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Many important classes of problems in materials science and biotechnology re-
quire the solution of the Laplace or Poisson equation in disordered two-phase do-
mains in which the phase interface is extensive and convoluted. Green’s function
first-passage (GFFP) methods solve such problems efficiently by generalizing the
“walk on spheres” (WOS) method to allow first-passage (FP) domains to be not
just spheres but a wide variety of geometrical shapes. (In particular, this solves
the difficulty of slow convergence with WOS by allowing FP domains that contain
patches of the phase interface.) Previous studies accomplished this by using geome-
tries for which the Green'’s function was available in quasi-analytic form. Here, we
extend these studies by using the simulation—tabulation (ST) method. We simulate
and then tabulate surface Green’s functions that cannot be obtained analytically.
The ST method is applied to the Solc—Stockmayer model with zero potential, to the
mean trapping rate of a diffusing particle in a domain of nonoverlapping spheri-
cal traps, and to the effective conductivity for perfectly insulating, nonoverlapping
spherical inclusions in a matrix of finite conductivity. In all cases, this class of algo-
rithms provides the most efficient methods known to solve these problems to high
accuracy. (© 2001 Elsevier Science

Key Words:simulation—tabulation; diffusion Monte Carlo; Green'’s function; first
passage.

1. INTRODUCTION

Despite a vast amount of work on classical diffusion Monte Carlo methods [1-3] duri
the past 50 years, many problems of practical importance still have no rapid solution met!
Examples include the solvation free energy of a molecule [4], the diffusion-limited reacti
rate of a small ligand to a binding site on a macromolecule [5-8], and the fluid permeabi
of industrially important resins and cements [9-10].
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In a mathematical context, these examples all require solution of the Laplace equat
the Smoluchowski equation, or other elliptic partial differential equations in a two-phase ¢
vironment involving a highly distributed, convoluted, multiscale boundary, which, noneth
less, is locally smooth over most of its area.

Many such problems can be solved efficiently by Green'’s function first-passage (GF
algorithms [11]. These algorithms generalize “walk on spheres” (WOS) algorithms to allc
first-passage (FP) domains to be not just spheres but a wide variety of geometrical she

The research described here adds to along history of applications of probabilistic poter
theory to solve boundary value problems. The WOS method is often used to solve Lapl
boundary value problems [12—14]. (The “walk on rectangles” [13, 15] and “walk on ball
[16] methods have also been used.) The WOS method uses only spherical FP dom
Thus, the distribution of FP position on its surface is trivial, i.e., uniform. The WOS meth
has been extended to obtain the conductivity of two-phase media by Kim and Torquato [
They obtain overall transition probabilities that obey simple Laplace equations. But tf
do not obtain the Green'’s functions needed to correctly sample the FP position; thus, tt
are not true GFFP methods. Early work within the GFFP paradigm sampled the FP posi
by combining the Metropolis method with explicit evaluation of the appropriate Green
function by performing numerical integration [11]. This procedure can be made arbitrar
accurate. However, itis computationally very expensive. Later applications used the anal
Green's function to tabulate the corresponding distribution function; this tabulation was tt
used in diffusion simulations to sample the first-passage point via interpolation [18, 1
The initial tabulation takes substantial time, but need be performed only once for e:
geometry of interest. This tabulation method is efficient, but has heretofore been app
only to first-passage domains for which the Green'’s function is available in analytic fol
or can be reduced to quadratures.

GFFP methods simulate diffusion paths as follows: a FP sphere is drawn around
initial location of the Brownian particle. It is allowed to intersect the closest smooth regul
patch of absorbing surface. This may be a patch that the Brownian particle has landec
The resulting FP surface consists of the portion of absorbing surface inside the FP spt
together with the portion of FP sphere outside the absorbing surface. The Brownian par
jumps to (“makes FP on”) a point on the FP surface, which is determined by sampli
the appropriate Laplacian Green’s function. If that point lies on a surface with Dirichl
conditions, i.e., absorbing boundary conditions, the diffusion path terminates. Otherwis
becomes the starting position of a new FP surface. The particle continues making FP ju
in this manner. In order to use the GFFP method in a particular application of the ty
described here, the interfacial surface must be locally simple in the sense that the Gre
function be calculable fast enough that the computational price of sampling is less than
of using lower-order methods, i.e., discrete random walks.

In this paper, we develop a method, the simulation—tabulation (ST) method, that gre:
extends the range of problems one can address by the GFFP method. The ST me
does not require an analytic Green’s function as a starting point. It uses simulation res
directly to tabulate, or bin, contributions to the Green'’s function. It then follows the standz
procedure (summarized in Section 2) for creating a distribution function tabulation fron
Green'’s function tabulation. The ST method extends the range of diffusion problems t
can be treated by GFFP in two ways. First, it allows a standard, i.e., absorbing, FP don
for which the Laplacian Green’s function is not available in analytic form. Second, it allov
mixed boundary conditions on the surfaces constituting the boundary of the FP domair
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Each FP jump requires the Brownian particle to make a transition either from a point
a single-phase domain to a point on the interface of that domain or from a point on t
interface to a point in a single-phase domain. These FP jumps require sampling from
classes of Laplacian Green’s functions corresponding to the two types of jump. Here,
apply the ST method to one Green’s function of each type (see, respectively, Figs. 2
5). Once the surface Green’s function for a local geometry has been tabulated, jumps
involve it can be treated as elementary in the quest to tame still larger classes of local sur
geometries. This is the bootstrap aspect of the ST method.

