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We describe two efficient methods of estimating the fluid permeability of standard models of porous
media by using the statistics of continuous Brownian motion paths that initiate outside a sample and
terminate on contacting the porous sample. The first method associates the “penetration depth”
with a specific property of the Brownian paths, then uses the standard relation between penetration
depth and permeability to calculate the latter. The second method uses Brownian paths to calculate
an effective capacitance for the sample, then relates the capacitance, via angle-averaging theorems,
to the translational hydrodynamic friction of the sample. Finally, a result of Felderhof is used to
relate the latter quantity to the permeability of the sample. We find that the penetration depth method
is highly accurate in predicting permeability of porous material. 2@00 American Institute of
Physics[S1070-663100)02207-9

I. INTRODUCTION simulating the corresponding class(af general biased dif-
fusion processes!® The diffusion Monte Carlo method is
Much theoretical effort has been expended in attempts teefined by the mapping of boundary value problems involv-
either estimate or bound the fluid permeability of a porousing elliptic PDEs into the corresponding diffusion problems,
medium, given its average statistical properties. Techniquegnd solving them by using Monte Carlo methods. This
used for this include the volume-to-surface-area ratte A method is powerful because it can be implemented compu-
parametef, percolation idead,and concepts from the theory tationally in a massively parallel manner.
of Brownian motion such as mean survival distance or mean  Previous work! involving one of us(J.G) developed a
survival time(inverse reaction rajé—° class of diffusion Monte Carlo algorithms, the Green'’s func-
One basic class of theoretical models allows one to studyion based first-passag&FFP methods, that are very effi-
either packed beds or consolidated porous media such &sent for studying the properties of random or highly irregu-
sandstone. These models consist of ensembles of equal-sizied two-phase media. This class of problems involves,
impermeable spherical inclusions immersed in a completely )
permeable medium. When used to model a packed bed, the@ Interfacial surfages that may pass very close to each
spheres are nonoverlapping; when used to model a consoli- other, thu§ creating channels that are narrow, but nev-
dated porous medium, they are randomly located and freely grtheless |mport:_:1nt for understanding the bulk proper-
overlapping. A second basic class of models for packed beds ~ {i€s of the material. _ _ _ ,
and/or porous media consists of periodic arrays of impermelP) ~ Spatial intermittency: large regions with no interfacial
able spherical inclusions immersed in a freely permeable me-  Surface; smaller regions with a high density of interfa-
dium. Depending on the ratio between the diameter of the  Cial surface. Intermittency may be due, e.g., to polydis-
spherical inclusions and the separation between neighboring ~ PErSity in pore diameter or void size, or to a dispersion,
inclusions, and the periodic lattice chosen, these models may N solution, of very large irregular inclusions, such as
consist either of overlapping or nonoverlapping spheres. macromolecules.

The use of Monte Carlo methods to solve elliptic or (©
parabolic partial differential equatiofBDES is grounded in
the mathematical subject called probabilistic potential
theory’~% It is well known that the probability density func-
tion of a diffusing particle obeys the diffusion equation. The
time-integrated, or steady-state probability density function,
obeys the Laplace equation. These facts have been greailg)
generalized. One can solve a large class of elliptic PDEs by
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Interfacial surfaces that may include sharp corners and
edges. The difficulties these features cause in solving
the Laplace equation are cle@n electrostatic termi-
nology, they cause singularities in charge density

