
Monte Carlo Methods for the Linearized

Poisson-Boltzmann Equation

Chi-Ok Hwang, Michael Mascagni and Nikolai A. Simonov a,b,c

aComputational Electronics Center, Inha University, 253 Yonghyun-Dong
Nam-Gu, Incheon 402-751, South Korea E-mail: chwang@hsel.inha.ac.kr
bDepartment of Computer Science and School of Computational Science and

Information Technology (CSIT FSU), Florida State University, 400 Dirac Science
Library, Tallahassee, FL 32306, USA, E-mail: mascagni@cs.fsu.edu

cInstitute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk 630090, Lavrentjeva 6, Russia, and CSIT FSU, 400 Dirac Science

Library, Tallahassee, FL 32306, USA, E-mail: nas@osmf.sscc.ru

Abstract

We review efficient grid-free random walk methods for solving boundary value prob-
lems for the linearized Poisson-Boltzmann equation (LPBE). First we introduce the
“Walk On Spheres” (WOS) algorithm [1] for the LPBE. Based on this WOS algo-
rithm, another, related, Monte Carlo algorithm is presented. This modified Monte
Carlo method reinterprets the weights used in the original WOS algorithm as sur-
vival probabilities for the random walker used in the computation [2]. In addition,
a Feynman-Kac path-integral implementation for solving the LPBE is given [3].
This Feynman-Kac approach uses the WOS method to provide a technique for es-
timating certain Gaussian path integrals without the need for simulating Brownian
trajectories in detail. We then similarly interpret the exponential weight in the
Feynman-Kac formula as a survival probability. It is then shown that this method
is mathematically equivalent to the previous modified WOS method for the LPBE.
The effectiveness of these methods is illustrated by computing four analytically
solvable problems. In all four cases, excellent agreement is shown. In particular, for
the problem of calculating the electrostatic potential in an electrolyte between two
infinite parallel flat plates, our modified WOS method is compared with the old
WOS method and with our Feynman-Kac WOS (FK WOS) method. Our modified
WOS method is the most efficient one, but FK WOS method holds the promise of
extension to more complicated equations such as the time-independent Schrödinger
equation. Finally, we illustrate the use of a Monte Carlo approach for the LPBE
in a more complicated setting related to the computation of the electrostatic free
energy of a large molecule. Here, we couple the LPBE solution in the exterior of a
compact domain (molecule) with the solution of the Poisson equation inside, and
with continuity boundary conditions linking these two solutions. The Monte Carlo
method performs quite well in this complicated situation.
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1 Introduction

The classical approach for treating a solution with ions dissolved in a solvent
is to consider this electrolyte solution as a continuous medium with some
constant permittivity, ε. From statistical mechanics considerations, ions should
be distributed according to the Boltzmann law. This approach gives rise to
the Poisson-Boltzmann equation (PBE) [4]:

∇ε∇ψ = −∑

i

(n0
i zie) exp(− zie

kBT
ψ) . (1)

Here, e, kB, and T are the electron charge, Boltzmann’s constant, and the
absolute temperature respectively. Above, zi and n0

i represent the valence and
the bulk concentration of the ith species of ion.

For small potential values, Eq.1 may be simplified, thus leading to the lin-
earized Poisson-Boltzmann equation:

∆ψ(x) = κ2ψ(x) . (2)

Here, κ, the inverse Debye length, is defined as

κ =

√
Σi

n0
i z

2
i e

2

kBTε
. (3)

Despite some significant recent progress [5–8] in computational methods for
solving the original PBE, the LPBE is still far more amenable to numerical
treatment.

