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PREFACE 

Thls text Is about one small Aeld on the crossroads of statlstlcs, operatlons 
research and computer sclence. Statlstlclans need random number generators to 
test and compare estlmators before uslng them In real llfe. In operatlons research, 
random numbers are a key component In large scale slmulatlons. Computer sclen- 
tlsts need randomness In program testlng, game playing and comparlsons of algo- 
rl tlims. 

The applications are wide and varled. Yet all depend upon the same com- 
puter generated random numbers. Usually, the randomness demanded by an 
appllcatlon has some bullt-in structure: typlcally, one needs more than just a 
sequence of Independent random blts or Independent uniform [0,1] random varl- 
ables. Some users need random varlables wlth unusual densltles, or random com- 
blnatorlal objects with speclfic propertles, or random geometric obJects, or ran- 
dom processes wlth well deflned dependence structures. Thls 1s preclsely the sub- 
Ject area of the book, the study of non-unlform random varlates. 

The plot evolves around the expected complexlty of random variate genera- 
tlon algorlthms. We set up an ldeallzed computatlonal model (without overdolng 
lt), we introduce the notlon of unlformly bounded expected complexlty, and we 
study upper and lower bounds for computatlonal complexlty. In short, a touch of 
computer science Is added to the Aeld. To keep everything abstract, no tlmlngs or 
computer programs are Included. 

Thls was a labor of love. George Marsaglla created CS690, a course on ran- 
dom number generatlon at the School of Computer Sclence of McG111 Unlverslty. 
The text grew from course notes for CS690, whlch I have taught eveiy fall since 
1977. A few lngenlous pre-1977 papers on the subject (by Ahrens, Dleter, Mar- 
saglla, Chambers, Mallows, Stuck and others) provlded the early stlrnulus. Bruce 
Schmelser’s superb survey talks at varlous ORSA/TIMS and Wlnter Slmulatlon 
meetlngs convlnced me that there was enough structure In the Aeld to warrant a 
separate book. Thls belief was relnforced when Ben Fox asked me to read a pre- 
print of hls book wlth Bratley and Schrage. Durliig the preparatlon of the text, 
Ben’s crltlcal feedback was Invaluable. There are many others whom I would lllce 
to  thank for helplng me In my understandlng and suggesting Interestlng prob- 
lems. I am particularly grateful to Rlchard Brent, Jo Ahrens, U11 Dleter, Brlaii 
Rlpley, and to my ex-students Wendy Tse, Colleen Yuen and Amlr 
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Naderlsamani. For stlmuli of another nature durlng the past few months, I 
thank my wife Bea, my children Natasha and Birglt, my Burger King mates 
Jeanne Yuen and Kent Chow, my sukebe frlends In Toronto and Montreal, and 
the supreme sukebe, Bashekku Shubataru. Wlthout the flnanclal support of 
NSERC, the research leading to this work would have been impossible. The text 
was typed (wlth one Anger) and edited on LISA'S Omce System before it was sent 
on to the School's VAX for troff-ing and laser typesettlng. 
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Chapter O n e  
INTRODUCTION 

1. GENERAL OUTLINE. 
Random number generatlon has Intrigued sclentlsts for a few decades, and a 

lot of effort has been spent on the creatlon of randomness on a determlnlstlc 
(non-random) machlne, that Is, on the deslgn of computer algorlthms that are 
able t o  produce "random" sequences of lntegers. Thls Is a dlfflcult task. Such 
algorlthms are called generators, and all generators have flaws because all of 
them construct the n - th  number In the sequence In functlon of the n -1 numbers 
precedlng It, lnltlallzed wlth a nonrandom seed. Numerous quantltles have been 
lnvented over the years that measure Just how "random" a sequence Is, and most 
well-known generators have been subJected to rlgorous statlstlcal testlng. How- 
ever, for every generator, I t  ls always posslble to And a statlstlcal test of a (possl- 
bly odd) property t o  make the generator flunk. The mathernatlcal tools that are 
needed to  deslgn and analyze these generators are largely number theoretlc and 
comblnatorlal. These tools differ drastically from those needed when we want to 
generate sequences of lntegers wlth certain non-unlform dlstrlbutlons, glven that 
a perfect unlform random number generator 1s avallable. The reader should be 
aware that we provlde hlm wlth only half the story (the second half). The 
assGmptlon that  a perfect unlform random number generator 1s avallable 1s now 
qulte unreallstlc, but, wlth tlme, I t  should become less so. Havlng made the 
assumptlon, we can bulld qulte a powerful theory of non-unlform random varlate 
generatlon. 

The exlstence of a perfect unlform random number generator 1s not all that 
1s assumed. Statlstlclans are usually more lnterested In contlnuous random varl- 
ables than In dlscrete random variables. Since computers are flnlte memory 
rnachlnes, they cannot store real numbers, let alone generate random varlables 
wlth a glven denslty. 
Assumptlon 1. 

Assumptlon 2. 

This led us to the followlng assumptlons: 
Our computer can store and manlpulate real numbers. 
There exlsts a perfect unlform [0,1] random varlate generator, 
1.e. a generator capable of produclng a sequence U I , U ~ ~ . . .  of 
lndependent random varlables wlth a unlform dlstributlon on 
[0,1]. 