In particular, the class of GFFP algorithrits,

Uses a purely continuum description of both sample
and diffusing particle trajectory, with no discretization
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either in space or in time and hence no discretizatiorarbitrary body, and the electrostatic capacita@cef a per-
error. This is essential for calculations of permeability fect conductor of identical size and shape. For arbitrary non-
in low-porosity materials. skew objects with a no-slip boundary condition, using angu-
(b) Uses a library of Laplace Green’s functions that allowlar averaging of the Oseen tengbiiubbard and Dougl&3
a diffusing particle both to make large “jumps” across generalized the exact Stokes-Einstein result for the transla-
regions containing no interfacial surface, and to be abtional hydrodynamic friction of a sphere,
zi(:]rbed. from a distance, at an absorbing boundary, in a Fopnere 67 7R, )
gle jump.
(c) Uses ‘“charge-based” rather than ‘voltage-based” where 5 is the solvent viscosity an is the radius of the
methods of calculation, i.e., retains only the location ofsphere, to the translational hydrodynamic friction of an arbi-
absorption events, or equivalently surface charges. Thirary impermeable body to give
allows one to perform trajectory simulation using im- f=6
. . . =677C, (2
portance samplingbecause each trajectory yields one
surface charge thus ensuring that even singularities where C is the corresponding capacitance. This formula is
associated with corners and edges will be efficientlyexact in the “free tumbling” approximation, i.e., in the case
sampled. that there is no coupling between the translational and rota-
tional motion, and that there is sufficient noise, or disorder,
This method is an adaptation and refinement of then the flow to cause the object to occupy all possible orien-
“walk on spheres” (WOS) method of diffusion Monte tations equally. But extensive tests show the method is accu-
Carlo!® This method has been used since at least 1956 teate well beyond this set of cases.
treat diffusion problem&’ It was first applied in random- A central insight of the work described here is this: the
media problems by Zheng and Chiéivsee also Ref. 14. angle-averaging method may be applied to approximate the
Other recent studies have also generalized WOS to diffusiotranslational friction coefficient of an “object,” even if the
in two-phase media modeled as arrays of small homogesbject is not a connected set, e.g., if it is a collection of
neous squarésand cubes? these studies use the simplest inclusions that constitute the impermeable or matrix phase of
nontrivial Green’s functions to determine first-passage proba sample of porous media. A group of well-studied models
ability. The Einstein relation may be used to obtain effectivefor porous media fit this description. The inclusions may
electrical conductivities™" from the bulk diffusion coeffi- either be randomly placed, or set in a periodic lattice. The
cient of these models. former models have properties similar to many commercially
The present method is more efficient than WOS for dif-important porous media; the latter model a set of media
fusing particles very close to absorbing boundaries; as wérmed by grain consolidation. The inclusions may be freely
show here, this makes it ideal for the study of low-porosityoverlapping or impenetrable, i.e., unable to overlap. Finally
materials. It has been applied to solve the scalar Laplacthe (spherical inclusions may be uniforhimonodispersein
equation, which governs both electrostatic and diffusionradius, or they may be polydisperse.
problems. In this paper, we present two classes of accurate, com-
Electrostatic applications involve the calculation of elec-putationally efficient methods of calculating permeabilities
trostatic capacitance for very general bodf&$° This is an  for these models and models like them. These models com-
important set of problems because probabilistic potentiabine rapid efficient methods of simulating Brownian
theory implies fundamental relations between the capacimotion'™*®?°with a pair of methods for deriving the perme-
tance and the lowest eigenvalue of the Laplacian in the Diability from the statistics of Brownian particles diffusing
richlet problemt® This in turn leads to efficient bounds or near a sample of the porous medium. The trajectories of
approximations for a wide variety of physical quantities inthese particles initiate outside the sample and terminate on
many-body systems, for example, the quantum mechanicaontacting the porous matrix. The spherical collection of
scattering length in nuclear matter, or the classical rate ofmall inclusion spheres will occasionally be referred to as the
heat release in composite media. porous sample in subsequent discussions. The first method,
Diffusive applications of this class of methods involve the *“penetration depth” method, associates the fluid-
solutions of the Smoluchowski equation, either in the vicin-dynamic penetration depth with a specific property of the
ity of a single irregular objedte.g., a ligand diffusing near a Brownian paths, then uses the standard relation between pen-
reactive site on a macromolecuf€ or in a system contain- etration depth and permeability to calculate the latter. The
ing many absorbing object®.g., systems with distributed second method, the “unit capacitance” method, involves us-
trapping.t® ing Brownian paths to calculate an effective capacitance for
Because so many physical phenomena are governdtie sample, then relates the capacitance, via angle-averaging
by vector Laplace equation®.g., low-velocity fluid dyna- theorems, to the translational hydrodynamic friction of the
mics),?! and tensor Laplace equatiorie.g., solid mecha- sample. Finally, a result of Felderifdfis used to relate the
nics),?2 it is natural to seek methods for extending this pre-latter quantity to the permeability of the sample.
vious work to deal with these two classes of probléfhan This paper is organized as follows: Section Il sketches
approach to the first class is provided by the method othe method used here to obtain the electrostatic capacitance
angle-averaging® This method provides an approximate re- using Brownian paths. Section Ill develops the penetration
lation between the translational hydrodynamic frictfafan  depth method of calculating permeability, in which we ob-
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tain the penetration depth from Brownian paths, and obtainwvhere the integral is evaluated on any closed surface con-

the permeability from the penetration depth. Section IV de+aining the inner boundar{) (because of Green’s theorem

scribes the unit capacitance method of calculating permeany such surface may be uged

abilities, and applies it to the random models of packed beds The relation between the diffusion-controlled reaction

and consolidated porous media. Section V applies both methrate, in the Smoluchowski problem, of particles absorbed

ods to determining the permeabilities of the random modelsipon contact with an object, and the electrical capacitance of

of packed beds. Section VI applies both methods to detera conductor with identical size and shape to that object, is

mining the permeabilities of model packed beds composethus given by

of periodic arrays of impermeable spheres. Section VII ap-

plies both methods to determining the permeabilities of a <~ 47DC- ©)

polydisperse randomly packed bed. Section VIl contains our  We defineB..(r;(2) to be the probability that the diffus-

conclusions and suggestions for further study. ing particle started at will be absorbed orf) and y..(r; Q)
the probability that the diffusing particle startedravill go
to infinity, i.e., that it will not be absorbed in finite time.