This paper is organized as follows: In Section 2, we explain the use of the ST metho
obtain a pair of basic Laplacian Green's functions. In Section 3, we evaluate the performe
of ST methods on three paradigmatic diffusion problems: the Solc—Stockmayer probl
a simple model of diffusion-limited protein-ligand binding; the trapping rate of particle
diffusing in a domain of spherical, nonoverlapping traps (this is a standard model of
extinction process in a random two-phase medium); and the effective conductivity of a t\
phase medium, consisting of an ensemble of nonoverlapping, insulating spherical inclus
dispersed randomly in a matrix phase of finite conductiwityln Section 4 we discuss the
computational efficiency of the ST method, and in Section 5 we present our conclusi
and recommendations for further research.

2. CONSTRUCTION BY THE SIMULATION-TABULATION METHOD
OF TWO BASIC LAPLACIAN GREEN’S FUNCTIONS

In this section, at first we show the equivalence between the surface Green’s functior
a Laplacianin a bounded region and the FP probability distribution in an identical region
the theoretical basis of ST method and explain how the ST method obtains two Lapla
Green’s functions required for the applications we study.

A branch of applied mathematics, probabilistic potential theory [20, 21], provides
detailed equivalence between an electrostatic problem and the equivalent diffusion prob
In particular, the surface Green’s function for the Laplacian in a bounded region, i.e.,
charge distribution on the interface, is equivalent to the FP probability distribution in
identical region.

It is useful to show this equivalence in detail in a specific set of examples. Consider
Dirichlet problem for the Laplace equation (see Fig. 1),

Au(x) = 0, X e,

(2)
ux) = f(x), xeadf.

The solution at poinix can be represented probabilistically as the average over :
the boundary valuesX*(tyq), of Brownian motion starting at. The time, 1o, when
the Brownian patrticle first strikes the boundary is called the first-passage time, and
place where the Brownian particle first strikes the bounddiyr;q), is called the first-
passage location. Specifically, the probabilistic solutiam), to (1) is given by

u(x) = EX[f (X*(ts0))]. 2

The proof that this is the case is simple. Place a sphere centeredoatpletely lying
within Q. Clearly, the particle will have to hit this sphere before hitt#g. The probability
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' . . first—passage location
.. X; starting point

FIG. 1. Brownian motion which starts at and terminates aX*(z,;) on the boundary 2 while passing
throughz, a point on a sphere centeredkat

distribution ofz, the FP position on the sphere, is clearly uniform due to the isotrop
nature of Brownian motion. Now we continue the Brownian particle frommtil it hits
the boundary. Her&X*(7q) is the first-passage location on the boundacy,(see Fig. 1).
Averaging over the first-passage boundary values of Brownian paths sta#eivas us
u(z). Since each trajectory startingathat hitsa 2 must first hit the sphere with uniform
probability,u(x) must be the mean of the valuesugf) over the sphere. Thug(x) has the
mean-value property and is harmonic, i.e., it obeys the Laplace equation [22]. If we tt
think of moving the starting point for our Brownian patrticles to the boundary, we clear
will, in the limit, have the first-passage location coincide with the limit oh the boundary.
This argues that, in addition(x) has the correct boundary values, and so it is the uniqu
solution to (1).

The RHS of Eqg. (2) can be interpreted as an average of the boundary va{Mess €
92 overd2. The weighting factor in this average is the first-passage probapitityy) of
a Brownian particle starting athitting the boundary first af = X*(t3q) € 9Q2. Thus, we
can represeni(x) as an integral over the bounda#y, via

ux) = /m p(x,y) f(y) dy. €))

However, there is another representation of the solution of the Dirichlet problem for t
Laplace equation in terms of an integral over the boundary. This is provided by mean:
the Green’s functionG (X, y) [23],

G (X,
U = / ICCY) ¢ vy dy. (4)
Q2

an
The normal derivative of the Green’s function 8 is what we refer to as the “surface
Green’s function” for the domai. Thus, the surface Green’s function for a domain,
2, must beidentical to the first-passage probability distribution for that same domair
P(X,y) = dG(x, y)/an.

Since the Laplace equation describes the electrical potential outside regions contai
charges, one can also translate the probabilistic interpretation of the Laplace equation
the language of electrostatics [4, 20]. Thus, a point source of Brownian (diffusing) pal
cles becomes a point charge; the “first-passage” (FP) surface becomes an ideal condt
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the first-passage distribution on the FP surface becomes a charge distribution, the su
Green'’s function becomes the normal derivative of electrostatic potential, and the interf
between different media becomes a dielectric interface.

