "That’s clear."
... print s
... s = "Python is great!"
... f()
... print s
Python is great!
That’s clear.
That’s clear.

Search Algorithms

Linear Search Binary Search

Linear Search
Example:

• List numlist contains:

• Searching for the value 11, linear search examines
 17, 23, 5, and 11
• Searching for the value 7, linear search examines
 17, 23, 5, 11, 2, 29, and 3

17 23 5 11 2 29 3

Linear Search

Pseudocode:

 set found to false; set position to –1; set index to 0
 while index < number of elements. and found is false
 if list[index] is equal to search value
 found = true
 position = index
 end if
 add 1 to index
 end while
 return position

Binary Search

Requires list elements to be in order

1. Divides the list into three sections:

• middle element
• elements on one side of the middle element.
• elements on the other side of the middle element

2. If the middle element is the correct value, done.
Otherwise, go to step 1. using only the half of the list
that may contain the correct value.

3. Continue steps 1. and 2. until either the value is found
or there are no more elements to examine

Binary Search

1 55 59 89 90 94 103 105 109

Target is 109

90 94 103 105 109

105 109

109

Pseudocode:

If there are no more items to consider then
 Return -1
Else
 Set midpoint to (last + first) / 2
 If the item at index midpoint = = the target item then
 Return midpoint
 Else if the item at index midpoint > the target item then
 Return search the left half of the list (from indices
 first to midpoint - 1)
 Else
 Return search the right half of the list (from indices
 midpoint + 1 to last)

Binary Search

Binary Search

• How long (worst case) will it take to find an item in a
list 30,000 items long?

 210 = 1024 213 = 8192
 211 = 2048 214 = 16384
 212 = 4096 215 = 32768

• So, it will take only 15 tries!
• Binary search runs in log(n) time.

Binary Search

Tradeoffs:

• Benefits:

 Much more efficient than linear search. For list of n
 elements, performs at most log (n) comparisons

• Disadvantage:
 Requires the list elements to be sorted.

to be continued...

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

