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Abstract

Monte Carlo methods are very general methods but suffer from the slow, O(N~1/2), convergence
characteristic of random sampling. In recent years, the convergence of the Monte Carlo method
for numerical integration has been improved by replacing pseudorandom numbers (PRNs) with
more uniformly distributed numbers known as quasirandom numbers (QRNs). However, the
advantages for numerical integration hold for integrals over the unit cube depend on many
factors, such as the dimension and smoothness of the integrand, and whether or not the support
of the integrand coincides with the unit cube. In the best cases, convergence for numerical
integration becomes almost O(N~1!), while in the worst cases convergence falls back to that
obtained with PRNs. In this paper we will discuss the main motivation for QRNs, and give a
brief overview of some methods of generating QRNs. Most importantly, we begin to consider
whether Monte Carlo applications besides integration can be accelerated with QRNs. To this
end we propose and study the applicability of QRNs for evaluating the largest and the smallest
eigenvalue of a given matrix. This application makes use of QRNs in the evaluation of discrete
Markov chains. In many areas of Monte Carlo transport, the evaluation of Markov chains is
likewise undertaken. We believe that our success with this Markov chain example motivates
further work in the application of QRNs to accelerate convergence of problems in transport
Monte Carlo.

The proposed quasi-Monte Carlo method based on Markov chain evaluation is a method for the
computation of the extreme eigenvalues of a matrix. This method:

e can be considered as modification of the Power Method but it avoids the L U-decomposition
and the forward and backward solving of the factored system at every iteration step in
the Inverse Power Method and Inverse Shifted Power Method. The resolvent matrix is
presented as a series. This representation permits us to use the well-known random walk
process on the elements of the matrix to compute a matrix vector product with higher pow-
ers of the given matrix. This in turns leads to a substantial reduction in the computational
effort required for solution.

e improves the convergence rate of the corresponding Monte Carlo method. Numerical tests
are performed on sparse matrices of size 128, 1024, 2000 using PRNs and Sobol, Halton
and Faure quasirandom sequences.
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Introduction

Monte Carlo methods (MCMs) are based on the simulation of stochastic processes whose expected
values are equal to computationally interesting quantities. MCMs offer simplicity of construction,
and are often designed to mirror some process whose behavior is only understood in a statistical
sense. However, there are a wide class of problems where MCMs are the only known computa-
tional methods of solution. Despite the universality of MCMs, a serious drawback is their slow
convergence, which is based on the O(N~1/2) behavior of the size of statistical sampling errors.
One generic approach to improving the convergence of MCMs has been the use of highly uniform
random numbers in place of the usual PRNs. While PRNs are constructed to mimic the behavior
of truly random numbers, these highly uniform numbers, called QRNs, are constructed to be as
evenly distributed as is mathematically possible. Indeed, pseudorandom numbers are scrutinized
via batteries of statistical tests that check for statistical independence in a great variety of ways.
In addition, these tests check for uniformity of distribution, but not with excessively stringent re-
quirements. Thus, one can think of computational random numbers as either those that possess
considerable independence, the PRNs, or those that possess considerable uniformity, the QRNs.

QRN s are constructed to minimize a measure of their deviation from uniformity called discrepancy.
There are many different discrepancies, but let us consider the most common, the star discrepancy.
Let us define the star discrepancy of a one-dimensional point set, {xn}nNzl, by

1 N
D}y = Dy(z1,...,2Ny) = sup |— Tp)—u 1
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where X[o) is the characteristic function of the half open interval [0,u). The term
>N X[0,u)(Zn) counts the number of z,’s in the interval [0,u), and thus |4 4, X[0,u)(Tn) — u}

measures the difference between the actual distribution of points in the interval [0,u) and the uni-
form distribution on [0,u). By taking the supremum we are characterizing the distribution of the
{zn },1:’:1 through it’s maximal deviation from uniformity.! The mathematical motivation for QRNs
can be found in the classic Monte Carlo application of numerical integration. We detail this for the
trivial example of one-dimensional integration for illustrative simplicity. Let us assume that we are
interested in the numerical value of I = fol f(z) dz, and we seek to optimize approximations of the
form I ~ & Y22, f(zn). A solution to the optimization of the integration nodes, {zn}_,, comes
from the famous Koksma-Hlawka inequality:

Theorem (Koksma-Hlawka, [13]): if f(z) has bounded variation, V(f), on [0,1), and z1,...,zx €
[0, 1] have star discrepancy D}, then:

<V(f)Dy, (2)
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This simple bound on the integration error is a product of V(f), the total variation of the integrand
in the sense of Hardy and Krause, and D}, the star discrepancy of the integration points. A major
area of research in Monte Carlo is variance reduction, which indirectly deals with minimizing V' (f).
Quasirandom number generation deals with minimization of the other factor.

