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Abstract. This paper provides a review of a new method of address-
ing problems in di�usion Monte Carlo: the Green's function �rst-passage
method (GFFP). In particular, we address four new strands of thought
and their interaction with the GFFP method: the use of angle-averaging
methods to reduce vector or tensor Laplace equations to scalar Laplace
equations; the use of the simulation-tabulation (ST) method to dramati-
cally expand the range of the GFFP method; the use of the Feynman-Kac
formula, combined with GFFP to actually perform path integrals, one
patch at a time; and the development of last-passage di�usion methods;
these drastically improve the eÆciency of di�usion Monte Carlo methods.
All of these techniques are described in detail, with speci�c examples.

1 Introduction

Many researchers have used di�usion Monte Carlo methods to calculate the bulk
properties of porous and composite media. Basic examples of such properties in-
clude: the electrical or thermal conductivity [1{4] or shear modulus of structural
composites; the permeability of porous media [5]; the electrostatic contribution
to the free energy of a bio-molecule in solution; and the mutual capacitance
matrix describing interaction of micro-components in a transistor matrix on a
microchip. Porous and composite media have basic geometric similarities: they
involve samples of bulk matter that are composed of small patches of two (or
more) pure phases. Both the bulk material properties of each pure phase and
the statistics of the mixture, i.e., its correlation functions, are assumed to be
known. This information can be used to determine the bulk properties of the
multi-phase medium.

The two classes of problems also share a deeper, mathematical foundation:
they involve the solution of elliptic or parabolic partial di�erential equations
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Fig. 1. A two-dimensional schematic representation of a Brownian trajectory using
WOS algorithm. If the di�using particle reaches the �-layer, it is taken to be absorbed.

in domains that contain a large amount of surface area, i.e., interface area, at
which boundary conditions must be imposed. Standard �nite-element or bound-
ary element methods require long computation times in these cases, especially
when high accuracy is required. Considerable cost is associated with discretiz-
ing complicated interfaces. These problems can be eÆciently solved by di�usion
Monte Carlo techniques: the problem in question is modeled as an (in general)
anisotropic, biased di�usion problem. Many methods, at this step, employ a dis-
crete representation in either space or time of the underlying Brownian motion;
as we show, the availability of Green's functions for the continuum problem
makes this unnecessary.

Here we describe a new approach to such problems, the Green's function �rst-
passage (GFFP) method. It is a synthesis of advances developed by this group,
and those developed elsewhere; of ideas from pure mathematics and those from
applied mathematics. In particular, the GFFP method involves:

� Using the angle-averagingmethod to reduce problems based on vector or tensor
Laplace equations to problems based on scalar Laplace equations, i.e., on biased
di�usion equations.
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Fig. 2. A two-dimensional schematic representation of a Brownian trajectory using
both the WOS algorithm (r1 to r3) and the GFFP algorithm (the �nal step). The solid
circles are FP boundaries and absorbing. We use a Æ-boundary layer as a criterion such
that WOS is used outside the Æ-boundary layer and GFFP in the Æ-boundary layer,

� De�ning the solution to the problem in question in terms of sources and sinks
of di�using particles. For example, an electrostatic problem is cast as an e�ort to
calculate the surface charge density on all interfaces. Once this is done, voltages,
or other quantities de�ned as weighted averages over the surface charge density,
can be calculated eÆciently by using, e. g., the fast multi-pole method.

� Describing the calculation to be conducted as the simulation of a large num-
ber of Brownian trajectories. These may either begin at charge sources or sinks,
as in last-passage algorithms [6], or terminate at them, as in �rst-passage algo-
rithms [7].

� Modeling the interface between phases as locally smooth, i.e., as locally con-
sisting of patches that are at, spherical, cylindrical, or otherwise understood in
terms of their Laplacian Green's function.

