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ε-Shell error analysis for “Walk On Spheres” algorithms
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Abstract

The “Walk On Spheres” (WOS) algorithm and its relatives have long been used to solve a wide variety of
boundary value problems [Ann. Math. Stat. 27 (1956) 569; J. Heat Transfer 89 (1967) 121; J. Chem. Phys. 100
(1994) 3821; J. Appl. Phys. 71 (1992) 2727]. All WOS algorithms that require the construction of random walks
that terminate, employ anε-shell to ensure their termination in a finite number of steps. To remove the error related
to thisε-shell, Green’s function first-passage (GFFP) algorithms have been proposed [J. Chem. Phys. 106 (1997)
3721] and used in several applications [Phys. Fluids A 12 (2000) 1699; Monte Carlo Meth. Appl. 7 (2001) 213; The
simulation–tabulation method for classical diffusion Monte Carlo, J. Comput. Phys. submitted]. One way to think
of the GFFP algorithm is as anε = 0 extension of WOS. Thus, an important open question in the use of GFFP is
to understand the tradeoff made in the efficiency of GFFP versus theε-dependent error in WOS. In this paper, we
present empirical evidence and analytic analysis of theε-shell error in some simple boundary value problems for
the Laplace and Poisson equations and show that the error associated with theε-shell is O(ε), for smallε. This fact
supports the conclusion that GFFP is preferable to WOS in cases where both are applicable.
© 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In general, Monte Carlo random walk algorithms inside a domain[5] can be classified into two
broad categories: random walks on grids or other discrete objects[6] and continuous, grid-free, ran-
dom walks/Brownian motions. Among these Monte Carlo algorithms, the grid-free “Walk On Spheres”
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(WOS) algorithm is among the most popular. In WOS, one does not simulate details of the Wiener process
inside the domain, instead discrete jumps are made using the uniform first-passage probability distribution
of Brownian motion from the center to the surface of a sphere.

WOS algorithms have been used to solve Dirichlet problems for a wide variety of both elliptic and
parabolic partial differential equations (PDEs). The first such description of the use of WOS for PDEs was
when Müller applied WOS to solve the Dirichlet problem for the Laplace equation[1]. Later Haji-Sheikh
and Sparrow developed the WOS method for the Poisson equation with a nonzero but constant source term
[2]. The related equation�u− cu = −g was solved by Elepov and Mikhailov[7] using a modified WOS
method, and Booth used a weighted WOS method to solve homogeneous elliptic PDEs with constant
coefficients[8,9].

All the above methods involving WOS employ anε-shell to terminate the random walks. The boundary,
which random walks terminate on, is thickened byε, and when a walker enters thisε-shell, the walk is
terminated by choosing a boundary point closest to this point in theε-shell (usually the point in theε-shell
is normal from the chosen boundary point). The use of thisε-shell entails an error; however, thisε-shell
error can, in general, always be made smaller than the statistical sampling error[9,8]. A technique for
empirically estimating thisε-shell error uses a single random walk to both estimate theε and theε/10
error. The difference between these two correlated estimates gives a measure of theε behavior of the error
due to the finite width of theε-shell. By adjustingε, one can make this error less than that arising from
the statistical sampling error. Thus, if one increases the number of random walks in order to decrease the
statistical error, one must also reduceε to reduce theε-shell error to balance the two errors. However,
reducingε also increases the running time as the average number of steps required for a random walk to
be absorbed in theε-shell in WOS is O(| ln ε|) [5].

Recently, a technique for removing the need for theε-shell for certain geometries was developed by using
a set of Green’s functions to provide exact first-passage probability distributions to terminate the walks
[4]. Theε-shell was removed by allowing spherical first-passage surfaces to intersect the target surface.
On the geometry defined by these intersecting surfaces, exact first-passage probability distributions were
used to exactly terminate the walks. For a given geometry, the boundary Green’s function is exactly equal
to the first-passage probability distribution of Brownian motion, and so by precomputing the appropriate
Green’s functions, exact first-passage probability distributions can be used. Using these first-passage
distributions in WOS to terminate the walks exactly and without the need of theε-shell is called the
Green’s function first-passage (GFFP) algorithm[4]. Since its inception, the GFFP algorithm has been
extended and refined to allow it to be applied to a wide variety of problems and applications[10,11].

