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Abstract 

 
In the hybrid Molecular Dynamics (MD)/Brownian 

Dynamics (BD) algorithm for simulating the long-time, 
nonequilibrium dynamics of receptor-ligand interactions, 
the evaluation of the force autocorrelation function can 
be computationally costly but fortunately is highly 
amenable to multimode processing methods. In this 
paper, taking advantage of the computational grid’s 
large-scale computational resources and the nice 
characteristics of grid-based Monte Carlo applications, 
we developed a grid-based receptor-ligand interactions 
simulation application using the MD/BD algorithm. We 
expect to provide high-performance and trustworthy 
computing for analyzing long-time dynamics of proteins 
and protein-protein interaction to predict and understand 
cell signaling processes and small molecule drug 
efficacies. Our preliminary results showed that our grid-
based application could provide a faster and more 
accurate computation for the force autocorrelation 
function in our MD/BD simulation than previous parallel 
implementations. 

 

1. Introduction 
Prediction of the long-time, nonequilibrium dynamics 

of receptor-ligand interactions for structured proteins in a 
host fluid is of critical importance to the understanding of 
infectious diseases, immunology, the development of 
“target” drugs, and biological separations. However, such 
processes take place on time scales on the order of 
milliseconds to seconds, which prevents the “brute-force” 
real-time molecular or atomic simulations from 
determining the absolute ligand binding rates to receptor 
targets. In a previous study [1], we implemented a hybrid 
Molecular Dynamics (MD)/Brownian Dynamics (BD) 

algorithm which utilizes the underlying, disparate time 
scales involved and overcomes the limitations of brute-
force approaches. Single and isolated proteins, protein 
with charge effects, and D-peptide/HIV capsid protein 
systems were investigated using the hybrid MD/BD 
algorithm [1].  

Within the hybrid MD/BD algorithm, the calculation of 
the force autocorrelation function to generate the grand 
particle friction tensor forms the basis of the most 
computationally costly part, which requires large amount 
of CPU cycles. Even on an advanced supercomputer, this 
computation takes from days to months and thus becomes 
the performance bottleneck of the MD/BD simulation. 
Fortunately, this part of the computation uses Monte 
Carlo methods, which is computationally intensive but 
naturally parallel. It is very amenable to the emerging 
grid-computing environment, characterized by “large-
scale sharing and cooperation of dynamically distributed 
resources, such as CPU cycles, communication 
bandwidth, and data, to constitute a computational 
environment” [2]. A large-scale computational grid can, 
in principle, offer a tremendous amount of low-cost 
computational power, which attracts us to utilize the 
computational grid for our MD/BD application. On the 
other hand, our previous studies in grid-based Monte 
Carlo applications [3, 4] showed that Monte Carlo’s 
statistical nature could be applied to improve the 
performance and enforce the trustworthiness of grid 
computing at the application level. This paper will study 
the development of the grid-based nonequilibrium, 
multiple-time scale simulation application of ligand-
receptor interactions. We take advantage of the services 
of a computational grid and the characteristics of grid-
based Monte Carlo applications to provide high-
performance and trustworthy computation for predicting 
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and understanding the dynamics of structured protein 
systems. 

The remainder of this paper is organized as follows. In 
Section 2, we review the general hybrid MD/BD 
algorithm, its implementation, and specifically, the 
computation of the force autocorrelation functions. We 
discuss the implementation of a grid-based MD/BD 
simulation and present our preliminary results in Section 
3 and Section 4, respectively. Finally, Section 5 
summarizes our conclusions and future research 
directions. 
 

