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Types of random numbers and Monte Carlo Methods

Monte Carlo Methods: Numerical Experimental that
Use Random Numbers

I A Monte Carlo method is any process that consumes
random numbers

1. Each calculation is a numerical experiment
I Subject to known and unknown sources of error
I Should be reproducible by peers
I Should be easy to run anew with results that can be

combined to reduce the variance
2. Sources of errors must be controllable/isolatable

I Programming/science errors under your control
I Make possible RNG errors approachable

3. Reproducibility
I Must be able to rerun a calculation with the same numbers
I Across different machines (modulo arithmetic issues)
I Parallel and distributed computers?
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Types of random numbers and Monte Carlo Methods

What are Random Numbers Used For?
1. Random numbers are used extensively in simulation,

statistics, and in Monte Carlo computations
I Simulation: use random numbers to “randomly pick" event

outcomes based on statistical or experiential data
I Statistics: use random numbers to generate data with a

particular distribution to calculate statistical properties
(when analytic techniques fail)

2. There are many Monte Carlo applications of great interest
I Numerical quadrature “all Monte Carlo is integration"
I Quantum mechanics: Solving Schrödinger’s equation with

Green’s function Monte Carlo via random walks
I Mathematics: Using the Feynman-Kac/path integral

methods to solve partial differential equations with random
walks

I Defense: neutronics, nuclear weapons design
I Finance: options, mortgage-backed securities
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Types of random numbers and Monte Carlo Methods

What are Random Numbers Used For?
3. There are many types of random numbers

I “Real" random numbers: uses a ‘physical source’ of
randomness

I Pseudorandom numbers: deterministic sequence that
passes tests of randomness

I Quasirandom numbers: well distributed (low discrepancy)
points

Cryptographic
     numbers

Pseudorandom
      numbers

Quasirandom
     numbers

Uniformity

UnpredictabilityIndependence
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Types of random numbers and Monte Carlo Methods

Why Monte Carlo?

1. Rules of thumb for Monte Carlo methods
I Good for computing linear functionals of solution (linear

algebra, PDEs, integral equations)
I No discretization error but sampling error is O(N−1/2)
I High dimensionality is favorable, breaks the “curse of

dimensionality"
I Appropriate where high accuracy is not necessary
I Often algorithms are “naturally" parallel

2. Exceptions
I Complicated geometries often easy to deal with
I Randomized geometries tractable
I Some applications are insensitive to singularities in solution
I Sometimes is the fastest high-accuracy algorithm (rare)
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Types of random numbers and Monte Carlo Methods

The Classic Monte Carlo Application: Numerical
Integration

1. Consider computing I =
∫ 1

0 f (x) dx
2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Rectangle: wi = 1
N , xi = i

N
I Trapezoidal: wi = 2

N ,w1 = wN = 1
N , xi = i

N
3. Monte Carlo quadrature

I ≈ 1
N

N∑
i=1

f (xi), xi ∼ U[0,1], i.i.d.

4. Big advantage seen in multidimensional integration,
consider (s-dimensions):

I =

∫
[0,1]s

f (x1, . . . , xs) dx1 . . . dxs
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Types of random numbers and Monte Carlo Methods

The Classic Monte Carlo Application: Numerical
Integration

1. Errors are significantly different, with N function
evaluations we see the curse of dimensionality

I Product trapezoidal rule: Error = O(N−2/s)
I Monte Carlo: Error = O(N−1/2) (indep. of s!!)

2. Note: the errors are deterministic for the trapezoidal rule
whereas the MCM error is a variance bound

3. For s = 1, E [f (xi)] = I when xi ∼ U[0,1], so
E [ 1

N
∑N

i=1 f (xi)] = I, and Var [ 1
N
∑N

i=1 f (xi)] = Var [f (xi)]/N.
Var [f (xi)] =

∫ 1
0 (f (x)− I)2 dx
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Pseudorandom number generation

Types of pseudorandom numbers

Pseudorandom Numbers
I Pseudorandom numbers mimic the properties of ‘real’

random numbers
A. Pass statistical tests
B. Reduce error is O(N−

1
2 ) in Monte Carlo

I Some common pseudorandom number generators (RNG):
1. Linear congruential: xn = axn−1 + c (mod m)

