Monte Carlo Methods: Early History and The Basics

Prof. Michael Mascagni

Department of Computer Science
Department of Mathematics
Department of Scientific Computing
Graduate Program in Molecular Biophysics
Florida State University, Tallahassee, FL 32306 USA
AND

Applied and Computational Mathematics Division, ITL
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA
E-mail: mascagni@fsu.edu or mascagni@math.ethz.ch
or mascagni@nist.gov
URL: http://www.cs.fsu.edu/~mascagni

Research supported by ARO, DOE, NASA, NATO, NIST, and NSF
with equipment donated by Intel and Nvidia
Outline of the Talk

Early History of Probability Theory and Monte Carlo Methods
 Early History of Probability Theory

The Stars Align at Los Alamos
 The Problems
 The People
 The Technology

Monte Carlo Methods
 The Birth
 General Concepts of the Monte Carlo Method

Future Work

References
Probability was first used to understand games of chance
Early History of Probability Theory

- Probability was first used to understand games of chance
 1. Antoine Gombaud, chevalier de Méré, a French nobleman called on Blaise Pascal and Pierre de Fermat were called on to resolve a dispute
Early History of Probability Theory

- Probability was first used to understand games of chance
 1. Antoine Gombaud, chevalier de Méré, a French nobleman called on Blaise Pascal and Pierre de Fermat were called on to resolve a dispute
 2. Correspondence between Pascal and Fermat led to Huygens writing a text on “Probability"
Probability was first used to understand games of chance

1. Antoine Gombaud, chevalier de Méré, a French nobleman called on Blaise Pascal and Pierre de Fermat were called on to resolve a dispute
2. Correspondence between Pascal and Fermat led to Huygens writing a text on “Probability"
3. Jacob Bernoulli, Abraham de Moivre, and Pierre-Simon, marquis de Laplace, led development of modern “Probability"
Early History of Probability Theory

Probability was first used to understand games of chance

1. Antoine Gombaud, chevalier de Méré, a French nobleman called on Blaise Pascal and Pierre de Fermat were called on to resolve a dispute
2. Correspondence between Pascal and Fermat led to Huygens writing a text on “Probability"
3. Jacob Bernoulli, Abraham de Moivre, and Pierre-Simon, marquis de Laplace, led development of modern “Probability"
4. 1812: Laplace, *Théorie Analytique des Probabilités*
Early History of Monte Carlo: Before Los Alamos

- Buffon Needle Problem: Early Monte Carlo (experimental mathematics)
Early History of Monte Carlo: Before Los Alamos

- **Buffon Needle Problem: Early Monte Carlo (experimental mathematics)**

![Diagram of Buffon's Needle]

1. Problem was first stated in 1777 by Georges-Louis Leclerc, comte de Buffon
Early History of Monte Carlo: Before Los Alamos

- **Buffon Needle Problem: Early Monte Carlo (experimental mathematics)**

1. Problem was first stated in 1777 by Georges-Louis Leclerc, comte de Buffon
2. Involves dropping a needle on a lined surface and can be used to estimate π
Early History of Monte Carlo: Before Los Alamos

- **Buffon Needle Problem: Early Monte Carlo (experimental mathematics)**

1. Problem was first stated in 1777 by Georges-Louis Leclerc, comte de Buffon
2. Involves dropping a needle on a lined surface and can be used to estimate π
3. Note: Union Capt. Fox did this while in a CSA prison camp, and produced good results that later turned out to be “fudged”
Early History of Monte Carlo: Before Los Alamos

- Buffon Needle Problem: Early Monte Carlo (experimental mathematics)

1. Problem was first stated in 1777 by Georges-Louis Leclerc, comte de Buffon
2. Involves dropping a needle on a lined surface and can be used to estimate π
3. Note: Union Capt. Fox did this while in a CSA prison camp, and produced good results that later turned out to be “fudged”

- In the 1930’s, Fermi used sampling methods to estimate quantities involved in controlled fission
The Stars Align at Los Alamos

Los Alamos brought together many interesting factors to give birth to modern Monte Carlo algorithms.
Los Alamos brought together many interesting factors to give birth to modern Monte Carlo algorithms

1. The Problems: Simulation of neutron histories (neutronics), hydrodynamics, thermonuclear detonation
Los Alamos brought together many interesting factors to give birth to modern Monte Carlo algorithms

1. The Problems: Simulation of neutron histories (neutronics), hydrodynamics, thermonuclear detonation
2. The People: Enrico Fermi, Stan Ulam, John von Neumann, Nick Metropolis, Edward Teller, ...
Los Alamos brought together many interesting factors to give birth to modern Monte Carlo algorithms

