
 
 

Improving Performance via Computational Replication on a Large-Scale 
Computational Grid 

 
Yaohang Li and Michael Mascagni 

 
Department of Computer Science and School of Computational Science and Information Technology 

Florida State University 
Tallahassee, FL 32306-4530, USA 
{yaohanli, mascagni}@cs.fsu.edu 

 
 

Abstract 
 

High performance computing on a large-scale 
computational grid is complicated by the heterogeneous 
computational capabilities of each node, node 
unavailability, and unreliable network connectivity. 
Replicating computation on multiple nodes can 
significantly improve performance by reducing task 
completion time on a grid’s dynamic environment. We 
develop an analytical model to determine the number of 
task replicas to meet the performance goals in different 
computational grid configurations. Furthermore, taking 
advantage of the statistical nature of grid-based Monte 
Carlo applications, we extend the computational 
replication technique to an N-out-of-M scheduling 
strategy for grid-based Monte Carlo applications, which 
can potentially form a large category of grid-computing 
applications. In addition, we establish a corresponding 
model for the N-out-of-M scheduling mechanism. 
Simulations are used to validate the computational 
replication models. Our preliminary results show that the 
models we use are effective in predicting the required 
number of replicas to achieve short task completion time 
with a given high probability. 
 
1. Introduction 
 

Grid computing is characterized by large-scale sharing 
and cooperation of dynamically distributed resources, 
such as CPU cycles, communication bandwidth, and data, 
to constitute a computational environment [1]. A large-
scale computational grid can, in principle, offer a 
tremendous amount of low-cost computational power. 
This attracts many computationally intensive scientific 
applications. On the other hand, significant challenges 
also arise. Within a computational grid’s dynamic 

environment, the computational capabilities of each node 
vary greatly. As a result, a task running on different 
nodes on the grid will have a huge range of completion 
times. Also, due to unreliable network connections and 
the possible unavailability of a node, an executing task 
may be delayed or even halted at any time. Therefore, 
from the grid-application point of view, how quickly a 
computational grid can complete a group of submitted 
tasks from an application becomes an issue of prime 
importance.  

In this paper, we investigate a computational 
replication technique to develop an optimal scheduling 
mechanism to improve the throughput of a computational 
grid and reduce task completion time. This is different 
from the task-scheduling problem that has been discussed 
for many conventional parallel or distributed computing 
environments [2, 3], where there are a very limited 
number of nodes. In contrast, on a computational grid, the 
available computational service providers can essentially 
be treated as unlimited compared to the number of 
existing tasks. Therefore, we have more freedom to use 
these massive computational resources as trade-offs to 
achieve better task completion times. 

The remainder of this paper is organized as follows. In 
Section 2, we provide an approach to apply the 
computational replication technique to a computational 
grid. We establish the analytical model of our replicate 
scheduling mechanism and evaluate our model using 
simulation in Section 3 and Section 4, respectively. Using 
simulation, we also compare the performance of replicate 
scheduling with that of dynamic rescheduling under 
different grid configurations. Section 5 extends the 
computational replication technique to the N-out-of-M 
scheduling strategy for Monte Carlo applications. Finally, 
Section 6 summarizes our conclusions and future research 
directions.  
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2. Computational Replication 
 

Replication is a well-known technique for improving 
availability in an unreliable system. In fault-tolerant 
computing, replication is also a technique to overcome 
faults [4, 5]. The replication technique has already been 
favorably utilized in grid computing. In SETI@home [6], 
a majority voting mechanism1 is applied to check the 
correctness of a task. Ranganathan, Iamnitchi, and Foster 
discussed using dynamic model-driven replication to 
obtain high data availability in a large peer-to-peer 
community [7]. In this paper, we are interested in 
improving the performance of a computational grid by 
replicate scheduling of grid tasks.  

