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On the rapid estimation of permeability for porous media
using Brownian motion paths
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We describe two efficient methods of estimating the fluid permeability of standard models of porous
media by using the statistics of continuous Brownian motion paths that initiate outside a sample and
terminate on contacting the porous sample. The first method associates the ‘‘penetration depth’’
with a specific property of the Brownian paths, then uses the standard relation between penetration
depth and permeability to calculate the latter. The second method uses Brownian paths to calculate
an effective capacitance for the sample, then relates the capacitance, via angle-averaging theorems,
to the translational hydrodynamic friction of the sample. Finally, a result of Felderhof is used to
relate the latter quantity to the permeability of the sample. We find that the penetration depth method
is highly accurate in predicting permeability of porous material. ©2000 American Institute of
Physics.@S1070-6631~00!02207-8#
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I. INTRODUCTION

Much theoretical effort has been expended in attempt
either estimate or bound the fluid permeability of a poro
medium, given its average statistical properties. Techniq
used for this include the volume-to-surface-area ratio,1 theL
parameter,2 percolation ideas,3 and concepts from the theor
of Brownian motion such as mean survival distance or m
survival time~inverse reaction rate!.4–6

One basic class of theoretical models allows one to st
either packed beds or consolidated porous media suc
sandstone. These models consist of ensembles of equal-
impermeable spherical inclusions immersed in a comple
permeable medium. When used to model a packed bed, t
spheres are nonoverlapping; when used to model a con
dated porous medium, they are randomly located and fre
overlapping. A second basic class of models for packed b
and/or porous media consists of periodic arrays of imper
able spherical inclusions immersed in a freely permeable
dium. Depending on the ratio between the diameter of
spherical inclusions and the separation between neighbo
inclusions, and the periodic lattice chosen, these models
consist either of overlapping or nonoverlapping spheres.

The use of Monte Carlo methods to solve elliptic
parabolic partial differential equations~PDEs! is grounded in
the mathematical subject called probabilistic poten
theory.7–9 It is well known that the probability density func
tion of a diffusing particle obeys the diffusion equation. T
time-integrated, or steady-state probability density functi
obeys the Laplace equation. These facts have been gr
generalized. One can solve a large class of elliptic PDEs
1691070-6631/2000/12(7)/1699/11/$17.00
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simulating the corresponding class of~in general! biased dif-
fusion processes.7,10 The diffusion Monte Carlo method is
defined by the mapping of boundary value problems invo
ing elliptic PDEs into the corresponding diffusion problem
and solving them by using Monte Carlo methods. Th
method is powerful because it can be implemented com
tationally in a massively parallel manner.

Previous work11 involving one of us~J.G.! developed a
class of diffusion Monte Carlo algorithms, the Green’s fun
tion based first-passage~GFFP! methods, that are very effi
cient for studying the properties of random or highly irreg
lar two-phase media. This class of problems involves,

~a! Interfacial surfaces that may pass very close to e
other, thus creating channels that are narrow, but n
ertheless important for understanding the bulk prop
ties of the material.

~b! Spatial intermittency: large regions with no interfaci
surface; smaller regions with a high density of interf
cial surface. Intermittency may be due, e.g., to polyd
persity in pore diameter or void size, or to a dispersio
in solution, of very large irregular inclusions, such
macromolecules.

~c! Interfacial surfaces that may include sharp corners
edges. The difficulties these features cause in solv
the Laplace equation are clear~in electrostatic termi-
nology, they cause singularities in charge density!.

In particular, the class of GFFP algorithms,11

~a! Uses a purely continuum description of both sam
and diffusing particle trajectory, with no discretizatio
9 © 2000 American Institute of Physics
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1700 Phys. Fluids, Vol. 12, No. 7, July 2000 Hwang, Given, and Mascagni
either in space or in time and hence no discretizat
error. This is essential for calculations of permeabil
in low-porosity materials.

~b! Uses a library of Laplace Green’s functions that allo
a diffusing particle both to make large ‘‘jumps’’ acros
regions containing no interfacial surface, and to be
sorbed from a distance, at an absorbing boundary,
single jump.

~c! Uses ‘‘charge-based’’ rather than ‘‘voltage-base
methods of calculation, i.e., retains only the location
absorption events, or equivalently surface charges. T
allows one to perform trajectory simulation using im
portance sampling~because each trajectory yields o
surface charge!, thus ensuring that even singularitie
associated with corners and edges will be efficien
sampled.

This method is an adaptation and refinement of
‘‘walk on spheres’’ ~WOS! method of diffusion Monte
Carlo.10 This method has been used since at least 195
treat diffusion problems.12 It was first applied in random
media problems by Zheng and Chiew;13 see also Ref. 14
Other recent studies have also generalized WOS to diffu
in two-phase media modeled as arrays of small homo
neous squares15 and cubes;16 these studies use the simple
nontrivial Green’s functions to determine first-passage pr
ability. The Einstein relation may be used to obtain effect
electrical conductivities15–17 from the bulk diffusion coeffi-
cient of these models.

