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Many important classes of problems in materials science and biotechnology re-
quire the solution of the Laplace or Poisson equation in disordered two-phase do-
mains in which the phase interface is extensive and convoluted. Green’s function
first-passage (GFFP) methods solve such problems efficiently by generalizing the
“walk on spheres” (WOS) method to allow first-passage (FP) domains to be not
just spheres but a wide variety of geometrical shapes. (In particular, this solves
the difficulty of slow convergence with WOS by allowing FP domains that contain
patches of the phase interface.) Previous studies accomplished this by using geome-
tries for which the Green’s function was available in quasi-analytic form. Here, we
extend these studies by using the simulation–tabulation (ST) method. We simulate
and then tabulate surface Green’s functions that cannot be obtained analytically.
The ST method is applied to the Solc–Stockmayer model with zero potential, to the
mean trapping rate of a diffusing particle in a domain of nonoverlapping spheri-
cal traps, and to the effective conductivity for perfectly insulating, nonoverlapping
spherical inclusions in a matrix of finite conductivity. In all cases, this class of algo-
rithms provides the most efficient methods known to solve these problems to high
accuracy. c© 2001 Elsevier Science
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1. INTRODUCTION

Despite a vast amount of work on classical diffusion Monte Carlo methods [1–3] during
the past 50 years, many problems of practical importance still have no rapid solution method.
Examples include the solvation free energy of a molecule [4], the diffusion-limited reaction
rate of a small ligand to a binding site on a macromolecule [5–8], and the fluid permeability
of industrially important resins and cements [9–10].
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In a mathematical context, these examples all require solution of the Laplace equation,
the Smoluchowski equation, or other elliptic partial differential equations in a two-phase en-
vironment involving a highly distributed, convoluted, multiscale boundary, which, nonethe-
less, is locally smooth over most of its area.

Many such problems can be solved efficiently by Green’s function first-passage (GFFP)
algorithms [11]. These algorithms generalize “walk on spheres” (WOS) algorithms to allow
first-passage (FP) domains to be not just spheres but a wide variety of geometrical shapes.

The research described here adds to a long history of applications of probabilistic potential
theory to solve boundary value problems. The WOS method is often used to solve Laplace
boundary value problems [12–14]. (The “walk on rectangles” [13, 15] and “walk on balls”
[16] methods have also been used.) The WOS method uses only spherical FP domains.
Thus, the distribution of FP position on its surface is trivial, i.e., uniform. The WOS method
has been extended to obtain the conductivity of two-phase media by Kim and Torquato [17].
They obtain overall transition probabilities that obey simple Laplace equations. But they
do not obtain the Green’s functions needed to correctly sample the FP position; thus, these
are not true GFFP methods. Early work within the GFFP paradigm sampled the FP position
by combining the Metropolis method with explicit evaluation of the appropriate Green’s
function by performing numerical integration [11]. This procedure can be made arbitrarily
accurate. However, it is computationally very expensive. Later applications used the analytic
Green’s function to tabulate the corresponding distribution function; this tabulation was then
used in diffusion simulations to sample the first-passage point via interpolation [18, 19].
The initial tabulation takes substantial time, but need be performed only once for each
geometry of interest. This tabulation method is efficient, but has heretofore been applied
only to first-passage domains for which the Green’s function is available in analytic form
or can be reduced to quadratures.

GFFP methods simulate diffusion paths as follows: a FP sphere is drawn around the
initial location of the Brownian particle. It is allowed to intersect the closest smooth regular
patch of absorbing surface. This may be a patch that the Brownian particle has landed on.
The resulting FP surface consists of the portion of absorbing surface inside the FP sphere,
together with the portion of FP sphere outside the absorbing surface. The Brownian particle
jumps to (“makes FP on”) a point on the FP surface, which is determined by sampling
the appropriate Laplacian Green’s function. If that point lies on a surface with Dirichlet
conditions, i.e., absorbing boundary conditions, the diffusion path terminates. Otherwise, it
becomes the starting position of a new FP surface. The particle continues making FP jumps
in this manner. In order to use the GFFP method in a particular application of the type
described here, the interfacial surface must be locally simple in the sense that the Green’s
function be calculable fast enough that the computational price of sampling is less than that
of using lower-order methods, i.e., discrete random walks.

In this paper, we develop a method, the simulation–tabulation (ST) method, that greatly
extends the range of problems one can address by the GFFP method. The ST method
does not require an analytic Green’s function as a starting point. It uses simulation results
directly to tabulate, or bin, contributions to the Green’s function. It then follows the standard
procedure (summarized in Section 2) for creating a distribution function tabulation from a
Green’s function tabulation. The ST method extends the range of diffusion problems that
can be treated by GFFP in two ways. First, it allows a standard, i.e., absorbing, FP domain
for which the Laplacian Green’s function is not available in analytic form. Second, it allows
mixed boundary conditions on the surfaces constituting the boundary of the FP domain.
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Each FP jump requires the Brownian particle to make a transition either from a point in
a single-phase domain to a point on the interface of that domain or from a point on that
interface to a point in a single-phase domain. These FP jumps require sampling from two
classes of Laplacian Green’s functions corresponding to the two types of jump. Here, we
apply the ST method to one Green’s function of each type (see, respectively, Figs. 2 and
5). Once the surface Green’s function for a local geometry has been tabulated, jumps that
involve it can be treated as elementary in the quest to tame still larger classes of local surface
geometries. This is the bootstrap aspect of the ST method.

