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Abstract

In this paper we present the “random walk on the boundary” method for the rapid
solution of integral equations that arise in electrostatics and related areas. This
method is a Monte Carlo method based on the construction of a Markov chain that
is readily interpreted as a random walk along the boundary over which integration
in the integral equation is taken. To illustrate the usefulness of this technique, we
apply it to the computation of the capacitance of the unit cube. Obtaining the
capacitance of the cube usually requires computing the charge density, and this
problem has been used as a benchmark by many in the field for algorithms of this
kind. Here, the “random walk on the boundary” method does not require charge
density computation, and obtains the capacitance of the cube within a statistical
error of 2.7× 10−7, the most accurate estimate to date.
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1 Introduction

In this paper we present a new class of stochastic algorithms, those based on
the “random walk on the boundary” Markov chain. We use these to consider
a stochastic computational approach to a classical problem in electrostatics,
the so-called Robin problem: the computation of the charge distribution on
the surface of a conductor held at a given potential. This problem and related
ones are still topical in many technical applications, and not only in electronics
but in computational biophysics of biomolecules as well (see e.g. [1,2]). This
paper is thus an introduction to the “random walk on the boundary” Monte
Carlo method to a class of problems to which this method has never before
been applied. We hope this work will convince others of the efficacy of this
stochastic method, and encourage them to apply it to their own problems.
It should be clear to the reader that while we focus specifically on problems
in electrostatics in this paper, that the “walk on the boundary” method is a
power tool for solving a variety of elliptic boundary value problems.

Going all the way back to Maxwell’s time, the boundary element method was
effectively used to solve the Robin problem and to calculate the capacitance
as the surface integral of the computed charge density [3]. The common de-
terministic approach is to divide the conductor surface into segments, and to
use a piecewise polynomial (on segments) approximation to the charge den-
sity, with the assumption that the discretized segments are sufficiently small.
Next, the linear dependence between the segment potentials and their charges
makes it possible to reduce the problem to a system of algebraic equations,
which can be solved by an appropriate numerical method. Hence the compu-
tation of capacitance finally requires one to sum up all the computed segment
charges. The accuracy of this computation can be improved by extrapolating
the computed solution to a polynomial in 1/N , where N is the number of
subdivisions [4]. The alternative approach to finding the charge density is to
calculate it as an element in the eigenspace of a particular integral operator
[5,6].

As far as stochastic computational methods are concerned, it is commonly
held that these methods are most efficient when point values or linear func-
tionals of the solution are needed, or when a solution is needed to just a few
percent accuracy. Generally, when either a global solution or a high accuracy
solution is desired, stochastic approaches are not normally considered appro-
priate. Recently, it has been found that in computing the capacitance, the dif-
fusion limited reaction rate, and other related properties of arbitrary shaped
bodies, stochastic simulation algorithms can be competitive with boundary
element and other conventional deterministic computational methods [7]. In
many cases, simple Brownian dynamics simulations can be substantially re-
fined, making it possible to use the walk on spheres (WOS) [8] and the Green’s
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function first passage (GFFP) Monte Carlo methods [9]. Elimination of the
WOS bias due to the boundary with GFFP, the simulation-tabulation tech-
nique [10], and last passage variants of these Monte Carlo algorithms [11]
further extend the capabilities of stochastic computational methods when ap-
plied to electrostatics problems. The progress achieved so far stimulated our
investigation of the “random walk on the boundary algorithm” [12] as applied
to capacitance and charge density calculations. The idea of using this method
on these types of problems dates back to [13]. Here, we thoroughly investi-
gate the computational algorithm based on this approach, the conditions of
its applicability, the rate of convergence, and compare it to other Monte Carlo
and deterministic methods when applied to the model problem of finding the
capacitance of the unit cube.

2 Surface Potential and the Ergodic Theorem

Let G ∈ R3 be a compact set representing an electrical conductor. Our goal
is to calculate C, the capacitance of G, and µ, the charge distribution on its
surface, ∂G.

Mathematically, the problem is to compute the integral

C =
∫

∂G

µ(y) dσ(y)

and the function

µ(y) = − 1

4π

∂u

∂n
(y) , (1)

defined on ∂G, provided that u satisfies Laplace equation in the exterior of G

∆u(x) = 0 .

In addition, we impose the condition that u → 0 as |x| → ∞, and that

u(y) = 1, y ∈ ∂G .