2. Hybrid Molecular Dynamics (MD) / 
Brownian Dynamics (BD) Algorithm 

2.1 Introduction to Hybrid MD/BD Algorithm 
In previous study [5] of the behavior of the many-

bodied friction tensor for particles immersed in a rarefied, 
“free-molecule” gas, a molecular dynamics method was 
used. It was noted that the molecular dynamics method 
could be used to study the long-time behavior of 
Brownian particles by a two-step procedure. This 
procedure is illustrated as following: 
1) For a given particle configuration, the many-body 

friction tensor is determined from MD through the 
analysis of the force autocorrelation function. In this 
step, the particle coordinates are kept fixed according 
to the fluctuation-dissipation type relation that gives 
the (time-independent) friction tensor in terms of the 
force autocorrelation function. 

2) The Fokker-Planck (FP) equation, which describes the 
dynamics of a single structured Brownian particle in a 
molecular fluid, is solved for discrete times assuming 
that the friction tensor remains constant over the time 
step. The particles are advanced to new positions 
according to the integrated FP equation. 

The entire process, MD followed by BD is repeated. 
MD is only performed at the beginning of each BD time 
step. This MD/BD algorithm is based on a multiple time 
scales analysis of the total system Hamiltonian, including 
all atomic molecular structure information for the system: 
water, ligand, and receptor. The results allow the study of 
the long-time dynamics of macromolecules in complex 
systems where complete molecular details of the 
macromolecule, surface, and solvent can be incorporated. 
The theoretical background and a detailed review of the 
hybrid MD/BD algorithm can be found in [5, 6, 7, 8]. 

2.2 Hybrid MD/BD Algorithm Implementation 
The hybrid MD/BD algorithm was implemented in [9] 

to study the D-peptide/HIV system. The general 
computational MD/BD algorithm is shown in Figure 1 

[1]. The computational scheme begins by reading a 
standard PDB file from the protein data bank for both 
ligand and receptor. This file is then converted to a 
“topology” file that includes computationally critical 
information on atomic mass, residue charge, and 
Lennard-Jones interaction force constants. Next, the 
ligand and receptor must be hydrated using SOLVATE 
[10], which is using a Monte Carlo method. For the 
molecular model of water, the so-called modified Simple 
Point Charge (SPC) model [11] with long-range 
electrostatic inter-atomic interactions accounted for by a 
modified Poisson-Bolzmann reaction field method, which 
using an acceptance-rejection Monte Carlo approach. The 
center of mass and body fixed axes along the principal 
axes of inertia for the ligand are initially computed. This 
sets the body-fixed coordinates and initial Euler angles, 
the latter of which give the orientation of the body 
relative to the space fixed frame. MD is then used to 
determine the particle grand friction tensor. The grand 
friction tensor is numerically inverted to obtain the grand 
diffusion tensor. The grand diffusion tensor is then 
utilized to perform the BD move on a time step of around 
10-5 seconds. The macromolecule position and orientation 
change by only a couple of percent or less over this time 
period. The new atomic positions are updated based on 
the BD move and the entire process, viz., MD followed 
by BD is repeated. 

PDB Files

Read s tandard PDB f iles  f or
ligand and rec eptor

Create "Topology " f ile f rom PDB f ile
(mas s , c harge, f orc e c ons tants ) Topology

f ile

Determine pr inc ipal ax es  of  ligand and
initial Euler  angles

Hy drate ligand-rec eptor us ing Monte
Car lo method

A s s ign mas s  and c harge to w ater

Perf orm equilibr ium, c anonic al
ens emble MD to get the grand

f r ic tiontens or f or ligand

Numeric ally  inv ert the grand f r ic tion
tens or to obtain the grand dif f us ion

tens or

Perf orm BD to get new  ligand pos ition
and or ientation

 
Figure 1: Flowchart of Hybrid MD/BD Algorithm 
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2.3 The Force Autocorrelation Function 
The force autocorrelation function can be obtained by 

conducting standard canonical, equilibrium molecular 
dynamics simulations. The particle was considered to be 
composed of a large number of molecules each 
interacting with the fluid molecules according to a 
Lennard-Jones potential [7]. Suppose the Brownian 
particle is composed of M molecules and the fluid 
consists of N molecules. The computation of the force 
autocorrelation function is O(N2 + M*N) at every time 
step, which is very computational costly. 