The present method is more efficient than WOS for d
fusing particles very close to absorbing boundaries; as
show here, this makes it ideal for the study of low-poros
materials. It has been applied to solve the scalar Lap
equation, which governs both electrostatic and diffus
problems.

Electrostatic applications involve the calculation of ele
trostatic capacitance for very general bodies.18–20 This is an
important set of problems because probabilistic poten
theory implies fundamental relations between the cap
tance and the lowest eigenvalue of the Laplacian in the
richlet problem.19 This in turn leads to efficient bounds o
approximations for a wide variety of physical quantities
many-body systems, for example, the quantum mechan
scattering length in nuclear matter, or the classical rate
heat release in composite media.

Diffusive applications of this class of methods involv
solutions of the Smoluchowski equation, either in the vic
ity of a single irregular object~e.g., a ligand diffusing near a
reactive site on a macromolecule!,18 or in a system contain
ing many absorbing objects~e.g., systems with distribute
trapping!.13

Because so many physical phenomena are gove
by vector Laplace equations~e.g., low-velocity fluid dyna-
mics!,21 and tensor Laplace equations~e.g., solid mecha-
nics!,22 it is natural to seek methods for extending this p
vious work to deal with these two classes of problems.10 An
approach to the first class is provided by the method
angle-averaging.23 This method provides an approximate r
lation between the translational hydrodynamic frictionf of an
Downloaded 08 Oct 2003 to 144.174.143.140. Redistribution subject to 
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arbitrary body, and the electrostatic capacitanceC of a per-
fect conductor of identical size and shape. For arbitrary n
skew objects with a no-slip boundary condition, using ang
lar averaging of the Oseen tensor,24 Hubbard and Douglas23

generalized the exact Stokes-Einstein result for the tran
tional hydrodynamic friction of a sphere,

f sphere56phR, ~1!

whereh is the solvent viscosity andR is the radius of the
sphere, to the translational hydrodynamic friction of an ar
trary impermeable body to give

f 56phC, ~2!

whereC is the corresponding capacitance. This formula
exact in the ‘‘free tumbling’’ approximation, i.e., in the cas
that there is no coupling between the translational and r
tional motion, and that there is sufficient noise, or disord
in the flow to cause the object to occupy all possible orie
tations equally. But extensive tests show the method is ac
rate well beyond this set of cases.

A central insight of the work described here is this: t
angle-averaging method may be applied to approximate
translational friction coefficient of an ‘‘object,’’ even if the
object is not a connected set, e.g., if it is a collection
inclusions that constitute the impermeable or matrix phas
a sample of porous media. A group of well-studied mod
for porous media fit this description. The inclusions m
either be randomly placed, or set in a periodic lattice. T
former models have properties similar to many commercia
important porous media; the latter model a set of me
formed by grain consolidation. The inclusions may be fre
overlapping or impenetrable, i.e., unable to overlap. Fina
the ~spherical! inclusions may be uniform~monodisperse! in
radius, or they may be polydisperse.

In this paper, we present two classes of accurate, c
putationally efficient methods of calculating permeabiliti
for these models and models like them. These models c
bine rapid efficient methods of simulating Brownia
motion11,18,20with a pair of methods for deriving the perme
ability from the statistics of Brownian particles diffusin
near a sample of the porous medium. The trajectories
these particles initiate outside the sample and terminate
contacting the porous matrix. The spherical collection
small inclusion spheres will occasionally be referred to as
porous sample in subsequent discussions. The first met
the ‘‘penetration depth’’ method, associates the flu
dynamic penetration depth with a specific property of t
Brownian paths, then uses the standard relation between
etration depth and permeability to calculate the latter. T
second method, the ‘‘unit capacitance’’ method, involves
ing Brownian paths to calculate an effective capacitance
the sample, then relates the capacitance, via angle-avera
theorems, to the translational hydrodynamic friction of t
sample. Finally, a result of Felderhof25 is used to relate the
latter quantity to the permeability of the sample.

This paper is organized as follows: Section II sketch
the method used here to obtain the electrostatic capacit
using Brownian paths. Section III develops the penetrat
depth method of calculating permeability, in which we o
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1701Phys. Fluids, Vol. 12, No. 7, July 2000 Permeability of porous media using Brownian motion paths
tain the penetration depth from Brownian paths, and ob
the permeability from the penetration depth. Section IV d
scribes the unit capacitance method of calculating per
abilities, and applies it to the random models of packed b
and consolidated porous media. Section V applies both m
ods to determining the permeabilities of the random mod
of packed beds. Section VI applies both methods to de
mining the permeabilities of model packed beds compo
of periodic arrays of impermeable spheres. Section VII
plies both methods to determining the permeabilities o
polydisperse randomly packed bed. Section VIII contains
conclusions and suggestions for further study.