This paper is organized as follows: In Section 2, we explain the use of the ST method to
obtain a pair of basic Laplacian Green’s functions. In Section 3, we evaluate the performance
of ST methods on three paradigmatic diffusion problems: the Solc–Stockmayer problem,
a simple model of diffusion-limited protein-ligand binding; the trapping rate of particles
diffusing in a domain of spherical, nonoverlapping traps (this is a standard model of an
extinction process in a random two-phase medium); and the effective conductivity of a two-
phase medium, consisting of an ensemble of nonoverlapping, insulating spherical inclusions
dispersed randomly in a matrix phase of finite conductivityσ1. In Section 4 we discuss the
computational efficiency of the ST method, and in Section 5 we present our conclusions
and recommendations for further research.

2. CONSTRUCTION BY THE SIMULATION–TABULATION METHOD

OF TWO BASIC LAPLACIAN GREEN’S FUNCTIONS

In this section, at first we show the equivalence between the surface Green’s function for
a Laplacian in a bounded region and the FP probability distribution in an identical region for
the theoretical basis of ST method and explain how the ST method obtains two Laplacian
Green’s functions required for the applications we study.

A branch of applied mathematics, probabilistic potential theory [20, 21], provides a
detailed equivalence between an electrostatic problem and the equivalent diffusion problem.
In particular, the surface Green’s function for the Laplacian in a bounded region, i.e., the
charge distribution on the interface, is equivalent to the FP probability distribution in an
identical region.

It is useful to show this equivalence in detail in a specific set of examples. Consider the
Dirichlet problem for the Laplace equation (see Fig. 1),

1u(x) = 0, x ∈ Ä,
u(x) = f (x), x ∈ ∂Ä.

(1)

The solution at pointx can be represented probabilistically as the average over all
the boundary values,Xx(τ∂Ä), of Brownian motion starting atx. The time,τ∂Ä, when
the Brownian particle first strikes the boundary is called the first-passage time, and the
place where the Brownian particle first strikes the boundary,Xx(τ∂Ä), is called the first-
passage location. Specifically, the probabilistic solution,u(x), to (1) is given by

u(x) = Ex[ f (Xx(τ∂Ä))]. (2)

The proof that this is the case is simple. Place a sphere centered atx completely lying
withinÄ. Clearly, the particle will have to hit this sphere before hitting∂Ä. The probability
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FIG. 1. Brownian motion which starts atx and terminates atXx(τ∂Ä) on the boundary∂Ä while passing
throughz, a point on a sphere centered atx.

distribution of z, the FP position on the sphere, is clearly uniform due to the isotropic
nature of Brownian motion. Now we continue the Brownian particle fromz until it hits
the boundary. HereXx(τ∂Ä) is the first-passage location on the boundary,∂Ä (see Fig. 1).
Averaging over the first-passage boundary values of Brownian paths started atz gives us
u(z). Since each trajectory starting atx that hits∂Ä must first hit the sphere with uniform
probability,u(x)must be the mean of the values ofu(z) over the sphere. Thus,u(x) has the
mean-value property and is harmonic, i.e., it obeys the Laplace equation [22]. If we then
think of moving the starting point for our Brownian particles to the boundary, we clearly
will, in the limit, have the first-passage location coincide with the limit ofx on the boundary.
This argues that, in addition,u(x) has the correct boundary values, and so it is the unique
solution to (1).

The RHS of Eq. (2) can be interpreted as an average of the boundary values,f (x), x ∈
∂Ä over∂Ä. The weighting factor in this average is the first-passage probabilityp(x, y) of
a Brownian particle starting atx hitting the boundary first aty = Xx(τ∂Ä) ∈ ∂Ä. Thus, we
can representu(x) as an integral over the boundary,∂Ä, via

u(x) =
∫
∂Ä

p(x, y) f (y) dy. (3)

However, there is another representation of the solution of the Dirichlet problem for the
Laplace equation in terms of an integral over the boundary. This is provided by means of
the Green’s function,G(x, y) [23],

u(x) =
∫
∂Ä

∂G(x, y)
∂n

f (y) dy. (4)

The normal derivative of the Green’s function on∂Ä is what we refer to as the “surface
Green’s function” for the domainÄ. Thus, the surface Green’s function for a domain,
Ä, must beidentical to the first-passage probability distribution for that same domain:
p(x, y) = ∂G(x, y)/∂n.

Since the Laplace equation describes the electrical potential outside regions containing
charges, one can also translate the probabilistic interpretation of the Laplace equation into
the language of electrostatics [4, 20]. Thus, a point source of Brownian (diffusing) parti-
cles becomes a point charge; the “first-passage” (FP) surface becomes an ideal conductor,
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the first-passage distribution on the FP surface becomes a charge distribution, the surface
Green’s function becomes the normal derivative of electrostatic potential, and the interface
between different media becomes a dielectric interface.