A confidence interval in the autocorrelation values, CI 
is obtained from the Tchebycheff inequality as 

 
2

2
1

ε
σ

rn
CI −= , 

where ε is the error in the autocorrelation, σ2 is the 
variance, and nr is the number of repeats (ensembles). 
The error is proportional to the reciprocal square root of 
the number of repeats nr, i.e., 
 . 2/1/1~ rnε
Thus with increasing number of repeats, the error in the 
autocorrelation is reduced. Our results show that at least 
20 ensembles are minimally necessary and more would 
be desirable for more accurate results.  
 

 
Figure 2: the xx-component of the force autocorrelation 

function in one standard deviation for a D-peptide 
 
Figure 2 shows the xx-component of the force 

autocorrelation function for a D-peptide in 1 standard 
deviation with 40 ensembles. Our experiment of the 
computation in Figure 2 is implemented using MPI. The 
computation simulates the D-peptide with 372 molecules 
in the system with around 10,000 water molecules 
running in 60,000 time steps. The experiment took almost 
8 days on a DEC Alpha DS10 6/466 with 256 DRAM 
with 4 processors for a single step of MD simulation and 
more than a month on a serial DEC Alpha DS10. We can 
expect longer time consumption for a particle with more 

molecules or system with more host fluid molecules. The 
high computational cost of evaluating of the force 
autocorrelation function constrains us to perform more 
steps of MD/BD simulation to study the behavior of the 
particles and particle interactions. More importantly, 
since the friction tensor in BD is the integral of the force 
autocorrelation, the inaccuracy in MD may mislead the 
computation of BD. The error can even be propagated in 
further MD/BD simulation. 

Deeper study of the MD part of the algorithm shows 
that the force autocorrelation function is particularly 
amenable to multiprocessor systems [1]. In parallel MD 
simulation, each node can represent one member (3,000 
time steps) of the ensemble allowing hundreds and 
thousands of ensembles to be included. More importantly, 
once scheduled, each ensemble’s computation is based on 
its own fluid configuration, which is independent with no 
intercommunication needed. Also, each execution time 
costs a few hours or less depending on each processor 
speed. This property of autocorrelation computation 
motivates us to take advantage of the tremendously large 
and low-cost computational power in a computational 
grid for our MD/BD dynamics simulation for structured 
protein system. 

 

3. Implementation of Grid-based MD/BD 
Simulation 

3.1 Application Overview 
To develop a grid-based hybrid MD/BD simulation 

application, we need to utilize the grid services. First of 
all, the task split service is used to define the data set and 
initial conditions for each ensemble computation, e.g., the 
ligand and receptor configurations, the host fluid 
configuration, the Lennard-Jones constants, and the 
parameters for random number stream. Each ensemble 
computation’s data and program are packed into a grid 
subtask. Secondly, the task schedule service is used to 
distribute these subtasks to individual computational 
service providers. During the execution of the subtask, 
storage service is used to store the checkpointing data, 
intermediate results, and subtask results. Thirdly, when 
the partial results are ready, the collection service is 
responsible of gathering them all and validating each 
partial result. Finally, based on the computational results 
of all ensembles, we can assemble the estimation of the 
force autocorrelation function and estimate the statistical 
error. After the MD simulation using the grid 
environment, the BD simulation follows and updates the 
new atomic position in the particle. The above process 
can be repeated for next BD moves. 

An implicit requirement of the grid-based hybrid 
MD/BD simulation application is that the underlying 
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random number streams in each subtask must be 
independent in a statistical sense to avoid correlation. The 
SPRNG (Scalable Parallel Random Number Generators) 
library [12] was designed to use parameterized 
pseudorandom number generators to provide independent 
random number streams to parallel processes. Some 
generators in SPRNG can generate up to 1278000 −  
independent random number streams with sufficient long 
period and good quality [13], which can meet this 
requirement. 

