
GCIMCA: A Globus and SPRNG Implementation of a Grid-Computing 
Infrastructure for Monte Carlo Applications 

 

Yaohang Li, Michael Mascagni, Robert van Engelen 
Department of Computer Science and School of Computational Science and Information Technology 

Florida State University 
Tallahassee, FL 32306-4530, USA 

{yaohanli, mascagni, engelen}@cs.fsu.edu 
 

Abstract 
The implementation of large-scale Monte Carlo 

computation on the grid benefits from state-of-the-art 
approaches to accessing a computational grid and requires 
scalable parallel random number generators with good quality. 
The Globus software toolkit facilitates the creation and 
utilization of a computational grid for large distributed 
computational jobs. The Scalable Parallel Random Number 
Generators (SPRNG) library is designed to generate practically 
infinite number of random number streams with favorable 
statistical properties for parallel and distributed Monte Carlo 
applications. Taking advantage of the facilities of the Globus 
toolkit and the SPRNG library, we implemented a tool we refer 
to as the Grid-Computing Infrastructure for Monte Carlo 
Applications (GCIMCA). GCIMCA implements services specific 
to grid-based Monte Carlo applications, including the Monte 
Carlo subtask schedule service using the N-out-of-M strategy, 
the facilities of application-level checkpointing, the partial 
result validation service, and the intermediate value validation 
service. Based on these facilities, GCIMCA intends to provide a 
trustworthy grid-computing infrastructure for large-scale and 
high-performance distributed Monte Carlo computations. 

 

1. Introduction 
Monte Carlo applications are widely perceived as 

computationally intensive but naturally parallel. With 
more ambitious calculations by estimating more random 
samples, a Monte Carlo application is capable of reducing 
the statistical errors to any desired level [1]. By 
computing and analyzing random samples independently, 
Monte Carlo applications can be programmed in a bag-
of-work model and fit into the master-worker paradigm. 
In a parallel environment using the master-worker 
paradigm, the master partitions the task, schedules 
subtasks to workers, and receives results when the 
workers complete their assigned work [2]. The 
subsequent growth of computer power, especially that of 
the parallel and distributed computing systems, has made 
large-scale distributed Monte Carlo computation possible 
and practically effective.  

Large-scale Monte Carlo computation consumes large 
amounts of computational power, and depends on parallel 
random number generators with good quality. On the one 
hand, grid computing is characterized by large-scale 
sharing and cooperation of dynamically distributed 
resources, such as CPU cycles, communication 

bandwidth, and data to constitute a computational 
environment [3]. A computational grid based on the grid-
computing techniques can, in principle, provide a 
tremendously large amount of CPU cycles to a Monte 
Carlo application. The Globus software toolkit [4] 
provides software tools and services to build 
computational grid infrastructures for grid-based 
applications. On the other hand, the SPRNG (Scalable 
Parallel Random Number Generators) [5] library is 
designed to use parameterized pseudorandom number 
generators to provide independent random number 
streams. The SPRNG library provides uniform 
programming interfaces for the Linear Congruential 
Generator (LCG), Prime Modulus Linear Congruential 
Generator (PMLCG), additive Lagged-Fibonacci 
Generator (LFG), Multiplicative Lagged-Fibonacci 
Generator (MLFG), and Combined Multiple Recursive 
Generator (CMRG). Some generators in the SPRNG 
library can provide up to 278000 – 1 independent random 
number streams [6] with sufficiently long period, which 
have favorable inter-stream and cross-stream properties 
in a statistical sense. These generators can meet the 
random number requirements of most distributed Monte 
Carlo applications. Furthermore, by analyzing the 
statistical nature of Monte Carlo applications and the 
cryptographic aspects of these underlying random 
number generators, our previous research [7, 8, 9] 
developed techniques to improve the performance and 
trustworthiness of Monte Carlo computations on the grid. 
For large-scale grid-based Monte Carlo analysis, “all the 
pieces of the puzzle” have recently been assembled. In 
this paper, we are going to elucidate the implementation 
of the Grid-Computing Infrastructure for Monte Carlo 
Applications (GCIMCA) utilizing the Globus toolkit and 
SPRNG. Also, we will discuss the services provided by 
GCIMCA based on the fortuitous characteristics of 
Monte Carlo applications. 

