
GCIMCA: A Globus and SPRNG Implementation of a Grid-Computing
Infrastructure for Monte Carlo Applications

Yaohang Li, Michael Mascagni, Robert van Engelen
Department of Computer Science and School of Computational Science and Information Technology

Florida State University
Tallahassee, FL 32306-4530, USA

{yaohanli, mascagni, engelen}@cs.fsu.edu

Abstract
The implementation of large-scale Monte Carlo

computation on the grid benefits from state-of-the-art
approaches to accessing a computational grid and requires
scalable parallel random number generators with good quality.
The Globus software toolkit facilitates the creation and
utilization of a computational grid for large distributed
computational jobs. The Scalable Parallel Random Number
Generators (SPRNG) library is designed to generate practically
infinite number of random number streams with favorable
statistical properties for parallel and distributed Monte Carlo
applications. Taking advantage of the facilities of the Globus
toolkit and the SPRNG library, we implemented a tool we refer
to as the Grid-Computing Infrastructure for Monte Carlo
Applications (GCIMCA). GCIMCA implements services specific
to grid-based Monte Carlo applications, including the Monte
Carlo subtask schedule service using the N-out-of-M strategy,
the facilities of application-level checkpointing, the partial
result validation service, and the intermediate value validation
service. Based on these facilities, GCIMCA intends to provide a
trustworthy grid-computing infrastructure for large-scale and
high-performance distributed Monte Carlo computations.

1. Introduction
Monte Carlo applications are widely perceived as

computationally intensive but naturally parallel. With
more ambitious calculations by estimating more random
samples, a Monte Carlo application is capable of reducing
the statistical errors to any desired level [1]. By
computing and analyzing random samples independently,
Monte Carlo applications can be programmed in a bag-
of-work model and fit into the master-worker paradigm.
In a parallel environment using the master-worker
paradigm, the master partitions the task, schedules
subtasks to workers, and receives results when the
workers complete their assigned work [2]. The
subsequent growth of computer power, especially that of
the parallel and distributed computing systems, has made
large-scale distributed Monte Carlo computation possible
and practically effective.

Large-scale Monte Carlo computation consumes large
amounts of computational power, and depends on parallel
random number generators with good quality. On the one
hand, grid computing is characterized by large-scale
sharing and cooperation of dynamically distributed
resources, such as CPU cycles, communication

bandwidth, and data to constitute a computational
environment [3]. A computational grid based on the grid-
computing techniques can, in principle, provide a
tremendously large amount of CPU cycles to a Monte
Carlo application. The Globus software toolkit [4]
provides software tools and services to build
computational grid infrastructures for grid-based
applications. On the other hand, the SPRNG (Scalable
Parallel Random Number Generators) [5] library is
designed to use parameterized pseudorandom number
generators to provide independent random number
streams. The SPRNG library provides uniform
programming interfaces for the Linear Congruential
Generator (LCG), Prime Modulus Linear Congruential
Generator (PMLCG), additive Lagged-Fibonacci
Generator (LFG), Multiplicative Lagged-Fibonacci
Generator (MLFG), and Combined Multiple Recursive
Generator (CMRG). Some generators in the SPRNG
library can provide up to 278000 – 1 independent random
number streams [6] with sufficiently long period, which
have favorable inter-stream and cross-stream properties
in a statistical sense. These generators can meet the
random number requirements of most distributed Monte
Carlo applications. Furthermore, by analyzing the
statistical nature of Monte Carlo applications and the
cryptographic aspects of these underlying random
number generators, our previous research [7, 8, 9]
developed techniques to improve the performance and
trustworthiness of Monte Carlo computations on the grid.
For large-scale grid-based Monte Carlo analysis, “all the
pieces of the puzzle” have recently been assembled. In
this paper, we are going to elucidate the implementation
of the Grid-Computing Infrastructure for Monte Carlo
Applications (GCIMCA) utilizing the Globus toolkit and
SPRNG. Also, we will discuss the services provided by
GCIMCA based on the fortuitous characteristics of
Monte Carlo applications.

The remainder of this paper is organized as follows.
We illustrate the architecture and the working paradigm
of GCIMCA in Sections 2 and 3, respectively. In Section
4, we discuss detailed implementations of the core
services and facilities in GCIMCA. Finally, Section 5
summarizes our conclusions and future research
directions.