One of the possible ways to solve the LPBE by a Monte Carlo method is to
randomize a finite-difference algorithm. When applied to the LPBE and other
elliptic equations, this approach leads to a discrete random walk on a grid
algorithm [9,20]. At every step of this algorithm, the ‘walker’ either moves
to one of the neighboring sites, or stays put , with some predetermined prob-
abilities. Finally, with probability one (for a bounded domain) the random
walker hits the boundary. There, if Dirichlet boundary conditions are con-
sidered, known point values of the solution can be used. In the case of the
LPBE, the parameter κ’s influence is taken into account through a multi-
plicative statistical weight. The other approach is to relate κ2 to the survival
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probability of the random walker [11]. This probabilistic interpretation of κ2

can be also extended to continuous random walk methods once we know the
survival probability distribution function of a random walker in continuous
space. Note, that when κ2 in (2) is zero, the problem becomes the Dirichlet
problem for the Laplace equation.

It is well known that averages over Markov processes with continuous trajec-
tories can be used to solve partial differential equations [12]. The most well-
known implementation of these methods is the “Walks on Spheres” (WOS)
Monte Carlo method. In WOS, the Markov process is not simulated in detail in
the free-diffusion region; instead discrete jumps are made using the Brownian
first-passage distribution function, which is uniform on a spherical surface with
respect to its center. To terminate discrete WOS jumps, an ε-absorption layer
of the boundary is introduced, that is, when a walker enters this ε-absorption
layer, the walk is terminated by choosing a terminal boundary point closest
to the point in the ε-absorption layer (usually the point in the ε-shell lies on
the normal taken from the chosen boundary point). The WOS method for the
Dirichlet problem for the Laplace and other elliptic equations has been widely
used [13–19]. In this article, we show that the WOS algorithm also can be
combined with the interpretation of weight factors as survival probabilities,
thus incorporating the term involving κ2 in the LPBE.

The rest of the paper is organized as follows. In §2, we introduce the “Walk
On Spheres” algorithm for the LPBE [1]. Based on WOS, another, related,
Monte Carlo algorithm is presented. This Monte Carlo method reinterprets
the weights used in the original WOS algorithm as survival probabilities for
the random walker used in the computation. The efficiency of this method is
illustrated by computing four analytically solvable problems. In all four cases,
excellent agreement is shown. In the case of one of the four problems, the
electrical potential in an electrolyte between two infinite parallel flat plates,
our modified WOS method is compared with the old WOS method and shows
better performance. In §3, the Feynman-Kac path-integral implementation for
solving the LPBE is given. This Feynman-Kac approach uses the WOS method
to provide a technique for estimating certain Gaussian path integrals without
the need for simulating Brownian trajectories in detail. We then similarly in-
terpret the exponential weight in the Feynman-Kac formula as a survival prob-
ability, the same way as when we performed a modified WOS step. It is then
shown that this method is mathematically equivalent to the previous modified
WOS method for the LPBE [2]. This FK WOS method is somewhat slower
than our modified WOS method, but shows the promise of extension to more
complicated equations such as the time-independent Schrödinger equation. In
§4, we investigate the relationship between the running time and the thickness
of the ε-absorption layer, and the error associated with the ε-absorption layer
in both the modified WOS and the FK WOS, and present some numerical
illustrations. Next, in §5 we describe the use of this Monte Carlo LPBE solver

3



in a more complicated setting related to the computation of the electrostatic
free energy of a large molecule. Here, we couple the LPBE solution in the ex-
terior of a compact domain (molecule) with the solution to a Poisson equation
inside, continuity boundary conditions link these two solutions. The Monte
Carlo method performs quite well in this complicated situation. Conclusions
are given in §6.

2 Modified “Walk On Spheres”

In this section 1 , we introduce the “Walk On Spheres” (WOS) algorithm [1]
for the LPBE and present a new modified WOS method to solve the LPBE
by reinterpreting the weight function.