The remainder of this paper is organized as follows. 
We illustrate the architecture and the working paradigm 
of GCIMCA in Sections 2 and 3, respectively. In Section 
4, we discuss detailed implementations of the core 
services and facilities in GCIMCA. Finally, Section 5 
summarizes our conclusions and future research 
directions.  
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2. Architecture of GCIMCA 
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Figure 2.1 Architecture of GCIMCA 

 

GCIMCA is designed on the top of the grid services 
provided by Globus, [10] and supplies facilities and 
services for grid-based Monte Carlo applications. The 
services include GRAM (Globus Resource Allocation 
Manager), GIS (Grid Information Service), GSI (Grid 
Security Infrastructure), and GridFTP. GRAM is used to 
do Monte Carlo subtask remote-submission and manage 
the execution of each subtask. GIS provides information 
services, i.e., the discovery of the properties and 
configurations of grid nodes. GSI offers security services 
such as authentication, encryption and decryption for 
running Monte Carlo applications on the grid. GridFTP 
provides a uniform interface for data transport and access 
on the grid for GCIMCA. At the same time, the execution 
of each Monte Carlo subtask usually consumes a large 
amount of random numbers. SPRNG is the underlying 
pseudorandom number generator library in GCIMCA, 
providing independent pseudorandom number streams. 
Based on the grid services provided by Globus and the 
SPRNG library, GCIMCA provides higher-level services 
to grid-based Monte Carlo applications. These services 
include N-out-of-M Monte Carlo subtask scheduling, 
application-level checkpointing, partial result validation, 
and intermediate value checking. Figure 2.1 shows the 
architecture of GCIMCA. 

 

3. GCIMCA Working Paradigm 
3.1 Overview 

Figure 3.1 shows the GCIMCA working paradigm, 
which is based on the master-worker model of a grid-
based Monte Carlo application. The execution of a grid-
based Monte Carlo application in GCIMCA is initiated by 
a user who submits a Monte Carlo job description to the 
job server. At the same time, the user prepares and stores 
the Monte Carlo job files, such as the executable binary 
and data files, on a job file server. The job file server may 
run in the user’s own domain and allow only those 

accesses with authentication. The GCIMCA job server 
manages the subtasks of a Monte Carlo job, and is in 
charge of actually scheduling these subtasks. The eligible 
GCIMCA subtask agent running on a node within an 
organization obtains a Monte Carlo subtask description 
from the job server. Then, according to the specification 
of the subtask description, the subtask agent downloads 
the necessary files from the job file server using GridFTP 
and retrieves the actual subtask. The subtask is set 
remotely running on an eligible grid node within the 
organization by GRAM. When a subtask is ready, the 
partial result files are submitted back to the job file 
server. At the same time, the job server is notified that a 
subtask is done. When the entire Monte Carlo job is 
finished, the partial results are validated and the job 
server notifies the user as to the completion of the 
computation. 
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Figure 3.1 The Working Paradigm for GCIMCA 

3.2 Job Submission 
Monte Carlo Job Description 
JobName =   “Monte Carlo Integration” 
JobDescription = “Execfile=http://sprng.cs.fsu.edu/mcint/mcintIntel.out 
  Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data 
  Arg= -r   
  Arch=INTEL Opsys=LINUX” 
JobDescription= “Execfile=http://sprng.cs.fsu.edu/mcint/mcintSolaris.out 
    Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data 
    Arg= -r 
  Arch=SUN Opsys=Solaris26” 
RequiredJobs = 20 
MaxJobs =  40 
ResultFileName = mcintresult.dat 
ResultLocation = http://sprng.cs.fsu.edu/mcint/result 
Org=  cs.fsu.edu;csit.fsu.edu 
Encryption= YES 

Figure 3.2 Sample of a Monte Carlo Job Description File 
 

A user submits a Monte Carlo job description file to 
the job server. The Monte Carlo job description file 
declares the information related to the Monte Carlo job, 
including the job name, locations of executable and data 
files, arguments, required hardware architectures and 
operating systems, number of subtasks, result file names 
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and destinations, encryption option, and authenticated 
organization. Figure 3.2 shows a sample of a job 
description file. Based on the job description, the job 
server validates the Monte Carlo job, creates a Monte 
Carlo subtasks pool, chooses the qualified subtask 
applications from the subtask agent, verifies the 
authentication of a subtask agent using GSI, and then 
actually schedules the subtask. 

In GCIMCA, a user provides different executable 
binary files for each possible different system architecture 
on the grid. The remote compiler [15] service is used to 
address this heterogeneity issue. A user can send source 
packages to a remote node of a specific system 
architecture with the remote compiler service running. 
Then, the remote compiler service compiles the source 
files, generates the executable files, and sends them back 
to the user. Using the remote compiler service, different 
executable codes for different platforms can be obtained. 

