

Improving Performance via Computational Replication on a Large-Scale
Computational Grid

Yaohang Li and Michael Mascagni

Department of Computer Science and School of Computational Science and Information Technology

Florida State University
Tallahassee, FL 32306-4530, USA
{yaohanli, mascagni}@cs.fsu.edu

Abstract

High performance computing on a large-scale
computational grid is complicated by the heterogeneous
computational capabilities of each node, node
unavailability, and unreliable network connectivity.
Replicating computation on multiple nodes can
significantly improve performance by reducing task
completion time on a grid’s dynamic environment. We
develop an analytical model to determine the number of
task replicas to meet the performance goals in different
computational grid configurations. Furthermore, taking
advantage of the statistical nature of grid-based Monte
Carlo applications, we extend the computational
replication technique to an N-out-of-M scheduling
strategy for grid-based Monte Carlo applications, which
can potentially form a large category of grid-computing
applications. In addition, we establish a corresponding
model for the N-out-of-M scheduling mechanism.
Simulations are used to validate the computational
replication models. Our preliminary results show that the
models we use are effective in predicting the required
number of replicas to achieve short task completion time
with a given high probability.

1. Introduction

Grid computing is characterized by large-scale sharing
and cooperation of dynamically distributed resources,
such as CPU cycles, communication bandwidth, and data,
to constitute a computational environment [1]. A large-
scale computational grid can, in principle, offer a
tremendous amount of low-cost computational power.
This attracts many computationally intensive scientific
applications. On the other hand, significant challenges
also arise. Within a computational grid’s dynamic

environment, the computational capabilities of each node
vary greatly. As a result, a task running on different
nodes on the grid will have a huge range of completion
times. Also, due to unreliable network connections and
the possible unavailability of a node, an executing task
may be delayed or even halted at any time. Therefore,
from the grid-application point of view, how quickly a
computational grid can complete a group of submitted
tasks from an application becomes an issue of prime
importance.

In this paper, we investigate a computational
replication technique to develop an optimal scheduling
mechanism to improve the throughput of a computational
grid and reduce task completion time. This is different
from the task-scheduling problem that has been discussed
for many conventional parallel or distributed computing
environments [2, 3], where there are a very limited
number of nodes. In contrast, on a computational grid, the
available computational service providers can essentially
be treated as unlimited compared to the number of
existing tasks. Therefore, we have more freedom to use
these massive computational resources as trade-offs to
achieve better task completion times.

The remainder of this paper is organized as follows. In
Section 2, we provide an approach to apply the
computational replication technique to a computational
grid. We establish the analytical model of our replicate
scheduling mechanism and evaluate our model using
simulation in Section 3 and Section 4, respectively. Using
simulation, we also compare the performance of replicate
scheduling with that of dynamic rescheduling under
different grid configurations. Section 5 extends the
computational replication technique to the N-out-of-M
scheduling strategy for Monte Carlo applications. Finally,
Section 6 summarizes our conclusions and future research
directions.

 1

2. Computational Replication

Replication is a well-known technique for improving
availability in an unreliable system. In fault-tolerant
computing, replication is also a technique to overcome
faults [4, 5]. The replication technique has already been
favorably utilized in grid computing. In SETI@home [6],
a majority voting mechanism1 is applied to check the
correctness of a task. Ranganathan, Iamnitchi, and Foster
discussed using dynamic model-driven replication to
obtain high data availability in a large peer-to-peer
community [7]. In this paper, we are interested in
improving the performance of a computational grid by
replicate scheduling of grid tasks.

The basic idea of replicate scheduling in a
computational grid is concurrently executing multiple
copies of a given task. If multiple copies of a
computational task are executed on independent nodes,
then the chance that at least one copy is completed during
a specific period of time increases. As a result, the time
between submitting a task and obtaining a result is very
probably reduced. Concurrent assignment of tasks to
multiple nodes guarantees that a particular, very slow,
machine will not slow the aggregate progress of a
computation. Eventually, under the assumption of
unlimited computational service providers available in the
pool, the throughput of the computational grid will tend
to increase with increasing numbers of computing
replicas for each task.

