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Abstract. Determining the Fiedler vector of the Laplacian or adjacency
matrices of graphs is the most computationally intensive component of
several applications, such as graph partitioning, graph coloring, envelope
reduction, and seriation. Often an approximation of the Fiedler vector is
suÆcient. We discuss issues involved in the use of Monte Carlo techniques
for this purpose.

1 Introduction

The Fiedler vector is the eigenvector corresponding to the second smallest non-
negative eigenvalue of a matrix. Spectral techniques, based on determining the
Fiedler vector of the Laplacian or the adjacency matrix of a graph, are used in
graph partitioning [18], matrix envelope reduction [3, 9], seriation [2], and graph
coloring algorithms [1]. We introduce terminology and the background for this
problem in x 2.

Applications of the above algorithms arise in diverse areas, such as paral-
lel computing, VLSI, molecular dynamics, DNA sequencing, databases, cluster-
ing, linear programming, scheduling, and archaeological dating [1, 2, 5, 8, 10, 11,
16, 18]. (A computationally analogous problem, that of determining the second
largest eigenvalue, has important applications in statistical and quantum me-
chanics as well [17].) We outline some applications in x 2.1 and x 2.2.

While spectral techniques for the algorithms mentioned above often give re-
sults of high quality, a major computational bottleneck is the determination of
the Fiedler vector, which has often limited the application of spectral techniques.
We observe that in most of the applications mentioned above, only an approx-
imation to the Fiedler vector is required. Our work is directed at reducing the
computational e�ort through the use of Monte Carlo (MC) techniques. We re-
view MC techniques for computing eigenvalues and eigenvectors in x 3, and in x 4
we discuss ideas for using the properties of graphs to speed up the computations.

We present preliminary experimental results on the use of MC techniques
to graph application in x 5. We conclude by suggesting directions for further
research, in x 6.



2 Background

The eigenvectors of the adjacency matrix and the Laplacian of a graph have
important applications. The latter has especially been popular in recent times,
and so we shall focus on it. It can be shown that all the eigenvalues of the
Laplacian,L are non-negative, and exactly one of them is 0 for a connected graph.
The eigenvector e2 corresponding to the second smallest eigenvalue, �2, is called
its Fiedler vector, and �2 is referred to as the Fiedler value. In the techniques
mentioned in x 1, typically the Fiedler vector is determined and the vertices of
the graph are characterized by appealing to the corresponding components of
the Fiedler vector, as shown below for graph partitioning and seriation.

2.1 Graph Partitioning

Given a graph G = (V;E) with n vertices, and number of partitions P , the most
popular graph partitioning problem partitions the set of vertices V into P disjoint
subsets such that each subset has equal size and the number of edges between
vertices in di�erent subsets is minimized1. Graph partitioning has applications in
parallel computing, VLSI, databases, clustering, linear programming, and matrix
reordering. This problem is NP-hard, and therefore various heuristics are used
to �nd a good approximation.

The spectral heuristic determines the Fiedler vector of the Laplacian, and
components smaller than the median are placed in one subset, say V1, and the
rest in subset V2. Each of these subsets is recursively partitioned using the spec-
tral method. The spectral method typically gives good quality partitions, but
requires enormous computational e�ort for large graphs. Therefore other meth-
ods based on multilevel techniques have become popular, while there has been
a simultaneous e�ort to improve the speed of the spectral method [14, 20].

2.2 Seriation

Consider a set of elements 1; 2; : : : ; n and a similarity function f . The seriation
problem [2] problem is to determine a permutation � such that �(i) < �(j) <
�(k) ) f(i; j) � f(i; k). Intuitively, a high value of f(i; j) indicates a strong
desire for elements i and j to be near each other, and through the permutation
� we order the elements so that they satisfy the requirements of the function
f . f may be such that it is impossible to �nd a permutation satisfying it; in
that case, minimization of the following penalty function [2] can be attempted:
g(�) =

P
i;j f(i; j)(�i � �j)

2. This minimization is NP-hard, and so approxima-
tion techniques are used.

In the spectral method for this problem, a continuous version of the above
penalty function minimization is solved. This leads to the following computa-
tional technique [2]: The Fiedler vector of the matrix corresponding to the sim-
ilarity function f is determined. Then the elements are ordered based on the
1 Metrics, other than the number of edges between di�erent partitions, are also used
in certain applications.



magnitude of the corresponding component of the Fiedler vector. Applications
of this technique arise in DNA sequencing, archaeological dating, and also in a
closely related problem of matrix envelope reduction.