I I 
I 

-. 
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The generator of assumptlon 2 1s our fundamental bulldlng block. The 
sequence of ui’s can be lntelllgently manlpulated to  glve us random varlables 
wlth speclfled dlstrlbutlons In , d -dlmenslonal Euclldean space. Occaslonally, 
we mentlon the effect that the flnlte word-length of the computer has on the 
manlpulated sequence. Wlth the two assumptlons glven above, we demand that 
the random varlables obtalned by comblnlng the Vi ‘5 have the exact dlstrlbutlon 
that was asked. Algorlthms or generators wlth thls property 1s called exact. 
Exact algorlthms approach reallty if we use extended preclslon arlthmetlc (some 
languages allow users to work wlth lntegers of vlrtually unllmlted length by llnk- 
lng words together In a llnked llst). Inexact algorlthms, whlch are usually algo- 
rlthms that are based upon a mathematlcal approxlmatlon of sorts, are forever 
excluded, because nelther extended preclslon arlthmetlc nor lmprovements In the 
baslc random number generator make them more exact. 

A random varlate generatlon algorlthm 1s a program that halts wlth proba- 
blllty one and exlts wlth a real number x. Thls X 1s called a random variate. 
Because of our assumptlons, we can treat random varlates as If they were random 
varlables! Note also that lf we can produce one random varlate X ,  then we are 
able t o  produce a sequence x 1,x2,... of lndependent random varlates dlstrlbuted 
as X (thls follows from assumptlon 2). Thls facllltates our task a lot: rather than 
havlng to concentrate on lnflnlte sequences, we Just need to look at the propertles 
of slngle random varlates. 

Slmple, easy-to-understand algorlthms wlll survlve longer, all other thlngs 
belng roughly equal. Unfortunately, such algorlthms are usually slower than 
thelr more sophlstlcated counterparts. The notlon of tlme ltself 1s of course rela- 
tlve. For theoretlcal purposes, I t  1s necessary to equate tlme wlth the number of 
”fundamental” operatlons performed before the algorlthm halts. Thls leads to  
our thlrd assumptlon: 
Assumptlon 3. The fundamental operatlons in our computer lnclude addltlon, 

multlpllcatlon, dlvlslon, compare, truncate, move, generate a unl- 
form random varlate, exp, log, square root, arc tan,  sln and cos. 
(Thls lmplles that each of these operatlons takes one unlt of tlme 
regardless of the slze of the operand(s). Also, the outcomes of the 
operatlons are real numbers.) 

The complexlty of an algorlthm, denoted by c ,  1s the tlme requlred by the 
algorlthm to  produce one random varlate. In many cases, C ltself 1s a random 
varlable slnce I t  1s a functlon of u1,u2, .... We note here that we are malnly 
lnterested in generatlng lndependent sequences of random varlables. The average 
complexlty per random varlate In a sequence of length n 1s 

l n  - Ci 
ni=1 

where C; 1s the complexlty for the i - th  random varlate. By the strong law of 
large numbers, we know that thls average tends wlth probablllty one to the 
expected complexlty, E (C ). There are examples of algorlthms wlth lnflnlte 
expected complexlty, but for whlch the probablllty that C exceeds a certain 
small constant 1s extremely small. These should not be a prior1 dlscarded. 
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We have now set the stage for the book. Our program 1s ambitious. In the 
remalnder of thls chapter, we lntroduce our notatlon, and deflne some dlstrlbu- 
tions. By carefully selectlng sectlons and exerclses from the book, teachers could 
use I t  to lntroduce their students to the fundamental propertles of dlstrlbutlons 
and random variables. Chapters I1 and 111 are cruclal to the rest of the book: 
here, the prlnclples of Inversion, rejectlon, and composltlon are explalned In all 
their generallty. Less unlversal methods of random varlate generatlon are 
developed In chapter W. All  of these technlques are then applled to generate ran- 
dom varlates wlth speclflc unlvarlate dlstrlbutlons. These lnclude small famllles 
of densitles (such as the normal, gamma or stable densltles), small familles of 
dlscrete dlstributlons (such as the binomlal and Poisson distrlbutlons), and faml- 
lles of dlstrlbutlons that are too large to be described by a flnite number of 
parameters (such as all unlmodal densitles or all denslties wlth decreaslng hazard 
rate). The correspondlng chapters are M, X and VII. We devote chapter XI to  
multlvarlate random varlate generation, and chapter VI to random process gen- 
eratlon. In these chapters, we want to create dependence In a very speclflc way. 
Thls effort 1s contlnued In chapters XI1 and XI11 on the generatlon of random 
subsets and the generatlon of random comblnatorlal objects such as random 
trees, random permutations and random partltlons. 

We do not touch upon the appllcatlons of random varlate generatlon In 
Monte Carlo methods for solvlng varlous problems (see e.g. Rubinsteln,l981): 
these problems lnclude stochastlc optlmlzatlon, Monte Carlo Integration, solvlng 
llnear equations, deciding whether a large number 1s prlme, etcetera. We will 
spend an entire sectlon, however, on the lmportant toplc of dlscrete event slmula- 
tlon, drlven by the beauty of some data structures used to make the slmulatlon 
more emclent. As usual, we wlll not descrlbe what happens lnslde some slmula- 
tlon languages, but merely give timeless prlnclples and some analysls. Some of 
this 1s done in chapter XIV .  