Il. CALCULATION OF THE CAPACITANCE OF A Thus,
ﬁﬁg:é_E OF GENERAL SHAPE USING BROWNIAN v (10)=1-B.(r:Q). ©6)
¥-(r:Q) can be shown to satisfy the Laplace equafibtf.

In this section, we sketch the algorithm for calculating the obvious boundary conditiong, (c; ) =1 andy..(r; Q)

the electrostatic CapaCitance of an irregularly Shaped CON=0 forr on Q’ are Considered' it is clear that

ducting body by using Brownian trajectories that initiate on a

spherical launch surface surrounding the conducting body, P(F)=¥=(r;Q). )

and terminate on contact with that body. We focus this de”Using Eqs.(6) and (7), Eq. (4) becomes

vation in several ways in order to apply it to samples of '

porous media. If a packed bed model is either randomly . % )

packed or densely packed, any smooth sample boundary will k=-D ; do-VB.(r; (1), ®)
intersect some of the spherical inclusions that constitute the

sample; we provide two methods for dealing with this prob- L 5 i )

lem in Sec. IV, the “effective radius method” and the =D ¢r S'n0d0d¢ar B QD) ©

“sharp boundary method.” Difficulties will occur if the
sample is chosen either too large or too small; we give an oY § : )

. i o =—rD— ® sinddodpB..(r; 1), 10
analysis that yields the acceptable qualitative range of ar ! PB=( ) (10
sample sizes in Sec. IV. For periodic models of porous Me cinin
dia, a nonround, e.g., cubic, samgknd thus a nonround 9

launch surfacemight be more appropriate. The derivation 1 )
provided here is readily generalized to allow a cubic launch ~ A(ri2)=7— jg singdod$B..(r;2), 11
surface; in forthcoming work we explore this possibility nu-
merically. we obtain from Eq(10),
The electrostatic potentia$(r), at positionr, in the P
presence of a conducting object, and the probability density —477r2DE,8(r;Q): K. (12

p(r) in the associated Smoluchowski diffusion problem, i.e.,

the probability associated with finding a diffusing particle atFor any spherical surfage=b which contains the boundary
positionr, in the presence of an absorbing object of size and), integrating Eq.(12) from b to r with respect tor and
shape identical to the conductor, are related byr)=1 using the boundary conditiof(>;Q2)=0, gives an expres-
—p(r).This equation is derived by noting that its left-hand sjon for the reaction rate,

side(lhs) and right-hand sidéhs) obey the Laplace equation

with identical boundary conditions. k=47Dbp(b;{). (13

Thus the capacitanc@ of a conducting object is given comparing Eqs(5) and(13) yields an important formula for
by the electrostatic capacitance,

C=—(4m)? 35 da~V¢(r)=(4w)_1j do-Vp(r), C=bA(bi0) (14

Q Q
(3) =bg, (15

where ) is the surface of the object. where B is the fraction of diffusing particles started at a

The diffusion-controlled reaction rate is defined random, i.e., angle-averaged, position on the launch sphere
ad826.27 that are absorbed on the target. The unit capacitance method,

as described here, uses this relation to determine the capaci-
B tance of a packed bed by performing Monte Carlo simula-
x=D fﬁ do-Vp(r), ) tions for the quantity3. Note that no assumption is made in
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the above that the “object” being studied is a connected set; 2000 . ' . '
it may be taken to be the set of inclusions that constitute the  4g75 |
matrix phase of a sample of porous media.

We calculate the quantit@ by performing simulations
as follows: each random diffusion path is constructed as g__ 1925 [ ]
series of first-passage propagation jumps, each from theg
present position of the particle to a new position on a first-T.E?
passage surface drawn around the present position. The nes
position is sampled from a first-passage position distribution-g 1850 | ]
function f(x) which gives the probability density associated 2
with finding a diffusing particle leaving the present position
and first contacting the first-passage surface at point 1600

This simplest first-passage surface is the first-passagt 1775 |
sphere, i.e., a large sphere centered around the present po: 1750 . . . .
tion of the diffusing particle, that does not intersect any of 0 0.05 0.1 0.15 0.2 0.25
the inclusions. The first-passage position density on this sur- 8
face is uniform, i.e., its distribution function is trivial. Using FiG. 1. CPU time required to calculate the capacitance of the unit cube, to
only this first-passage surface yields a trivial case of the fixed tolerance, using the first-passage method. The variahlesd &,
GFFP method, name|y the WOS method. In this method?rescribe the dist_ance from the surface of_the_ cube that a dif_fusing particle

. . . . must be, respectively, to declare that a “hit,” i.e., an absorption event has
whenever a diffusing particle gets close enouglithin a

) ) ) ) - occurred, or to use a first-passage surface that intersects the surface of the
fixed distancedy) to one of the inclusions, it is taken to be cube. The figure shows that, for each valuesgf, there is a nonzero opti-

absorbed. mal value ofé§, . The walk-on-sphere@VOS) method is given bys, =0.