Above, n(y) is the unit normal vector pointing towards the outside the domain,
G.

We assume that the boundary, ∂G, is sufficiently smooth to guarantee the ex-
istence and uniqueness of the exterior Dirichlet problem we have formulated.
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It is sufficient, for example, to demand that ∂G be a regular piecewise Lya-
punov surface [14]. In this case it is possible to represent u as a single layer
potential

u(x) =
∫

∂G

1

|x− y′|µ(y′)dσ(y′) ,

with a charge density, µ, that is the unknown. In this case u is commonly
called the Robin potential.

To find an equation satisfied by µ, we make use of the well-known jump proper-
ties of the Robin potential’s normal derivative. Hence, we have (for x ∈ R3\G
and y ∈ ∂G, | cos ϕyx| = | y − x

|x− y| · n(y)| ≥ α > 0)

∂u

∂n
(y) = lim

x→y
(∇xu(x)) · n(y) (2)

=−
∫

∂G

cos ϕyy′

|y − y′|2µ(y′)dσ(y′)− 2πµ(y) .

From (1) and (2) it follows that

µ(y) =
∫

∂G

cos ϕyy′

2π|y − y′|2µ(y′)dσ(y′) ,

or in operator notation

µ = Kµ .

These equations imply that µ is the eigenfunction of the integral operator, K,
corresponding to the maximal eigenvalue, which equals 1 [15].

Suppose that G is convex, then the kernel of the integral operator k(y, y′) =
cos ϕyy′

2π|y − y′|2 is non-negative and

∫

∂G

cos ϕyy′

2π|y − y′|2dσ(y) = 1 .

This normalization means that k(yn+1, yn) = p(yn → yn+1) can be used as a
transition probability density to construct a Markov chain {yn}∞n=1 of points on
∂G. This density function corresponds to a uniform distribution of successive
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points, yn+1, in the solid angle with vertex yn. This is the so-called isotropic
“random walk on the boundary” [12] process.

Hence, we can think of Ω(y′, ς) =
∫

ς

k(y, y′)dσ(y) as a probability measure

defined for every open set ς in ∂G that is based on choosing points uniformly
in a solid angle with the vertex, y′, subtended by ς.

If ∂G is strictly convex, then the angle measure, Ω, and surface measure, σ,
are absolutely continuous, meaning that Ω(y′, ς) is strictly positive [16]. It is
well known [17] that the weakly singular integral operator, K, is completely
continuous. Thus, Ω(y′, ς) is regular and we can apply the ergodic theorem to
statistics created using this Markov chain [16].

Suppose now that there are planar segments of the boundary. In this case not
every set of non-zero surface area σ(ς) has non-zero angle measure Ω(y′, ς)
for all points y′ ∈ ∂G. However, it can be easily shown that the second
iteration, K2, of the integral operator defines a strictly positive measure

Ω(2)(y′, ς) =
∫

∂G

Ω(y, ς)k(y, y′)dσ(y). Thus, we can apply the ergodic theorem

in this case as well.

Therefore, by this theorem, there exists a positive stationary distribution, Π∞,
of the Markov chain as defined above. This means that

Π∞(ς) =
∫

∂G

Π∞(dσ(y′)) Ω(2)(y′, ς)

for every open set ς ⊂ ∂G. This also implies that the distribution is absolutely
continuous and its density, π∞, satisfies the equation

π∞(y) = K2π∞(y) .

Hence, since µ = Kµ = K2µ,

µ = Cπ∞ (3)

for some constant C. This constant must equal the capacitance of G, since π∞
is a probability density.

Here, we made use of the fact that 1 is a simple eigenvalue of the integral op-
erator K and there is only one eigenfunction corresponding to this eigenvalue
[14].
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By the ergodic theorem [19,18], for an arbitrary initial distribution, Π0, and
bounded function v,

I[v] ≡
∫

∂G

v(y)π∞(y)dσ(y) = lim
N→∞

1

N

N∑

n=1

v(yn) . (4)

Note, that we use both the even and odd indexed points of the Markov chain
in this sum since by (3) π∞ = Kπ∞.