The basic idea of replicate scheduling in a 
computational grid is concurrently executing multiple 
copies of a given task. If multiple copies of a 
computational task are executed on independent nodes, 
then the chance that at least one copy is completed during 
a specific period of time increases. As a result, the time 
between submitting a task and obtaining a result is very 
probably reduced. Concurrent assignment of tasks to 
multiple nodes guarantees that a particular, very slow, 
machine will not slow the aggregate progress of a 
computation. Eventually, under the assumption of 
unlimited computational service providers available in the 
pool, the throughput of the computational grid will tend 
to increase with increasing numbers of computing 
replicas for each task.  

The implementation of computational replication on a 
computational grid is rather simple. Figure 1 shows the 
mechanism of replicate scheduling in a grid-computing 
environment. When the computational grid receives a 
task, r copies are replicated and scheduled to r different 
nodes. At that point in time, r copies of the task are 
concurrently running. Once an execution is complete and 
the corresponding result is obtained, the task is regarded 
as finished. Termination signals can be sent to the other 
nodes to abort their current running jobs. 

 

                                                 
1 Different nodes process the same copy of tasks independently and the 
final result is obtained by a majority vote of the distributed results 
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Figure 1: Replicate Scheduling in a Computational Grid 

 
Using the computational replication technique can 

prevent slow or unstable nodes from slowing down or 
halting a grid task with high probability, which could lead 
to a reduced completion time of this task. However, we 
do not wish to imply that the more replicas, the better. 
The execution of too many copies of a task may not 
contribute much to reducing completion time but may 
significantly increase the grid system’s workload. Such 
problems can be found in metacomputing prototype 
Charlotte [8] using its eager scheduling mechanism. 
Eager scheduling aggressively assigns and reassigns 
existing tasks to available nodes in the distributed-
computing system to keep all the nodes busy. 
Nevertheless, the following phenomenon may occur: 
there may be many copies of a task running on the system 
and occupying many computational resources. However, 
the later arriving tasks may not be able to find an 
available node, which will reduce the system throughput. 
In short, to determine what is a “reasonable” number of 
replicas becomes critical for the computational replication 
technique. We will establish a system model to probe for 
answers to this question in the next section. 
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3. Analytical Methods 
 

To determine the number of computing replicas to 
achieve a specific performance requirement, we need to 
consider some system parameters. In a computational 
grid, the completion time of a grid task depends on the 
performance of each individual node participating in the 
computation, the node failure rate, and also the network 
failure rate. We make the following assumptions to set up 
our model. 

1) The execution of a task completely occupies a 
node on the grid, and no other jobs can be 
executed on the same node concurrently. 

2) Compared to the execution time (usually from 
hours up to days), the tasks’ scheduling time and 
result collection time (usually in the range of 
seconds or minutes) is short enough to be 
ignored. 

3) Each node works on its task independently. 
4) Each node has an equal probability of obtaining a 

task from the schedule service. The tasks are 
scheduled without noticing the performance of 
each node. 

5) A task is architecture-independent. 
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Figure 2: Petri Net Modeling of Computation Replication 

in the Grid 
 

Figure 2 shows the Petri Net (PN) model of replicated 
tasks concurrently running on a computational grid. In 
this PN model, a node, i, alternates between an up state 
(place pi

up) and a down state (place pi
down). Transition 

ti
down represents node unavailability (with unavailability 

rate λ) and transition ti
up node back to service (with 

availability rate µ). Transition ti
complete is assigned the task 

progress threshold W (usually 100%) so that the task 
completion condition (token in ptask) is reached when W is 
hit.  

Let r   be the total number of computing replicas, 
 pi

sys  be the probability of node i participating in the 
computations is up, where , )/( λµµ +=sys

ip
 θI′ be the service rate of node i, which can be 

measured as the number of tasks that can be 
finished within a specific period of time without 
interruption. Considering the node availability, 
the service rate, θi, in node i is sys

i
ii p*′= θθ . 