1. The Problems: Simulation of neutron histories (neutronics), hydrodynamics, thermonuclear detonation
2. The People: Enrico Fermi, Stan Ulam, John von Neumann, Nick Metropolis, Edward Teller, ...
3. The Technology: Massive human computers using hand calculators, the Fermiac, access to early digital computers
The Stars Align at Los Alamos

- Los Alamos brought together many interesting factors to give birth to modern Monte Carlo algorithms
 1. The Problems: Simulation of neutron histories (neutronics), hydrodynamics, thermonuclear detonation
 2. The People: Enrico Fermi, Stan Ulam, John von Neumann, Nick Metropolis, Edward Teller, ...
 3. The Technology: Massive human computers using hand calculators, the Fermiac, access to early digital computers

- The Name: Ulam’s uncle would borrow money from the family by saying that “I just have to go to Monte Carlo”
The Problems

- Simulation of neutron histories (neutronics)
The Problems

- Simulation of neutron histories (neutronics)
 1. Given neutron positions/momenta, geometry
The Problems

- Simulation of neutron histories (neutronics)
 1. Given neutron positions/momenta, geometry
 2. Compute flux, criticality, fission yield
The Problems

- Simulation of neutron histories (neutronics)
 1. Given neutron positions/momenta, geometry
 2. Compute flux, criticality, fission yield
- Hydrodynamics due to nuclear implosion
The Problems

- Simulation of neutron histories (neutronics)
 1. Given neutron positions/momenta, geometry
 2. Compute flux, criticality, fission yield
- Hydrodynamics due to nuclear implosion
- Simulation of thermonuclear reactions: ignition, overall yield
The Problems

- Simulation of neutron histories (neutronics)
 1. Given neutron positions/momenta, geometry
 2. Compute flux, criticality, fission yield
- Hydrodynamics due to nuclear implosion
- Simulation of thermonuclear reactions: ignition, overall yield
 1. All these problems were more easily solved using Monte Carlo/Lagrangian methods
The Problems

- Simulation of neutron histories (neutronics)
 1. Given neutron positions/momenta, geometry
 2. Compute flux, criticality, fission yield
- Hydrodynamics due to nuclear implosion
- Simulation of thermonuclear reactions: ignition, overall yield
 1. All these problems were more easily solved using Monte Carlo/Lagrangian methods
 2. Geometry is problematic for deterministic methods but not for MC
The People

- Los Alamos brought together many interesting people to work on the fission problem:
Los Alamos brought together many interesting people to work on the fission problem:

- The Physicists
The People

- Los Alamos brought together many interesting people to work on the fission problem:

- The Physicists
 1. Enrico Fermi: experimental Nuclear Physics and computational approaches
The People

Los Alamos brought together many interesting people to work on the fission problem:

The Physicists

1. Enrico Fermi: experimental Nuclear Physics and computational approaches
2. Nick Metropolis: one of the first “computer programmers” for these problems
The People

- Los Alamos brought together many interesting people to work on the fission problem:
- The Physicists
 1. Enrico Fermi: experimental Nuclear Physics and computational approaches
 2. Nick Metropolis: one of the first “computer programmers” for these problems
 3. Edward Teller: more interested in the “super”
The People

▶ The Mathematicians

1. Robert Richtmyer: ran the numerical analysis activities at Los Alamos
2. Stanislaw (Stan) Ulam: became interested in using "statistical sampling" for many problems
3. John von Neumann: devised Monte Carlo algorithms and helped develop digital computers
The People

- The Mathematicians
 1. Robert Richtmyer: ran the numerical analysis activities at Los Alamos
The People

- The Mathematicians
 1. Robert Richtmyer: ran the numerical analysis activities at Los Alamos
 2. Stanislaw (Stan) Ulam: became interested in using “statistical sampling” for many problems
The People

- The Mathematicians
 1. Robert Richtmyer: ran the numerical analysis activities at Los Alamos
 2. Stanislaw (Stan) Ulam: became interested in using “statistical sampling” for many problems
 3. John von Neumann: devised Monte Carlo algorithms and helped develop digital computers
The Technology

- Simulation via computation was necessary to make progress at Los Alamos
The Technology

- Simulation via computation was necessary to make progress at Los Alamos
- Many different computational techniques were in use
Simulation via computation was necessary to make progress at Los Alamos

Many different computational techniques were in used

1. Traditional digital computation: hand calculators used by efficient technicians
Simulation via computation was necessary to make progress at Los Alamos