 1

2. Architecture of GCIMCA

Grid Fabric

GRA M GIS GSI SPRNG

Random Number
Streams

GCIMCA

N-out-of -M
Subtask

Schedule
Serv ices

MC
A pplication-

level
Checkpointing

MC Partial
Result

V alidation

Intermediate
V alue

Checking

Grid-based Monte Carlo A pplications

GridFTP

Figure 2.1 Architecture of GCIMCA

GCIMCA is designed on the top of the grid services
provided by Globus, [10] and supplies facilities and
services for grid-based Monte Carlo applications. The
services include GRAM (Globus Resource Allocation
Manager), GIS (Grid Information Service), GSI (Grid
Security Infrastructure), and GridFTP. GRAM is used to
do Monte Carlo subtask remote-submission and manage
the execution of each subtask. GIS provides information
services, i.e., the discovery of the properties and
configurations of grid nodes. GSI offers security services
such as authentication, encryption and decryption for
running Monte Carlo applications on the grid. GridFTP
provides a uniform interface for data transport and access
on the grid for GCIMCA. At the same time, the execution
of each Monte Carlo subtask usually consumes a large
amount of random numbers. SPRNG is the underlying
pseudorandom number generator library in GCIMCA,
providing independent pseudorandom number streams.
Based on the grid services provided by Globus and the
SPRNG library, GCIMCA provides higher-level services
to grid-based Monte Carlo applications. These services
include N-out-of-M Monte Carlo subtask scheduling,
application-level checkpointing, partial result validation,
and intermediate value checking. Figure 2.1 shows the
architecture of GCIMCA.

3. GCIMCA Working Paradigm
3.1 Overview

Figure 3.1 shows the GCIMCA working paradigm,
which is based on the master-worker model of a grid-
based Monte Carlo application. The execution of a grid-
based Monte Carlo application in GCIMCA is initiated by
a user who submits a Monte Carlo job description to the
job server. At the same time, the user prepares and stores
the Monte Carlo job files, such as the executable binary
and data files, on a job file server. The job file server may
run in the user’s own domain and allow only those

accesses with authentication. The GCIMCA job server
manages the subtasks of a Monte Carlo job, and is in
charge of actually scheduling these subtasks. The eligible
GCIMCA subtask agent running on a node within an
organization obtains a Monte Carlo subtask description
from the job server. Then, according to the specification
of the subtask description, the subtask agent downloads
the necessary files from the job file server using GridFTP
and retrieves the actual subtask. The subtask is set
remotely running on an eligible grid node within the
organization by GRAM. When a subtask is ready, the
partial result files are submitted back to the job file
server. At the same time, the job server is notified that a
subtask is done. When the entire Monte Carlo job is
finished, the partial results are validated and the job
server notifies the user as to the completion of the
computation.

Organization A

Job
Server

MC
Subtask
Agent

Organization B

MC
Subtask
Agent

Organization CMC
Subtask
Agent

Job
File

Server

MC job description

Conf irmation of job f inish
User

Job f iles
submission

Retrieve
results

Subtask
Grant

Subtask
Application

Subtask
Application

Subtask
Grant

Submit partial
results

Dow nload MC
subtask f iles

Figure 3.1 The Working Paradigm for GCIMCA

3.2 Job Submission
Monte Carlo Job Description
JobName = “Monte Carlo Integration”
JobDescription = “Execfile=http://sprng.cs.fsu.edu/mcint/mcintIntel.out
 Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data
 Arg= -r
 Arch=INTEL Opsys=LINUX”
JobDescription= “Execfile=http://sprng.cs.fsu.edu/mcint/mcintSolaris.out
 Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data
 Arg= -r
 Arch=SUN Opsys=Solaris26”
RequiredJobs = 20
MaxJobs = 40
ResultFileName = mcintresult.dat
ResultLocation = http://sprng.cs.fsu.edu/mcint/result
Org= cs.fsu.edu;csit.fsu.edu
Encryption= YES

Figure 3.2 Sample of a Monte Carlo Job Description File

A user submits a Monte Carlo job description file to
the job server. The Monte Carlo job description file
declares the information related to the Monte Carlo job,
including the job name, locations of executable and data
files, arguments, required hardware architectures and
operating systems, number of subtasks, result file names

 2

and destinations, encryption option, and authenticated
organization. Figure 3.2 shows a sample of a job
description file. Based on the job description, the job
server validates the Monte Carlo job, creates a Monte
Carlo subtasks pool, chooses the qualified subtask
applications from the subtask agent, verifies the
authentication of a subtask agent using GSI, and then
actually schedules the subtask.

In GCIMCA, a user provides different executable
binary files for each possible different system architecture
on the grid. The remote compiler [15] service is used to
address this heterogeneity issue. A user can send source
packages to a remote node of a specific system
architecture with the remote compiler service running.
Then, the remote compiler service compiles the source
files, generates the executable files, and sends them back
to the user. Using the remote compiler service, different
executable codes for different platforms can be obtained.

