
Linked Lists

Definition of Linked Lists
• A linked list is a sequence of items (objects) where every item

is linked to the next.
• Graphically:

data data data data

head_ptr

None

Definition Details
• Each item has a data part , and a link that points to the next

item.

• One natural way to implement the link is as a pointer; that is,
the link is the address of the next item in the list.

• It makes good sense to view each item as an object, that is,

as an instance of a class.

• We call that class: Node

• The last item does not point to anything. We set its link

member to None.

Examples of Linked Lists
• A linked list of strings can represent a waiting line of
 customers.

Tom Dan Sue Mary

head_ptr

• A linked list of integers can represent a stack of numbers.

10 8 6 2

head_ptr

None

None

Node class
• Every Node has a value and a pointer to the next node.
• When a node is first created, its data is set to None and does

not point to any node.

"""Node class"""

class Node:
 """By default the data and next are none"""
 def __init__(self, data=None, next=None):
 self.data = data
 self.next = next

 def __str__(self):
 return str(self.data)

LinkedList class
• LinkedList holds a pointer to the first (head) node in the list and

an integer that contains the length of the list.
• A linked list is empty when created; thus the "head" node is

None and the length is 0.

"""LinkedList class"""

class LinkedList:
 """Handler for manipulating list of Node objects"""
 def __init__(self):
 self.length = 0
 self.head = None

Operations on Linked Lists
• Insert a new item
 At the head of the list, or
 At the tail of the list, or
 Inside the list, in some designated position

• Delete an item from the list
 Search for and locate the item, then remove the item, and
finally adjust the surrounding pointers

Insert– At the Head
• Insert a new data A.
 List before insertion:

• After insertion to head:

data data data data

head_ptr

data data data data

head_ptr

A

•The link value in the new item = old head_ptr
•The new value of head_ptr = newPtr

None

None

Insert – at the Tail
• Insert a new data A.
 List before insertion

• After insertion to tail:

data data data data

head_ptr

data data data data

head_ptr

A

•The link value in the new item = None
•The link value of the old last item = newPtr

None

None

Insert – inside the List
• Insert a new data A.
 List before insertion:

• After insertion in 3rd position:

data data data data

head_ptr

data A data data

head_ptr

data

•The link-value in the new item = link-value of 2nd item
•The new link-value of 2nd item = newPtr

None

None

Insert – at the Tail
Example

Steps:

1. Create a node.
2. If the list is empty, make the new node the head of the list.
3. Else traverse the list till the end, make the last node point to

the new node and the new node point to None.
4. Increase the length of the list.

Insert – at the Tail
Example

def addnode(self, data):
 """Adds a node to the tail of the List"""
 new_node = Node(data) # Create a node
 if self.length <= 0: # if the list is empty
 self.head = new_node
 self.length += 1 # increase the length
 else:
 current = self.head
 while current.next is not None:
 current = current.next
 current.next = new_node # Assign the new node
 self.length += 1 # increase the length

Delete – the Head Item
• List before deletion:

• List after deletion of the head item:

data data data data

head_ptr

data data data data

head_ptr

data

•The new value of head_ptr = link-value of the old head item
•The old head item is deleted and its memory returned

data
None

None

Delete – the Tail Item
• List before deletion:

• List after deletion of the tail item:

data data data data

head_ptr

data data data

head_ptr

data

data data

None

Delete – an inside Item
• List before deletion:

• List after deletion of the 2nd item:

data data data data

head_ptr

data data

head_ptr

•New link-value of the item located before the deleted one =
 the link-value of the deleted item

data

data data data

None

None

Delete node at a given Index
 def removenode(self, index):

 """Removes node at a given index"""
 if self.length <= 0: # check if the list is empty
 print "The list is empty"
 else:
 prev = None
 current = self.head
 i = 0
 while (current is not None) and (i < index):
 prev = current
 current = current.next
 i += 1
 if prev is None: # the head element is to be removed
 self.head = current.next
 self.length -= 1 # decrease the length of the list
 else:
 prev.next = current.next
 self.length -= 1 # decrease the length of the list

Function to print items in a
Linked List

def printlist(self):
 """Function to print items one by one"""
 current = self.head
 while current is not None:
 print current,
 current = current.next
 print

Linked List: Example
• Main function using the Node and LinkedList class to create
 a Linked List.

"""Main program that creates the Linked List"""

if __name__ == "__main__":
 mylist = LinkedList()
 mylist.addnode(1)
 mylist.addnode(2)
 mylist.addnode(3)
 mylist.printlist()
 mylist.removenode(1)
 print "After removing the node at index 1"
 mylist.printlist()

Output:
1 2 3
After removing the node at index 1
1 3

Bitwise Operators in Python

Python Bitwise
Operators:

Operator Description

& Binary AND Operator copies a bit to the result if it
exists in both operands.

| Binary OR Operator copies a bit if it exists in either
operand.

^ Binary XOR Operator copies the bit if it is set in one
operand but not both.

~ Binary Ones Complement Operator is unary and has
the effect of 'flipping' bits.

<< Binary Left Shift Operator. The left operands value is
moved left by the number of bits specified by the
right operand.

>> Binary Right Shift Operator. The left operands value is
moved right by the number of bits specified by the
right operand.

Bitwise Operators
Example

#!/usr/bin/python
a = 60 # 60 = 0011 1100
b = 13 # 13 = 0000 1101
c = 0
c = a & b # 12 = 0000 1100
print "Line 1 - Value of c is ", c
c = a | b # 61 = 0011 1101
print "Line 2 - Value of c is ", c
c = a ^ b # 49 = 0011 0001
print "Line 3 - Value of c is ", c
c = ~a # -61 = 1100 0011
print "Line 4 - Value of c is ", c
c = a << 2 # 240 = 1111 0000
print "Line 5 - Value of c is ", c

to be continued...

	Slide Number 1
	Definition of Linked Lists
	Definition Details
	Examples of Linked Lists
	Node class
	LinkedList class
	Operations on Linked Lists
	Insert– At the Head
	Insert – at the Tail
	Insert – inside the List
	Insert – at the Tail�Example�
	Insert – at the Tail�Example�
	Delete – the Head Item
	Delete – the Tail Item
	Delete – an inside Item
	Delete node at a given Index�
	Function to print items in a Linked List
	Slide Number 18
	Slide Number 19
	Python Bitwise Operators:
	Bitwise Operators�Example
	Slide Number 22