The implementation of computational replication on a
computational grid is rather simple. Figure 1 shows the
mechanism of replicate scheduling in a grid-computing
environment. When the computational grid receives a
task, r copies are replicated and scheduled to r different
nodes. At that point in time, r copies of the task are
concurrently running. Once an execution is complete and
the corresponding result is obtained, the task is regarded
as finished. Termination signals can be sent to the other
nodes to abort their current running jobs.

1 Different nodes process the same copy of tasks independently and the
final result is obtained by a majority vote of the distributed results

Job Rec ipient Serv ice

Computational
Task

Schedule Serv ice

Collec tion Serv ice

Replicate
Computational

Tasks

Dis tribute Tasks
to Nodes

Concurrent
Tasks

Execution

Result Task
Termination

Signal

Final Result

Figure 1: Replicate Scheduling in a Computational Grid

Using the computational replication technique can

prevent slow or unstable nodes from slowing down or
halting a grid task with high probability, which could lead
to a reduced completion time of this task. However, we
do not wish to imply that the more replicas, the better.
The execution of too many copies of a task may not
contribute much to reducing completion time but may
significantly increase the grid system’s workload. Such
problems can be found in metacomputing prototype
Charlotte [8] using its eager scheduling mechanism.
Eager scheduling aggressively assigns and reassigns
existing tasks to available nodes in the distributed-
computing system to keep all the nodes busy.
Nevertheless, the following phenomenon may occur:
there may be many copies of a task running on the system
and occupying many computational resources. However,
the later arriving tasks may not be able to find an
available node, which will reduce the system throughput.
In short, to determine what is a “reasonable” number of
replicas becomes critical for the computational replication
technique. We will establish a system model to probe for
answers to this question in the next section.

 2

3. Analytical Methods

To determine the number of computing replicas to
achieve a specific performance requirement, we need to
consider some system parameters. In a computational
grid, the completion time of a grid task depends on the
performance of each individual node participating in the
computation, the node failure rate, and also the network
failure rate. We make the following assumptions to set up
our model.

1) The execution of a task completely occupies a
node on the grid, and no other jobs can be
executed on the same node concurrently.

2) Compared to the execution time (usually from
hours up to days), the tasks’ scheduling time and
result collection time (usually in the range of
seconds or minutes) is short enough to be
ignored.

3) Each node works on its task independently.
4) Each node has an equal probability of obtaining a

task from the schedule service. The tasks are
scheduled without noticing the performance of
each node.

5) A task is architecture-independent.

p1

down

p1
up

t1up t1down

t1complete

pi
down

pi
up

tiup tidown

ticomplete

... ...

pr
down

pr
up

trup trdown

trcomplete

ptask

Figure 2: Petri Net Modeling of Computation Replication

in the Grid

Figure 2 shows the Petri Net (PN) model of replicated
tasks concurrently running on a computational grid. In
this PN model, a node, i, alternates between an up state
(place pi

up) and a down state (place pi
down). Transition

ti
down represents node unavailability (with unavailability

rate λ) and transition ti
up node back to service (with

availability rate µ). Transition ti
complete is assigned the task

progress threshold W (usually 100%) so that the task
completion condition (token in ptask) is reached when W is
hit.

Let r be the total number of computing replicas,
 pi

sys be the probability of node i participating in the
computations is up, where ,)/(λµµ +=sys

ip
 θI′ be the service rate of node i, which can be

measured as the number of tasks that can be
finished within a specific period of time without
interruption. Considering the node availability,
the service rate, θi, in node i is sys

i
ii p*′= θθ .

Then, the service time distribution function Si(t), referring
to the probability that the task completion time Ti is less
than t, which conforms to an exponential distribution, can
be represented as

t

t

x
iii

ii edxetTtS θθθ −∞ − ==≥= ∫)Pr()(
.

