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Abstract. This paper presents a parallel quasi-Monte Carlo method
for solving general sparse systems of linear algebraic equations. In our
parallel implementation we use disjoint contiguous blocks of quasiran-
dom numbers extracted from a given quasirandom sequence for each
processor. In this case, the increased speed does not come at the cost
of less thrust-worthy answers. Similar results have been reported in the
quasi-Monte Carlo literature for parallel versions of computing extremal
eigenvalues [8] and integrals [9]. But the problem considered here is
more complicated - our algorithm not only uses an s−dimensional
quasirandom sequence, but also its k−dimensional projections (k =
1, 2, . . . , s − 1) onto the coordinate axes. We also present numerical
results. In these test examples of matrix equations, the martrices are
sparse, randomly generated with condition numbers less than 100, so
that each corresponding Neumann series is rapidly convergent. Thus we
use quasirandom sequences with dimension less than 10.

1 Introduction

The need to solve systems of linear algebraic equations arises frequently in
scientific and engineering applications, with the solution being useful either
by itself or as an intermediate step in solving a larger problem. In practical
problems, the order, n, may in many cases be large (100 - 1000) or very large
(many tens or hundreds of thousands). The cost of a numerical procedure is
clearly an important consideration — so too is the accuracy of the method.

Let us consider a system of linear algebraic equations

Ax = b, (1)
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where A = {aij}n
i,j=1 ∈ IRn×n is a given matrix, and b = (b1, . . . , bn)t ∈ IRn is

a given vector. It is well known (see, for example, [3, 6]) that the solution, x,
x ∈ Rn, when it exists, can be found using

– direct methods, such as Gaussian elimination, and LU and Cholesky
decomposition, taking O(n3) time;

– stationary iterative methods, such as the Jacobi, Gauss- Seidel, and various
relaxation techniques, which reduce the system to the form

x = Lx+ f, (2)

and then apply iterations as follows

x(0) = f, x(k) = Lx(k−1) + f, , k = 1, 2, . . . (3)

until desired accuracy is achieved; this takes O(n2) time per iteration.
– Monte Carlo methods (MC) use independent random walks to give an

approximation to the truncated sum (3)

x(l) =
l∑

k=0

Lkf,

taking time O(n) (to find n components of the solution) per random step.

Keeing in mind that the convergence rate of MC is O(N−1/2), where N is
the number of random walks, millions of random steps are typically needed
to achieve acceptible accuracy. The description of the MC method used for
linear systems can be found in [1], [5], [10]. Different improvements have been
proposed, for example, including sequential MC techniques [6], resolvent-based
MC methods [4], etc., and have been successfully implemented to reduce the
number of random steps. In this paper we study the quasi-Monte Carlo (QMC)
approach to solve linear systems with an emphasis on the parallel implementation
of the corresponding algorithm. The use of quasirandom sequences improves the
accuracy of the method and preserves its traditionally good parallel efficiency.

The paper is organized as follows: §2 gives the background - MC for linear
systems and a brief description of the quasirandom sequences we use. §3 describes
parallel strategies, §4 presents some numerical results and §5 presents conclusions
and ideas for future work.

2 Background

2.1 Monte Carlo for linear systems - very briefly

We can solve problem (1) in the form (2) with the scheme (3) if the eigenvalues
of L lie within the unit circle, [3]. Then the approximate solution is the truncated
Neumann series:
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x(k) = f + Lf + L2f + . . .+ L(k−1)f + Lkf, k > 0 (4)

with a truncation error of x(k) − x = Lk(f − x).
We consider the MC numerical algorithm and its parallel realization for the
following two problems:

(a) Evaluating the inner product

J(h) = (h, x) =
n∑

i=1

hixi (5)

of the unknown solution x ∈ IRn of the linear algebraic system (2) and a
given vector h = (h1, . . . , hn)t ∈ IRn.

(b) Finding one or more components of the solution vector. This is a special
case of (a) with the vector h chosen to be h = e(r) = (0, ..., 0, 1, 0, ..., 0) where
the one is on the r-th place if we want to compute the r-th component.

