A Few more applications

Why Learn Computer Science?

Copyright (c) Pearson 2013.
All rights reserved.

Data structures

- graphs, heaps, skip lists
- balanced trees (AVL, splay, red-black)

Theory of computation

- languages, grammars, and automata
- computational complexity and intractability
- Big-Oh
- polynomial vs. exponential time
$-\mathrm{P}=\mathrm{NP}$?

NP Problems

P Problems

- graph theory

Security

- cryptography: study of hiding information
- enigma machine
- RSA encryption
- steganography
- security problems and attacks
- social engineering
- viruses, worms, trojans
- rootkits, key loggers
- CSE security course
- hacking assignment: hack into grades, change from 0 to 100\%

Quantum computing

- qubit: A particle that can store 0,1 , or any "superposition" between
- a bit that can sort of be 0 and 1 at once
- quantum computer: uses qubits, not bits
- theoretically makes it possible to perform
 certain computations very quickly
- Example: factoring integers (why is that useful?)
- actual implementation still in its infancy
- can add single-digit numbers; can factor 15

Robots

- toys, building cars, vacuums, surgery, search and rescue, elder care, exploration

Graphics and vision

- GRAIL (Graphics and AI Lab)
- computer vision
- Al and the Turing Test

(c) Psuedo relighting filter

TURING TEST EXTRA CREDIT: CONVINCE THE EXAMINER THAT HE'S A COMPUTER.

Sensor networks

- Environment monitoring
- Military Intelligence

- Intelligent homes
- detecting human activity through device usage / voltage

- radio freq. identification (RFID)
- shopping, inventory
- credit cards, toll roads, badges

Data mining

- data mining: extracting patterns from large data sets
- What do these two lists have in common?
- coughing, rash, high fever, sore throat, headache, heartburn
- V14GR4, cheap meds, home loans, Nigeria, lower interest rate
- And what does it have to do with sorting your mail? (90% of mail is sorted automatically)
- http://www.usps.com/strategicplanning/cs05/chp2_009.html (2005)

Science and medicine

- computer science
- bioinformatics: applying algorithms/stats to biological datasets
- computational genomics: study genomes of cells/organisms
- neurobotics: robotic brain-operated devices to assist human motor control
- assistive technologies

The developing world

Experience optional

- Mark Zuckerberg, Facebook
- side project while soph. CS major at Harvard - in 2 weeks, 2/3 of Harvard students joined
- Bill Gates started "Micro-Soft" at age 20
- Larry Page / Sergei Brin, Google
- made "BackRub" search at age 23
- Roberta Williams, Sierra
- pioneer of adventure gaming

Microsoft

Trees

But first a few python basics

Tuples Revision

- Ordered collection
- Accessed by offset
- Immutable
- Heterogeneous, Nestable
- Arrays of object references
- To get help use:
- help(())
- $\operatorname{dir}(())$
- Example:
>>> T = ("VZ",110,26.75)

Tuples

Operation	Interpretation
()	An empty tuple
$\mathrm{T}=(0$,	A one-item tuple (not an expression)
$\mathrm{T}=(0, \mathrm{Ni}$ ', 1.2, 3)	A four-item tuple
T = 0, ' Ni^{\prime}, 1.2, 3	Another four-item tuple (same as prior line)
T = ('abc', ('def', 'ghi'))	Nested tuples
T = tuple('spam')	Tuple of items in an iterable
T[i]	Index, index of index, slice, length
T[i][j]	
T[i:j]	
$\operatorname{len}(\mathrm{T})$	
T1 + T2	Concatenate, repeat
T * 3	
for x in T : $\operatorname{print}(\mathrm{x})$	Iteration, membership

Tuples

```
help(())
```

help(())

```
help(())
    dir(())
```

 dir(())
    ```
    dir(())
```

```
X = (1,2,3,4)
```

X = (1,2,3,4)
X[2] \# -> 3
X[2] \# -> 3
(1,2,3,4)[1:3] \# -> (2,3)
(1,2,3,4)[1:3] \# -> (2,3)
(1,2)[2] = 5 \# Error!
(1,2)[2] = 5 \# Error!
(a,b,c) = (1,2,3)
(a,b,c) = (1,2,3)
(a,b,c) = 1,2,3
(a,b,c) = 1,2,3
a,b,c = (1,2,3)
a,b,c = (1,2,3)
a,b,c = [1,2,3]
a,b,c = [1,2,3]
a,b = b,a \# swap

```
    a,b = b,a # swap
```

```
```

('red','green')

```
```

('red','green')
('x',) \# 1-item tuple
('x',) \# 1-item tuple
(1,) != (1)
(1,) != (1)
() \# empty tuple

```
```

() \# empty tuple

```
```

```
for i,c in [(1,'I'), (2,'II), (3,'III')]:
```

for i,c in [(1,'I'), (2,'II), (3,'III')]:
print(i,c)
print(i,c)

vector addition

vector addition

def add(v1, v2):
def add(v1, v2):
x,y = v1[0]+v2[0], v1[1]+v2[1]
x,y = v1[0]+v2[0], v1[1]+v2[1]
return (x,y)