Then, the service time distribution function Si(t), referring 
to the probability that the task completion time Ti is less 
than t, which conforms to an exponential distribution, can 
be represented as 

t

t

x
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The probability that a task can be completed by time t, 
which is the cumulative distribution function of the 
exponential distribution, is  

)(1)( tStp itaski
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computation, we are able to estimate a proper number of 
replicas, r. Suppose we want at least one task completion 
at time t with probability α, then, we need to have at least 
r copies of tasks running, where 


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θ
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4. Simulation Results 
 

In our simulation program, we simulated a 1,000-node 
computational grid. Nodes join and leave the system with 
a specified probability. Also, nodes have a variety of 
computational capabilities. Each simulation is run for 
1,000 time steps. (A task running on a node with service 
rate θ will take 1/θ time steps, e.g., a fast node with 
service rate 0.01 will take 100 time steps to complete the 
task while a slow one with service rate 0.001 will take 
1,000) At each time step, a certain number of nodes go 
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down while a certain number of nodes become available 
for computation. We built our simulations in order to 

1) evaluate the validity of our model, and to 
2) compare the computational replication technique 

with the dynamic rescheduling technique.  
 
4.1 Model Validation 
 

Our model computes the minimum number of replicas 
that are necessary to achieve a certain task completion 
probability at a specified time. At the same time, our 
model can also evaluate the task completion probability 
using the computational replication technique. In order to 
validate the accuracy of our model, we therefore fix the 
number of replicas and compare the actual task 
completion rate with the predicted probability of our 
model at different time steps. 
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Figure 3: Model Prediction versus Actual Behavior with 

Different Numbers of Replicas 
 
Figure 3 shows the comparison between the 

simulation results and the prediction from our analytical 
model. From the graph, we can see that the actual 
behavior matches our model prediction quite well. Also, 
we notice that with 1 task running, at least 600 time steps 
are required to obtain 90% task completion percentage, 
however, with 4 replicas, less than 200 time steps are 
required to obtain the same percentage. This indicates a 
significant task completion time reduction using the 
computational replication technique. However, we also 
found that even when we increase the number of current 
tasks to 20, we cannot significantly increase task 
performance. Therefore, with a proper number of 
replicas, we can achieve an optimal performance/cost 
ratio.  

4.2 Replicate Scheduling vs. Dynamic 
Rescheduling 
 

To prevent a slow node from delaying or halting the 
completion of a grid task, the dynamic rescheduling 
technique is another popular method used in existing 
computational grid systems like Condor [9, 13] and 
Entropia [10]. In dynamic rescheduling, the system keeps 
track of the execution of each task. When a task is halted, 
a checkpoint of the execution is then generated. Next, the 
schedule service will look for another available and 
appropriate node to reschedule the task. After the 
checkpoint data file is transferred to the new node, the 
task then continues to execute on the new node by 
recovering the execution process of the task. The 
dynamic rescheduling technique can keep the task 
running all the time but at the cost of additional system 
administration and rescheduling overhead involving task 
status monitoring, checkpointing, searching for available 
nodes, network transferring, task rescheduling, and 
execution recovering. 

We simulate the scheduling mechanism using the 
dynamic rescheduling technique. When a node running a 
task is down, the task is rescheduled to another available 
node. The rescheduling penalty is taken into 
consideration when task rescheduling occurs in the 
simulation. Figures 4 and 5 illustrate the task completion 
time comparison between replicate scheduling and 
dynamic rescheduling. The data in Figure 4 come from 
simulation on a computational grid comprised of nodes 
with similar performance characteristics. This can be a 
grid constructed from computers in a computer lab that 
have similar performance parameters and are connected 
by a high-speed network. The cost of task rescheduling is 
relatively low in such a situation. Our simulation results 
show that the dynamic rescheduling technique has a 
better task completion time than that of replicate 
scheduling when the node unavailability rate is high. 
When the node down rate is low, both techniques have a 
similar simulated performance. Figure 5 simulates a 
computational grid whose nodes have computational 
capabilities in a wide range. In practice, this grid can be a 
system with geographically widely distributed nodes like 
SETI@home [6]. In this grid system, a node might be a 
high-end supercomputer, or a low-end personal computer, 
or even just an intelligent widget. The connection among 
nodes is via a low-speed network, which carries a high 
task rescheduling cost. We notice that in our simulation 
results, replicate scheduling using an appropriate number 
of replicas has a better task completion time than that of 
the dynamic rescheduling technique. 
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Figure 4: Replicate Scheduling vs. Dynamic 
Rescheduling on a Computational Grid with Nodes 