In one dimension the star discrepancy is exactly the infinity norm of the difference between the empirical cumu-
lative distribution of the points and the exact cumulative uniform distribution. The fact that the infinity norm is
used is based on the traditional way probabilists place a metric on a space of probability measures.



The star discrepancy of a point set of N truly random numbers in one dimension is
O(N~'2(log log N)'/2), while the discrepancy of N QRNs can be as low as N~1.2 In s > 3 dimen-
sions it is rigorously known that the discrepancy of a point set with N elements can be no smaller
than a constant depending only on s times N~!(log N )(5‘1)/ 2. This remarkable result of Roth,
[19], has motivated mathematicians to seek point sets and sequences with discrepancies as close to
this lower bound as possible. Since Roth’s remarkable results, there have been many constructions
of low discrepancy point sets that have achieved star discrepancies as small as O(N~!(log N)*~1).
Most notably there are the constructions of Hammersley, Halton, [11], Sobol, [21, 1], Faure, (7, 8],
and Niederreiter, [17, 2].

While QRNs do improve the convergence of applications like numerical integration, it is by no
means trivial to enhance the convergence of all MCMs. In fact, even with numerical integration,
enhanced convergence is by no means assured in all situations with the niive use of QRNs. This
fact was born out by careful work of Caflisch and his students Morokoff and Moskowitz. They
studied the efficacy of QRNs to numerical integration, 3, 15, 16, 4], by carefully investigating the
dimensionality of the integrand and its smoothness as it impacts convergence. In a nutshell, their
results showed that at high dimensions, s => 40, quasi-Monte Carlo integration ceases to be an
improvement over regular Monte Carlo integration. Perhaps more startling was that they showed
that a considerable fraction of the enhanced convergence is lost in quasi-Monte Carlo integration
when the integrand is discontinuous. In fact, even in two dimensions one can lose the approximately
O(N~1) quasi-Monte Carlo convergence for an integrand that is discontinuous on a curve such as
a circle. In the best cases the convergence drops to O(N~2/3), which is only slightly better than
regular Monte Carlo integration.

Methods of Quasirandom Number Generation

Perhaps the best way to illustrate the difference between QRNs and PRNs is with a picture. Thus
in Figure 1 we plot 4096 tuples produced by successive elements from a 64-bit PRN generator
from the SPRNG library developed by one of the authors. These tuples are distributed in a manner
consistent with real random tuples. In Figure 2 we see 4096 quasirandom tuples formed by taking
the 2nd and 3rd dimensions from the Sobol sequence, a well known quasirandom sequence. It is
clear that the two figures look very different and that Figure 2 is much more uniformly distributed.
Both plots have the same number of points, and the largest “hole’ in Figure I is much larger than
in Figure 2. This illustrates quite effectively the qualitative meaning of low discrepancy.

The first quasirandom number sequence was proposed by Halton, [11], and is based on the Van der
Corput sequence with different prime bases for each dimension. The jth element of Van der Corput
sequence base b is defined as ¢,(j — 1) where ¢3(-) is the radical inverse function and is computed
by writing j — 1 as an integer in base b, and then flipping the digits about the ordinal (decimal)
point. Thus if j — 1 = a,...ap in base b, then ¢,(j — 1) = 0.ap...a,. As an illustration, in base
b = 2, the first elements of the Van der Corput sequence are %, 1188 5 5> While with b = 3, the
sequence begins with %, %, %, %, %, %, g, g. With b = 2, the Van der Corput sequence methodically
breaks the unit interval into halves in a manner that never leaves a gap that is too big. With b = 3,
the Van der Corput sequence continues with its methodical ways, but instead recursively divides
intervals into thirds.
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Figure 1: Tuples produced by successive elements from a SPRNG pseudorandom number generator.

2—-D Projection of Sobol’ Sequence
4096 Poi

3

nts of Sobol Sequence

T

JE S A e P

%%

0.8 ¢ T ‘—
0.7 [ ., +
0.6 »

0.5 F E

Dimension 3

0.4
03 ¢
02 f g

0.1 f

(¢] 0.1 0.2 . 04 05 06 07 08 0.9 1
Dimension 2

Figure 2: Tuples produced by the 2nd and 3rd dimension of the Sobol sequence.