II. CALCULATION OF THE CAPACITANCE OF A
SAMPLE OF GENERAL SHAPE USING BROWNIAN
PATHS

In this section, we sketch the algorithm for calculati
the electrostatic capacitance of an irregularly shaped c
ducting body by using Brownian trajectories that initiate on
spherical launch surface surrounding the conducting bo
and terminate on contact with that body. We focus this d
vation in several ways in order to apply it to samples
porous media. If a packed bed model is either random
packed or densely packed, any smooth sample boundary
intersect some of the spherical inclusions that constitute
sample; we provide two methods for dealing with this pro
lem in Sec. IV, the ‘‘effective radius method’’ and th
‘‘sharp boundary method.’’ Difficulties will occur if the
sample is chosen either too large or too small; we give
analysis that yields the acceptable qualitative range
sample sizes in Sec. IV. For periodic models of porous m
dia, a nonround, e.g., cubic, sample~and thus a nonround
launch surface! might be more appropriate. The derivatio
provided here is readily generalized to allow a cubic laun
surface; in forthcoming work we explore this possibility n
merically.

The electrostatic potentialf(r ), at position r, in the
presence of a conducting object, and the probability den
p(r ) in the associated Smoluchowski diffusion problem, i.
the probability associated with finding a diffusing particle
positionr, in the presence of an absorbing object of size a
shape identical to the conductor, are related by:f(r )51
2p(r ).This equation is derived by noting that its left-han
side~lhs! and right-hand side~rhs! obey the Laplace equatio
with identical boundary conditions.

Thus the capacitanceC of a conducting object is given
by

C52~4p!21 R
V

ds•¹f~r !5~4p!21E
V

ds•¹p~r !,

~3!

whereV is the surface of the object.
The diffusion-controlled reaction ratek is defined

as18,26,27

k5D R ds•¹p~r !, ~4!
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where the integral is evaluated on any closed surface c
taining the inner boundaryV ~because of Green’s theorem
any such surface may be used!.

The relation between the diffusion-controlled reacti
rate, in the Smoluchowski problem, of particles absorb
upon contact with an object, and the electrical capacitanc
a conductor with identical size and shape to that object
thus given by

k54pDC. ~5!

We defineb`(r ;V) to be the probability that the diffus
ing particle started atr will be absorbed onV andg`(r ;V)
the probability that the diffusing particle started atr will go
to infinity, i.e., that it will not be absorbed in finite time
Thus,

g`~r ;V!512b`~r ;V!. ~6!

g`(r ;V) can be shown to satisfy the Laplace equation.27 If
the obvious boundary conditions,g`(`;V)51 andg`(r ;V)
50 for r on V, are considered, it is clear that

p~r !5g`~r ;V!. ~7!

Using Eqs.~6! and ~7!, Eq. ~4! becomes

k52D R
r

ds•¹b`~r ;V!, ~8!

52D R r 2 sinududf
]

]r
b`~r ;V!, ~9!

52r 2D
]

]r R sinududfb`~r ;V!, ~10!

Defining

b~r ;V!5
1

4p R sinududfb`~r ;V!, ~11!

we obtain from Eq.~10!,

24pr 2D
]

]r
b~r ;V!5k. ~12!

For any spherical surfacer 5b which contains the boundar
V, integrating Eq.~12! from b to r with respect tor and
using the boundary conditionb(`;V)50, gives an expres-
sion for the reaction ratek,

k54pDbb~b;V!. ~13!

Comparing Eqs.~5! and~13! yields an important formula for
the electrostatic capacitance,

C5bb~b;V! ~14!

[bb, ~15!

where b is the fraction of diffusing particles started at
random, i.e., angle-averaged, position on the launch sp
that are absorbed on the target. The unit capacitance me
as described here, uses this relation to determine the ca
tance of a packed bed by performing Monte Carlo simu
tions for the quantityb. Note that no assumption is made
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1702 Phys. Fluids, Vol. 12, No. 7, July 2000 Hwang, Given, and Mascagni
the above that the ‘‘object’’ being studied is a connected
it may be taken to be the set of inclusions that constitute
matrix phase of a sample of porous media.

We calculate the quantityb by performing simulations
as follows: each random diffusion path is constructed a
series of first-passage propagation jumps, each from
present position of the particle to a new position on a fir
passage surface drawn around the present position. The
position is sampled from a first-passage position distribut
function f (x) which gives the probability density associat
with finding a diffusing particle leaving the present positi
and first contacting the first-passage surface at pointx.