 

Task Split Service

Computational
Service

Schedule Service

Computational
Service

Computational
Service

Computational
Service

Storage Service

Collection Service

Storage ServiceStorage ServiceStorage Service

Ensembles

Distribute Ensembles
Computation

Collect Partial
Results

M D
initialization

Compute Grand Particle
Friction Tensor

BD Simulation

 
Figure 3: Working Paradigm of Grid-based MD/BD 

Simulation on Structured Protein System 
 
Figure 3 shows the working paradigm of the grid-

based hybrid MD/BD simulation application. 
Furthermore, the MD part of the computation is a typical 
grid-based Monte Carlo computation, which exhibits nice 
characteristics that can be used to improve the 
application’s performance and trustworthiness in the grid 
[3]. We can take advantage of these properties to 
optimize the MD computation. 

3.2 Subtasks Scheduling 
In the grid-computing environment, a node that is 

assigned an ensemble of the force autocorrelation 
function might be a high-end supercomputer, or a low-
end personal computer, even just an intelligent widget. 

Also, this node can be a very busy node, or an always-
idle node. Therefore, one delayed ensemble computations 
on a slow node might delay the whole MD simulation. 
More seriously, one halted ensemble computation may 
present the MD simulation from completing. 

 
Schedule Ensemble

Tasks

Collect Ensemble
Results and
Validation

Distribute M
Ensembles
Computation

N Partial
Results

Grand Paricle
Friction Tensor

 
Figure 4: N-out-of-M Scheduling Strategy in MD 

Simulation 
 

Fortunately, carefully studying the statistical nature of 
the MD simulation using Monte Carlo method, we find 
that the MD simulation does not care which host fluid 
configuration (based on the underlying random sample 
set) is estimated provided that all random samples are 
independent in a statistical sense. However, the MD 
simulation cares how many ensembles computation that 
must obtain to achieve certain accuracy. This enables us 
to use the N-out-of-M scheduling strategy [3] to enhance 
the application performance. Suppose we need N 
ensembles. In our MD simulation, we enlarge the 
ensemble computations from N to M, where M > N and 
actually schedule M subtasks to the grid. When N partial 
results are ready, we have enough ensembles computation 
results to generate the grand particle friction tensor. The 
N-out-of-M strategy can tolerate M – N delayed or halted 
subtasks in MD simulation. Figure 4 shows the diagram 
of the N-out-of-M scheduling strategy in MD simulation. 
More analysis of this N-out-of-M scheduling strategy and 
determining the values of M and N can be found in [14]. 

3.3 Checkpointing in MD Simulation 
In the grid-computing environment, a node is 

probably not dedicated to the computation of ensembles 
in the MD simulation. It may go down or become 
inaccessible, causing interruption in the execution of MD 
simulation. Therefore, checkpointing is necessary to save 
the previous work for further recovery. Considering the 
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process-level checkpointing is costly and platform-
dependent, we implement the application-level 
checkpointing in the MD simulation with checkpoint and 
recover subroutines. 

Since at each time step in the MD simulation, the 
positions of the atoms in the structured proteins remain 
the same, the only changing data are the configuration of 
the host fluid, such as the atoms’ locations and velocities. 
Thus, the checkpointing data that the subroutine needs to 
save are the configuration of the host fluid, the current 
time step, and the force autocorrelation function values in 
previous time steps. The checkpointing data are stored 
into a checkpointing file. Based on the checkpointing 
data, the recover subroutine can easily restore the 
interrupted computation. Compared with the process-
level checkpointing, this application-level checkpointing 
is cheap and can be easily migrated to other nodes in the 
grid to continue the computation. 

3.4 Partial Result Validation 
In our hybrid MD/BD algorithm, the generation of the 

particle grand friction tensor depends on the integration 
of the force autocorrelation function, which is based on 
all the ensembles computed in the grid. A single 
erroneous result in an ensemble will lead to an error in 
later BD simulation. In a computational grid, a node 
providing computational service is potentially insecure 
and thus may probably be untrustable. Validation 
mechanism should be applied to enforce the 
trustworthiness of the MD simulation performed in the 
grid. 