The probability that a task can be completed by time t,
which is the cumulative distribution function of the
exponential distribution, is

)(1)(tStp itaski
−=

.
Finally, the probability, preplica(t), that at least one will be
done by time t is

∑
=

−

−=≥−=

r

i
i t

rreplica etTTTMintp 11)),...,,(Pr(1)(21

θ

.
By evaluating the mean of the service rates θi,

∑
=

=
r

i
ir 1

1 θθ
, in each node participating in the

computation, we are able to estimate a proper number of
replicas, r. Suppose we want at least one task completion
at time t with probability α, then, we need to have at least
r copies of tasks running, where








 −
=

t
r

θ
α)1ln(

.

4. Simulation Results

In our simulation program, we simulated a 1,000-node
computational grid. Nodes join and leave the system with
a specified probability. Also, nodes have a variety of
computational capabilities. Each simulation is run for
1,000 time steps. (A task running on a node with service
rate θ will take 1/θ time steps, e.g., a fast node with
service rate 0.01 will take 100 time steps to complete the
task while a slow one with service rate 0.001 will take
1,000) At each time step, a certain number of nodes go

 3

down while a certain number of nodes become available
for computation. We built our simulations in order to

1) evaluate the validity of our model, and to
2) compare the computational replication technique

with the dynamic rescheduling technique.

4.1 Model Validation

Our model computes the minimum number of replicas
that are necessary to achieve a certain task completion
probability at a specified time. At the same time, our
model can also evaluate the task completion probability
using the computational replication technique. In order to
validate the accuracy of our model, we therefore fix the
number of replicas and compare the actual task
completion rate with the predicted probability of our
model at different time steps.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800
Time

Ta
sk

 C
om

pl
et

io
n

Pe
rc

en
ta

ge

1 Task Simulation

1 Task Prediction

4 Tasks Simulation

4 Tasks Prediction

20 Tasks Simulation

20 Tasks Prediction

Figure 3: Model Prediction versus Actual Behavior with

Different Numbers of Replicas

Figure 3 shows the comparison between the

simulation results and the prediction from our analytical
model. From the graph, we can see that the actual
behavior matches our model prediction quite well. Also,
we notice that with 1 task running, at least 600 time steps
are required to obtain 90% task completion percentage,
however, with 4 replicas, less than 200 time steps are
required to obtain the same percentage. This indicates a
significant task completion time reduction using the
computational replication technique. However, we also
found that even when we increase the number of current
tasks to 20, we cannot significantly increase task
performance. Therefore, with a proper number of
replicas, we can achieve an optimal performance/cost
ratio.

4.2 Replicate Scheduling vs. Dynamic
Rescheduling

To prevent a slow node from delaying or halting the
completion of a grid task, the dynamic rescheduling
technique is another popular method used in existing
computational grid systems like Condor [9, 13] and
Entropia [10]. In dynamic rescheduling, the system keeps
track of the execution of each task. When a task is halted,
a checkpoint of the execution is then generated. Next, the
schedule service will look for another available and
appropriate node to reschedule the task. After the
checkpoint data file is transferred to the new node, the
task then continues to execute on the new node by
recovering the execution process of the task. The
dynamic rescheduling technique can keep the task
running all the time but at the cost of additional system
administration and rescheduling overhead involving task
status monitoring, checkpointing, searching for available
nodes, network transferring, task rescheduling, and
execution recovering.

We simulate the scheduling mechanism using the
dynamic rescheduling technique. When a node running a
task is down, the task is rescheduled to another available
node. The rescheduling penalty is taken into
consideration when task rescheduling occurs in the
simulation. Figures 4 and 5 illustrate the task completion
time comparison between replicate scheduling and
dynamic rescheduling. The data in Figure 4 come from
simulation on a computational grid comprised of nodes
with similar performance characteristics. This can be a
grid constructed from computers in a computer lab that
have similar performance parameters and are connected
by a high-speed network. The cost of task rescheduling is
relatively low in such a situation. Our simulation results
show that the dynamic rescheduling technique has a
better task completion time than that of replicate
scheduling when the node unavailability rate is high.
When the node down rate is low, both techniques have a
similar simulated performance. Figure 5 simulates a
computational grid whose nodes have computational
capabilities in a wide range. In practice, this grid can be a
system with geographically widely distributed nodes like
SETI@home [6]. In this grid system, a node might be a
high-end supercomputer, or a low-end personal computer,
or even just an intelligent widget. The connection among
nodes is via a low-speed network, which carries a high
task rescheduling cost. We notice that in our simulation
results, replicate scheduling using an appropriate number
of replicas has a better task completion time than that of
the dynamic rescheduling technique.