Many different computational techniques were in used

1. Traditional digital computation: hand calculators used by efficient technicians
2. Analog computers including the Fermiac (picture to follow)
Simulation via computation was necessary to make progress at Los Alamos

- Many different computational techniques were in used
 1. Traditional digital computation: hand calculators used by efficient technicians
 2. Analog computers including the Fermiac (picture to follow)
 3. Shortly after the war, access to digital computers: ENIAC at Penn/Army Ballistics Research Laboratory (BRL)
Simulation via computation was necessary to make progress at Los Alamos

Many different computational techniques were in used

1. Traditional digital computation: hand calculators used by efficient technicians
2. Analog computers including the Fermiac (picture to follow)
3. Shortly after the war, access to digital computers: ENIAC at Penn/Army Ballistics Research Laboratory (BRL)
4. Continued development and acquisition of digital computers by Metropolis including the MANIAC
An Analog Monte Carlo Computer: The Fermiac

- Neutronics required simulating exponentially distributed flights based on material cross-sections
An Analog Monte Carlo Computer: The Fermiac

- Neutronics required simulating exponentially distributed flights based on material cross-sections
- Many neutron histories are required to get statistics
An Analog Monte Carlo Computer: The Fermiac

- Neutronics required simulating exponentially distributed flights based on material cross-sections
- Many neutron histories are required to get statistics
- Fermiac allows simulation of exponential flights inputting the cross-section manually
An Analog Monte Carlo Computer: The Fermiac

- Neutronics required simulating exponentially distributed flights based on material cross-sections
- Many neutron histories are required to get statistics
- Fermiac allows simulation of exponential flights inputting the cross-section manually
- Fermiac is used on a large piece of paper with the geometry drawn for neutronics simulations
An Analog Monte Carlo Computer: The Fermiac

- Neutronics required simulating exponentially distributed flights based on material cross-sections
- Many neutron histories are required to get statistics
- Fermiac allows simulation of exponential flights inputting the cross-section manually
- Fermiac is used on a large piece of paper with the geometry drawn for neutronics simulations
- Fermiac allows an efficient graphical simulation of neutronics
An Analog Monte Carlo Computer: The Fermiac

- Neutronics required simulating exponentially distributed flights based on material cross-sections.
- Many neutron histories are required to get statistics.
- Fermiac allows simulation of exponential flights inputting the cross-section manually.
- Fermiac is used on a large piece of paper with the geometry drawn for neutronics simulations.
- Fermiac allows an efficient graphical simulation of neutronics.
- Parallelism is achievable with the Fermiac.
An Analog Monte Carlo Computer: The Fermiac

Figure: Enrico Fermi’s Fermiac at the Bradbury Museum in Los Alamos
An Analog Monte Carlo Computer: The Fermiac

Figure: The Fermiac in Action
An Early Digital Computer: The ENIAC

- ENIAC: Electronic Numerical Integrator And Computer
Eniac: Electronic Numerical Integrator And Computer

Funded by US Army with contract signed on June 5, 1943
An Early Digital Computer: The ENIAC

- ENIAC: Electronic Numerical Integrator And Computer
- Funded by US Army with contract signed on June 5, 1943
- Built in secret by the University of Pennsylvania’s Moore School of Electrical Engineering
An Early Digital Computer: The ENIAC

- **ENIAC**: Electronic Numerical Integrator And Computer
- Funded by US Army with contract signed on June 5, 1943
- Built in secret by the University of Pennsylvania’s Moore School of Electrical Engineering
- Completed February 14, 1946 in Philadelphia and used until November 9, 1946
An Early Digital Computer: The ENIAC

- ENIAC: Electronic Numerical Integrator And Computer
- Funded by US Army with contract signed on June 5, 1943
- Built in secret by the University of Pennsylvania’s Moore School of Electrical Engineering
- Completed February 14, 1946 in Philadelphia and used until November 9, 1946
- Moved (with upgrade) to Aberdeen Proving Grounds and began operations July 29, 1947
An Early Digital Computer: The ENIAC