There are a few other chapters wlth speclallzed topics: the usefulness of 
order statlstlcs 1s pointed out In chapter V. Shortcuts in simulatlon are 
hlghlighted in chapter XVI, and the lmportant table methods are given speclal 
treatment In a chapter of thelr own (VIII). The reader will note that not a slngle 
experlmental result 1s reported, and not one computer Is expllcltly named. The 
lssue of programmlng In assembler language versus a high level language 1s not 
even touched (even though we thlnk that assembler language Implementations of 
many algorlthms are essential). All of this 1s done to insure the unlversallty of the 
text. Hopefully, the text wlll be a s  lnterestlng In 1995 a s  In 1985 by not dwelllng 
upon the shortcomings of today’s computers. In fact, the emphasis Is plalnly upon 
complexlty, the number of operations (instructions) needed to carry out certaln 
tasks. Thus, chapter XV could very well be the most important chapter In the 
book for the future of the subJect: here computers are treated as blt manlpulatlng 
machines. Thls approach allows us to deduce lower bounds for the time needed to 
generate random variates wlth certain dlstributions. 

We have taught some of the material a t  McG111 Unlversity’s School of Com- 
puter Sclence. For a graduate course on the subject for computer sclentlsts, we 
recommend the material with a comblnatorlal and algorlthmlc flavor. One could 
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cover, not necessarlly In the order glven, Parts of chapters I and 11, all of chapter 
111, sectlons V.2 and V.3, selected examples from chapter X, all of chapters XII, 
XI11 and X V ,  and sectlon XIV.5. In addltlon, one could add chapter VIII. We 
usually cover 1.1-3, 11.1-2, 11.3.1-2, 11.3.6, 11.4.1-2, 111, V.1-3, V.4.1-4, VI.1, VIII.2-3, 
XII.1-2, XII.3.1, XI.4-5,  XII.1,  XIII.2.1, XII.3.3, XIII.4-5, and XIV.5. 

In a statlstlcs department, the needs are very dlfferent. A good sequence 
would be chapters 11, 111, V, VI, VII.2.1-3, selected examples from chapters IX,X, 
and chapter X I .  In fact, this book can be used to  lntroduce some of these stu- 
dents to the famous dlstrlbutlons In statlstlcs, because the generators demand 
that we understand the connectlons between many dlstrlbutlons, that we know 
useful representatlons of dlstrlbutlons, and that we are well aware of the shape of 
densltles and dlstrlbutlon functlons. Some deslgns requlre that we dlsassemble 
some dlstrlbutlons, break densltles up lnto parts, And tlght lnequalltles for den- 
slty functions. 

The attentlve reader notlces very quickly that lnequalltles are ublqultous. 
They are requlred to obtaln emclent algorlthms of all klnds. They are also useful 
in the analysls of the complexity. When we can make a polnt wlth lnequalltles, 
we wlll do so. A subset of the book could be used as the basis of a fun readlng 
course on the development and use of lnequallties: use parts of chapter I as 
needed, cover sectlons 11.2, 11.3, 11.4.1, 11.5.1, brush through chapter 111, cover sec- 
tlons W.5-7, lnclude nearly all of chapter VII, and move on t o  sectlons VIII.1-0, 

Thls book 1s lntended for students in operatlons research, statlstlcs and com- 
puter sclence, and for researchers lnterested In random varlate generatlon. There 
1s dldactlcal material for the former group, and there are advanced technlcal sec- 
tlons for the latter group. The lntended audlence has to a large extent dlctated 
the layout of the book. The lntroductlon to probablllty theory In chapter I Is not 
sumclent for the book. It 1s malnly lntended t o  make the reader famlllar wlth 
our notatlon, and to ald the students who wlll read the slmpler sectlons of the 
book. A flrst year graduate level course In probablllty theory and mathernatlcal 
statlstlcs should be ample preparatlon for the entlre book. But pure statlstlclans 
should be warned that we use qulte a few ldeas and "trlcks" from the rich fleld of 
data structures and algorlthms In computer sclence. Our short PASCAL pro- 
grams can be read wlth only passlng famlllarlty wlth the language. 

Nonunlform random varlate generatlon has been covered In numerous books. 
See for example Jansson (1966), Knuth (1989), Newman and Ode11 (1971), 
Yakowltz (1977), Flshman (1978), Kennedy and Gentle (1980), Rubinsteln (1981), 
Payne (1982), Law and Kelton (1982), Bratley, Fox and Schrage (1983), Morgan 
(1984) and Banks and Carson (1984). In addltlon, there are qulte a few survey 
articles (Zelen and Severo (1972), McGrath and Irvlng (1973), Patll, Boswell and 
Frlday (1975), Marsaglla (1976), Schmelser (1880), Devroye (1981), Rlpley (1983) 
and Deak (1984)) and blbllographles (Sowey (1972), Nance and Overstreet (1972), 
Sowey (1978), Deak and Bene (1979), Sahal (1979)). 

IX.1.1-2, DL.3.1-3, lX.4, M.6, X.1-4, XIV.3-4. 
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2. ABOUT OUR NOTATION. 
In thls sectlon, v e  wlll brlefly lntroduce the reader to the dlfferent formats 

that are posslble for speclfylng a dlstrlbutlon, and to some of the most lmportant 
dens1 tles In mathematlc a1 statls tlcs. 

2.1. Definitions. 

A ,  
A random varlable X has a denslty f on the real llne If for any Borel set 

P ( X E A )  = Jf (z)  dz. 
A 

In other words, the probablllty that X belongs to  A 1s equal to the area under 
the graph of f . The dlstrlbutlon functlon F of X 1s deflned by 

2 

F ( z ) = P ( X < z ) =  J f ( Y ) d Y  9 ( z E R ) .  

