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ABSTRACT. We study the suitability of the additive lagged-Fibonacci pseudorandom num-
ber generator for parallel computation. This generator has a relatively short period with
respect to the size of its seed. However, the short period is more than made up for with
the huge number of full-period cycles it contains. We call these different full-period cycles
equivalence classes. We show how to enumerate the equivalence classes and how to com-
pute seeds to select a given equivalence class. The use of these equivalence classes gives
an explicit parallelization suitable for a fully reproducible asynchronous MIMD implemen-
tation. To explore such an implementation we introduce an exponential sum measure of
quality for the additive lagged-Fibonacci generators used in serial or parallel. We then
prove the first non-trivial results we are aware of on this measure of quality.

1. Introduction.

In Knuth’s well known exposition on pseudorandom number generation [5], several
methods of generation are considered. Among these is the additive lagged-Fibonaceci
pseudorandom number generator:

(1) Ty = Tp—k + Tp_e (mod M), >k

This generator is defined by the modulus, M, the register length, ¢, and the lag, k. When
M is prime, periods as large as M* — 1 are possible. However, it is more common to
consider lagged-Fibonacci generators with M = 2™ for some m. These generators with
power-of-two moduli are considerably easier to implement than general prime moduli;
however, their periods are much smaller than in the prime-modulus case.

In Marsaglia’s empirical study of pseudorandom number generators [9], the addi-
tive lagged-Fibonacci generator with power-of-two modulus was one among that were
tested. Overall, this generator did well on all of Marsaglia’s “stringent” tests, save the
“non-overlapping birthday spacing test.” However, Marsaglia noted that by choosing a
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generator with a large register length, ¢, improvements are seen in the “non-overlapping
birthday spacing test.”

There are several other compelling reasons to study this generator, [11]. This gener-
ator is used by Thinking Machines Corporation in their “Connection Machine Scientific
Subroutine Library” (CMSSL) as a parallel pseudorandom number generator.! In ad-
dition, Brent has recently added to the understanding of this generator in both theory
and practice, [1, 2]. Aside from clarifying the conditions for obtaining the maximum
possible period, Brent carefully analyzed the use of the additive lagged-Fibonacci in-
teger generator and its floating-point counterpart. In most Monte Carlo applications,
uniformly distributed floating-point numbers, not integers, are desired. The floating-
point counterpart of equation (1) is wy, = wp—k + wn—¢ (mod 1). Here the w, € [0,1)
are floating-point numbers. Besides being able to compute directly floating-point pseu-
dorandom numbers, this formulation and the integer counterpart in equation (1) are
amenable to efficient vectorization, [1]. Thus we see that this generator in both the
integer and floating-point versions is versatile, and that there are several good reasons
for exploring the additive lagged-Fibonacci generator with power-of-two modulus to find
an effective parallel implementation.

First, we must understand some of the properties that are desirable in a parallel
pseudorandom number generator. Besides efficiency and pseudorandomness, which are
properties of the generator when used in serial, we require that:

(1) The generator must be easy to parallelize (this question is the primary concern

of this paper).

(2) The generator must be reproducible in a “strong” sense.

(3) The streams generated in parallel must seem “independent.”

Property (2) is very important to computational scientists. When doing Monte Carlo
calculations on new machines, exact agreement with previous and trusted calculations is
essential. This is not an easy task, as many sophisticated Monte Carlo calculations can
be quite complicated. By reproducibility in the “strong” sense we require reproducibility
both on the same machine with a different partitioning of the processing resources and
between different machines. This demanding definition of reproducibility ensures the
portability of a parallel generator to any parallel machine. This is a rather lofty goal,
but one that we show is accessible to the additive lagged-Fibonacci generator.

Property 3 has not been adequately addressed in a general sense. One partial solution
is to use exponential sums as theoretical measures of quality for both the serial and the
parallel use of pseudorandom number generators. With additive lagged-Fibonacci gen-
erators modulo a power-of-two, this leads to the consideration of full-period exponential
sums that have not been previously studied in the literature. In addition, empirical
measures of quality are important in our understanding of property 3. Such empirical
measures of the parallel use of these generators has already lead to improvements in
their implementation, [3].