� Modeling the free di�usion of particles in such an environment by using a
�rst-passage (FP) strategy. We divide the trajectory of a Brownian particle
into a series of jumps, each one taking the Brownian particle from the center
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Fig. 3. Scaled e�ective conductivity �e=�1 of equilibrium distributions of nonoverlap-
ping insulating spheres in a matrix of conductivity �1 with � = 0 and Æ = 0:1a.

of a FP volume to a point on the FP surface. FP surfaces far from absorbing
boundaries are spheres (this approach replicates the \walk on spheres" (WOS)
algorithm [8{10]. see Fig 1). But near absorbing boundaries, FP surfaces can be
more complicated. They can include portions of an absorbing boundary. Accept-
able FP surfaces, at this stage of analysis, are those for which a quasi-analytic
Green's function exists for the corresponding Dirichlet problem. Such Green's
functions (actually the normalized distribution functions corresponding to them)
can be tabulated for each set of values of the dimensionless geometric parameters
they depend on. This tabulation can then be closely approximated by a spline
or other interpolatory �t, which in turn allows rapid and accurate sampling of
the FP position during a Monte Carlo simulation (see Fig 2). It has been shown
that this method is substantially more eÆcient computationally in applications
for which high accuracy is required [11].

As an example, in Fig. 3 we show the e�ective conductivity of a two-phase
medium, consisting of an ensemble of nonoverlapping, insulating spherical inclu-
sions dispersed randomly in a matrix phase of �nite conductivity �1. We compare
the CPU time of the GFFP algorithm with that of the WOS algorithm in Figs. 4
and 5. In the WOS algorithm, CPU time depends on the �-shell thickness while
in the GFFP algorithm it depends on Æ-boundary layer. The �-shell around the
target is used to establish convergence in the WOS method, such that any Brow-
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Fig. 4. CPU time required to calculate the e�ective conductivity of a system of non-
overlapping, insulating spherical inclusions dispersed randomly in a conducting matrix
with sink volume fraction �2 = 0.2. Here, we used the WOS method with mean di�usion
path length X2=a2 = 100. Times here were measured on a 500 MHz Pentium III
work station running Linux over 104 Brownian trajectories. The simulations show the
expected relation for WOS: CPU time proportional to ln(�)).

nian particle inside it is taken to be absorbed. Also, we use a Æ-boundary layer
as a criterion such that WOS is used outside the Æ-boundary layer and GFFP in
the Æ-boundary layer, because GFFP is more eÆcient as the Brownian particle
approaches the boundary. Here, � = 10�1 in the WOS method approximately
corresponds to the optimal case of GFFP.

Algorithms developed from the GFFP method already provide the most eÆ-
cient algorithms known for certain important classes of problems, including the
electrostatic capacitance of an arbitrary object. For example, the most accurate
value for the capacitance of the unit cube is C = 0:660675(5): For comparison,
the most accurate value for this quantity yet obtained from boundary element
methods is uncertain in the third digit, due to the logarithmic convergence in-
volved in applying these methods to surfaces with edges and corners.

But much more is possible, using the di�usion Monte Carlo methodology. We
combine it with:

� optimal applied mathematics methods; these include the simulation-tabulation
(ST) method [12], and the eÆcient generation of quasi-random numbers;



VI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ

50

70

90

110

130

150

170

190

ru
nn

in
g 

tim
e 

(s
ec

s)

quadratic regression

Fig. 5. CPU time required to calculate the e�ective conductivity of a system of non-
overlapping, insulating spherical inclusions dispersed randomly in a conducting matrix
with sink volume fraction �2 = 0.2. Here, we used the GFFP method with mean
di�usion path length X2=a2 = 100. Times here were measured on a 500 MHz Pentium
III work station running Linux over 104 Brownian trajectories. This �gure shows that
an optimal Æ is around 0:65.

� important developments in probability theory; these include both the last-
passage methods, and methods based on the Feynman-Kac formula [13{15].
Combining all of these methods, allows the treatment of classes of important
problems, including the linearized Poisson-Boltzmann equation [16, 17].