- ENIAC: Electronic Numerical Integrator And Computer
- Funded by US Army with contract signed on June 5, 1943
- Built in secret by the University of Pennsylvania’s Moore School of Electrical Engineering
- Completed February 14, 1946 in Philadelphia and used until November 9, 1946
- Moved (with upgrade) to Aberdeen Proving Grounds and began operations July 29, 1947
- Remained in continuous operation at the Army BRL until 1955
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
 2. 7,200 crystal diodes
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
 2. 7,200 crystal diodes
 3. 1,500 relays, 70,000 resistors
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
 2. 7,200 crystal diodes
 3. 1,500 relays, 70,000 resistors
 4. 10,000 capacitors
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
 2. 7,200 crystal diodes
 3. 1,500 relays, 70,000 resistors
 4. 10,000 capacitors
 5. about 5 million hand-soldered joints
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
 2. 7,200 crystal diodes
 3. 1,500 relays, 70,000 resistors
 4. 10,000 capacitors
 5. about 5 million hand-soldered joints
- Clock was 5KHz
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
 2. 7,200 crystal diodes
 3. 1,500 relays, 70,000 resistors
 4. 10,000 capacitors
 5. about 5 million hand-soldered joints
- Clock was 5KHz
- Ended up with a 100-word core memory
An Early Digital Computer: The ENIAC

- ENIAC is a completely programmable computer using first a plug panel
- ENIAC first contained (military rejects!)
 1. 17,468 vacuum tubes
 2. 7,200 crystal diodes
 3. 1,500 relays, 70,000 resistors
 4. 10,000 capacitors
 5. about 5 million hand-soldered joints
- Clock was 5KHz
- Ended up with a 100-word core memory
- Metropolis would go to BRL to work on the “Los Alamos” problem on the ENIAC
An Early Digital Computer: The ENIAC

Figure: The ENIAC at the University of Pennsylvania
An Early Digital Computer: The ENIAC

Figure: Programming the ENIAC
An Early Digital Computer: The ENIAC

Figure: Tubes from the ENIAC
After the digital computer was perfect for "statistical sampling"
The Birth of Monte Carlo Methods

- After the was digital computer was perfect for “statistical sampling”
 1. Individual samples were often very simple to program
The Birth of Monte Carlo Methods

- After the was digital computer was perfect for “statistical sampling”
 1. Individual samples were often very simple to program
 2. Small memory was not a big constraint for these methods
The Birth of Monte Carlo Methods

After the was digital computer was perfect for “statistical sampling”

1. Individual samples were often very simple to program
2. Small memory was not a big constraint for these methods
3. A much better use for digital vs. human computers
The Birth of Monte Carlo Methods

- After the was digital computer was perfect for “statistical sampling”
 1. Individual samples were often very simple to program
 2. Small memory was not a big constraint for these methods
 3. A much better use for digital vs. human computers

- Early Monte Carlo Meetings
The Birth of Monte Carlo Methods

- After the was digital computer was perfect for “statistical sampling”
 1. Individual samples were often very simple to program
 2. Small memory was not a big constraint for these methods
 3. A much better use for digital vs. human computers

- Early Monte Carlo Meetings
The Birth of Monte Carlo Methods

- After the was digital computer was perfect for “statistical sampling”
 1. Individual samples were often very simple to program
 2. Small memory was not a big constraint for these methods
 3. A much better use for digital vs. human computers

- Early Monte Carlo Meetings
 2. 1954, Gainesville, FL: University of Florida Statistical Lab
Integration: The Classic Monte Carlo Application

1. Consider computing $I = \int_0^1 f(x) \, dx$
Integration: The Classic Monte Carlo Application

1. Consider computing $I = \int_0^1 f(x) \, dx$
2. Conventional quadrature methods:

$$I \approx \sum_{i=1}^{N} w_i f(x_i)$$
Integration: The Classic Monte Carlo Application

1. Consider computing $I = \int_0^1 f(x) \, dx$
2. Conventional quadrature methods:

 $$I \approx \sum_{i=1}^{N} w_i f(x_i)$$

 ➤ *Rectangle*: $w_i = \frac{1}{N}$, $x_i = \frac{i}{N}$
Integration: The Classic Monte Carlo Application

1. Consider computing \(I = \int_0^1 f(x) \, dx \)

2. Conventional quadrature methods:

\[
I \approx \sum_{i=1}^{N} w_i f(x_i)
\]

- **Rectangle**: \(w_i = \frac{1}{N}, \quad x_i = \frac{i}{N} \)
- **Trapezoidal**: \(w_i = \frac{2}{N}, \quad w_1 = w_N = \frac{1}{N}, \quad x_i = \frac{i}{N} \)
Integration: The Classic Monte Carlo Application

1. Consider computing \(I = \int_{0}^{1} f(x) \, dx \)
2. Conventional quadrature methods:
 \[I \approx \sum_{i=1}^{N} w_i f(x_i) \]
 - \textit{Rectangle}: \(w_i = \frac{1}{N}, \; x_i = \frac{i}{N} \)
 - \textit{Trapezoidal}: \(w_i = \frac{2}{N}, \; w_1 = w_N = \frac{1}{N}, \; x_i = \frac{i}{N} \)
3. Monte Carlo method has two parts to estimate a numerical quantity of interest, \(I \)
Integration: The Classic Monte Carlo Application