The plan of the paper is as follows. In §2 we review the conditions on equation (1) and
the seed for obtaining the maximal-period for these generators. We next introduce an
equivalence relationship on the set of seeds that are in some maximal-period cycle. The

Tt is the careful study of Thinking Machines’ (lack of a) seeding algorithm that was the prime
motivation for this work.



large number of equivalence classes (ECs) that result is the basis for our parallelization.
We then describe an enumeration of all of the ECs. This leads to an algorithm for the
computation of a seed in a given EC. We conclude §2 with a discussion on the quality
of this generator in terms of exponential sums. §3 is devoted to proving some results
for the full-period exponential sums measures of quality. These include an exact value
for a collection of full-period sums and a non-trivial upper bound for the general case
of interest. This last bound is weak in general, but with additional empirical data, it
can be used to get much better bounds for specific generators. In addition, we use an
enumeration of the ECs as the basis for parallelization and analyze the parent-child
generators in terms of their exponential sum quality. Finally, in §4 we summarize the
results and propose directions for further study.

2. Properties of the Generator.

2.1 Cycle Structure.
Let us begin with computing the period of these generators. If M is prime, then a
period of M*—1 is possible provided that the characteristic polynomial f(z) = z*—2*—1
is primitive modulo M. In the case of interest, when M = 2™, the maximum possible
period is (2¢—1)2™~L. In general, a linear recurrence modulo 2™ has period (2¢—1)2m~1
if and only if the following three conditions hold:
(1) modulo 2 the sequence has period (2¢ — 1),
(2) modulo 2% the sequence has period (2¢
(3) modulo 23 the sequence has period (2°

)2,
)22,
For a proof see [10] or exercise 11 of §3.2.2 in [5]. We are only interested in simple
additive lagged-Fibonacci generators, so our characteristic polynomial, f(z) = z* —
z¥ — 1, is a trinomial. In this case Brent recently proved, [2], that when f(z) is a
trinomial, primitivity of f(z) modulo 2 and ¢ > 2 suffice to give the maximum possible
period of (2¢ —1)2m~1L,

There is a conceptual benefit from working modulo a power-of-two: a qualitative
description of the cycle structure is possible. Let us assume that we have a lagged-
Fibonacci generator with the maximum possible period of (2¢—1)2m~1 i.e., equation (1)
satisfies Brent’s conditions. Because of Brent’s recent results the following qualitative
description of the cycle structure is rigorous, [2]. Taken modulo 2, equation (1) defines
a shift-register sequence. With f(z) primitive modulo 2, we obtain a maximal-period
shift-register sequence of period 2¢ —1, [4, 17]. It is well known that this sequence cycles
over all possible nonzero contents of its [-bit state. Next consider equation (1) taken
modulo 4. The least-significant bits of the register are just the maximal-period shift-
register sequence from the modulo 2 case. The most-significant bits are the superposition
of two sequences: (a) the maximal-period shift-register sequence from the initial values
of the most-significant bits, and (b) the impulse response of the carries from the least-
significant bits.?2 Sequence (a) cycles with period 2¢ — 1 if it is nonzero and adds
bit-wise to sequence (b). Thus, without loss of generality we can assume (a) is zero and
concentrate on (b) to analyze the cycle structure. Sequence (b) is the superposition of
impulse responses forced by carries from the least-significant bit. This impulse response

-1
-1

2Recall that the impulse response in a shift-register is the sequence obtained by starting from the
“unit” fill [1,0,0,...,0], e.g. see [4].
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has period 2¢—1. Since we have the maximum-possible period, the carries must also have
period 2¢ — 1. Thus a particular carry will force a period 2¢ — 1 impulse response, after
which the periodic repeat of the first carry will zero the impulse response. Thus each
carry will produce a period (2¢—1)2 response made up of a 2° — 1 length maximal-period
sequence followed by 2¢ — 1 zeros. Because we obtain the maximum possible period, the
superposition of these sequences also has period (2¢ — 1)2. This explains the doubling
of the period when a new most-significant bit is added and gives an understanding of
the cycle structure of the additive lagged-Fibonacci generator.