This simplest first-passage surface is the first-pass
sphere, i.e., a large sphere centered around the present
tion of the diffusing particle, that does not intersect any
the inclusions. The first-passage position density on this
face is uniform, i.e., its distribution function is trivial. Usin
only this first-passage surface yields a trivial case of
GFFP method, namely the WOS method. In this meth
whenever a diffusing particle gets close enough~within a
fixed distancedH) to one of the inclusions, it is taken to b
absorbed.

We show here that for the problems under study it
more efficient to use more complex first-passage surfa
We let the first-passage sphere intersect the nearest inclu
and grow as large as possible, provided that it

~a! not intersect the next-nearest inclusion,
~b! not intersect any corners or edges of the nearest in

sion.

The resulting first-passage surface is the portion of the fi
passage sphere not contained in any inclusion. Its sur
consists of part of the first-passage sphere, and part of
surface of the inclusion. The probability distribution functio
f (x,P), for a diffusing particle starting at the center of th
first-passage sphere and making first-passage at the pox,
is in general quite nontrivial.~HereP is the set of geometric
parameters that characterize the first-passage surface.
we assume for simplicity that symmetry allows specificat
of the first-passage positionx by a single position paramete
the polar angleu.! Thus, (P,u) is the full set of parameter
that the first-passage distribution function depends on.

For a wide class of inclusions, the resulting first-pass
surfaces are ‘’locally simple’’ closed geometrical surfac
These surfaces are those for which we can tabulate,
function of several parameters, the corresponding fi
passage distribution function. To obtain this function, we

~i! Calculate the gradient, normal to the absorbing s
face, of the appropriate Laplace Green’s function fo
grid of parameter and field values.

~ii ! Calculate the indefinite integral of this gradient as
function of cosu. Normalize the integral to be unity
I~P,cosu!51 ~16!

for cosu51.
~iii ! Invert this relation for each set of parameter valuesP

to obtain cosu as a function ofP and I. The first-
passage position, i.e., cosu, can then be importance
Downloaded 08 Oct 2003 to 144.174.143.140. Redistribution subject to 
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sampled by choosing a random numberaP@0,1#, set-
ting I 5a, and interpolating this relation.

If the chosen first-passage position is on the portion
inclusion surface included in the first-passage surface,
particle is absorbed. Otherwise, it will reach a point on t
rest of the first-passage surface. From there it makes its
jump. The diffusing particle continues until it is absorbed
the absorbing target or goes to infinity.

As shown in Fig. 1, the GFFP method is more efficie
than the WOS method whenever a small distancedH must be
used; this is true because the average number of move
quired for absorption in the WOS method increases rap
as dH decreases.10 Thus, it is more efficient for studying
porous media either at low porosities or high polydispers

The set of tabulated first-passage distribution functio
is built up by a process of ‘‘bootstrap diffusion Mont
Carlo,’’ in which simple distribution functions are used
accelerate the simulations used to calculate more com
distribution functions, and so on. In practice, the set of d
tribution functions is limited mainly by our inability to stor
in cache memory a tabulated distribution function depend
on more than three parameters. In the present study the
clusions are asymmetric lenses~in the sharp-boundary
method! and spheres. These are readily treated by the G
method.11,28

III. THE PENETRATION DEPTH METHOD OF
CALCULATING PERMEABILITY FROM THE
ABSORPTION POINT STATISTICS OF BROWNIAN
TRAJECTORIES

In this section, we describe the ‘‘penetration depth
~PD! method for calculating permeability of an absorbin
sample. First we relate the fluid-dynamic concept of ‘‘pe
etration depth’’ to a property of the paths of Brownian pa

FIG. 1. CPU time required to calculate the capacitance of the unit cube
a fixed tolerance, using the first-passage method. The variablesdH and d I

prescribe the distance from the surface of the cube that a diffusing par
must be, respectively, to declare that a ‘‘hit,’’ i.e., an absorption event
occurred, or to use a first-passage surface that intersects the surface
cube. The figure shows that, for each value ofdH , there is a nonzero opti-
mal value ofd I . The walk-on-spheres~WOS! method is given byd I50.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1703Phys. Fluids, Vol. 12, No. 7, July 2000 Permeability of porous media using Brownian motion paths
ticles that diffuse from outside the sample of porous me
and terminate on contact with it. Then we use the stand
relation between the permeability of a sample and its p
etration depth to calculate the latter.

A simple model calculation allows one to relate the p
meability of a porous medium to the effective penetrat
depth of fluid into the medium.24 Consider a homogeneou
porous medium in a half-space with constant permeabilitk.
Fluid permeates this medium and has a constant velocityV0

within it. If z is the distance between the macroscopic flu
medium interface and a point of the porous medium,
Debijf-Brinkman equation29

¹P5h¹2V2
h

k
V, ~17!

whereV and P are macroscopic velocity and pressure,
spectively, reduces to the following,

h
d2V

dz2
5

h

k
V, ~18!

with the solution

V~z!5V0 exp~2z/Ak!. ~19!