3.3 Passive-Mode Subtask Scheduling
Unlike the design of most existing distributed and

parallel computing systems, such as Condor [11], Javelin
[12], Charlotte [13] and HARNESS [14], which use an
active scheduling mode to dispatch subtasks, GCIMCA
uses a passive scheduling mode. In an active scheduling
mode, the job server needs to keep checking the status of
computational nodes to schedule tasks to the capable
ones. Also, the job server must keep track of each
running subtask. In contrast, using the passive scheduling
mode in GCIMCA, a Monte Carlo subtask agent sends
applications to the job server to apply for a subtask only
when it has computational nodes available and ready for
work. The management responsibility of the execution of
each subtask is decentralized to the subtask agents. The
advantage of using the passive scheduling mode here is to
reduce the workload, or more specifically, the
requirements of network connection bandwidth of the job
server. In GCIMCA, most of the communication load is
between a subtask agent and the computational nodes
within the organization usually having connection via a
high-speed LAN. The communication between the job
server and the subtask agents, which is usually through a
WAN with relatively low bandwidth, is minimized.

In GCIMCA, the job server manages the jobs from the
users, and processes subtask applications from the
subtask agents. It is the subtask agent that retrieves the
information related to a subtask, forms the subtask
described in Globus RSL (Resource Specification
Language), and actually schedules the subtask to a grid
node. The job management functionalities of GRAM are
utilized to run subtasks on a remote grid node. Figure 3.3
shows the GCIMCA implementation of remotely
executing a Monte Carlo subtask based on GRAM. When
a Monte Carlo subtask is scheduled on a grid node, a
process running the GCIMCA subtask callback function

is created so as to listen to the status as it changes on the
running subtask. Depending on the status of the running
subtask, the callback function takes corresponding
actions, such as reporting to the job server, submitting
partial result files, or rescheduling the subtask with
checkpoint data.

MC
Subtask
Agent

Monte Carlo
Subtask Callback

Function

globus_gram_client_job_request()

subtask
status changed

Collect partialresults
Report to Job Server

Report to Job
Server

Collect Checkpointing Data
Reschedule subtask

globus_gram_client_callback_allow()

JOB_STATE_DONE JOB_STATE_FAILED JOB_STATE_PENDING

JOB_STATE_ACTIVE

Figure 3.3 Remote Execution of a Monte Carlo Subtask

4. Implementation of GCIMCA Services
4.1 N-out-of-M Scheduling Strategy

The main idea of the N-out-of-M strategy [7, 8, 9] for
grid-based Monte Carlo computations is to schedule more
subtasks than are required to tolerate possible delayed or
halted subtasks on the grid to achieve optimal
performance. The statistical nature of Monte Carlo
applications allows us to enlarge the actual size of the
computation by increasing the number of subtasks from N
to M, where M > N. Each of these M subtasks uses its
unique independent random number stream, and we
submit M instead of N subtasks to the grid system. When
N partial results are ready, we consider the whole task for
the grid system to be completed. More theoretical
analysis of the N-out-of-M strategy can be found in [8, 9].

Figure 4.1 shows the implementation of the N-out-of-M
scheduling strategy in GCIMCA. The Monte Carlo job
description file from the user states the maximum number
(M) of subtasks to be scheduled and the required number
(N) of those to achieve a certain predetermined accuracy.
Based on this, the GCIMCA job server sets up a subtask
pool with the number of entries as M. Each entry of the
pool describes the status of a subtask, including the
subtask schedule status, random stream ID for the
SPRNG library, the responsible subtask agent if
scheduled, and other implementation dependent details.
The job server also maintains the statistics of completed
subtasks. Once the number of completed subtasks reaches
the number of requested subtasks, the job server will
regard this Monte Carlo job as complete. A subtask-
canceling signal will be sent to the subtask agents that
still have subtasks running related to this job.

 3

1
0

SCHEDULED
SPRNG stream #
Subtask Status

Subtask ID

Subtask Agent pseudo.cs.fsu.edu

2
1

UNSCHEDULED
SPRNG stream #
Subtask Status

Subtask ID

Subtask Agent NULL

20
19

DONE
SPRNG stream #
Subtask Status

Subtask ID

Subtask Agent onion.csit.fsu.edu

...
...