E ( X ) = J a :  f ( z )  dx 9 

-cx) 

We have F'(z )=f (z ) for almost all z . The mean value of X 1s 

provlded that thls lntegral exlsts. The P -th moment of X 1s deflned by E (1' ). 
If the second moment of x 1s flnlte, then Its varlance 1s deflned by 

V U T ( X )  = E ( ( X - E ( X ) ) 2 )  = E ( X 2 ) - E 2 ( X )  , 

A mode of X ,  If I t  exlsts, 1s a polnt at whlch f attalns Its maxlmal value. If g 
1s an arbltrary Borel measurable functlon and X has denslty f , then 
E ( g  ( X ) ) = s g  (a:) f (3) dz . A p -th quantlle of a dlstrlbutlon, for p E(O,l), 1s 
any polnt a: for whlch F (z ) = p  . The 0.5 quantlle 1s also called the medlan. It 1s 
known that for nonnegatlve X , 

co 
E ( X )  = J P ( X > z )  dz . 

0 

A dlstrlbutlon 1s completely speclfled when Its dlstrlbutlon functlon 1s glven. 
We recall that any nondecreaslng functlon F , rlght-contlnuous, wlth llmlts 0 and 
1 as a: 4 - - 0 0  and z +oo respectlvely, 1s always the dlstrlbutlon functlon of some 
random varlable. The dlstrlbutlon of a random varlable 1s also completely known 
when the characterlstic function 

b ( t )  = E ( e i t X )  , t € R  , 

1s glven. For more detalls on the propertles of dlstrlbutlon functlons and charac- 
terlstlc functlons, we refer to standard texts In probablllty such as Chow and 
Telcher (1978). 
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A random vector In R has a dlstrlbutlon functlon 

F(z1, . . . , xd) = P ( X , s z , ,  . . , xd s z d ) .  

1.2.NOTATION 

The random vector (xl, . . . , Id) has a denslty f (a: , ,  . . . , xd) If and only If 
for all Borel sets A of R d ,  

The characterlstlc functlon of thls random varlable 1s 
it,X,+ . . . + i t d X d  

4(t1, . . . , t d )  = E ( e  ( ( t l ,  * - . J t d  )ER d l  * 
The Xi ' s  are called marglnal random varlables. The marglnal dlstrlbutlon func- 
tion of X, 1s 

Its marglnal characterlstlc functlon 1s 

Another lmportant notlon 1s that of Independence. Two random varlables 
X ,  and X, are lndependent If and only If for all Borel sets A and B , 

P (XIEA ,X,EB ) P (XlEA ) P (X2EB ) . 

Thus, If F 1s the dlstrlbutlon functlon of (x1,X2), then X, and X, are lndepen- 
dent if and only if 

F(a:,,a:,) = F,(a:,) F,(s , )  , all (a: , ,a : , )~R~ , 

for some functlons F ,  and F,. Slmllarly, If (X1,X2) has a denslty f , then X ,  
and X ,  are lndependent If and only If thls denslty can be wrltten as the product 
of two marglnal densltles. Flnally, x, and x, are lndependent If and only If for 
all bounded Borel measurable functlons g , and g ,: 

In partlcular, the characterlstlc functlon of two lndependent random varlables 1s 
the product of thelr characterlstlc functlons: 

b(t , , t 2 )  = E ( e  itlxle = E (e  i t l X 1 )  E (e  i t 2 X 2 )  = dl(t ,) 4 2 ( t  2 .  

All the prevlous observatlons can be extended wfthout trouble towards d random 
varlables X , ,  . . . , X d .  
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ne univariate densities. 
Var (X) 

U2 

ab a 

1 
_. 

xa 

does not exist 

ab 
( a  >2) 

( a  -2)( a -1)2 

ab 

2.2. A few important univariate densities. 
In the table shown below, several lmportant densltles are llsted., Most of 

them have one or two parameters. From a random varlate generatlon polnt of 
vlew, several of these parameters are unlmportant. For example, If X 1s a ran- 
dom variable with a dlstrlbutlon having three parameters, a ,b ,c , and when 
kX+l has a dlstrlbutlon with parameters ka + I  ,k6 ,c , then b 1s called a scale 
parameter, and a 1s called a translatlon parameter. The shape of the dlstrlbu- 
tlon is only determined by the parameter c :  slnce c is invarlant t o  changes In 
scale and t o  translatlons, i t  is called a shape parameter. For example, the normal 
distrlbutlon has no shape parameter, and the gamma dlstrlbutlon has one shape 
parameter. 

Mode(X) F ( 2 )  
2 

P S f ( Y )  dY 
-00 

t 

( a  -1)b $ f ( Y )  dY 
--oo 

1-e-Xr 0 

1 1  2 

2 n  U 
0 -+ -arctan( -) 

b a  
1-- 

2 
b 

0 

(ash j-r ( Y )  d Y  
a -1 

f ( 2 )  

Normal(p,2) 

1 2 2  -e 
_kt& 

U d G  

Gamma(a , b  ) 

E (X) 

P 

(X >o) 

Exponential(X) 
Xe-X2 (z >o) 

Cauchy(u) 
U 

Pareto(a , b  ) 

ab 

1 - 
x 

does not exist 

ab 
a -1 ( a  - 

I a 

A variety of shapes can be found In thls table. For example, the beta famlly 
of denslties on [0,1] has two shape parameters, and the shapes vary from stan- 
dard unlmodal forms to J-shapes and U-shapes. For a comprehenslve descrlptlon 
of most parametrlc famllles of densltles, we refer to the two volumes by Johnson 
and Kotz (1970). When we refer to  normal random variables, we mean normal 
random varlables with parameters 0 and 1. Slmllarly, exponentlal random varl- 
ables are exponentlal (1) random varlables. The unlform [0,1] denslty 1s the den- 
slty which puts Its mass unlformly over the lnterval [0,1]: 

f (z 1 = qo,l](x (5 Efi * 
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Here I 1s the lndlcator functlon of a set. Flnally, when we mentlon the gamma 
( a  ) denslty, we mean the gamma ( a  ,1) denslty. 

