Hierarchical Approach for Deriving a Reproducible LU factorization

Roman lakymchuk¹, <u>David Defour²</u>, Stef Graillat³, and Enrique S. Quitana Ortí⁴

¹KTH Royal Institute of Technology, CSC, CST/PDC
²Université de Perpignan, DALI–LIRMM
³Sorbonne Universités, UPMC Univ Paris VI, UMR 7606, LIP6
⁴Universidad Jaime I, 12.071-Castellón, Spain

David.Defour@univ-perp.fr

NRE16 at SC16, Nov 18th, 2016 Salt Lake City, Utah, USA

Reproducible LU

Linear Algebra Libraries

$$\begin{array}{lll} \text{BLAS-1 [1979]:} & y := y + \alpha x & \alpha \in \mathbb{R}; x, y \in \mathbb{R}^n & 2/3 \\ & \alpha := \alpha + x^T y & & \\ \text{BLAS-2 [1988]:} & A := A + xy^T & A \in \mathbb{R}^{n \times n}; x, y \in \mathbb{R}^n & 2 \\ & y := A^{-1} x & & \\ \text{BLAS-3 [1990]:} & C := C + AB & A, B, C \in \mathbb{R}^{n \times n} & n/2 \\ & C := A^{-1}B & & \end{array}$$

Goals

• To compute BLAS operations with floating-point numbers fast and precise, ensuring their numerical reproducibility, on a wide range of architectures

ExBLAS – Exact BLAS

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, EXAXPY, ...
- **Ex**BLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

Goals

• To compute BLAS operations with floating-point numbers fast and precise, ensuring their numerical reproducibility, on a wide range of architectures

ExBLAS – Exact BLAS

• **Ex**BLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

• ExBLAS-2: EXGER, EXGEMV, EXTRSV, EXSYR, ...

• ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

 Use the ExBLAS kernels to construct exact higher-level operations such as the LU factorization

Accuracy and Reproducibility of FP Operations

- 2 Exact Parallel Reduction
- 3 ExBLAS and Reproducible LU
 - 4 Performance Results
- 5 Conclusions and Future Work

Accuracy and Reproducibility of FP Operations

- 2 Exact Parallel Reduction
- 3 ExBLAS and Reproducible LU
- 4 Performance Results
- 5 Conclusions and Future Work

Accuracy and Reproducibility

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1) + 2^{-53} \neq -1 + (1+2^{-53})$ in double precision

Accuracy and Reproducibility

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $2^{-53} \neq 0$ in double precision

Accuracy and Reproducibility

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1)+2^{-53}\neq -1+(1+2^{-53}) \quad \text{in double precision}$

- Consequence: results of floating-point computations depend on the order of computation
- Results computed by performance-optimized parallel floating-point libraries may be often inconsistent: each run returns a different result
- **Reproducibility** ability to obtain bit-wise identical results from run-to-run on the same input data on the same or different architectures

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- \rightarrow Example: Intel Conditional Numerical Reproducibility ($\sim 2x$ for datum, no accuracy guarantees)

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- → Example: Intel Conditional Numerical Reproducibility ($\sim 2x$ for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors

- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT)
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
 - "Infinite" precision: reproducible independently from the inputs
- → Example: Kulisch accumulator (considered inefficient)

Existing Solutions

• Fix the Order of Computations

- Sequential mode: intolerably costly at large-scale systems
- Fixed reduction trees: substantial communication overhead
- → Example: Intel Conditional Numerical Reproducibility ($\sim 2x$ for datum, no accuracy guarantees)

• Eliminate/Reduce the Rounding Errors

- Fixed-point arithmetic: limited range of values
- Fixed FP expansions with Error-Free Transformations (EFT)
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)
 - "Infinite" precision: reproducible independently from the inputs
- → Example: Kulisch accumulator (considered inefficient)

Libraries

- ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)
- $\rightarrow~$ For BLAS-1, GEMV, and GEMM on CPUs
 - RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra, Langlois, Parello) \rightarrow For BLAS-1 and GEMV on CPUs

Roman lakymchuk (KTH)

Reproducible LU

Accuracy and Reproducibility of FP Operations

- 2 Exact Parallel Reduction
 - 3 ExBLAS and Reproducible LU
- 4 Performance Results
- 5 Conclusions and Future Work