This result shows thatAk measures the distance that the flo
effectively penetrates into the porous medium. We will c
Ak the ‘‘penetration depth.’’

We can use this result to measure the permeability o
sample by identifying the penetration depth with the diffe
encel, between the average radial position at which the d
fusing particles are absorbed and the actual sample ra
thus yielding the approximate relation,

k5 l 2. ~20!

The penetration depth defined here for diffusing particle
different from the mean linear survival distance: the latte
the average distance from the random starting point in
void phase to the absorption point; the former is the aver
of the radial component of this distance. It is possible t
the mean linear survival distance can give an upper boun
permeability analogous to the Torquato-Kim upper boun14

based on the mean survival time.

IV. THE UNIT CAPACITANCE METHOD OF
CALCULATING PERMEABILITY OF RANDOM
SYSTEMS

In this section, we describe an algorithm, the unit capa
tance ~UC! method, for calculating the permeability of
sample of random media. We calculate the capacitance
sample~as described in Sec. II!, use Eq.~2!, from angle-
averaging, to give the translational hydrodynamic friction
terms of the capacitance, and finally use a relation, first p
lished by Felderhof, between the translational hydrodyna
friction and the permeability to determine the latter.

Assuming that a given spherical sample is much lar
than either the average distance between spherical inclus
or the correlation length associated with the statistics of
packed bed, it can be modeled as a homogeneous po
sphere with the appropriate porosity. One can solve the
Downloaded 08 Oct 2003 to 144.174.143.140. Redistribution subject to 
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ear Stokes equation24,25 for the translational frictional coef-
ficient, f, of such a sphere by making the assumption that
excess pressure is linear in the fluid velocity, and by us
the symmetry of the problem. The result is

f 56phRG0~s!H 11
3

2s2
G0~s!J 21

, ~21!

where h is the fluid viscosity and the functionG0(s) is
given by

G0~s!512
1

s
tanhs. ~22!

Heres is the dimensionless quantity defined by

s5
R

Ak
, ~23!

whereR is the porous sphere radius andk is the permeability,
Eliminating the translational frictional coefficient be

tween Eqs.~2! and ~21!, one finds a relation between th
capacitance and the permeability,

C

R
5G0~s!H 11

3

2s2
G0~s!J 21

. ~24!

ObtainingC/R ~unit capacitance! from simulation allows us
to use Eq.~24! to calculates, and thus obtain the desire
permeability estimate from Eq.~23!.

An important finding of the present work is that, eve
though neither the graph ofC/R vs R, nor that ofs vs C/R,
contains a flat region; the composition of the two, giving o
permeability estimate as a function ofR, does contain a flat
‘‘plateau’’ region. For example, Fig. 2 shows that for a bro
range of porosities there is a plateau range of sample r

FIG. 2. Permeability vsR/a for unit capacitance estimation methods appli
to the randomly overlapping sphere model: the permeability estimate d
not depend on sample radius even though with small sampling sizes m
porous samples are needed. ForR55,10,50 porous samples were use
Whenf1 decreases, estimation is not stable due to the estimation instab
The solid lines are the average of the seven permeabilities from diffe
sampling sizes.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1704 Phys. Fluids, Vol. 12, No. 7, July 2000 Hwang, Given, and Mascagni
over which the permeability estimate does not vary. T
lower and upper limits of this region vary systematically.

In monodisperse homogeneous porous media mod
the permeability is dependent only on the porosity~defined
as the ratio of void space volume to total volume! and the
inclusion sphere radius. By dimensional analysis, it can
expressed in the following functional form:

k5 f ~f1!a2, ~25!

wheref1 is porosity anda is inclusion sphere radius. Th
permeability estimates produced by the UC method will,
addition, depend on the parameterR/a. However, once this
parameter is set larger than both the correlation length of
medium~very small in random media! and the average dis
tance between inclusions, this dependency should bec
quite weak.

In Eq. ~24!, for a given porosity and inclusion sphe
radius~i.e., the permeability is constant!, if we increase the
sample radius, the unit capacitance goes to unity ass goes to
infinity. For each porosity, there is a range of sample ra
which are much bigger than the average distance betw
spherical inclusions, but for which the ratioC/R will be far
enough from unity to permit us to interpolate the correspo
ing s value. We choose a radius that is in this range.

WhenC/R is close to unity, that is, for very low poros
ties, thes interpolation becomes unstable: a small change
unit capacitance causes a large change ins. This makes the
permeability estimate in the unit capacitance method d
cult; thus the penetration depth method will prove to be m
reliable at very low porosities.