Another way to think of the Van der Corput sequence (with b = 2) is to think of taking the bits in
j—1, and associating with the ith bit the number v;. Every time the ith bit is one, you exclusive-or
in v;, what we will call the ith direction number. For the Van der Corput sequence, v; is just a
bit sequence with all zeros and a one in the ith location counting from the left. Perhaps the most
popular QRN sequence, the Sobol sequence, can be thought of in these terms. Sobol, [21], found a
clever way to define more complicated direction numbers that the “unit vectors” which define the
Van der Corput sequence. Besides producing very good quality QRNs, the reliance on direction
numbers means that the Sobol sequence is both easy to implement and very computationally
efficient.

Since this initial work, Faure, Niederreiter and Sobol, [7], [18], [21], chose alternate methods based
on another sort of finite field arithmetic that utilizes primitive polynomials with coefficients in some
prime Galois field. All of these constructions of quasirandom sequences have discrepancies that are
O(N~!(log N)*), [18]. What distinguishes them is the asymptotic constant in the discrepancy, and
the computational requirements for implementation. However, practice has shown that the provable
size of the asymptotic constant in the discrepancy is a poor predictor of the actual computational
discrepancy displayed by a concrete implementation of any of these quasirandom number generators.
There are existing implementations of the Halton, Faure, Niederreiter and Sobol sequences, [1], [2],
[8], that are computationally efficient. Each of these sequences is initialized to produce quasirandom
s-tuples and each one of these requires the initialization of s one-dimensional quasirandom streams.

An extremely interesting alternative to the traditional methods for quasirandom number generation
is based on a well-known defect of the most commonly used pseudorandom number generator: the
linear congruential generator (LCG). Recall that an LCG has the following very simple form:

ZTp = aTp-1+b (mod m). (3)

When the multiplier, a, additive constant, b, and modulus, m, are chosen appropriately one obtains
a purely periodic sequence with period as long as Per(z,) = 2¥, when m is a power-of-two, and
Per(zp,) = m — 1, when m is prime. It is well known that s-tuples made up from LCGs lie
on lattices composed of a family of parallel hyperplanes, [14]. The most widely used measure of
quality for an LCG is it’s performance on the spectral test, [12]. The spectral test measures the
maximum spacing between hyperplanes that cover the lattice produced by overlapping s-tuples
from the LCG. The maximal hyperplane spacing that is produced by the spectral test, m'al,?’ isa
geometric constant uniquely defined by the multiplier and modulus of an LCG and the dimension
of the space. The spectral test is independent of the additive constant, and so it is commonly
used to measure the quality of a given multiplier-modulus pair for quadrature-like applications in s
dimensions. The s-dimensional discrepancy of a point set also measures that point set’s suitability
for use as integration nodes. Thus it should be no surprise that LCGs with good lattice properties
should produce low-discrepancy point sets. More precisely, the method of “good lattice points”
(GLP) attempts to create low-discrepancy point sets by constructing s-dimensional lattices, [20].
It has been shown that the GLP figure of merit is related to the spectral test, [6], and so LCGs
with good spectral test results are GLP integration rules when considered over their full periods.

This relationship instantly leads to a way to produce low-discrepancy point sets based on full-period
LCG tuples. Based on theoretical and implementational reasons, the moduli for LCGs are chosen
either to be powers-of-two or primes. By choosing a prime-modulus, m, for an LCG to be used
in this form of quasirandom number generation, one is implicitly choosing a point set of m — 1
s-tuples. This is clearly very restrictive. On the other hand, if one picks m = 2¥ as the LCG



modulus, then considerably more flexibility is achieved in the size of the point sets available. Let us
assume that a and b are chosen so that the {z,} produced by the LCG have the maximal period:
Per(z,) = 2*. The conditions for this are that =1 (mod 4) and b=1 (mod 2). Now consider
the j least-significant bits of the {z,} by defining y, = z, (mod 2/) with 1 < j < k. It is easy to
show that the {yn} can be produced directly by an LCG with a = a (mod 2%), b=b (mod 27),
and m = 27 in equation (3).