Our Multi-Level Reproducible Summation

- Parallel algorithm with 5-levels
- Suitable for today's parallel architectures
- Based on FPE with EFT and Kulisch accumulator
- Guarantees "inf" precision
- \rightarrow bit-wise reproducibility

Accuracy and Reproducibility of FP Operations

- 2 Exact Parallel Reduction
- 3 ExBLAS and Reproducible LU
 - 4) Performance Results
 - 5 Conclusions and Future Work

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: ExGER, EXGEMV, EXTRSV, EXSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: ExGER, EXGEMV, EXTRSV, EXSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL

• $x := \alpha * x \rightarrow$ correctly rounded and reproducible

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: ExGER, EXGEMV, EXTRSV, EXSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL

- $x := \alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x := 1/\alpha * x \rightarrow \text{not}$ correctly rounded

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: ExGER, EXGEMV, EXTRSV, EXSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL

- $x := \alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x := 1/\alpha * x \rightarrow \text{not}$ correctly rounded
- ExInvSCAL: $x := x/\alpha \rightarrow$ correctly rounded and reproducible

$$A = LU$$

Roman lakymchuk (KTH)

$$A = LU$$

LU Factorization	
$\left(\begin{array}{c} \underline{a_{01}}\\ \hline \underline{\alpha_{11}}\\ \hline \underline{a_{21}} \end{array}\right) := P(p_0) \left(\begin{array}{c} \underline{a_{01}}\\ \hline \underline{\alpha_{11}}\\ \hline \underline{a_{21}} \end{array}\right)$	(\mathbf{swap})
$a_{01} := L_{00}^{-1} a_{01} \ _$	(\mathbf{trsv})
$\alpha_{11} := \alpha_{11} - a_{10}^T a_{01}$	(\mathbf{dot})
$a_{21} := a_{21} - A_{20}a_{01}$	(\mathbf{gemv})
$\pi_1 := PivIndex\left(\frac{\alpha_{11}}{a_{21}}\right)$	(\mathbf{max})
$\left(\frac{\alpha_{11}}{a_{21}}\right) := P(\pi_1) \left(\frac{\alpha_{11}}{a_{21}}\right)$	(\mathbf{swap})
$a_{21} := a_{21} / \alpha_{11}$	(scal)

	i	1	p
i	A_{00}	a_{01}	A_{02}
1	a_{10}^{T}	α_{11}	a_{12}^T
р	A_{20}	a_{21}	A_{22}

 3×3 partitioning of A

Accuracy and Reproducibility of FP Operations

- 2 Exact Parallel Reduction
- 3 ExBLAS and Reproducible LU
- 4 Pe
 - Performance Results
 - Conclusions and Future Work

Parallel Reduction

Performance Scaling on Intel Xeon Phi

Parallel Reduction

Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

Roman lakymchuk (KTH)

Dot Product

Time [secs]

Performance Scaling on NVIDIA Tesla K20c

Matrix-Vector Product

Performance Scaling on NVIDIA Tesla K80

$$\mathsf{DGEMV:}\ y := \alpha A x + \beta y$$

Matrix-Vector Product

Performance Scaling on NVIDIA Tesla K80

Roman lakymchuk (KTH)

Triangular Solver

Matrix Partitioning

Partitioning of a lower triangular matrix L

Triangular Solver

Performance Scaling on NVIDIA Tesla K420

Performance Scaling on NVIDIA Tesla K80

Accuracy and Reproducibility of FP Operations

- 2 Exact Parallel Reduction
- 3 ExBLAS and Reproducible LU
- 4 Performance Results
- 5 Conclusions and Future Work

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling
 - Partitioning/blocking
 - Reduction trees

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling
 - Partitioning/blocking
 - Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling
 - Partitioning/blocking
 - Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations
- $\bullet~$ Reproducible underlying kernels $\rightarrow~$ reproducible LU

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Thread scheduling
 - Partitioning/blocking
 - Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations
- $\bullet~$ Reproducible underlying kernels \rightarrow reproducible LU

Future directions

- Enhance compute-intensive operations and the LU factorization
- Cover the other variants of the unblocked LU factorization
- Application of our implementations in real-world codes

Thank you for your attention!

URL: https://exblas.lip6.fr

