
WWW 

HTTP, Ajax, APIs, REST 



HTTP 
• Hypertext Transfer Protocol 

 
 
 
– Connectionless 
– Media Independent 
– Stateless 
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Web Client HTTP Server WSGI 
Request 

Response 

Python Web Application 

WSGI : Web Server Gateway Interface 

Presenter
Presentation Notes
telnet www.google.com
GET / HTTP/1.0
HEAD / HTTP/1.1

Keepalive – allows reuse of the tcp connection for http talking. Still every request is independent.



HTTP Methods 

• Most common: GET, POST, HEAD 
– GET: retrieve data from the server 

• Form submissions can be encapsulated in URLs 

– HEAD: like GET, but just get the headers from the 
server 

– POST: Used to send data to the server 
• Query Length can be unlimited (unlike in GET) 
• Can be used to send entire files 
• Form data is attached to the end of POST request 
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Other Methods: PUT and DELETE 



GET Demo 
• A simple example 
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… 

Response Headers 



GET Authentication 
• Basic Authentication (Another form: digest auth) – apache 
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… 



GET Headers 
• Specify Request headers:  

 
 
 
 
 
 
 

• HTTP client identifies itself using User-Agent 
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Ip2location.com can turn this into where you are? 



Response 

• Server Responds 
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… 



Web Client  

• urllib : You’ve already used it… 
– http, ftp, https, … 
>>> f = urllib.urlopen(“https://www.google.com”) 
>>> data = f.read() 

 
 
 

– Other options: urllib2, mechanize, …  
– urllib2 provides urlopen as well + much more. 
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A File like object 

https://www.google.com/


Rendering html 

• A simple and quick html renderer for your 
html data: 

• urllib2 can be used in place of urllib 
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Presenter
Presentation Notes
Why don’t images render – because css and images are relative paths and the renderer doesn’t have access anymore.


from PyQt4.QtWebKit import QWebView
from PyQt4.QtGui import QApplication
import urllib2
import sys

url = "https://www.google.com"

app = QApplication(sys.argv)
web = QWebView()
web.setHtml(urllib2.urlopen(url).read())
web.show()
sys.exit(app.exec_())





urllib2 
• Requests and Response are now objects 

– request = urllib2.Request('http://compgeom.com/~piyush/') 
– response = urllib2.urlopen(request) 
– data =response.read() 

 
• Requests can have additional data 

– HTTP headers (helps emulating User-Agents) 
– Authentication 
– User data ( POST ) 

 
• Automatically handles redirections. 
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Changing headers 
>>> request = urllib2.Request('http://compgeom.com/~piyush/') 
>>> request.add_header('If-Modified-Since', ‘Mon, 11 Apr 2011 04:00:08 GMT') 
>>> request.add_header('User-Agent', 'My supercool client') 
>>> data = urllib2.urlopen(request).read() 

 
 

• Apache Server Log: 
– 68.237.112.224 - - [14/Apr/2011:11:36:49 -0400] "GET /~piyush/ HTTP/1.1" 200 

1020 "-" "My supercool client" 
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Handling exceptions 
• Exception Classes: IOError  URLError  HTTPError 
• Most errors raised by urllib2 will be caught in these classes 
• Rarely, you might see other errors 
• Catching urllib2 errors: 
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import sys
from urllib2 import Request, urlopen

req = Request("http://hello-world.compgeom.com")

try:
    response = urlopen(req)

except IOError as e:
    if hasattr(e, 'reason'):
        print 'Server Unreachable'
        print 'Reason: ', e.reason
    elif hasattr(e, 'code'):
        print 'Server did not fulfill the request.'
        print 'Error code: ', e.code
except:
    print "Unexpected Error!", sys.exc_info()[0]
    raise
else:
    print("So far so good.")
    print response.read()
 





What is AJAX ? 
• Asynchronous Javascript and XML. 
 
• Not a stand-alone language or technology. 
 
• It is a technique that combines a set of 

known technologies in order to create 
faster and more user friendly web pages. 

 
• It is a client side technology. 



Purpose of AJAX 
• Prevents unnecessary reloading of a page. 
 
• When we submit a form, although most of 

the page remains the same, whole page is 
reloaded from the server. 

 
• This causes very long waiting times and 

waste of bandwidth. 
 
• AJAX aims at loading only the necessary 

information, and making only the 
necessary changes on the current page 
without reloading the whole page. 



Purpose of AJAX 

• Connection between client side 
script and server side script. 

 
• Better user experience 
 
• More flexibility 
 
• More options 



Big Picture 



Simple Processing 

• AJAX is based on Javascript, and the main 
functionality is to access the web server inside the 
Javascript code. 

 
• We access to the server using special objects; we 

send data and retrieve data. 
 
• When user initiates an event, a javascript function is 

called which accesses server using the objects. 
 
• The received information is shown to the user by 

means of the Javascript’s functions. 



Data Exchange in 
AJAX 



Examples 

• Example 1 
http://www.w3schools.com/ajax/ajax_example.asp 

 
• Another example 
http://www.w3schools.com/ajax/ajax_database.asp 
 
• Therefore, by using AJAX, unnecessary exchange of data  
     is prevented, web pages become: 
 More interactive 
 Faster 
 More user friendly 
 

http://www.w3schools.com/ajax/ajax_example.asp
http://www.w3schools.com/ajax/ajax_example.asp
http://www.w3schools.com/ajax/ajax_database.asp


API 

• Application Programming Interface 
  A protocol intended to be used as an interface  by 
     software components to communicate with each other. 
 

• Source code interface 
 For library or OS 
 Provides services to a program 
 

• At its base, like a header file 
 But, more complete 

 



Why is API Important 

• Company View 
 Can be asset – big user investment in learning and 

using 
 Bad design can be source of long-term support 

problems 
 

• Once used, it’s tough to change 
 Especially if there are several users 
 

• Public APIs – One chance to get it right 



APIs are Everywhere 

 
• Remote Procedure Calls (RPCs) 
 
• File transfer 
 
• Message delivery 
 
• Java APIs 
 
 

 



Characteristics of APIs 

• Easy to learn 
• Easy to use even without documentation 
• Hard to misuse 
• Easy to read and maintain code that uses it 
• Sufficiently powerful to satisfy requirements 
• Easy to extend 
• Appropriate to audience 



REST 

• Representational State Transfer 
– Web API design model 
– Software architecture for distributed systems 
– Rules for Clients/Servers 



REST 

• Constraints 
– Uniform interface separates Client / Server 
– Stateless 
– Cacheable 
– Layered System 
 



RESTful web API HTTP methods 



to be continued... 
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