A Note on the Inversion of Matrices by Random Walks

W. R. Wasow

Stable URL:
http://links.jstor.org/sici?sici=0891-6837%28195204%296%3A38%3C78%3AANOTIO%3E2.0.CO%3B2-8

Mathematical Tables and Other Aids to Computation is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
Let $\sigma = \max |\sigma_i|$, then

$$|\sigma'| < \frac{(2^n - 1)|Y + 1^n - 1|}{(1 - Y)^n}.$$

Corollary. The error $e(t, \sigma)$ of integrating a function with a maximum value of σ is bounded by

$$|e(t, \sigma)| \leq \sigma h \left[2^n + \frac{(Y + 1)^n - 1}{(1 - Y)^n} (2^n - 1) \right].$$

Project Cyclone
Reeves Instrument Corp., N. Y.
P. Brock
F. J. Murray
Columbia University

[Editorial Note: A second part of this paper, to appear in the next issue of *MTAC*, will contain illustrative numerical examples of the application of the above ideas.]

5. L. H. Thomas of the Watson Scientific Computing Laboratory indicated this formula for A_n to the authors. He also indicated that the A_n are equal in absolute value to the coefficients of the Adams-Bashforth method of step by step numerical integration.

A Note on the Inversion of Matrices by Random Walks

In a recent note, Forsythe & Leibler¹ described a method (first suggested by J. v. Neumann and S. M. Ulam) for the inversion of certain types of matrices by a "Monte Carlo" sampling procedure. The authors explain their scheme in terms of drawing balls from an urn, but the procedure might, of course, be just as well described as a random walk.

A boundary value problem involving a difference equation in a bounded domain is equivalent to a system of linear algebraic equations in as many unknowns as there are lattice points in the domain. It is therefore to be expected that the sampling methods for the solution of such difference equations as explained in Curtiss² and WASOW³ are closely related to the method of Forsythe & Leibler.¹

In order to study this relation we rephrase the latter method in the language of random walks. We consider a set of m points P_1, \ldots, P_m and introduce a moving particle which, starting from P, jumps from point to point in such a way that the probability of going from P to P_μ in one jump is p_μ. Also at each point P, there is a probability $p_s = 1 - \sum_{\mu=1}^{m} p_{\mu}$ of the random walk ending there.
Furthermore, the moving particle possesses a variable "mass" \(V \) which, at a step from, say, \(P_i \) to \(P_j \) is multiplied by a factor \(v_{ij} \). The initial mass at \(P_i \) is one. Our procedure consists in estimating the expected value of the random variable \(G_{ij} \) defined as follows. The moving point is known to start from \(P_i \):

\[
G_{ij} = \begin{cases}
0, & \text{if the walk ends at } k \neq j \\
Vp_j^{-1}, & \text{if the walk ends at } j
\end{cases}
\]

Observe that \(G_{ij} \) is defined only for points where \(p_j \neq 0 \).

Let \(A \) be the matrix with elements

\[
a_{ij} = p_{ij}v_{ij}
\]

(no summation is implied), denote by \(b_{ij} \) the elements of the matrix

\[
B = I - A
\]

and by \(\beta_{ij} \) the elements of \(B^{-1} \). Then the following theorem is proved in Forsythe & Leibler.\(^1\)

Theorem: If and only if the eigenvalues of the matrix \(\{|a_{ij}|\} \) are less than one in absolute value, then the mathematical expectation \(E[G_{ij}] \) exists and

\[
E[G_{ij}] = \beta_{ij}.
\]

Thus, an experimental estimate of the expectation of \(G_{ij} \) yields a numerical value for one element of the inverse matrix of \(B \).

The procedures followed in Curtiss\(^2\) and Wasow\(^3\) to find Green's function for difference equations, when properly worded, are special cases of a scheme for matrix inversion which differs from the random walk just described only in that the random variable \(G_{ij} \) is replaced by the random variable \(M_{ij} \), which is by definition equal to the total amount of mass carried through the point \(P_j \) on the several visits in the course of a random walk starting from \(P_i \).

(If the point stays put at \(P_j \), this is to be counted as a new visit.) It is very easy to show directly that

\[
E[G_{ij}] = E[M_{ij}], \text{ when } p_j \neq 0.
\]

For let \(V \) be the mass of the particle when it passes through \(P_j \) at the end of a path from \(P_i \) to \(P_j \) whose probability of being taken is \(q \), then

\[
E[G_{ij}] = p_j \sum q V p_j^{-1} = \sum q V = E[M_{ij}],
\]

the summation being extended over all possible paths connecting \(P_i \) and \(P_j \).

Observe that the word "path" is used here in a somewhat generalized sense, referring not to a geometric configuration but to an ordered sequence of points \(P_k \) beginning with \(P_i \) and ending with \(P_j \).