3 Monte Carlo for Eigenvector Computations

We note that MC techniques are the ideal algorithms to use when approximate
solutions are suÆcient. MC computations of eigenvalues and eigenvectors are
typically stochastic implementations of the power method [17].

3.1 Power Method

We now summarize the MC algorithm to compute the eigenvector for the eigen-
value of largest magnitude, based on the algorithm given in [6, 7]. Consider a
matrix A 2 <n�n and a vector h 2 <n. An eigenvector corresponding to the
largest eigenvalue can be obtained through the power method as limi!1Aih for
a starting vector h that has a non-zero component in the direction of the desired
eigenvector. The MC techniques is based on estimating Amh using Markov chains
of length m, for large m. The random walk visits a set of states in f1; : : : ; ng.
Let the state visited in the i th step be denoted by ki. Then the probability that
the start state k0 is � is given by

P� =
jh�jPn
�=1 jh�j

; (1)

and the transition probability is given by

Pr(ki = �jki�1 = �) = P�� =
ja�� jPn
�=1 ja�� j

: (2)

Consider random variables Wi de�ned as follows

W0 =
hk0
Pk0

; Wi =Wi�1

akiki�1
pkiki�1

: (3)

If we let Æ denote the Kronecker delta function (Æij = 1 if i = j, and 0 otherwise),
then it can been shown [7] that

E(WiÆ�ki) = (Aih)�: (4)

Therefore, in order to implement the power method, we evaluate E(Wi) for large
i to estimate the ki th component of the largest eigenvector of A.

3.2 Inverse Power Method

If we need to determine an eigenvector for the eigenvalue of smallest magnitude,
then we can apply a stochastic version of the inverse power method, where the



desired eigenvector is computed as limi!1(A
�1)ih for a starting vector h that

has a non-zero component in the direction of the desired eigenvector. In the
deterministic simulation, we repeatedly solve the following linear system

Axk+1 = xk; x0 = h: (5)

In the MC technique, we replace the deterministic linear solver with a MC solver.
There are several techniques for solving a linear system through MC. The basic
idea is to write A a as I�C, and conceptually use a MC version of the stationary
iteration

yk = Cyk�1 + h =

k�1X
i=0

Ciy0; y0 = h; (6)

which converges to the the desired solution if the spectral radius of C is less
than 1. We can use the MC technique for computing Matrix-vector products,
described in Sec 3.1, to determine each Ciy0 on the right hand side of Eqn. (6).
This corresponds to the MC estimator introduced by Wasow [19].

4 Improving the Convergence of Monte Carlo Techniques

We discuss ideas to accelerate the convergence of the MC techniques for the
graph applications, in this section.

4.1 Deation:

The MC techniques are essentially the power or inverse iteration methods, and
therefore, they too retrieve the extreme eigenvalues and eigenvectors. Since we
wish to obtain the second smallest one, we deate the matrix analytically. This
can be done for both the adjacency matrix and the Laplacian. We demonstrate
it for the Laplacian, since its use is more popular in recent times.

The smallest eigenvalue of the Laplacian is given by �1 = 0 with the corre-
sponding eigenvector e1 = (1; 1; : : : ; 1)T . We wish to �nd a non-singular matrix
H (See Heath [12], page 127) such that

He1 = �(1; 0; 0; : : : ; 0)T ; (7)

for some constant �. Then

HLH�1 =

�
�1 b

T

0 B

�
; (8)

where B has eigenvalues �2; �3; : : : ; �n. Furthermore, if y2 is the eigenvector
corresponding to eigenvalue �2 in B, then

e2 = H�1
�
�
y2

�
; where � =

bT y2
�2 � �1

: (9)



(This requires �2 6= �1, which is satis�ed due to our assumption that the graph
is connected.)