Since LCGs modulo a power-of-two have Per(z,) = 27, the use of overlapping s-tuples of LCGs
leads to quasirandom point sets of size 27. If one knows that approximately 2/ quasirandom points
will be required in a given calculation, this is fine. However, it is usually the case that at most
one knows only the error required in the computation, a priori. In such a situation having access
only to quasirandom point sets with power-of-two sizes seems quite restrictive. In fact, properties
of LCGs make this not nearly as problematic. Note that the conditions on a and b required to
achieve the maximal period are properties only of the least significant bits of a and b. Thus one
can choose a and b such that a =a (mod 27), b=5b (mod 27) lead to Per(z,) = 2/ for all j > 2!
Thus one can hope to find a single multiplier-additive constant pair that will provide good quality
quasirandom point sets for all reasonable powers of two.

Quasi-Monte Carlo Methods for Eigenvalue Problem

We now consider the numerical evaluation of the eigenvalues of a matrix as our model problem
for exploring the utility of QRNs in Markov chain problems. Suppose A is an n X n matrix with
eigenvalues:

|A1] > Al = ... > |Aql-

Consider the problem of evaluating one or more eigenvalues of A, i.e. the values of A for which
Au = du 4)

holds.

Here we present quasi-Monte Carlo methods for evaluating the largest and the smallest (the ex-
treme) eigenvalues of a given matrix based on well known MCMs for this problem. These methods
can be considered as modifications of the well known Power Method, [9]. However, a major differ-
ence with the power method is that these MCMs avoid the L U-decomposition and the forward and
backward solving of the factored system at every iteration step in the Inverse Power Method and
Inverse Shifted Power Method. Instead, a given matrix and its resolvent are presented compactly as
a series. This presentation permits us to use the well-known random walk process on the elements
of the matrix to evaluate the eigenvalues. This leads to a great savings in the overall computation.

Markov Chains for Eigenvalue Algorithms

Consider a matrix A = {a;;}7;_;,4 € R™", and vectors f = (f1,...,fn)! € R" and h =
(ha,. .., hn)t € R

Consider the following Markov chain:

ko — ki — ... > ki, (5)



where k; = 1,2,...,n for j = 1,...,4 are natural numbers. The rules for constructing the chain
(5) are:
Pr(ko = &) = pa, Pr(k; = plkj-1 =a) = pag. (6)
The vector p = {pa}g=; is called the initial density vector, and the matrix P = {pas}ns_, is called
the transition density matriz. In the usual MCM
1 1
Da = TL, Dap = n-

The following choice

_ |hal Qag

Poa =7 P ==, = 1,...,n. 7
=S kel P T T Jaug] (™)

corresponds to importance sampling algorithms for matrix computations - the zero elements will
never be visited and the elements with larger magnitude will be visited more often during the
random walks on the elements of the matrix.

Now define the random variables W; using the following recursion formula:

B Qk;-1k;

Wo= R W,=W;_—5=tk 51 4 8
0 pko I 7 lpkj_lkj ( )

Following [22], it is easy to show that
E{I/Vlfk;}z(h’Alf)a t=1,2,.... (9)

Extreme eigenvalues

Consider a matrix A and its resolvent matrix Ry = [[ —gA]~! € R™*". The following representation

oQ
[I-qA™ =) ¢'Chyin1, lgN <1 (10)

i=1
is valid because of the well known behavior of the binomial expansion and the spectral theory of

linear operators. The eigenvalues of the matrices R, and A are thus connected by the equality
w= T:Iq—,\‘, and the eigenvectors of the two matrices coincide.

The largest eigenvalue can be obtained as follows:

e using the Power Method applied to the matrix A:

h, A’
= .

)\ma:c = limi—)oo

e or using the Power Method applied to the resolvent matrix:

m - T —gK]™fh)
BT = qR- D, hyma = T gn

fER™ K eR™ (12)

for ¢ > 0.



For computing the smallest eigenvalue we use the fact that for negative values of ¢, the largest
eigenvalue, limqs, of R4 corresponds to the smallest eigenvalue Ap,;y, of the matrix A.