1. Consider computing $I = \int_0^1 f(x) \, dx$
2. Conventional quadrature methods:
 \[I \approx \sum_{i=1}^{N} w_i f(x_i) \]
 - **Rectangle**: $w_i = \frac{1}{N}$, $x_i = \frac{i}{N}$
 - **Trapezoidal**: $w_i = \frac{2}{N}$, $w_1 = w_N = \frac{1}{N}$, $x_i = \frac{i}{N}$
3. Monte Carlo method has two parts to estimate a numerical quantity of interest, I
 - The random process/variable: $x_i \sim U[0, 1]$ i.i.d.
Integration: The Classic Monte Carlo Application

1. Consider computing \(I = \int_{0}^{1} f(x) \, dx \)
2. Conventional quadrature methods:
 \[
 I \approx \sum_{i=1}^{N} w_i f(x_i)
 \]
 - Rectangle: \(w_i = \frac{1}{N}, x_i = \frac{i}{N} \)
 - Trapezoidal: \(w_i = \frac{2}{N}, w_1 = w_N = \frac{1}{N}, x_i = \frac{i}{N} \)
3. Monte Carlo method has two parts to estimate a numerical quantity of interest, \(I \)
 - The random process/variable: \(x_i \sim U[0, 1] \) i.i.d.
 - The score: \(f(x_i) \)
Integration: The Classic Monte Carlo Application

1. Consider computing \(I = \int_0^1 f(x) \, dx \)

2. Conventional quadrature methods:
 \[
 I \approx \sum_{i=1}^{N} w_i f(x_i)
 \]
 - **Rectangle**: \(w_i = \frac{1}{N}, \ x_i = \frac{i}{N} \)
 - **Trapezoidal**: \(w_i = \frac{2}{N}, \ w_1 = w_N = \frac{1}{N}, \ x_i = \frac{i}{N} \)

3. Monte Carlo method has two parts to estimate a numerical quantity of interest, \(I \)
 - The random process/variable: \(x_i \sim U[0, 1] \) i.i.d.
 - The score: \(f(x_i) \)
 - One averages and uses a confidence interval for an error bound
 \[
 \bar{I} = \frac{1}{N} \sum_{i=1}^{N} f(x_i), \quad \text{var}(I) = \frac{1}{N-1} \sum_{i=1}^{N} (f(x_i) - \bar{I})^2 = \frac{1}{N-1} \left[\sum_{i=1}^{N} f(x_i)^2 - N\bar{I}^2 \right],
 \]
 \[
 \text{var}(\bar{I}) = \frac{\text{var}(I)}{N}, \quad I \in \bar{I} \pm k \times \sqrt{\text{var}(\bar{I})}
 \]
Other Early Monte Carlo Applications

- Numerical linear algebra based on sums: $S = \sum_{i=1}^{N} a_i$
Other Early Monte Carlo Applications

- Numerical linear algebra based on sums: \(S = \sum_{i=1}^{N} a_i \)
 1. Define \(p_i \geq 0 \) as the probability of choosing index \(i \), with \(\sum_{i=1}^{M} p_i = 1 \), and \(p_i > 0 \) whenever \(a_i \neq 0 \)
Other Early Monte Carlo Applications

- Numerical linear algebra based on sums: \(S = \sum_{i=1}^{N} a_i \)
 1. Define \(p_i \geq 0 \) as the probability of choosing index \(i \), with \(\sum_{i=1}^{M} p_i = 1 \), and \(p_i > 0 \) whenever \(a_i \neq 0 \)
 2. Then \(a_i/p_i \) with index \(i \) chosen with \(\{p_i\} \) is an unbiased estimate of \(S \), as \(E[a_i/p_i] = \sum_{i=1}^{M} \left(\frac{a_i}{p_i} \right) p_i = S \)
Other Early Monte Carlo Applications

- Numerical linear algebra based on sums: $S = \sum_{i=1}^{N} a_i$
 1. Define $p_i \geq 0$ as the probability of choosing index i, with $\sum_{i=1}^{M} p_i = 1$, and $p_i > 0$ whenever $a_i \neq 0$
 2. Then a_i/p_i with index i chosen with $\{p_i\}$ is an unbiased estimate of S, as $E[a_i/p_i] = \sum_{i=1}^{M} \left(\frac{a_i}{p_i}\right) p_i = S$
- Can be used to solve linear systems of the form $x = Hx + b$
Other Early Monte Carlo Applications