A fundamental problem of this study is that of definin
the sample boundary. To see this, note the following pa
dox: we study the bulk property~permeability! of a medium
using diffusing particles that start outside a finite sample
are absorbed on its surface. These particles will in genera
absorbed in a surface boundary layer that grows thinne
the porosity decreases. Thus, we face the problem of fre
our simulation from surface artifacts so that it can determ
this bulk property, when the method is based on events
occur near the surface! In this paper, we show that thi
indeed quite possible.

We generate samples of the random media models
we study using two different methods: the ‘‘effectiv
radius’’ method, and the ‘‘sharp-boundary’’ method. We d
scribe each method in turn.

In the ‘‘effective-radius’’ method, if randomly overlap
ping, i.e., when Poisson statistics are used, we place in
sion sphere centers at random in the sample sphere of ra
R. We continue to place centers until the density of sph
centers approachesr, where r and the porosityf1 being
modeled are related by

f15exp@2~4p/3!R3r#. ~26!

If random nonoverlapping statistics is used, we place cen
sequentially at randomly chosen positions, requiring o
that each center placed be far enough from the centers
ready placed that the corresponding inclusions not over
The resulting distribution is not identical to true random no
overlapping statistics, i.e., to what liquid-state theorists c
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the ‘‘hard-sphere’’ distribution, but studies of these two d
tributions show that differences in bulk properties eme
only at very low porosities. Even though an inclusion e
tends in part outside the sample sphere of radiusR, it still
contributes both to the density of centersr and to the simu-
lation.

Because of the lack of the contribution of the inclusi
spheres in the regionr P@R,R12a#, the region r P@R
2a,R1a# will have local porosity less than the desired bu
porosity. This is an important concern: especially at low
porosities, the diffusing particles will seldom sample a
part of the sample except for the boundary layer. Becaus
this effect, an effective sample radius, which is expected
be less thanR, is used. For the nonoverlapping case, we u
for an effective radius the radius of a sphere, which, if
contained the same number of surviving inclusion centers
our sample, would have as its average porosity the sam
the bulk porosity of our sample, i.e., the local porosity f
away from the sample boundary.~In previous research,30 we
used this choice of effective radius for both the overlapp
and nonoverlapping case.! For the overlapping case, th
same procedure is used; the set of effective sample rad
then rescaled so that the effective radius at the critical po
ity (f1

c50.03! makes the calculated unit capacitance equa
1. ~Here by the term ‘‘critical porosity,’’ we mean the poros
ity below which fluid ceases to flow through the sample, i.
the percolation threshold.!

In the ‘‘sharp-boundary’’ method, instead of using anad
hoc effective radius, the porous media sample is construc
as follows: we place the centers of inclusion spheres int
large sphere of radius (R1a) according to the chosen statis
tics, for a given porosity. We then define the actual sam
by drawing a sphere of radiusR and allowing it to freely
intersect inclusions already placed. The sample is then
fined to be all of the void phase, all inclusions, and all fra
ments of inclusions, that are contained in this sample sph
of radius R. With this sharp boundary, the porosity in th
actual sample boundary is maintained uniform up to
boundary.

The sampling of periodic grain consolidation models
also done according to the sharp boundary method: we ta
spherical sample of radiusR after making periodic grain
models in a cube which is slightly bigger than 2R32R
32R. For these models, the result will depend upon
position of the sample center; thus we average the res
over ten samples, each with a randomly chosen center.

V. STUDIES OF RANDOMLY PACKED BEDS

In this section, we apply the two permeability estimati
methods to the calculation of permeability of model pack
beds, composed of nonoverlapping, randomly placed, imp
etrable spherical inclusions, and model porous media, c
posed of randomly placed, freely overlapping, impenetra
spherical inclusions. We compare our results with the av
able numerical solutions of the Stokes equation, and a
with a number of theoretical bounds and estimates from
literature.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Our simulations show that, for the overlapping sphe
model studied here, the two permeability estimation me
ods, the penetration depth method and the unit capacita
method, agree well within random error, estimated, in t
case, as the relative standard deviation of the results. Fo
nonoverlapping sphere model, the two methods deviate
porosity decreases. For both models, we obtain ten pac
bed samples and average the ten permeability estimates

As already discussed, the graph of permeability show
very substantial plateau as a function of sample radius, i.
region of sample radius over which the permeability estim
shows almost no variation. Also, with the PD method t
same property of sampling-size-independent estimation
observed~see Fig. 3!.

Our estimation results for the randomly nonoverlapp
model are compared with some other data sets in Fig. 4.
other data sets used, numbered~a! to ~d!, are

~a! The Stokes’ law21 for a dilute bed of spheres is

k5
2

9~12f1!
a2, ~27!

wherea is the inclusion sphere radius.
~b! The Happel-Brenner approximation21 is,

k5S 2

9g3DS32~9/2! g1 ~9/2! g523g6

312g5 D a2, ~28!

wherea is the inclusion radius, andg3[(12f1).
~c! The upper bound of Torquato-Kim31 is,

k5
2

9t

f1

~12f1!
a2, ~29!

whereD is the diffusion constant andt is the average
survival time. The data fort are taken from Ref. 17.

