
Identifying Volatile Numeric Expressions
in OpenCL Applications

Miriam Leeser
mel@coe.neu.edu

Mahsa Bayati, Brian Crafton

Electrical and Computer Engineering
Yijia Gu and Thomas Wahl

College of Computer and Information Science
Northeastern University

Boston MA

mailto:mel@coe.neu.edu

Introduction
• Result of floating-point numerical computations

 Execution platform, compiler
• Evaluation order is not standard:

– similar floating point hardware, compilers
have freedom when evaluating floating point
expressions

Depends on

 Volatile expression
For the same input, expression value differs across

platforms

With heterogeneous hardware, differences can
become particularly large

Portability promised by OpenCL,
 but NOT reproducibility

• Applications from Scalable Heterogeneous Computing (SHOC)
Benchmark Suite

 MD: Molecular Dynamics performs an n-body
 pairwise Lennard-Jones potential computation

• Same OpenCL code, same input on

– Hardware platforms: AMD and Intel CPUs ,
 NVIDIA Tesla GPUs, AMD Radeon APUs

• All compliant with IEEE 754-2008

MD-InputSet1 MD-InputSet2

AMDCPU, AMDGPU 9.33E+17 1.53E+14

AMDCPU, Intel 0 0

AMDCPU, NVIDIA 0 2560

AMDGPU, Intel 9.33E+17 1.53E+14

AMDGPU,NVIDIA 9.33E+17 1.53E+14

Intel, NVIDIA 0 2560

MD Largest absolute difference

• Sparse Matrix-Vector Multiplication (SPMV)
• Stencil2D: 2D, 9-point single and double precision
 stencil computation(100 × 100 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 1000 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

Stencil2d-InputSet1 SPMV-Inputset1

AMDCPU, AMDGPU 5.091E+20 0

AMDCPU, Intel 0 0

AMDCPU, NVIDIA 68719476736 6.1E-5

AMDGPU, Intel 5.091E+20 0

AMDGPU,NVIDIA 9. 5.091E+20 6.1E-5

Intel, NVIDIA 68719476736 6.1E-5

Stencil2D , SPMV Largest absolute difference

More applications from SHOC

What feedback can we give the programmer
regarding these differences?

• Determine tight bounds for volatile expressions
 independent of the platform (hardware, compiler)

• Bounds can direct the programmer or compiler to focus on parts

of the program where reproducibility is important

• Our approach addresses differences between platforms
• others focus on differences between floating point and real

numbers

Our approach
Takes a program 𝑖𝑖, a fixed input 𝑖𝑖, an expression 𝑥𝑥 representing
some intermediate result of the program

Our method determines an upper bound I on the range of values
𝑥𝑥(𝑖𝑖) that program 𝑖𝑖 can produce for 𝑥𝑥, on input 𝑖𝑖, across
different platforms.

𝐼𝐼 overapproximates the range, not all values contained in 𝐼𝐼
correspond to values for 𝑥𝑥

Y. Gu, T. Wahl, M. Bayati, and M. Leeser, “Behavioral non-portability in scientific
numeric computing,” in Parallel and Distributed Computing (EURO-PAR), 2015

Tight bound method

• Compute Min and Max values for each volatile
expression, under all possible evaluations

• Analysis uses dynamic programming
• Order of computation is polynomial in time with

 relation to size of expression 𝑥𝑥
• Min and Max values form the left and right boundaries

of interval 𝐼𝐼

Unstable Inputs

Definition:

Let 𝑞𝑞 be a Boolean-valued FP expression. Input 𝐼𝐼 is
unstable if there exist evaluation models 𝑀𝑀0 and 𝑀𝑀1 such
that

𝑞𝑞 𝐼𝐼,𝑀𝑀0 ≠ 𝑞𝑞(𝐼𝐼,𝑀𝑀1)

Minimizing 𝑥𝑥1 + 𝑥𝑥2 + … + 𝑥𝑥𝑛𝑛
… over all possible “parse trees”.