3 A Monte Carlo Estimator for Computing Capacitance

Consider the Robin potential, u, inside G. The boundary conditions state
that the Robin potential is constant and equal to one in G. The interpretation
of this hearkens back to elementary physics where one learns that inside a
conductor the electrical potential is constant. Thus we have

∫

∂G

1

|x− y′|µ(y′)dσ(y′) = 1 , (5)

for any point x ∈ G. Therefore, we may fix x ∈ G and set v(y) =
1

|x− y| .

Together, the relations (3), (4), (5) result in the following formula (see [12])

C =

(
lim

N→∞
1

N

N∑

n=1

v(yn)

)−1

, (6)

which will be used to calculate the capacitance.

To estimate the computational error, we use a Markov chain version of the

central limit theorem [18,19]. It states that
1

N

N∑

n=1

v(yn) tends to a normally

distributed random variable with mean I[v] and variance σ2N−1. Here,

σ2 = lim
N→∞

∫

∂G

π∞

[
1√
N

N∑

n=1

(v(yn)− I[v])

]2

.

This means that the error of our computational algorithm is of the statistical
nature. Hence, for a given accuracy ε, the cost of computations is of order
σ2ε−2.
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To evaluate σ2, we use the method of batch means [20] with the number of
batches, k + 1, equal to

√
N + 1 and the batch size, m, equal to

√
N . Thus

we have

σ2 = lim
m→∞, k→∞

m

k

k∑

i=0

(
1

m
Si − 1

N
S

)2

,

where Si =
m(i+1)∑

j=mi+1

v(yj), S =
k∑

i=0

Si.

Note, that the algorithm based on (6) provides a method to obtain the value
of the capacitance without explicitly calculating the density, µ.

4 Computing Charge Density

To calculate the charge distribution, we use relations (3) and (4) and construct
Monte Carlo estimators for iterations either of the integral operator K or its
adjoint. These estimators are based on a “random walk on the boundary”
process that is not necessarily isotropic. Let p(yn → yn+1) be the transition
probability density of this Markov chain, {yn, n = 0, 1, . . .}. Then, for some
integrable functions f ∈ L(∂G) and h ∈ L∗(∂G) the direct and adjoint esti-
mators, respectively, are defined as [12]

(h,Knf) = EQnh(yn) = EQ∗
nf(yn) .

Here

Q0 =
f(y0)

p0(y0)
, Qn+1 = Qn

k(yn+1, yn)

p(yn → yn+1)
,

and

Q∗
0 =

h(y0)

p0(y0)
, Q∗

n+1 = Q∗
n

k(yn, yn+1)

p(yn → yn+1)
.

Therefore, since we are integrating an absolutely convergent series, we have

(h, µ) = C(h, π∞) = lim
N→∞

C

N

N∑

n=1

(h,Knπ0) . (7)

It is clear that to compute the density, µ(y), at some point, y ∈ ∂G, we
have to set h(y0) = δ(y − y0). Note, however, that this last equality is valid
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only for bounded functions, h. To overcome this, we introduce a partition,

ςj, j = 1, . . . ,m, on the boundary surface: ∂G =
m⋃

j=1

ςj, and use a piecewise

constant approximation for µ. Thus, we reduce the problem to the estimation
of a finite number of cell values, or in other words, to a finite number of
functionals (7) with different weight functions hj(y) = χ[ςj](y)/σ(ςj). Here
χ[·] is the indicator function.

Hence, it is possible to use a direct estimator, and set p0 = f = π0. From this
it follows that for convex G all weights, Qn, are equal to 1 and so

µ(y) ≈ lim
N→∞

NjC

Nσ(ςj)
for y ∈ ςj , (8)

where Nj is the number of Markov chain points that hit the cell ςj (see [12]).

We thus arrive at an algorithm that makes it possible to calculate both the
capacitance and the charge distribution simultaneously. Initially, we randomly
choose a point y0 on ∂G with probability density π0. One of the possible

choices for such a density is to set π0(y) =
cos ϕyx

2π|y − x|2 for some x inside the

domain G. This means that y0 is distributed isotropically within the solid
angle with vertex x. Next, we simulate a long Markov chain of points using
isotropic “random walk on the boundary,” and calculate C−1 using (6), and
the numbers, Nj, with the methods described above. Finally, using (8) we
obtain an approximation to the charge distribution.