Monte Carlo
Job Description

Requested Jobs
Done Jobs

Job Name

Max Jobs

MC Integration
10
8
20

GCI MCA
Job Server

Figure 4.1 Implementation of the N-out-of-M Scheduling
Strategy in GCIMCA

4.2 Monte Carlo Lightweight Checkpointing
A long-running computational task on a grid node must

be prepared for node unavailability. Compared to
process-level checkpointing [11], application-level
checkpointing is much smaller in size and thus less
costly. More importantly, the application-level
checkpointing data is usually readily portable and is easy
to migrate from one platform to another. Monte Carlo
applications have a structure highly amenable to
application-level checkpointing. Typically, a Monte Carlo
application can be programmed in a structure that starts in
an initial configuration, evaluates a random sample or a
random trajectory, estimates a result, accumulates means
and variances with previous results, and repeats this
process until some termination conditions are met.

Initialization

Main Monte Carlo
Computation

Mean and Standard Error
Estimation

Main
Loop

SPRNG

Recover Subroutine
UNPACK_SPRNG to Restore RNG status

Restore changed variables
Set iteration index

Checkpoint Subroutine
PACK_SPRNG to save RNG parameters

Save changed variables
Save iteration index

Checkpoint Condition?

Checkpoint Data
File

Checkpoint
Data File

Figure 4.2 GCIMCA Implementation of Monte Carlo

Application-Level Checkpointing

Thus, to recover an interrupted computation, a Monte
Carlo subtask needs to save only a relatively small
amount of information, which includes the current results
based on the estimates obtained so far, the current status
and parameters of the random number generators, and
other relevant program information like the current
iteration number. GCIMCA uses the pack_sprng() and
unpack_sprng() functions [6] in the SPRNG library to
store and recover the states of random number streams,
respectively. At the same time, GCIMCA requires the
Monte Carlo application programmer to specify the other
checkpoint data, and also the location of the main loop to
generate the checkpointing and recovery subroutines.
Figure 4.2 shows the flowchart of GCIMCA’s
implementation of Monte Carlo application-level
checkpointing and recovery.

4.3 Partial Result Validation and
Intermediate Value Checking

Grid-based Monte Carlo applications are very sensitive
to each partial result generated from subtasks running on
the widely distributed grid nodes. An erroneous
computation of a subtask will most likely lead to the
corruption of the whole grid Monte Carlo computation.
To enforce the correctness and accuracy of grid-based
Monte Carlo computations, GCIMCA provides a partial
result validation service and an intermediate value
checking service.

The partial result validation service takes advantage of
the statistical nature of distributed Monte Carlo
applications. In distributed Monte Carlo applications, we
anticipate the partial results are approximately normally
distributed. Based on all the partial results and a desired
confidence level, the normal confidence interval is
evaluated. Then, each partial result is examined. If it is in
the normal confidence interval, this partial result is
considered as trustworthy; otherwise it is very suspicious.
Discussion of the grid-based Monte Carlo partial result
validation can be found in [7, 8]. To utilize the partial
result validation service, GCIMCA requires the user to
specify the quantities in the partial result data files that
are anticipated to conform to the approximately normal
distribution. Then, when the Monte Carlo job is done, the
job server will collect all these value files from the
subtask agents using GridFTP, compute the normal
confidence interval, and begin to check each partial
result. If a partial result is found suspicious, the job server
will reschedule the particular subtask that produced this
partial result on another grid node to perform further
validation.

The intermediate value checking service is used to
check if the assigned subtask from a grid node is
faithfully carried out and accurately executed. The
intermediate values are quantities generated within the

 4

execution of the subtask. To the node that runs the
subtask, these values will be unknown until the subtask is
actually executed and reaches a specific point in the
program. On the other hand, to the owner of the
application, certain intermediate values are either pre-
known or very easy to generate. By comparing the
intermediate values and the pre-known values, we can
control whether the subtask is actually faithfully
executed. The underlying pseudorandom numbers in the
Monte Carlo applications are the perfect candidates to use
as the intermediate values [8]. The intermediate value
checking service in GCIMCA uses a simple strategy to
validate a result from subtasks by tracing certain
predetermined random numbers in the grid-based Monte
Carlo applications. To utilize the intermediate value
checking service, GCIMCA also requires user-level
cooperation. The application programmers need to save
the value of the current pseudorandom number after
every N pseudorandom numbers are generated. Thus, a
record of the Nth, 2Nth, …, kNth random numbers used in
the subtask are produced. When a subtask is done, the
GCIMCA job server obtains this record and then re-
computes the Nth, 2Nth, …, kNth random numbers
applying the specific generator in the SPRNG library
with the same seed and parameters as used in this
subtask. A mismatch indicates problems during the
execution of the subtask.