Sharing Similar Performance Parameters 
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Figure 5: Replicate Scheduling vs. Dynamic 

Rescheduling on a Computational Grid with Nodes 
having a Wide Range of Computational Capabilities 

 
5. Computational Replication in Monte 
Carlo Applications 
 

Among grid applications, those using Monte Carlo 
methods, which are widely used in scientific computing 
and simulation, possess good characteristics for the grid-
computing environment. Many of these characteristics, 
such as the statistical nature of Monte Carlo methods and 
the cryptographic aspects of the underlying random 
number generators are discussed in [11]. Typically, this 

paper is interested applying the computational replication 
technique to grid Monte Carlo applications to improve 
their performance.  

In the typical execution of a Monte Carlo computation 
on a grid system, we split the entire computational task 
into N subtasks, with each subtask based on unique 
independent random number streams. We then schedule 
each subtask onto the nodes in the grid system. In this 
case, the assembly of the final result requires all of the N 
partial results generated from the N subtasks. In this 
situation, each subtask is a “key” subtask, since the 
suspension or delay of any one of these subtasks will 
have a direct effect on the completion time of the whole 
task. To address this issue, we can use the so-called N-
out-of-M subtask scheduling strategy specific for grid-
based Monte Carlo applications, which is an extension of 
the computational replication technique. 

 
5.1 The N-out-of-M Strategy 
 

To reduce the completion time of the whole Monte 
Carlo task, we may use the computational replication 
technique discussed in previous sections by replicating 
each subtasks. Nevertheless, when we studied the 
statistical nature of generic Monte Carlo applications, we 
found that we could take advantage of these 
characteristics to develop a more efficient way to reduce 
their task completion time on a computational grid. 

When we are running Monte Carlo applications, what 
we really care about is how many random samples 
(random trajectories) we must generate to achieve a 
certain, predetermined, accuracy. We do not much care 
which random sample set is used, provided that all the 
random samples are independent in a statistical sense. 
The statistical nature of Monte Carlo applications allows 
us to enlarge the actual size of the computation by 
increasing the number of subtasks from N to M (M > N). 
Each of these M subtasks uses its unique independent 
random number set, and we submit M instead of N 
subtasks to the grid system. Unlike the computational 
replication technique we discussed in previous sections, 
where all the replicated tasks are identical, in the N-out-
of-M strategy, each subtask works with a different 
random number set. Therefore, M bags of computation 
will be executed and M partial results may be eventually 
generated. However, it is not necessary to wait for all M 
subtasks to finish. When N partial results are ready, we 
consider the whole Monte Carlo task as completed. The 
application then collects the N partial results and 
produces the final result. At this point, the grid-
computing system may broadcast abort signals to the 
nodes that are still computing the remaining subtasks. We 
call this scheduling strategy the N-out-of-M strategy. In 

 5



the N-out-of-M strategy more subtasks than are needed 
are actually scheduled, therefore, none of these subtasks 
will become a “key” subtask and we can tolerate at most 
M – N delayed or halted subtasks. 

We model the N-out-of-M strategy based on a 
binomial model in [11]. Assume that the probability of a 
subtask completing by time t is given by p(t). p(t) 
describes the aggregate probability over the pool of nodes 
in the grid. Suppose there are S nodes total in the system, 
and node i has service rate θi. At time t, the probability 
that a Monte Carlo subtask will be done on node i is 

. Since each node has equal probability to be 
scheduled a subtask, p(t) can be represented as 

tieθ−1

∑ ∑
= =

−=−=
S
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i
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e
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If θ1, θ2, …, θS conforms to a distribution with probability 
density function φ(θ), p(t) can thus be written as 
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L t de

S
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Here L is the maximum value of θi in the computation. 
Typically, if all of the nodes have the same service rate θ, 
p(t) can be simplified to 

tetp θ−=1)( . 
Then, the probability that exactly N out of M subtasks are 
complete at time t is given by 
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We can approximate PN-out-of-M(t) using a Poisson 
distribution with λ=N*p(t). Then, Pexactly-N-out-of-M(t) can be 
approximated as 
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The probability that at least N subtasks are complete is 
thus given by 
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The old strategy can be thought of as “N-out-of-N” which 
has probability given by 

)()( tptP N
NofoutN =−−− . 