For computational reasons, the ST method is limited at present to Green’s functions that
have three dimensionless parameters (or less) for arguments: two parameters(α, β) that
define the geometry of the FP surface, and one parameter that defines the FP position in the
geometry. In the applications treated here, the FP surface is a portion of a sphere and has
azimuthal symmetry. Thus, the polar angleθ suffices to determine the FP position.

For each set of values of the geometrical parameters defined on a 2D grid, the value of
cosθ is binned, i.e., tabulated for a large number of trajectories. The simulation data provide
a discrete approximation to the distribution

P(α, β, cosθ) dα dβ d(cosθ). (5)

This is the probability distribution associated with a Brownian particle making FP at a polar
angleθ in the fixed geometry characterized by the two parameters (α, β). We next form the
normalized distribution,

p(α, β, cosθ) = 1

Zn

∫ cosθ

−1
P(α, β, cosθ) dα dβ d(cosθ), (6)

whereZn is a normalizing factor. As a function of cosθ , the normalized distribution varies
smoothly and monotonically between zero and unity. Thus, it can be inverted to give the
function

cosθ(α, β, p). (7)

To sample this distribution, we choose a random numberη uniformly in the interval [0, 1),
set p = η in this function, and obtain a value of cosθ via interpolation.

We now consider two basic Laplacian Green’s functions that are useful when the particles
are diffusing outside one or more spherical regions. (These Green’s functions, of course,
would not be “basic” for other geometries; one would need to generate other basic Green’s
functions for other geometries.)

We calculate and tabulate the Green’s function for a point source located on the surface
of a reflecting sphere and surrounded by an absorbing sphere (see the bold curves in Fig. 2);
this Green’s function allows a diffusing particle to leave a reflecting surface. In particular,
we solve the Poisson equation

1u(x, x0) = δ(x− x0), (8)

with the boundary conditions

n(x) · ∇u(x, x0) = 0, x ∈ ∂Ä1, (9)

u(x, x0) = 0, x ∈ ∂Ä2. (10)

Here,n(x) · ∇u(x, x0) is the probability density associated with hitting the vicinity ofx on
the absorbing spherical surface for the first time when the Brownian particle starts fromx0.
Here,n(x) is the normal vector at the surface pointx.
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FIG. 2. The first-passage surface (bold curves) for a Brownian particle, located at pointx0 on a reflecting
sphere of radiusr1, to reach an absorbing FP surface∂Ä2 of radiusr2.

The tabulation (see tabulation 1 in Table I) has two parameters: the ratioX = r2/r1 of
the radii,r1 andr2, respectively, of the reflecting and the absorbing spheres; and the vari-
ableY = 1− cosθ , whereθ is the polar angle giving the location on the absorbing sphere
where FP occurs. Here, we use a polar coordinate system with the line connecting the two
sphere centers as polar axis; we also exploit the azimuthal symmetry of this Green’s function.
The variableX ranges from 0 to 2 with step size of 0.02; for each value ofX, Y ranges
from 0 to (1− cosθmax), where the angle,θmax, defined to be the largest angle for which
the FP position is on the reflecting sphere, is determined by geometrical considerations
(see Fig. 3):

FIG. 3. The geometrical consideration for the calculation of cosθmax in the first-passage surface for a Brownian
particle, located at pointx0 on a reflecting sphere of radiusr1, to reach an absorbing FP surface∂Ä2 of radiusr2.
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FIG. 4. A two-dimensional schematic representation of a Brownian trajectory using WOS algorithm. If the
diffusing particle reaches theε-layer, it is taken to be absorbed.

cosθmax= − r2

2r1
. (11)

For the limiting case ofX = 0, we use a uniform FP probability density over∂Ä2: in this
limit, the interface to the reflecting sphere is flat and the problem can be solved analytically.

The simulation uses the WOS algorithm. The Brownian particle is initiated at the point
source,x0. The FP surface consists of the portion of reflecting spherical surface contained
within the FP sphere together with the portion of the FP sphere that is outside the reflecting
spherical surface (see the bold curves in Fig. 2). The Brownian particle makes FP jumps
using WOS until it lands within a distanceε of at least one point on the absorbing surface,
∂Ä2 (see Fig. 4). When this happens, the Brownian particle is taken to be absorbed on the
portion of the FP surface.

As described in the Introduction, we have a standard procedure to convert simulation data
into tabulation data, i.e., into data that can be directly sampled to provide the FP position.