The strategy In thls book 1s to  bulld from slmple cases: slmple random varl- 
ables and dlstrlbutlons are random varlables and dlstrlbutlons that can easlly be 
generated on a computer. The context usually dlctates whlch random varlables 
are meant. For example, the unlform [O,l]  dlstrlbutlon 1s slmple, and so are the 
exponentlal and normal dlstrlbutlons in most clrcumstances. At the other end of 
the scale we have the dlmcult random varlables and dlstrlbutlons. Most of thls 
book 1s about the generatlon of random varlates wlth dlmcult dlstrlbutlons. To 
clarlfy the presentation, I t  1s convenient to  use the same capltal letters for all 
slmple random varlables. We wlll use N, E and U for normal, exponentlal and 
unlform [0,1] random varlables. The notatlons G and B are often used for 
gamma and beta random varlables. For random varlables In general, we wlll 
reserve the symbols X, Y ,  W, Z, V. 

3. ASSESSMENT OF RANDOM VARIATE GENERATORS. 
One of the most dimcult problems In random varlate generatlon 1s the cholce 

of an approprlate generator. Factors that play an lmportant role In thls cholce 
Include: 

1. Speed. 
2. Set-up (lnltlallzatlon) tlme. 
3. Length of the complled code. 
4. Machlne Independence, portablllty. 
5. Range of the set of appllcatlons. 
6. Slmpllclty and readablllty. 

Of these factors, the last one 1s perhaps the most neglected In the literature. 
Users are more llkely t o  work wlth programs they can understand. Flve llne pro- 
grams are easlly typed In, and the llkeIlhood of making errors 1s drastlcslly 
reduced. Even packaged generators can have subtle bugs In thelr conceptlon or 
lmplementatlon. It 1s nearly lmposslble t o  certlfy that programs wlth dozens, let 
alone hundreds, of llnes of code are correct. So, we wlll often spend more tlme on 
slmple algorlthms than on sophlstlcated ultra-fast ones. 

Subprograms for random varlate generatlon can be dlvlded into three 
groups: (1) subprograms wlth no varlable parameters, such as subprograms for 
the normal (0,l) density; (2) subprograms wlth a flnlte number of varlable param- 
eters (these are tYPlcallY for parametrlc classes of densltles such as the class of all 
beta densltles); (3) subprograms that accept names of other subprograms as argu- 
ments, and can be applied for a wlde class of dlstrlbutlons (the descrlptlon of thls 
class is of course not dependent upon parameters). 
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U 

set-up tlme. 

255 100 83 

12 190 0 

1.3.ASSESSING GENERATORS 

An example. 
The admlsslblllty of a method now depends upon the set-up tlme as well, as 

1s seen from thls example. Stadlober (1981) gave the followlng table of expected 
tlmes per varlate (In microseconds) and slze of the program (In words) for several 
algorlthms for the t dlstrlbutlon: 

Algorithm: I TD TROU T3T 
t a=3.5 I 65 66 78 

I t  a=5 I 70 67 81 I 
I t  a=10 I 75 68 84 I 
I t  a=50 I 78 69 88 I 
I t a=1000 I 79 70 89 I 

Here t stands for the expected tlme, a for the parameter of the dlstrlbutlon, s 
for the slze of the complled code, and u for the set-up tlme. TD, TROU and 
T3T refer to three algorlthms In the llterature. For any algorlthm and any a ,  
the expected tlme per random varlate 1s t+Au where A€[O,l] 1s the fractlon of 
the varlates that requlred a set-up. The most important cases are A=O (one set- 
up In a large sample for Axed a )  and A=1 (parameter changes at every call). 
Also, l/A 1s about equal to  the waltlng tlme between set-ups. Clearly, one algo- 
rlthm domlnates another tlmewlse If t+Au consldered as a functlon of A never 
exceeds the correspondlng functlon for the other algorlthm. One can do thls for 
each a ,  and thls leads t o  qulte a compllcated sltuatlon. Usually, one should 
elther randomlze the entrles of t over varlous values of a .  Alternatively, one can 
compare on the basls of tmax=max, t .  In our example, the values would be 79, 
70 and 89 respectlvely. It 1s easy to check that tmax+Au 1s mlnlmal for TROU 
when O<A59/178, for TD when 9/1785A<_5/6, and for T3T when 5/6<1<1. - -  
Thus, there are no lnadmlsslble methods If we want t o  lnclude all values of A. 
For Axed values of A however, we have a glven ranklng of the tmax+Au values 
and the dlscusslon of the lnadmlsslblllty In terms of tmaX+Xu and s 1s as for the 
dlstrlbutlons wlthout parameters. Thus, TD 1s lnadmlssible In thls sense for 
A>5/6 or h<9/178, and TROU 1s lnadmlsslble for X>l/lO. 
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3.1. Distributions with no variable parameters. 
A frequently used subprogram for distrlbutlons wlth no varlable parameters 

should be chosen very carefully: usually, speed 1s very Important, while the length 
of the complled code 1s less cruclal. Clearly, the lnltlallzatlon tlme Is zero, and In 
some cases I t  1s worthwhlle to wrlte the programs In machine language. Thls 1s 
commonly done for dlstrlbutlons such as the normal distrlbutlon and the 
exponentlal dlstrlbutlon. 