This paper is organized as follows: in x 2, we describe the angle-averaging
approximations that allow the reduction of a problem based on a vector or tensor
Laplace equation, to a problem based on a scalar Laplace equation, i.e., to a
di�usion problem. In x 3, we describe the simulation-tabulation (ST) method,
that allows extension of the GFFP method to problems in which quasi-analytic
Green's functions are not available. In x 4, we discuss the Feynman-Kac method,
which allows the use of Monte Carlo di�usion methods to solve a more general
class of elliptic boundary value problems. Our emphasis here is on the interaction
between the Feynman-Kac methods and the other methods presented here. In
x 5, we describe two classes of last-passage algorithms, i.e., Monte Carlo di�usion
algorithms in which di�using particles \initiate" at the point at which they are
absorbed, and di�use \backwards in time." In x 6 we give our conclusions and
suggestions for further study.
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Fig. 6. Permeability, k, versus porosity for a porous medium consisting of a polydis-
persed mixture of randomly overlapping impermeable spheres. The sphere radii are
chosen to have the four values a = f1:5; 3:5; 5:5; 7:5g with equal probability.

2 The Angle-Averaging Method

In this section, we describe the angle-averaging method, which allows one to
approximate a problem based on a vector or tensor Laplace equation, with a
problem based on a scalar Laplace equation. The latter can then be solved us-
ing di�usion Monte Carlo methods. The �rst application of the angle-averaging
method was by Hubbard and Douglas [18{20], who gave the following approxi-
mation for the translational hydrodynamic friction, f , of an arbitrary object:

f = 4��C; (1)

where � is the uid viscosity and C the electrical capacitance of an ideal con-
ductor having the same size and shape as the object.

The present authors recently generalized this result to give an algorithm for
the permeability of a packed bed, or other porous medium. As an example, in
Fig. 6 we present simulation results of packed beds composed of polydispersed
overlapping, randomly placed, impenetrable spherical inclusions. The inclusion
sphere radii are chosen at random from the values 1.5, 3.5, 5.5, and 7.5 with
equal probability. We compare our results with the available numerical solutions
of the Stokes equation, [21].
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Fig. 7. This �gure shows a Brownian motion which starts at x and terminates at
Xx(�@
) on the boundary @
 while passing through z, a point on a sphere centered
at x.

We have also developed an eÆcient �rst-passage implementation of this rela-
tion. A generalization to the case of a packed bed has direct applications to the
properties of suspensions.

The angle-averaging method also provides an approximate relation between
the hydrodynamic viscosity of an object and the electrostatic polarizability of
an object of the same shape [22, 23].

3 The Simulation-Tabulation (ST) Method

In this section, we explain the ST method, and how to use it to extend the GFFP
method to classes of problems for which the Green's function is not available in
quasi-analytic form. A basic example is the class of problems involving either
mixed or reecting, i.e. Neumann, boundary conditions. This class of problems
includes the calculation of the conductivity of a composite medium involving
insulating inclusions dispersed in a conducting matrix.

The many-body problem is reduced to the solution of a Laplace or Pois-
son equation with complicated boundary conditions, i. e. it is solved by taking
mathematical expectations over Brownian motion trajectories. Since Brownian
motion is the microscopic manifestation of di�usion, one can also reinterpret
these as di�usion problems [7]. Thus, we need methods to eÆciently generate
Brownian trajectories in complicated domains. We do this with the help of a use-
ful result from probabilistic potential theory [24, 13]. Namely, we need the fact
that the �rst-passage probability for Brownian motion in a region is equivalent

to the surface Green's function for the Laplacian in that same region.
While this equivalence is a well-known fact to probabilists and many experts

in Monte Carlo, we feel it useful for the rest of our presentation to give an
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elementary proof of this fact. First consider the Dirichlet problem for the Laplace
equation (see Fig. 7),

�u(x) = 0; x 2 
; u(x) = f(x); x 2 @
: (2)