The Monte Carlo estimation for (11)) is (according to (8):

~ E{Wlsz}

/\maz ~ m (13)

The Monte Carlo estimation for the second case (when we use the resolvent matrix) is based on
the following theorem: ‘
Theorem 1. Let A, be the largest eigenvalue of the matriz A’ = {lai; 1}t =1 If q is chosen

such that | X4 < 1|, then

o0

(T - gAI™, 1) = E {z O (AL, h)} |

i=0
(The proof of this theorem can be found in [5]. )
After some algebraic manipulations one can obtain
L
q pm) (I — qAl=™f, h)
Ey2.¢~ IC:+71n 2Wif(zi) _ _EYi ¢ f+m—1Wi+1f(mi)
Ez—Oq +m 1Wf($1) Ezn Oq z+m 1Wif(xi) ’

(14)
where Wy = Z—:Q and W; are defined by (8). The coefficients C?, ,,, are calculated using the relation:
0

1 _ i i—1
Ci+m - Yi+m-—1 + Cz+m—

Remark

We remark that for (11) the length of the Markov chain [ is equal to the number of iterations i
in the Power Method. However in (12) the length of the Markov chain is equal to the number of
terms in truncated Neumann series for the resolvent matrix. In this second case the parameter m
corresponds to the number of the iterations.

QRN Sequences for Power method
Using the following procedure:

=[0,n)

Gi=li-14), i=1,...,n
flx)=fi, z€Gsi=1,...,n
a(z,y) = aij,r € G,y € Gj, 1,7=1,...,n
h(z)=h;, z€Gi,i=1,...,n,

we can consider computing hT A'u to be equivalent to computing a (i + 1)-dimensional integral.



First consider the scalar product h” Af bearing in mind that the vectors h, f and the matrix A are
normalized with factors of 1/4/n and 1/n respectively. In this case

Wodnsn = [ [ eoe.p)r@)idy =33 / / g fydedy = 3 3 hiassfyvs

i=1j=1 i=1j=1

where v;; = —7 is the volume of the Boxz(ij) = [, 1) x |

n’n) n’n)

On the other hand, consider a two-dimensional sequence of N points (x5, ys), then

1

N
R SUCICNAYISES D SN MR COCRAI R

# of boxes (xs,ys)€Box(ij)

_(Z Z hia;j fi[# of points in Box(ij)]).

i=1j5=1

Thus, the difference between the scalar product and its estimated value becomes:

IhWNANFN — - Z h(zs)a(zs,ys) f (ys)| = IZ Z hiai; £ (vij — [# of points in Boz(ij)])| <

i=1j=1

n

n n n
33 lhiaij (15 — 55 [# of points in Boz(ig))| < 3°° hsas; 51Dy = n[714IIf1.D,

=1 J=1 i=1] 1

where || = {|hi[}iL1, A = {lay|}7=1 and |f] = {|fil}y
Finaly, we have

KN ANfN — < Z h(zs)a(zs,ys) f (ys)| < |h[T| Al fI. DR (15)
s 1

Analogously, considering hT A'f and I + 1-dimensional sequence we have

N
WG AN S = 5 3 h(:)a(@s, ) . alze,ws) (ws)] < W[T|AL|1.D} (16)
s=1

Let A be a general sparse matrix with d; nonzero elements per row. The following mapping
procedure corresponds to importance sampling approach:

=[0,1)
S e S laa]

=

. : ), i=1,...,n, j=1,...,d
Yoy law! g lawl T T

and summation on ¥’ means summation only on nonzero elements.

a(z,y) = aij, g, t=1,...,m, 5=1,...,d.

Often, the vectors f and h are chosen to be (1,1,...,1),s0 h(z) =1,z € G, f(z) =1,z € G. In



Relative Error versus Length of Markov Chains

(matrix of order n=128)
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Figure 3: Relative errors in computing Apmq, using different length of Markov chr:,mins for a sparse
matrix 128 x 128. The random walks are realized using PRN and Faure, Sobol and Halton se-
quences.

this case after similar calculation we prove that the bound on the error (for non-normalized matrix)
is given by:

1 X
IKTAf = 5 3 W(s)alza,ye)f(us)] < (d]lAl)' D,
s=1
where d is the mean value of the nonzero elements per row, [ is the length of the Markov chain,
Dy, is the star discrepancy of the sequence used, and ||A]| < 1.

Some Numerical Results

When we replace PRNs with QRNs in this situation, so as to carefully control the process so we
may rigorously analyze the convergence, we see an improvement in convergence. The computational
complexity is O(IT'), where [ is the length of the Markov chains and 7" is the number of the chains.