At the same time, the average absorption time, i.e., the average lifetime of a Brownian
particle, is tabulated (tabulation 2 in Table I). For the mathematical formulation, we start
with the Feynman–Kac path-integral representation for solving the Dirichlet problem for
Poisson’s equation:

1u(x) = q(x), x ∈ Ä (12)

u(x) = 0, x ∈ ∂Ä. (13)

The solution to this problem, given in the form of the path-integral with respect to standard
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Brownian motionXx(t), is as follows [21, 24]:

u(x) = E

[
−
∫ τ∂Ä

0
q(Xx(t)) dt

]
. (14)

Here τ∂Ä is the first-passage time of a Brownian particle starting atx. We can see that
whenq(x) = −1, u(x) = E[

∫ τ∂Ä
0 dt] = E[τ∂Ä]. Thus, the mathematical formulation is a

Dirichlet boundary problem for the Poisson equation with a constant source [25, 15],

1u(x) = −1, x ∈ Ä, (15)

and with the boundary conditions

u(x) = 0, x ∈ ∂Ä. (16)

The average time,τ , required for a Brownian particle to first hit the surface of a sphere is
given byτ = r 2/(6D), wherer is the radius of the sphere andD the diffusion coefficient
[26]. The average absorption time for a Brownian particle is given by the sum of this
expression over all FP spheres used to construct the absorbed walk:

E[τ∂Ä] = E

[
N∑
i

r 2
i

6D

]
. (17)

Here,N is the number of WOS steps needed for the Brownian trajectory andri is theith
WOS radius.

The errors involved in these tabulations are the following: the absorptionε-shell approx-
imation (described below), the assumption of uniform probability density when the radius
of the restarting WOS FP surface is much smaller than that of the reflecting sphere, the
statistical sampling error, and the error associated with the interpolation. Theε-shell error

FIG. 5. The first-passage surface (bold curves) for a Brownian particle, initiating at the centerx0 of an
absorbing sphere of radiusr2 and making FP either on that sphere∂Ä2 or on the included portion∂Ä1 of a second
absorbing sphere of radiusr1.



SIMULATION–TABULATION METHOD 933

TABLE I

Summary of Our Four Tabulations

Tabulation Description

Tabulation 1 Surface Green’s function for Fig. 2 FP surface
Tabulation 2 Average hitting time for Fig. 2 FP surface
Tabulation 3 Surface Green’s function for Fig. 5 FP surface
Tabulation 4 Average hitting time for Fig. 5 FP surface

can be made always less than the statistical error [13, 14]. We useε = 10−4r1 and 106

trajectories for eachr2/r1 ratio. We do not estimate the error arising from interpolation or
the assumption of uniform probability density over the restarting WOS FP surface.

Next, we calculate and tabulate the Green’s function for a point source in the center of an
absorbing sphere that intersects another absorbing sphere. This Green’s function (and others
like it) are the basis of the GFFP method: they allow a FP jump directly to an absorbing sur-
face (see Fig. 5). The FP surface is the top and bottom absorbing surface enclosing the point
source; it includes the portion of FP sphere outside the target sphere,∂Ä2, and the portion of
the target sphere contained in the FP sphere,∂Ä1 (see the bold curves in Fig. 5). The Poisson
problem to be solved in this case is the same as that defined by Eqs. (8)–(10), except that
the reflecting boundary condition, Eq. (9), is replaced by the absorbing boundary condition

u(x, x0) = 0, x ∈ ∂Ä1. (18)

For this problem, analytic solutions are known [27, 28] and have been used to do GFFP
calculations by one of us [11] (see tabulation 3 in Table I). However, for rapid and accurate
conductivity calculations we need to perform a high-order tabulation of this function; we
need to tabulate the average absorption time as well (see tabulation 4 in Table I). Each of
these tabulations has two parameters: the ratioX of the radiir1 andr2 of the two intersecting
spheres and the dimensionless distanceZ from the center of the intersecting sphere to the
surface of the other sphere divided byr1. Both variables range from 0.02 to 1.00 with step
size 0.02. For the limiting case ofX = r2/r1 = 0, the average absorption time is 0.

In our simulation, the Brownian particle starts from the point source. We use the WOS
algorithm until the Brownian particle is absorbed on the FP surface. We calculate the
average FP time by accumulating the radius square of WOS as in the previous case. We use
ε = 10−4r1 and 106 trajectories for eachr2/r1 ratio.

We summarize our tabulations in Table I.

3. APPLICATION OF THE ST METHOD TO THREE BASIC

DIFFUSION-LIMITED APPLICATIONS

In this section, we use the ST Green’s functions to solve three basic classes of diffusion
problems: the Solc–Stockmayer model with zero potential, the mean trapping rate of a dif-
fusing particle in a domain of nonoverlapping spherical traps, and the effective conductivity
for perfectly insulating, nonoverlapping spherical inclusions in a matrix of conductivityσ1.
This class of problems will test all four tabulated Green’s functions described in Section 2.

First, we calculate the reaction rate constant of the Solc–Stockmayer model without poten-
tial, a basic model for diffusion-limited protein–ligand binding. A model protein molecule
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FIG. 6. A schematic diagram that illustrates the simple Solc–Stockmayer model for diffusion-limited protein–
ligand binding.L is the launch sphere with radiusb where diffusing ligand is launched with uniform probability
distribution and∂Ä is the surface of a protein of radiusa = 1.0 with a circular reactive patch with angle2. The
reactive patch is absorbing and the rest of the protein reflecting.

is a sphere with a circular patch on its surface producing irreversible binding upon contact
with a diffusing ligand; the remainder of the spherical surface is nonreactive, i.e., reflecting.
Ligand molecules are idealized as noninteracting point-like diffusing particles.