The solution at point x can be represented probabilistically as the average over
all the boundary values of Brownian motion, Xx(�@
), starting at x where the
Brownian particle �rst strikes the boundary. The time, �@
 , when the Brownian
particle �rst strikes the boundary is called the �rst-passage time, and the place
where the Brownian particle �rst strikes the boundary, Xx(�@
), is called the
�rst-passage location. Thus we claim that the probabilistic solution, up(x), to
(2) is given by

up(x) = E[f(Xx(�@
))]: (3)

The proof that this is the case is simple. Place a sphere centered at x com-
pletely lying within 
. Clearly the particle will have to hit this sphere before
hitting @
. The probability distribution of the �rst-passage location, z, on the
sphere is clearly uniform due to the isotropic nature of Brownian motion. Now we
continue the Brownian particle from z until it hits the boundary. Here Xx(�@
)
is the �rst passage location on the boundary, @
 (see Fig. 7). Averaging over
the �rst-passage boundary values of Brownian paths started at z gives us up(z).
Since each trajectory starting at x that hits @
 must �rst hit the sphere with
uniform probability, up(x) must be the mean of the values of up(z) over the
sphere. Thus up(x) has the mean-value property and is harmonic, i. e. it obeys
the Laplace equation, [25]. If we then think of moving the starting point for
our Brownian particles to the boundary, we clearly will, in the limit, have the
�rst passage location coincide with the limit of x on the boundary. This argues
that, in addition, up(x) has the correct boundary values, and so it is the unique
solution to (2).

We now use an interpretation of this fact to prove the equivalence mentioned
above. Equation (3) can be interpreted as an average of the boundary values,
f(x); x 2 @
 over @
. The weighting in this average is the �rst-passage
probability p(x;y) of a Brownian particle starting at x hitting the boundary
�rst at y = Xx(�@
) 2 @
. Thus we can represent u(x) as an integral over the
boundary, @
, via

u(x) =

Z
@


p(x;y)f(y)dy: (4)

However, there is another representation of the solution of the Dirichlet problem
for the Laplace equation in terms of an integral over the boundary. This is
provided by means of the Green's function, G(x;y), [26]

u(x) =

Z
@


@G(x;y)

@n
f(y)dy: (5)

The normal derivative of the Green's function on @
 is what we refer to as the
\surface Green's function" for the domain 
. Thus the surface Green's function
for a domain, 
, must be equivalent to the �rst-passage probability distribution
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for that same domain: p(x;y) = @G(x;y)=@n. With this fact, our strategy be-
comes the use of surface Green's functions to act as probability distributions
to move Brownian particles quickly through their trajectories while maintaining
their exact distribution properties.

The ST method greatly extends the GFFP method by allowing its application
to domains for which we have no analytic representation of the Green's function.
Perhaps the most basic example is the escape of a di�using particle from a
reecting, i.e., non-absorbing sphere. This is important as many FP domains
involving either reecting, or mixed, boundary conditions provide examples of
this type.

The ST method is implemented as follows: for each set of values of the geo-
metric parameters that characterize a particular FP surface, one performs a large
number of simulations. For each simulation, the FP position is noted and the
dimensionless parameters that characterize it are binned. The normed average
of these binned values is partially integrated to give the distribution function for
�rst-passage. This quantity is then tabulated, and a high-precision interpolatory
�t is applied to it. This procedure, though numerically intensive, need only be
carried out once for each FP geometry. The result, a tiny dataset consisting of
the values of the resulting interpolation parameters, can then be used, rapidly
and eÆciently, to sample the FP position for this absorbing FP surface. This
is a bootstrap methodology: the simulation phase of an initial ST application
uses only WOS; subsequent applications are more eÆcient because each uses the
results of the previous ST tabulations.

The ST method can be used to sample the FP position, i.e., the absorption
position, for Dirichlet Laplace problems in which the FP surface can be char-
acterized by either one or two dimensionless parameters. This last limitation is
purely computational; a tabulation of a problem of this kind that uses three
parameters will be a natural supercomputer project once it is motivated.

