Recent Developments in Parallel
Pseudorandom Number Generation

Michael Mascagni* Steven A. Cuccaro® Daniel V. Pryor*
M. L. Robinson*

Abstract
We summarize some of the recent developments of our research group and of other

groups in the design and analysis of pseudorandom number generators for massively
parallel computers. The three parallelization techniques we will consider in detail for
mapping pseudorandom streams onto distinct parallel processes are:

1. Splitting maximal-period generators’ full period into nonoverlapping subse-
quences, one for each parallel process.

2. Finding parameterized families of generators and distributing a unique parameter
value for the generator used on each parallel process.

3. Finding generators with statistically similar full-period equivalence classes and
distributing one equivalence class to each parallel process.

1 Introduction

The importance of simulation and the Monte Carlo method in scientific computing is
considerable. In fact, some of the first large-scale efforts in high-speed computing were
Monte Carlo computations. Moreover, Monte Carlo methods represent a large class
of embarassingly parallel algorithms that are thought to be ideally suited to modern
parallel architectures. Yet, despite their inherent parallelism, these algorithms cannot
perform well without high quality parallel pseudorandom number generators (PRNGs).
Below, we summarize recent developments in parallel pseudorandom number generation by
considering, in turn, three general approaches to providing parallel PRNGs. The first tact
is to take a single serial PRNG and split its full cycle into substrings that are to be used
by the different parallel processes. The second approach is to formulate a family of PRNGs
which depend on a parameter. Each process is then given the same PRNG but a different
set of parameter values. Finally, we consider a single PRNG that has full-period cycles
that fall into different equivalence classes depending on the initial seed. This PRNG is then
seeded appropriately to ensure that each parallel process uses a different equivalence class.

The major problem in parallel PRNG is ensuring that the work done on individual
parallel processes is statistically independent from that done on other processes so their
combination further reduces the variance of the full parallel computation. Unfortunately,
the notion of statistical independence is very difficult to prove under the simplest conditions,
even for numbers generated contiguously from a single PRNG. Thus a universal criterion for
the independence of parallel generated pseudorandom numbers does not exist. However, for
certain applications, criteria for good quality pseudorandom numbers can be found. Below
we will present several criteria that lead to provable results of statistical independence for

*Algorithms and Applications Research Group, Supercomputing Research Center, 17100 Science Drive,
Bowie, Maryland 20715-4300 USA

2 MASCAGNI ET AL.

the various methods of parallel PRNG. We also state those results which we feel are true,
but no proof exists at this time.

2 Splitting Schemes

We now discus methods for splitting maximal-period generators into nonoverlapping
substreams for use on individual processes. Maximal-period generators have periods that
are approximately 2°, where the generator’s state (the information needed to generate the
next element in the sequence) consists of s bits. We take the point of view that any
sequence we choose to split must have the longest possible period given the amount of
computer memory required to generate the next element: thus we restrict ourselves to
maximal-period generators. In addition, we know that the simple Monte Carlo application
of one-dimensional quadrature is made inefficient if the same pseudorandom numbers are
reused in the computation. Thus we make the additional intuitive requirement that the
splitting scheme we choose must endeavor to prevent overlap between the split substreams.

Thus, we take a top down approach to choosing both a splitting scheme and a serial
PRNG appropriate for splitting. There are five properties that we seek of a serial PRNG
that make it suitable for splitting. These are:

(P1) the existence of a “fast leap-ahead” algorithm;

(P2) period long enough to be split;

(P3) serial pseudorandomness;

(P4) substream independence;

(P5) and a fast serial implementation.

(P2) is, of course, met by maximal-period generators, of which there are many [5].
Requirement (P1) is much more restrictive, and reduces the possibilities considerably.
More precisely, (P1) requires the existence of an algorithm that permits “leaping” from
element x,, directly to element ,4; of the sequence in no more than O(logk) generation
steps. To our knowledge this leads to the consideration of either linear recursive sequences
or to the single nonlinear family of inversive congruential generators (ICGs). Among the
linear recursive sequences, requirement (P5) restricts attention to either the family of linear
congruential generators (LCGs) or to the shift-register generators (SRGs). (P3) provides
an added restriction, as the full-period pseudorandomness properties of maximal-period
LCGs and ICGs are maximized when a prime modulus is chosen instead of a power-of-
two, modulus [11]. (P4) is, by far, the most difficult requirement to fulfill, as the notion of
substream independence itself is not well defined. However, if we begin with the assumption
that (P4) is at least partly satisfied by a splitting scheme that forbids substream overlap,
we can study the remaining families of generators for their suitability.