For maximum efficiency, the basic methods used here for the calculation of the reaction
rate constant are refinements of the capture probability method [29] (see Fig. 6). The reaction
rate constantκ we wish to compute is given by [6]

κ

4πDa
= bβ, (19)

whereβ is the fraction of diffusing ligands from the launch sphere that are absorbed on
the reactive patch, andD is the diffusion coefficient. Each diffusing ligand initiates on the
launch sphere of radiusb surrounding the target sphere of radiusa, i.e., the protein model,
at a position chosen at random (see Fig. 6). It makes FP jumps (as described below) until it
either reaches the reactive patch on the target sphere (shaded area in Fig. 6) or goes to infinity.

In this problem there are novel aspects. If the diffusing ligand jumps to a point on the
reflecting portion of the target sphere, it uses the first Green’s function described in Section 2
to leave the surface (see Fig. 2). In this case, the FP sphere must not be large enough to
intersect the boundary of the absorbing patch. When the diffusing ligand jumps to the
reactive patch, it is absorbed.

We describe two methods for this calculation. The first method tests only tabulation 1
and the second tabulations 1 and 3 (we validate tabulation 1 through the first method and
tabulation 3 through the second method).
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In the first method, a diffusing ligand is initially placed at a randomly determined position
on the surface of the launch sphere. Instead of using the WOS or GFFP method, we use a
known probability (Eq. (20)) to decide whether the diffusing ligand goes to the target sphere
or to infinity from the randomly determined position on the surface of the launch sphere.
When it is determined to land on the target sphere, we use the replacement distribution
function (Eq. (21)). The probability that the ligand escapes to infinity from the surface of
the launch sphere [7] is given by

Pesp= 1− a

b
= 1− α. (20)

Hereb is the launch sphere radius anda is the target sphere radius. If the ligand lands on
the target sphere, it will land at a position(θ, φ) sampled by the replacement distribution
density function [7]

ω(θ, φ) = 1− α2

4π [1− 2α cosθ + α2]3/2
. (21)

Here, (θ, φ) are defined with respect to the polar axis that joins the old position to the target
sphere center andα isa/b. This distribution function has noφ dependence due to symmetry.
If the diffusing ligand lands on the absorbing patch, it is absorbed. If not, we construct an
intersecting first-passage sphere centered on the absorption point just large enough to touch
the patch boundary. Using the tabulated Green’s function (tabulation 1), we find the next
first-passage point. The probability that the diffusing ligand escapes to infinity from the
first-passage point without absorbing on the target sphere is given by [7]

Pesp= 1− a

r0
. (22)

Herer0 is the radial position of the diffusing ligand. If the ligand lands on the target sphere
instead of going to infinity, the replacement distribution density function withα = a/r0 is
used to determine the new position on the target sphere. This procedure iterates until the
ligand either reaches the reactive patch on the target sphere or goes to infinity.

The simulation results with 106 and 109 trajectories are shown in Table II. We obtain three
digits of accuracy. This is consistent with the accuracy of our Green’s function tabulations.
We can reproduce the results using only WOS without tabulation 1, but the computation

TABLE II

Reaction Rate Constantκ/(4πDa) for the Solc–Stockmayer

Model without Potentiala

Angle (2) Exact Simulation (106) Simulation (109)

10 0.64925E − 01 0.64516E − 01 0.65074048E − 01
20 0.14179E + 00 0.14159E + 00 0.14196463E + 00
30 0.22628E + 00 0.22673E + 00 0.22642986E + 00

a This is the first of the two methods we provide for this problem in Section 3.
It uses analytic replacement distribution function and tabulation 1. It is our most
efficient method. The left-hand column gives analytic results by the method of
dual series relations [30]. The other two columns give our simulation results with
106 and 109 diffusing ligands, respectively. They are accurate up to three digits.
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time is substantially greater. To compare with our simulation results, the exact values are
obtained by the method of dual series relations [30].

To increase the accuracy of the calculations, we can increase the number of trajectories for
eachr2/r1 ratio to reduce the statistical error, keep the boundary error less than the statistical
error [13, 14], and use a smaller radius for the FP sphere used to leave the reflecting sphere
in the tabulation 1.

Next, we describe our second method for addressing this problem. The Green’s function
for this problem (see Fig. 5) samples the FP position on both the upper and the lower ab-
sorbing surface. The former has been carefully tested [11, 18]; the latter has not. In this
work, we refine the accuracy of the FP distribution on the lower absorbing surface. (In a
separate paper [19], we have shown that this refinement in accuracy and other algorith-
mic improvements in our permeability estimation methods [18] improve our permeability
estimates quite substantially, especially at low porosities.) Because the first method has
already been described, we discuss in detail only those aspects of the second method that
are different. The diffusing ligand propagates by a series of FP jumps (see Fig. 7), each