The ST method has been applied to calculate the electrical conductivity of
a composite material composed of non-overlapping, non-conducting spherical
inclusions randomly dispersed in a conducting matrix. This is a speci�c case of a
problem �rst studied in detail by Kim and Torquato. Our results (see Figs. 3- 5)
agree with theirs in detail, although our computation times are shorter.

Second, the ST method is not limited to obtaining the FP position of a dif-
fusing particle. Calculations of electrical conductivity require knowledge of the
FP time. But any quantity may be sampled using the ST method. For exam-
ple, the Feynman-Kac formulation of the linearized Poisson-Boltzmann equation
requires sampling the exponential of the FP time. We discuss this next.

4 The Feynman-Kac Method

In this section, we explain the Feynman-Kac method for solving the Schr�odinger
equation, and other elliptic partial di�erential equations. We discuss the inter-
action between this method and methods already detailed in this review.
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plates. The solid line is the analytic solution and the circles are the simulation results
with 106 random walks using an absorption layer thickness of Æ = 10�4. Here, r is the
distance from the mid-point of the plates and � the inverse Debye length.

The Feynman-Kac formulation of the Dirichlet problem for the classical
Schr�odinger equation:

1

2
��+ V (x)� = 0; x 2 
 (6)

�(x) = 	(x); x 2 @
 (7)

provides a formula for the value of the �eld � at a point x, namely [13, 14]:

�(x) = E[	(X(�@
)) expf

Z �@


0

V (X(�@
))d�g]: (8)

where �@
 = f� : X(�) 2 @
g is the FP time and X(�@
) is the FP point of X ,
the Brownian motion started at x.

An elementary example of the Schr�odinger equation, but one of extensive im-
portance in molecular biology, is the linearized Poisson-Boltzmann equation [16]:

��� �2� = 0; x 2 
 (9)

�(x) = 	(x); x 2 @
 (10)



XII

Here � gives the electrical potential in the neighborhood of a biomolecule im-
mersed in an electrolyte; � is the Debye constant of the electrolyte. The Feynman-
Kac formulation, applied to this problem, gives the formula for �:

�(x) = E[	(X(�@
)) expf�

Z �@


0

�2d�g]; (11)

where �@
 = f� : X(�) 2 @
g is the FP time and X(�@
) is the FP point.
For a spherical FP surface, the �2-term, interpreted as a standard decay rate,
produces the decimation probability [27, 17]:

E[exp(��2t)] =
d�

sinh d�
; (12)

Here d is the FP sphere radius. The FK formulation given above reproduces the
formula. But, it is much more general. For a more complicated FP surface, the
LHS of the above equation can still be determined, using the ST method, even
though analytic results are no longer available. Using the entire �rst-passage time
probability distribution, we illustrate its computational equivalence to the deci-
mation probability via the parallel plates problem used in previous research [16,
17]. The results are given in Fig. 8.

5 Last Passage Methods for Di�usion Monte Carlo

In this section, we develop the concept of last-passage di�usion and explain its
importance to the realm of Monte Carlo di�usion problems. Because this concept
will be novel to most readers of this review, we will explain both the motivations
for the concept and its two rather di�erent realizations in practice.

The methodology for solving di�usion Monte Carlo problems that we have
described in previous sections of this review is optimal for a large class of prob-
lems in which di�using particles initiate outside a complex material domain and
terminate on portions of its surface.

It is a fact, well known in pure mathematics, but apparently not in the
realm of applied mathematics, that many di�usion Monte Carlo problems can
be adequately described by using both `�rst-passage di�usion', and also `last-
passage di�usion' methods [6]. The latter involves di�using particles that initiate
on or near their absorption points, and di�use \backwards in time." Here we
develop the �rst of two basic last-passage algorithms: the external-origin last-
passage (EOLP) algorithms. These were developed by our group.

