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Linear Algebra Libraries

Basic Linear Algebra Subprograms (BLAS)

Refer. BLAS MKL, cuBLAS OpenBLAS ATLAS

LAPACK FLAME NAG

⇓

BLAS-1 [1979]: y := y + αx α ∈ R;x, y ∈ Rn 2/3
α := α+ xT y

BLAS-2 [1988]: A := A+ xyT A ∈ Rn×n;x, y ∈ Rn 2
y := A−1x

BLAS-3 [1990]: C := C +AB A,B,C ∈ Rn×n n/2
C := A−1B
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Goals

To compute BLAS operations with floating-point numbers
fast and precise, ensuring their numerical reproducibility, on
a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

Use the ExBLAS kernels to construct exact higher-level
operations such as the LU factorization

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 3 / 24



Goals

To compute BLAS operations with floating-point numbers
fast and precise, ensuring their numerical reproducibility, on
a wide range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

Use the ExBLAS kernels to construct exact higher-level
operations such as the LU factorization

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 3 / 24



Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 4 / 24



Outline

1 Accuracy and Reproducibility of FP Operations

2 Exact Parallel Reduction

3 ExBLAS and Reproducible LU

4 Performance Results

5 Conclusions and Future Work

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 5 / 24



Accuracy and Reproducibility

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result

Reproducibility – ability to obtain bit-wise identical
results from run-to-run on the same input data on the
same or different architectures
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Existing Solutions
Fix the Order of Computations

Sequential mode: intolerably costly at large-scale systems

Fixed reduction trees: substantial communication overhead
→ Example: Intel Conditional Numerical Reproducibility

(∼ 2x for datum, no accuracy guarantees)

Eliminate/Reduce the Rounding Errors
Fixed-point arithmetic: limited range of values

Fixed FP expansions with Error-Free Transformations (EFT)
→ Example: double-double or quad-double (Briggs, Bailey, Hida, Li)

(work well on a set of relatively close numbers)

“Infinite” precision: reproducible independently from the inputs
→ Example: Kulisch accumulator (considered inefficient)

Libraries
ReproBLAS: Reproducible BLAS (Demmel, Nguyen, Ahrens)

→ For BLAS-1, GEMV, and GEMM on CPUs
RARE-BLAS: Repr. Accur. Rounded and Eff. BLAS (Chohra,
Langlois, Parello)→ For BLAS-1 and GEMV on CPUs
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Our Multi-Level Reproducible Summation

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproducibility
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ExBLAS Highlights

ExBLAS Status
ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

ExSCAL
x := α ∗ x→ correctly rounded and reproducible
Within LU: x := 1/α ∗ x→ not correctly rounded
ExInvSCAL: x := x/α→ correctly rounded and reproducible
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LU Factorization

Ax = b ⇒ A = LU

A

M

N

L

U
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An unblocked LU Factorization

LU Factorization a01
α11

a21

 := P (p0)

 a01
α11

a21

 (swap)

a01 := L−1
00 a01 (trsv)

α11 := α11 − aT10a01 (dot)
a21 := a21 −A20a01 (gemv)

π1 := PivIndex

(
α11

a21

)
(max)(

α11

a21

)
:= P (π1)

(
α11

a21

)
(swap)

a21 := a21/α11 (scal)

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

p

i 1 p

3× 3 partitioning of A
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Parallel Reduction
Performance Scaling on Intel Xeon Phi
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Parallel Reduction
Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06
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Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α := xT y =
∑N

i xiyi
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Based on TwoProduct
and Reproducible
Summation
TwoProduct(a, b)

1: r ← a ∗ b
2: s← fma(a, b,−r)
fma(a, b, c) = a ∗ b+ c
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Matrix-Vector Product
Performance Scaling on NVIDIA Tesla K80

DGEMV: y := αAx+ βy

m

p

:=

mb

A x

+

y
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Matrix-Vector Product
Performance Scaling on NVIDIA Tesla K80
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Triangular Solver
Matrix Partitioning

TRSV

TRSV

TRSV
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Partitioning of a lower triangular matrix L

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 19 / 24



Triangular Solver
Performance Scaling on NVIDIA Tesla K420

DTRSV: Ax = b
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LU Factorization
Performance Scaling on NVIDIA Tesla K80

A = LU
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swap()
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swap()
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Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24



Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24



Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24



Conclusions and Future Work

Conclusions
Compute the results with no errors due to rounding

Provide bit-wise reproducible results independently from
Data permutation, data assignment
Thread scheduling
Partitioning/blocking
Reduction trees

Deliver comparable performance to the classic implementations of
the memory-bound operations

Reproducible underlying kernels→ reproducible LU

Future directions
Enhance compute-intensive operations and the LU factorization

Cover the other variants of the unblocked LU factorization

Application of our implementations in real-world codes

Roman Iakymchuk (KTH) Reproducible LU Nov 18th, 2016 23 / 24



Thank you for your attention!

URL: https://exblas.lip6.fr

ExBLAS Status
ExBLAS-1: ExSUMa, ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
aRoutines in blue are already in ExBLAS
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