2. Implicit inversive congruential: xn = axn−1 + c (mod p)

3. Explicit inversive congruential: xn = an + c (mod p)

4. Shift register: yn = yn−s + yn−r (mod 2), r > s
5. Additive lagged-Fibonacci: zn = zn−s + zn−r

(mod 2k ), r > s
6. Combined: wn = yn + zn (mod p)

7. Multiplicative lagged-Fibonacci: xn = xn−s × xn−r
(mod 2k ), r > s
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Pseudorandom number generation

Properties of these pseudorandom numbers

Pseudorandom Numbers

I Some properties of pseudorandom number generators,
integers: {xn} from modulo m recursion, and
U[0,1], zn = xn

m

A. Should be a purely periodic sequence (e.g.: DES and
IDEA are not provably periodic)

B. Period length: Per(xn) should be large
C. Cost per bit should be moderate (not cryptography)
D. Should be based on theoretically solid and empirically

tested recursions
E. Should be a totally reproducible sequence
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Pseudorandom number generation

Properties of these pseudorandom numbers

Pseudorandom Numbers
I Some common facts (rules of thumb) about pseudorandom

number generators:
1. Recursions modulo a power-of-two are cheap, but have

simple structure
2. Recursions modulo a prime are more costly, but have

higher quality: use Mersenne primes: 2p − 1, where p is
prime, too

3. Shift-registers (Mersenne Twisters) are efficient and have
good quality

4. Lagged-Fibonacci generators are efficient, but have some
structural flaws

5. Combining generators is ‘provably good’
6. Modular inversion is very costly
7. All linear recursions ‘fall in the planes’
8. Inversive (nonlinear) recursions ‘fall on hyperbolas’
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Pseudorandom number generation

Properties of these pseudorandom numbers

Periods of Pseudorandom Number Generators
1. Linear congruential: xn = axn−1 + c (mod m),

Per(xn) = m − 1,m prime, with m a power-of-two,
Per(xn) = 2k , or Per(xn) = 2k−2 if c = 0

2. Implicit inversive congruential: xn = axn−1 + c (mod p),
Per(xn) = p

3. Explicit inversive congruential: xn = an + c (mod p),
Per(xn) = p

4. Shift register: yn = yn−s + yn−r (mod 2), r > s,
Per(yn) = 2r − 1

5. Additive lagged-Fibonacci: zn = zn−s + zn−r
(mod 2k ), r > s, Per(zn) = (2r − 1)2k−1

6. Combined: wn = yn + zn (mod p),
Per(wn) = lcm(Per(yn),Per(zn))

7. Multiplicative lagged-Fibonacci: xn = xn−s × xn−r
(mod 2k ), r > s, Per(xn) = (2r − 1)2k−3
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Pseudorandom number generation

Properties of these pseudorandom numbers

Combining RNGs
I There are many methods to combine two streams of

random numbers, {xn} and {yn}, where the xn are integers
modulo mx , and yn’s modulo my :

1. Addition modulo one: zn = xn
mx

+ yn
my

(mod 1)

2. Addition modulo either mx or my

3. Multiplication and reduction modulo either mx or my

4. Exclusive “or-ing"

I Rigorously provable that linear combinations produce
combined streams that are “no worse" than the worst

I Tony Warnock: all the above methods seem to do about
the same



RNG: A Practitioner’s Overview

Pseudorandom number generation

Parallelization of pseudorandom number generators

Splitting RNGs for Use In Parallel
I We consider splitting a single PRNG:

I Assume {xn} has Per(xn)
I Has the fast-leap ahead property: leaping L ahead costs no

more than generating O(log2(L)) numbers
I Then we associate a single block of length L to each

parallel subsequence:

1. Blocking:
I First block: {x0, x1, . . . , xL−1}
I Second : {xL, xL+1, . . . , x2L−1}
I i th block: {x(i−1)L, x(i−1)L+1, . . . , xiL−1}

2. The Leap Frog Technique: define the leap ahead of
` =

⌊Per(xi )
L

⌋
:

I First block: {x0, x`, x2`, . . . , x(L−1)`}
I Second block: {x1, x1+`, x1+2`, . . . , x1+(L−1)`}
I i th block: {xi , xi+`, xi+2`, . . . , xi+(L−1)`}
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Splitting RNGs for Use In Parallel
3. The Lehmer Tree, designed for splitting LCGs:

I Define a right and left generator: R(x) and L(x)
I The right generator is used within a process
I The left generator is used to spawn a new PRNG stream
I Note: L(x) = RW (x) for some W for all x for an LCG
I Thus, spawning is just jumping a fixed, W , amount in the

sequence
4. Recursive Halving Leap-Ahead, use fixed points or fixed

leap aheads:
I First split leap ahead:

⌊
Per(xi )

2

⌋
I i th split leap ahead:

⌊
Per(xi )

2l+1

⌋
I This permits effective user of all remaining numbers in {xn}

without the need for a priori bounds on the stream
length L
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Generic Problems Parallelizing via Splitting

1. Splitting for parallelization is not scalable:
I It usually costs O(log2(Per(xi ))) bit operations to generate

a random number
I For parallel use, a given computation that requires L

random numbers per process with P processes must have
Per(xi ) = O((LP)e)

I Rule of thumb: never use more than
√

Per(xi ) of a
sequence→ e = 2

I Thus cost per random number is not constant with number
of processors!!
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Generic Problems Parallelizing via Splitting

2. Correlations within sequences are generic!!
I Certain offsets within any modular recursion will lead to

extremely high correlations
I Splitting in any way converts auto-correlations to

cross-correlations between sequences
I Therefore, splitting generically leads to interprocessor

correlations in PRNGs
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Pseudorandom number generation

Parallelization of pseudorandom number generators

New Results in Parallel RNGs: Using Distinct
Parameterized Streams in Parallel

1. Default generator: additive lagged-Fibonacci,
xn = xn−s + xn−r (mod 2k ), r > s

I Very efficient: 1 add & pointer update/number
I Good empirical quality
I Very easy to produce distinct parallel streams

2. Alternative generator #1: prime modulus LCG,
xn = axn−1 + c (mod m)

I Choice: Prime modulus (quality considerations)
I Parameterize the multiplier
I Less efficient than lagged-Fibonacci
I Provably good quality
I Multiprecise arithmetic in initialization
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Pseudorandom number generation

Parallelization of pseudorandom number generators

New Results in Parallel RNGs: Using Distinct
Parameterized Streams in Parallel

3. Alternative generator #2: power-of-two modulus LCG,
xn = axn−1 + c (mod 2k )

I Choice: Power-of-two modulus (efficiency considerations)
I Parameterize the prime additive constant
I Less efficient than lagged-Fibonacci
I Provably good quality
I Must compute as many primes as streams
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization Based on Seeding
I Consider the Lagged-Fibonacci generator:

xn = xn−5 + xn−17 (mod 232) or in general:

xn = xn−s + xn−r (mod 2k ), r > s

I The seed is 17 32-bit integers; 544 bits, longest possible
period for this linear generator is 217×32 − 1 = 2544 − 1

I Maximal period is Per(xn) = (217 − 1)× 231

I Period is maximal ⇐⇒ at least one of the 17 32-bit
integers is odd

I This seeding failure results in only even “random numbers”
I Are (217 − 1)× 231×17 seeds with full period
I Thus there are the following number of full-period

equivalence classes (ECs):

E =
(217 − 1)× 231×17

(217 − 1)× 231 = 231×16 = 2496
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Pseudorandom number generation

Parallelization of pseudorandom number generators

The Equivalence Class Structure

With the “standard” l.s.b., b0: or a special b0 (adjoining 1’s):

m.s.b. l.s.b. m.s.b. l.s.b.
bk−1 bk−2 . . . b1 b0 bk−1 bk−2 . . . b1 b0
� � . . . 0 0 xr−1 � � . . . � b0n−1 xr−1
0 � . . . � 0 xr−2 � � . . . � b0n−2 xr−2
...

...
...

...
...

...
...

...
...