The charge density �(x) at a point, x, on the surface of an absorbing object
is given by the equation:

�(x) =
1

4�

Z
y2@
x

d2yG(x; y)Py!1: (13)

Here the surface, @
x, is that part of a sphere with x as center, that is, outside
the absorbing surface and the factor Py!1 is the probability that a di�using
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Fig. 9. The voltage V (x) near a conducting sphere, at the point x, is given in di�usion
language by the probability that a di�using particle starting at point x will di�use
away to in�nity without hitting the sphere. In order to do so, it must �rst reach a
FP surface, @
x, drawn around point x and then proceed to di�use far away without
returning.

particle, initiating at point y 2 @
x, di�uses to in�nity without returning to the
absorbing surface. The function G(x; y) is de�ned by:

G(x; y) =
d

dÆ�

�����
Æ�=0

g(x; y): (14)

Here g(x; y) is the Laplace Green's function on the surface, @
x with source
point x at a distance Æ� from the absorbing surface.

To derive Eq. 13, �rst consider the function V (x) that gives the probability
that a di�using particle initiating at a point x near to the surface of an absorbing
object, touches, i.e. makes �rst passage at the surface of the object in �nite time
(see Fig. 9). This is a harmonic function; it is unity on the surface of the object,
and zero at in�nity. Thus, by uniqueness of solutions to the Laplace equation,
it is identical to the voltage surrounding the object when it is at voltage unity
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Fig. 10. The Green's function for a point dipole oriented normal to an absorbing sur-
face is a generating function for di�using particle trajectories that leave the absorbing
surface and never return. The e�ect of trajectories that leave and do return is zero;
they cancel out in pairs.

with respect to in�nity. By the Gauss theorem, the charge density, �(x), at a
point on the surface is given by

�(x) = �
1

4�

d

dÆ�

�����
Æ�=0

V (x): (15)

Representing V (x) as in Fig. 9, and realizing that only the Æ�-dependence of the
probability density for the �rst step is relevant (because it is proportional to Æ�),
gives Eq. 13.

The function G(x; y) is a point-dipole Green's function. To see this, note that
taking the Æ�-derivative and setting Æ� to zero in Eq. 15 has the same e�ect as
taking the dipole limit: allowing both the magnitude Q of the source at point x,
and that of its image charge, to grow without limit as Æ� ! 0, while keeping the
quantity Q2Æ� �nite. Placing a point dipole at point x provides a source for all
of the di�using particle trajectories that originate at the point x leave and never
return. The probability of escape from an absorbing surface is rigorously zero;
this Green's function samples only the measure-zero subset of trajectories that
succeed. Fig. 10 shows a simple case in which this claim can be easily veri�ed by
inspection. This formula (and this Green's function) were developed to provide
a local formula for charge density, i.e., a formula that could be used regardless
of other nearby charges and conductors.
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Both the calculation of the capacitance of a non-smooth object and the two
other classes of problems mentioned above can also be treated with the other
class of last-passage methods, the integral-origin last-passage (IOLP) methods.
The equilibrium charge distribution �(x) on an absorbing object is given by:

�(x) = 2�jx� zjL(x; z); (16)

where L(x; z) is the last passage distribution. Here di�using particles initiate at
a point z interior to an absorbing object. They di�use, ignoring the absorbing
object, until they eventually di�use away to in�nity. At this time, the point, x,
of last contact, i.e., last-passage, with the absorbing object is determined. We
do this using a generalization of the dipole Green's function de�ned in Eq. 14;
this is detailed in a forthcoming publication.

None can yet describe the relative advantages of these two sets of last-passage
methods; this research is now in progress.

There are at least three classes of di�usion Monte Carlo problems for which
last-passage algorithms are optimal:

� Charge distribution on a conducting object with edges and corners. In such
problems, a large fraction of the charge will collect very close to the edges and
corners, i.e., on a very small subset that is readily identi�ed in advance. Thus
last-passage algorithms are appropriate.

