
Walk through previous

lectures

Tuple
tuple_name = (value, value, ..., value)

• A way of packing multiple values into a variable
>>> x = 3
>>> y = -5
>>> p = (x, y, 42)
>>> p
(3, -5, 42)

name, name, ..., name = tuple_name

• Unpacking a tuple‘s contents in to multiple variables
>>> a, b, c = p
>>> a
3
>>> b
-5
>>> c
42

Using Tuples

• Useful for storing multi-dimensional data (eg- (x,y) points)
>>> p = (42, 39)

• Useful for returning more than one value
>>> def slope ((x1,y1), (x2, y2)):
... return (y2 – y1) /(x2 – x1)
... p1 = (2, 5)
... p2 = (4, 11)
... slope(p1, p2)
3

Dictionaries

• Hash tables, "associative arrays"
 d = {"duck": "eend", "water": "water"}

• Lookup:
 d["duck"] -> "eend"
 d["back"] # raises KeyError exception

• Delete, insert, overwrite:
del d["water"] # {"duck": "eend", "back": "rug"}
d["back"] = "rug" # {"duck": "eend", "back": "rug"}
d["duck"] = "duik" # {"duck": "duik", "back": "rug"}

Dictionaries

• Keys must be immutable:

• numbers, strings, tuples of immutables

 these cannot be changed after creation

• reason is hashing (fast lookup technique)

• not lists or other dictionaries

 these types of objects can be changed "in place"

• no restrictions on values

• Keys will be listed in arbitrary order

• again, because of hashing

Web Resources

• Page/Document

o Typically written in Hyper Text Markup Language (HTML)

 or Extensible Markup Language (XML)

• File/Data

o Images

o Music

o Executable Objects

o …

Client Side Technologies

• Document structure / content

o HTML, XML

• Document styling

o CSS

• Dynamics

o Javascript, Java, Flash, Silverlight

HTML

• Markup to support structured documents

• Semantics for . . .

o Text (headings, paragraphs, lists, tables, etc)

o Multimedia (images, music, video, etc)

o Links to other resources

o Forms

o Styling

o Scripting

HTML
Example: (Hello_world.html)

<!DOCTYPE HTML>

<html>
 <head>
 <meta http-equiv="Content-type"
 content="text/html;charset=UTF-8">
 <title>Computer Science </title>
 </head>
 <body>
 <p>hello</p>
 <p>world</p>
 </body>
</html>

What are Cascading Style Sheets?

• Separates design elements from structural logic

• Has become the W3C standard for controlling visual
 presentation of web pages

• You get control and maintain the integrity of your data

Let’s See Some Code

• Rule Structure

Selectors

• Element Selectors

H1 {color: purple;}

H1, H2, P {color: purple;}

• Class Selectors

<H1 CLASS=“warning”>Danger!</H1>

<P CLASS=“warning”>Be careful…</P>

What is JavaScript

• Scripting language (object-oriented)
o Lightweight programming language developed by Netscape
o Interpreted, not compiled

• Designed to be embedded in browsers
o Ideal for adding interactivity to HTML pages
o Detect browser versions
o Work with info from user via HTML forms
o Create cookies
o Validate form data
o Read and write HTML elements

What can we do with

JavaScript?

• To create interactive user interface in a web page (e.g.,
menu, pop-up alert, windows, etc.)

• Manipulating web content dynamically

 Change the content and style of an element

 Replace images on a page without page reload

 Hide/Show contents

• Generate HTML contents on the fly

• Form validation

• AJAX (e.g. Google complete)

• etc.

Advantages of JavaScript

• Speed: JavaScript is executed on the client side.

• Simplicity: JavaScript is a relatively easy language

 The JavaScript language is relatively easy to learn

 and comprises of syntax that is close to English.

• Versatility: JavaScript plays nicely with other languages

 and can be used in a huge variety of applications.

1. A user issues a request for a domain’s

root URL / to go to its home page.

2. routes.py maps the URL / to a Python

function.

3. The Python function finds a web

template living in the templates/ folder.

4. A web template will look in

the static/ folder for any images, CSS,

or JavaScript files it needs as it

renders to HTML

5. Rendered HTML is sent back

to routes.py

6. routes.py sends the HTML back to the

browser

Flask

What is AJAX ?

• Asynchronous Javascript and XML.

• Not a stand-alone language or technology.

• It is a technique that combines a set of known

technologies in order to create faster and more user

friendly web pages.

• It is a client side technology.

Purpose of AJAX

• Prevents unnecessary reloading of a page.

• When we submit a form, although most of the page
remains the same, whole page is reloaded from the
server.

• This causes very long waiting times and waste of
bandwidth.

• AJAX aims at loading only the necessary information,
and making only the necessary changes on the
current page without reloading the whole page.

Purpose of AJAX

• Connection between client side script and server side

script.

• Better user experience

• More flexibility

• More options

Data Exchange in

AJAX

API

• Application Programming Interface

 A protocol intended to be used as an interface by

 software components to communicate with each other.