- Numerical linear algebra based on sums: \(S = \sum_{i=1}^{N} a_i \)
 1. Define \(p_i \geq 0 \) as the probability of choosing index \(i \), with \(\sum_{i=1}^{M} p_i = 1 \), and \(p_i > 0 \) whenever \(a_i \neq 0 \)
 2. Then \(a_i/p_i \) with index \(i \) chosen with \(\{p_i\} \) is an unbiased estimate of \(S \), as \(E[a_i/p_i] = \sum_{i=1}^{M} \left(\frac{a_i}{p_i} \right) p_i = S \)

- Can be used to solve linear systems of the form \(x = Hx + b \)

- Consider the linear system: \(x = Hx + b \), if \(||H|| = \|H\| < 1 \), then the following iterative method converges:

\[
x^{n+1} := Hx^n + b, \quad x^0 = 0,
\]

and in particular we have \(x^k = \sum_{i=0}^{k-1} H^i b \), and similarly the Neumann series converges:

\[
N = \sum_{i=0}^{\infty} H^i = (I - H)^{-1}, \quad ||N|| = \sum_{i=0}^{\infty} ||H^i|| \leq \sum_{i=0}^{\infty} \|H\|^i = \frac{1}{1 - \|H\|}
\]
Numerical linear algebra based on sums: $S = \sum_{i=1}^{N} a_i$

1. Define $p_i \geq 0$ as the probability of choosing index i, with $\sum_{i=1}^{M} p_i = 1$, and $p_i > 0$ whenever $a_i \neq 0$
2. Then a_i/p_i with index i chosen with $\{p_i\}$ is an unbiased estimate of S, as $E[a_i/p_i] = \sum_{i=1}^{M} \left(\frac{a_i}{p_i}\right) p_i = S$

Can be used to solve linear systems of the form $x = Hx + b$

Consider the linear system: $x = Hx + b$, if $\|H\| = \mathbb{H} < 1$, then the following iterative method converges:

$$x^{n+1} := Hx^n + b, \quad x^0 = 0,$$

and in particular we have $x^k = \sum_{i=0}^{k-1} H^i b$, and similarly the Neumann series converges:

$$N = \sum_{i=0}^{\infty} H^i = (I - H)^{-1}, \quad \|N\| = \sum_{i=0}^{\infty} \|H^i\| \leq \sum_{i=0}^{\infty} \mathbb{H}^i = \frac{1}{1 - \mathbb{H}}$$

Formally, the solution is $x = (I - H)^{-1} b$
Other Early Monte Carlo Applications

- Methods for partial differential and integral equations
Other Early Monte Carlo Applications

- Methods for partial differential and integral equations
 1. Integral equation methods are similar in construction to the linear system methods
Other Early Monte Carlo Applications

- Methods for partial differential and integral equations
 1. Integral equation methods are similar in construction to the linear system methods
 2. PDEs can be solved by using the Feynman-Kac formula
Other Early Monte Carlo Applications

- Methods for partial differential and integral equations
 1. Integral equation methods are similar in construction to the linear system methods
 2. PDEs can be solved by using the Feynman-Kac formula
 3. Note Kac and Ulam both were trained in Lwów
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
A Monte Carlo method is any process that consumes random numbers.

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
 - Programming/science errors under your control
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
 - Programming/science errors under your control
 - Make possible RNG errors approachable
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
 - Programming/science errors under your control
 - Make possible RNG errors approachable

3. Reproducibility
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
 - Programming/science errors under your control
 - Make possible RNG errors approachable

3. Reproducibility
 - Must be able to rerun a calculation with the same numbers
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

- A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
 - Programming/science errors under your control
 - Make possible RNG errors approachable

3. Reproducibility
 - Must be able to rerun a calculation with the same numbers
 - Across different machines (modulo arithmetic issues)
Monte Carlo Methods: Numerical Experimental that Use Random Numbers

A Monte Carlo method is any process that consumes random numbers.

