
A Parallel Quasi-Monte Carlo Method for

Computing Extremal Eigenvalues

Michael Mascagni1 and Aneta Karaivanova1,2

1 Florida State University, Department of Computer Science, Tallahassee, FL
32306-4530, USA

2 Bulgarian Academy of Sciences, Central Laboratory for Parallel Processing,
1113 Sofia, Bulgaria

Abstract The convergence of Monte Carlo methods for numerical integration can
often be improved by replacing pseudorandom numbers (PRNs) with more uni-
formly distributed numbers known as quasirandom numbers (QRNs). In this paper
the convergence of a Monte Carlo method for evaluating the extremal eigenvalues
of a given matrix is studied when quasirandom sequences are used. An error bound
is established and numerical experiments with large sparse matrices are performed
using three different QRN sequences: Soboĺ, Halton and Faure. The results indicate:

• An improvement in both the magnitude of the error and in the convergence rate
that can be achieved when using QRNs in place of PRNs.

• The high parallel efficiency established for Monte Carlo methods is preserved
for quasi-Monte Carlo methods in this case. The execution time for computing
an extremal eigenvalue of a large, sparse matrix on p processors is bounded by
O(lN/p), where l is the length of the Markov chain in the stochastic process
and N is the number of chains, both of which are independent of the matrix
size.

Keywords: Monte Carlo methods, quasi-Monte Carlo methods, eigenvalues, Markov

chains, parallel computing, parallel efficiency

1 Introduction

MonteCarlomethods (MCMs) are based on the simulation of stochastic pro-
cesses whose expected values are equal to computationally interesting quan-
tities. Despite the universality of MCMs, a serious drawback is their slow
convergence, which is based on the O(N−1/2) behavior of the size of sta-
tistical sampling errors. This represents a great opportunity for researchers
in computational science. Even modest improvements in the Monte Carlo
method can have substantial impact on the efficiency and range of applica-
bility for Monte Carlo methods. Much of the effort in the development of
Monte Carlo has been in construction of variance reduction methods which
speed up the computation by reducing the constant in the O(N−1/2) ex-
pression. An alternative approach to acceleration is to change the choice of
random sequence used. Quasi-Monte Carlo methods use quasirandom (also
known as low-discrepancy) sequences instead of pseudorandom sequences and
can achieve convergence of O(N−1) in certain cases.

2 Michael Mascagni and Aneta Karaivanova

QRNs are constructed to minimize a measure of their deviation from uni-
formity called discrepancy. There are many different discrepancies, but let
us consider the most common, the star discrepancy. Let us define the star
discrepancy of a one-dimensional point set, {xn}N

n=1, by

D∗
N = D∗

N (x1, . . . , xN) = sup
0≤u≤1

∣∣∣∣∣
1
N

N∑
n=1

χ[0,u)(xn)− u

∣∣∣∣∣ (1)

where χ[0,u) is the characteristic function of the half open interval [0, u).
The mathematical motivation for quasirandom numbers can be found in the
classic Monte Carlo application of numerical integration. We detail this for
the trivial example of one-dimensional integration for illustrative simplicity.

Theorem (Koksma-Hlawka, [7]): if f(x) has bounded variation, V (f), on
[0, 1), and x1, . . . , xN ∈ [0, 1] have star discrepancy D∗

N , then:∣∣∣∣∣
1
N

N∑
n=1

f(xn)−
∫ 1

0

f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N , (2)

The star discrepancy of a point set of N truly random numbers in one di-
mension is O(N−1/2(log logN)1/2), while the discrepancy of N quasiran-
dom numbers can be as low as N−1. 1 In s > 3 dimensions it is rigor-
ously known that the discrepancy of a point set with N elements can be no
smaller than a constant depending only on s times N−1(logN)(s−1)/2. This
remarkable result of Roth, [13], has motivated mathematicians to seek point
sets and sequences with discrepancies as close to this lower bound as possi-
ble. Since Roth’s remarkable results, there have been many constructions of
low discrepancy point sets that have achieved star discrepancies as small as
O(N−1(logN)s−1). Most notably there are the constructions of Hammersley,
Halton, [5], Soból, [14], Faure, [4], and Niederreiter, [12].
While QRNs do improve the convergence of applications like numerical