We show here that for the problems under study it is
more efficient to use more complex first-passage surfaces.
We let the first-passage sphere intersect the nearest inclusion,
and grow as large as possible, provided that it

1950 ]

1900 b

1875 ]

1825 1

A3, =0.0000
© 5, =0.0003
* 3, =0.0005 E

sampled by choosing a random numbet [ 0,1], set-
ting | = «, and interpolating this relation.

(8 not intersect the next-nearest inclusion, If the chosen first-passage position is on the portion of
(b) not intersect any corners or edges of the nearest inc“j.nClUSion surface included in the first-passage surface, the
sion. particle is absorbed. Otherwise, it will reach a point on the

rest of the first-passage surface. From there it makes its next

The resulting first-passage surface is the portion of the firsgump. The diffusing particle continues until it is absorbed in
passage sphere not contained in any inclusion. Its surfadde absorbing target or goes to infinity.
consists of part of the first-passage sphere, and part of the As shown in Fig. 1, the GFFP method is more efficient
surface of the inclusion. The probability distribution function than the WOS method whenever a small distaf\genust be
f(x,P), for a diffusing particle starting at the center of the used; this is true because the average number of moves re-
first-passage sphere and making first-passage at the pointquired for absorption in the WOS method increases rapidly
is in general quite nontrivialHereP is the set of geometric s 8y decrease$) Thus, it is more efficient for studying
parameters that characterize the first-passage surface. Alrous media either at low porosities or high polydispersity.
we assume for simplicity that symmetry allows specification ~ The set of tabulated first-passage distribution functions
of the first-passage positionby a single position parameter, 1S built up by a process of “bootstrap diffusion Monte
the polar angled.) Thus, P, ) is the full set of parameters Carlo,” in wh|ch.5|mpI.e distribution functions are used to
that the first-passage distribution function depends on. ~ accelerate the simulations used to calculate more complex

For a wide class of inclusions, the resulting first-passagdlistribution functions, and so on. In practice, the set of dis-
surfaces are “locally simple” closed geometrical surfaces.f‘”buuon functions is limited ma_mly by_our mab_lllty to store_z
These surfaces are those for which we can tabulate, as'3 cache memory a tabulated distribution function depending
function of several parameters, the corresponding firs

{On more than three parameters. In the present study the in-
passage distribution function. To obtain this function, we CcluSions are asymmetric lenseén the sharp-boundary

method and spheres. These are readily treated by the GFFP
@) Calculate the gradient, normal to the absorbing surmethod!28

face, of the appropriate Laplace Green'’s function for a
grid of parameter and field values. lll. THE PENETRATION DEPTH METHOD OF
(i)  Calculate the indefinite integral of this gradient as aCALCULATING PERMEABILITY FROM THE

function of cost. Normalize the integral to be unity, ABSORPTION POINT STATISTICS OF BROWNIAN
I(P,cosh)=1 (16) TRAJECTORIES

for cosf=1. In this section, we describe the “penetration depth”
(iii)  Invert this relation for each set of parameter valkes (PD) method for calculating permeability of an absorbing
to obtain co9 as a function ofP and|. The first- sample. First we relate the fluid-dynamic concept of “pen-
passage position, i.e., cscan then be importance- etration depth” to a property of the paths of Brownian par-
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ticles that diffuse from outside the sample of porous media 10’ — Coer e

and terminate on contact with it. Then we use the standarc
relation between the permeability of a sample and its pen-
etration depth to calculate the latter. 1o 0,209

A simple model calculation allows one to relate the per- feoe bt . . d
meability of a porous medium to the effective penetration =08
depth of fluid into the mediur® Consider a homogeneous = " = .
porous medium in a half-space with constant permeatillity “g 10" - . . R o0=07
Fluid permeates this medium and has a constant veldgity A0=06
within it. If zis the distance between the macroscopic fluid- Ahk A A A 05
medium interface and a point of the porous medium, the _2 «.7—4—4—4744"_ '
Debijf-Brinkman equatiof? E v yd=04 3

A4 v v
2 7
VP=7VV--V, a7
k 3

10 1 1 L L L L L L 1 1 1
. . 0 10 20 30 40 50 60 70 80 90 100 110 120
whereV and P are macroscopic velocity and pressure, re- Ria
spectively, reduces to the following,
FIG. 2. Permeability v&/a for unit capacitance estimation methods applied

d3v 7 to the randomly overlapping sphere model: the permeability estimate does
n—s= , (18 not depend on sample radius even though with small sampling sizes more
dz2 K porous samples are needed. F+5,10,50 porous samples were used.
. . When ¢, decreases, estimation is not stable due to the estimation instability.
with the solution The solid lines are the average of the seven permeabilities from different
V(z2) VA exp— 2/ \/E) (19) sampling sizes.