...
� 0 . . . � 0 x1 � � . . . � b01 x1
� � . . . � 1 x0 0 0 . . . 0 b00 x0
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Prime Modulus LCGs

I Consider only xn = axn−1 (mod m), with m prime has
maximal period when a is a primitive root modulo m

I If α and a are primitive roots modulo m then
∃ l s.t. gcd(l ,m − 1) = 1 and α ≡ al (mod m)

I If m = 22n
+ 1 (Fermat prime) then all odd powers of α are

primitive elements also
I If m = 2q + 1 with q also prime (Sophie-Germain prime)

then all odd powers (save the qth) of α are primitive
elements
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Prime Modulus LCGs

I Consider xn = axn−1 (mod m) and yn = alyn−1 (mod m)
and define the full-period exponential-sum
cross-correlation between then as:

C(j , l) =
m−1∑
n=0

e
2πi
m (xn−yn−j )

then the Riemann hypothesis over finite-fields implies
|C(j , l)| ≤ (l − 1)

√
m
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Prime Modulus LCGs

I Mersenne modulus: relatively easy to do modular
multiplication

I With Mersenne prime modulus, m = 2p − 1 must compute
φ−1

m−1(k), the k th number relatively prime to m − 1
I Can compute φm−1(x) with a variant of the

Meissel-Lehmer algorithm fairly quickly:
I Use partial sieve functions to trade off memory for more

than 2j operations, j = # of factors of m − 1
I Have fast implementation for p = 31, 61, 127, 521, 607
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of Power-of-Two Modulus LCGs

I xn = axn−1 + ci (mod 2k ), here the ci ’s are distinct primes
I Can prove (Percus and Kalos) that streams have good

spectral test properties among themselves
I Best to choose ci ≈

√
2k = 2k/2

I Must enumerate the primes, uniquely, not necessarily
exhaustively to get a unique parameterization

I Note: in 0 ≤ i < m there are ≈ m
log2 m primes via the prime

number theorem, thus if m ≈ 2k streams are required, then
must exhaust all the primes modulo
≈ 2k+log2 k = 2kk = m log2 m

I Must compute distinct primes on the fly either with table or
something like Meissel-Lehmer algorithm
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Parameterization of MLFGs

1. Recall the MLFG recurrence:
xn = xn−s × xn−r (mod 2k ), r > s

2. One of the r seed elements is even→ eventually all
become even

3. Restrict to only odd numbers in the MLFG seeds
4. Allows the following parameterization for odd integers

modulo a power-of-two xn = (−1)yn3zn (mod 2k ), where
yn ∈ {0,1} and where

I yn = yn−s + yn−r (mod 2)
I zn = zn−s + zn−r (mod 2k−2)

5. Last recurrence means we can us ALFG parameterization,
zn, and map to MLFGs via modular exponentiation
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Quality Issues in Serial and Parallel PRNGs

I Empirical tests (more later)
I Provable measures of quality:

1. Full- and partial-period discrepancy (Niederreiter) test
equidistribution of overlapping k -tuples

2. Also full- (k = Per(xn)) and partial-period exponential
sums:

C(j , k) =
k−1∑
n=0

e
2πi
m (xn−xn−j )
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Quality Issues in Serial and Parallel PRNGs

I For LCGs and SRGs full-period and partial-period results
are similar

. |C(·,Per(xn))| < O(
√

Per(xn))

. |C(·, j)| < O(
√

Per(xn))

I Additive lagged-Fibonacci generators have poor provable
results, yet empirical evidence suggests
|C(·,Per(xn))| < O(

√
Per(xn))
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Parallel Neutronics: A Difficult Example

1. The structure of parallel neutronics
I Use a parallel queue to hold unfinished work
I Each processor follows a distinct neutron
I Fission event places a new neutron(s) in queue with initial

conditions
2. Problems and solutions

I Reproducibility: each neutron is queued with a new
generator (and with the next generator)

I Using the binary tree mapping prevents generator reuse,
even with extensive branching

I A global seed reorders the generators to obtain a
statistically significant new but reproducible result
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Many Parameterized Streams Facilitate
Implementation/Use

1. Advantages of using parameterized generators
I Each unique parameter value gives an “independent”

stream
I Each stream is uniquely numbered
I Numbering allows for absolute reproducibility, even with

