Recap

easy_install

- By now you should be able to install packages
- py.test and coverage should be installed
- Today, we will try to install pip and nose

• Understand paths

While loops: Animation Process

Animations in Games or Graphics:

while (not finished) {
 MoveEverything();
 DrawEverything();

}

Introduction to Computer Vision

Computational Photography

360 panorama

CAP 5415: Computer Vision Xiuwen Liu

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the **aperture**
 - How does this transform the image?

Pinhole Camera

Pinhole Photography

Image Size inversely proportional to Distance

Reading: http://www.pinholeresource.com/

Dimensionality Reduction Machine (3D to 2D)

Point of observation

What have we lost?

- Angles
- Distances (lengths)

Slide by A. Efros Figures © Stephen E. Palmer, 2002

Shrinking the aperture

Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - Changing the shape of the lens changes this distance

Aperture

Aperture

Large aperture opening

Small aperture opening

© R. Mabry

Depth of Field

 Range of object distances over which image is <u>sufficiently well</u> focused.

http://images.dpchallenge.com/images_portfolio/27920/print_preview/116336.jpg

3D Photography

- Replicate 3D objects, Make 3d Movies
- Recognize 3D Structures

• Just an extension of pin hole camera concepts

Main Concept

2x pinholes

3D Vision: Self Driving Cars

Computer Vision Artificial Intelligence Machine Learning Pattern Recognition

Other Applications: Face Recognition, Image Search, OCR, Remote Sensing ...

Back to Python

"It's the little details that are vital. Little things make big things happen."

--Wooden

Bubble Sort

Pseudocode:

for i from 1 to N
 for j from 0 to N - i
 if a[j] > a[j + 1]
 swap(a[j], a[j + 1])

Bubble Sort

Pass 0:	14	12	82	-3	Pass 1:	12	14	-3	82	Pass 2:	12	-3	14	82
	12	14	82	-3		12	14	-3	82		-3	12	14	82
	12	14	82	-3		12	-3	14	82					
	12	14	-3	82										

Bubble Sort

```
In python:
>>> arrNumbers=[5,4,3,2,1]
... n=len(arrNumbers)
... for i in range (1, n):
... for j in range (0, n - i):
... if( arrNumbers[j] > arrNumbers[j + 1]):
... temp = arrNumbers[j]
... arrNumbers[j] = arrNumbers[j + 1]
... arrNumbers[j + 1] = temp
... print arrNumbers
[1, 2, 3, 4, 5]
```


Selection Sort

Pseudocode:

Selection Sort

Selection Sort

```
In python:
>>> arrNumbers=[5,4,3,2,1]
... n=len(arrNumbers)
... for i in range(0,n):
          min =arrNumbers[i]
. . .
          min_indx=i
          for j in range(i+1,n) :
. . .
                  if min > arrNumbers[j] :
. . .
                      min =arrNumbers[j]
                      min_indx=j
         temp=arrNumbers[min_indx]
         arrNumbers[min_indx]=arrNumbers[i]
         arrNumbers[i]=temp
. . .
... print arrNumbers
[1, 2, 3, 4, 5]
```