~d! The empirical Kozeny-Carmen relation32,33 in the gen-
eral case is

FIG. 3. Permeability vsR/a for the penetration depth estimation metho
applied to the randomly overlapping sphere model: the permeability
mate does not depend on sample radius, provided that this radius is ch
greater than a~porosity-dependent! minimum value. The minimum radius
increases with porosity.
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k5
1

180

f1
3

~12f1!2
a2. ~30!

The Stokes’ law, which is the simplest approximatio
for the dilute bed, gives estimates that are greater t
all other data sets. The Happel-Brenner approximat
and the Torquato-Kim upper bound are above our da
Our simulation data with the effective sample radius
above the Torquato-Kim upper bound. Our simulati
data with the sharp sample boundary lie between
Happel-Brenner approximation and the empiric
Kozeny-Carmen relation. Because our simulation d
with the effective radius method violate the Torquat
Kim upper bound, the sharp boundary method
clearly to be preferred for this case.
Our estimation results for the overlapping caseR
515.0 in Fig. 5 are compared with some other da
The estimation is not applied at very low porositi
(f1,0.1) and very high porosities (f1.0.9).
The other data sets used, numbered~e! to ~g!, are as
follows:

~e! The Torquato-Kim upper bound on permeability31 for
an overlapping sphere bed is,

k<
Dt

F
, ~31!

wheret is the average survival time andF is the for-
mation factor. Data fort andF are obtained from Refs
14 and 31.

~f! The Doi upper bound34 on permeability for this system
is

ti-
sen

FIG. 4. Dimensionless permeabilityk/a2 vs porosity for the randomly non-
overlapping sphere bed (a51.0).The filled upper triangles are our simula
tion data with the effective radius method, the filled diamonds are our
simulation data with the sharp boundary method, the filled circles are
PD simulation data with the sharp boundary method, the solid line is
Stokes’ law, the long dashed line is the Happel-Brenner approximation
squares are the Torquato-Kim upper bound, and the dot-dashed line i
Kozeny-Carmen relation.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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k5
2

3
a2e2gE

0

1

dxS 1

3g
1x~12x!2DexpS2gS32x2

1

2
x3DD,

~32!
where g is given in terms of the porosity byf1

5exp(2g).
~g! The lattice-Boltzmann data,35 which agrees well with

the Kozeny-Carmen equation,

k5f1
3/6s2. ~33!

The lattice-Boltzmann method is a variant of the lattice-g
automata method. The specific surface areas is given ana-
lytically by s54pa2rf1, wherer is the number of sphere
centers per unit volume. At low porosity, finite size effec
occur.36

Simulation data with the sharp boundary sampli
method are below the two upper bounds, the Doi up
bound and the Torquato-Kim upper bound. Note that
lattice Boltzmann result at high porosities and the actual d
for monosized sphere beds at low porosities agree well w
our simulations. However, the PD method overestimates
meabilities at very low porosities because this method d
not take into account the phenomenon of percolation. O
data from the effective radius method are quite good for
overlapping case.

At extremely low porosities, estimation instability ap
pears; when the porosity is very close to unity, simulat
may give a sample unit capacitance slightly above 1.0 du
the Monte Carlo fluctuations. The unit capacitance d
which exceed unit value are discarded. The simulations
scribed here are large enough that this effect is quite sm
except at some low porosities of big porous samples likeR
550.0.

FIG. 5. The dimensionless permeability k/a2 vs porosity for randomly over-
lapping spheres of radiusa51.0. The filled circles are our simulation dat
with the effective radius sampling method, the filled diamonds are our si
lation data with the sharp boundary sampling method, the squares ar
Torquato-Kim upper bound, the upper triangles are the Doi upper bound
left triangles are the overlapping sphere bed data points from finite di
ence solution of the Stokes equation, and the long dashed line is the la
Boltzmann result.
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VI. STUDIES OF PERIODIC GRAIN CONSOLIDATION
MODELS OF POROUS MEDIA

In this section, with the sharp boundary sampli
method, we apply the two methods of determining perm
ability that we have developed to the permeability calcu
tion of model packed beds, composed of nonoverlapp
periodic, impermeable spherical inclusions, and model
rous media, composed of periodic overlapping, impermea
spherical inclusions. The difference between the two type
models consists only of the ratio of the sphere diamete
the separation between the spherical inclusions. We com
our results with the solution of the Stokes equation, us
fluid dynamics codes, by Larson and Higdon,37 for simple
cubic ~sc!, body-centered cubic~bcc!, and face-centered cu
bic ~fcc! lattices.