We now understand how each new most-significant bit doubles the period of this
generator; however, this adds ¢ bits of seed to the generator, not just one. The maximum
possible period of these generators is extremely short, given the size of the seed. In the
prime modulus case, the maximum possible period is equal to the number of nonzero
fills in the register. With M = 2™, the maximum possible period of (2° — 1)2™~! is
considerably smaller than the number of nonzero fills, 2¢™ — 1. Where has all this state
gone?

The answer to this question comes by considering the condition on the seed for
obtaining the maximum possible period. Since we see that the lesser significant bits
perturb the more significant bits through period-doubling carries, starting the generator
with an all zero least-significant bit must reduce the period. In fact, the only condition
to obtain the maximum possible period is that the seed must not all be zeros in the least-
significant bit, [10, 2]. In terms of residues modulo 2™, this means that the seed cannot
all be even. It is easy to calculate that the number of seeds that give the maximum
possible period is (2¢ — 1)2f(m_1). Since each of these seeds is in a maximum possible
period cycle, there must be

Y4 ol m—l)

cycles with maximum possible period. If we define an equivalence relationship among
seeds as being in the same cycle, then we see that these generators have E distinct ECs.

2.2 Equivalence Class Canonical Form.

The use of these ECs will be the key to parallelizing this generator. Thus we must
be able to enumerate the ECs and to calculate a seed from each of the ECs given this
enumeration. To derive an explicit enumeration, we must decide on one seed from the
full period to serve as the representative for the given EC. We call this representative
seed the EC’s canonical form. Since the least-significant bit of this generator is a
maximal-period shift-register sequence, we can choose some given nonzero fill for the
least-significant bits of the canonical form. To transform an arbitrary seed into a seed
with the canonical form’s least-significant bits, one need only advance the seed at most
2¢ — 2 times to match the least-significant bits.?

Now that we have placed the least-significant bits of a seed in canonical form, we must
decide what to do with the most-significant bits. Given that we want simultaneously

3 A table of size j of least-significant bits spaced equally around the cycle will reduce this to no more

¢
than [2 ],_2'| steps.




to fix the least-significant bits and remain in the same EC, we must leap ahead in the
generator’s cycle some multiple of 2¢ — 1, the period of the least-significant bits.

At this point we must define some notation to simplify the subsequent discussion.
Let us first recast equation (1) into a matrix recursion modulo 2™. First we write
Xp = [Tn, Tp_1,- .. ;Un_g_H]T for the contents of the register at the nth step. We may
then write equation (1) as x, = Ax,—1 (mod 2™) with the ¢ x ¢ matrix A defined by:

k ¢
0 0 0 0 1 0 00 1
10 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
00 1 0 0 0 0 0 0

(3) A= |00 0 10 0 0 0

0 0 0 10 0 0 0
0 0 0 0 0 1 0 0 0
000 ..000 ..100
\0 00 ... 000 ..010

Let us also define an alternative notation for x, so that we can refer to a particular set

() m g

of bits across its ¢ elements. Thus let x,, = [b,,21,b,, 5, .- | be a column vector

with bgn) holding x,,’s least-significant bits and bfgil its most-significant bits.*

With the above notation we can say that since A is a recursion matrix for a maximum
possible period additive lagged-Fibonacci generator, R | (mod 2). Let us call
J= A2£_17 so we may write J =T (mod 2) and J> =1 (mod 4). Thus applying J to x,,
leaves the least-significant bits fixed, while J? leaves the two least-significant bits fixed.
If we assume that we have changed a given seed’s least-significant bits into the canonical
form, application of J yields two possible b;’s, call them b; and bJ. We choose one of
these to be the by for our EC representative. An unambiguous choice is to choose the
smallest of b; and b) viewed as [-bit integers. Note that b; and b! can never be equal,
as that would contradict achieving the maximum possible period. Next we use J? in a
similar manner to choose between by and 6'2]2. This procedure continues until we have
our EC representative. By construction, this algorithm produces the same seed for an
EC when given any seed in the full period. Additionally, application of this procedure
to seeds from different ECs will produce different canonical form seeds.