```
    return (x,y)
```


Tuples

- Why Tuples when list exists?
- Efficiency
- Lists - optimized for appends()
- Uses more memory
- Integrity - tuples can't change.
- Tuples can be used as dictionary keys, Lists can't.

Type Classification

| Object type | Category | Mutable? |
| :--- | :--- | :--- |
| Numbers (all) | Numeric | No |
| Strings | Sequence | No |
| Lists | Sequence | Yes |
| Dictionaries | Mapping | Yes |
| Tuples | Sequence | No |
| Files | Extension | N/A |
| Sets | Set | Yes |
| frozenset | Set | No |
| bytearray (3.0) | Sequence | Yes |

Sets

- Mutable
- Can only contain immutable types
- frozenset $=$ Immutable version of sets
- Construction

$$
\begin{aligned}
& \ggg \text { set('orange') } \\
& \text { set (['a', 'e', 'g', 'o', 'n', 'r']) } \\
& \ggg s=\operatorname{set}\left(\left[{ }^{\prime} V Z^{\prime}, 110,26.75\right]\right) \\
& \ggg s \\
& \text { set ([26.75, 'Vz', 110]) } \\
& \ggg s=\{1,2,3,4\} \\
& \ggg S \\
& \operatorname{set}([1,2,3,4])
\end{aligned}
$$

Set Operations

```
>>> x = set('bat')
>>> y = set('ball')
>>> 'b' in x # Membership
True
>>> x - Y
    # Difference
set(['t'])
>>> x | y # Union
set(['a', 'b', 't', 'l'])
>>> x & Y
set(['a', 'b'])
>>> x ^ y
# Symmetric Difference (XOR)
set(['l', 't'])
>>> x > y, x < y # Superset, subset
(False, False)
```


Set Operations

```
>>> z = x.intersection(y) # x & y
>>> Z
set(['a', 'b'])
>>> z.add('call') # Insert an item
>>> z
set(['a', 'b', 'call'])
>>> z.update( {'X', 'Y'} ) # Merge: In-place union
>>> Z
set(['a', 'Y', 'b', 'call', 'X'])
>>> z.remove('X') # Delete an item
>>> z
set(['a', 'Y', 'b', 'call'])
>>> sorted(z)
['Y', 'a', 'b', 'call']
>>> sorted(z, key=str.lower)
['a', 'b', 'call', 'Y']
>>> L = [1,1,2,3,4,5,4,6,6,5]
>>> list(set(L))
[1, 2, 3, 4, 5, 6]
```

Usual operations still work: $\max (), \min ()$, len(), sum(), help(set), help(set.add) for x in S : print x

- tree: A directed, acyclic structure of linked nodes.
- directed: Has one-way links between nodes.
- acyclic: No path wraps back around to the same node twice.
- binary tree: One where each node has at most two children.
- A tree can be defined as either:
- empty (null), or
- a root node that contains:
- data,
- a left subtree, and
- a right subtree.
- (The left and/or right subtree could be empty.)

Trees in computer science

- folders/files on a computer
- family genealogy; organizational charts
- Al : decision trees
- compilers: parse tree
$-\mathrm{a}=(\mathrm{b}+\mathrm{c}) * \mathrm{~d}$;
- cell phone T9

Terminology

- node: an object containing a data value and left/right children
- root: topmost node of a tree
- leaf: a node that has no children
- branch: any internal node; neither the root nor a leaf
- parent: a node that refers to this one
- child: a node that this node refers to
- sibling: a node with a common

Terminology 2

- subtree: the tree of nodes reachable to the left/right from the current node
- height: length of the longest path from the root to any node
- level or depth: length of the path from a root to a given node
- full tree: one where every branch has 2 children
level 1
level 2

A tree node for integers

- A basic tree node object stores data and refers to left/right

| left | data | right |
| :---: | :---: | :---: |
| | 42 | |

- Multiple nodes can be linked together into a larger tree

API

BINARY TREE METHOD WHAT IT DOES

$\mathbf{T}=$ BinaryTree(item) Creates a new binary tree with item as the root and empty left and right subtrees. This is essentially a leaf node.

| T.__str__() | Same as $\boldsymbol{\operatorname { s t r }}(\mathbf{T})$. Returns a string representation of the tree that shows its structure. |
| :---: | :---: |
| T.isEmpty () | Returns \mathbf{T} rue if \mathbf{T} is empty, or False otherwise. |
| T.preorder(aList) | Performs a preorder traversal of \mathbf{T}. Postcondition: the items visited are added to aList. |
| T.inorder(aList) | Performs an inorder traversal of \mathbf{T}. Postcondition: the items visited are added to aList. |
| T. postorder(aList) | Performs a postorder traversal of \mathbf{T}. Postcondition: the items visited are added to aList. |

$A P$

| T.levelorder(aList) | Performs a level order traversal of \mathbf{T}. Postcondition:
 the items visited are added to aList. |
| :--- | :--- |
| T.getRoot() | Returns the item at the root. Precondition: \mathbf{T} is not an
 empty tree. |
| T.getLeft() | Returns the left subtree. Precondition: \mathbf{T} is not an
 empty tree. |
| T.getRight() | Returns the right subtree. Precondition: \mathbf{T} is not an
 empty tree. |
| T.setRoot(item) | Sets the root to item. Precondition: \mathbf{T} is not an
 empty tree. |
| T.setLeft(tree) | Sets the left subtree to tree. Precondition: \mathbf{T} is not an
 empty tree. |
| T.setRight(tree) | Sets the right subtree to tree. Precondition: \mathbf{T} is not
 an empty tree. |
| T.removeLeft() | Removes and returns the left subtree. Precondition: \mathbf{T}
 is not an empty tree. Postcondition: the left subtree is
 empty. |

[TABLE 18.3] The operations on a binary tree ADT