� Problems in which a large fraction of the absorption takes place on a very small
fraction of the surface, because of the imposed boundary conditions. The basic
example here is the problem of di�usion-limited absorption of a ligand molecule
at a small absorbing site on a macromolecule. If the absorbing site is small
enough, it must become optimal computationally for the di�using particles to
initiate on the absorbing site rather than to initiate on an external launch sphere
and `search for' the absorbing site. The Solc-Stockmayer model of protein-ligand
binding is perhaps the best-studied model of this process [12, 28].

� Problems in which more than one conducting object is present, at close proxim-
ity, and at di�erent voltages. In these cases (modern micro-electronics provides
many examples), one seeks to calculate not a capacitance but an entire capac-
itance matrix. Here, no launch surface for di�using particles can be de�ned; so
�rst passage algorithms are not a possibility.

We will discuss examples of the �rst class of applications; examples of the
two other classes will be published separately.

A basic well-studied example of the �rst class is that of a conducting cube.
If �rst-passage methods are used to study this problem, importance sampling
will occur, i.e., the correct surface charge distribution will be obtained only
if a large launch sphere is used. This will not be optimal in a computational
sense. optimality in a computational sense. In the last-passage algorithm, the
capacitance of the unit cube is de�ned to be the integral, over the surface of the
cube of the surface charge density �(x) as given by Eq. 19; it is de�ned as a
double integral. Importance sampling is readily imposed on the outside integral,
i.e., the integral over � by using the measure:
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x = (1� �3=2): (17)

y = (1� �3=2): (18)

Here, (x; y) is the sampling point on the sampling area, (0; 1)�(0; 1), in x-y plane
and the �'s are independent random numbers uniformly distributed in (0; 1). If
this measure is used, almost all points at which the charge density must be
sampled will be close to the edge of the cube. The statistics of the inner integral,
i.e., the integral that gives �(x), will be very poor because the probability Py!1
will be very close to zero. An important method of overcoming this problem is
the method of the edge distribution.

For any edge on a conducting surface the charge distribution �(x; Æe) on a
curve parallel to the edge, but separated from it by distance Æe, with Æe small,
is given by:

�(x; Æe) = Æ�=��1e �e(x): (19)

Here �e(x) is what we term the edge distribution. � is the angle between the
two intersecting surfaces, here � = 3�=2. The edge distribution has a natural
probabilistic interpretation: it is the (rescaled) probability density that a dif-
fusing particle makes last passage on the edge point x. This distribution can
be calculated either by simulation (see Fig. 10) or by application of the general
formula from Eq. 19. The point is that this one-dimensional distribution need
be calculated only once for each edge on each absorbing object in a problem. An
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Fig. 12. A three-quarter cylinder of radius a and length L is shown.

extension of Eq. 13 for �(x) gives a formula for the edge distribution:

�e(x) =
1

4�
lim
Æe!0

Æ1��=�e

Z
y2@
e

d2yG(x; y)Py!1: (20)

Here @
e is a cylindrical surface that intersects the pair of absorbing surfaces
meeting at angle � (see Fig. 11). The other quantities have already been de�ned.

For the function G(x; y), we start with the potential inside a grounded cylin-
drical box de�ned by the surfaces z = 0, z = L, and � = a with a unit point
charge located at the point (�0; �0; z0) given by [29]:

�(�; �; z) =
4

L

1X
m=�1

1X
n=1

eim(���0) sin
�n�z

L

�
sin
�n�z0

L

�Im(n��<L )

Im(
n�a
L )

�
h
Im

�n�a
L

�
Km

�n��>
L

�
�Km

�n�a
L

�
Im

�n��>
L

�i
: (21)

Here, Im and Km are modi�ed Bessel functions and

�< = min(�0; �); (22)

�> = max(�0; �): (23)

Modifying Eq. 21 to satisfy the boundary conditions of a three-quarter cylinder
(see Fig. 12), the potential inside the three-quarter cylinder when �0 < � is
obtained as

�c(�; �; z) =
4

L

1X
n=1

sin
�2
3
�
�
sin
�2
3
�0
�
sin
�n�z

L

�
sin
�n�z0

L

�I2=3(n��0

L )