5. Conclusions
Monte Carlo applications generically exhibit naturally

parallel and computationally intensive characteristics. In
this paper, we discussed utilizing the Globus software
toolkit and the SPRNG library to implement GCIMCA --
a grid-computing infrastructure for Monte Carlo
applications. The N-out-of-M subtask schedule service,
application-level checkpointing service, Monte Carlo
partial result validation service, and intermediate value
checking service are implemented in GCIMCA to provide
grid-computing facilities for trustworthy and high-
performance large-scale Monte Carlo computation
purposes.

In the future, we plan to adopt the emerging OGSA
(Open Grid Services Architecture) [16] into GCIMCA so
that we can integrate the standard grid-computing
services into grid-based Monte Carlo applications. Also,
we plan to implement the remote checkpointing facilities
using gSOAP [17] for Monte Carlo application-level
checkpointing in a grid-computing environment. At the
same time, we will also try to apply more real-life Monte
Carlo applications on GCIMCA. A final goal is to
experiment with the Monte Carlo based services on non-
Monte Carlo applications. The goal here being to study
the extent to which these application-specific services can
enhance other grid computations.

References
[1] A. Srinivasan, D. M. Ceperley, M. Mascagni,

“Random Number Generators for Parallel
Applications,” Monte Carlo Methods in Chemical
Physics, 105:13-36, 1999.

[2] J. Basney, R. Raman, M. Livny, “High Throughput
Monte Carlo,” Proc. of 9th SIAM Conf. on Parallel
Processing for Sci. Comp., San Antonio, 1999.

[3] I. Foster, C. Kesselman, S. Tueske, “The Anatomy of
the Grid,” Intl. Jour. of Supercomp. App., 15(3),
2001.

[4] I. Foster, C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit,” Intl. Jour. of Supercomputer
App., 11(2):115-128, 1997.

[5] M. Mascagni, A. Srinivasan, “SPRNG: A Scalable
Library for Pseudorandom Number Generation,”
ACM Transactions on Mathematical Software, 2000.

[6] SPRNG website, http://sprng.cs.fsu.edu.
[7] Y. Li, M. Mascagni, “Grid-based Monte Carlo

Application,” Lecture Notes in Computer Science,
2536:13-25, GRID2002, Baltimore, 2002.

[8] Y. Li, M. Mascagni, “Analysis of Large-scale Grid-
based Monte Carlo Applications,” special issue of
Intl. Jour. of High Performance Comp. App., 2003.

[9] Y. Li, M. Mascagni, “Improving Performance via
Computational Replication on a Large-Scale
Computational Grid,” IEEE/ACM CCGRID2003,
Tokyo, 2003.

[10] Globus website, http://www.globus.org.
[11] M. Litzkow, M. Livny, M. Mutka, “Condor - A

Hunter of Idle Workstations,” Proc. of 8th Intl. Conf.
of Dist. Comp. Systems, pp. 104-111, 1988.

[12] B. O. Christiansen, P. Cappello, M. F. Ionescu, M.
O. Neary, K. E. Schauser, D. Wu, “Javelin: Internet-
Based Parallel Computing Using Java,”
Concurrency: Practice and Experience, 9(11): 1139 -
1160, 1997.

[13] A. Baratloo, M. Karaul, Z. Kedem, P. Wyckoff,
“Charlotte: Metacomputing on the Web,” 9th Intl.
Conf. on Parallel and Dist. Comp. Systems, 1996.

[14] Beck, Dong, Fagg, Geist, Gray, Kohl, Miliardi, K.
Moore, T. Moore, P. Papadopoulous, S. Scott, V.
Sunderam, “HARNESS: a next generation
distributed virtual machine,” Jour. of Future
Generation Computer Systems, (15), 1999.

[15] M. Zhou, “A Scientific Computing Tool for Parallel
Monte Carlo in a Distributed Environment,” Ph.D.
Dissertation, Univ. of Southern Mississippi, 2000.

[16] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, “The
Physiology of Grid: Open Grid Services Architecture
for Distributed Systems Integration,” draft, 2003.

[17] R. van Engelen, K. A. Gallivan, “The gSOAP
Toolkit for Web Services and Peer-to-Peer
Computing Networks,” Proc. of ACM/IEEE
CCGrid02, Berlin, 2002.

 5

	Department of Computer Science and School of Computational Science and Information Technology
	Florida State University
	Abstract
	1. Introduction
	2. Architecture of GCIMCA
	
	�

	3. GCIMCA Working Paradigm
	
	3.1 Overview
	3.2 Job Submission
	3.3 Passive-Mode Subtask Scheduling

	4. Implementation of GCIMCA Services
	
	4.1 N-out-of-M Scheduling Strategy
	4.2 Monte Carlo Lightweight Checkpointing
	4.3 Partial Result Validation and Intermediate Value Checking

	5. Conclusions
	References