• Source code interface

 For library or OS

 Provides services to a program

• At its base, like a header file

 But, more complete

APIs are Everywhere

• Remote Procedure Calls (RPCs)

• File transfer

• Message delivery

• Java APIs

Characteristics of APIs

• Easy to learn

• Easy to use even without documentation

• Hard to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to extend

• Appropriate to audience

Classes

class name:

 "documentation"

 statements

-or-
class name(base1, base2, ...):

 ...

Most, statements are method definitions:
 def name(self, arg1, arg2, ...):
 ...

May also be class variable assignments

Using Classes

• To create an instance, simply call the class object:

x = Stack() # no 'new' operator!

• To use methods of the instance, call using dot notation:

x.empty() # -> 1

x.push(1) # [1]

x.empty() # -> 0

x.push("hello") # [1, "hello"]

x.pop() # -> "hello" # [1]

• To inspect instance variables, use dot notation:

x.items # -> [1]

Examples of Linked Lists

• A linked list of strings can represent a waiting line of

 customers.

Tom Dan Sue Mary

head_ptr

• A linked list of integers can represent a stack of numbers.

10 8 6 2

head_ptr

None

None

Node class

• Every Node has a value and a pointer to the next node.
• When a node is first created, its data is set to None and does

not point to any node.

"""Node class"""

class Node:
 """By default the data and next are none"""
 def __init__(self, data=None, next=None):
 self.data = data
 self.next = next

 def __str__(self):
 return str(self.data)

LinkedList class

• LinkedList holds a pointer to the first (head) node in the list and
an integer that contains the length of the list.

• A linked list is empty when created; thus the "head" node is
None and the length is 0.

"""LinkedList class"""

class LinkedList:
 """Handler for manipulating list of Node objects"""
 def __init__(self):
 self.length = 0
 self.head = None

Operations on Linked Lists

• Insert a new item
 At the head of the list, or
 At the tail of the list, or
 Inside the list, in some designated position

• Delete an item from the list
 Search for and locate the item, then remove the item, and
finally adjust the surrounding pointers

Insert – at the Tail

Example

def addnode(self, data):
 """Adds a node to the tail of the List"""
 new_node = Node(data) # Create a node
 if self.length <= 0: # if the list is empty
 self.head = new_node
 self.length += 1 # increase the length
 else:
 current = self.head
 while current.next is not None:
 current = current.next
 current.next = new_node # Assign the new node
 self.length += 1 # increase the length

Delete node at a given Index

 def removenode(self, index):
 """Removes node at a given index"""
 if self.length <= 0: # check if the list is empty
 print "The list is empty"
 else:
 prev = None
 current = self.head
 i = 0
 while (current is not None) and (i < index):
 prev = current
 current = current.next
 i += 1
 if prev is None: # the head element is to be removed
 self.head = current.next
 self.length -= 1 # decrease the length of the list
 else:
 prev.next = current.next
 self.length -= 1 # decrease the length of the list

Python Bitwise

Operators:
Operator Description

& Binary AND Operator copies a bit to the result if it
exists in both operands.

| Binary OR Operator copies a bit if it exists in either
operand.

^ Binary XOR Operator copies the bit if it is set in one
operand but not both.

~ Binary Ones Complement Operator is unary and has
the effect of 'flipping' bits.

<< Binary Left Shift Operator. The left operands value is
moved left by the number of bits specified by the
right operand.

>> Binary Right Shift Operator. The left operands value is
moved right by the number of bits specified by the
right operand.

Bitwise Operators

Example

#!/usr/bin/python
a = 60 # 60 = 0011 1100
b = 13 # 13 = 0000 1101
c = 0
c = a & b # 12 = 0000 1100
print "Line 1 - Value of c is ", c
c = a | b # 61 = 0011 1101
print "Line 2 - Value of c is ", c
c = a ^ b # 49 = 0011 0001
print "Line 3 - Value of c is ", c
c = ~a # -61 = 1100 0011
print "Line 4 - Value of c is ", c
c = a << 2 # 240 = 1111 0000
print "Line 5 - Value of c is ", c

Stack
• stack: A collection based on the principle of

adding elements and retrieving them in the

opposite order.

– Last-In, First-Out ("LIFO")

– The elements are stored in order of insertion,

but we do not think of them as having indexes.

– The client can only add/remove/examine

the last element added (the "top").

• basic stack operations:

– push: Add an element to the top.

– pop: Remove the top element.

– isEmpty: Check whether the stack is empty.

Stack

• The Stack consists of two classes: the stack, which has a

 head element and the element, which has a next element.

class Element:
 """Element class"""
 def __init__(self, value, next):
 self.value = value
 self.next = next

class Stack:
 """Stack class"""
 def __init__(self):
 self.items = []

Stack: Push and Pop

• Push: To push a new item onto the stack, push appends it

 onto items list.

def push(self, item):
 """Function to push new items on to stack"""
 self.items.append(item)

• Pop: To pop an item off the stack, pop removes the item from

 the items list.

def pop(self):
 """Function to pop items off the stack"""
 return self.items.pop()

Stack: empty

• Empty: return true if the stack is empty, indicated by checking

 the items list.

def isempty(self):
 """Function to check stack empty"""
 return (self.items == [])

Stack: Example

• Main function using the Element and Stack class

if __name__ == "__main__":
 S = Stack()
 ELEMENTS = ["first", "second", "third", "fourth"]
 for e in ELEMENTS:
 S.push(e)
 RESULT = []
 while not S.isempty():
 RESULT.append(S.pop())
 assert RESULT == ["fourth", "third", "second", "first"]

Queue
• queue: Retrieves elements in the order they

were added.