To solve this problem via a MC method (MCM) (see, for example, [10]) one has
to construct a random process with mean equal to the solution of the desired
problem. Consider a Markov chain with n states:

k0 → k1 → . . .→ ki → . . . , (6)

with kj = 1, 2, . . . , n, for j = 1, 2, . . ., and rules for constructing: P (k0 = α) =
pα, P (kj = β|kj−1 = α) = pαβ where pα is the probability that the chain
starts in state α and pαβ is the transition probability from state α to state β .
Probabilities pαβ define a transition matrix P . The normalizing conditions are:∑n

α=1 pα = 1 ,
∑n

β=1 pαβ = 1 for any α = 1, 2, ..., n,, with pα ≥ 0, pα > 0 if
h(α) 	= 0, pαβ ≥ 0, pαβ > 0 if aαβ 	= 0. Define the weights on this Markov chain:

Wj =
ak0k1ak1k2 . . . akj−1kj

pk0k1pk1k2 . . . akj−1kj

(7)

or using the requrence Wj =Wj−1
akj−1kj

pkj−1kj
, W0 = 1.

The following random variable defined on the above described Markov chain

Θ =
h(k0)
pk0

∞∑
j=1

Wjf(kj) (8)

has the property
E[Θ] = (h, f),

To compute E[Θ] we simulate N random walks (6), for each walk we compute
the random variable Θ, (8), whose value on the sth walk is [Θ]s, and take the
averaged value:

E[Θ] ≈ 1
N

N∑
s=1

[Θ]s.

Each random walk is finite - we use a suitable stoping criterion to terminate the
chain.
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2.2 Quasirandom sequences

Consider an s-dimensional quasirandom sequence with elements Xi = (x(1)
i , x

(2)
i ,

. . . , x
(s)
i ), i = 1, 2, . . ., and a measure of its deviation from uniformity, the Star

discrepancy:

D∗
N = D∗

N(x1, . . . , xN ) = sup
E⊂Us

∣∣∣∣#{xn ∈ E}
N

−m(E)
∣∣∣∣ ,

where Us = [0, 1)s. We are using the Soból, Halton and Faure sequences,
which can be very briefly defined as follows.

Let the representation of n , a natural number, in base b be

n = . . . a3(n)a2(n)a1(n), n > 0, n ∈ IR.

Then a one-dimensional quasirandom number sequence (the Van der Corput
sequence) is defined as a radical inverse sequence

φb(n) =
∞∑

i=0

ai+1(n)b−(i+1), where n =
∞∑

i=0

ai+1(n)bi,

and has star descrepancy D∗
N = O

(
logN

N

)
.

In our tests, we use the following multidimensional quasirandom number
sequences:

Halton sequence:

Xn = (φb1(n), φb2 (n), . . . , φbs(n)), where the bases bi are pairwise relatively prime.

Faure sequence:

x(k)
n =

{∑∞
i=0 ai+1(n)q−(i+1), k = 1∑∞
j=0 cj+1q

−(j+1), k ≥ 2
,

where

cj =


∑

i≥j

(k − 1)i−j i!
(i− j)!j!ai(n)


 (mod q),

where

j ≥ 1, q is a prime(q ≥ s ≥ 2).
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Soból sequence: Xk ∈ σi
(k), k = 0, 1, 2, . . ., where σi

(k), i ≥ 1 - set of
permutations on every 2k, k = 0, 1, 2, . . . subsequent points of the Van der
Corput sequence,

or in binary:
x(k)

n =
⊕
i≥0

ai+1(n)vi,

where vi, i = 1, . . . , s is a set of direction numbers.

For the Halton, Faure, Soból sequences we have

D∗
N = O

(
logsN

N

)
.

2.3 Convergence of the quasi-Monte Carlo Method

The MCM for computing the scalar product (h, x) consists of simulating N
random walks (6), computing the value of the random variable Θ, (8), for each
walk, and then average these values. In quasi-Monte Carlo we generate walks that
are in fact not random, but have in some sense better distribution properties in
the space of all walks on the matrix elements. The main difference in generating
random and quasi-random walks is that we use l single pseudorandom numbers
(PRNs) for a random walk of length l, but we use an l-dimensional sequence for
the quasirandom walks of length l.
Computing the scalar product, hTAi, f is equivalent to computing an (i + 1)-
dimensional integral, and we analyze it with bounds from numerical integration
[8]. We do not know Ai explicitly, but we do know A, and we use quasirandom
walks on the elements of the matrix to compute approximately hTAif . Using
an (i+1)-dimensional quasirandom sequence, for N walks, [k0, k1, . . . , ki]s , s =
1, . . . , N we obtain the following error bound [8]:∣∣∣∣∣hTAif − 1

N

N∑
s=1

[
gk0

pk0

Wifki

]
s

∣∣∣∣∣ ≤ C1(A, h, f)D∗
N ,

where Wi is defined in (7), and [z]s is the value of z on the s-th walk.
This gives us ∣∣∣(h, x) − (h, x(k))

∣∣∣ ≤ C2(A, h, f) kD∗
N .