integration, it is by no means trivial to enhance the convergence of all MCMs.
In fact, even with numerical integration, enhanced convergence is by no means
assured in all situations with the näive use of quasirandom numbers, [2,11].
In this paper we study the applicability of quasirandom sequences for

solving the eigenvalue problem. The paper is organized as follows: §2 briefly
explains QRN generation. §3 we present two MCMs for computing extremal
eigenvalues. Both algorithms are based a stochastic application of the power
method. One uses MCMs to compute high powers of the given matrix, while
the other, high powers of the related resolvent matrix. Then in §4 we describe
how to modify these MCMs by the careful use of QRNs. In §5 we present
some numerical results that confirm the efficacy of the proposed quasi-MCMs
1 Of course, the N optimal quasirandom points in [0, 1) are the obvious:

1
(N+1)

, 2
(N+1)

, . . . N
(N+1)

.

Title Suppressed Due to Excessive Length 3

and that they retain the parallel efficiency of the analogous MCMs. Finally,
in §6 we present some brief conclusions and comment on future work.

2 Quasirandom Number Generation

Perhaps the best way to illustrate the difference between QRNs and PRNs is
with a picture. Thus in Figure 1 we plot 4096 tuples produced by successive
elements from a 64-bit PRN generator from the SPRNG library, [10] developed
by one of the the authors (MM). These tuples are distributed in a manner
consistent with real random tuples. In Figure 2 we see 4096 quasirandom
tuples formed by taking the 2nd and 3rd dimensions from the Soból sequence.
It is clear that the two figures look very different and that Figure 2 is much
more uniformly distributed. Both plots have the same number of points, and
the largest “hole’ in Figure 1 is much larger than in Figure 2. This illustrates
quite effectively the qualitative meaning of low discrepancy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(j)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(
j+

1)

SPRNG Sequence
4096 Points of SPRNG Sequence

Fig. 1. Tuples produced by successive elements from the SPRNG pseudorandom
number generator, lfib.

The first high-dimensional QRN sequence was proposed by Halton, [5],
and is based on the Van der Corput sequence with different prime bases

4 Michael Mascagni and Aneta Karaivanova

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dimension 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Di
m

en
sio

n
3

2−D Projection of Sobol’ Sequence
4096 Points of Sobol Sequence

Fig. 2. Tuples produced by the 2nd and 3rd dimension of the Soból sequence.

for each dimension. The jth element of Van der Corput sequence base b
is defined as φb(j − 1) where φb(·) is the radical inverse function and is
computed by writing j−1 as an integer in base b, and then flipping the digits
about the ordinal (decimal) point. Thus if j − 1 = an . . . a0 in base b, then
φb(j − 1) = 0.a0 . . . an. As an illustration, in base b = 2, the first elements
of the Van der Corput sequence are 1

2 ,
1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 , while with b = 3, the

sequence begins with 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 . With b = 2, the Van der Corput

sequence methodically breaks the unit interval into halves in a manner that
never leaves a gap that is too big. With b = 3, the Van der Corput sequence
continues with its methodical ways, but instead recursively divides intervals
into thirds.
Another way to think of the Van der Corput sequence (with b = 2) is

to think of taking the bits in j − 1, and associating with the ith bit the
number vi. Every time the ith bit is one, you exclusive-or in vi, what we
will call the ith direction number. For the Van der Corput sequence, vi is
just a bit sequence with all zeros and a one in the ith location counting
from the left. Perhaps the most popular QRN sequence, the Soból sequence,
can be thought of in these terms. Soból, [14], found a clever way to define
more complicated direction numbers than the “unit vectors” which define the