 4

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6
Node Unavailability Rate

Ta
sk

 C
om

pl
et

io
n

Ti
m

e

1 Task

2 Tasks

4 Tasks

Dyn Schedule

Figure 4: Replicate Scheduling vs. Dynamic
Rescheduling on a Computational Grid with Nodes

Sharing Similar Performance Parameters

0

100

200

300

400

500

600

0 0.2 0.4
Nodes Unavailability Rate

Ta
sk

 C
om

pl
et

io
n

Ti
m

e

0.6

1 Task
2 Tasks
4 Tasks
Low Cost DR
High Cost DR

Figure 5: Replicate Scheduling vs. Dynamic

Rescheduling on a Computational Grid with Nodes
having a Wide Range of Computational Capabilities

5. Computational Replication in Monte
Carlo Applications

Among grid applications, those using Monte Carlo
methods, which are widely used in scientific computing
and simulation, possess good characteristics for the grid-
computing environment. Many of these characteristics,
such as the statistical nature of Monte Carlo methods and
the cryptographic aspects of the underlying random
number generators are discussed in [11]. Typically, this

paper is interested applying the computational replication
technique to grid Monte Carlo applications to improve
their performance.

In the typical execution of a Monte Carlo computation
on a grid system, we split the entire computational task
into N subtasks, with each subtask based on unique
independent random number streams. We then schedule
each subtask onto the nodes in the grid system. In this
case, the assembly of the final result requires all of the N
partial results generated from the N subtasks. In this
situation, each subtask is a “key” subtask, since the
suspension or delay of any one of these subtasks will
have a direct effect on the completion time of the whole
task. To address this issue, we can use the so-called N-
out-of-M subtask scheduling strategy specific for grid-
based Monte Carlo applications, which is an extension of
the computational replication technique.

5.1 The N-out-of-M Strategy

To reduce the completion time of the whole Monte
Carlo task, we may use the computational replication
technique discussed in previous sections by replicating
each subtasks. Nevertheless, when we studied the
statistical nature of generic Monte Carlo applications, we
found that we could take advantage of these
characteristics to develop a more efficient way to reduce
their task completion time on a computational grid.

When we are running Monte Carlo applications, what
we really care about is how many random samples
(random trajectories) we must generate to achieve a
certain, predetermined, accuracy. We do not much care
which random sample set is used, provided that all the
random samples are independent in a statistical sense.
The statistical nature of Monte Carlo applications allows
us to enlarge the actual size of the computation by
increasing the number of subtasks from N to M (M > N).
Each of these M subtasks uses its unique independent
random number set, and we submit M instead of N
subtasks to the grid system. Unlike the computational
replication technique we discussed in previous sections,
where all the replicated tasks are identical, in the N-out-
of-M strategy, each subtask works with a different
random number set. Therefore, M bags of computation
will be executed and M partial results may be eventually
generated. However, it is not necessary to wait for all M
subtasks to finish. When N partial results are ready, we
consider the whole Monte Carlo task as completed. The
application then collects the N partial results and
produces the final result. At this point, the grid-
computing system may broadcast abort signals to the
nodes that are still computing the remaining subtasks. We
call this scheduling strategy the N-out-of-M strategy. In

 5

the N-out-of-M strategy more subtasks than are needed
are actually scheduled, therefore, none of these subtasks
will become a “key” subtask and we can tolerate at most
M – N delayed or halted subtasks.

