A Few more applications

Why Learn Computer Science?

Copyright (c) Pearson 2013.
All rights reserved.

Data structures

e graphs, heaps, skip lists 19
e balanced trees (AVL, splay, red-black) 60 &)
| °° 40) () () (9

Theory of computation

e languages, grammars, and automata

e computational complexity and intractability

— Big-Oh

— polynomial vs. exponential time

— P =NP?

e graph theory

BROTE-FORCE
SOL.UTTON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON ERAY:

o(1)

STILL WORKING
ON YOUR ROUTE?

AN
~
SHUT THE
HEW LR

/ NP Problems

\ 4

N

Security

e cryptography: study of hiding information
— enigma machine
— RSA encryption
— steganography

e security problems and attacks
— social engineering
— viruses, worms, trojans
— rootkits, key loggers

e CSE security course

— hacking assignment: hack into grades,
change from 0 to 100%

Presenter
Presentation Notes
The Enigma machine is any of a family of related electro-mechanical rotor machines that have been used to generate ciphers for the encryption and decryption of secret messages. The Enigma was invented by German engineer Arthur Scherbius at the end of World War I.[1] It was used commercially from the early 1920s and was adopted by military and governmental services of a number of countries — most notably by Nazi Germany before and during World War II.[2] A variety of Enigma models were produced, but the German military model, the Wehrmacht Enigma, is the version most commonly discussed.

Quantum computing

e qubit: A particle that can store O, 1,
or any "superposition" between

— a bit that can sort of be 0 and 1 at once
— guantum computer: uses qubits, not bits

— theoretically makes it possible to perform
certain computations very quickly

e Example: factoring integers (why is that useful?)

— actual implementation still in its infancy
e can add single-digit numbers; can factor 15

— toys, building cars,
vacuums, surgery,
search and rescue,
elder care, exploration

Graphics and vision

e GRAIL (Graphics and Al Lab)
e computer vision

e Al and the Turing Test

TURING TEST EXTRA CREDIT:

CONVINCE THE EXAMINER
THAT HES A COMPUTER.

Enhanced exposure Object removal YOU KNOW, YOU MAKE
SOME REALLY GOOD POINTS.
!

I™ ... NOTEVEN SURE
WHO T AM ANYMORE.

/
[]

Sensor networks

& Infrared Camera
® NMicrophones

e Environment monitoring
e Military Intelligence é/

Directional Radios

Portable Satellite
Internet Connection

 Intelligent homes

— detecting human activity through
device usage / voltage

e radio freq. identification (RFID)
— shopping, inventory
— credit cards, toll roads, badges

Data mining

e data mining: extracting patterns from large data sets

— What do these two lists have in common?
e coughing, rash, high fever, sore throat, headache, heartburn
» V14GR4, cheap meds, home loans, Nigeria, lower interest rate

— And what does it have to do with sorting your mail?

(90% of mail is sorted automatically)
e http://www.usps.com/strategicplanning/cs05/chp2_009.html (2005)

PHIVERSITY AT BUFFALD
Fesprn) ! Mewny ek

Eunaten of Fovnllvaes For

A Partners) i
W) In Health A

[S TRl

CI0penMRS -

MEDL(..AL RECORD SYSTEM

http://www.usps.com/strategicplanning/cs05/chp2_009.html

Science and medicine

e computer science
— bioinformatics: applying algorithms/stats to biological datasets
— computational genomics: study genomes of cells/organisms

— neurobotics: robotic brain-operated
devices to assist human motor control

— assistive technologies

10

The developing world

GLOBAL INTERNET TRAFFIC AS OF FEB. 21, 2008, AT 15:09 GMT

e Percentages of Global Network
B | Traffic

B

0% Bo%

e

One Laptop Per Child (OLPC)
Mary Lou Jepsen, CTO

Experience optional

facebook

e Mark Zuckerberg, Facebook

— side project while soph. CS major at Harvard
e in 2 weeks, 2/3 of Harvard students joined