For lnfrequently used subprograms, I t  1s probably not worth to spend a lot 
of tlme developlng a fast algorlthm. Rather, 'a slmple expedlent method wlll 
often do. In many cases, the portablllty of a program 1s the determinlng factor: 
can we use the program In dlfferent lnstallatlons under different clrcumstances? 
Portable programs have to be wrltten In a machlne-lndependent language. Furth- 
ermore, they should only use standard library subprograms and be compller- 
Independent. Optlmlzlng compllers often lead to unsuspected problems. Pro- 
grams should follow the unlversal conventlons for glvlng names to variables, and 
be protected agalnst lnput error. The calllng program should not be told to use 
speclal statements (such as the COMMON statement In FORTRAN). Finally, 
the subprogram ltself 1s not assumed to perform unasked tasks (such as prlntlng 
messages), and all conventlons for subprogram llnkage must be followed. 

Assume now that we have narrowed the competltlon down to a few pro- 
grams, all equally understandable and portable. The programs take expected 
tlme ti per random varlate where i refers to the i - th  program (1st' s K ) .  Also, 
they requlre si bytes of storage. Among these programs, the j - t h  program is 
sald to be inadmissible If there exlsts an i such that t i  2 ti and s j  >si  (wlth at 
least one of these lnequalltles strlct). If no such t' exlsts, then the j - t h  program 
1s admlsslble. If we measure the cost of the i - th  program by some functlon 
$ ( t i , s i ) ,  lncreaslng In both Its arguments, then I t  1s obvlous that the best pro- 
gram 1s an  admlsslble program. 

3.2. Parametric families. 
The new ingredlent for multl-parameter familles 1s the set-up tlme, that Is, 

the tlme spent computlng constants that depend only upon the parameters of the 
dlstrlbutlon. We are often In one of two sltuatlons: 
Case 1. The subprogram 1s called very often for Axed values of the parameters. 

The set-up tlme 1s unimportant, and one can only gain by initlallzlng 
as many constants as posslble: 
The parameters of the distrlbutlon change often between calls of the 
subprogram. The total time per varlate 1s deflnitely influenced by the 

Case 2. 
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Speed versus size. 
It 1s a general rule In computer sclence that speed can be reduced by using 

longer more sophlstlcated programs. Fast programs are seldom short, and short 
programs are llkely to be slow. But it 1s also true that long programs are often 
not elegant and more error-prone. Short smooth programs survlve longer and are 
understood by a larger audlence. Thls blas towards short programs wlll be 
apparent In chapters W ,  IX and X where we must make certaln recommendations 
to  the general readership. 1 

4. OPERATIONS O N  RANDOM VARIABLES. 
In thls sectlon we brlefly lndlcate how densltles and dlstrlbutlon functlons 

change when random varlables are comblned or operated upon In certaln ways. 
Thls will allow us to generate new random varlables from old ones. We are spe- 
clally Interested In operations on slmple random varlables (from a random varlate 
generatlon polnt of view) such as unlform [0,1] random varlables. The actual 
appllcatlons of these operatlons In random varlate generatlon are not dlscussed In 
thls Introductory chapter. Most of thls materlal is well-known to students in 
statlstlcs, and the chapter could be sklpped wtthout loss of contlnulty by most 
readers. For a unlfled and detalled treatment of operatlons on random varlables, 
we refer to Springer(l979). 

4.1. Transformations. 

Ing devlce: 
Transformations of random varlables are easlly taken care of by the follow- 

Theorem 4.1. 

lng functlon where 
dom varlable wlth dlstrlbutlon functlon F (h- '(x )). 

Let X have dlstrlbutlon functlon F ,  and let h :R +B be a strictly Increas- 
Is elther I? or a proper subset of R . Then h (X) Is a ran- 

If F has denslty f and h-' Is absolutely continuous, then h (X) has denslty 

(h- ' ) ' (x )  f ( h - ' ( x ) ) ,  for almost all x . 
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Proof of Theorem 4.1. 
Observe Arst that for arbltrary x , 

P ( h ( X ) < x )  = P ( X s h - ' ( x ) )  = F(h- ' (x) )  . 

This 1s thus the dlstrlbution function of h (X). If thls distrlbutlon functlon 1s 
absolutely continuous In x ,  then we know (Chow and Telcher (1978)) that h ( X )  
has a denslty that 1s almost everywhere equal to  the derlvatlve of the dlstrlbution 
functlon. Thls 1s the case for example when both F and h-' are absolutely con- 
tinuous , and the formal derlvatlve 1s the one shown In the statement of the 
Theorem. 

Example 4.1. Linear transformations. 
If F 1s the dlstributlon function of a random varlable X ,  then aX+b has 

dlstrlbution function F ((x -b ) / a  ) when a >O. The correspondlng densltles, If 

they exist, are f ( x )  and -f (-). Verify that when x 1s gamma ( a  ,b ) dls- 

trlbuted, then cX 1s gamma ( a  ,cb ), all c >O. 

1 x-6 
U U 

Example 4.2. The exponential distribution. 