Using this algorithm, we can produce a single seed that is the representative for its
EC and is in a canonical form. How do we now enumerate the different ECs? The
number of bits in the seed is ¢ x m, while the number of ECs is E = 2((=D{m=1)
Thus a set of (¢ — 1)(m — 1) bits specifies a unique EC. Our canonical form has already

4*We will usually not use the superscript in subsequent discussion as we rarely need to refer to the
bits from one time step to another.



specified the ¢ least-significant bits, so it could be hoped that the canonical form gives
the following explicit enumeration:

m.s.b l.s.b.
bn—1 bm—2 ... b bo
O O Ce O bOf—l Ty
(4) O O O] boe—z | Te—2
O O e O bOl I
0 0 Ce 0 bOO o

This enumeration leaves exactly (¢ —1)(m — 1) bits to be specified in the canonical form
and yields exactly E = 2(¢=D0m=1) Jifferent possibilities. The remarkable thing is that
this is the case! To prove it we first will have to understand the relationship between
the bit vectors b; and &) from our explicit construction of the EC representative. Recall
that the bit vector b; is modified into b7 by the application of J. The mechanism for this
modification is the superposition of the carries from by and the evolution of b viewed as
a shift-register. However, since J = AZ 1 and the period of the shift-register is 2¢ — 1,
b'1] is only a function of by though the carries. Thus it follows that b'1] = by & C1(b),
where C;(bg) is a bit-vector valued function that when vectorially added modulo 2 to b,
transforms it to b7 via the cumulative superposition of the carries. Such a transformation
exists for any linear functional on bit-vectors. One consequence of this representation
is that Cy(bg) must be the value of b'1] when b; 1s all zeros. Since b; and b‘1] cannot
be equal, it must be that Cy(bg) is nonzero and hence has a most-significant one bit,
when viewing C1(bg) as an ¢-bit integer. This most-significant one indicates that its bit
position changes from b; to b'lj. Above we chose the smallest of b; and b'1] viewed as
{-bit integers in part of our canonical form. By choosing this position to be a zero, we
ensure that choice among all by, b pairs and are free to fill in the remaining ¢ — 1 as
we choose.

This procedure can be repeated for by, and 6'2]2 via the calculation of Cy(+), and we
can continue to repeat this procedure for each successive b; to produce the following EC
tableau:

m.s.b l.s.b.
bn—1 bm—2 ... b bo
] ] Ce 0 bOE—l Te—1
(5) 0 O ..o g bog_Q Ty—2
O 0 Ce O bOl I
O O Ce O bOO o

The location of the zeros in each z, is the location of the most-significant one in the
Ci(-) bit-vector. It turns out this bit-vector is only a function of the least-significant
bit, by. A simple proof of this fact can be found in [12].

The fact that C;(-) is a function only of by has a profound effect in computing a
seed in a given EC. Once we have settled on the by for our EC canonical form we can



precompute all of the C;(bg). This lets us precompute the location of the fixed zeros
in the EC representative. Thus we have reduced the problem of producing a seed in a
given equivalence class to some precomputation and the translation of a (¢ — 1)(m — 1)
bit equivalence class number into (¢ — 1)(m — 1) open bit locations in seed tableau!
Another consequence of C;(+)’s dependence on by alone is that we may try several by’s
to find one that gives an EC canonical form like equation (4). We have implemented
a seeding scheme based on these explicit EC computations for the case of the additive
lagged-Fibonacci used in Thinking Machines” CMSSL. Here the recurrence is:

(6) Ty = Tg_5 + Tp—17 (mod 232).

With very little work a particular by was found so that the tableau in (4) could be used.
In fact, for all primitive trinomials of degree up to 255, a special by was found that gave
a canonical form as in equation (4).