The O(ε) error due to the WOSε-shell was a phenomenon that was both well known and poorly studied.
Thus, we feel it timely to publish a study that analyzes theε-shell error. We provide a more rigorous basis
for the O(ε) error result to support the efficiency of GFFP versus WOS when accuracy beyond a preset
limit is required[11]. In general, it has been assumed that the accuracy attainable in a simulation in WOS
is O(ε1/γ) for smallε for someγ > 0 [12]. But very little data is available to quantify this. In this paper,
we investigate theε-shell error, determine the value ofγ in the case where we have a smooth boundary
and analyze this error.

This paper is organized as follows: inSection 2, we investigate theε-shell error by simulating WOS
solutions of some simple Dirichlet boundary value problems (BVPs) for both the Laplace and Poisson
equations. InSection 3, we give an analytic analysis of the simulation results of theε-shell error and
provide some concluding remarks.
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2. ε-Error analysis

In this section, we empirically analyze theε-shell error for WOS with several examples. This error
associated withε is linear in ε in all the cases of Dirichlet BVPs studied. This linearity can also be
explained analytically, and can be understood from the point of view of regularity of solutions with
respect to boundary values. Given sufficiently smooth boundaries, it is expected that O(ε) perturbations
of boundary values will result in O(ε) changes in solution values[13]. Thus, our results are consistent
with these intuitive notions.

The errors associated with WOS methods are two-fold. One error originates from the algorithm’s Monte
Carlo nature and the second error from theε-shell. The first error is a purely statistical error associated
with the uncertainty in estimating a mean fromN samples. This error is O(N1/2), and is measured by
invoking the law of large numbers and assuming the sum ofN mean samples is approximately normally
distributed. This error can be reduced by increasing the number of random samples, which in the WOS
case means increasing the number of random walks. The other error we wish to study is the error from the
ε-shell. To do so empirically one must make sure that the sampling error is made much smaller than the
ε-shell error to expose it to empirical scrutiny. Thus, in this study we always chooseN sufficiently large
so that the error from statistical sampling is much less than that expected from theε-shell. In fact, theN
used in this study will be considerably larger than that usually required in solving BVPs with WOS, since
we wish to completely expose theε-shell error. It is important to remember that for problems solvable
with the GFFP method, theε-shell error is zero.

We now consider the numerical solution of several Dirichlet BVPs for both the Laplace and Poisson
equations. The exact problems solved range from extremely simple to somewhat complicated yet idealized
problems for which analytic solutions are known. We consider Dirichlet BVPs for the Laplace equation
with a constant boundary function, the Laplace equation with a non-constant boundary function, and the
Poisson equation.

2.1. The Laplace equation with constant boundary functions

In this section, we will consider solving several Dirichlet BVPs with constant boundary functions for
the Laplace equations. These problems come from rather concrete applications which include computing
the capacitance of a unit sphere, solving the ligand-protein caricature Solc-Stockmayer model without
potential, and computing the mean survival time in a composite material made up of a uniform matrix
with inclusions of nonoverlapping spherical traps.

2.1.1. The capacitance of a sphere
The electrostatic capacitance of an arbitrarily shaped conducting object can be calculated by adapting

the algorithm originally devised for calculating the diffusion-controlled reaction rate toward the target
object as follows[3]. The capacitance,C, of an arbitrarily shaped conducting object can be obtained by
computing the probability,β, of Brownian motion started on a sphere of radiusb completely enclosing
the given object, and doing first passage on the object:

C = bβ. (1)

Here,b is the radius of the “launching sphere,” containing the given object, where Brownian walkers are
started, andβ is computed by counting the frequency of walkers that do first passage on the given object
instead of walking to infinity without striking the object.
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This electrostatic capacitance problem is a Dirichlet BVP for the Laplace equation in the following
sense. Letφ(x) be the electrostatic potential satisfying the following Laplace equation:

�φ(x) = 0, x ∈ Ω, (2)

with the boundary conditions,

φ(x) = 1, x ∈ ∂Ω, (3)

φ(x) = 0, as x → ∞. (4)

The capacitance of a conductor is the total charge on the conductor at unit potential[14]. Thus, the
capacitance of the conductor is given by:

C = −(4π)−1
∫
∂Ω

dσ · ∇φ(x) = (4π)−1
∫
∂Ω

dσ · ∇p(x). (5)

Here, the relationship between the electrostatic potential,φ(x), and the probability density of Brownian
walkers,p(x), is given byφ(x) = 1 − p(x). The diffusion-controlled reaction rate,κ, toward the target
object is[3]

κ = D

∫
∂Ω

dσ · ∇p(x) = κ(b)β = 4πDbβ, (6)

whereκ(b) is the diffusion-controlled reaction rate of the launching sphere of radiusb andD is the
diffusion coefficient. From the above two equations, we obtainEq. (1).