5 Computational Results for the Unit Cube

To illustrate the computational technique described, we calculate the capac-
itance of the unit cube and the charge density on its surface. This problem
has no analytic solution, and has long been regarded as a benchmark in the
electrostatic theory [3]. Different computational methods were used to solve
it: boundary element [21,23,4], finite-difference [22], and stochastic algorithms
[24,9,7] as well. The results (in units of 4πε0) and their published errors (in
different senses) are given in Table 1. The most accurate value obtained so far
was due to Read [4]. He used the (deterministic) boundary element method
with extrapolation, as was described in the introduction to this paper.

Our result is 0.6606780, with a statistical error (two standard deviations) of
2.7 × 10−7. This was obtained by using the estimator (6) with N = 1012. It
is essential to note that to compute the result to the statistical accuracy of
5.4×10−5 it took only 30 seconds on an ordinary desktop computer. The same
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Table 1
Values for the Capacitance of the Unit Cube

Reitan-Higgins (1951) 0.6555

Greenspan-Silverman (1965) 0.661

Goto et.al. (1992) 0.6606747± 5× 10−7

Zhou et.al. (1994) 0.6632± 3× 10−4

Given et.al. (1997) 0.660675± 1× 10−5

Read (1998) 0.6606785± 6× 10−7

Hwang-Mascagni (2003) 0.660683± 5× 10−6

our result 0.6606780± 2.7× 10−7

computations performed on a k-node cluster with k independent streams of
pseudorandom numbers (e. g. from the SPRNG library [25]) would decrease
the computational time by factor 1/k. Also we found out that the ergodic
walk on boundary algorithm is the most efficient Monte Carlo method for this
problem. It has the smallest variance, the smallest computational complexity,
and there is no bias in the estimate.

It essential to note that when computing only the capacitance via the “walk
on the boundary algorithm,” there is no need to partition the domain surface.
However, when also evaluating the charge density, we are compelled to intro-
duce a partition for the purpose of producing a histogram of the computed
charge density. It is well known that the charge distribution is singular along
discontinuous edges on the surface. For an edge formed at an obtuse angle, θ,
the dependence of the density, µ, on the distance, r, from the edge is given by
[26] µ = const r−α, where α = 1 − π/θ. For the edge of the cube θ = 3π/2,
so α is equal to −1/3 in this case. To take this singularity into account, we
introduce a nonuniform grid on every face of the cube. This is chosen in such
a way that every segment has approximately the same total charge. Divisions
with M elements on every face were considered, where we took M to be equal
to 1002, 2002 and 10002. The results show a linear dependence of the logarithm
of charge density on the logarithm of the distance to the edge of the cube,
with a slope predicted by the theory (see Fig.1). Approximately linear log-log
dependence remains valid when we consider the density versus the distance
to a vertex along the diagonal line of the cube’s face (Fig.2). The computed
charge density distribution on the cube’s surface is shown in Fig.3.
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6 Directions for future research

In this paper we described an application of the ergodic random “walk on
the boundary algorithm” for solving elliptic boundary value problems aris-
ing from electrostatics, specifically for computing the capacitance of and the
charge density on a conducting body. The ergodic random “walk on the bound-
ary” algorithm proved to be extremely efficient in this case. It was used to
produce the most accurate calculation known to date for the capacitance of
the unit cube. Note, however, that this method is limited to the case of con-
vex conductors. So one of the tasks for future research is to investigate the
possibility of and conditions for applying this algorithm to electrostatic (ellip-
tic) problems where the domain may not be convex. This will be particularly
important in biophysical calculations where the domain will be the union of
spherical atomic surfaces.

It is clear that some of the computational algorithms mentioned here may
be more efficient in some special cases, so it is essential to compare these
methods, and to propose “rules of thumb” for their use across a broad range of
problems. For example, it seems that the backward random walk method is the
most appropriate method to calculate point values of the charge distribution.
We plan to undertake some model computations comparing all the known
algorithms in this context in order to obtain empirical performance data for
making such recommendations.
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Fig. 1. Log-log plot of charge density versus distance to the edge for the points lying
in the middle of the cube’s face. Linear regression lnµ = −1.366−0.333 ln r (theory
gives value −1/3 for the second coefficient in the case of the dihedral angle formed
by two infinite planes).
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Fig. 2. Log-log plot of charge density versus distance to the cube’s vertex along the
diagonal. Linear regression lnµ = −1.415− 0.558 ln r.
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Fig. 3. Charge density distribution on the surface of the unit cube.
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