2.3 Equivalence Classes for Parallelism.

With this huge number of ECs, parallel implementation is easy. The key is to as-
sociate each independent parallel process in the computation with a unique parallel
process identifier, K. This K is then used to select the Kth EC for this process.> This
procedure works without difficulty provided the parameters for the generator are chosen
so that no K is required in the computation that exceeds 2(¢=1(m=1) _ 1

One of the most demanding applications for pseudorandom generators is transport
Monte Carlo, [16]. Here the path of a particle is followed and modified via sampling.
Particles are emitted, absorbed, and created along a trajectory based on the parameters
of the problem and the outcome of the pseudorandom number generator. The overall
solution i1s then the average over many different particle trajectories. The partitioning
of this problem among different processors is conceptually trivial via the independent
trajectories. However, ensuring the reproducibility of this computation on an asynchro-
nous MIMD machine is not nearly as easy. Since a particle may create new particles,
this leads to new trajectories to be followed. It is common practice to place the infor-
mation from a particle creation into a computational queue. The queued particles are
then processed when a free processor becomes available. Reproducibility requires that
particles are queued with information sufficient for the pseudorandom number genera-
tor to produce the same stream of pseudorandom numbers regardless of what processor
or in what order the particle is processed. When using the additive lagged-Fibonacci
generator, one need only provide a unique K for each particle to ensure reproducibility
in this very general sense.

In general, if one is computing on an arbitrary asynchronous MIMD machine, it is
desirable to be able to produce a child process identifier, K, that is guaranteed to be
distinct from others created elsewhere in the computation. In addition, the assignment
of K should be a local computation based only on the parent’s process identifier. This
is easily accomplished by associating all possible parallel processes with a binary tree.
When the process for node K is required to create n children, it does so by assigning
the n nodes closest and below it on the binary tree. This assures a local computation.

5In practical implementations, the Kth parallel process obtains the f(K)th EC, where f(-) is an
appropriately chosen function.



In particular, if the process assigned to node K has two children, they receive nodes
2K +1 and 4K + 2.

This procedure does not totally solve the problem of the reuse of ECs in an asynchro-
nous MIMD computation. It is possible to have each particle in a computation create
one child particle and hence rapidly descend down the (I — 1)(m — 1) + 1 levels of the
process binary tree. However, this seems to be a very unlikely situation, as even the
relatively small CMSSL generator has 497 levels!

2.4 Quality Issues.

An important issue in pseudorandom number generation is the quality of the numbers
produced by a given recursion. There are many desirable randomness properties that
a sequence should possess, and it is important that it does well on empirical tests of
statistical randomness. However, empirical testing has practical as well as theoretical
limitations, [5]. Thus the inclusion of qualitative theoretical results that impact on
pseudorandomness is always important.

A very powerful tool for the theoretical exploration of the quality of pseudorandom-
ness is the exponential sum. Most importantly, the exponential sum is related to the
discrepancy through upper and lower bounds, [8, 7, 14]. In turn, the discrepancy ap-
pears explicitly in the Koksma-Hlawka bound on numerical integration error. This is
very important since numerical integration is the fundamental Monte Carlo application.

The exponential sum auto-correlation for a modulo M sequence, {z, }, is defined as:

1—1

(7) A j) =Y e (enmenss),

n=0

When ¢ = Per(z,), the period length, these are called full-period exponential sums,
otherwise they are called partial-period exponential sums. The manipulation of these
types of sums in order to calculate or bound them is fundamental to many areas of
number theory, [6].

An important use of exponential sums in the case of parallel pseudorandom num-
ber generation is to use them as a measure of the exponential sum cross-correlation
among different parallel pseudorandom number sequences. Suppose we have two mod-
ulo M pseudorandom number sequences, {z,} and {y,}. Their exponential sum cross-
correlation is given by:

1—1

. oy TT
®) Clig) = 3 M zn v,

n=0

In our case we are interested in sequences that are both generated by (1) and have seeds
in different ECs. Since C(%, ) is a sum over the difference of sequences at a fixed offset,
J, we can compute it by considering it as an exponential sum of the same recurrence
in a potentially different EC. This is because the difference of two sequences obeying a
given recursion will itself obey the recursion. Thus equation (8) gives us a qualitative
tool to explore relationships between related ECs. This approach is discussed in §3.