MIMD queuing
I Effective serial implementation + enumeration yield a

portable scalable implementation
I Provides theoretical testing basis
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Many Parameterized Streams Facilitate
Implementation/Use

2. Implementation details
I Generators mapped canonically to a binary tree
I Extended seed data structure contains current seed and

next generator
I Spawning uses new next generator as starting point:

assures no reuse of generators

3. All these ideas in the Scalable Parallel Random Number
Generators (SPRNG) library: http://sprng.org
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Pseudorandom number generation

Parallelization of pseudorandom number generators

Many Different Generators and A Unified Interface

1. Advantages of having more than one generator
I An application exists that stumbles on a given generator
I Generators based on different recursions allow comparison

to rule out spurious results
I Makes the generators real experimental tools

2. Two interfaces to the SPRNG library: simple and default
I Initialization returns a pointer to the generator state:
init_SPRNG()

I Single call for new random number: SPRNG()
I Generator type chosen with parameters in init_SPRNG()
I Makes changing generator very easy
I Can use more than one generator type in code
I Parallel structure is extensible to new generators through

dummy routines
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Pseudorandom number generation

New directions for SPRNG

New Directions for SPRNG
I SPRNG: originally designed for distributed-memory

multiprocessors
I New Intel Hardware RNG
I HPC architectures increasingly based on commodity chips

with architectural variations
1. Microprocessors with more than one processor core

(multicore)
2. The IBM cell processor (not very successful even though it

was in the Sony Playstation)
3. Microprocessors with accelerators, most popular being

GPGPUs (video games)
I We will consider only two of these:

1. Multicore support using OpenMP
2. GPU support using CUDA (Nvidia) and/or OpenCL

(standard)
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Pseudorandom number generation

New directions for SPRNG

SPRNG Update Overview

I SPRNG uses independent full-period cycles for each
processor

1. Organizes the independent use of generators without
communication

2. Permits reproducibility
3. Initialization of new full-period generators is slow for some

generators
I A possible solution

1. Keep the independent full-period cycles for “top-level"
generators

2. Within these (multicore processor/GPU) use cycle splitting
to service threads
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Pseudorandom number generation

New directions for SPRNG

Experience with Multicore
I We have implemented an OpenMP version of SPRNG for

multicore using these ideas
I OpenMP is now built into the main compilers, so it is easy

to access
I Our experience has been

1. It works as expected giving one access to Monte Carlo on
all the cores

2. Permits reproducibility but with some work: must know the
number of threads

3. Near perfect parallelization is expected and seen
4. Comparison with independent spawning vs. cycle splitting

is not as dramatic as expected
I Backward reproducibility is something that we can provide,

but forward reproducibility is trickier
I This version is a prototype, but will be used for the eventual

creation of the multicore version of SPRNG
I Work with Messers. Haohai Yu and Yue Qiu
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Pseudorandom number generation

New directions for SPRNG

Expectations for SPRNG on GPGPUs
I SPRNG for the GPU will be simple in principal, but harder

for users
1. The same technique that was used for multicore will work

for GPUs with many of the same issues
2. The concept of reproducibility will have to modified as well
3. Successful exploitation of GPU threads will require that

SPRNG calls be made to insure that the data and the
execution are on the GPU

I The software development may not be the hardest aspect
of this work

1. Clear documentation with descriptions of common coding
errors will be essential for success

2. An extensive library of examples will be necessary to
provide most users with code close to their own to help use
the GPU efficiently for Monte Carlo

I We are currently working on putting many Monte Carlo
codes on GPUs in anticipation of this
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Quasirandom number generation

Quasirandom Numbers

I Many problems require uniformity, not randomness:
“quasirandom" numbers are highly uniform deterministic
sequences with small star discrepancy

I Definition: The star discrepancy D∗N of x1, . . . , xN :

D∗N =D∗N(x1, . . . , xN)

= sup
0≤u≤1

∣∣∣∣∣ 1
N

N∑
n=1

χ[0,u)(xn)− u

∣∣∣∣∣ ,
where χ is the characteristic function
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Quasirandom number generation

Star Discrepancy in 2D
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Quasirandom number generation

Star Discrepancy in 2D
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The Koksma-Hlawka inequality