Consider the first boundary value problem (Dirichlet problem) for the LPBE
in the domain Ω ⊂ R3:

∆ψ(x) = κ2ψ(x) , x ∈ Ω , (4)

ψ(x) = ψ0(x) , x ∈ ∂Ω . (5)

The “Walk On Spheres” is defined as follows [1]. To find the solution of the
LPBE at some point x0 ∈ Ω, a Markov chain {P 0, P 1, P 2, . . .} of points inside
the domain Ω is constructed. The starting point, P 0, is set to x0. Given the
previous point P k, k ≥ 0, the next is simulated isotropically on the surface of
the sphere S(P k, dk), i.e. P k+1 = P k + dkωk. Here, ωk ∈ R3 are independent
isotropically distributed random vectors of unit length; dk is the radius of kth
sphere, which is equal to the distance from the point P k to the boundary, ∂Ω.
Then (with probability one),

ψ(x0) =Eξ + δ(ε) = lim
N→∞

1

N

N∑

i=1

ξi + δ(ε) , (6)

ξi = Qni
i ψ0(Xni

) ,

where

Q0
i = 1, Qm

i = Qm−1
i

dm−1
i κ

sinh(dm−1
i κ)

, m = 1, 2, . . . , ni . (7)

1 This section is based on: C.-O. Hwang and M. Mascagni, “Efficient Modified
“Walk On Spheres” Algorithm for the Linearized Poisson-Boltzmann Equation,”
Appl. Phys. Lett. 78, 787 (2001).
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Fig. 1. The survival probability density function; d is the magnitude of the WOS
step in the free diffusion region, and κ is the inverse Debye length.

Here, N is the total number of diffusing random walkers (simulated Markov
chain trajectories); i refers to ith random walker; the point on the boundary
Xni

is the nearest to the position P ni
i where the ith random walker is absorbed

in the ε-layer after a random ni WOS steps; δ(ε) is the bias in the estimate
due to the finite thickness of the absorption layer.

If we interpret Qni
i as the survival probability of the ith random walker,

N∑

i=1

Qni
i

is the mean total number of survived-and-absorbed random walkers (for a
given ensemble of trajectories). Furthermore, only the survived-and-absorbed
random walkers can be regarded as contributors to the solution. This reinter-
pretation of the weight function as a survival probability distribution function
is a kind of the fractional sampling method, i. e. ‘Russian Roullete’ [20], which
has been used extensively in neutron transport and similar problems. The sur-
vival probability of a random walker in a continuous and free diffusion region
is given at every step of the Markov chain simulation by the weight factor [1]:

p(d) = dκ/ sinh(dκ), (8)

where d is the radius of maximal sphere in the free diffusion region. Fig. 1 shows
this probability density function. We modify the WOS method to incorporate
the survival probability to solve the LPBE via a continuous random walk
method. This probability combined with the WOS method is used to remove a
random walker (to terminate the Markov chain trajectory) by the acceptance-
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rejection method [20]. We generate a random number, η in [0, 1) when we
perform a WOS step, and compare η with p(d), the survival probability at d,
the radius of the current sphere in WOS. If η > p(d), the random walker is
removed at this WOS step.

The estimate for the solution of the LPBE at x0, the starting point of the
Markov chain, is given by SN :

SN =
1

N

Ns∑

i=1

ψ0(Xni
). (9)

Here, N is the total number of random walkers, Ns is the number of survived-
and-absorbed random walkers, and Xni

is the final position of the walker on
the boundary when it is absorbed after ni WOS steps. In this method, like the
WOS method, errors are due to both statistical sampling and the ε-absorption
layer which captures random walkers near the boundary to terminate the
construction of the Markov chain. However, the error from the ε-absorption
layer can always be made smaller than the statistical error [15,16]. On the
same random walk, estimating the solution for different values of ε allows
one to approximate δ(ε), the error as a function of ε [14]. On the one hand,
by adjusting ε, we can make the error from the absorption layer less than
the statistical error. This means that if we increase the number of random
walkers in order to decrease the statistical error, consequently we must reduce
ε, and thus increases the running time, as O(log ε) [14]. On the other hand, if
one fixes the desired accuracy, then the bias and the statistical error can be
adjusted to have the same order. This means that it is theoretically possible
to choose the number of random walkers, N , beforehand.