For computational reasons, the ST method is limited at present to Green’s functions
have three dimensionless parameters (or less) for arguments: two parafmefrshat
define the geometry of the FP surface, and one parameter that defines the FP position |
geometry. In the applications treated here, the FP surface is a portion of a sphere anc
azimuthal symmetry. Thus, the polar anglsuffices to determine the FP position.

For each set of values of the geometrical parameters defined on a 2D grid, the valu
cosd is binned, i.e., tabulated for a large number of trajectories. The simulation data prov
a discrete approximation to the distribution

P(a, B, cost) da dB d(cosh). (5)

This is the probability distribution associated with a Brownian particle making FP ata po
angled in the fixed geometry characterized by the two parameterg)( We next form the
normalized distribution,

1 cosf

p(«x, B, cosh) = Z—/ P(a, B, cosd) da dB d(cosb), (6)
nJ-1

whereZ, is a normalizing factor. As a function of c8sthe normalized distribution varies

smoothly and monotonically between zero and unity. Thus, it can be inverted to give

function

cosh(a, B, p). )

To sample this distribution, we choose a random numheriformly in the interval [0, 1),
setp = 7 in this function, and obtain a value of c®wia interpolation.

We now consider two basic Laplacian Green'’s functions that are useful when the parti
are diffusing outside one or more spherical regions. (These Green'’s functions, of cou
would not be “basic” for other geometries; one would need to generate other basic Gre
functions for other geometries.)

We calculate and tabulate the Green'’s function for a point source located on the sur
of a reflecting sphere and surrounded by an absorbing sphere (see the bold curves in Fi
this Green’s function allows a diffusing particle to leave a reflecting surface. In particul
we solve the Poisson equation

AU(X, XO) = 8(X - XO)! (8)
with the boundary conditions

n(X)-Vu(x,Xp) =0, X € 99y, 9)
U(X,Xg) =0, x € 9. (20)
Here,n(x) - Vu(x, Xo) is the probability density associated with hitting the vicinityxain

the absorbing spherical surface for the first time when the Brownian particle startgfrom
Here,n(x) is the normal vector at the surface point
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polar axis

40 Absorbing Sphere

NV

Reflecting Sphere

FIG. 2. The first-passage surface (bold curves) for a Brownian patrticle, located ab@anta reflecting
sphere of radius,, to reach an absorbing FP surf&i®, of radiusr,.

The tabulation (see tabulation 1 in Table I) has two parameters: theXatiag,/r, of
the radii,r; andr,, respectively, of the reflecting and the absorbing spheres; and the ve
ableY = 1 — cost, wheref is the polar angle giving the location on the absorbing spher
where FP occurs. Here, we use a polar coordinate system with the line connecting the
sphere centers as polar axis; we also exploit the azimuthal symmetry of this Green’s funct
The variableX ranges from 0 to 2 with step size of02; for each value oK, Y ranges
from 0 to (1 — coSOmax), Where the anglédmax, defined to be the largest angle for which
the FP position is on the reflecting sphere, is determined by geometrical considerati
(see Fig. 3):

FIG.3. The geometrical consideration for the calculation of@Qgin the first-passage surface for a Brownian
particle, located at point, on a reflecting sphere of radiug to reach an absorbing FP surfaé®, of radiusr .
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FIG. 4. A two-dimensional schematic representation of a Brownian trajectory using WOS algorithm. If tl
diffusing particle reaches thelayer, it is taken to be absorbed.

r
1

For the limiting case oKX = 0, we use a uniform FP probability density 0we,: in this
limit, the interface to the reflecting sphere is flat and the problem can be solved analytice

The simulation uses the WOS algorithm. The Brownian particle is initiated at the po
source Xp. The FP surface consists of the portion of reflecting spherical surface contait
within the FP sphere together with the portion of the FP sphere that is outside the reflec
spherical surface (see the bold curves in Fig. 2). The Brownian particle makes FP jut
using WOS until it lands within a distaneeof at least one point on the absorbing surface
9Q2, (see Fig. 4). When this happens, the Brownian particle is taken to be absorbed on
portion of the FP surface.

As described in the Introduction, we have a standard procedure to convert simulation
into tabulation data, i.e., into data that can be directly sampled to provide the FP positi

At the same time, the average absorption time, i.e., the average lifetime of a Brown
particle, is tabulated (tabulation 2 in Table I). For the mathematical formulation, we st
with the Feynman—Kac path-integral representation for solving the Dirichlet problem f
Poisson’s equation:

AUX) = qX), XeQ (12)
ux) = 0, X € 0Q. (13)

The solution to this problem, given in the form of the path-integral with respect to stand:
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Brownian motionX*(t), is as follows [21, 24]:

ux) =E { —/m q(XX(t))dt} (14)
0

Here 15 is the first-passage time of a Brownian particle starting.atVe can see that
whenq(x) = —1, u(x) = E[for”Q dt] = E[13¢]. Thus, the mathematical formulation is a
Dirichlet boundary problem for the Poisson equation with a constant source [25, 15],

Au(x) = -1, xeQ, (15)
and with the boundary conditions
ux) =0, xeodR. (16)

The average time,, required for a Brownian particle to first hit the surface of a sphere i
given byt =r2/(6D), wherer is the radius of the sphere amithe diffusion coefficient
[26]. The average absorption time for a Brownian particle is given by the sum of tt
expression over all FP spheres used to construct the absorbed walk:

N

2
E[tyo] = E [Z bf—'Dl . (17)

Here,N is the number of WOS steps needed for the Brownian trajectory;aisdheith
WOS radius.

