
WWW 

HTTP, Ajax, APIs, REST 



HTTP 
• Hypertext Transfer Protocol 

 
 
 
– Connectionless 
– Media Independent 
– Stateless 

 
 

2 

Web Client HTTP Server WSGI 
Request 

Response 

Python Web Application 

WSGI : Web Server Gateway Interface 

Presenter
Presentation Notes
telnet www.google.com
GET / HTTP/1.0
HEAD / HTTP/1.1

Keepalive – allows reuse of the tcp connection for http talking. Still every request is independent.



HTTP Methods 

• Most common: GET, POST, HEAD 
– GET: retrieve data from the server 

• Form submissions can be encapsulated in URLs 

– HEAD: like GET, but just get the headers from the 
server 

– POST: Used to send data to the server 
• Query Length can be unlimited (unlike in GET) 
• Can be used to send entire files 
• Form data is attached to the end of POST request 

3 
Other Methods: PUT and DELETE 



GET Demo 
• A simple example 

4 

… 

Response Headers 



GET Authentication 
• Basic Authentication (Another form: digest auth) – apache 

 

5 

… 



GET Headers 
• Specify Request headers:  

 
 
 
 
 
 
 

• HTTP client identifies itself using User-Agent 

6 
Ip2location.com can turn this into where you are? 



Response 

• Server Responds 

7 

… 



Web Client  

• urllib : You’ve already used it… 
– http, ftp, https, … 
>>> f = urllib.urlopen(“https://www.google.com”) 
>>> data = f.read() 

 
 
 

– Other options: urllib2, mechanize, …  
– urllib2 provides urlopen as well + much more. 

 
 

 

8 

A File like object 

https://www.google.com/


Rendering html 

• A simple and quick html renderer for your 
html data: 

• urllib2 can be used in place of urllib 

9 

Presenter
Presentation Notes
Why don’t images render – because css and images are relative paths and the renderer doesn’t have access anymore.


from PyQt4.QtWebKit import QWebView
from PyQt4.QtGui import QApplication
import urllib2
import sys

url = "https://www.google.com"

app = QApplication(sys.argv)
web = QWebView()
web.setHtml(urllib2.urlopen(url).read())
web.show()
sys.exit(app.exec_())





urllib2 
• Requests and Response are now objects 

– request = urllib2.Request('http://compgeom.com/~piyush/') 
– response = urllib2.urlopen(request) 
– data =response.read() 

 
• Requests can have additional data 

– HTTP headers (helps emulating User-Agents) 
– Authentication 
– User data ( POST ) 

 
• Automatically handles redirections. 

10 



Changing headers 
>>> request = urllib2.Request('http://compgeom.com/~piyush/') 
>>> request.add_header('If-Modified-Since', ‘Mon, 11 Apr 2011 04:00:08 GMT') 
>>> request.add_header('User-Agent', 'My supercool client') 
>>> data = urllib2.urlopen(request).read() 

 
 

• Apache Server Log: 
– 68.237.112.224 - - [14/Apr/2011:11:36:49 -0400] "GET /~piyush/ HTTP/1.1" 200 

1020 "-" "My supercool client" 

11 



Handling exceptions 
• Exception Classes: IOError  URLError  HTTPError 
• Most errors raised by urllib2 will be caught in these classes 
• Rarely, you might see other errors 
• Catching urllib2 errors: 

12 

Presenter
Presentation Notes

import sys
from urllib2 import Request, urlopen

req = Request("http://hello-world.compgeom.com")

try:
    response = urlopen(req)

except IOError as e:
    if hasattr(e, 'reason'):
        print 'Server Unreachable'
        print 'Reason: ', e.reason
    elif hasattr(e, 'code'):
        print 'Server did not fulfill the request.'
        print 'Error code: ', e.code
except:
    print "Unexpected Error!", sys.exc_info()[0]
    raise
else:
    print("So far so good.")
    print response.read()
 





What is AJAX ? 
• Asynchronous Javascript and XML. 
 
• Not a stand-alone language or technology. 
 
• It is a technique that combines a set of 

known technologies in order to create 
faster and more user friendly web pages. 

 
• It is a client side technology. 



Purpose of AJAX 
• Prevents unnecessary reloading of a page. 
 
• When we submit a form, although most of 

the page remains the same, whole page is 
reloaded from the server. 

 
• This causes very long waiting times and 

waste of bandwidth. 
 
• AJAX aims at loading only the necessary 

information, and making only the 
necessary changes on the current page 
without reloading the whole page. 



Purpose of AJAX 

• Connection between client side 
script and server side script. 

 
• Better user experience 
 
• More flexibility 
 
• More options 



Big Picture 



Simple Processing 

• AJAX is based on Javascript, and the main 
functionality is to access the web server inside the 
Javascript code. 

 
• We access to the server using special objects; we 

send data and retrieve data. 
 
• When user initiates an event, a javascript function is 

called which accesses server using the objects. 
 
• The received information is shown to the user by 

means of the Javascript’s functions. 



Data Exchange in 
AJAX 



Examples 

• Example 1 
http://www.w3schools.com/ajax/ajax_example.asp 

 
• Another example 
http://www.w3schools.com/ajax/ajax_database.asp 
 
• Therefore, by using AJAX, unnecessary exchange of data  
     is prevented, web pages become: 
 More interactive 
 Faster 
 More user friendly 
 

http://www.w3schools.com/ajax/ajax_example.asp
http://www.w3schools.com/ajax/ajax_example.asp
http://www.w3schools.com/ajax/ajax_database.asp


API 

• Application Programming Interface 
  A protocol intended to be used as an interface  by 
     software components to communicate with each other. 
 

• Source code interface 
 For library or OS 
 Provides services to a program 
 

• At its base, like a header file 
 But, more complete 

 



Why is API Important 

• Company View 
 Can be asset – big user investment in learning and 

using 
 Bad design can be source of long-term support 

problems 
 

• Once used, it’s tough to change 
 Especially if there are several users 
 

• Public APIs – One chance to get it right 



APIs are Everywhere 

 
• Remote Procedure Calls (RPCs) 
 
• File transfer 
 
• Message delivery 
 
• Java APIs 
 
 

 



Characteristics of APIs 

• Easy to learn 
• Easy to use even without documentation 
• Hard to misuse 
• Easy to read and maintain code that uses it 
• Sufficiently powerful to satisfy requirements 
• Easy to extend 
• Appropriate to audience 



REST 

• Representational State Transfer 
– Web API design model 
– Software architecture for distributed systems 
– Rules for Clients/Servers 



REST 

• Constraints 
– Uniform interface separates Client / Server 
– Stateless 
– Cacheable 
– Layered System 
 



RESTful web API HTTP methods 



to be continued... 


	WWW
	HTTP
	HTTP Methods
	GET Demo
	GET Authentication
	GET Headers
	Response
	Web Client 
	Rendering html
	urllib2
	Changing headers
	Handling exceptions
	Slide Number 13
	What is AJAX ?
	Purpose of AJAX
	Purpose of AJAX
	Big Picture
	Simple Processing
	Data Exchange in AJAX
	Examples
	API
	Why is API Important
	APIs are Everywhere
	Characteristics of APIs
	REST
	REST
	RESTful web API HTTP methods
	Slide Number 28