--logx has distrlbution functlon 1-F ( e  
When X has dlstrlbutlon function F and x > O  1s a real number, then 

1 ), whlch can be verlAed dlrectly: x 
1 
x P ( - - l o g X L x ) =  P ( X L e - A 2 ) =  i - F ( e - A Z )  (z>o). 

1 In partlcular, If X 1s uniform [0,1], then --logx is exponential (A). Vlce versa, 

when x is exponentlal (A), then e- lX is unlform [0,1]. 
x 
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Example 4.3. Power transformations. 
When x has dlstrlbutlon functlon F and denslty f , then Xp ( p > O  is a 

real number, and the power Is defined as a slgn-preserving transformation ) has 

dlstrlbutlon functlon F (x Q) and denslty 
1 - 

1 --I 1 1 

-xP f ( x S ) . M  
P 

Example 4.4. Non-mono t one transformations. 
Non-monotone transformatlons are best handled by computlng the dlstrlbu- 

tlon functlon flrst from general prlnclples. To lllustrate thls, let us conslder a 
random varlable X wlth dlstrlbutlon functlon F and denslty f . Then, the ran- 
dom varlable X 2  has dlstrlbutlon functlon 

P ( X 2 < x )  = P (  I x I <&-) = F(&-)-F(-&-)  (5 >o) 

and denslty 

- 1 l(m+Nm 
6 2 

In partlcular, when x 1s normal (O,l), then x 2  Is gamma dlstrlbuted, as can be 
seen from the form of the denslty 

2 2 1 2  -- -- 

The latter denslty 1s known as the chl-square denslty wlth one degree of freedom 
(In shorthand: xI2). 

I 

Example 4.5. A parametric form for the density. 
Let x have denslty f and let h be a s  In Theorem 4.1. Then, puttlng 

T =h ( u  ) and y =f ( u ) / h ’ ( u  ), where y stands for the value of the denslty of 
11 (s) at 2 ,  and y and x are related through the parameter u ,  we verlfy by 
ellmlnatlon of u that 

y = f ( P ( X ) )  / h’(h--‘(X)) . 
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r 

i d  
. . .  

9 1 1  . 
. . . . . .  . . .  
. . . . . . . . , 

g d d  
. . .  

g d i  
~ 

Thls 1s equal to (h-’(x))h-’’(x) ,  which was to be shown. Thus, the parametrlc 
representatlon In terms of u glven above 1s correct, and wlll glve us a plot of the 
denslty versus x. Thls 1s particularly useful when the lnverse of h 1s dlmcult to 
obtaln In closed analytlcal form. For example, when X 1s unlform [O,l], then for 
a ,b  BO, uX+bX3 has a denslty with parametrlc representatlon 

x = au+bu 3 , 

By ellmlnatlon of u , we 
I 

The plot of y versus 5 

( 0 5 ~ ~  + b u 3 5 1 )  . 1 

u +3bu2 
Y =  

obtaln a slmple formula of 2 in terms of y : 

&(?+$I. 
has the followlng general form: I t  vanlshes outslde [0,1], 

1 
a and decreases monotonlcally on thls lnterval from y=- at x=O to a nonzero 

value at x =l. Furthermore, - at u =O (1.e. at x =O), 1s 0, so that the shape 
of the denslty resembles that of a piece of the normal denslty near 0. 

dY 
d X  

Let us now look at functlons of several random varlables. We can obtaln 
many dlstrlbutlons as relatlvely uncompllcated functlons of slmple random varl- 
ables. Many cases can be handled by the followlng d -dlmenslonal generallzatlon 
of Theorem 4.1: 
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Example 4.6. The t distribution. 
We wlll show here that when x 1s normal (0,l) and Y 1s lndependent of X 

and gamma (-,2) dlstrlbuted (thls 1s called the chl-square dlstrlbutlon wlth a 

degrees of freedom), then 

a 
2 

z = x / p  a 

1s t dlstrlbuted wlth a degrees of freedom, that Is, Z has denslty 
a +1 

r ( 2 )  1 

What one does In a sltuatlon llke thls 1s "lnvent" a 2-dlmenslonal vector random 
varlable (for example, (2, w)) that 1s a functlon of ( X ,  Y ) ,  one of whose com- 
ponent random varlables 1s Z .  The obvlous cholce In our example 1s 

W=Y 

The lnverse transformatlon 1s determlned by X =Z fl, Y = W .  Thls 

- where we use ~tr ,y ,z ,w for the run- lnverse transformatlon has a Jacoblan 
nlng values that correspond to  the random varlables X ,  Y ,Z , W . Thus, the den- 

fi 
slty of (2, W )  1s 

wz' a 

c e  

where 

1s a normallzatlon constant. From a Jolnt denslty, we obtaln a marglnal denslty 
by taklng the lntegral wlth respect to the non-lnvolved varlables (In thls case 

2 
) den- a fl 

wlth respect to  dw ) . In w , we have for Axed z a gamma (- 
2 ' 1 + z 2 / a  

c 
slty tlmes - After lntegratlon wlth respect to dw , we obtaln 6' 

where cy and p are the parameters of the gamma denslty glven above. Thls 1s 
Preclsely what we needed to  show. 
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4.2. Mixtures. 
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D isc r ete mixtures. 

let X have denslty f i  . Then the (uncondltlonal) denslty of X is 
Let Y be a posltive integer valued random varlable, and, given that Y = i  , 

00 

X P ( Y = i )  I & ) .  
i = 1  

Thls devlce can be used to cut a glven denslty f up lnto slmpler pieces f i  that 
can be handled qulte easlly. Often, the number of terms In the mlxture 1s Anlte. 
For example, if f 1s a piecewise llnear denslty wlth a flnlte number of break- 
polnts, then lt can always be decomposed (rewritten) as a Anlte mlxture of unl- 
form and trlangular densltles. 