This result shows thatk measures the distance that the flow
effectively penetrates into the porous medium. We will call

JK the “penetration depth.” ear Stokes equatiéh?® for the translational frictional coef

(;icient, f, of such a sphere by making the assumption that the

We can use this result to measure the permeability of excess pressure is linear in the fluid velocity, and by using
sample by identifying the penetration depth with the dlffer-the symmetry of the problem. The result is

encel, between the average radial position at which the dif-
fusing particles are absorbed and the actual sample radius,
thus yielding the approximate relation, f=6mnRGy(0)

—12
k=1% 20 where 7 is the fluid viscosity and the functioGq(o) is
The penetration depth defined here for diffusing particles igjiven by
different from the mean linear survival distance: the latter is
the average distance from the random starting point in the Go(o)=1— i tanho-. (22)
void phase to the absorption point; the former is the average o

of the radial component of this distance. It is possible tha‘Herea is the dimensionless quantity defined by
the mean linear survival distance can give an upper bound on

-1
: (21)

3
1+ ZT‘ZGO(O')

permeability analogous to the Torquato-Kim upper bdtind R

based on the mean survival time. o= K (23
IV. THE UNIT CAPACITANCE METHOD OF whereR s the porous sphere radius akis the permeability,
CALCULATING PERMEABILITY OF RANDOM Eliminating the translational frictional coefficient be-
SYSTEMS tween EQgs.(2) and (21), one finds a relation between the

. . . . . .capacitance and the permeability,
In this section, we describe an algorithm, the unit capaci- P P y

tance (UC) method, for calculating the permeability of a C
sample of random media. We calculate the capacitance of a ﬁIGo(U)
sample(as described in Sec.)/luse Eq.(2), from angle-
averaging, to give the translational hydrodynamic friction inObtainingC/R (unit capacitancefrom simulation allows us
terms of the capacitance, and finally use a relation, first pubto use Eq.(24) to calculates, and thus obtain the desired
lished by Felderhof, between the translational hydrodynamipermeability estimate from E¢23).
friction and the permeability to determine the latter. An important finding of the present work is that, even
Assuming that a given spherical sample is much largethough neither the graph @/Rvs R, nor that ofo vs C/R,
than either the average distance between spherical inclusiogsntains a flat region; the composition of the two, giving our
or the correlation length associated with the statistics of thgpermeability estimate as a function Bf does contain a flat
packed bed, it can be modeled as a homogeneous porotlateau” region. For example, Fig. 2 shows that for a broad
sphere with the appropriate porosity. One can solve the linfange of porosities there is a plateau range of sample radii