 Bill Gates started "Micro-Soft" at age 20

e Larry Page / Sergei Brin, Google
— made "BackRub" search at age 23

http://www.geocities.com/petter_holmberg/robertabio.html

Trees

But first a few python basics

Tuples Revision

e Ordered collection

e Accessed by offset

e Immutable

e Heterogeneous, Nestable
e Arrays of object references
e To get help use:

— help(()
— dir(0)

e Example:
>>>T = (“VZ27,110,26.75)

14 14

Operation

9,
= (09)

(o, 'Ni', 1.2, 3)

= ('abc', ('def', 'ghi'))

T
T
T=o0, 'Ni', 1.2, 3
T
T = tuple('spam")

T[i:5]
len(T)
T1 + T2
T*3

for x in T: print(x)

Interpretation

An empty tuple

A one-item tuple (not an expression)

A four-item tuple

Another four-item tuple (same as prior line)
Nested tuples

Tuple of items in an iterable

Index, index of index, slice, length

Concatenate, repeat

[teration, membership

15

Presenter
Presentation Notes
Tuple takes an iterable. Hence tuple(5) would fail. tuple(‘spam’) iterates thru the elements of the string and constructs the tuple. List and set constructors work the same way.

('red’', 'green')

(‘x',) # 1-item tuple
(1,) '= (1)
() # empty tuple

X = (1,2,3,4)
X[2] # -> 3
(1,2,3,4)[1:3] # -> (2,3)

(1,2)[2] = 5 # Error!
(a,b,c) = (1:2:3)
(a,b,c) = 1,2,3
a,b,c = (1,2,3)
a,b,c =1[1,2,3]

a,b = b,a # swap

help(())
dir(())

for i,c in [(1,'I"'), (2,'II), (3,'III')]:

print(i,c)

vector addition

def add(vl, v2):
X,y = vi[e]+v2[e], vi[1]+v2[1]
return (Xx,y)

16

Presenter
Presentation Notes
(1) Is just the number 1 with parenthesis. (1,) is a tuple.

e Why Tuples when list exists?

 Efficiency
e Lists — optimized for appends()
— Uses more memory

e Integrity — tuples can’t change.
e Tuples can be used as dictionary keys, Lists can't.

17 17

Type Classification

Object type (ategory Mutable?
Numbers (all) Numeric No
Strings Sequence No

Lists Sequence Yes
Dictionaries Mapping Yes
Tuples Sequence No

Files Extension ~ N/A

Sets Set Yes
frozenset Set No

bytearray(3.0) Sequence Yes

18 18

e Mutable

e Can only contain immutable types
e frozenset = Immutable version of sets

e Construction
>>> set ('orange')

S@t(['a', 'le'l'r 'lg'l

>>> g = get(['vz',

>>> 5

set([26.75, 'vz',

>>> s = {1,2,3,4}

>>> S

set ([1, 2, 3, 4])
19

1
r O

110,

1107)

T

, ')
26.75]

19

Presenter
Presentation Notes
Source code reference: setobject.c – Uses __hash__() – which uses id() by default. For integers __hash__ just gives you the integer.

Set Operations

>>> X = set('bat'")
>>> vy = set('ball')

>>> 'b' in Xx # Membership

True

>>> X -y # Difference

set (["t'])

>>> x |y # Union

set(['a', 'b', 't', '1'])

>>> X & Y # Intersection
set(['a', 'b'])

>>> X Ny # Symmetric Difference (XOR)
set (['1l"', 't'])

>>> x > vy, x <y # Superset, subset

(False, False)

20 20

Set Operations

>>> 7 =
>>> 7
set(['a', 'b'])
>>> z.add('call'")
>>> 7
set(['a', 'b',
>>> z.update({'X",
>>> 7

X.intersection (y)

'call'])
IYI})

¥ x &y

Insert an item

Merge: In-place union

IX'I'])
Delete an item

set(['a', 'Y', 'b', 'call',
>>> z.remove ('X")

>>> 7

set(['a', 'Y', 'b', 'call'])
>>> sorted(z)

['Y', 'I'al" l'bl" Icalll]

>>> sorted(z, key=str.lower)
['a" 'I'bl" 'Call', I'Yl']

>> L = 11,1,2,3,4,5,4,6,6,5]

>>> list (set (L))
(1, 2, 3, 4, 5, 6]

Usual operations still work: max(), min(), len(), sum(), help(set), help(set.add)

21

for x in S: print x

21

e tree: A directed, acyclic structure of linked nodes.
— directed . Has one-way links between nodes.
— acyclic . No path wraps back around to the same node twice.