FIG. 7. A schematic diagram that illustrates FP jumps using GFFP in the simple Solc–Stockmayer model for
diffusion-limited protein–ligand binding.L is the launch sphere with radiusb where diffusing ligand is launched
with uniform probability distribution and∂Ä is the surface of a protein of radiusa = 1.0 with a circular reactive
patch with angle2. The reactive patch is absorbing and the rest of the protein reflecting. In FP jump case 1, the
figure showsδ-boundary layer usage; when the diffusing particle reaches inside theδ-boundary layer, it begins to
intersect the target sphere; in FP jump case 2, the figure shows the usage of the replacement distribution density
function when the first jump from the launch sphere is outside the launch sphere and the probability decides that
the diffusing particle goes back to the launch sphere.
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FIG. 8. A two-dimensional schematic representation of a Brownian trajectory using both the WOS algorithm
(r1 to r3) and the GFFP algorithm (the final step). The solid circles are FP boundaries and absorbing. We use aδ-
boundary layer as a criterion such that WOS is used outside theδ-boundary layer and GFFP in theδ-boundary layer.

proceeding from the starting point (x0 in our notation) to a point on its FP surface. The sur-
face point to which it jumps is determined by sampling the tabulated distribution function
associated with the appropriate Laplacian Green’s function, obtained as described in the
previous section. For efficiency, the FP volume is chosen to be a sphere with uniform FP
probability until the diffusing ligand gets into theδ-boundary layer; then the FP volume is
chosen to be a sphere that intersects the target sphere. (Throughout this paper, we use the
δ-boundary layer as a criterion such that WOS is used outside theδ-boundary layer and
GFFP in theδ-boundary layer, because GFFP is more efficient when the Brownian particle
gets close to the target; see Fig. 8.) Notice that thisδ-boundary layer is different from the
ε-shell in WOS (see Fig. 4).

Table III shows the simulation results with 106 trajectories. These are accurate up to three
digits also.

We compare the CPU time of the ST algorithm with that of the WOS algorithm in
Figs. 9 and 10. In the WOS algorithm, CPU time depends on theε-shell thickness and
the ST algorithm on theδ-boundary layer. The value ofε = 10−3a in the WOS method
approximately corresponds to the optimal case of ST. Considering that for the accuracy
of up to three digits in the WOS algorithm we need approximatelyε = 10−6a, the ST
algorithm is two times faster when we use the optimal case of ST (in Fig. 9, the running
time of the WOS algorithm atε = 10−6a is approximately 2600 s while the running time
of the ST algorithm atδ = 0.1a is approximately 1350 s in Fig. 10). The ST results can be
reproduced using only WOS without tabulations 1 and 3, but the computation time is much
greater.
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TABLE III

Reaction Rate Constantκ/(4πDa) for the Solc–Stockmayer

Model without Potentiala with ε = 0 andδ = 0.3a

Angle (2) Exact Simulation (106)

10 0.64925E − 01 0.64975E − 01
20 0.14179E + 00 0.14244E + 00
30 0.22628E + 00 0.22697E + 00

a This is the second of the two methods we provide for this problem in
Section 3. It uses tabulations 1 and 3, the tabulated Green’s functions
new to the present work. Here,ε is the absorption shell thickness and
δ is the distance from the surface of the sphere within which the first-
passage sphere begins to intersect the target.

Next, we simulate the diffusion-limited trapping rate in a system of noninteracting dif-
fusing particles in a volume containing nonoverlapping spherical traps (see Fig. 8). This
will test tabulation 4 (we use tabulations 3 and 4, but we validated tabulation 3 in the previ-
ous Solc–Stockmayer problem). The trapping rate is obtained as the inverse of the average
survival time [31]. The average survival time is given by

E[τ ] = E

[
Nw∑
i

r 2
i

6D
+

Ng∑
j

τ j

]
, (23)

when we choose starting points randomly inside the void space. Here,Nw is the number
of WOS steps during the Brownian trajectory,ri the ith WOS radius,Ng the number
of GFFP steps during the Brownian trajectory, andτ j the sampled time using tabulation
4 for the jth GFFP step. The mean trapping rate simulations are performed on systems

FIG. 9. CPU time required to calculate the reaction rate constant for the Solc–Stockmayer model without
potential using only WOS with2 = 100, 107 trajectories,δ = 0,a = 1.0, andb = 2.0 on a 500-MHz Pentium III
work station. It shows the expected relation for WOS:CPU time∼ ln(ε)).
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FIG. 10. CPU time required to calculate the reaction rate constant for the Solc–Stockmayer model without
potential using GFFP with2 = 100, 107 trajectories,ε = 0,a = 1.0, andb = 2.0 on a 500-MHz Pentium III work
station. It shows an optimalδ aroundδ = 0.1a.

consisting of 95–668 nonoverlapping spheres with radiusa = 1.0, depending on the sink
volume fractionφ2. The results of ST algorithm are compared with those of Zheng–Chiew
simulations [31] using WOS in Fig. 11. At low-volume fractions, there are some deviations
due to sampling fluctuation. We consider 10 realizations, each constructed by using random
sequential addition [31, 32], and simulate 105 diffusing particles per realization.

FIG. 11. Average survival time as a function of the sink volume fractionφ2 for nonoverlapping impenetrable
spheres. The crosses represent the simulation data from Zheng–Chiew calculation and the circles our simulation
data. At low-volume fractions, there are some deviations due to sampling fluctuation.
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FIG. 12. CPU time required to calculate the mean trapping rate for nonoverlapping impenetrable spheres
using only WOS withφ2 = 0.05, 106 trajectories,δ = 0,a = 1.0, and 95 nonoverlapping impenetrable spheres
on a 500-MHz Pentium III work station. It shows the expected relation for WOS:CPU time∼ ln(ε)).