-1

3
1+ FGO(U) (24)
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over which the permeability estimate does not vary. Thehe “hard-sphere” distribution, but studies of these two dis-
lower and upper limits of this region vary systematically. tributions show that differences in bulk properties emerge
In monodisperse homogeneous porous media modelgnly at very low porosities. Even though an inclusion ex-
the permeability is dependent only on the porosdgfined tends in part outside the sample sphere of radug still
as the ratio of void space volume to total volunaand the contributes both to the density of centgrand to the simu-
inclusion sphere radius. By dimensional analysis, it can béation.
expressed in the following functional form: Because of the lack of the contribution of the inclusion
K=f(y)a2 25 spheres in _the region e[R,R.+ 2a], the regionre[R
Ve —a,R+a] will have local porosity less than the desired bulk
where ¢, is porosity anda is inclusion sphere radius. The porosity. This is an important concern: especially at lower
permeability estimates produced by the UC method will, inporosities, the diffusing particles will seldom sample any
addition, depend on the parameffa. However, once this part of the sample except for the boundary layer. Because of
parameter is set larger than both the correlation length of ththis effect, an effective sample radius, which is expected to
medium(very small in random medjaand the average dis- be less thaiR, is used. For the nonoverlapping case, we use
tance between inclusions, this dependency should beconfer an effective radius the radius of a sphere, which, if it
quite weak. contained the same number of surviving inclusion centers as
In Eq. (24), for a given porosity and inclusion sphere our sample, would have as its average porosity the same as
radius(i.e., the permeability is constanif we increase the the bulk porosity of our sample, i.e., the local porosity far
sample radius, the unit capacitance goes to unity gees to  away from the sample boundaryn previous researctf,we
infinity. For each porosity, there is a range of sample radiiused this choice of effective radius for both the overlapping
which are much bigger than the average distance betweeand nonoverlapping cageFor the overlapping case, the
spherical inclusions, but for which the rat@'R will be far ~ same procedure is used; the set of effective sample radii is
enough from unity to permit us to interpolate the correspondthen rescaled so that the effective radius at the critical poros-
ing o value. We choose a radius that is in this range. ity (¢$=0.03 makes the calculated unit capacitance equal to
WhenC/R is close to unity, that is, for very low porosi- 1. (Here by the term “critical porosity,” we mean the poros-
ties, theo interpolation becomes unstable: a small change ity below which fluid ceases to flow through the sample, i.e.,
unit capacitance causes a large change.ifhis makes the the percolation threshold.
permeability estimate in the unit capacitance method diffi-  In the “sharp-boundary” method, instead of usingauh
cult; thus the penetration depth method will prove to be moréhoc effective radius, the porous media sample is constructed
reliable at very low porosities. as follows: we place the centers of inclusion spheres into a
A fundamental problem of this study is that of defining large sphere of radiusR+a) according to the chosen statis-
the sample boundary. To see this, note the following paratics, for a given porosity. We then define the actual sample
dox: we study the bulk propertypermeability of a medium by drawing a sphere of radiuR and allowing it to freely
using diffusing particles that start outside a finite sample andhtersect inclusions already placed. The sample is then de-
are absorbed on its surface. These particles will in general bigned to be all of the void phase, all inclusions, and all frag-
absorbed in a surface boundary layer that grows thinner aments of inclusions, that are contained in this sample sphere
the porosity decreases. Thus, we face the problem of freeingf radiusR. With this sharp boundary, the porosity in the
our simulation from surface artifacts so that it can determineactual sample boundary is maintained uniform up to the
this bulk property, when the method is based on events thatoundary.
occur near the surface! In this paper, we show that this is The sampling of periodic grain consolidation models is
indeed quite possible. also done according to the sharp boundary method: we take a
We generate samples of the random media models thapherical sample of radiuR after making periodic grain
we study using two different methods: the “effective- models in a cube which is slightly bigger tharRZ 2R
radius” method, and the “sharp-boundary” method. We de-X2R. For these models, the result will depend upon the
scribe each method in turn. position of the sample center; thus we average the results
In the “effective-radius” method, if randomly overlap- over ten samples, each with a randomly chosen center.
ping, i.e., when Poisson statistics are used, we place inclu-
sion sphere centers at random in the sample sphere of radius
R. We continue to place centers until the de_nsity of_sphers;,_ STUDIES OF RANDOMLY PACKED BEDS
centers approachgs, wherep and the porosity¢, being
modeled are related by In this section, we apply the two permeability estimation
_ 3 methods to the calculation of permeability of model packed
$1=exil — (4mHR%p]. (26) beds, composed of nonoverlapping, randomly placed, impen-
If random nonoverlapping statistics is used, we place centerstrable spherical inclusions, and model porous media, com-
sequentially at randomly chosen positions, requiring onlyposed of randomly placed, freely overlapping, impenetrable
that each center placed be far enough from the centers adpherical inclusions. We compare our results with the avail-
ready placed that the corresponding inclusions not overlamble numerical solutions of the Stokes equation, and also
The resulting distribution is not identical to true random non-with a number of theoretical bounds and estimates from the
overlapping statistics, i.e., to what liquid-state theorists calliterature.

Downloaded 08 Oct 2003 to 144.174.143.140. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 12, No. 7, July 2000

Permeability of porous media using Brownian motion paths 1705

10 T T T T
6=09
10° b ./.,0\,___. ® ®
1 ¢=07 E
107 - _o¢6—¢6—@¢6— 66— %
$=05
‘w102 | G < < <« |
= 0,03
e e o
10° ¢ E
6=0.1 ]
10° - .
10‘5 L | L L L 10‘3 L ! L I
0 20 40 60 80 100 0.5 0.6 0.7 0.8 0.9 1
R/a ¢1

FIG. 3. Permeability v&R/a for the penetration depth estimation method FIG. 4. Dimensionless permeabilikfa? vs porosity for the randomly non-
applied to the randomly overlapping sphere model: the permeability estipverlapping sphere bedi&1.0). The filled upper triangles are our simula-
mate does not depend on sample radius, provided that this radius is chosggn data with the effective radius method, the filled diamonds are our UC

greater than dporosity-dependejptminimum value. The minimum radius
increases with porosity.

simulation data with the sharp boundary method, the filled circles are our
PD simulation data with the sharp boundary method, the solid line is the
Stokes’ law, the long dashed line is the Happel-Brenner approximation, the
squares are the Torquato-Kim upper bound, and the dot-dashed line is the

Kozeny-Carmen relation.

Our simulations show that, for the overlapping sphere
model studied here, the two permeability estimation meth-
ods, the penetration depth method and the unit capacitance
method, agree well within random error, estimated, in this
case, as the relative standard deviation of the results. For the
nonoverlapping sphere model, the two methods deviate as
porosity decreases. For both models, we obtain ten packing
bed samples and average the ten permeability estimates.