3.3 Passive-Mode Subtask Scheduling 
Unlike the design of most existing distributed and 

parallel computing systems, such as Condor [11], Javelin 
[12], Charlotte [13] and HARNESS [14], which use an 
active scheduling mode to dispatch subtasks, GCIMCA 
uses a passive scheduling mode. In an active scheduling 
mode, the job server needs to keep checking the status of 
computational nodes to schedule tasks to the capable 
ones. Also, the job server must keep track of each 
running subtask. In contrast, using the passive scheduling 
mode in GCIMCA, a Monte Carlo subtask agent sends 
applications to the job server to apply for a subtask only 
when it has computational nodes available and ready for 
work. The management responsibility of the execution of 
each subtask is decentralized to the subtask agents. The 
advantage of using the passive scheduling mode here is to 
reduce the workload, or more specifically, the 
requirements of network connection bandwidth of the job 
server. In GCIMCA, most of the communication load is 
between a subtask agent and the computational nodes 
within the organization usually having connection via a 
high-speed LAN. The communication between the job 
server and the subtask agents, which is usually through a 
WAN with relatively low bandwidth, is minimized. 

In GCIMCA, the job server manages the jobs from the 
users, and processes subtask applications from the 
subtask agents. It is the subtask agent that retrieves the 
information related to a subtask, forms the subtask 
described in Globus RSL (Resource Specification 
Language), and actually schedules the subtask to a grid 
node. The job management functionalities of GRAM are 
utilized to run subtasks on a remote grid node. Figure 3.3 
shows the GCIMCA implementation of remotely 
executing a Monte Carlo subtask based on GRAM. When 
a Monte Carlo subtask is scheduled on a grid node, a 
process running the GCIMCA subtask callback function 

is created so as to listen to the status as it changes on the 
running subtask. Depending on the status of the running 
subtask, the callback function takes corresponding 
actions, such as reporting to the job server, submitting 
partial result files, or rescheduling the subtask with 
checkpoint data. 
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Figure 3.3 Remote Execution of a Monte Carlo Subtask 
 

4. Implementation of GCIMCA Services 
4.1 N-out-of-M Scheduling Strategy 

The main idea of the N-out-of-M strategy [7, 8, 9] for 
grid-based Monte Carlo computations is to schedule more 
subtasks than are required to tolerate possible delayed or 
halted subtasks on the grid to achieve optimal 
performance. The statistical nature of Monte Carlo 
applications allows us to enlarge the actual size of the 
computation by increasing the number of subtasks from N 
to M, where M > N. Each of these M subtasks uses its 
unique independent random number stream, and we 
submit M instead of N subtasks to the grid system. When 
N partial results are ready, we consider the whole task for 
the grid system to be completed. More theoretical 
analysis of the N-out-of-M strategy can be found in [8, 9]. 

Figure 4.1 shows the implementation of the N-out-of-M 
scheduling strategy in GCIMCA. The Monte Carlo job 
description file from the user states the maximum number 
(M) of subtasks to be scheduled and the required number 
(N) of those to achieve a certain predetermined accuracy. 
Based on this, the GCIMCA job server sets up a subtask 
pool with the number of entries as M. Each entry of the 
pool describes the status of a subtask, including the 
subtask schedule status, random stream ID for the 
SPRNG library, the responsible subtask agent if 
scheduled, and other implementation dependent details. 
The job server also maintains the statistics of completed 
subtasks. Once the number of completed subtasks reaches 
the number of requested subtasks, the job server will 
regard this Monte Carlo job as complete. A subtask-
canceling signal will be sent to the subtask agents that 
still have subtasks running related to this job. 
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Figure 4.1 Implementation of the N-out-of-M Scheduling 
Strategy in GCIMCA 

4.2 Monte Carlo Lightweight Checkpointing 
A long-running computational task on a grid node must 

be prepared for node unavailability. Compared to 
process-level checkpointing [11], application-level 
checkpointing is much smaller in size and thus less 
costly. More importantly, the application-level 
checkpointing data is usually readily portable and is easy 
to migrate from one platform to another. Monte Carlo 
applications have a structure highly amenable to 
application-level checkpointing. Typically, a Monte Carlo 
application can be programmed in a structure that starts in 
an initial configuration, evaluates a random sample or a 
random trajectory, estimates a result, accumulates means 
and variances with previous results, and repeats this 
process until some termination conditions are met. 
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Figure 4.2 GCIMCA Implementation of Monte Carlo 

Application-Level Checkpointing 
 

Thus, to recover an interrupted computation, a Monte 
Carlo subtask needs to save only a relatively small 
amount of information, which includes the current results 
based on the estimates obtained so far, the current status 
and parameters of the random number generators, and 
other relevant program information like the current 
iteration number. GCIMCA uses the pack_sprng() and 
unpack_sprng() functions [6] in the SPRNG library to 
store and recover the states of random number streams, 
respectively. At the same time, GCIMCA requires the 
Monte Carlo application programmer to specify the other 
checkpoint data, and also the location of the main loop to 
generate the checkpointing and recovery subroutines. 
Figure 4.2 shows the flowchart of GCIMCA’s 
implementation of Monte Carlo application-level 
checkpointing and recovery. 