Quasirandom Numbers

I Theorem (Koksma, 1942): if f (x) has bounded variation
V (f ) on [0,1] and x1, . . . , xN ∈ [0,1] with star discrepancy
D∗N , then: ∣∣∣∣∣ 1

N

N∑
n=1

f (xn)−
∫ 1

0
f (x) dx

∣∣∣∣∣ ≤ V (f )D∗N ,

this is the Koksma-Hlawka inequality
I Note: Many different types of discrepancies are definable
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Discrepancy

Discrepancy Facts
I Real random numbers have (the law of the iterated

logarithm):

D∗N = O(N−1/2(log log N)−1/2)

I Klaus F. Roth (Fields medalist in 1958) proved the following
lower bound in 1954 for the star discrepancy of N points in
s dimensions:

D∗N ≥ O(N−1(log N)
s−1

2 )

I Sequences (indefinite length) and point sets have different
"best discrepancies" at present

I Sequence: D∗
N ≤ O(N−1(log N)s−1)

I Point set: D∗
N ≤ O(N−1(log N)s−2)
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The van der Corput sequence

Some Types of Quasirandom Numbers

I Must choose point sets (finite #) or sequences (infinite #)
with small D∗N

I Often used is the van der Corput sequence in base b:
xn = Φb(n − 1),n = 1,2, . . . , where for b ∈ Z,b ≥ 2:

Φb

 ∞∑
j=0

ajbj

 =
∞∑

j=0

ajb−j−1 with

aj ∈{0,1, . . . ,b − 1}
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The van der Corput sequence

Some Types of Quasirandom Numbers

I For the van der Corput sequence

ND∗N ≤
log N
3 log 2

+ O(1)

I With b = 2, we get {1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 . . . }

I With b = 3, we get {1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 . . . }
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Methods of quasirandom number generation

Some Types of Quasirandom Numbers

I Other small D∗N points sets and sequences:

1. Halton sequence: xn =
(
Φb1(n − 1), . . . ,Φbs (n − 1)

)
,

n = 1,2, . . . , D∗N = O
(
N−1(log N)s) if b1, . . . ,bs pairwise

relatively prime
2. Hammersley point set:

xn =
(n−1

N ,Φb1(n − 1), . . . ,Φbs−1(n − 1)
)
, n = 1,2, . . . ,N,

D∗N = O
(
N−1(log N)s−1) if b1, . . . ,bs−1 are pairwise

relatively prime
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Good Halton points vs poor Halton points
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Some Types of Quasirandom Numbers

3. Ergodic dynamics/Weyl sequence: xn = {nα} or
xn = xn−1α (mod 1) , where α = (α1, . . . , αs) is irrational
and α1, . . . , αs are linearly independent over the rationals
then for almost all α ∈ Rs, D∗N = O(N−1(log N)s+1+ε) for all
ε > 0

4. Other methods of generation
I Method of good lattice points (Sloan and Joe)
I Soboĺ sequences
I Faure sequences (more later)
I Niederreiter sequences
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Methods of quasirandom number generation

Continued-Fractions and Irrationals
Infinite continued-fraction expansion for choosing good
irrationals:

r = a0 +
1

a1 + 1
a2+...

ai ≤ K −→ sequence is a low-discrepancy sequence
Choose all ai = 1. Then

r = 1 +
1

1 + 1
1+...

.

is the golden ratio.

0.618, 0.236, 0.854, 0.472, 0.090, . . .

Irrational sequence in more dimensions is not a
low-discrepancy sequence.
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Lattice

I Fixed N
I Generator vector ~g = (g1, . . . ,gd ) ∈ Zd .

We define a rank-1 lattice as

Plattice :=

{
~xi =

i~g
N

mod 1
}
.
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Lattice with 1031 points
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Lattice

I After N points the sequence repeats itself,
I Projection on each axis gives the set { 0

N ,
1
N , . . . ,

N−1
N }.