The errors involved in these tabulations are the following: the absorptstrell approx-
imation (described below), the assumption of uniform probability density when the radi
of the restarting WOS FP surface is much smaller than that of the reflecting sphere,
statistical sampling error, and the error associated with the interpolatiore-$hell error

Ty,

point source

082,

top absorbing surface

oY

bottom absorbing surface

target sphere

FIG. 5. The first-passage surface (bold curves) for a Brownian particle, initiating at the cgnoéran
absorbing sphere of radiugsand making FP either on that sphé, or on the included portiof<2; of a second
absorbing sphere of radiug



SIMULATION-TABULATION METHOD 933

TABLE |
Summary of Our Four Tabulations

Tabulation Description

Tabulation 1 Surface Green’s function for Fig. 2 FP surface
Tabulation 2 Average hitting time for Fig. 2 FP surface
Tabulation 3 Surface Green’s function for Fig. 5 FP surface
Tabulation 4 Average hitting time for Fig. 5 FP surface

can be made always less than the statistical error [13, 14]. We as&0~%r; and 16
trajectories for eachy/r; ratio. We do not estimate the error arising from interpolation o
the assumption of uniform probability density over the restarting WOS FP surface.
Next, we calculate and tabulate the Green’s function for a point source in the center o
absorbing sphere that intersects another absorbing sphere. This Green’s function (and c
like it) are the basis of the GFFP method: they allow a FP jump directly to an absorbing <
face (see Fig. 5). The FP surface is the top and bottom absorbing surface enclosing the
source; itincludes the portion of FP sphere outside the target spl§&reand the portion of
the target sphere contained in the FP sphiEig,(see the bold curves in Fig. 5). The Poisson
problem to be solved in this case is the same as that defined by Egs. (8)—(10), excepit
the reflecting boundary condition, Eq. (9), is replaced by the absorbing boundary condi

ux,X) =0, Xe€a. (18)

For this problem, analytic solutions are known [27, 28] and have been used to do GF
calculations by one of us [11] (see tabulation 3 in Table I). However, for rapid and accur
conductivity calculations we need to perform a high-order tabulation of this function; v
need to tabulate the average absorption time as well (see tabulation 4 in Table 1). Eac
these tabulations has two parameters: the patibthe radiir, andr; of the two intersecting
spheres and the dimensionless distafideom the center of the intersecting sphere to the
surface of the other sphere dividedy Both variables range from 0.02 to 1.00 with step
size 0.02. For the limiting case of =r,/r; = 0, the average absorption time is 0.

In our simulation, the Brownian particle starts from the point source. We use the W(
algorithm until the Brownian particle is absorbed on the FP surface. We calculate
average FP time by accumulating the radius square of WOS as in the previous case. W
€ = 10~%r; and 16 trajectories for eachy/r ratio.

We summarize our tabulations in Table I.

3. APPLICATION OF THE ST METHOD TO THREE BASIC
DIFFUSION-LIMITED APPLICATIONS

In this section, we use the ST Green’s functions to solve three basic classes of diffu:
problems: the Solc—Stockmayer model with zero potential, the mean trapping rate of a
fusing particle in a domain of nonoverlapping spherical traps, and the effective conducti
for perfectly insulating, nonoverlapping spherical inclusions in a matrix of conducsivity
This class of problems will test all four tabulated Green'’s functions described in Sectior

First, we calculate the reaction rate constant of the Solc—Stockmayer model without po
tial, a basic model for diffusion-limited protein—ligand binding. A model protein molecul
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reactive patch

Kag

target sphere

L; launch sphere

FIG.6. Aschematic diagram thatillustrates the simple Solc—Stockmayer model for diffusion-limited protei
ligand binding.L is the launch sphere with radibsvhere diffusing ligand is launched with uniform probability
distribution andh <2 is the surface of a protein of radias= 1.0 with a circular reactive patch with angte The
reactive patch is absorbing and the rest of the protein reflecting.

is a sphere with a circular patch on its surface producing irreversible binding upon cont
with a diffusing ligand; the remainder of the spherical surface is honreactive, i.e., reflecti
Ligand molecules are idealized as noninteracting point-like diffusing particles.

For maximum efficiency, the basic methods used here for the calculation of the react
rate constant are refinements of the capture probability method [29] (see Fig. 6). The reac
rate constant we wish to compute is given by [6]

K J—
47Da

bB, (29)

wherep is the fraction of diffusing ligands from the launch sphere that are absorbed
the reactive patch, and is the diffusion coefficient. Each diffusing ligand initiates on the
launch sphere of radiussurrounding the target sphere of radays.e., the protein model,
at a position chosen at random (see Fig. 6). It makes FP jumps (as described below) ur
either reaches the reactive patch on the target sphere (shaded areain Fig. 6) orgoestoin

In this problem there are novel aspects. If the diffusing ligand jumps to a point on t
reflecting portion of the target sphere, it uses the first Green’s function described in Sectic
to leave the surface (see Fig. 2). In this case, the FP sphere must not be large enou
intersect the boundary of the absorbing patch. When the diffusing ligand jumps to |
reactive patch, it is absorbed.