The simplest problem of this type is to calculate the capacitance of a unit sphere, which is known to be
equal to one (seeFig. 1). This computation reduces to computing the probability of a Brownian particle
started on a large sphere containing the unit sphere and doing first-passage on the unit sphere instead of
walking to infinity. Here, we compute this value using WOS withN = 108 random walks. The results are

Fig. 1. A schematic diagram that illustrates the calculation of the capacitance of a unit sphere;L is the launching sphere with
radiusb where Brownian particles are initiated with uniform probability distribution.
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Fig. 2. Computedε-related errors for the solution to three elliptic BVPs with constant boundary values. Solid lines show linear
regression results. The errors are linear inε. In the separate panels, we plot absolute errors versusε for the following cases: (a)
the electrostatic capacitance of a unit conducting sphere, (b) the reaction rate constantκ/4πDa for the Solc-Stockmayer model
without potential, and (c) the average survival time for nonoverlapping impenetrable spheres.

plotted inFig. 2a. With theε-shell, we terminate random walks when they are withinε of the boundary.
As we see from the figure, the absolute error is linear inε. The computed capacitance of the unit sphere
we obtain with anε-shell can be interpreted by assuming that we are actually computing the capacitance
of a sphere with an average radius of 1+ ε/2.

2.1.2. Solc-Stockmayer model without potential
We next consider the Solc-Stockmayer model without potential, a basic model for computing the

reaction rate of diffusion-limited protein-ligand binding. A protein molecule is modeled as a sphere with
a circular patch on its surface producing irreversible binding upon contact with a diffusing ligand. The
ligand undergoes Brownian motion and we measure the probability of the ligand hitting the reactive patch
or diffusing to infinity. Ligand molecules are idealized as non-interacting point-like diffusing particles.
Moreover, the portion of the sphere not covered by the reacting patch is considered to have a reflecting
boundary with respect to the Brownian ligand particle. This reaction rate problem is clearly analogous
to the Dirichlet BVP arising in the electrostatic capacitance problem of a unit sphere except that this
problem has a reflecting boundary condition on the non-reactive portion of the sphere.

The basic method used here for the calculation of the reaction rate is the capture probability method
[15] (seeFig. 3). We simulate diffusing ligands that begin on a “launch sphere” of radiusb, surrounding
the target sphere, i.e. the protein model. Each diffusing ligand starts its random walk on the launch sphere
at a position chosen at random (seeFig. 3). The ligand then makes first-passage jumps until it either
reaches the reactive patch on the target sphere, or diffuses to infinity. The reaction rate constant,κ, is
given by[16]

κ

4πDa
= bβ, (7)

whereb is the launching sphere radius anda the target sphere radius,β the fraction of diffusing ligands
from the launching sphere that are absorbed on the reactive patch, andD the diffusion coefficient.

To study theε-dependent errors, the exact values are obtained by the method of dual series relations[17].
Fig. 2b shows the absolute error of this Solc-Stockmayer reaction rate computation averagingN = 108

diffusing ligand trajectories and using a circular reactive patch subtending a solid angle ofΘ = 20◦. The
figure shows that once again theε error is linear inε.
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Fig. 3. A schematic diagram that illustrates the simple Solc-Stockmayer model for diffusion-limited protein-ligand binding.L

is the launching sphere with radiusb where a diffusing ligand is launched with uniform probability distribution, andΩ is a
protein of radiusa = 1.0 with a circular reactive patch with angleΘ. The reactive patch is absorbing and the rest of the protein
reflecting.

2.1.3. Average survival time in nonoverlapping spherical traps
Next we compute the mean survival time of noninteracting Brownian particles diffusing in a volume

containing nonoverlapping spherical traps. This problem is an example of a composite medium compu-
tation. For the mathematical formulation, let us start with the Feyman–Kac path-integral representation
for solving the Dirichlet problem for Poisson’s equation:

�u(x) = q(x), x ∈ Ω, (8)

u(x) = 0, x ∈ ∂Ω. (9)

The solution to this problem, given in the form of the path-integral with respect to standard Brownian
motionXx

t , is as follows[18,19]:

u(x) = E

[
−

∫ τx

0
q(Xx

t )dt

]
. (10)

Here,τx is the first-passage time of a Brownian particle starting atx. We can see that whenq(·) = −1,
u(x) = E[

∫ τx

0 dt] = E[τx ]. Thus, computing the mean fist-passage time (survival time) is also a Dirichlet
boundary problem for the Poisson equation with a constant source[20]:

�u(x) = −1, x ∈ Ω, (11)

and with the homogeneous boundary conditions

u(x) = 0, x ∈ ∂Ω. (12)
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Fig. 4. A schematic diagram that illustrates the geometry for a simple Laplace problem with a point source outside of the circular
(or spherical) boundary.