In all cases, ten packed bed samples are used, and
results are averaged. Figures 6–8 compare results from
two methods with the Larson-Higdon37 calculations for
sample radiusR515.0. At low porosities, the standard de
viation for the unit capacitance estimation is higher beca
of the estimation instability. With the sampling radiusR
515.0, two estimation results, UC and PD, show some
viations. The PD estimate is better than the UC estim
However, with R550.0, the deviation between the tw
methods becomes smaller. At low porosities, due to the
timation instability of UC, no UC data are shown. It seem
that for grain consolidation models UC estimation nee
larger sampling due to the cubic lattice structure.

Based on these results, we increase the sampling siz
R550.0. As already discussed, we cannot use the
method here. The results from the PD method, Figs. 9–
are in excellent agreement with the Larson-Higdon resul

The same property of sampling-size-independent esti
tion as the random media is observed in Fig. 12. It should
noted that, for high porosities, the necessary sample ra
can be as large asR550.0.

-
the
he
r-
e-

FIG. 6. The dimensionless permeabilityk/a2 vs porosity for SC spheres o
radiusa51.0 withR515.0. The diamonds and stars are our simulation d
with the sharp boundary sampling method and the circles are Larson-Hig
calculation.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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VII. STUDIES OF POLYDISPERSE RANDOMLY
POROUS MEDIA

In this section, we apply the two new methods with t
sharp boundary sampling method to the calculation of
permeability of model porous media, composed of polyd
perse overlapping, randomly placed, impermeable sphe
inclusions. The inclusion sphere radii are chosen at rand
from the values$1.5, 3.5, 5.5, 7.5%. We compare our result
with the available numerical solutions of the Stok
equation.36

Figure 13 shows that the two sets of results agree w
At very low porosities, our methods give permeabiliti
greater than those given by the Stokes equation becaus
have not yet incorporated the phenomenon of percolat

FIG. 7. The dimensionless permeabilityk/a2 vs porosity for bcc spheres o
radiusa51.0 withR515.0. The diamonds and stars are our simulation d
with the sharp boundary sampling method and the circles are Larson-Hi
calculation.

FIG. 8. The dimensionless permeabilityk/a2 vs porosity for fcc spheres o
radiusa51.0 withR515.0. The diamonds and stars are our simulation d
with the sharp boundary sampling method and the circles are Larson-Hi
calculation.
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This will become important when we perform a more exte
sive study of polydisperse models; the percolation thresh
seems to be reached at lower porosities in such systems

VIII. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER STUDY

Our methods give very good results for all models
porous media tested. The penetration length method is b
at low porosities; the unit capacitance method shows h
standard deviations at low porosities due to the steepnes
the unit capacitance curve. It is very unfortunate that so li
high quality simulation data exist even for the simple mod
studied here. We note that these models have been stan
for theoretical study for decades. Our method will pred

a
on

a
on

FIG. 9. Dimensionless permeabilityk/a2 vs porosity for sc lattice in the
case ofR550.0,a51.0. The stars are our penetration depth simulation d
with the sharp boundary sampling method and the circles are Larson-Hig
calculations.

FIG. 10. Dimensionless permeabilityk/a2 vs porosity for bcc lattice in the
case ofR550.0,a51.0. The stars are our penetration depth simulation d
with the sharp boundary sampling method and the circles are Larson-Hig
calculations.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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permeabilities for a large class of homogeneous and isotr
porous media, in the medium and high porosity regim
(0.1,f1,0.9).

The unit capacitance estimation discrepancy with sa
pling radiusR515.0 may be due to the importance, for p
riodic models, of using a launch surface with the geometry
the sample, e.g., a cubic launch surface for SC samples
have laid the basis for this step here; it will require furth
study.

An important point of this method is that it is very fa
compared with other methods. Our computations were
parallelFORTRAN, using MPI, on a PC cluster~32 node, 233
Mhz machine!. Using ten nodes, one porous sample p
node, one million diffusing particles for each porous sam
and porosity, and ten porosities, it takes about ten hours

FIG. 11. Dimensionless permeabilityk/a2 vs porosity for fcc lattice in the
case ofR550.0,a51.0. The stars are our penetration depth simulation d
with the sharp boundary sampling method and the circles are Larson-Hi
calculations.

FIG. 12. Permeability vsR/a for penetration depth estimation method wi
the sharp boundary sampling method for the sc lattice model. The pe
ability estimate does not depend on sample radius provided that this ra
is chosen greater than a porosity-dependent minimum radius.
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set of calculations. Using, e.g., boundary element/finite e
ment methods to solve the Stokes equation in a sampl
porous media can require the same amount of time to do
set of calculations for a single value of porosity.~We note
that the latter methods are, at present, more efficient t
these methods developed here for obtaining the detailed
field in a sample; this may be important in particular app
cations.!
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