1. Each calculation is a numerical experiment:
 - Subject to known and unknown sources of error
 - Should be reproducible by peers
 - Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable:
 - Programming/science errors under your control
 - Make possible RNG errors approachable

3. Reproducibility:
 - Must be able to rerun a calculation with the same numbers
 - Across different machines (modulo arithmetic issues)
 - Parallel and distributed computers?
Early Random Number Generators on Digital Computers

- Middle-Square method: von Neumann
Early Random Number Generators on Digital Computers

- Middle-Square method: von Neumann
 1. 10 digit numbers: \(x_{n+1} = \left\lfloor \frac{x_n^2}{10^5} \right\rfloor \text{ (mod } 10^{10}) \)
Early Random Number Generators on Digital Computers

- **Middle-Square method: von Neumann**
 1. 10 digit numbers: \(x_{n+1} = \left\lfloor \frac{x_n^2}{10^5} \right\rfloor \pmod{10^{10}} \)
 2. Multiplication leads to good mixing
Early Random Number Generators on Digital Computers

- Middle-Square method: von Neumann
 1. 10 digit numbers: $x_{n+1} = \left\lfloor \frac{x_n^2}{10^5} \right\rfloor \pmod{10^{10}}$
 2. Multiplication leads to good mixing
 3. Zeros in lead to short periods and cycle collapse
Early Random Number Generators on Digital Computers

- Middle-Square method: von Neumann
 1. 10 digit numbers: $x_{n+1} = \left\lfloor \frac{x_n^2}{10^5} \right\rfloor \pmod{10^{10}}$
 2. Multiplication leads to good mixing
 3. Zeros in lead to short periods and cycle collapse

- Linear congruential method: D. H. Lehmer
Early Random Number Generators on Digital Computers

- **Middle-Square method**: von Neumann
 1. 10 digit numbers: \(x_{n+1} = \left\lfloor \frac{x_n^2}{10^5} \right\rfloor \pmod{10^{10}} \)
 2. Multiplication leads to good mixing
 3. Zeros in lead to short periods and cycle collapse

- **Linear congruential method**: D. H. Lehmer

 \[x_{n+1} = ax_n + c \pmod{m} \]
Early Random Number Generators on Digital Computers

- **Middle-Square method: von Neumann**
 1. 10 digit numbers: \(x_{n+1} = \lfloor \frac{x_n^2}{10^5} \rfloor \pmod{10^{10}} \)
 2. Multiplication leads to good mixing
 3. Zeros in lead to short periods and cycle collapse

- **Linear congruential method: D. H. Lehmer**
 \[x_{n+1} = ax_n + c \pmod{m} \]
 Good properties with good parameters
MCMs: Early History and The Basics

Monte Carlo Methods

General Concepts of the Monte Carlo Method

Early Random Number Generators on Digital Computers

- Middle-Square method: von Neumann
 1. 10 digit numbers: \(x_{n+1} = \left\lfloor \frac{x_n^2}{10^5} \right\rfloor \pmod{10^{10}} \)
 2. Multiplication leads to good mixing
 3. Zeros in lead to short periods and cycle collapse

- Linear congruential method: D. H. Lehmer
 \(x_{n+1} = ax_n + c \pmod{m} \)
 - Good properties with good parameters
 - Has become very popular
What are Random Numbers Used For?

- There are many types of random numbers

Types of Random Numbers

1. **Real** random numbers: a mathematical idealization
2. Random numbers based on a “physical source” of randomness
3. Computational random numbers
 - Pseudorandom numbers: deterministic sequence that passes tests of randomness
 - Cryptographic numbers: totally unpredictable
 - Quasirandom numbers: very uniform points
What are Random Numbers Used For?

- There are many types of random numbers
 1. “Real” random numbers: a mathematical idealization

![Venn diagram]

- Independence
- Unpredictability
- Uniformity
- Pseudorandom numbers
- Cryptographic numbers
- Quasirandom numbers
What are Random Numbers Used For?

- There are many types of random numbers
 1. “Real” random numbers: a mathematical idealization
 2. Random numbers based on a “physical source” of randomness
What are Random Numbers Used For?

- There are many types of random numbers
 1. "Real" random numbers: a mathematical idealization
 2. Random numbers based on a “physical source” of randomness
 3. Computational Random numbers
What are Random Numbers Used For?

- There are many types of random numbers
 1. “Real” random numbers: a mathematical idealization
 2. Random numbers based on a “physical source” of randomness
 3. Computational Random numbers
 1. Pseudorandom numbers: deterministic sequence that passes tests of randomness

<table>
<thead>
<tr>
<th>Independence</th>
<th>Unpredictability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudorandom numbers</td>
<td>Cryptographic numbers</td>
</tr>
<tr>
<td>Quasirandom numbers</td>
<td>Uniformity</td>
</tr>
</tbody>
</table>
What are Random Numbers Used For?

There are many types of random numbers:
1. “Real” random numbers: a mathematical idealization
2. Random numbers based on a “physical source” of randomness
3. Computational Random numbers
 1. Pseudorandom numbers: deterministic sequence that passes tests of randomness
 2. Cryptographic numbers: totally unpredictable

<table>
<thead>
<tr>
<th>Independence</th>
<th>Unpredictability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudorandom numbers</td>
<td>Cryptographic numbers</td>
</tr>
<tr>
<td>Quasirandom numbers</td>
<td></td>
</tr>
</tbody>
</table>

Uniformity
What are Random Numbers Used For?

