
Hierarchical Approach for Deriving a
Reproducible LU factorization

Roman Iakymchuk1, David Defour2, Stef Graillat3, and
Enrique S. Quitana Ortí4

1KTH Royal Institute of Technology, CSC, CST/PDC
2Université de Perpignan, DALI–LIRMM

3Sorbonne Universités, UPMC Univ Paris VI, UMR 7606, LIP6
4Universidad Jaime I, 12.071-Castellón, Spain

David.Defour@univ-perp.fr

NRE16 at SC16, Nov 18th, 2016
Salt Lake City, Utah, USA

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 1 / 24

Linear Algebra Libraries

Basic Linear Algebra Subprograms (BLAS)

Refer. BLAS MKL, cuBLAS OpenBLAS ATLAS

LAPACK FLAME NAG

⇓

BLAS-1 [1979]: y := y + αx α ∈ R;x, y ∈ Rn 2/3
α := α+ xT y

BLAS-2 [1988]: A := A+ xyT A ∈ Rn×n;x, y ∈ Rn 2
y := A−1x

BLAS-3 [1990]: C := C +AB A,B,C ∈ Rn×n n/2
C := A−1B

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 2 / 24

Goals

To compute BLAS operations with floating-point numbers
fast and precise, ensuring their numerical reproducibility, on
a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

Use the ExBLAS kernels to construct exact higher-level
operations such as the LU factorization

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 3 / 24

Goals

To compute BLAS operations with floating-point numbers
fast and precise, ensuring their numerical reproducibility, on
a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

Use the ExBLAS kernels to construct exact higher-level
operations such as the LU factorization

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 3 / 24

Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 4 / 24

Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 5 / 24

Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 6 / 24

Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

2−53 6= 0 in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 6 / 24

Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 6 / 24

Existing Solutions
Fix the Order of Computations

Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)

→ For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello)→ For BLAS-1 and GEMV on CPUs

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 7 / 24

Existing Solutions
Fix the Order of Computations

Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)

→ For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello)→ For BLAS-1 and GEMV on CPUs

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 7 / 24

Existing Solutions
Fix the Order of Computations

Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)

→ For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello)→ For BLAS-1 and GEMV on CPUs

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 7 / 24

Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 8 / 24

Our Multi-Level Reproducible Summation

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproducibility

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 9 / 24

Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 10 / 24

ExBLAS Highlights

ExBLAS Status
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL
x := α ∗ x→ correctly rounded and reproducible
Within LU: x := 1/α ∗ x→ not correctly rounded
ExInvSCAL: x := x/α→ correctly rounded and reproducible

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 11 / 24

ExBLAS Highlights

ExBLAS Status
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL
x := α ∗ x→ correctly rounded and reproducible

Within LU: x := 1/α ∗ x→ not correctly rounded
ExInvSCAL: x := x/α→ correctly rounded and reproducible

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 11 / 24

ExBLAS Highlights

ExBLAS Status
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL
x := α ∗ x→ correctly rounded and reproducible
Within LU: x := 1/α ∗ x→ not correctly rounded

ExInvSCAL: x := x/α→ correctly rounded and reproducible

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 11 / 24

ExBLAS Highlights

ExBLAS Status
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL
x := α ∗ x→ correctly rounded and reproducible
Within LU: x := 1/α ∗ x→ not correctly rounded
ExInvSCAL: x := x/α→ correctly rounded and reproducible

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 11 / 24

LU Factorization

Ax = b ⇒ A = LU

A

M

N

L

U

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 12 / 24

LU Factorization

A = LU

A

M

Nq

LU

TRSM

GEMM

LU
LU

LU
LU

LU
LU

LU

A

M

Nq

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 12 / 24

LU Factorization

A = LU

A

M

Nq

LU

TRSM

GEMM
LU

LU
LU

LU
LU

LU
LU

A

M

Nq

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 12 / 24

An unblocked LU Factorization

LU Factorization a01
α11

a21

 := P (p0)

 a01
α11

a21

 (swap)

a01 := L−1
00 a01 (trsv)

α11 := α11 − aT10a01 (dot)
a21 := a21 −A20a01 (gemv)

π1 := PivIndex

(
α11

a21

)
(max)(

α11

a21

)
:= P (π1)

(
α11

a21

)
(swap)

a21 := a21/α11 (scal)

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

p

i 1 p

3× 3 partitioning of A

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 13 / 24

Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 14 / 24

Parallel Reduction
Performance Scaling on Intel Xeon Phi

 0

 5

 10

 15

 20

 25

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

G
ac

c/
s

Array size

Parallel FP sum
Demmel fast

TBB deterministic
Superacc

FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 15 / 24

Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 1e+20
 1e+40

 1e+60
 1e+80

 1e+100
 1e+120

 1e+140

G
ac

c/
s

Dynamic range

Parallel FP Sum
Demmel fast

Superacc
FPE2 + Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 16 / 24

Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α := xT y =
∑N

i xiyi

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
[s

ec
s]

Array size

Parallel DDOT
Superacc

FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc

FPE8EE + Superacc

Based on TwoProduct
and Reproducible
Summation
TwoProduct(a, b)

1: r ← a ∗ b
2: s← fma(a, b,−r)
fma(a, b, c) = a ∗ b+ c

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 17 / 24

Matrix-Vector Product
Performance Scaling on NVIDIA Tesla K80

DGEMV: y := αAx+ βy

m

p

:=

mb

A x

+

y

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 18 / 24

Matrix-Vector Product
Performance Scaling on NVIDIA Tesla K80

DGEMV: y := αAx+ βy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

N
o

rm
al

iz
ed

 t
im

e

Matrix size [m = n]

Parallel DGEMV
Superacc

ExGEMV

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 18 / 24

Triangular Solver
Matrix Partitioning

TRSV

TRSV

TRSV

TRSV

GEMV

GEMV

GEMV

bs bs

wg1

wg0

wg3

wg2

Partitioning of a lower triangular matrix L

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 19 / 24

Triangular Solver
Performance Scaling on NVIDIA Tesla K420

DTRSV: Ax = b

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

N
o

rm
al

iz
ed

 t
im

e

Matrix size [n]

Parallel DTRSV
Superacc
ExTRSV

Blocked ExTRSV

Based on ExDOT

Internal ExGEMV

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 20 / 24

LU Factorization
Performance Scaling on NVIDIA Tesla K80

A = LU

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

N
o

rm
al

iz
ed

 t
im

e

Matrix size [m = n]

Parallel DLU
Superacc

ExLU
jik variant of LU

swap()
a01 ← L−1

00 a01 trsv
α11 ← α11 − aT10a01 dot
a21 ← a21 −A20a01 gemv

max()
swap()

a21 ← a21/α11 scal

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 21 / 24

Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 22 / 24

Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24

Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24

Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24

Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24

Thank you for your attention!

URL: https://exblas.lip6.fr

ExBLAS Status
ExBLAS-1: ExSUMa, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
aRoutines in blue are already in ExBLAS

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 24 / 24

https://exblas.lip6.fr

	Accuracy and Reproducibility of FP Operations
	Exact Parallel Reduction
	ExBLAS and Reproducible LU
	Performance Results
	Conclusions and Future Work