A LCG is defined by the sequence:

(1) T, = atp—1 +c¢ (mod m).

The constants @ and ¢ in (1) are residues modulo m and are called the multiplier and
additive constant. For m prime, the maximal period is m — 1 when « is chosen to be a
primitive root modulo m! for any choice of ¢. Since choosing ¢ = 0 in this case does not
change the period nor the serial pseudorandomness properties, it is prudent only to consider
prime modulus LCGs of the form:

(2) T, = atp—1 (mod m)

'We say that « is a primitive root modulo a prime, m, if the least 7 such that ™ = 1 (mod m) is
T=m—1.

PARALLEL PSEUDORANDOM NUMBER (GENERATION 3

with @ chosen to a primitive root modulo m.
An ICG is defined by the sequence:

(3) Ty = aTp_1 + ¢ (mod m).

Equation (3) is similar to equation (1) except that z,_; replaces z,,_1. By £ we mean the
modulo m multiplicative inverse, i.e. the residue modulo m such that zz =1 (mod m)
with 0 = 0 by definition. Here, as with LCGs, prime modulus generators have superior
pseudorandomness properties as compared to power-of-two modulus generators. In contrast
to prime modulus LCGs, the maximal period of prime modulus ICGs is m. The conditions
for choosing a and ¢ to obtain the maximal period are well known, [11], and in all of
these generators ¢ # 0. These generators are not widely used largely due to the relatively
high cost of computing modular inverses. However, recent work has shown that careful
implementation of Mersenne prime? modular inversion can be done quite effectively on a
wide variety of high-performance architectures, [2].
Finally, SRGs are defined bit-by-bit via simple three term recursions:

(4) Ty = Tpes + Tp—r (mod 2).

Equation (4) requires that r > s bits be stored as state, and provided the characteristic
polynomial defined by (4) is primitive?, it has a maximal period of 2" —1. Tables of primitive
trinomials that lead to maximal period sequences like those in (4) are readily available
in tables, [3], [6]. Unlike LCGs and ICGs, SRGs are used to generate pseudorandom
uniform variates by concatenating the bits produced in (4) in one of two way. The
concatenation of [contiguous and nonoverlapping bits from (4) into an [-bit fraction is called
the digital multistep or Tausworthe method. If instead each step of (4) is used to collect
[bits from the r-bit state register to form an [-bit fraction, this is called the generalized
feedback shift-register (GFSR) method. A fast leap-ahead algorithm and provable serial
pseudorandomness properties exist for both of these variations of SRGs, [8], [10], [11].

The splitting scheme we propose is designed to enforce nonoverlap of the subsequences
in each process while permitting any process to seed a child process using only local
information. The scheme is a generalization of the “Lehmer tree”, the original concept put
forth for producing pseudorandom numbers for asynchronous MIMD parallel machines,
[4]. Ome view of the Lehmer tree is that it seeds a child process by pseudorandomly
leaping ahead the seed of the parent. This procedure cannot assure the nonoverlap of the
subsequences. Moreover, with an increasing number of processes the probability of overlap
exponentially approaches 1. We propose a method called recursive halving leap-ahead,
where each new leap is half as long as the previous. This ensures the nonoverlapping of
subsequences provided that this procedure has not been applied too often to the same
family of subsequences. More on this procedure has appeared elsewhere, [1], [§].

Provable substream independence properties for LCGs exist, [8], [11], but they are
rather weak in the sense that trivial bounds exist that are superior for substream lengths
less than O(y/m). Thus for this theory to tell us that good quality exists for split LCGs,
each process must consume O(y/m) PRNs. For ICGs, no such provable results exist, but
it is conjectured that the situation is the same as for LCGs, [8], [12]. The one bright spot
for splitting is SRGs. It is well known that if z,, comes from a maximal-period SRG given

2A Mersenne is a prime of the form m = 29 — 1 where ¢ is also prime.
#See [6] for a definition.