Title Suppressed Due to Excessive Length 5

Van der Corput sequence. Besides producing very good quality QRNs, the
reliance on direction numbers means that the Soból sequence is both easy to
implement and very computationally efficient.
Since this initial work, Faure, Niederreiter and Soból, [4], [12], [14], chose

alternate methods based on another sort of finite field arithmetic that uti-
lizes primitive polynomials with coefficients in some prime Galois field. All
of these constructions of quasirandom sequences have discrepancies that are
O(N−1(logN)s). What distinguishes them is the asymptotic constant in the
discrepancy, and the computational requirements for implementation. How-
ever, practice has shown that the provable size of the asymptotic constant in
the discrepancy is a poor predictor of the actual computational discrepancy
displayed by a concrete implementation of any of these QRN generators.
There are existing implementations of the Halton, Faure, Niederreiter and
Soból sequences, [1], that are computationally efficient. Each of these se-
quences is initialized to produce quasirandom s-tuples and each one of these
requires the initialization of s one-dimensional quasirandom streams.

3 Computing Extremal Eigenvalues

Let A be a large n×n matrix. In most cases we also assume that A is sparse.
Consider the problem of computing one or more eigenvalues of A, i.e., the
values λ that satisfy the equation

Au = λu. (3)

Suppose the n eigenvalues of A are ordered as follows |λ1| > |λ2| ≥ . . . ≥
|λn−1| > |λn|.
Consider also computing the eigenvalues of the resolvent matrix of a given

matrix: Rq = [I−qA]−1 ∈ R
n×n. If |qλ| < 1, then the following representation

holds: [I − qA]−m =
∑∞

i=0 q
iCi

m+i−1A
i. Here the coefficients Cm+i−1 are

binomial coefficients and the previous expression is merely an application of
the binomial formula. The eigenvalues of the matrices Rq and A are related
to one another through the equality µ = 1

1−qλ , and the eigenvectors of the
two matrices coincide2.
Let f ∈ R

n, h ∈ R
n be given, n-dimensional vectors. We use them to apply

the power method, ([3]), to approximately compute the desired eigenvalues
via following iterative process for both A and Rq:

λ(m) =
(h,Amf)
(h,Am−1f)

−→
m→∞λmax (4)

2 If q > 0 the largest eigenvalue µmax of the resolvent matrix corresponds to the
largest eigenvalue λmax of the matrix A, but if q < 0, then µmax, corresponds to
the smallest eigenvalue λmin of the matrix A.

6 Michael Mascagni and Aneta Karaivanova

µ(m) =
(h, [I − qA]−mf)

(h, [I − qA]−(m−1)f)
−→

m→∞µmax =
1

1− qλ
. (5)

Given that both these equations require on the computation of matrix-vector
products, we may apply the well known matrix-vector multiplication, [6]
Monte Carlo method to obtain a stochastic estimate of the desired eigen-
values. To derive this desired MCM, we begin with a Markov chain k0 →
k1 → . . . → ki, on the natural numbers, kj = 1, 2, . . . , n for j = 1, . . . , i. We
then define an initial density vector, p = {pα}n

α=1, to be permissible to the
vector h and a transition density matrix, P = {pαβ}n

αβ=1, to be permissible
to A, [3].3 We then define the following random variable on the given Markov
chain:

W0 =
hk0

pk0

, Wj =Wj−1

akj−1kj

pkj−1kj

, j = 1, . . . , i. (6)

Monte Carlo methods for computing the extremal eigenvalues are based on
the following equalities ([3]):

(h,Aif) = E[Wifki], i = 1, 2, . . . ,

and

(h, [I − qA]−mf) = E[
∞∑

i=0

qiCi
i+m−1Wif(xi)], m = 1, 2,

This gives us the corresponding estimates for the desired eigenvalues as:

λmax ≈ E[Wifki]
E[Wi−1fki−1]

, (7)

and

λ ≈ 1
q

(
1− 1

µ(m)

)
=
E[

∑∞
i=1 q

i−1Ci−1
i+m−2Wif(xi)]

E[
∑∞

i=0 q
iCi

i+m−1Wif(xi)]
. (8)

Since, the coefficients Cn
n+m are binomial coefficients, they may be calculated

using the recurrence Ci
i+m = Ci

i+m−1 + Ci−1
i+m−1.