In our example the mean survival time was computed in a medium that consists of 572 nonoverlapping
spheres with radiusa = 1.0, and has a sink volume fraction2 of φ2 = 0.3 usingN = 108 random walks.
The absolute error in this computation with the WOS method again shows linearity inε as seen inFig. 2c.
The expected exact value was obtained through a linear regression of the simulation data points.

2.2. Simple Laplace problems with non-constant Dirichlet boundary conditions

Next, we consider the Dirichlet problem for the Laplace equation in the two-dimensional unit circle,
Ω (seeFig. 4):

�u(x) = 0, x ∈ Ω, (13)

with the boundary condition,

u(x) = 1
2 ln[(x1 − 2)2 + x2

2], for |x| = 1 (x ∈ ∂Ω). (14)

We writex = (x1, x2), and can compute that the exact solution is given by

u(x) = 1
2 ln[(x1 − 2)2 + x2

2], x ∈ Ω. (15)

The boundary conditions for this problem are consistent with placing a point source at (2, 0) and computing
the potential imposed on the boundary of the unit circle. We then evaluated theε-shell errors at the single
point (0.2,−0.5) ∈ Ω again usingN = 108 random walks.

We next consider the Dirichlet problem for the Laplace equation in the three-dimensional unit sphere,
Ω (seeFig. 4):

�u(x) = 0, x ∈ Ω, (16)

with boundary condition

u(x) = [(x1 − 2)2 + x2
2 + x2

3]−1/2, for |x| = 1. (17)

Again we writex = (x1, x2, x3), and have the exact solution given as

u(x) = [(x1 − 2)2 + x2
2 + x2

3]−1/2, x ∈ Ω. (18)

2 The sink volume fraction is the fraction of the whole volume occupied by the nonoverlapping spheres. This concept is identical
to that of the porosity of a porous medium.



100 M. Mascagni, C.-O. Hwang / Mathematics and Computers in Simulation 63 (2003) 93–104

Fig. 5. A schematic diagram that illustrates the geometry for a simple Laplace problem with boundary conditions on a hemisphere.

This solution is derived by placing a point source at (2, 0, 0) for the free-space Laplace equation and
computing the induced boundary condition on the surface of the unit sphere. In this study we analyze the
errors at the point(0.2,0.3,−0.1) by usingN = 109 random walks.

Finally, we consider the Dirichlet problem for the Laplace equation in a hemisphere,Ω, with geometry
as depicted inFig. 5 [5]. Again we solve the Laplace equation:

�u(x) = 0, x ∈ Ω, (19)

with the particular boundary conditions

u(x) = [2(x3 + 1)]−1/2, for |x| = 1, (20)

and

u(x) = [(x2
1 + x2

2 + 1)]−1/2, for x3 = 0. (21)

The exact solution is known to be

u(x) = [(x2
1 + x2

2 + (x3 + 1)2)]−1/2, x ∈ Ω. (22)

Here, we analyze the errors associated with theε-shell at the point(0.2,0.3,0.1) with 109 random walks.
All the absolute error results inFig. 6again show the linearity inε.

Fig. 6. Computedε-related errors for the solution to three elliptic BVPs with non-constant boundary values. Solid lines show
linear regression results supporting the view that theε errors are linear inε. In the separate panels, we plot absolute errors versus
ε for the following cases: (a) a 2D Laplace problem, (b) a 3D Laplace problem, and (c) a 3D hemisphere Laplace problem.
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Fig. 7. Modified WOS for the Poisson problem:X0,X1, . . . , Xk, . . . , Xn are a series of discrete propagation jumps of a Brownian
path that terminates with first passage uponΩ. ε is theε-shell thickness.