I2=3(
n�a
L )

�
h
I2=3

�n�a
L

�
K2=3

�n��
L

�
�K2=3

�n�a
L

�
I2=3

�n��
L

�i
: (24)



XVIII

0 0.1 0.2 0.3 0.4 0.5
y

1

1.2

1.4

1.6

1.8

2

σ e(
x)

/σ
e(

0)

using last−passage simulation
using σ at (0.495,y)

Fig. 13. The edge distribution of a unit cube calculated using Eq. 19 and using Eq. 20.

Hence, G(�; z)�=a for the side of the three-quarter cylinder is given by

G(�; z)�=a =
1

� (5=3)22=3
4

9�La

1X
n=1

sin
�2
3
�
�
sin
�n�z

L

�
sin
�n�z0

L

�

�
�n�
L

�2=3 1

I2=3(
n�a
L )

(25)

and G(�; �)z=0 for the lower cap of the three-quarter cylinder

G(�; �)z=0 =
1

� (5=3)22=3
4

9�L

1X
n=1

sin
�2
3
�
��n�

L

�5=3
sin
�n�z0

L

�

�
1
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L )

h
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�n�a
L

�
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�n��
L

�
�K2=3

�n�a
L

�
I2=3

�n��
L

�i
: (26)

Thus the edge distribution of a cube (see Fig. 13), �e(x) is obtained as

�e(x) = 2

Z a

0

Z 3�=2

0

G(�; �)z=0Py!1�d�d�+a

Z L

0

Z 3�=2

0

G(�; z)�=aPy!1d�dz;

(27)
where Py!1 is the probability of going to in�nity from the point y on the side
or caps of the chopped cylinder.
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Fig. 14. Asymptotic values near the corner of the edge distribution for a unit cube: Æc
is the distance from the corner and the slope is approximately �0:20.

For convenience, a chopped cylinder of L = a = 0:02 is used and the edge
calculations are done at the center of the chopped cylinder on a unit cube mov-
ing the chopped cylinder along the edge of the cube (see Fig. 11). Due to the
symmetry of the cube, the edge distribution is obtained in the range of (0; 0:49)
with 0:01 step. The result is shown in Fig. 13. However, because the charge sin-
gularity at a corner is stronger that that at an edge, the edge distribution near
the corner diverges. To use the edge distribution for the fast calculation of the
capacitance of a cube, we calculate the asymptotic behavior near the corner.
The exponent of the edge distribution near the corner is approximately �0:20,

that is, �e � Æ
�1=5
c (see Fig. 14).

The edge distribution can be calculated for a conducting object, provided
it consists of a segment of a line or an arc of a circle, using generalizations of
the methods discussed here. These distributions can then be used to calculate
the surface charge density on the conducting object using a rapid importance
sampling algorithm. Such algorithms are rapid because they tell us in advance
the detailed charge distribution near edges and corners.

We believe that this last passage method is the fastest method to date for
solving this basic set of problems. Computing the capacitance of a cube has
been considered to be \one of the major unsolved problems of electrostatic the-
ory," [20].
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6 Conclusions and Suggestions for further study

In this paper, we review the results so far obtained from applying the set of
Monte Carlo di�usion methods we have developed and assembled. The results
already exhibited demonstrate that a number of classes of important problems
can be solved far more eÆciently using these methods.

The potential of this class of methods is yet to be tapped. Here we note just
two examples of important extensions:
� Solution of the linearized Poisson-Boltzmann equation in general requires solu-
tion of problems with dielectric boundaries, i.e., nontrivial values of the dielectric
constant on both sides of the interface. Green's functions for this purpose are
available; they can be tabulated.
� Calculation of the mutual capacitance matrix for a system of conductors in
close proximity. Last passage methods allow calculation of this quantity using
di�usion Monte Carlo. It remains to be seen which of these methods most eÆ-
cient.
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