Numerical tests are performed on general sparse matrices of size 128, 1024, 2000 using PRNs and
Sobol, Halton and Faure quasirandom sequences. The test matrices are sparse and stored in packed
row format (i.e. only nonzero elements are kept). The estimated Apmgz and the corresponding
relative errors are presented on Tables 1, 2 and 3. The exact value of Amaz for all test matrices is
64.0000153. The results show improvement of the accuracy. Numerical experiments using Resolvent
MC method have been also performed - the relative errors in computing Amqe using Markov chains
with different length are presented on Figures 3, 4, and 5.

The relative errors in computing hT A* f with A a sparse matrix of order 2000, are presented in
Figure 4. The number of Markov chains, N, is 20000 and the length of the chains is equal to k. The
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Relative Error versus Length of Markov Chain

(matrix of order 1024)
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Figure 4: Relative errors in computing Ap,, using different length of Marl::ov chains for a sparse
matrix 1024 x 1024. The random walks are realized using PRN, Faure, Sobol and Halton sequences.

Relative Error versus Length of Markov Chain
(matrix of order 2000)
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Figure 5: Relative errors in computing Az using different length of Markov chains for a sparse
matrix 2000 x 2000. The random walks are realized using PRN, Faure, Sobol and Halton sequences.
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. . . Tak
Relative Errors in Computing h' A'f
(for sparse matrix 2000 x 2000)
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Figure 6: Relative errors in computing hT A*f for k = 1,2, ..., 10 for a sparse matrix 2000 x 2000.
The corresponding Markov chains are realized using PRN, Sobol and Halton sequences.

Table 1: Results for a matrix 128 x 128 using Monte Carlo iterations with PRNs and QRNs. The
length of the Markov chains is 5 and the number of chains is 1280.

PRN | QRN (Faure) | QRN (Sobol) | QRN (Halton)
Estimated
Amaz 61.2851 63.0789 63.5916 65.1777
Relative
Error 0.0424 | - 0.0143 0.0063 0.0184

results confirm that the Sobol and Halton quasirandom sequences produce higher precision results
than similar length pseudorandom sequences. The more important fact is the smoothness of the
quasirandom ”iterations” with k. This is important because these eigenvalue algorithms compute
a Raleigh quotient which requires the division of values from consecutive iterations. Another
important feature of quasi-Monte Carlo methods is the increased smoothness of convergence as
the number of samples increases. This property is not readily apparent on the figure, but will be
verified in future work.

Conclusions and Future Work

In this short paper we have presented a very idiosyncratic overview of the current state of quasi-
Monte Carlo methods. To date, QRNs have shown their greatest effectiveness in convergence
acceleration with the evaluation of numerical integrals where the dimensionality of the integrand
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Table 2: Results for a matrix 1024 x 1024 using Monte Carlo iterations with PRNs and QRNs. The
length of the Markov chains is 6 and the number of chains is 1280.

PRN | QRN (Faure) | QRN (Sobol) | QRN (Halton)
Estimated
Amaz 67.0243 57.7299 65.9630 61.6351
Relative
Error 0.0472 0.0979 0.0306 0.0369

Table 3: Results for a matrix 2000 x 2000 using Monte Carlo iterations with PRNs and QRNs. The
length of the Markov chains is 8 and the number of chains is 20000.

PRN | QRN (Faure) | QRN (Sobol) | QRN (Halton)
Estimated ’
Amaz 58.8838 62.7721 65.2831 65.377
Relative
Error 0.0799 0.01918 0.0200 0.0215

was not too big, and the integrand was smooth. There are clearly many situations where MCMs
can be recast into such a form, but in many areas, such as transport Monte Carlo, the natural
mathematical setting for the problem is a Markov chain. In this paper we have taken a simple
MCM involving Markov chains and have shown that in this example QRNs can, in fact, accelerate
convergence. Moreover this examples was consistent with other quasi-Monte Carlo applications
where QRNs are known to provide results that have much smaller extreme excursions than results
with PRNs. The results in this paper, though preliminary in nature, are compelling, and should
be used by the reader to motivate their interest in the application of QRNs to more problems
involving both discrete and continuous Markov chains. We hope that in the future we will publish
a more extensive analysis of the effectiveness of QRNs for this problem. In addition, we hope to
have more results that show the effectiveness of QRNs in accelerating the convergence of MCMs
based on Markov chains. More importantly, we also hope to provide analysis of the many different
ways that QRNs may be applied to particular Markov chain problems in order to establish both
the rigorous basis as well as the intuition behind the best practices of applying QRNs to Markov
chain problems. :
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