In the following, we compare our simulation results with the known analytic
results for four problems [2], which were used as test problems for the discrete
random walk method [11]. The problems are to find the solution of the first
boundary-value problem for the LPBE (4),(5) in four different domains: a)
outside of a charged sphere with the radius of the unit Debye length; b) away
from the infinitely long cylinder with the radius of the unit Debye length;
c) away from the infinite flat surface; d) between two parallel flat plates 3
Debye lengths apart from each other. In all cases, the results are given as
those normalized by the constant boundary condition, ψ0, which is assumed
to be sufficiently small for the LPBE to be valid. The number of random walks
used for computing the solution at a point is 105, and the absorption layer
thickness is ε = 10−4. The analytic results [11] are shown with solid lines in
Fig. 2 and our simulation results with circles. For all four cases, our simulation
results show excellent agreement.

Our method has several features. First, it is easier to implement and is ex-
pected to be faster than the other discretized methods, such as the discrete
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Fig. 2. The solid lines are the analytic solutions and the circles are the simulation
results with 105 random walks and the width of absorption layer, ε = 10−4. Here,
κ is the inverse Debye length. (a) Electric potential away from the surface of a
charged sphere in an electrolyte; Here, r is the distance from the surface of the
sphere with unit radius. (b) Electric potential away from an infinitely long charged
cylinder in an electrolyte; Here, r is the distance from the surface of the cylinder
with unit radius. (c) Electric potential away from an charged infinite flat plate in
an electrolyte; Here, r is the distance from the plate. (d) Electric potential in an
electrolyte between two infinite charged parallel flat plates; Here, r is the distance
from the mid-point between two plates.

random walk method [11], the finite difference method [21] and the boundary-
element method [22], especially with complicated geometries. For the solution
at a point, it takes only a few seconds to compute it with 105 random walkers
and ε = 10−4 on a 550 Mhz PC. However, it is hard to compare this method
to other methods because they compute solutions at all grid points. We can
safely say that continuous Monte Carlo methods are more efficient when the
solution is required only at relatively small number of points. Secondly, the ac-
curacy and the running time of our method depends primarily on the number
of statistical samples. Naturally, these samples can be simulated in parallel.
Thirdly, it is certain that our method is faster than the old WOS method [1],
because while some of our random walkers are removed during the simulation,
in the old method all trajectories must be completed and contribute to the
solution according to the calculated weights. Also, in the unbounded domain
cases, like the three examples, not the parallel plates, it is necessary to use

7



Table 1
The computational cost comparison of our algorithm with the old modified WOS
in the case of parallel plates at the mid-point; the variances are obtained from 100
independent runs, the number of random walks per run is 105 and the width of
absorption layer, ε = 10−4.

method CPU time per run variance computational cost

(secs) (10−7) (10−6)

old method 13.47 4.63 6.24

our method 2.97 19.8 5.88

a certain cut-off in the old modified WOS [1] to kill random walkers, which
will bias the results. As an example, in Table 1, for the case of the parallel
plates, we compare our method with the old modified WOS method [1]. We
use a conventional comparison criterion for the Monte Carlo methods, the
computational cost (or time consumption) [23,20]: t × σ2[ξ], where t is the
CPU time needed to calculate a single sample of the estimate, and σ2[ξ] is the
variance of the estimate. The less laborious the algorithm, the more efficient
it is. The computational results in Table 1 show that the computational cost
of our algorithm is less than that of the old modified WOS method. Finally,
our method is easy to extend to solve the LPBE with source terms.

3 Feynman-Kac “Walks on Spheres”

In this section 2 , we present a new modified WOS method for solving the
Dirichlet problem for the LPBE based on the Feynman-Kac formula [3]. In
addition, we show that this method is mathematically equivalent to our pre-
vious modified WOS method [3]. According to the Feynman-Kac formula, the
solution to the first boundary value problem for the LPBE at the point x0

is [12,24]

u(x0) = E[ψ0(X(τ∂Ω)) exp{−
τ∂Ω∫

0

κ2dτ}] , (10)

where X(τ) is a Brownian motion trajectory, τ∂Ω = inf{τ : X(τ) ∈ ∂Ω} is the
first-passage time of this trajectory, and X(τ∂Ω) is the first-passage point on
the boundary. If we use a series of WOS steps to construct a Brownian path