– First-In, First-Out ("FIFO")

– Elements are stored in order of

insertion but don't have indexes.

– Client can only add to the end of the

queue, and can only examine/remove

the front of the queue.

• basic queue operations:

– add (enqueue): Add an element to the back.

– remove (dequeue): Remove the front

element.

Queue Operations

• The Queue is defined by the following operations:

__init__

 Initialize a new empty queue.

insert

 Add a new item to the queue.

remove

 Remove and return an item from the queue. The

item that is returned is the first one that was added.

isempty

Check whether the queue is empty.

Queue Class

• The implementation of the Queue is called a linked

queue because it is made up of linked Node objects.

• A Queue is empty when created ; thus the "head" node is

None and the length is 0.

"""Queue Class"""

class Queue:
 """Contains the head and the length"""
 def __init__(self):
 self.length = 0
 self.head = None

Queue: Insert
def insert(self, data):
 """Insert item at the end of list"""
 node = Node(data) # create a Node
 node.next = None
 if self.head is None:
 # if list is empty the new node goes first
 self.head = node
 else:
 # find the last node in the list
 last = self.head
 while last.next:
 last = last.next
 # append the new node
 last.next = node
 self.length = self.length + 1

Queue: remove and isempty

def remove(self):
 """Removes head from list"""
 data = self.head.data
 self.head = self.head.next
 self.length = self.length - 1
 return data

• Removes the first item (head) from the queue and returns

the removed item.

• Identical to removing items from head of Linked List.

• isempty checks if the queue is empty.

• Identical to the LinkedList method.

def isempty(self):
 """checks if the Queue is empty"""
 return (self.length == 0)

Queue Module

• Useful in threaded programming to exchange information

 among threads safely.

• The module implements three types of Queues.

 FIFO Queue: The first tasks added are the first to be

 retrieved.

 LIFO Queue: The most recently added entry is the first

 to be retrieved.

 Priority Queue: The entries are kept sorted and the

 lowest valued entry is retrieved first.

Binary Trees

• A binary tree is composed of zero or more nodes in which no

 node can have more than two children.

• Each node contains:

 A value (some sort of data item).

 A reference or pointer to a left child (may be null), and

 A reference or pointer to a right child (may be null)

• A binary tree may be empty (contain no nodes).

• If not empty, a binary tree has a root node.

 Every node in the binary tree is reachable from the root

node by a unique path.

• A node with neither a left child nor a right child is called a leaf.

Binary Search Trees

• Stores keys in the nodes in a way so that searching, insertion

and deletion can be done efficiently.

• Binary search tree property

For every node X, all the keys in its left subtree are smaller

than the key value in X, and all the keys in its right subtree are

larger than the key value in X

BST: Insert item

• Insert the following items

to the binary search tree.

50

20

75

98

80

31

150

39

23

11

77

50

20 75

80

98 11

39

31

150 23

77

• What is the size of the problem?

Ans. Number of nodes in the tree we are

examining

• What is the base case(s)?

Ans. The tree is empty

• What is the general case?

Ans. Choose the left or right subtree

BST: Insert item

Traversals

• traversal: An examination of the elements of a

tree.

– A pattern used in many tree algorithms and

methods

• Common orderings for traversals:

– pre-order: process root node, then its

left/right subtrees

– in-order: process left subtree, then root

node, then right

– post-order: process left/right subtrees,

then root node 40 81

9 41

17

6 29

Root

Traversal example

• pre-order: 17 41 29 6 81 40

• in-order: 29 41 6 17 81 9 40

• post-order: 29 6 41 81 40 9 17

40 81

9 41

17

6 29

Root

Huffman Coding

• Huffman codes can be used to compress information

– Like WinZip – although WinZip doesn’t use the Huffman
algorithm

– JPEGs do use Huffman as part of their compression
process

• The basic idea is that instead of storing each character in
a file as an 8-bit ASCII value, we will instead store the
more frequently occurring characters using fewer bits and
less frequently occurring characters using more bits

– On average this should decrease the filesize (usually ½)

• Uncompressing works by reading in the file bit by bit

– Start at the root of the tree

– If a 0 is read, head left

– If a 1 is read, head right

– When a leaf is reached decode that character and start over
again at the root of the tree

• Thus, we need to save Huffman table information as a header
in the compressed file

– Doesn’t add a significant amount of size to the file for large
files (which are the ones you want to compress anyway)

– Or we could use a fixed universal set of codes/freqencies

Huffman Coding

More

Hashing
List Comprehensions
Practice Problems