The CPU time of the ST algorithm is compared with that of the WOS algorithm in
Figs. 12 and 13. As the previous case, in the WOS algorithm, CPU time depends on theε-
shell thickness and the ST algorithm on theδ-boundary layer. Approximatelyε = 10−3a in
the WOS method corresponds to the optimal case of ST. Considering that for the accuracy
of up to three digits in the WOS algorithm we need approximatelyε = 10−6a, the ST
algorithm is one and half times faster when we use the optimal case of ST (in Fig. 12, the

FIG. 13. CPU time required to calculate the mean trapping rate for nonoverlapping impenetrable spheres
using GFFP withφ2 = 0.05, 106 trajectories,ε = 0,a = 1.0, and 95 nonoverlapping impenetrable spheres on a
500-MHz Pentium III work station. It shows an optimalδ aroundδ = 0.12a.
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running time of the WOS algorithm atε = 10−6a is approximately 1600 s while the running
time of the ST algorithm atδ = 0.11a is approximately 1100 s in Fig. 13).

Finally, we simulate the bulk (or effective) conductivity of a two-phase system composed
of nonoverlapping insulating spherical inclusions dispersed in a conducting matrix with a
conductivityσ1. This provides a nontrivial test of tabulation 2 (we use all tabulations, but we
validated all the others except 2 in the previous Solc–Stockmayer model and trapping rate
simulations). The effective conductivity,σe, of general two-phase media can be obtained
by using the Einstein relation between conductivity and diffusion [17]:

σe = X2

6τe(X)
. (24)

Here,τe(X) is the total mean time associated with the total mean-square displacementX2,

τe(X) = E

[
Nw∑
i

r 2
i

6D
+

Ng∑
j

τ j

]
, (25)

when we choose starting points randomly inside the void space. Here,Nw is the number of
WOS steps during the Brownian trajectory,ri theith WOS radius,Ng the number of GFFP
steps during the Brownian trajectory, andτ j the sampled time using tabulations 2 and 4 for
the jth GFFP step. In our simulations, we chooseX2 for the conductivity calculation. For
efficiency, we use WOS until the diffusing particle reaches theδ-boundary of any nearby
reflecting sphere. We then use the nontrivial Green’s function shown in Fig. 5 (r2 should
be small enough that the sphere of radiusr2 does not intersect the second nearest inclusion
sphere). Here we useδ = 0.3a, wherea is the radius of the reflecting spheres (we chose
this value ofδ at random because there was very little information available on optimizing
the choice ofδ for random media problems). If the diffusing particle makes an FP jump on
the reflecting sphere, we use the nontrivial Green’s function shown in Fig. 2 to leave the
reflecting sphere. We calculate the mean FP time for a diffusing particle by accumulating
the mean FP time for each jump. If the FP surface for a jump is a sphere, this FP time is
proportional to the radius squared; if the FP surface is not spherical, we use the value from
the FP time tabulation described in the previous section (tabulations 2 and 4). This illustrates
the bootstrap nature of the ST method: here we use as a primitive tabulation obtained in
a previous study. If a Green’s function simulation, providing a FP position and a FP time
for a particular FP surface geometry, has been performed once, there is no reason to ever
do it again. We also repeated this set of simulations using the valueδ = 0, i.e., we used
WOS only, until a diffusing particle jumped to within the distanceε of a reflecting sphere.
It is then considered to be “absorbed” at the closest point on the sphere, and then leaves the
reflecting sphere using the Green’s function shown in Fig. 2.

The research by Kim and Torquato [17] is similar to this second method we described
(using only WOS; i.e.,δ = 0). In their work, they use analytic solutions for both the absorp-
tion time and the probability that a diffusing particle “absorbed” on an interfacial surface
will jump to a point outside that surface. But these authors do not use Green’s function
methods to sample the FP position. Thus, they use a very small FP sphere when leaving
an interfacial surface. Also, they assume that a diffusing particle making such a jump will
land on a point on the normal to the interface, drawn at the point of departure; i.e., the jump
will haveθ = 0 orθ = π , in our terminology. This approximation is highly accurate in this
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FIG. 14. Scaled effective conductivityσe/σ1 of equilibrium distributions of nonoverlapping insulating spheres
in a matrix of conductivityσ1 with ε = 0.0001a andδ = 0.

case for reasons which are not clear, but cannot be more efficient than our second method
described above because it requires the FP radius for a jump leaving an interface to be small.
In turn, our first method (using a nontrivial FP surface) described above is superior to the
second method (δ = 0 case).

Equilibrium configurations of nonoverlapping spheres are generated by the conventional
Metropolis algorithm [17] with 128 spheres, where each sphere is moved 400 times. We
considered 10 equilibrium realizations and 104 random walks per realization with dimen-
sionless total mean square displacement (X2/a2) from 10 to 100 depending on volume
fractionφ2. The simulation results are shown in Figs. 14 and 15.