 

4.3 Partial Result Validation and 
Intermediate Value Checking 

Grid-based Monte Carlo applications are very sensitive 
to each partial result generated from subtasks running on 
the widely distributed grid nodes. An erroneous 
computation of a subtask will most likely lead to the 
corruption of the whole grid Monte Carlo computation. 
To enforce the correctness and accuracy of grid-based 
Monte Carlo computations, GCIMCA provides a partial 
result validation service and an intermediate value 
checking service.  

The partial result validation service takes advantage of 
the statistical nature of distributed Monte Carlo 
applications. In distributed Monte Carlo applications, we 
anticipate the partial results are approximately normally 
distributed. Based on all the partial results and a desired 
confidence level, the normal confidence interval is 
evaluated. Then, each partial result is examined. If it is in 
the normal confidence interval, this partial result is 
considered as trustworthy; otherwise it is very suspicious. 
Discussion of the grid-based Monte Carlo partial result 
validation can be found in [7, 8]. To utilize the partial 
result validation service, GCIMCA requires the user to 
specify the quantities in the partial result data files that 
are anticipated to conform to the approximately normal 
distribution. Then, when the Monte Carlo job is done, the 
job server will collect all these value files from the 
subtask agents using GridFTP, compute the normal 
confidence interval, and begin to check each partial 
result. If a partial result is found suspicious, the job server 
will reschedule the particular subtask that produced this 
partial result on another grid node to perform further 
validation. 

The intermediate value checking service is used to 
check if the assigned subtask from a grid node is 
faithfully carried out and accurately executed. The 
intermediate values are quantities generated within the 
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execution of the subtask. To the node that runs the 
subtask, these values will be unknown until the subtask is 
actually executed and reaches a specific point in the 
program. On the other hand, to the owner of the 
application, certain intermediate values are either pre-
known or very easy to generate. By comparing the 
intermediate values and the pre-known values, we can 
control whether the subtask is actually faithfully 
executed. The underlying pseudorandom numbers in the 
Monte Carlo applications are the perfect candidates to use 
as the intermediate values [8]. The intermediate value 
checking service in GCIMCA uses a simple strategy to 
validate a result from subtasks by tracing certain 
predetermined random numbers in the grid-based Monte 
Carlo applications. To utilize the intermediate value 
checking service, GCIMCA also requires user-level 
cooperation. The application programmers need to save 
the value of the current pseudorandom number after 
every N pseudorandom numbers are generated. Thus, a 
record of the Nth, 2Nth, …, kNth random numbers used in 
the subtask are produced. When a subtask is done, the 
GCIMCA job server obtains this record and then re-
computes the Nth, 2Nth, …, kNth random numbers 
applying the specific generator in the SPRNG library 
with the same seed and parameters as used in this 
subtask. A mismatch indicates problems during the 
execution of the subtask. 

 

5. Conclusions 
Monte Carlo applications generically exhibit naturally 

parallel and computationally intensive characteristics. In 
this paper, we discussed utilizing the Globus software 
toolkit and the SPRNG library to implement GCIMCA -- 
a grid-computing infrastructure for Monte Carlo 
applications. The N-out-of-M subtask schedule service, 
application-level checkpointing service, Monte Carlo 
partial result validation service, and intermediate value 
checking service are implemented in GCIMCA to provide 
grid-computing facilities for trustworthy and high-
performance large-scale Monte Carlo computation 
purposes.  

In the future, we plan to adopt the emerging OGSA 
(Open Grid Services Architecture) [16] into GCIMCA so 
that we can integrate the standard grid-computing 
services into grid-based Monte Carlo applications. Also, 
we plan to implement the remote checkpointing facilities 
using gSOAP [17] for Monte Carlo application-level 
checkpointing in a grid-computing environment. At the 
same time, we will also try to apply more real-life Monte 
Carlo applications on GCIMCA. A final goal is to 
experiment with the Monte Carlo based services on non-
Monte Carlo applications. The goal here being to study 
the extent to which these application-specific services can 
enhance other grid computations. 
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