Of course, we wish to �nd an H such that B and e2 can be computed fast.
Furthermore, since most applications will have sparse graphs, we wish to have
B preserve the sparsity. Consider H de�ned as follows:

hij =

8<
:
�1; j = 1
1; i = j; and i > 1
0; otherwise

: (10)

Then H satis�es Eqn. (7) with � = �1. Furthermore, H�1 = H and we can
show that in Eqn. (8)

bij = li+1;j+1 � l1;j+1; 1 � i; j � n� 1; (11)

bi = �l1;i+1; 1 � i � n� 1: (12)

We can verify that B too is sparse. The number of non-zero elements in L
is
Pn

i=1 di + n, where di is the degree of vertex i. Let V1 be the set of nodes to
which vertex 1 does not have an edge (excluding vertex 1 itself), and V2 be the
set of vertices to which vertex 1 has an edge. The number of non-zero elements
in column i � 1 of B is di + 1 if i 2 V1, and the number of non-zero entries is
n� 1� di if i 2 V2 (since the j th row entry of B will be non-zero unless there is
an edge between i and j, when i 2 V2). Therefore the total number of non-zero
entries is given by: X

i2V1

(di + 1) +
X
i2V2

(n� 1� di) (13)

=
X
i2V1

di �
X
i2V2

di + (n� 2)d1 + n� 1 (14)

<

nX
i=2

di + (n� 1)d1 + n� 1: (15)

If we label the vertices so that the vertex with least degree is labeled 1, then from
Eqn. (15) we can see that an upper bound on the number of non-zero entries of
B is given by

2
nX
i=2

di + n� 1: (16)

Therefore the sparsity of B is decreased by at most a factor of 2 compared with
just considering the the submatrix of L that omits the �rst row and column.

We also need to determine e2 from y2. We observe that with our de�nition
of H , we get

e2 =

�
��
y2 ��

�
; where � =

bT y2
�2

; and � = (�; : : : ; �)T : (17)

In fact, if only the relative values of the components is important, as in the
applications mentioned in x 1, then we need not compute e2 explicitly, and can
instead use the vector (0 yT2 )

T .



4.2 Shifting:

We can apply inverse iterations to the matrix B above, both in deterministic
and MC techniques, in order to estimate �2, and, more importantly for our
purpose, y2. Alternatively, since solving linear systems repeatedly is expensive,
we can shift B to enable computation of the desired solution as the eigenvector
corresponding to the eigenvalue largest in magnitude. For example, the largest
eigenvalue is bounded by � = 2

Pn

i=1 di. Therefore we can apply the power
method based MC technique to �I�B and obtain the eigenvector corresponding
to eigenvalue �� �2.

5 Experimental Results

In this section, we discuss the experimental set up, implementation details, and
results of deterministic and MC solutions. We chose the graph partitioning ap-
plication to test the techniques described above, and used two sample graphs for
our tests { test.graph from Metis [15] and hammond.graph from Chaco [13]. The
former is a small graph with 766 vertices and 1314 edges, while the latter, a 2D
�nite element grid of a complex airfoil with triangular elements, is of moderate
size, having 4720 vertices and 13722 edges. All the coding was done on Matlab,
and executed on a 1.0GHz Pentium III running Linux. We tested the e�ective-
ness of techniques by partitioning the graphs into two disjoint parts. The ratio
of the number of edges cut using our techniques to the number of edges cut
using the exact Fiedler vector gives a measure of the e�ectiveness, with a large
number indicating poor performance, and a small one good performance.

Since many of the techniques, such as deation and shifting, apply to de-
terministic as well as MC techniques, we �rst present results demonstrating the
e�ectiveness in deterministic techniques. We �rst computed the eigenvectors of
the two largest eigenvalues of the sparse matrix �I � L, using the eigs routine
in Matlab. The time taken and number of edges cut using the Fiedler vector ob-
tained from this step were used to measure the e�ectiveness of our techniques. In
the rest of the tests, we divided the L matrix by � in order for all the eigenvalues
of its deation to be in (0; 1].

We next tested the e�ectiveness of the deation technique mentioned in x 4.1
with the deterministic inverse iterations. We could have started out with a ran-
dom vector for the inverse iterations. However, a random initial vector would
have a component in the direction of the the eigenvector for the 0 eigenvalue,
which is not conducive to fast convergence. Hence we chose the initial start vec-
tor by assigning the �rst n=2 vertices of the graph to the same partition, and
the rest to the other one, and then applied the deation process to get a starting
vector for the iterations. We can see from Fig. 1 that this starting vector is more
e�ective than using a random vector, since our scheme leads to identical results
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Fig. 1. Comparison of the e�ectiveness of using a random start vector versus our
scheme. The solid line shows the relative error for our scheme, while the dash-dotted
line shows the relative error for a random start vector with (a) test.graph and (b)
hammond.graph.

with that of the exact Fiedler vector in fewer number of iterations of the linear
solver2.