4 MASCAGNI ET AL.

by (4), then y; = x4 ;yo1,5 = 0,1,..., satisfies (4). Thus if we take a SRG with period
P =29 — 1 and form 2P parallel streams of length L equally spaced by the amount 2977,
these 2977 X L = A numbers can be thought of as coming contiguously from a single SRG.
This gives us nontrivial results on quality when not the individual stream lengths, L, but

when X is O(v/P), [8].

3 Parameterized Generators

We now discuss using parameterized maximal-period generators as a way to furnish each
parallel process with its own unique parameterized generator. This approach allows each
process to execute the same general algorithm, and hence the same piece of code, with the
exception that some parameter passed in initialization is varied from process to process.
Theory for this strategy exists for all of the linear recursive sequences considered for
splitting. Unfortunately, theory for the analysis of the nonlinear inversive congruential
generator does not currently permit this type of analysis except in the recently analyzed
case of so-called explicit ICGs. Thus we restrict our discussion to parameterized maximal-
period LCGs with prime modulus in order to simplify the presentation.

Since we wish to utilize the same algorithm in each processor, we cannot choose to
parameterize the modulus; and since we only consider prime modulus LCGs with zero
additive constant, we are left only to consider parameterization via the multiplier. Since
maximal-period LCGs must use primitive roots as multipliers, the choice of modulus
determines the distribution of available primitive roots. In fact, if a¢, and a are primitive
roots modulo m, then there exists a j with the property ged(j,m — 1) = 1s.t. a = o’
(mod m). A good measure of substream independence in this case is the full-period
exponential sum correlation. Given two period m — 1 streams of modulo m residues, z,
and y,, the full-period exponential sum is given by:

m—1

(5) CG)= 3 e,

=0

The above measures the uniformity in the distribution of differences between all offsets of
the sequences. It is a known consequence of the Riemann hypothesis over finite fields that
if 2, = az,_; (mod m) and y,, = ¢’y,_; (mod m) are maximal period LCGs, then, [9],
[13]:

(6) IC(HI< (G- Dvm.

Thus if we want to have a collection of LCGs that minimizes (6) over all pairs of primitive
roots, choosing m to be Fermat, m = 22" 4 1, or Sophie Germain, m = 2¢ + 1 with ¢ also
prime, we obtain optimal primitive root distributions due to the fact that these primes have
the largest fraction of primitive roots among their modular residues.

4 Equivalence Classes

Finally we discuss the use of submaximal-period generators that have their state space
divided into equal length equivalence classes. An example of such a generator is the
following linear recursive sequence:

(7) Ty = Tp_s + Tn_17 (mod 2°%).4

*This is the generator currently used in the Thinking Machines Corporation’s Connection Machine
Scientific Subroutine Library for the CM-2, CM-200, and CM-5 machines.

PARALLEL PSEUDORANDOM NUMBER (GENERATION 5

This generator has a period of P = (217—1)x 23! when at least one of the 17 32-bit numbers
in its state is odd (i.e. the least significant bit (LSB) of the 17 32-bit numbers cannot be
all zeroes), [5]. One can count to find that the number of such full-period state elements
is (217 — 1) x 231X17 Since each of these full-period state elements must lie in one period

P cycle, there are ﬁﬂ—_lng = 231X16 — 9496 (different equivalence classes of full-period
state elements. A simple but elegant use of these equivalence classes is to distribute a seed
from a unique equivalence class to each parallel process. This procedure is similar to the
previous parameterization technique in that each process uses the same algorithm; however,
instead of passing a different parameter to each process, here we pass a different seed that
places the generator in a unique equivalence class. To implement this approach a canonical
enumeration of the equivalence classes is required along with an algorithm for producing a
seed in a given equivalence class.