3. Some Properties of Full-Period Sums.

To analyze these additive lagged-Fibonacci recursions using full-period exponential
sums from (7) we must consider such sums with M = 2™. Exponential sums over finite
fields have yielded quite remarkable results on the quality of many types of pseudoran-
dom number generators, [8, 13, 14]. The best results for these sums when the recursions
are modulo a power-of-two, however, are considerably less[ informative. For example,

Xm

the general bound for a ¢-term recursion modulo 2™ is O(27z ), [13]. Given that there
are Per(x,) = (2* — 1)2™~! terms of magnitude one in this sum, a trivial upper bound

is Per(z,) << O(QZXTM). To our knowledge, no bounds on these types of exponential
sums exist that take into account the relatively short period of these sequences. In the
§3.1 we calculate the sum of all of the full-period exponential sums over all ECs. In
§3.2 we show how the exponential sum cross-correlations among different ECs depends
on the similarity of the two ECs’ representative and leads to sums related to full-period
sums with smaller powers-of-two. Finally, in §3.3 we prove the first non-trivial upper
bounds we are aware of for these exponential sums. The order of magnitude of these
sums 1s substantially inferior to the analogous sums over finite fields. We hope these
humble results encourage experts to improve upon them.

3.1 Full-Period Exponential Sums over All Equivalence Classes.

One exact calculation that can be done relating to the full-period exponential sum
measure of quality given in (7) is the exact determination of all of the full-period sums
over all of the ECs. When m = 1 the sequences are just maximal-period shift-register
sequences and there is only E = 2U=D(m=1) — 1 equivalence class. It is well known
that in this case C(Per(z,), ) = —1, [4].

To compute these sums in general we will use a well-known trick. Consider the sum:

(9) Sm _ Z 627r2\7/11__1k
kex

where K is the set of all nonzero (-tuples. This sum has 2¢*™ —1 terms. Thus S,,, = —1
since k takes on the value of each residue modulo 2™ exactly 2¢ times, except for 0,
which is taken on only 2¢ — 1 times. We will now show how to rewrite S,, as a sum over
full-periods over all ECs.

First a simple example, m = 2. We can rearrange S3 into a sum over all full-
period cycles modulo 4 plus the rest. Recall that a cycle is full-period if and only
if at least one of its elements is odd. For a general m there are E,, X Per,,(z,) =
(=D m=1) 5 (26 — 1)2m~1 = (2¢ — 1)240m=1) guch elements in these full-period cycles.
In particular, for m = 2 there are E; = 271 ECs of length Pery(z,) = (2¢ — 1)2. We
can characterize the rest of the elements as those that do not have at least one odd
element, i.e., they have zero least-significant-bit. There are 2¢ — 1 of these accounting
for Ey X Pery(xy,) + 2t 1 =2920_1 terms, all the nonzero 2-tuples. Thus:

(10) 82:—122 Z ezw{__lz"—l—z Z e@“.

Ey Pero(zy) Ey Peri(zy)

The last sum is over all ECs modulo 2, E; = 1, over the full period, Q;(z,) = 2¢ -1,
over a x, = 2 X y, where y, is a maximal-period shift-register sequence modulo 2. This
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is easily recognized as C(Per(z,), ) = —1, and thus Zperz(“) e en = (), Let
us denote a sum over all ECs and over all full-period cycles modulo 2™ as S(m). Thus
the first term in (10) is S(2) and the second term is S(1).
Thus we see a pattern, and it is clear that S,, = ;- S(k) = S(m) + Sm—1,m > 1.
We have proven that S, = & = S(1) = —1, and so by the previous equation, S(m) =
0,m > 1, and we have proven that

0, form > 1

s(m) = {

-1, form=1.

This means that for the exponential sum over all full-period ECs of the additive lagged-
Fibonacci generator yields zero except when m = 1. In this case we have the sum equal
one, which follows from more classical results of maximal-period shift-register sequences,

[4].