2 This section is based on: C.-O. Hwang, M. Mascagni and J.A. Given, “A Feynman-
Kac Formula Implementation for the Linearized Poisson-Boltzmann Equation,”
Math. Comput. Simulation. submitted, (2002)

8



0 1 2 3 4 5 6 7 8 9 10
dκ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

κ)

Feynman−Kac
Elepov−Mikhailov 

Fig. 3. The survival probability density function; the dashed line shows the survival
probability from the Feynman-Kac solution representation [12,24] with only the first
moment of the first passage time distribution function; the solid line is the survival
probability from the Elepov-Mikhailov solution representation [1]; d is the distance
of a random walker from the starting position, and κ is the inverse Debye length.

with only the first moment of the first passage time distribution function (see
e.g. [17]), the corresponding survival probability (Feynman-Kac in Fig. 3) is

exp(−κ2r2/6) , (11)

where r is the radius of each WOS (see Fig. 3 to compare with the previ-
ous Elepov-Mikhailov removal probability). The survival probability from the
Feynman-Kac formula using the mean of the first passage time can be used
only when r is small enough (less than 1 in units of κ−1). If r is large, the
entire first passage time distribution function (see Fig. 4)

P (t′) = 1 + 2
∞∑

n=1

(−1)n exp(−n2π2t′), (12)

should be used, not just the mean. Here, t′ = Dτ/r2 where D is the diffusion
constant (in the LPBE, D = 1), τ is the first passage time, and r is the radius
of the WOS step. To use this distribution function, we tabulate it.

At every WOS step, after sampling t′, the corresponding survival probability
is obtained. The survival probability is compared with a random number in
[0, 1) and if the random number is greater than the survival probability, the
random walker is removed at this WOS step: the acceptance-rejection method.
The estimated solution of the LPBE at x0, where the random walkers start,
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Fig. 4. The first passage time distribution function for spheres with respect to the
normalized time t′: here, t′ = Dτ/r2 and D = 1 is the diffusion constant, τ is the
first passage time, and r is the radius of the sphere.

is

E(x0) =
1

N

Ns∑

i=1

ψ0(Xni
). (13)

Here, N is the total number of random walkers, Ns is the number of survived-
and-absorbed trajectories, and Xni

is the nearest point on the boundary to
where the walker hits the ε-absorption layer for the first time, ni is the random
number of WOS steps in the ith trajectory. Mathematically, this new survival
probability density function derived with the entire first-passage time distribu-
tion function, is equivalent to the previous survival probability density for the
following reason: the expected value of the exponential weight factor at every
WOS step in our new Feynman-Kac formula implementation with respect to
the entire first-passage time distribution function is equivalent to the previ-
ous Elepov-Mikhailov survival distribution function. To show it, we compute
the average of the exponential weight factor, exp(−t′κ2r2) (for D = 1), with
respect to the probability density of t′:

∞∫

0

exp(−t′κ2r2)dP (t′) = 2
∞∑

n=1

(−1)n(−n2π2)

∞∫

0

exp[−(n2π2 + κ2r2)t′]dt′

=−2
∞∑

n=1

(−1)n

1 + κ2r2/(n2π2)

=
κr

sinh(κr)
. (14)
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Fig. 5. The solid lines are the analytic solutions and the circles are the simulation
results with 106 random walks and the absorption layer ε = 10−4; here, κ is the
inverse Debye length. (a) Electric potential away from the surface of a charged sphere
in the electrolyte; here, r is the distance from the surface of the sphere with unit
radius. (b) Electric potential away from the infinitely long charged cylinder in the
electrolyte; here, r is the distance from the surface of the cylinder with unit radius.
(c) Electric potential away from the charged infinite flat plate in the electrolyte; here,
r is the distance from the plate. (d) Electric potential in the electrolyte between
two infinite charged parallel flat plates; here, r is the distance from the mid-point
of the plates.

This is the same as the survival probability in our previous modified WOS
method [2].