As already discussed, the graph of permeability shows a
very substantial plateau as a function of sample radius, i.e., a
region of sample radius over which the permeability estimate
shows almost no variation. Also, with the PD method the
same property of sampling-size-independent estimation is
observedsee Fig. 3.

Our estimation results for the randomly nonoverlapping
model are compared with some other data sets in Fig. 4. The
other data sets used, numbefagto (d), are

(@ The Stokes’ la* for a dilute bed of spheres is
k 2z (27)
=—4a s
A1-¢)
wherea is the inclusion sphere radius.
(b) The Happel-Brenner approximatidris,
2 \[3—(9/2) y+ (9/2) y°—39°
| 2 (912) y+ (912) y> =3y a2 28)
9y° 3+29° (e
wherea is the inclusion radius, ang®=(1— ¢,).
(c) The upper bound of Torquato-Kithis,
2 ¢
k=— aZ, 29
8 (1 29
whereD is the diffusion constant and is the average
survival time. The data for are taken from Ref. 17.
(d) The empirical Kozeny-Carmen relatiSri®in the gen- ()

eral case is

k= i iaZ
180(1-¢y)*
The Stokes’ law, which is the simplest approximation
for the dilute bed, gives estimates that are greater than
all other data sets. The Happel-Brenner approximation
and the Torquato-Kim upper bound are above our data.
Our simulation data with the effective sample radius is
above the Torquato-Kim upper bound. Our simulation
data with the sharp sample boundary lie between the
Happel-Brenner approximation and the empirical
Kozeny-Carmen relation. Because our simulation data
with the effective radius method violate the Torquato-
Kim upper bound, the sharp boundary method is
clearly to be preferred for this case.
Our estimation results for the overlapping caRe
=15.0 in Fig. 5 are compared with some other data.
The estimation is not applied at very low porosities
(¢#1<0.1) and very high porositiesi(; >0.9).
The other data sets used, numbefedto (g), are as
follows:
The Torquato-Kim upper bound on permeabifityor
an overlapping sphere bed is,

k ! 31
=
F L ( )

(30

where 7 is the average survival time aridis the for-
mation factor. Data fot- andF are obtained from Refs.
14 and 31.

The Doi upper bountf on permeability for this system
is
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FIG. 5. The dimensionless permeabilitykivs porosity for randomly over-  FIG. 6. The dimensionless permeabilkja? vs porosity for SC spheres of
lapping spheres of radius=1.0. The filled circles are our simulation data radiusa= 1.0 withR=15.0. The diamonds and stars are our simulation data
with the effective radius sampling method, the filled diamonds are our simuywjith the sharp boundary sampling method and the circles are Larson-Higdon
lation data with the sharp boundary sampling method, the squares are th|culation.

Torquato-Kim upper bound, the upper triangles are the Doi upper bound, the

left triangles are the overlapping sphere bed data points from finite differ-

ence solution of the Stokes equation, and the long dashed line is the lattice-

Boltzmann result. VI. STUDIES OF PERIODIC GRAIN CONSOLIDATION

MODELS OF POROUS MEDIA

In this section, with the sharp boundary sampling

5 1 (1 3 1 method, we apply the two methods of determining perme-
k=—a2e‘yf d><(—+x(1—x)2)ex;{—y(—x——)@)), ability that we have developed to the permeability calcula-
3 o 3y 2 2 tion of model packed beds, composed of nonoverlapping,
(32 periodic, impermeable spherical inclusions, and model po-

where y is given in terms of the porosity byb;  rous media, composed of periodic overlapping, impermeable

=exp(=). spherical inclusions. The difference between the two types of
(@ The lattice-Boltzmann dat&, which agrees well with models consists only of the ratio of the sphere diameter to

the Kozeny-Carmen equation, the separation between the spherical inclusions. We compare

k:¢§/6sz. (33 our results with the solution of the Stokes equation, using

fluid dynamics codes, by Larson and HigdBrfor simple
The lattice-Boltzmann method is a variant of the lattice-gascubic (s¢), body-centered cubithco), and face-centered cu-
automata method. The specific surface aséa given ana- bic (fcc) lattices.

lytically by s=4ma’p¢;, wherep is the number of sphere In all cases, ten packed bed samples are used, and the
centers per unit volume. At low porosity, finite size effectsresults are averaged. Figures 6—8 compare results from the
occur® two methods with the Larson-Higddh calculations for

Simulation data with the sharp boundary samplingsample radiudgk=15.0. At low porosities, the standard de-
method are below the two upper bounds, the Doi uppewiation for the unit capacitance estimation is higher because
bound and the Torquato-Kim upper bound. Note that theof the estimation instability. With the sampling radits
lattice Boltzmann result at high porosities and the actual datas 15.0, two estimation results, UC and PD, show some de-
for monosized sphere beds at low porosities agree well witlviations. The PD estimate is better than the UC estimate.
our simulations. However, the PD method overestimates peiHowever, with R=50.0, the deviation between the two
meabilities at very low porosities because this method doemethods becomes smaller. At low porosities, due to the es-
not take into account the phenomenon of percolation. Outimation instability of UC, no UC data are shown. It seems
data from the effective radius method are quite good for thehat for grain consolidation models UC estimation needs
overlapping case. larger sampling due to the cubic lattice structure.