We describe two methods for this calculation. The first method tests only tabulatior
and the second tabulations 1 and 3 (we validate tabulation 1 through the first method
tabulation 3 through the second method).
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Inthe first method, a diffusing ligand is initially placed at a randomly determined positic
on the surface of the launch sphere. Instead of using the WOS or GFFP method, we
known probability (Eg. (20)) to decide whether the diffusing ligand goes to the target sph
or to infinity from the randomly determined position on the surface of the launch sphe
When it is determined to land on the target sphere, we use the replacement distribu
function (Eq. (21)). The probability that the ligand escapes to infinity from the surface
the launch sphere [7] is given by

Pespz 1—%21—0[. (20)
Hereb is the launch sphere radius aads the target sphere radius. If the ligand lands or
the target sphere, it will land at a positiof, ¢) sampled by the replacement distribution

density function [7]

1—a?
47[1 — 20 cOSH + a?]3/2°

w0, ¢) = (21)
Here, 0, ¢) are defined with respect to the polar axis that joins the old position to the tart
sphere center andis a/b. This distribution function has ndbdependence due to symmetry.
If the diffusing ligand lands on the absorbing patch, it is absorbed. If not, we construct
intersecting first-passage sphere centered on the absorption point just large enough to 1
the patch boundary. Using the tabulated Green’s function (tabulation 1), we find the r
first-passage point. The probability that the diffusing ligand escapes to infinity from t
first-passage point without absorbing on the target sphere is given by [7]

a

Pesp =1- (22)

lo
Herer is the radial position of the diffusing ligand. If the ligand lands on the target sphe
instead of going to infinity, the replacement distribution density function with a/rq is
used to determine the new position on the target sphere. This procedure iterates unti
ligand either reaches the reactive patch on the target sphere or goes to infinity.

The simulation results with fGnd 16 trajectories are shown in Table Il. We obtain three
digits of accuracy. This is consistent with the accuracy of our Green’s function tabulatio
We can reproduce the results using only WOS without tabulation 1, but the computat

TABLE Il
Reaction Rate Constantx/(4sDa) for the Solc—Stockmayer
Model without Potential®

Angle (©) Exact Simulation (1%) Simulation (16)
10 06492% — 01 064516 — 01 06507404& — 01
20 01417%€ + 00 01415% + 00 01419646F + 00
30 022628 + 00 02267ZFE + 00 02264298 + 00

2 This is the first of the two methods we provide for this problem in Section 3.
It uses analytic replacement distribution function and tabulation 1. It is our most
efficient method. The left-hand column gives analytic results by the method of
dual series relations [30]. The other two columns give our simulation results with
10 and 16 diffusing ligands, respectively. They are accurate up to three digits.
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time is substantially greater. To compare with our simulation results, the exact values
obtained by the method of dual series relations [30].

To increase the accuracy of the calculations, we can increase the number of trajectorie
eachr,/r; ratio to reduce the statistical error, keep the boundary error less than the statist
error [13, 14], and use a smaller radius for the FP sphere used to leave the reflecting sg
in the tabulation 1.

Next, we describe our second method for addressing this problem. The Green’s func
for this problem (see Fig. 5) samples the FP position on both the upper and the lower
sorbing surface. The former has been carefully tested [11, 18]; the latter has not. In
work, we refine the accuracy of the FP distribution on the lower absorbing surface. (I
separate paper [19], we have shown that this refinement in accuracy and other algo
mic improvements in our permeability estimation methods [18] improve our permeabili
estimates quite substantially, especially at low porosities.) Because the first method
already been described, we discuss in detail only those aspects of the second metho«
are different. The diffusing ligand propagates by a series of FP jumps (see Fig. 7), e

L; launching sphere

FIG.7. A schematic diagram that illustrates FP jumps using GFFP in the simple Solc—Stockmayer model
diffusion-limited protein-ligand bindind. is the launch sphere with radibsvhere diffusing ligand is launched
with uniform probability distribution and<2 is the surface of a protein of radias= 1.0 with a circular reactive
patch with angle®. The reactive patch is absorbing and the rest of the protein reflecting. In FP jump case 1,
figure showss-boundary layer usage; when the diffusing particle reaches insidetibandary layer, it begins to
intersect the target sphere; in FP jump case 2, the figure shows the usage of the replacement distribution d
function when the first jump from the launch sphere is outside the launch sphere and the probability decides
the diffusing particle goes back to the launch sphere.
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FIG.8. A two-dimensional schematic representation of a Brownian trajectory using both the WOS algoritt
(r, torz) and the GFFP algorithm (the final step). The solid circles are FP boundaries and absorbing. \8fe use
boundary layer as a criterion such that WOS is used outsideltbendary layer and GFFP in théboundary layer.

proceeding from the starting pointy(in our notation) to a point on its FP surface. The sur-
face point to which it jumps is determined by sampling the tabulated distribution functi
associated with the appropriate Laplacian Green’s function, obtained as described ir
previous section. For efficiency, the FP volume is chosen to be a sphere with uniform
probability until the diffusing ligand gets into tléeboundary layer; then the FP volume is
chosen to be a sphere that intersects the target sphere. (Throughout this paper, we u:
8-boundary layer as a criterion such that WOS is used outsidé-bmindary layer and
GFFP in thes-boundary layer, because GFFP is more efficient when the Brownian parti
gets close to the target; see Fig. 8.) Notice thatdHimundary layer is different from the
e-shell in WOS (see Fig. 4).