— binary tree: One where each node has at most two children.

A tree can be defined as either: root

— empty (null), or
— a root node that contains:

e data,
e a left subtree, and e

e a right subtree.

— (The left and/or right @ G a

subtree could be empty.)
22

Presenter
Presentation Notes
The definition of a tree shown here is recursive.

Trees In computer science

= (L) My Documents

 folders/files on a computer & _backup
I csel100
- family genealogy; organizational charts e
e Al: decision trees T D aesassi
- compilers: parse tree = orades
—a=(b+c)*d; e —

= 3 homework
3 1-sortedintlist
e cell phone T9
Hames Root @
E O

N
°¢

®>®
»
®

23

Terminology

e node: an object containing a data value and left/right children
e root: topmost node of a tree

e leaf: a node that has no children

e pbranch: any internal node; neither the root nor a leaf

root

e parent: a node that refers to this one
e child: a node that this node refers to

e sibling: a node with a common e

ONONOXO

24

Terminology 2

e subtree: the tree of nodes reachable to the left/right from the
current node

e height: length of the longest path from the root to any node

e level or depth: length root
of the path from a root height = 3
to a given node level 1
e full tree: one level 2 e

where every branch

has 2 children
level 3 @ G a

25

left

data

right

42

left

data

right

L

42

—

left

data

right

99

.

left

data

right

27

A tree node for integers

e Multiple nodes can be linked together into a larger tree

e A basic tree node object stores data and refers to left/right

left

data

right

86

26

Presenter
Presentation Notes
Would it be useful to have a trinary tree? An N-ary tree?
Yes, for some applications. A T9 cell phone typing algorithm uses a 26-ary "prefix tree" or "Trie". Databases often use N-ary trees for indexing for speed. But we can do a lot with just two links.

API

BINARY TREE METHOD

H
I

BinaryTree(item)

T.isEmpty()
T.preorder (aList)

T.inorder(aList)

T.postorder(aList)

WHAT IT DOES

Creates a new binary tree with item as the root and
empty left and right subtrees. This is essentially a
leaf node.

Same as str(T). Returns a string representation of
the tree that shows its structure.

Returns True if T is empty, or False otherwise.

Performs a preorder traversal of T. Postcondition: the
items visited are added to aList.

Performs an inorder traversal of T. Postcondition: the
items visited are added to aList.

Performs a postorder traversal of T. Postcondition: the
items visited are added to aList.

continued

27

T.levelorder(aList)

T.getRoot ()

T.getLeft ()

T.getRight ()

T.setRoot(item)

T.setLeft(tree)

T.setRight(tree)

T.removeLeft()

T.removeRight()

API

Performs a level order waversal of T. Postcondition:
the items visited are added to aList.

Returns the item at the root. Precondition: T is not an
empty tree.

Returns the left subtree. Precondition: T is not an
empty tree.

Returns the right subtree. Precondition: T is not an
empty tree.

Sets the root to item. Precondition: T is not an
empty tree.

Sets the left subtree to tree. Precondition: T is not an
empty tree.

Sets the right subtree to tree. Precondition: T is not
an empty tree.

Removes and returns the left subtree. Precondition: T
is not an empty tree. Postcondition: the left subtree is
empty.

Removes and returns the right subtree. Precondition:
T is not an empty tree. Postcondition: the left subtree

1S empty.

[TABLE 18.3] The operations on a binary tree ADT

28

	A Few more applications
	Data structures
	Theory of computation
	Security
	Quantum computing
	Robots
	Graphics and vision
	Sensor networks
	Data mining
	Science and medicine
	The developing world
	Experience optional
	Trees
	Tuples Revision
	Tuples
	Slide Number 16
	Tuples
	Type Classification
	Sets
	Set Operations
	Set Operations
	Trees
	Trees in computer science
	Terminology
	Terminology 2
	A tree node for integers
	API
	API