The efficiency of this method is illustrated by computing the same four ana-
lytically solvable problems that were considered in the previous section. We
compare our simulation results with known analytic expressions [11]. In all
cases, the results are normalized by the boundary condition, ψ0. The num-
ber of random walks used for finding the solution at a point is 106, and the
absorption layer thickness is ε = 10−4. In Fig. 5 the analytic results [11]
are shown with the solid lines and our computed results are represented by
circles. For all four cases, our simulation results show excellent agreement.
Also, in the case of the electric potential in an electrolyte between two infi-
nite charged parallel flat plates, we compare the FK WOS algorithm with our
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previous one. The FK WOS method is slower because of the computational
time spent on the interpolation routine when sampling t′. In Table 2, running
times are given for the case when the piecewise linear interpolation is used
to sample t′. While this method is somewhat slower than our previous one,
it holds the promise of extension to more complicated equations such as the
time-independent Schrödinger or Bloch equations.

4 Error and Running Time

In this section 3 , we investigate the relationship between the running time
and the thickness of the ε-absorption layer, and the error associated with
the this layer in both the modified WOS and FK WOS algorithms, and give
numerical illustrations. There are two error sources in these methods; the error
associated with the number of trajectories (sampling error), and the error
associated with the ε-absorption layer. We can reduce the statistical sampling
error by increasing the number of trajectories. The error associated with the
ε-absorption layer can be reduced by reducing ε, the layer thickness. However,
increasing the number of trajectories will increase the running time linearly,
while reducing ε will increase running time as O(| log ε|) [14]. In the case of FK
WOS in Fig. 6 (a), we see the usual logarithmic relationship between running
time and the thickness of the ε-absorption layer. The reason for this is that
the running time increases proportionally to the number of WOS steps, ni,
which is itself O(| log ε|) [14]. This relation holds even though some of the
trajectories are terminated during the WOS steps.

The error from the ε-absorption layer can be investigated empirically if we have
enough trajectories so that the statistical sampling error is much smaller than

3 This section is based on: C.-O. Hwang, M. Mascagni and J.A. Given, “A Feynman-
Kac Formula Implementation for the Linearized Poisson-Boltzmann Equation”,
Math. Comput. Simulation submitted, (2002)

Table 2
Running time comparison of the Feynman-Kac WOS algorithm with our previous
modified WOS in the case of computing the potential in the middle between parallel
plates; the number of random walks per run is 106 and the width of absorption layer,
ε = 10−4. Both computations were performed on a 550 MHz Pentium workstation.

method CPU time per run (secs)

previous method 48.9

new method 64.5
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Fig. 6. Running time versus the thickness of the ε-absorption layer and error arising
from the ε-absorption layer in Feynman-Kac WOS. (a) Running time versus the
thickness of the ε-absorption layer with 106 Brownian trajectories in the case of
computing the potential in the middle between the parallel plates. This shows the
usual relation for WOS: running time (proportional to number of WOS steps for
each Brownian trajectory) is O(| log ε|). (b) Error arising from the ε-absorption layer
with 108 Brownian trajectories in the case of parallel plates in units of κ−1. The
error is linear in ε.

the bias from using the ε-absorption layer [26]. Fig. 6 (b) shows the empirical
results with 108 Brownian trajectories: the ε-layer error grows linearly in ε for
small ε just as in the case of the Dirichlet problem for the Laplace or Poisson
equations [26]. The reason is that for small ε the probability of terminating a
Brownian trajectory is linear in ε.

5 Biochemical Application

In this section 4 , we consider the problem of calculating the internal energy
of a molecule. To be more exact, we will calculate the electrostatic energy –
the internal energy for non-bonded electrostatic interactions between atoms
constituting a large molecule.