Here D∗
N has order O((logkN)/N). Remember that the order of the mean square

error for the analogous Monte Carlo method is O(N−1/2). Figures 1 and 2
illustrate the accuracy versus the number of walks for computing the scalar
product (h, x) (h is a given vector with 1 and 0, randomly chosen, and x is the
solution of a system with 2000 equations), and for computing one component of
the solution of a system with 1024 equations.
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Fig. 1. Accuracy versus number of walks for computing (h, x), where x is the solution
of a system with 2000 equations.[labelfig1
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Fig. 2. Accuracy versus number of walks for computing one component, x64, of the
solution for a system with 1024 equations.
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3 Parallel strategies

A well known advantage of the MCM is the efficiency by which it can be
parallelized. Different processors generate independent random walks, and obtain
their own MC estimates. These “individual” MC estimates are then combined to
produce the final MC estimate. Such a scheme gives linear speed-up. However,
certain variance reduction techniques usually require periodic communication
between the processors; this results in more accurate estimates, at the expense
of a loss in parallel efficiency. In our implementation this does not happen as
we consider preparing the transition probabilities matrix as a preprocessing
computation - which makes sense when we plan to solve the same system many
times with different rigth-hand side vectors f .

In our parallel implementations we use disjoint contiguous blocks of quasirandom
numbers extracted from a given quasirandom sequence for respective processors,
[9]. In this case, the increased speed does not come at the cost of less thrust-
worthy answers. We have previously used this parallelization technique for the
eigenvalue problem, [8], but the current problem is more complicated. In the
eigenvalue problem we need to compute only hTAkh using a k−dimensional
quasirandom sequence, while here we must compute

∑s
i=1 h

TAif using an s-
dimensional sequence and its k-dimensional projections for k = 1, 2, . . . , s.

We solved linear systems with general very sparse matrices stored in “sparse
row-wise format”. This scheme requires 1 real and 2 integer arrays per matrix
and has proved to be very convenient for several important operations such as
the addition, multiplication, transposition and permutation of sparse matrices.
It is also suitable for deterministic, direct and iterative, solution methods. This
scheme permits us to store the entire matrix on each processor, and thus, each
processor can generate the random walks independently of the other processors.

4 Numerical examples

We performed parallel computations to empirically examine the parallel
efficiency of the quasi-MCM. The parallel numerical tests were performed on
a Compaq Alpha parallel cluster with 8 DS10 processors each running at 466
megahertz and using MPI to provide the parallel calls.

We have carried out two types of numerical experiments. First, we considered
the case when one only component of the solution vector is desired. In this
case each processor generates N/p independent walks. At the end, the host
processor collects the results of all realizations and computes the desired value.
The computational time does not include the time for the initial loading of
the matrix because we imagine our problem as a part of larger problem (for
example, solving the same matrix equation for diffrent right-hand-side vectors)
and assume that every processor independently obtains the matrix. Second, we
consider computing the inner product (h, x), where h is a given vector, and x is
the unknown solution vector.
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Fig. 3. Speedup when solving linear system with 1024 and 2000 equations using PRNs,
Halton, Soból and Faure sequences.
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During a single random step we use an l-dimensional point of the chosen
quasirandom sequence and its k-dimensional projections (k = 1, . . . , l − 1) onto
the coordinate axes. Thus we compute all iterations of hTAkf (1 ≤ k ≤ l) using
a single l-dimensional quasirandom sequence. The number of iterations needed
can be determined using suitable stoping criterion: for example, checking how
“close” two consecuent iterations hTAk−1f and hTAkf are, or by using a fixed
number, l, on the basis of a priori analysis of the Neumann series convergence.
In our numerical tests we use a fixed l - we have a random number of iterations
per random step but the first l iterations (which are the most important) are
quasirandom, and the rest are pseudorandom.