Table Ill shows the simulation results with®liBajectories. These are accurate up to thres
digits also.

We compare the CPU time of the ST algorithm with that of the WOS algorithm i
Figs. 9 and 10. In the WOS algorithm, CPU time depends or:thkleell thickness and
the ST algorithm on thé-boundary layer. The value ef= 10-3a in the WOS method
approximately corresponds to the optimal case of ST. Considering that for the accut
of up to three digits in the WOS algorithm we need approximatety 10-%a, the ST
algorithm is two times faster when we use the optimal case of ST (in Fig. 9, the runni
time of the WOS algorithm at = 10-%a is approximately 2600 s while the running time
of the ST algorithm aé = 0.1a is approximately 1350 s in Fig. 10). The ST results can b
reproduced using only WOS without tabulations 1 and 3, but the computation time is m
greater.
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TABLE 11l
Reaction Rate Constantx/(47Da) for the Solc—Stockmayer
Model without Potential® with e = 0 and § = 0.3a

Angle () Exact Simulation (19)
10 06492%E — 01 06497%E — 01
20 01417% + 00 014244 + 00
30 02262& + 00 022697 + 00

2 This is the second of the two methods we provide for this problem in
Section 3. It uses tabulations 1 and 3, the tabulated Green'’s functions
new to the present work. Herejs the absorption shell thickness and
3 is the distance from the surface of the sphere within which the first-
passage sphere begins to intersect the target.

Next, we simulate the diffusion-limited trapping rate in a system of noninteracting di
fusing particles in a volume containing nonoverlapping spherical traps (see Fig. 8). T
will test tabulation 4 (we use tabulations 3 and 4, but we validated tabulation 3 in the pre
ous Solc—Stockmayer problem). The trapping rate is obtained as the inverse of the ave
survival time [31]. The average survival time is given by

NU/

.2 Ng
E[r]:ElZé—'D-i-ij], (23)
i i

when we choose starting points randomly inside the void space. Ngres the number
of WOS steps during the Brownian trajectory,the ith WOS radius,Ng the number
of GFFP steps during the Brownian trajectory, andhe sampled time using tabulation
4 for thejth GFFP step. The mean trapping rate simulations are performed on syste

3500 T T T T T T T

3000

2500

2000

running time (secs)

1500

1000 - jogarithmic regression ]

500 il | | | Il Il Il
10° 107 107 10 10t 107 107 107 10°
€
FIG. 9. CPU time required to calculate the reaction rate constant for the Solc—Stockmayer model with

potential using only WOS witkd = 1(°, 10 trajectories§ = 0,a = 1.0, andb = 2.0 on a 500-MHz Pentium Il|
work station. It shows the expected relation for WOS:CPU tirla(e)).
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8

1300

FIG. 10. CPU time required to calculate the reaction rate constant for the Solc—Stockmayer model with
potential using GFFP wit®h = 1P, 10 trajectories¢ = 0,a = 1.0, ando = 2.0 on a 500-MHz Pentium Ill work
station. It shows an optimdlarounds = 0.1a.

consisting of 95-668 nonoverlapping spheres with radies 1.0, depending on the sink
volume fractiong,. The results of ST algorithm are compared with those of Zheng—Chie
simulations [31] using WOS in Fig. 11. At low-volume fractions, there are some deviatio
due to sampling fluctuation. We consider 10 realizations, each constructed by using ran
sequential addition [31, 32], and simulate® HXfusing particles per realization.

5 T T T T T T T ]
SN ;
4 X 1]
3F X Zheng—Chiew simulation -
O our simulation
2 - -
1%
1 - -
b
&
. 5 B =

1 015 02 025 03 035 04

,

FIG. 11. Average survival time as a function of the sink volume fractigtior nonoverlapping impenetrable
spheres. The crosses represent the simulation data from Zheng—Chiew calculation and the circles our simu
data. At low-volume fractions, there are some deviations due to sampling fluctuation.

O..‘.l..u
0 0.05 0.
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FIG. 12. CPU time required to calculate the mean trapping rate for nonoverlapping impenetrable sphe
using only WOS withg, = 0.05, 1(f trajectories = 0, a = 1.0, and 95 nonoverlapping impenetrable spheres
on a 500-MHz Pentium Il work station. It shows the expected relation for WOS:CPUtinge)).