Monte Carlo Error

The Monte Carlo error obtained when computing a matrix-vector product is
well known to be:

|hTAif − 1
N

N∑
s=1

(θ)s| ≈ V ar(θ)1/2N−1/2,

3 The initial density vector p = {pi}n
i=1 is called permissible to the vector h =

{hi}n
i=1 ∈ Rn , if pi > 0 when hi �= 0 and pi = 0 when hi = 0. The transition

density matrix P = {pij}n
i,j=1 is called permissible to the matrix A = {aij}n

i,j=1,
if pij > 0 when aij �= 0 and pij = 0 when aij = 0, i, j = 1, . . . , n.

Title Suppressed Due to Excessive Length 7

where V ar(θ) = {(E[θ])2 − E[θ2]} and

E[θ] = E[
hk0

pk0

Wifki] =

n∑
k0=1

hk0

pk0

pk0

n∑
k1=1

. . .

n∑
ki=1

ak0k1 . . . akm−1km

pk0k1 . . . pkm−1km

pk0k1 . . . pkm−1km

An Optimal Case If the row sums of A are a constant, a, i.e.
∑n

j=1 aij = a,
and if all the elements of the vector f are constant, and if we further-
more define the initial and transition densities as follows: i = 1, 2, . . . n and
pα =

|hα|∑
n

α=1
|hα| ; pαβ =

|aαβ|∑
n

β=1
|aαβ | , α = 1, . . . n (the case of using impor-

tance sampling), then V ar[θ] = 0.

Proof: Direct calculations gives us:E[f hk0
pk0

Wi] = (h, e)(−1)jaif , andE[(f hk0
pk0

Wi)2] =

(h, e)2a2if2, and so V ar[f hk0
pk0

Wi] = 0.
The Common Case

V ar[θ] = (E[hk0Wmfkm])2 − E[(hk0Wmfkm)2] ≤ (E[hk0Wmfkm])2 ≤∑n
i=1 |ak0i|.

∑n
i=1 |ak1i| . . .

∑n
i=1 |akm−1i|, for f and h - normalized.

Remark

We remark that in equation (7) the length of the Markov chain l is equal to
the number of iterations in the power method. However in equation (8) the
length of the Markov chain is equal to the number of terms in truncated series
for the resolvent matrix. In this second case the parameter m corresponds to
the number of iterations.

4 Quasirandom Sequences for Matrix Computations

Let us recall that power method-based iterations are built around computing
hTAif , see equations (4) and (5). We will try to turn these Markov chain
computations into something interpretable as an integral. To do so, it is
convenient to define the sets G = [0, n) and Gi = [i− 1, i), i = 1, . . . , n, and
likewise to define the piecewise continuous functions f(x) = fi, x ∈ Gi, i =
1, . . . , n, a(x, y) = aij , x ∈ Gi, y ∈ Gj , i, j = 1, . . . , n and h(x) = hi, x ∈
Gi, i = 1, . . . , n.
Because h(x), a(x, y), f(x) are constant when x ∈ Gi, y ∈ GJ , we choose:

p(x) = pi, x ∈ Gi (
n∑

i=1

pi = 1),

8 Michael Mascagni and Aneta Karaivanova

p(x, y) = pij , x ∈ Gi, y ∈ Gj , (
n∑

j=1

pij = 1, i = 1, . . . , n).

Now define a random (Markov chain) trajectory as

Ti = (y0 → y1 → . . .→ yi),

where y0 is chosen from initial probability density p(x), and the probability
of choosing yj given yj−1 is p(yj−1, yj). The trajectory, Ti, can be interpreted
as a point in the space G× . . .×G = Gi+1 where the probability density of
such a point is:

pi(y0, y1, . . . yi) = p(y0)p(y0, y1) . . . p(yi−1, yi). (9)

Let us know call W �
j the continuous analog of Wj ’s in equation (6) giving is:

(h,Aif) = E[W �
i fki] =∫

G0

. . .