In biochemical applications, one of the possible and widely used electrostatic
models is a continuum model. For a given charge distribution ρ(x), the elec-
trostatic potential is determined as a solution to Poisson’s equation

−∇ε∇ψ(x) = ρ(x) , x ∈ R3 , (15)

where ε is a position-dependent permittivity. In bio-molecular applications,

4 This section is based on: M. Mascagni and N.A. Simonov, “Monte Carlo Method
for Calculating the Electrostatic Energy of a Molecule”, presented at ICCS-2003,
St.Petersburg, Russia, June 2-4, 2003. To be published in LNCS by Springer-Verlag.
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the geometry of a problem is taken into account by thinking of a molecule as
a cavity with point charges and constant ε inside. The exterior is modelled as
a dielectric medium with different permittivity and some charge distribution.
We assume that the molecule in question can be described as a compact set
Ω ∈ R3 constructed of a large number of intersecting balls (atoms). Every
spherical atom has its electrical charge, qm, which is positioned at its center,
xm, and rm is the radius of this atom. Hence, the electrostatic potential, ψ(x),
satisfies Poisson’s equation (15) inside Ω for the particular charge density

ρ(x) =
M∑

m=1

qmδ(x− xm). Here, the dielectric permittivity, ε = εi, is constant.

The potential can be represented as the sum of two functions:

ψ(x) = ψ(0)(x) + g(x) , (16)

where g(x) =
M∑

m=1

qm

4πεi

1

|x− xm| . From (16) and (15) it follows that ∆ψ(0)(x) =

0 in Ω, and the boundary values of ψ(0) are equal to ψ(x)−g(x). If the molecule
is surrounded by some dielectric (e.g. water), the classical approach is to treat
this surrounding medium as continuous with some constant permittivity, εe.
The distribution of dissolved ions determines the charge density outside Ω,
which leads to the non-linear Poisson-Boltzmann equation (1) in the exterior
domain G1 ≡ R3 \G. Linearizing it for small potential values, we come to the
LPBE (2), where k is determined by (3) with the permittivity εe.

Equations (15) and (2) must be coupled by continuity conditions on the bound-
ary of the molecule:

ψi(y) = ψe(y) , εi
∂ψi

∂n(y)
= εe

∂ψe

∂n(y)
, y ∈ ∂G . (17)

Here, for convenience, we denote ψi as the solution to (15) in the interior of
Ω, and ψe as the solution of (2) in the exterior of the molecule. We assume
also that ψe(x) → 0 as |x| goes to infinity.

In the linear case the electrostatic free energy of the molecule is given by [27]:

E =
1

2

M∑

m=1

ψmqm , (18)

where ψm is the non-singular part of the electrostatic potential at the center
of the m-th atom. This means that in the calculation of E we exclude the
infinite self-energy of the point charges, and take ψm = ψ(0)(xm).

To find the energy, E, we construct a Monte Carlo algorithm based on the
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properties of Brownian motion. Denote by ξ[E] a Monte Carlo estimate for
E. We represent it as a weighted sum of estimators for point values of the
potential:

ξ[E] =
1

2

M∑

m=1

ξ[ψm] qm .

Construction of every ξ[ψm] = ξ[ψ(0)](xm) is based on the simulation of a
WOS Markov chain {x(j)

m , j = 0, 1, . . . , Nm} with initial point x(0)
m = xm,m =

1, . . . , M and random length Nm. The geometry of the domain Ω makes it
possible to simulate exit points x(Nm)

m ∈ ∂Ω exactly. So we have

ψm = E
[
ψ(x(Nm)

m )− g(x(Nm)
m )

]
. (19)

To estimate the unknown boundary values, we make use of the boundary
conditions (17). We implement a finite-difference approximation (step h) to
the normal derivative and randomize the resulting relation between the values
of u at three points: on the boundary (y0), inside Ω at the distance h along
the normal vector (y1), and outside the domain at the same distance from the
boundary (y2). This means that if the WOS Markov chain inside Ω terminates

at the point y0 on the boundary, we choose, with probability p =
εi

εi + εe

, the

next point to be y1, and with the complementary probability we jump outside,
to the point y2. The solution at an interior point is estimated by the WOS
algorithm for the Laplace equation, and exterior points use the modified WOS
for the LPBE. The constructed Markov chain is terminated with probability
1 − p(d) at every WOS step in the exterior, where p(d) is the WOS survival
probability determined by (8). By (19), input in the estimate is made every
time the WOS comes to the boundary from inside.