3.2 Equivalence Classes and Exponential Sums.

We now turn to the analysis of exponential sum cross-correlations among ECs. If
{z,} and {y,} come from different ECs, we know we can find an offset, j, so that x,
and y,4+; agree in their least-significant bit. In fact, if x,, and y, are their respective
EC representatives, they already agree in their least-significant bit. Now assume that
we are working with recurrences from equation (1), i.e., M = 2™, with a fixed recursion
(i.e., £ and k given) and have the full-period exponential sum as a function of m, i.e.,
C(Per(zy),-) = F(m). In addition, assume that x, and y,4; agree only in their least-
significant bit. We notice that the difference, z, = z, — yn—;, is even and may be
written as z,, = 2z,, where z,, is a maximum possible period additive lagged-Fibonacci
sequence modulo 2™, Thus

Per(z,)—1 Per(z,)—1
D ST S
n=0 n=0
Per(z,)—1 ' 2Per(z,)—1 '
m DS e
n=0 n=0
Per(z,)—1 '
2 Y em T =2F(m - 1).
n=0

In general, if there is an offset, 7, that makes x, and y,4; agree in their r least-
significant bits, we have that (11) will equal 2" x F(m — r). This gives us a clear
understanding of how different ECs are related, since one way to see how many least-
significant bits of overlap there are between {z, } and {y, } is to place them in canonical
form. Because of the periods of the different bits, {z, } and {y,} can be made to agree in
their r least-significant bits if and only if their EC representatives agree in their r least-
significant bits. This means that a local scheme of computing child processor numbers
based on the mapping of parallel processes onto the binary tree will always produce
children with cross-correlations as small as possible. In fact, this analysis allows us to
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modify the assignment of process numbers in appropriate ways to avoid large cross-
correlations if a particular computation chooses related ECs poorly in this respect. In
our implementation of this generator, we did not use this assignment procedure for child
processes, for the reason of correlations in lesser-significant bits in sequences all started
from the EC representatives. One solution is to apply some pseudorandom power of
A to a given seed, but in our implementation [15] we believe we have a more elegant
solution.

3.3 Bounds on Full-Period Exponential Sums of Maximal Period.
Throughout this subsection, the notation maxy,  means that the maximum is taken
over all maximal period sequences {z,} satisfying a recursion relation of the form

Ty = Tp—k + Tp_e (mod2™), >k,

where ¢ and k are fixed. Our goal in this subsection is to obtain nontrivial upper bounds
in certain cases for |U(m)| where

It is convenient to introduce the quantity

Z(m) = I{naf’}f#{”% =0 and 0 < j < Per(z,)}.

Our first result bounds |U(m)| in terms of Z(m/2) and suggests the possibility of a
descent.

Proposition 1. If 1 < m € Z™, then

U(m)| < 2™/ Z(|m/2])

Proof. Let {x,} be a linear recurrent sequence modulo 2™ that produces the full-period
exponential sum U(m). Note that if {z,} is viewed modulo 2/™/21 then it has period
H = (2 — 1)2[m/21=1 1t follows that

Tpn+H — Tp = 2|—m/2-| Yn,

where {y,} is a maximal period sequence defined modulo 21™/2] that satisfies the same

recurrence as {x, }.
Now observe if p is a non-negative integer, then

Tpt(pt1)H = TntpH T 22 v wtr = g + 2™y,
by the periodicity of {y,}. It follows by induction that

Tpnt+puH = Tn + M2|—m/2-| Yn-
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Recall that each non-negative integer j with 0 < j < (2° — 1)2™~! can be written
uniquely as j = N + pH, where 0 < N < H, and 0 < p < 2Um/21 Tt follows at once
that

Per(zn) H—12lm/21_3
27/ =1 . 27/ =1

— ¢ 2m EIN+pH

Hence
7 H—12lm/21

O S S T
N=0 n=0

Further algebraic manipulation yields

H-1 glm/2l_y u
TV — 2y -1
Utm) =Y e % <62Lm/2J yN)

N=0 n=0

Now the innermost sum is a geometric series that vanishes unless yy is zero, in which
case it equals 20"/2) Thus

H-1

Ulm) =21/ 37 S o),
N=0
yn=0

Estimating the sum trivially, we have that
U(m)| <2214 {N|yy =0and 0 < N < H}.
When m is even, H is the period of {y,}. In this case,
U(m)] < 2722 (m/2),

and the proposition follows for even m. When m is odd, H is twice the period of {y,}.
In this case,

U(m)| < 2™/ 272 (m)2),
proving the proposition when m is odd. O

Note that the trivial upper bound for |U(m)| is (2° — 1)2™~!, the common period
of the linear recurrent sequences under consideration. Note that if the values of a
maximal period {z,} were approximately uniformly distributed over the congruence
classes mod 2™/2, then Proposition 1 would produce a decidedly nontrivial bound for
|U(m)|. Indeed, if |Z(|m/2])] is well-approximated by the expected (2¢ — 1)/2, then
Proposition 1 would yield an estimate of the form |U(m)| = O(2™/?%¢). This is much
better that the trivial bound |U(m)| = O(2™%¢) by a factor of 2™/2, although it is still
a factor of 2¢/2 greater than the empirically conjectured O(y/Per(z,)), [12].