Again, we compare the CPU time of the ST algorithm with that of the WOS algorithm
in Figs. 16 and 17. In the WOS algorithm, CPU time depends onε-shell thickness and the
ST algorithm onδ-boundary layer. Here,ε = 10−1a in the WOS method approximately
corresponds to the optimal case of ST. Considering that for the accuracy of up to three
digits in the WOS algorithm we need approximatelyε = 10−6a, the ST algorithm is seven
times faster when we use the optimal case of ST (in Fig. 16, the running time of the WOS
algorithm atε = 10−6a is approximately 700 s while the running time of the ST algorithm
at δ = 0.6a is approximately 100 s in Fig. 13).

4. COMPUTATIONAL EFFICIENCY OF THE ST METHOD

In this section, we discuss the issue of the efficiency of ST (and GFFP) methods compared
with WOS methods. WOS is efficient until one gets very close to an absorbing surface. (In
GFFP methods all surfaces are “absorbing,” in the sense that they furnish natural boundaries
to FP jumps i.e., the Brownian particle must stop upon contact with them. GFFP methods
then use a surface Green’s function, such as that shown in Fig. 2, to sample a landing position
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FIG. 15. Scaled effective conductivityσe/σ1 of equilibrium distributions of nonoverlapping insulating spheres
in a matrix of conductivityσ1 with ε = 0 andδ = 0.1a.

for the next FP jump. Of course, if the surface is really absorbing, this is not necessary.) In
random medium problems, Brownian particles are, on the average, very close to absorbing
surfaces. Classical diffusion Monte Carlo methods do not yet have in place general theorems
that relate theε-shell to the accuracy that can be obtained in a Monte Carlo simulation.
Generally, in WOS methods, the error from theε-shell is made smaller than the statistical

FIG. 16. CPU time required to calculate the effective conductivity of a system of nonoverlapping, insulating
spherical inclusions dispersed randomly in a conducting matrix with sink volume fractionφ2 = 0.2. Here, we use
WOS with mean diffusion path lengthX2/a2 = 100. We simulate 104 random walks on a 500-MHz Pentium III
work station. The simulations show the expected relation for WOS:CPU time∼ ln(ε)).
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FIG. 17. CPU time required to calculate the effective conductivity of a system of nonoverlapping, insulating
spherical inclusions dispersed randomly in a conducting matrix with sink volume fractionφ2 = 0.2. Here, we use
GFFP with mean diffusion path lengthX2/a2 = 100. We simulate 104 random walks on a 500-MHz Pentium III
work station. It shows an optimalδ aroundδ = 0.65a.

error [13, 14]. For the same Brownian trajectory, the estimated difference between using
ε andε/10 gives a measure of the error due to theε-shell. By adjustingε, we can make
the error from theε-shell less than the statistical error. This means that if we increase the
number of Brownian particles to decrease the statistical error, we must consequently reduce
ε and thus increase CPU time (the average number of FP jumps required for a Brownian
particle to be absorbed in theε-shell in WOS is O(| ln ε|)). This virtually guarantees that
WOS methods will not be that useful for all problems that require accuracy beyond a preset
limit. Generally, it is assumed that the accuracy attainable in a simulation in WOS is on the
order ofε1/γ asε → 0 for someγ > 0 [33]. But very little data are available to quantify
this claim. So we cannot yet provide thresholds of accuracy beyond which our method is
the most efficient. This question is under investigation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an extension of our Green’s function first-passage
method that allows this method to be used on problems for which the Green’s functions
necessary to deal with a local interfacial surface cannot be obtained in analytic or quasi–
analytic form. We test this simulation–tabulation method by applying it to three charac-
teristic diffusion problems encountered in science and engineering. In all three cases, we
reproduce numerically accurate solutions at substantially reduced computational cost. In
essence, this method is able to do this because it allows a Brownian particle near an interface
to sample the FP position even when the interface is not simple, and the FP radius is not
small.

In particular, we show that, for each of the three problems we study, the ST method is
the most efficient, provided that a sufficiently high level of accuracy is required. We show
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explicitly that our method is more efficient than WOS, and by implication, any method that
requires the use of small FP spheres close to an interface.

The methodological implications of this method for the study of this class of problems,
namely Laplace boundary-value problems with complicated boundaries, are twofold. First,
it is extremely inefficient for researchers pursuing the GFFP method to hoard Green’s func-
tions that they have calculated and tabulated. The best idea would be for one researcher to cre-
ate a Web site where useful tabulated Green’s functions can be stored and uploaded by other
researchers. At present, we are making these Green’s functions available at our group re-
search Web page: http://www.cs.fsu.edu/∼mascagni/research. Second, the central obstacle
to the unlimited expansion of this research paradigm is the occurrence of FP configurations
such that the number of independent geometrical parameters, together with the number of
independent FP position parameters (like the polar angleθ ), add up to 4 or more. A tabulated
Green’s function of three parameters, each parameter being tabulated at 200 discrete values,
may not fit into cache memory in a modern computer; the same matrix of four dimensions
will not fit into the cache memory. A limited solution to this problem is to allow the FP sphere
radius, and the associated dimensionless parameter, to assume only a small number of values
and then to use higher-order interpolation strategies. These matters are now under study.
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