A partial result validation method for point solution is 
provided in [3, 4]. This method can be extended and used 
in our grid-based MD/BD simulation application to 
validate the force autocorrelation function curve from 
each ensemble. Based on the force autocorrelation 
function values at every time step, we calculate its mean, 
standard deviation, and then the confidence interval. The 
upper bound endpoints of all these confidence intervals at 
different time steps construct an upper bound curve and 
the lower bound endpoints construct a lower bound one. 
If a force autocorrelation function curve from an 
ensemble lies in the area between the upper bound and 
lower bound curves, we consider the partial result of this 
ensemble computation is trustworthy; otherwise, it is 
suspicious and we may need to rerun this particular 
subtask for further verification. 
 
4. Preliminary Results  

We performed our experiments on Condor system 
[15,16]. Figure 5 shows our preliminary results of grid-
based MD/BD simulation using GCondor with 40 nodes 
each carrying the computation of 10 ensembles. The 

SPRNG [12] library is used to provide parallel random 
number streams. The D-peptide data in this experiment is 
the same as the one in Figure 2. Using the N-out-of-M 
subtasks scheduling strategy, this computation took 
around 8 days when we obtained 400 ensembles 
computational results of the force autocorrelation 
function (by scattering the 400 ensembles to more nodes 
in the grid, we can expect less completion time). We can 
find that the xx-component of the force autocorrelation 
function has a much smaller error bound than the one in 
Figure 2. More specifically, Table 1 shows the statistical 
error bound estimations of xx-component of the force 
autocorrelation function with 90% confidence in this 
experiment. We notice that statistical error decreases 
while increasing the number of ensembles. The 
computations of other components of the force 
autocorrelation function have the similar effects. 

 

 
Figure 5: the xx-component of the force autocorrelation 

function in one standard deviation for a D-peptide on 
Condor with 400 ensembles  

 
# of Ensembles Std Deviation Error Bound 
10 4.10 12.97 
100 1.39 4.40 
200 0.943 2.97 
400 0.671 2.11 

Table 1: the error of xx-component of the force 
autocorrelation function with 90% confidence. The error 

decreases with increasing number of ensembles. 
 

Figure 6 shows the partial result validation mechanism 
in our grid-based MD/BD simulation. We can find that all 
of the force autocorrelation function curves obtained 
from different nodes in the computational grid lie in the 
area of the upper bound and lower bound curves, which 
we regard them as trustworthy computations. 
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Figure 6: Partial result validation of xx-component of the 

force autocorrelation function. Each curve lies in the 
error bounds of 3σ. 

 

5. Conclusions 
In this paper, we discussed utilizing the power of the 

computational grid to implement a grid-based hybrid 
MD/BD simulation application to study ligand-receptor 
interactions. The most computationally costly part of the 
MD simulation, the evaluation of the force 
autocorrelation function, is computed in the grid-
computing environment. Also, we took advantage of the 
characteristics of MD algorithm that uses Monte Carlo 
method to improve the task completion time and 
trustworthiness of the MD/BD simulation. Our 
preliminary results show a significant performance and 
accuracy improvement of the simulation results compared 
with the previous parallel implementation. 

The current implementation of the grid-based hybrid 
MD/BD simulation uses the facilities and services of 
Condor. In the future, to address the portability and 
security issues, we plan to adopt the Globus Toolkit [17] 
in our implementation, which can provide uniform and 
authorized access to grid resources and security facilities 
for grid applications. Since we now have a more powerful 
computational application to study receptor-ligand 
interactions, we also plan to study more structured protein 
systems in order to predict and analyze cell signaling 
processes and small molecule drug efficacies. More 
aggressively, we expect to develop a “plug-drug” system 
based on our MD/BD simulation with the purpose of 
searching for good drug candidates in the long run. 
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