We model the N-out-of-M strategy based on a
binomial model in [11]. Assume that the probability of a
subtask completing by time t is given by p(t). p(t)
describes the aggregate probability over the pool of nodes
in the grid. Suppose there are S nodes total in the system,
and node i has service rate θi. At time t, the probability
that a Monte Carlo subtask will be done on node i is

. Since each node has equal probability to be
scheduled a subtask, p(t) can be represented as

tieθ−1

∑ ∑
= =

−=−=
S

i

S

i

tt ii e
S

e
S

tp
1 1

11)1(1)(θθ .

If θ1, θ2, …, θS conforms to a distribution with probability
density function φ(θ), p(t) can thus be written as

∫−=
L t de

S
tp

0

)(11)(θθφ .

Here L is the maximum value of θi in the computation.
Typically, if all of the nodes have the same service rate θ,
p(t) can be simplified to

tetp θ−=1)(.
Then, the probability that exactly N out of M subtasks are
complete at time t is given by

NMN
MofoutNExactly tptp

N
M

tP −
−−−− −×








=))(1()()(.

We can approximate PN-out-of-M(t) using a Poisson
distribution with λ=N*p(t). Then, Pexactly-N-out-of-M(t) can be
approximated as

λλ −
−−− ≈ e

M
tP

M

MofoutN !
)(.

The probability that at least N subtasks are complete is
thus given by

∑
=

−
−−− −×








=

M

Ni

iMi
MofoutN tptp

i
M

tP))(1()()(.

The old strategy can be thought of as “N-out-of-N” which
has probability given by

)()(tptP N
NofoutN =−−− .

Now the question is to decide on a reasonable value
for M to satisfy a required task completion probability α
(when N subtasks are complete on the grid).
Unfortunately, it is hard to explicitly represent M in an
analytical mode. However, we use a numerical method,
which gradually increases M by 1 to evaluate PN-out-of-M(t)
until the value of PN-out-of-M(t) is greater than α. This
empirically gives us the minimum value of M.

Also notice that the Monte Carlo computation using
the N-out-of-M strategy is reproducible, because we
know exactly which N out of M subtasks are actually

involved and which random number streams were used.
Thus each of these N subtasks can be reproduced later.
However, if we want to reproduce all of these N subtasks
at a later time on the computational grid system, the N-
out-of-N strategy must be used!

5.2 Simulation of the N-out-of-M Strategy

Again, we simulate the computational grid’s behavior
to validate our model of the N-out-of-M strategy. In this
simulation, we run a Monte Carlo task with 10 subtasks
on a 1,000 node computational grid. Figure 6 shows our
simulation results and model prediction of the N-out-of-M
strategy for grid Monte Carlo applications. Again, our
analytical model matches the simulation results quite
well. Also, we can find that with a proper choice of M (20
in the graph), the Monte Carlo task completion time can
be improved significantly over the N-out-of-N strategy.
However, if we enlarge M too much, the workload of the
system increases without significantly reducing the
Monte Carlo task completion time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800Time

M
on

te
 C

ar
lo

 T
as

ks
 C

om
pl

et
io

n
Pe

rc
en

ta
ge

10-out-of-20 Sim

10-out-of-20 Mod

10-out-of-50 Sim

10-out-of-50 Mod

10-out-of-10 Sim

10-out-of-10 Mod

Figure 6: The Comparison of Simulation and Model
Prediction of the N-out-of-M Scheduling Strategy for

Grid Monte Carlo Applications

6. Conclusions

In this paper, we discussed using the computational
replication technique to reduce a grid task’s completion
time and improve a computational grid system’s
throughput. We established an analytical model of
replicate scheduling and simulated the computational
grid’s behavior to validate it. Our model and simulation
results show that using an appropriate number of task

 6

replicas can significantly reduce the execution time of a
task in the computational grid with high probability. By
comparing the performance of dynamic rescheduling with
that of computational replication, we conclude that
computational replication is effective on a computational
grid with nodes having varying performance and slow
connections while dynamic rescheduling fits for cluster-
like grids with low task rescheduling costs. Also, we
extended the computational replication technique to an N-
out-of-M schedule strategy specifically for grid Monte
Carlo applications. Similarly, we found that properly
scheduling more subtasks to the grid system will reduce
the completion time of the Monte Carlo task effectively.