2.3. The Poisson equation

Here, we consider the following particular Dirichlet problem for the Poisson equation

�u(x) = −(2 − r2)e−r2/2, x ∈ Ω, (23)

in a domain,Ω, composed of the unit disk minus the first quadrant. This is the same problem as that used
in previous Monte Carlo work on solving the Poisson equation[12]. For a picture of this domain, refer
to Fig. 7:

Ω = {(r, θ) : 0 < r < 1,−3π/2 < θ < 0}. (24)

The boundary conditions we impose are the following: on the straight parts of the boundary,u(r,0) =
e−r2/2, u(r,−3π/2) = −r1/3+e−r2/2, andu(1, θ) = sin(θ/3)+e−1/2 on the curved part of the boundary.
The analytic solution is known to be

u(r, θ) = r1/3 sin(θ/3) + e−r2/2. (25)

Fig. 8. Computedε-related errors for the solution to the Poisson equation. Solid lines show linear regression results. The errors
are linear inε. In the separate panels, we plot absolute errors versusε for the following cases: (a) the Laplace term of the Poisson
problem, (b) the Poisson term of the Poisson problem, and (c) total errors in the Poisson problem.
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We evaluate theε-shell errors at the point(r, θ) = (0.1244,−0.7906) with N = 109 random walks.
In Fig. 8a, the absolute errors from the Laplace term (the error associated with the mean value of the
exit points of random walks, seeSection 3for the definition of this term) are shown, inFig. 8b, the
absolute errors from the Poisson term (the error associated with the source term in the Poisson equation,
seeSection 3for the definition of this term) and inFig. 8c, we show the total absolute errors. All display
the expected linearity inε.

3. Discussions and conclusions

In this section, we analyze the simulation results of theε-shell error and discuss the WOS method. All
problems solved in this paper are mathematically of the following form:

�u(x) = q(x), x ∈ Ω, (26)

with a boundary condition

u0(x) = f(x), x ∈ ∂Ω. (27)

The integral representation for the solution to this Dirichlet problem for the Poisson equation is given by

u(x) = −
∫
∂Ω

g(x, y)u0(y)dσ +
∫
Ω

G(x, y)q(x)dy, x ∈ Ω. (28)

Here,G(x, y) is the Green’s function defined by

�G(x, y) = δ(x − y), x, y ∈ Ω, (29)

G(x, y) = 0, y ∈ Ω. (30)

and

g(x, y) = ∂G(x, y)

∂ny

, (31)

is the surface Green’s function, whereny is the normal unit vector to the absorbing surface,∂Ω, aty. In
Eq. (28), we refer to the first term in this integral representation as the Laplace term and the second as
the Poisson term.

By introducing anε-shell, we actually use a slightly perturbed (surface) Green’s function instead of
the actual (surface) Green’s function. This is because adding theε-shell actually distorts∂Ω by an O(ε)
amount. This assumption can be partially supported by the fact that in the calculation of the capacitance
of a unit sphere theε-shell caused the unit sphere to seem as it is a sphere of radius 1+ ε/2. The Laplace
term error,Lerror is thus given by

Lerror = −
∫
∂Ω

g(x, y + kεny)dy +
∫
Ω

g(x, y)dy. (32)

while the Poisson term error,Perror can be written as

Perror =
∫
Ω

G(x, y + kεny)q(x)dy −
∫
Ω

G(x, y)q(x)dy. (33)
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Here,k is a constant between 0 and 1. If we do the Taylor’s expansion ofg(x, y+kεny)andG(x, y+kεny)

about(x, y) with respect toε, we obtain

g(x, y + kεny) = g(x, y) + kεny · ∇yg(x, y) + O(ε2), (34)

G(x, y + kεny) = G(x, y) + kεny · ∇yG(x, y) + O(ε2). (35)

Inserting these into the above two error equations, we obtain linear expressions inε for the absolute errors
whenε is sufficiently small.

Lerror = −ε

∫
∂Ω

kny · ∇yg(x, y)dy + O(ε2), (36)

Perror = −ε

∫
∂Ω

kny · ∇yG(x, y)dy + O(ε2). (37)

The total error,Terror is

Terror = Lerror + Perror. (38)

Thus, the total error is linear inε also. This is consistent with perturbation theory for BVPs for linear
PDEs when∂Ω is smooth[13].

This slow convergence of WOS, i.e. the linearity of the error associated with theε-shell inε, supports
the efficiency of GFFP versus WOS when accuracy beyond a preset limit is required[11]. The GFFP is
anε = 0 method, and so where it can be used, this study shows that it should be used.
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