An important property of the generator in (7) is that modulo 2 the sequence is a
maximal-period shift-register sequence with period 217 — 1. Taken modulo 4 (7) has period
2 x (2'7 — 1). In general, modulo 2/ (7) has period 2/7! x (217 — 1) for all j > 0. Since the
least significant bit of (7) is a maximal period SRG it is known that all nonzero 17-bit seeds
occur in the full-period cycle. Thus we can choose any nonzero seed in a canonical form,
since they all occur. The generator @, = z,—5 + ¢,—17 (mod 232) can be represented via
the 17 X 17 matrix, A:

0 0 010 01
10 0 00 0 0
(8) A=| 01 0 00 00
0 0 0 00 10

The first row of A has 1’s in the 5th and 17th column. Looking at (7) modulo 4, we see
that A2~ fixes the LSB while sending the most significant bit (MSB) half way around its
full period. Thus A2""~1 (mod 4) toggles the MSB into one of two choices. We choose the
numerically smaller choice as part of our canonical form. Now A2X(2'"~1) (mod 8) fixes
the two LSBs and toggles the MSB, allowing us to choose the numerically smaller as part
of the canonical form. This procedure continues by progressively squaring the power of A
used to select the last bit until a unique equivalence class descriptor is found. Some further
analysis of this technique rather unexpectedly produces a fast algorithm for producing a
seed in a given equivalence class using this enumeration technique. Space prevents further
elaboration, [7].

With this enumeration and the fast algorithm for producing seeds in a given equivalence
class of this enumeration we have a parallel PRNG for up to 24% parallel processes. In
addition, by exploiting the mapping of equivalence class numbers onto a binary tree, a local
computation suffices to seed a child process from a parent. Thus this generator provides
the basis for a totally reproducible asynchronous MIMD PRNG suitable for demanding
application such as neutron transport Monte Carlo. In addition, since the period of each
equivalence class and the number of distinct equivalence classes can be modified by choosing
a different additive lagged-Fibonacci generator, we believe that this class of generators may
prove most versatile for general massively parallel supercomputer applications, [7].

6 MASCAGNI ET AL.

5 Conclusions

We have briefly discussed three general techniques for placing PRNGs on parallel machines.
We presented the recursive halving leap-ahead algorithm for splitting and have shown that
in the case of SRGs we can analyze certain simple cases with a provable form of substream
independence. In the case of parameterized generators, prime modulus LCGs have shown
to give optimal substream independence in another sense when certain prime moduli are
chosen. Finally, we have shown how to exploit the equivalence class structure of certain easy
to implement lagged-Fibonacci generators to provide a totally reproducible asynchronous

MIMD PRNG.

References

[1] F. W. Burton and R. L. Page, Distributed random number generation, J. Functional Program-
ming, 2 (1992), pp. 203-212.

[2] S. A. Cuccaro and M. Mascagni, A comparison of modular inversion implementations across
parallel supercomputer architectures, Supercomputing Research Center Technical Report #92-
116, 1992.

[3] S. W. Golomb, Shift register sequences, Revised Edition, Aegean Park Press, Laguna Hills, CA,
1982.

[4] P. Frederickson, R. Hiromoto, T. L. Jordan, B. Smith and T. Warnock, Pseudo-random trees
in Monte Carlo, Parallel Computing, 1 (1984), pp. 175-180.

[5] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Second
edition, Addison-Wesley, Reading, MA, 1981.

[6] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge
University Press, Cambridge, London, New York, 1986.

[7] M. Mascagni, S. A. Cuccaro, D. V. Pryor, and M. L. Robinson, Analysis of a lagged-Fibonacci
pseudorandom number generator, (in preparation).

[8] M. Mascagni and M. L. Robinson, Deterministic splitting of a single pseudorandom sequence
into parallel subsequences, (in progress).

[9] ——, Parameterized pseudorandom number generation for parallel computers, (in progress).

[10] H. Niederreiter, Recent trends in random number and random vector generation, Annals of

Operations Research, 31 (1991), pp. 323-346.

[11] ——, Random number generation and quasi-Monte Carlo Methods, CBMS-NSF Regional
Conference Series in Applied Math, STAM, Philadelphia, PA, 1992.
[12] ——, New methods for pseudorandom number and pseudorandom vector generation, Proceed-

ing of Winter Simulation Conference, 1992.
[13] W. Schmidt, Equations over finite fields: An elementary approach, Lecture Notes in Mathe-
matics #536, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