- There are many types of random numbers:
 1. “Real” random numbers: a mathematical idealization
 2. Random numbers based on a “physical source” of randomness
 3. Computational Random numbers
 1. Pseudorandom numbers: deterministic sequence that passes tests of randomness
 2. Cryptographic numbers: totally unpredictable
 3. Quasirandom numbers: very uniform points

Diagram:
- Pseudorandom numbers
- Cryptographic numbers
- Quasirandom numbers
- Independence
- Unpredictability
- Uniformity
Future Work on Random Numbers

1. Support for new architectures
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-SPRNG
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-SPRNG
 - GPGPU support: LCGs and FLGs
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-SPRNG
 - GPGPU support: LCGs and FLGs

2. Testing Random Numbers
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-SPRNG
 - GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 - Hardware random numbers
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-SPRNG
 - GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 - Hardware random numbers
 - Cryptographic test suites
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-SPRNG
 - GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 - Hardware random numbers
 - Cryptographic test suites
 - Support for new RNG suites
Future Work on Random Numbers

1. Support for new architectures
 ▶ Multicore processors: OpenMP-SPRNG
 ▶ GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 ▶ Hardware random numbers
 ▶ Cryptographic test suites
 ▶ Support for new RNG suites

3. Applications
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-\texttt{SPRNG}
 - GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 - Hardware random numbers
 - Cryptographic test suites
 - Support for new RNG suites

3. Applications
 - Monte Carlo on new architectures
Future Work on Random Numbers

1. Support for new architectures
 ▶ Multicore processors: OpenMP-SPRNG
 ▶ GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 ▶ Hardware random numbers
 ▶ Cryptographic test suites
 ▶ Support for new RNG suites

3. Applications
 ▶ Monte Carlo on new architectures
 ▶ Reproducibility and system integrity
Future Work on Random Numbers

1. Support for new architectures
 - Multicore processors: OpenMP-SPRNG
 - GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 - Hardware random numbers
 - Cryptographic test suites
 - Support for new RNG suites

3. Applications
 - Monte Carlo on new architectures
 - Reproducibility and system integrity
 - Computational resilience and fault tolerance
Future Work on Random Numbers

1. Support for new architectures
 ▶ Multicore processors: OpenMP-SPRNG
 ▶ GPGPU support: LCGs and FLGs

2. Testing Random Numbers
 ▶ Hardware random numbers
 ▶ Cryptographic test suites
 ▶ Support for new RNG suites

3. Applications
 ▶ Monte Carlo on new architectures
 ▶ Reproducibility and system integrity
 ▶ Computational resilience and fault tolerance

4. Commercialization of SPRNG
References

[M. Mascagni, T. Anderson, H. Yu and Y. Qiu (2014)]
Papers on SPRNG generators for Multicore and GPGPU
One submitted and three in preparation
References

[M. Mascagni, T. Anderson, H. Yu and Y. Qiu (2014)]
Papers on SPRNG generators for Multicore and GPGPU
One submitted and three in preparation

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with Sophie-Germain Moduli,
Parallel Computing, 30: 1217–1231.
References

[M. Mascagni, T. Anderson, H. Yu and Y. Qiu (2014)]
Papers on SPRNG generators for Multicore and GPGPU
One submitted and three in preparation

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with Sophie-Germain Moduli,
Parallel Computing, 30: 1217–1231.

[M. Mascagni and A. Srinivasan (2004)]
Parameterizing Parallel Multiplicative Lagged-Fibonacci Generators,
References

[M. Mascagni, T. Anderson, H. Yu and Y. Qiu (2014)]
Papers on SPRNG generators for Multicore and GPGPU
One submitted and three in preparation

[M. Mascagni and H. Chi (2004)]
Parallel Linear Congruential Generators with Sophie-Germain Moduli,
*Parallel Computing, **30**: 1217–1231.

[M. Mascagni and A. Srinivasan (2004)]
Parameterizing Parallel Multiplicative Lagged-Fibonacci Generators,
*Parallel Computing, **30**: 899–916.

[M. Mascagni and A. Srinivasan (2000)]
Algorithm 806: SPRNG: A Scalable Library for Pseudorandom Number Generation,
*ACM Transactions on Mathematical Software, **26**: 436–461.
Questions?
© Michael Mascagni, 2016