∫
Gi

pi(y0, y1, . . . yi)h(y0)a(y0, y1) . . . a(yi−1, yi)f(yi)dy0 . . . dyi.

This expression lets us consider computing hTAif to be equivalent to
computing an (i+ 1)-dimensional integral. This integral can be numerically
approximated using QRNs and the error in this approximation can then be
analyzed with Koksma-Hlawka-like (equation (2)) bounds for quasi-Monte
Carlo numerical integration. We do not know Ai explicitly, but we do know
A and can use the previously described Markov chain to produce a random
walk on the elements of the matrix to approximate hTAif .
Consider hTAif and an (i + 1)-dimensional QRN sequence with star-

discrepancy, D∗
N . Normalizing the elements of A with

1
n , and the elements of

h and f with 1√
n
we have previously derived the following error bound (for

a proof see [9]):

|hT
NA

l
NfN − 1

N

N∑
s=1

h(xs)a(xs, ys) . . . a(zs, ws)f(ws)| ≤ |h|T |A|l|f |D∗
N . (10)

If A is a general sparse matrix with d nonzero elements per row, and d
 n,
then the importance sampling method can be used. The normalizing factors in
the error bound in equation (10) are then 1/d for the matrix, A, and 1/

√
(n)

for the vectors, h and f .

5 Numerical Results

Why are we interested in studying MCMs for the eigenvalue problem? Be-
cause the computational complexity of MCMs for this is bounded by O(lN),

Title Suppressed Due to Excessive Length 9

where N is the number of chains, and l is the mathematical expectation of
the length of the Markov chains, both of which are independent of matrix size
n. This makes MCMs very efficient for large, sparse, eigenvalue problems, for
which deterministic methods are not computationally efficient. Also, Monte
Carlo algorithms have high parallel efficiency, i. e. the time to solution of a
problem on p processors decreases by almost exactly p over the cost of the
same computation on a single processor. In fact, in the case where a copy of
the non-zero matrix elements ofA is sent to each processor, the execution time
for computing an extremal eigenvalue on p processors is bounded by O(lN/p).
This result assumes that the initial communication cost of distributing the
matrix, and the final communication cost of collecting and averaging the dis-
tributed statistics is negligible compared to the cost of generating the Markov
chains and forming the statistic, θ.

0 50000 1e+05 1.5e+05 2e+05
0

0.02

0.04

0.06

0.08

Relative error versus number of trajectories
(matrix of size 2000)

Relative error using Sobol QRNs
Relative error using PRNs

Fig. 3. Relative errors in computing the dominant eigenvalue for a sparse matrix of
size 2000 × 2000. Markov chains realizations are produced using PRNs and Soból
QRNs.

Numerical tests were performed on general sparse matrices of size 128,
1024, 2000 using PRNs and Soból, Halton and Faure quasirandom sequences.
An improvement in both the magnitude of error and the convergence rate

10 Michael Mascagni and Aneta Karaivanova

Table 1. Monte Carlo estimates using PRNs and QRN sequences for computing
the dominant eigenvalue of two matrices of size 128 and 2000 via the power method.

PRN Faure Soból Halton

Est.
λ128max 61.2851 63.0789 63.5916 65.1777

Rel.
Error 0.0424 0.0143 0.0063 0.0184

Est.
λ2000max 58.8838 62.7721 65.2831 65.377

Rel.
Error 0.0799 0.01918 0.0200 0.0215

were achieved using QRNs in place of PRNs. The results shown in Table 1
were obtained using the power method. They show the results for comput-
ing λmax using power method with both PRNs and different quasirandom
sequences. For these examples the length of the Markov chain corresponds
to the power of the matrix in the scalar product (the “power” in the power
method).