We can see from Fig. 2 that deterministic inverse iterations give good results
with just one linear solve, and agree with the exact Fiedler vector with just a few
linear solves. Furthermore, the timing result indicates signi�cant improvement
over the direct technique.

We next show in Fig. 3 that deterministic power method applied to I � B=�
too is e�ective. While the number of iterations required is very high, the time
taken is low, since matrix-vector multiplication is much faster than solving a
linear system. However, note that in the corresponding MC scheme, this would
imply that each walk has to have a few hundred steps, and therefore the MC
version of this method would not be e�ective. We therefore restrict our attention
to the inverse iteration scheme for MC.

We show results for test.graph with MC inverse iterations in Fig. 4. The walk
length was �xed at 5 for graphs a; b; c, and plots of edges cut versus number of
iterations of the linear solver are presented, for di�erent numbers of simulations.
We make the following observations (i) as expected, the accuracy increases with
increase in the number of simulations per linear solve, (ii) in terms of time
taken (note, 100 iterations with 10 simulations each takes the same time as 1
iteration with 1000 simulations each), it may be useful to use fewer simulations
per iteration in return for a larger number of linear solves, and (iii) the results

2 The relative error here is the ratio of number of vertices in a partition inconsistent
with that of the exact Fiedler vector, to the maximum that can be in the \wrong"
partition.
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Fig. 2. Plot of edges cut and time using the deated matrix, relative to that of the
exact Fiedler vector, for di�erent numbers of inverse iterations. The solid line shows
the plot for test.graph, while the dash-dotted line plots the curve for hammond.graph.
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Fig. 3. Plot of edges cut and time using the deation matrix, relative to that of the ex-
act Fiedler vector, for di�erent numbers of power method iterations. The solid line
shows the plot for test.graph, while the dash-dotted line plots the curve for ham-
mond.graph.
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Fig. 4. Plot of edges cut using the MC inverse iterations. Graphs a; b; c use a walk
length of 5 and number of iterations of 1000 (a), 100 (b), and 10 (c) respectively.
Graph (d) keeps the number of iterations �xed at 3 and number of simulations per
iteration at 100.

from the MC technique are not good enough. Graph (d) has varying walk length,
holding the number of simulations �xed at 100 and number of iterations of the
linear solver at 3.

A reason for the inadequate performance of the MC scheme is that the ma-
trix C of Eqn. 6 has spectral radius close to 1 in our application. This can be
improved by changing the stationary iteration scheme. For example, Jacobi iter-
ations can easily be incorporated into the current MC framework. Fig. 5 shows
that the relative error3 in a single linear solve using (deterministic) Jacobi itera-
tions can be much smaller than with the process we have used. However, we need
to prove convergence of these methods for the graph under consideration, before
using them. Furthermore, the MC methods corresponding to the better station-
ary schemes, such as Gauss-Seidel and SOR are yet to be developed. Meanwhile,
hybrid techniques combining MC for the matrix-vector multiplication and de-

3 The relative error here is kx � x̂k=kxk, where x is the exact solution and x̂ is the
MC estimate.
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Fig. 5. Plot of relative error in a single linear solve using the current stationary process
(solid line), Jacobi iterations (dash-dotted line), and Gauss-Seidel (dashed line). The
deated, scaled Laplacian of test.graph was used for this test.

terministic techniques for the linear solve involved in these two stationary tech-
niques could be used. Development of MC versions of non-stationary methods is
an open problem that could lead to more e�ective solutions for this problem.

6 Conclusions

We have outlined ideas for MC to be used in graph partitioning and related appli-
cations that require the estimation of the Fiedler vector of the graph Laplacian.
We suggested techniques for improvement in convergence, for both determin-
istic and MC techniques. We demonstrated their e�ectiveness in deterministic
calculations. However, the results with MC are not suÆciently good. We have
identi�ed the problem { the type of stationary process used is not suitable for
graph applications, and suggested further research into the use of MC linear
solvers that use better stationary schemes, or even non-stationary ones. Yet an-
other research issue is to consider variance reduction techniques, for example,
based on approximations to the Fiedler vector obtained using multilevel tech-
niques as in [4].
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