To test the proposed algorithm, we applied the constructed Monte Carlo esti-
mate to solving several simple model problems. We consider first the simplest

case, a spherical (one-atom) molecule. The analytical solution scaled by
q2

4πεiR
is [28]

E =
εi

εe(1 + kR)
− 1 .

For the chosen parameters εi = 4.0, εe = 78.5, k = 0.104, one obtains the exact
value, −0.9538. Our calculations provided the result −0.9536 in 418 seconds
(on 1300 MHz PC workstation). For the calculation parameters ε = h2 = 10−6

and N = 10000, both the bias and the statistical error are equal to 9.6× 10−4

(i.e. 0.1%). (We assume the statistical error is equal to two standard errors).
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Note that the computation ensuring one per cent error (ε = 10−4, N = 120)
takes only 0.4 seconds.

Further, we consider a model molecule constructed of two equal unit spheres
with unit charges of opposite signs. The distance between the centers is set to
be 1.5. With the same parameters as were used for a spherical molecule, we
obtained the result −0.3430 with 1% accuracy in 488 seconds.

6 Conclusions

In this article, we reviewed efficient grid-free random walk methods for solv-
ing the first boundary value problem for the linearized Poisson-Boltzmann
equation. First, we introduced the “Walk On Spheres” (WOS) algorithm [1]
for the LPBE. Based on this WOS algorithm, another, related, Monte Carlo
algorithm was presented. This Monte Carlo method reinterprets the weights
used in the original WOS algorithm as survival probabilities for the random
walker used in the computation. In addition, the Feynman-Kac path-integral
implementation for solving the LPBE was given. This Feynman-Kac approach
uses the WOS method to provide a technique for estimating certain Gaussian
path integrals without the need for simulating Brownian trajectories in detail.
In this modified WOS method, a Brownian trajectory is constructed as a series
of WOS steps, and the exponential weight factor at every WOS step is reinter-
preted as a survival probability. Here, this factor is the averaged weight with
respect to the entire first-passage time distribution function. It was shown
then that this method is mathematically equivalent to the previous modified
WOS method for the LPBE [2].

The efficiency of these methods was illustrated by computing solutions of
four analytically solvable problems. In all four cases, excellent agreement was
shown. The results for the problem of finding the electrical potential in the
electrolyte between two parallel flat plates were compared with those obtained
by our previous modified WOS method. Finally, we illustrated the use of this
Monte Carlo LPBE solver in a more complicated setting related to the com-
putation of the electrostatic free energy of a large molecule. There, we coupled
the LPBE solution in the exterior of a compact domain (molecule) with the
solution to a Poisson equation inside, and continuity boundary conditions link-
ing these two functions. The performance of the method is quite good in this
complicated situation.

In our computations for solving LPBE with constant boundary values, we
observe the same relationship between the running time and the thickness of
the ε-absorption layer as when the WOS algorithm was applied to solve the
Laplace or Poisson equations [25]: the running time is O(| log ε|). In addition,
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it is observed that for LPBE Dirichlet boundary value problems the bias error
due to the ε-layer absorption grows linearly in ε for small ε: the same depen-
dence that holds for the Dirichlet boundary-value problems for the Laplace
or Poisson equations [26]. In the latter cases, this relation remains valid with
non-constant boundary functions. Therefore, it is expected that in general
non-constant Dirichlet boundary-value problems for the LPBE the error from
the ε-absorption layer will also be linear in ε.

Our modified WOS method is faster than the Elepov-Mikhailov WOS method [1],
because while some of our random walkers are removed during simulation, in
the old method all trajectories must be followed until hitting the ε-absorption
layer, and contribute to the solution according to their weights.

In the case of the electrostatic potential in an electrolyte between two infinite
charged parallel flat plates, we compared our Feynman-Kac WOS method with
our modified WOS method. While the Feynman-Kac WOS method is some-
what slower than our modified WOS method, it is promising in its potential
for extension to other problems such as the time-independent Schrödinger
equation.
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