Figure 3 graphs the relative errors of the power Monte Carlo algorithm
and power quasi-Monte Carlo algorithm (using the Soból sequence) for com-
puting the dominant eigenvalue for a sparse matrix of size 2000. Note that
with 20000 points our Soból sequence achieves about the same accuracy as
when 100, 000 or more PRNs are used. The fact that similar accuracy with
these kinds of calculations can be achieved with QRNs at a fraction of the
time required with PRNs is very significant. This is the major reason for
using QRNs over PRNs: an overall decreased time to solution.
The results in Figures 4 and 5 were obtained using the resolvent method

(i. e. , the power method applied to the resolvent matrix, as described in
§3). These results show the relative errors in computing λmax for the same
matrices of order 1024 and 2000. For the resolvent method the length of
the Markov chain corresponds to the truncation number in the series that
presents resolvent matrix. In both these figures, the errors when using QRNs
are significantly smaller than those obtained when using PRNs. In addition,
the error using PRNs grows significantly with the length of the Markov chain.
This is in sharp contrast to all three QRN curves, which appear to show that
the error in these cases remains relatively constant with increasing Markov
chain length.
In addition to convergence test, we also performed parallel computations

to empirically examine the parallel efficiency of these quasi-Monte Carlo
methods. The parallel numerical tests were performed on a Compaq Alpha
parallel cluster with 8 DS10 processors each running at 466 megahertz using
MPI to provide the parallel calls. Each processor executes the same program

Title Suppressed Due to Excessive Length 11

6 7 8 9 10
0

0.05

0.1

0.15

0.2

Relative Error versus Length of Markov Chain
(matrix of order 1024)

PRN
QRN(Faure)
QRN(Sobol)
QRN(Halton)

Fig. 4. Relative errors in computing λmax using different length Markov chains for
a sparse 1024 × 1024 matrix. The random walks are generating using PRNs, and
Faure, Soból and Halton QRN sequences.

for N/p trajectories (here p is the number of processors), and at the end
of the trajectory computations, a designated host processor collects the re-
sults of all realizations and computes the desired average values. The results
shown in Table 2 that the high parallel efficiency of Monte Carlo methods is
preserved with QRNs for this problem.
In these calculations we knew beforehand how many QRNs we would use

in the entire calculation. Thus, we neatly broke the sequences into same-
sized subsequences. Clearly, it is not expected that this kind of information
will be known beforehand for all parallel quasi-Monte Carlo applications. In
fact, an open and interesting problem remains that of providing extensible
streams of QRNs that can extend calculations to a convergence determined
termination. This remains a major challenge to the widespread use of QRNs
in both parallel and serial computations.
These numerical experiments show that one can parallelize the quasi-

Monte Carlo approach for the calculation of the extremal eigenvalue of a ma-
trix. They also show that the parallel efficiency of the regular Monte Carlo
approach to this problem is maintained by the quasi-Monte Carlo method. Fi-

12 Michael Mascagni and Aneta Karaivanova

6 7 8 9 10
0

0.002

0.004

0.006

0.008

Relative Error versus Length of Markov Chain
(matrix of order 2000)

PRN
QRN(Faure)
QRN(Sobol)
QRN(Halton)

Fig. 5. Relative errors in computing λmax using different length Markov chains for
a sparse 2000 × 2000 matrix. The random walks are generating using PRNs, and
Faure, Soból and Halton QRN sequences.

nally, the most important fact is that the accelerated convergence of QRNs is
seen for this Markov-chain based computation and is furthermore maintained
in a parallel context.

6 Conclusions

Quasi-Monte Carlo methods and QRNs are powerful techniques for accel-
erating the convergence of ubiquitous MCMs. For computing the extremal
eigenvalues of a matrix, it is possible to accelerate the convergence of well-
known Monte Carlo methods with QRNs, and to take advantage the natural
parallelism of MCMs. In fact, the execution time on p processors for comput-
ing the extreme eigenvalue of a matrix is bounded by O(NT/p), (excluding
the initial and final communication time) where N is the number of chains,
and l is the average length of the Markov chains, both of which are inde-
pendent of matrix size n. Therefore the quasi-Monte Carlo methods can be
efficiently implemented on MIMD environment and in particular on a cluster
of workstations under MPI.