Not every generator gives a good point set.
E.g. g1 = g2 = · · · = gd = 1, gives {( i

N , . . . ,
i
N )}.
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Some Types of Quasirandom Numbers
1. Another interpretation of the v.d. Corput sequence:

I Define the i th `-bit “direction number” as: vi = 2i (think of
this as a bit vector)

I Represent n − 1 via its base-2 representation
n − 1 = b`−1b`−2 . . . b1b0

I Thus we have
Φ2(n − 1) = 2−`

i=`−1⊕
i=0, bi=1

vi

2. The Soboĺ sequence works the same!!
I Use recursions with a primitive binary polynomial define the

(dense) vi
I The Soboĺ sequence is defined as:

sn = 2−`
i=`−1⊕

i=0, bi=1

vi

I Use Gray-code ordering for speed
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Some Types of Quasirandom Numbers

I (t ,m, s)-nets and (t , s)-sequences and generalized
Niederreiter sequences

1. Let b ≥ 2, s > 1 and 0 ≤ t ≤ m ∈ Z then a b-ary box,
J ⊂ [0,1)s, is given by

J =
s∏

i=1

[
ai

bdi
,
ai + 1

bdi
)

where di ≥ 0 and the ai are b-ary digits, note that
|J| = b−

∑s
i=1 di
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Some Types of Quasirandom Numbers

2. A set of bm points is a (t ,m, s)-net if each b-ary box of
volume bt−m has exactly bt points in it

3. Such (t ,m, s)-nets can be obtained via Generalized
Niederreiter sequences, in dimension j of s:
y (j)

i (n) = C(j)ai(n), where n has the b-ary representation
n =

∑∞
k=0 ak (n)bk and x (j)

i (n) =
∑m

k=1 y (j)
k (n)q−k
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Good vs poor net
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Randomization and Derandomization

Randomization of the Faure Sequence

1. A problem with all QRNs is that the Koksma-Hlawka
inequality provides no practical error estimate

2. A solution is to randomize the QRNs and then consider
each randomized sequence as providing an independent
sample for constructing confidence intervals

3. Consider the s-dimensional Faure series is:
(φp(C(0)(n)), φp(C(1)(n)), . . . , φp(Ps−1(n)))

I p > s is prime
I C(j−1) is the generator matrix for dimension 1 ≤ j ≤ s
I For Faure C(j) = P j−1 is the Pascal matrix:

P j−1
r ,k =

(r−1
k−1

)
(j − 1)(r−k) (mod p)
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Randomization and Derandomization

Another Reason for Randomization
QRNs have inherently bad low-dimensional projections
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Randomization and Derandomization

Another Reason for Randomization
Randomization (scrambling) helps
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Randomization and Derandomization

General Randomization Techniques

1. Random shifting: zn = xn + r (mod 1)
I xn ∈ [0,1]s is the original QRN
I r ∈ [0,1]s is a random point
I zn ∈ [0,1]s scrambled point

2. Digit permutation
I Nested scrambling (Owen)
I Single digit scrambling like linear scrambling

3. Randomization of the generator matrices, i.e. Tezuka’s
GFaure, C(j) = A(j)P j−1 where Aj is a random nonsingular
lower-triangular matrix modulo p
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Randomization and Derandomization

Derandomization and Applications

1. Given that a randomization leads to a family of QRNs, is
there a best?

I Must make the family small enough to exhaust over, so one
uses a small family of permutations like the linear
scramblings

I The must be a quality criterion that is indicative and cheap
to evaluate

2. Applications of randomization: tractable error bounds,
parallel QRNs

3. Applications of derandomization: finding more rapidly
converging families of QRNs
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Future Work on Random Numbers (not yet completed)

1. SPRNG and pseudorandom number generation work
I New generators: Well, Mersenne Twister
I Spawn-intensive/small-memory footprint generators:

MLFGs
I C++ implementation
I Grid-based tools
I More comprehensive testing suite; improved theoretical

tests
I New version incorporating the completed work
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Future Work on Random Numbers (not yet completed)

2. Quasirandom number work
I Scrambling (parameterization) for parallelization
I Optimal scramblings
I Grid-based tools
I Application-based comparision/testing suite
I Comparison to sparse grids
I “QPRNG"

3. Commercialization of SPRNG
I FSU-supported startup company
I Commercial licenses and SPRNG consulting
I Funds will support continued development and support
I SPRNG will continue to be free to academic and

government researchers
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