The CPU time of the ST algorithm is compared with that of the WOS algorithm i
Figs. 12 and 13. As the previous case, in the WOS algorithm, CPU time dependsecen th
shell thickness and the ST algorithm on sAkoundary layer. Approximately= 10-3ain
the WOS method corresponds to the optimal case of ST. Considering that for the accu
of up to three digits in the WOS algorithm we need approximately 10-6a, the ST
algorithm is one and half times faster when we use the optimal case of ST (in Fig. 12,

1400 [ . ; :
1300 . . ]
[ — quadratic regression
8
o]
X3
I [
E 1200 [ .
> r
£
c
c
3
1100 | .
1000 L . . L
0 0.05 0.1 0.15 0.2
5

FIG. 13. CPU time required to calculate the mean trapping rate for nonoverlapping impenetrable sphe
using GFFP withp, = 0.05, 1C trajectoriesg = 0, a = 1.0, and 95 nonoverlapping impenetrable spheres on z
500-MHz Pentium Il work station. It shows an optingaharounds = 0.12a.
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running time of the WOS algorithm at= 10-%ais approximately 1600 s while the running
time of the ST algorithm at = 0.11a is approximately 1100 s in Fig. 13).

Finally, we simulate the bulk (or effective) conductivity of a two-phase system compos
of nonoverlapping insulating spherical inclusions dispersed in a conducting matrix witl
conductivityo;. This provides a nontrivial test of tabulation 2 (we use all tabulations, butw
validated all the others except 2 in the previous Solc—Stockmayer model and trapping
simulations). The effective conductivitye, of general two-phase media can be obtaine
by using the Einstein relation between conductivity and diffusion [17]:

X2
T 6re(X)’

(24)

Oe

Here,(X) is the total mean time associated with the total mean-square displac¥ment

N,

2 N
te(X)ZE[Zé;:)+ZTj‘|, (25)
i j

when we choose starting points randomly inside the void space. Ngrig,the number of
WOS steps during the Brownian trajectarytheith WOS radiusNg the number of GFFP
steps during the Brownian trajectory, arjdhe sampled time using tabulations 2 and 4 for
thejth GFFP step. In our simulations, we chooé&for the conductivity calculation. For
efficiency, we use WOS until the diffusing particle reachesstundary of any nearby
reflecting sphere. We then use the nontrivial Green'’s function shown in Fig.sh¢uld

be small enough that the sphere of radizidoes not intersect the second nearest inclusio
sphere). Here we use= 0.3a, wherea is the radius of the reflecting spheres (we chos
this value ofs at random because there was very little information available on optimizir
the choice of for random media problems). If the diffusing particle makes an FP jump ¢
the reflecting sphere, we use the nontrivial Green’s function shown in Fig. 2 to leave
reflecting sphere. We calculate the mean FP time for a diffusing particle by accumulat
the mean FP time for each jump. If the FP surface for a jump is a sphere, this FP tim
proportional to the radius squared; if the FP surface is not spherical, we use the value f
the FP time tabulation described in the previous section (tabulations 2 and 4). This illustr:
the bootstrap nature of the ST method: here we use as a primitive tabulation obtaine
a previous study. If a Green'’s function simulation, providing a FP position and a FP tir
for a particular FP surface geometry, has been performed once, there is no reason to
do it again. We also repeated this set of simulations using the ¥au®, i.e., we used
WOS only, until a diffusing particle jumped to within the distarcef a reflecting sphere.

It is then considered to be “absorbed” at the closest point on the sphere, and then leave
reflecting sphere using the Green’s function shown in Fig. 2.

The research by Kim and Torquato [17] is similar to this second method we descrit
(using only WOS; i.e§ = 0). In their work, they use analytic solutions for both the absorp
tion time and the probability that a diffusing particle “absorbed” on an interfacial surfas
will jump to a point outside that surface. But these authors do not use Green'’s funct
methods to sample the FP position. Thus, they use a very small FP sphere when lec
an interfacial surface. Also, they assume that a diffusing particle making such a jump \
land on a point on the normal to the interface, drawn at the point of departure; i.e., the ju
willhaved = 0 oré = &, in our terminology. This approximation is highly accurate in this
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FIG.14. Scaled effective conductivity./o; of equilibrium distributions of nonoverlapping insulating spheres
in a matrix of conductivitys; with ¢ = 0.0001a ands = 0.

case for reasons which are not clear, but cannot be more efficient than our second me
described above because it requires the FP radius for a jump leaving an interface to be s
In turn, our first method (using a nontrivial FP surface) described above is superior to
second methods(= O case).

Equilibrium configurations of nonoverlapping spheres are generated by the conventic
Metropolis algorithm [17] with 128 spheres, where each sphere is moved 400 times.
considered 10 equilibrium realizations and* tAndom walks per realization with dimen-
sionless total mean square displacemettt/a?) from 10 to 100 depending on volume
fraction¢,. The simulation results are shown in Figs. 14 and 15.