Now the question is to decide on a reasonable value 
for M to satisfy a required task completion probability α 
(when N subtasks are complete on the grid). 
Unfortunately, it is hard to explicitly represent M in an 
analytical mode. However, we use a numerical method, 
which gradually increases M by 1 to evaluate PN-out-of-M(t) 
until the value of PN-out-of-M(t) is greater than α. This 
empirically gives us the minimum value of M.  

Also notice that the Monte Carlo computation using 
the N-out-of-M strategy is reproducible, because we 
know exactly which N out of M subtasks are actually 

involved and which random number streams were used. 
Thus each of these N subtasks can be reproduced later. 
However, if we want to reproduce all of these N subtasks 
at a later time on the computational grid system, the N-
out-of-N strategy must be used! 

 
5.2 Simulation of the N-out-of-M Strategy 
 

Again, we simulate the computational grid’s behavior 
to validate our model of the N-out-of-M strategy. In this 
simulation, we run a Monte Carlo task with 10 subtasks 
on a 1,000 node computational grid. Figure 6 shows our 
simulation results and model prediction of the N-out-of-M 
strategy for grid Monte Carlo applications. Again, our 
analytical model matches the simulation results quite 
well. Also, we can find that with a proper choice of M (20 
in the graph), the Monte Carlo task completion time can 
be improved significantly over the N-out-of-N strategy. 
However, if we enlarge M too much, the workload of the 
system increases without significantly reducing the 
Monte Carlo task completion time.  
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Figure 6: The Comparison of Simulation and Model 
Prediction of the N-out-of-M Scheduling Strategy for 

Grid Monte Carlo Applications 
 

6. Conclusions 
 

In this paper, we discussed using the computational 
replication technique to reduce a grid task’s completion 
time and improve a computational grid system’s 
throughput. We established an analytical model of 
replicate scheduling and simulated the computational 
grid’s behavior to validate it. Our model and simulation 
results show that using an appropriate number of task 
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replicas can significantly reduce the execution time of a 
task in the computational grid with high probability. By 
comparing the performance of dynamic rescheduling with 
that of computational replication, we conclude that 
computational replication is effective on a computational 
grid with nodes having varying performance and slow 
connections while dynamic rescheduling fits for cluster-
like grids with low task rescheduling costs. Also, we 
extended the computational replication technique to an N-
out-of-M schedule strategy specifically for grid Monte 
Carlo applications. Similarly, we found that properly 
scheduling more subtasks to the grid system will reduce 
the completion time of the Monte Carlo task effectively. 

When we set up the model for replicate scheduling, we 
did not consider the behavior of the interconnection 
network. However, in an actual computational grid, the 
network behavior may seriously affect the task 
completion time. In our next phase of research, we will 
improve our model by taking this networking factor into 
consideration, i.e., considering the message-to-instruction 
rate in a parallel system with an unbounded number of 
processors [12]. We also compared the computational 
replication and the dynamic rescheduling technique in 
this paper. However, these two techniques can be used 
together. In the future, we will investigate the 
performance of such a combined techniques. Also, in the 
N-out-of-M strategy for Monte Carlo applications 
discussed in this paper, each subtask has the same size in 
terms of random samples required. However, if 
information on individual node performance is available, 
an optimal decomposition into subtasks may require 
creating subtasks of different sized based on the grid 
node for execution. While migration under these 
conditions is questionable, the investigation of the non-
uniform partitioning seems warranted in the future. 
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