min 𝑥𝑥1 + ⋯+ 𝑥𝑥𝑘𝑘

+𝑘𝑘

min 𝑥𝑥𝑘𝑘+1 + ⋯+ 𝑥𝑥𝑛𝑛

min 𝑥𝑥1 + … + 𝑥𝑥𝑛𝑛 =

Observation:

min
𝑘𝑘

… over all possible parse trees:

Let 𝑁𝑁 𝑖𝑖, 𝑗𝑗 = min 𝑥𝑥𝑖𝑖 + … + 𝑥𝑥𝑗𝑗

Algorithm: fill array 𝑁𝑁 “bottom up”:

1. 𝑁𝑁 1,1 = 𝑥𝑥1 , ... , 𝑁𝑁 𝑖𝑖,𝑖𝑖 = 𝑥𝑥𝑛𝑛
2. 𝑁𝑁 1,2 = 𝑥𝑥1 + 𝑥𝑥2 , ... , 𝑁𝑁 𝑖𝑖 − 1,𝑖𝑖 = 𝑥𝑥𝑛𝑛−1 + 𝑥𝑥𝑛𝑛
3. 𝑁𝑁 1,3 = min { 𝑁𝑁 1,1 + 𝑁𝑁 2,3 , 𝑁𝑁[1,2] + 𝑁𝑁 3,3 }
 ⋮

Then min 𝑥𝑥1 + … + 𝑥𝑥𝑛𝑛 = 𝑁𝑁[1,𝑖𝑖] .

Minimizing 𝑥𝑥1 + 𝑥𝑥2 + … + 𝑥𝑥𝑛𝑛

General Volatile Expressions

Similarly (more or less):

• max 𝑥𝑥1 + … + 𝑥𝑥𝑛𝑛
• min 𝑥𝑥1 ∗ … ∗ 𝑥𝑥𝑛𝑛
• min 𝑥𝑥1 ∗ 𝑦𝑦1 + … + 𝑥𝑥𝑛𝑛 ∗ 𝑦𝑦𝑛𝑛

(analogous)
(sign matters!)
(may involve FMA)

From Expressions to Programs:
Propagating Value Ranges

𝑥𝑥 + 𝑦𝑦 = ↓ 𝑥𝑥 + ↓ 𝑦𝑦, ↑ 𝑥𝑥 + ↑ y

𝑥𝑥 × 𝑦𝑦 = [min 𝑆𝑆 , max 𝑆𝑆] for 𝑆𝑆 = ↓ 𝑥𝑥, ↑ 𝑥𝑥 × {↓ 𝑦𝑦, ↑ 𝑦𝑦}

1. Inputs: 𝑖𝑖 → [𝑖𝑖,𝑖𝑖] , ...

2. Volatile expressions 𝑦𝑦 :
 y → [min

𝑀𝑀
𝑦𝑦 , max

𝑀𝑀
𝑦𝑦] as before

3. Non-volatile: use the domain’s

transfer operation:

x=a+b+c;
y=e*f+g*h;
⋮

Exposing Instabilities

• interval arithmetic overapproximates:
 [↓ 𝑋𝑋, ↑ 𝑋𝑋] overestimates set of possible values of 𝑋𝑋

• 𝑀𝑀0,𝑀𝑀1 may not materialize on your (or any!)
 target platform (our approach is platform-agnostic)

• Goal is tight bounds

... via code instrumentation + runtime analysis:

Finding Instabilities: Dynamic Analysis

Before:
float A = a[0]*a[0] + a[1]*a[1] + a[2]*a[2];

After:

#include “unstable.h"
 ⋮
ufloat A = a[0]*a[0] + a[1]*a[1]+ a[2]*a[2];

Experiments and Results
Two applications :
• SOR: Jacobi Successive Over-Relaxation from SciMark benchmark

– stencil computation: runs on a 100x100 grid
– typical of finite difference applications
– C code from SciMark, we rewrote it in OpenCL

• Stencil2D: 9-point single and double precision stencil computation
• Input matrices for both applications generated with random cell contents
Ran these programs on a diverse set of platforms:

Type Manufacture Description Year FMA?