Title Suppressed Due to Excessive Length 13

Table 2. Parallel MPI implementation of the power Monte Carlo algorithm and
the power quasi-Monte Carlo algorithm for calculating the dominant eigenvalue of a
sparse 2000 × 2000 matrix using PRNs, and Soból and Halton QRNs. The number
of Markov chains realized was 100000, and the exact value of λmax is 64.00).

1pr. 2pr. 3pr. 4pr. 5pr. 6pr. 7pr. 8pr.

MCMpseudo

Time(s) 19 9 6 4 3 3 2 2
Efficiency 1.06 1.06 1.18 1.2 1.06 1.3 1.18
λmax 62.48 61.76 63.76 61.3151 61.39 64.99 63.53 62.94

QMCSobol

Time(s) 20 9 6 5 4 3 2 2
Efficiency 1.1 1.1 1 1 1.1 1.5 1.1
λmax 64.01 64.01 64.01 64.01 64.01 64.01 64.01 64.01

QMCHalton

Time(s) 18 9 6 4 3 3 2 2
Efficiency 1.1 1.1 1 1 1.1 1.5 1.1
λmax 63.92 63.92 63.92 63.92 63.92 63.92 63.92 63.92

The authors have also investigated the use of QRNs in Monte Carlo meth-
ods for the solution of elliptic partial differential equations, [8]. Some small
improvement in the quasi-Monte Carlo approach was seen in this case over
the standard Monte Carlo approach. The MCMs explored in that paper and
the present paper are all Markov-chain based. In the future, we hope to be-
gin a comprehensive investigation into the use of QRNs in Markov chain
calculations.

Acknowledgements

This paper is based upon work supported by the North Atlantic Treaty Or-
ganization under a Grant awarded in 1999, and a U. S. Army Research Office
contract awarded in 1999.

References

1. P. Bratley, B. L. Fox and H. Niederreiter, “Implementation and tests
of low-discrepancy point sets,” ACM Trans. on Modeling and Comp. Simul., 2:
195–213, 1992

2. R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo methods,” Acta Nu-
merica, 7: 1–49, 1998.

3. I. Dimov, A. Karaivanova, “Parallel computations of eigenvalues based on
a Monte Carlo approach,” Journal of Monte Carlo Methods and Applications,
Vol.4, Num.1, pp.33–52, 1998.

14 Michael Mascagni and Aneta Karaivanova

4. H. Faure, “Discrépance de suites associées à un système de numération (en
dimension s),” Acta Arithmetica, XLI: 337–351, 1992.

5. J. H. Halton, “On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals,” Numer. Math., 2: 84–90, 1960.

6. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuen,
London, 1964.

7. J. F. Koksma, “Een algemeene stelling uit de theorie der gelijkmatige verdeel-
ing modulo 1,” Mathematica B (Zutphen), 11: 7–11, 1942/43.

8. M. Mascagni, A. Karaivanova and Y. Li, “A Quasi-Monte Carlo Method
for Elliptic Partial Differential Equations,” Monte Carlo Methods and Appli-
cations, in the press, 2001.

9. M. Mascagni and A. Karaivanova, “Are Quasirandom Numbers Good for
Anything Besides Integration?” in Proceedings of Advances in Reactor Physics
and Mathematics and Computation into the Next Millennium (PHYSOR2000),
2000.

10. M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: A Scal-
able Library for Pseudorandom Number Generation,” ACM Transac-
tions on Mathematical Software, 26: 436–461, 2000, and at the URL
http://www.sprng.cs.fsu.edu.

11. B. Moskowitz and R. E. Caflisch, “Smootness and dimension reduction in
quasi-Monte Carlo methods”, J. Math. Comput. Modeling, 23: 37–54, 1996.

12. H. Niederreiter, Random number generation and quasi-Monte Carlo meth-
ods, SIAM: Philadelphia, 1992.

13. K. F. Roth, “On irregularities of distribution,” Mathematika, 1: 73–79, 1954.
14. I. M. Soboĺ, “The distribution of points in a cube and approximate evaluation

of integrals,” Zh. Vychisl. Mat. Mat. Fiz., 7: 784–802, 1967.