Again, we compare the CPU time of the ST algorithm with that of the WOS algorithi
in Figs. 16 and 17. In the WOS algorithm, CPU time depends-shell thickness and the
ST algorithm ons-boundary layer. Here; = 10~'a in the WOS method approximately
corresponds to the optimal case of ST. Considering that for the accuracy of up to th
digits in the WOS algorithm we need approximately: 10-%a, the ST algorithm is seven
times faster when we use the optimal case of ST (in Fig. 16, the running time of the W
algorithm ate = 10-%a is approximately 700 s while the running time of the ST algorithm
ats = 0.6a is approximately 100 s in Fig. 13).

4. COMPUTATIONAL EFFICIENCY OF THE ST METHOD

Inthis section, we discuss the issue of the efficiency of ST (and GFFP) methods comp:
with WOS methods. WOS is efficient until one gets very close to an absorbing surface.
GFFP methods all surfaces are “absorbing,” in the sense that they furnish natural bound:
to FP jumps i.e., the Brownian particle must stop upon contact with them. GFFP meth
then use a surface Green’s function, such as that shown in Fig. 2, to sample alanding pos
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FIG.15. Scaled effective conductivity./o; of equilibrium distributions of nonoverlapping insulating spheres
in a matrix of conductivitys; with ¢ = 0 ands = 0.1a.

for the next FP jump. Of course, if the surface is really absorbing, this is not necessary.
random medium problems, Brownian particles are, on the average, very close to absor
surfaces. Classical diffusion Monte Carlo methods do not yet have in place general theor
that relate the-shell to the accuracy that can be obtained in a Monte Carlo simulatio
Generally, in WOS methods, the error from thehell is made smaller than the statistical

1000 T T T T g T

800 r

600 r

400 r

running time (secs)

200 r

—— logarithmic regression

0 i1 I- Y_ I- \_ -I_ I_
10° 107 10° 10° 10" 10° 107 107 10°

FIG. 16. CPU time required to calculate the effective conductivity of a system of nonoverlapping, insulatil
spherical inclusions dispersed randomly in a conducting matrix with sink volume fragtier0.2. Here, we use
WOS with mean diffusion path lengtk?/a? = 100. We simulate ¥0random walks on a 500-MHz Pentium 11|
work station. The simulations show the expected relation for WOS:CPU-tirimge)).
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FIG. 17. CPU time required to calculate the effective conductivity of a system of nonoverlapping, insulatit
spherical inclusions dispersed randomly in a conducting matrix with sink volume fragtier0.2. Here, we use
GFFP with mean diffusion path lengd?/a? = 100. We simulate X0random walks on a 500-MHz Pentium Ill
work station. It shows an optimdlarounds = 0.65a.

error [13, 14]. For the same Brownian trajectory, the estimated difference between us
€ ande/10 gives a measure of the error due to ¢hehell. By adjusting:, we can make
the error from thes-shell less than the statistical error. This means that if we increase t
number of Brownian particles to decrease the statistical error, we must consequently rec
€ and thus increase CPU time (the average number of FP jumps required for a Browr
particle to be absorbed in theshell in WOS is OfIn €l)). This virtually guarantees that
WOS methods will not be that useful for all problems that require accuracy beyond a pre
limit. Generally, it is assumed that the accuracy attainable in a simulation in WOS is on
order ofe'/” ase — 0 for somey > 0 [33]. But very little data are available to quantify
this claim. So we cannot yet provide thresholds of accuracy beyond which our metho
the most efficient. This question is under investigation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an extension of our Green’s function first-pass
method that allows this method to be used on problems for which the Green’s functic
necessary to deal with a local interfacial surface cannot be obtained in analytic or que
analytic form. We test this simulation—tabulation method by applying it to three charz
teristic diffusion problems encountered in science and engineering. In all three cases
reproduce numerically accurate solutions at substantially reduced computational cos
essence, this method is able to do this because it allows a Brownian particle near an intel
to sample the FP position even when the interface is not simple, and the FP radius is
small.

In particular, we show that, for each of the three problems we study, the ST methoc
the most efficient, provided that a sufficiently high level of accuracy is required. We sh



SIMULATION-TABULATION METHOD 945

explicitly that our method is more efficient than WOS, and by implication, any method tf
requires the use of small FP spheres close to an interface.

The methodological implications of this method for the study of this class of problen
namely Laplace boundary-value problems with complicated boundaries, are twofold. Fi
itis extremely inefficient for researchers pursuing the GFFP method to hoard Green'’s fL
tions thatthey have calculated and tabulated. The bestideawould be for one researchert
ate a Web site where useful tabulated Green'’s functions can be stored and uploaded by
researchers. At present, we are making these Green’s functions available at our grou
search Web page: http://www.cs.fsu.edmascagni/research. Second, the central obstac
to the unlimited expansion of this research paradigm is the occurrence of FP configurat
such that the number of independent geometrical parameters, together with the numb
independent FP position parameters (like the polar ahjgbedd up to 4 or more. A tabulated
Green'’s function of three parameters, each parameter being tabulated at 200 discrete v
may not fit into cache memory in a modern computer; the same matrix of four dimensic
will not fitinto the cache memory. A limited solution to this problem is to allow the FP sphel
radius, and the associated dimensionless parameter, to assume only a small number of \
and then to use higher-order interpolation strategies. These matters are now under stt
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