1 CPU Intel E52650 2012 *

2 CPU AMD A8-3850 2011 N

3 GPU NVIDIA GF108 Quadro
600

2010 N

4 GPU NVIDIA Tesla C2075 2011 Y

5 GPU NVIDIA Tesla K20 2013 Y

6 GPU AMD Radeon
HD66550D

2011 N

SOR Code snippet

SOR (global float* A, int M, int N, float w)
 {
 for(int i=1; i<M-1; i++) {
 for (int j=1; j<N-1; j++){

 A[i*N + j] = (w/4) * (A[(i-1)*N + j]+ A[(i+1)*N + j]+
 A[i*N + (j - 1)] + A[i*N + (j + 1)]) + (1.0-w) * A[i*N + j];

 }
 }
 }

Running our tool on SOR

“original value” : Computed left to right, no FMA

SOR Results
𝑀𝑀𝑖𝑖𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑

= 3.5𝐸𝐸 − 07

• constraints between

different loops limit the
reordering of expressions

• The experimental results

are within the tight
theoretical bound

SOR output differences

SOR-InputSet1

AMDCPU, AMDGPU 0

AMDCPU, Intel 0

AMDCPU, NVIDIA 2.38419E-07

AMDGPU, Intel 0

AMDGPU,NVIDIA 2.38419E-07

Intel, NVIDIA 2.38419E-07

Stencil2D Results

• 𝑀𝑀𝑖𝑖𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 = 0.03
 input size 64x64
 30 iterations

• Experiments result

shows the difference
within the range

Stencil2D output differences

Stencil2D-InputSet1

AMDCPU, AMDGPU 0

AMDCPU, Intel 0

AMDCPU, NVIDIA 0.00288

AMDGPU, Intel 0

AMDGPU,NVIDIA 0.0028

Intel, NVIDIA 0.0028

Conclusions
• We quantify differences that numeric programs

produce, for the same input, across heterogeneous
platforms

• Our experiments showed that differences are real
and occur not only for specific critical inputs, but
even for randomly chosen ones

• We demonstrated that the range of values predicted
by our theoretical method are fairly tight
 … and accurately predict observed differences

Future work

• Automate annotating program for user
• Provide user with robustness tips for important/

volatile portions of the program
– Inhibit use of Fused multiply add (FMA)
– Force expression evaluation orders

• Should be applied to small regions of the program
that contribute most to the computational
differences, leaving the compiler free to rearrange
other parts

 Thank you!

• Miriam Leeser: mel@coe.neu.edu

• Floating point comparison for different platforms,”
http://www.coe.neu.edu/Research/rcl/projects/Floatingpoi
ntComparison/index.html

• Y. Gu, T. Wahl, M. Bayati, and M. Leeser, “Behavioral non-

portability in scientific numeric computing,” in Parallel and
Distributed Computing (EURO-PAR), 2015.

mailto:mel@coe.neu.edu
http://www.coe.neu.edu/Research/rcl/projects/FloatingpointComparison/index.html
http://www.coe.neu.edu/Research/rcl/projects/FloatingpointComparison/index.html

	Identifying Volatile Numeric Expressions �in OpenCL Applications
	Introduction
	Slide Number 3
	Slide Number 4
	More applications from SHOC
	Slide Number 6
	Our approach
	Tight bound method
	Unstable Inputs
	Minimizing 𝑥 1 + 𝑥 2 + … + 𝑥 𝑛
	Minimizing 𝑥 1 + 𝑥 2 + … + 𝑥 𝑛
	General Volatile Expressions
	From Expressions to Programs:�Propagating Value Ranges
	Exposing Instabilities
	Finding Instabilities: Dynamic Analysis
	Experiments and Results
	SOR Code snippet
	Running our tool on SOR
	SOR Results
	Stencil2D Results
	Conclusions
	Future work
	 Thank you!