In all cases the test matrices are sparse and are stored in “sparse row-wise-
format”. We show the results for two matrix equations at size 1024 and 2000.
The average number of non-zero elements per matrix row is d = 57 for n = 1024
and d = 56 for n = 2000. For illustration, we present the results for finding one
component of the solution using PRNs and Halton, Soból and Faure quasirandom
sequences. The computed value, the run times and speedup are given in Tables
1 and 2. The use of quasirandom sequences (all kinds) improves the convergence
rate of the method. For example, the exact value of the 54th component of the
solution of a linear system with 2000 equations is 1.000, while we computed
1.0000008 (using Halton), 0.999997 (using Sobo/’l), 0.999993 (using Faure),
while the average computed value using PRNs is 0.999950. This means that
the error using the Halton sequence is 250 times smaller than the error using
PRNs (Soból gives an error 17 times less). Moreover, the quasi-MC realization
with Halton gives the smallest runing times - much smaller than a single PRN
run. The results for average run time (single run) and efficiency are given in the
Tables 1 and 2, the graphs for parallel efficiency are shown on Figures 1 and 2.

The results confirm that the high parallel efficiency of Monte Carlo methods is
preserved with QRNs and our technique for this problem.

5 Future work

We plan to study this quasi-MCM for matrix equations with more slowly
convergent Neumann series solution, using random walks with longer (and
different for different walks) length. In this case, the dimension of of quasirandom
sequence is random (depends on the used stoping criterion). Our preliminary
numerical tests for solving such problems showed the effectivness of randomized
quasirandom sequences, but we have yet to study the parallel behavior of this
method in this case.
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Table 1. Sparse system with 1024 equations: MPI times, parallel efficiency and the
estimated value of one component of the solution using PRNs, Halton, Soból and Faure
QRNs.

1 pr. 2 pr. 3 pr. 4 pr. 5 pr. 6 pr. 7 pr. 8 pr.

MCM pseudo
Time (s) 36 17 11 8 7 5 5 4
Efficiency 1.05 1.09 1.125 1.02 1.2 1.05 1.125
Appr.x(54) 1.000031 1.000055 .999963 .999966 1.000024 1.000029 .999979 .999990

QMC Halton
Time (s) 28 14 9 6 5 4 4 3
Efficiency 1 1.03 1.16 1.12 1.16 1 1.16
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QMC Sobol
Time (s) 42 25 17 12 10 8 7 6
Efficiency 0.84 0.82 0.875 0.84 0.875 0.857 0.875
Appr.x(54) 0.999983 0.999983 0.999983 0.999983 0.999983 0.999983 0.999983 0.999983

QMC Faure
Time (s) 76 63 41 30 24 23 26 23
Efficiency 0.6 0.62 0.63 0.63 0.55 0.42 0.41
Appr.x(54) 0.999919 0.999919 0.999919 0.999919 0.999919 0.999919 0.999919 0.999919

Table 2. Sparse system with 2000 equations: MPI times, parallel efficiency and the
estimated value of one component of the solution using PRNs, Halton, Soból and Faure
QRNs.

1 pr. 2 pr. 3 pr. 4 pr. 5 pr. 6 pr. 7 pr. 8 pr.

MCM pseudo
Time (s) 39 19 13 9 7 6 5 4
Efficiency 1.02 1 1.08 1.11 1.08 1.11 1.21
x(54) 1.000077 1.000008 .999951 .999838 .999999 .999917 1.000044 .999802

QMC Halton
Time (s) 29 14 10 7 5 4 4 3
Efficiency 1.03 0.97 1.03 1.16 1.21 1.03 1.21
x(54) 1.0000008 1.0000008 1.0000008 1.0000008 1.0000008 1.0000008 1.0000008 1.0000008

QMC Sobol
Time (s) 49 30 20 15 11 10 9 8
Efficiency 0.82 0.82 0.82 0.89 0.82 0.78 0.76
x(54) 0.999997 0.999997 0.999997 0.999997 0.999997 0.999997 0.999997

QMC Faure
Time (s) 79 67 42 30 26 25 27 24
Efficiency 0.59 0.63 0.66 0.61 0.53 0.42 0.41
x(54) 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993
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