When we set up the model for replicate scheduling, we
did not consider the behavior of the interconnection
network. However, in an actual computational grid, the
network behavior may seriously affect the task
completion time. In our next phase of research, we will
improve our model by taking this networking factor into
consideration, i.e., considering the message-to-instruction
rate in a parallel system with an unbounded number of
processors [12]. We also compared the computational
replication and the dynamic rescheduling technique in
this paper. However, these two techniques can be used
together. In the future, we will investigate the
performance of such a combined techniques. Also, in the
N-out-of-M strategy for Monte Carlo applications
discussed in this paper, each subtask has the same size in
terms of random samples required. However, if
information on individual node performance is available,
an optimal decomposition into subtasks may require
creating subtasks of different sized based on the grid
node for execution. While migration under these
conditions is questionable, the investigation of the non-
uniform partitioning seems warranted in the future.

References

[1] I. Foster, C. Kesselman, and S. Tueske, “The

Anatomy of the Grid,” International Journal of
Supercomputer Applications, 15(3), 2001.

[2] C. L. Liu, “Deterministic Job Scheduling in

Computing System,” Modeling and Performance
Evaluation of Computer System, North-Holland
Publishing Company, 1976.

[3] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein,

“Scheduling To Minimize Average Completion
Time: Off-line and On-line Algorithms,”

Proceedings of the 7th ACM-SIAM Symposium on
Discrete Algorithm, pp. 142-151, 1996.

[4] C. Aktouf, O.Benkahla, C.Robach, and A. Guran,

“Basic Concepts & Advances in Fault-Tolerant
Computing Design,” World Scientific Publishing
Company, 1998.

[5] L. F. G. Sarmenta, “Sabotage-Tolerance Mechanisms

for Volunteer Computing Systems,” Proceedings of
ACM/IEEE International Symposium on Cluster
Computing and the Grid (CCGrid'01), Brisbane,
Australia, May, 2001.

[6] E. Korpela, D. Werthimer, D. Anderson, J. Cobb,

and M. Lebofsky, “SETI@home-Massively
distributed computing for SETI,” Computing in
Science and Engineering, v3n1, 81, 2001.

[7] K. Ranganathan, A. Iamnitchi, and I. Foster,

“Improving Data Availability through Dynamic
Model-Driven Replication in Large Peer-to-Peer
Communities,” Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and
the Grid, CCGRID 2002, 2002.

[8] A. Baratloo, M. Karaul, Z. Kedem, P. Wyckoff,

“Charlotte: Metacomputing on the Web,”
Proceedings of the 9th International Conference on
Parallel and Distributed Computing Systems, 1996.

[9] M. Litzkow, M. Livny, and M. Mutka, “Condor - A

Hunter of Idle Workstations,” Proceedings of the 8th
International Conference of Distributed Computing
Systems, pp. 104-111, 1988.

[10] Entropia website, http://www.entropia.com.

[11] Y. Li and M. Mascagni, “Grid-based Monte Carlo

Applications,” Lecture Notes in Computer Science,
2536: 13-24, Proceedings of the International
Workshop/Conference on Grid Computing,
GRID2002, Baltimore, 2002.

[12] C. H. Papadimitriou and M. Yannakakis, “Towards

an Architecture-Independent Analysis of Parallel
Algorithms,” SIAM Journal on Computing,
19(2):322-328, 1990.

[13] Condor website, http://www.cs.wisc.edu/condor.

 7

	Abstract
	1. Introduction
	2. Computational Replication
	3. Analytical Methods
	4. Simulation Results
	4.1 Model Validation
	4.2 Replicate Scheduling vs. Dynamic Rescheduling

	5. Computational Replication in Monte Carlo Applications
	5.1 The N-out-of-M Strategy
	5.2 Simulation of the N-out-of-M Strategy

	6. Conclusions
	References