If \(p_j = 0 \), then \(G_{ij} \) is not defined. But \(E[M_{ij}] \) exists and is equal to \(\beta_{ij} \), as can be proved exactly as in Forsythe & Leibler.\(^1\)

This is one advantage of using the random variable \(M_{ij} \) instead of \(G_{ij} \). Apart from this remark it is not easy to decide in advance which of the two methods is preferable in a given problem, since this requires a comparison of the variances. The decision is made more complicated by the fact that the factorization of the given number \(a_{ij} \) into the product \(p_j v_{ij} \) is, to a large extent, arbitrary. If the original problem is a boundary value problem for a difference equation, \(M_{ij} \) is, to say the least, the intuitively more natural random variable, since
one would like to associate the end of a random walk with the first crossing of the boundary of the given domain. With this interpretation, \(p_i \) is zero for all points from which the boundary cannot be reached in one step, and the random variable \(G_{ij} \) is unsuitable.

In the light of the present discussion some of the proofs in Wasow\(^a\) can be modified—but not substantially shortened—by making use of the criterion for existence of \(E[G_{ij}] \), and hence of \(E[M_{ij}] \), which is stated in the theorem of this section.

In the especially simple case that all \(v_{ij} \) are equal to one, some additional information concerning the respective advantages of using the random variables \(M_{ij} \) or \(G_{ij} \) is contained in the following theorem, valid in this special case. Let \(v_j \) be the probability that a particle known to start from \(P_j \) will never return to \(P_j \). Then

\[
(1) \quad \sigma[M_{ij}] \leq \sigma[G_{ij}]
\]

if and only if

\[
(2) \quad p_j \leq \frac{v_j}{2 - v_j}.
\]

In order to prove this inequality, we denote by \(\lambda_{ij} \) the probability of going from \(P_i \) to \(P_j \) without passing through \(P_j \) on the way; i.e., \(\lambda_{ij} \) is the total probability associated with all paths connecting \(P_i \) and \(P_j \), all intermediate points being different from \(P_j \). In our special case the random variable \(M_{ij} \) is the number \(N \) of visits at \(P_j \) during a random walk starting at \(P_i \). Then, for \(k \geq 1 \), \(\text{Pr} \{ N = k \} = \lambda_{ij}^{k-1}v_j \). A short calculation yields

\[
(3) \quad v_j = 1 - \lambda_{ij},
\]

so that (2) simplifies into

\[
(4) \quad E[M_{ij}^2] = \lambda_{ij} \frac{1 + \lambda_{ij}}{(1 - \lambda_{ij})^2}.
\]

But since the total probability of the walk ending eventually is 1 we have

\[
(5) \quad \nu_j + \lambda_{ij}v_j + \lambda_{ij}^2v_j + \cdots = 1,
\]

i.e.,

\[
(6) \quad \nu_j = 1 - \lambda_{ij},
\]

Next, let \(X \) be the random variable which is 1 if the last point of the random walk is \(P_j \), and zero otherwise. Then

\[
\text{Pr} \{ X = 1 \} = \lambda_{ij}p_j + \lambda_{ij}\lambda_{ij}p_j + \lambda_{ij}\lambda_{ij}^2p_j + \cdots = \lambda_{ij}p_j/(1 - \lambda_{ij}).
\]

Hence

\[
E[X^2] = \text{Pr} \{ X^2 = 1 \} = \text{Pr} \{ X = 1 \} = \lambda_{ij}p_j/(1 - \lambda_{ij}).
\]

Since, in our special case,

\[
G_{ij} = X/p_j,
\]

it follows that

\[
E[G_{ij}^2] = \frac{\lambda_{ij}}{p_j(1 - \lambda_{ij})}.
\]
Now, as the means of M_{ij} and G_{ij} are the same, the inequality (1) is equivalent to $E[M_{ij}^2] \leq E[G_{ij}^2]$, i.e., by formulas (4) and (5) to

$$\frac{1 + \lambda_{ij}}{1 - \lambda_{ij}} \leq \frac{1}{\hat{p}_i}.$$

Application of formula (3) transforms this into $\hat{p}_i \leq v_i/(2 - v_i)$, which proves our statement.

The practical value of this theorem is limited, because v_i is, in general, not known. But it shows that, at least in this special case, the answer to the question which method is preferable for the calculation of the element β_{ij} does not depend on the subscript i. It also confirms the intuitively plausible conjecture that M_{ij} is the better random variable to use whenever \hat{p}_i is comparatively small.

W. R. W. W. A. S. O.

RECENT MATHEMATICAL TABLES

The functions $y = \frac{1}{2}x^2$, $s = \frac{1}{2}(\text{arc sinh} x + x(1 + x^2)^{1/2})$

are given to 5D for $x = 0(.01)2$. These give the ordinates and arc distances of points on the "normalized" parabola $y = \frac{1}{2}x^2$. From these tables two graphs are derived showing s as a function of x and s, x as functions of y. From the latter graph the excess of arc length over abscissa may be read off to facilitate the laying out of a parabolic antenna.

D. H. L.

This table is the result of collating three of the four existing manuscript factor tables of the eleventh million.¹ The arrangement is essentially that of Lehmer's³ list of primes of which this table is a natural extension. Thus the rank of a prime occupying page P, column C, and line L is given by

$$2500P + 100C + L + 662400.$$

The number of primes in this million is 61938.

Much of the credit for the successful completion of this table goes to Beeger and Glodgen who were responsible for collating and reconciling the