Currently, however, we have only the following estimate for |Z(m)].
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Proposition 2. For any m € Z™T, we have

2°—1  (JUm)|+---+|U1)])
|Z(m)| < ——+ 5 .

Proof. Let 6(x) be the usual Kronecker function which takes the value 1 at the origin
and vanishes elsewhere. Let {z,} be the maximal period linear recurrent sequence
modulo 2™ that vanishes Z(m) times over a full period. Then

Per(z,) Per(z,) 2™ 1

Z §(zj) = Z oI Z ¢ TR hen

Changing the order of summation yields

2™ 1 Per(zy,)

The contribution from the h = 0 term is simply Per(z,)/2™, which equals (2¢ — 1)/2.
When h is odd, {hz,} is a maximal period sequence modulo 2™ that satisfies the same
recurrence as {r,}, and there are precisely 2™~ ! odd values of h. Thus the terms for
which A is odd contribute at most |[U(m)|/2. When h is precisely divisible by 2¥, then
the innermost sum can be viewed as 2% copies of a full-period sum modulo 2™ % and
there are precisely 2™ ~*~! such values of h. Such terms contribute at most |U(m—k)|/2.
The proposition is proved. [

Note that applying Propositions 1 and 2 recursively yields the estimate

lm/2]—1
o 26 -1 ,
UOn)| <221 [ == 172 Y |U(lm/2) - j)

i=0

Iterating this approach down to the case where m = 1 does not in general improve on
the trivial bound mentioned earlier. However, suppose the actual value of Z(m) could
be obtained by brute force on a computer. Then one could apply Proposition 1 and
obtain nontrivial estimates for |U(2m)|, even when the size of 2m is so large that a
brute force attack on U(m) itself is not feasible. For example, we have computed |Z(2)|
in the case where £ = 17 and k£ = 5. Applying Proposition 1 then yields the nontrivial

U4)] < (Per(z,)) ™,

result

in this special case.
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4. Discussion and Conclusions.

We have provided the theoretical background for the use of a two-term additive
lagged-Fibonacci pseudorandom number generator in the most general parallel setting.
The algorithms are based on the realization that equation (1) produces a vast number
of full-period cycles. These cycles can be explicitly chosen through the calculation of
an appropriate seed. We have also provided a simple and general local computation to
produce child ECs from parents. In addition, we have analyzed the theoretical quality
of these sequences and have understood the exponential sum cross-correlations among
different ECs.

The bounds we have provided for these full-period exponential sums are surely far
from the best possible. In fact, if we consider a fixed recursion modulo 2™, an exhaustive
computation of all of the exponential sums can be undertaken. This provides a concrete
number to place in this cascade of inequalities that empirically improves what can
be proven for a particular generator. For example, in the case where ¢ = 17 and
k =5, the CMSSL generator, we have computed exhaustively that Z(2) < 65790. This
motivates further research into both computational and theoretical improvements in the
determination of upper bounds for these full-period exponential sums.

In addition to this work, we have provided an implementation of these ideas, [15].
This implementation is very similar to the ideas presented here, except that certain
compromises were made between access to all of the ECs and speed of seeding. This
implementation is based directly on the integer recursion in (1) and produces [0,1)
random variables by u, = z,/M. A more direct approach is to work directly with
floating-point numbers and take equation (1) modulo 1. This can be done while still
ensuring absolute EC integrity by providing zero valued guard bits in the mantissa. For
our simple three term recursions with £1 coefficients, a mantissa of length s bits can
hold floating-point values in the top s —1 bits without risking an operation that changes

the EC.
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