At extremely low porosities, estimation instability ap- Based on these results, we increase the sampling size to
pears; when the porosity is very close to unity, simulationR=50.0. As already discussed, we cannot use the UC
may give a sample unit capacitance slightly above 1.0 due tmethod here. The results from the PD method, Figs. 9-11,
the Monte Carlo fluctuations. The unit capacitance datare in excellent agreement with the Larson-Higdon results.
which exceed unit value are discarded. The simulations de- The same property of sampling-size-independent estima-
scribed here are large enough that this effect is quite smatlon as the random media is observed in Fig. 12. It should be
except at some low porosities of big porous samples ke noted that, for high porosities, the necessary sample radius
=50.0. can be as large &8=50.0.
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FIG. 7. The dimensionless permeabilkja?® vs porosity for bcc spheres of  FIG. 9. Dimensionless permeabilitya? vs porosity for sc lattice in the
radiusa= 1.0 withR=15.0. The diamonds and stars are our simulation datacase ofR=50.0,a=1.0. The stars are our penetration depth simulation data
with the sharp boundary sampling method and the circles are Larson-Higdowith the sharp boundary sampling method and the circles are Larson-Higdon

calculation. calculations.
VII. STUDIES OF POLYDISPERSE RANDOMLY This will become important when we perform a more exten-
POROUS MEDIA sive study of polydisperse models; the percolation threshold

. . . seems to be reached at lower porosities in such systems.
In this section, we apply the two new methods with the P Y

sharp boundary sampling method to the calculation of the
permeability of model porous media, composed of pondis-V'”- CONCLUSIONS AND SUGGESTIONS FOR
perse overlapping, randomly placed, impermeable sphericﬁURTHER STUDY
inclusions. The inclusion sphere radii are chosen at random  Our methods give very good results for all models of
from the valueq1.5, 3.5, 5.5, 7.6 We compare our results porous media tested. The penetration length method is better
with the available numerical solutions of the Stokesat low porosities; the unit capacitance method shows high
equatiorr’ standard deviations at low porosities due to the steepness of
Figure 13 shows that the two sets of results agree wellthe unit capacitance curve. It is very unfortunate that so little
At very low porosities, our methods give permeabilities high quality simulation data exist even for the simple models
greater than those given by the Stokes equation because weudied here. We note that these models have been standards
have not yet incorporated the phenomenon of percolatiorfor theoretical study for decades. Our method will predict

10 T T T T T T 10 T T T T T T
107 ¢ 3 107 ¢ 3
10° . 10° .
“© “©
4 3
10° L 4 10° L 4
10° L G—=© Larson—Higdon calculation | 10° L 4
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+ penetration depth (FCC)
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FIG. 8. The dimensionless permeabilkya® vs porosity for fcc spheres of  FIG. 10. Dimensionless permeabilikfa? vs porosity for bee lattice in the
radiusa= 1.0 withR=15.0. The diamonds and stars are our simulation datacase ofR=50.0,a=1.0. The stars are our penetration depth simulation data
with the sharp boundary sampling method and the circles are Larson-Higdowith the sharp boundary sampling method and the circles are Larson-Higdon
calculation. calculations.
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FIG. 11. Dimensionless permeabilikfa? vs porosity for fcc lattice in the ~ FIG. 13. Permeabilityk vs porosity for a matrix constituted by a polydis-

case 0fR=50.0,a=1.0. The stars are our penetration depth simulation dataperse mixture of randomly overlapping impermeable spheres with the sharp

with the sharp boundary sampling method and the circles are Larson-Higdohoundary sampling method; the sphere radii are chosen to have the four

calculations. valuesa={1.5,3.5,5.5,7.bwith equal probability. Here the sample radius
R=50.0.

permeabilities for a large class of homogeneous and isotropic _ _ o
porous media, in the medium and high porosity regimesset of calculations. Using, e.g., boundary element/finite ele-
(0.1< ¢,<0.9). ment methods to solve the Stokes equation in a sample of

The unit capacitance estimation discrepancy with samPorous media can require the same amount of time to do this
pling radiusR=15.0 may be due to the importance, for pe-Set of calculations for a single value of porosityve note
riodic models, of using a launch surface with the geometry ofhat the latter methods are, at present, more efficient than
the sample, e.g., a cubic launch surface for SC samples. wiBese methods developed here for obtaining the detailed flow
have laid the basis for this step here; it will require furtherfield in a sample; this may be important in particular appli-
study. cations)
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