Continuous mixtures. 
Let Y have density g on R , and glven that Y=y  , let X have denslty f y  

(thus, y can be considered as a parameter of the density of X ) ,  then the density 
f of X is glven by 

f ( a : ) = J f y ( x ) g ( y )  dY 

As an example, we conslder a mlxture of exponential densltles wlth parameter Y 
ltself exponentially dlstributed with parameter 1. Then x has denslty 

f ( a : )  = Jye-Y’e-Y dy 

(x >o> . - 
(a: +1)2 

Slnce the parameter of the exponentlal dlstrlbutlon 1s the lnverse of the scale 
parameter, we see without work that when E 1,E2 are lndependent exponentlal 
random varlables, then E J E 2  has denslty l / (x  +1)2 on [O,oo). 

Mixtures of uniform densities. 
If we consider a mlxture of unlform [O,y] densltles where y 1s the mlxture 

parameter, then we obtaln a denslty that 1s nonincreaslng on [O,cm). The random 
varlables X thus obtalned are dlstrlbuted as the product UY of a uniform [0,1] 
random varlable u and an arbltrary (mlxture) random varlable Y .  These dls- 
trlbutlons wlll be of great lnterest to  us since u 1s the fundamental random 
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varlable In random varlate generatlon. 

4.3. Order statistics. 

17 

If u,, . . . , U, are lld unlform [0,1] random varlables, then the order statls- 
tlcs for thls'sample are U(,), . . . , U(,), where 

U(1) 5 U(2) I * ' * < - U(,) 
and u(,), . . . , u(,) 1s a permutatlon of u,, . . . , U,. We know that 
(U,, . . . , u,) Is unlformly dlstrlbuted In the unit cube [ O , l ] , .  Thus, 
( u(,), . . . , u(,)) 1s unlformly dlstrlbuted In the slmplex S, : 

s, = { ( q ,  . . . , x,): o < x , < x , <  * * * < x n  < 1 } .  

The Jolnt denslty of (U,,), . . . , U(,)) 1s 

n!ISn(xl, . . . , x,) . 

The a -th order statlstlc U ( i )  ,has the beta denslty with parameters 
1.e. Its denslty 1s 

and n -a +1, 

Proof of Theorem 4.3. 
The Arst part 1s shown by a proJectlon argument: there are n !  polnts In 

[O,l]" that map to a glven polnt In S, when we order them. Thls can be formal- 
lzed as follows. Let A be an arbltrary Bore1 set contalned In s,, . Wrltlng 
x(,)< - . for the ordered permutatlon of x,, . . . , x, , we have 

s d x ,  * . - dx,  
A 



18 1.4.0PERATIONS O N  RANDOM VARIABLES 

The A r s t  part of the Theorem follows by the arbltrarlness of A .  For the second 
part, we choose a: In [0,1], and compute the marglnal denslty of U(j )  at a: by 
lntegratlng the denslty wlth respect to all varlables a:j , j  .f;. Thls ylelds 

2 2  2 1  1 

n ! J  * . . JJ . . . J da:, . * . da:j+lda:j-l . 1 . dx1 . 
0 o x  z. -1 

Thls glves the beta denslty wlth parameters i and n -i +1. w 
I 

Of partlcular lmportance wlll be the dlstrlbutlon of max(Ul, . . . , U,): the 

(a: E[o,ll) 

dlstrlbutlon functlon 1s easlly obtalned by a dlrect argument because 

P (max(U,, . . . , U, ) I x )  
= P(U,<a:)  * .  * P ( U ,  < a : )  

= P ( U l l a : n )  

= P ( U l y a : ) .  

= 5" 

1 - 

Thus, the dlstrlbutlon functlon 1s a: ,  on [0,1], and the denslty 1s nzn-l on [0,1]. 
We have also shown that max( U,, . . . , u, ) 1s dlstrlbuted as Ull ln  . 

Another lmportant order statlstlc Is the medlan. The medlan of 
U,, . . . , U2n+1  1s U,,). We have seen In Theorem 4.3 that tpe denslty 1s 

Example 4.7. 

random varlables, then thelr densltles on [0,1] are respectlvely, 
If U(l), U ( 2 ) ,  U(31 are the order statlstlcs of three lndependent unlform [0,1] 

3 ( 1 - ~  )2 , 
6a: (1-x ) 

and 
3x2  .. 
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The generallzatlons of the prevlous results to other dlstrlbutlons are stralght- 
forward. If x,, . . . , xn are lld random varlables wlth denslty f and dlstrlbu- 
tlon functlon F ,  then the maxlmum has dlstrlbutlon functlon F " .  From 
Theorem 4.3, we can also conclude that the 2-th order statlstlc X ( i )  has denslty 

F (a: Y - y l - F  (a: ))"-' f (5 ) . n !  
( i  - I ) ! (  n -i )! 

4.4. Convolutions. Sums of independent random variables. 
The dlstrlbutlon of the sum Sn of n random varlables XI, . . . , Xn 1s usu- 

ally derlved by one of two tools, convolutlon lntegrals or characterlstlc functlons. 
In thls sectlon, we wlll wrlte f i  ,Fi ,di for the denslty, dlstrlbutlon functlon and 
characterlstlc functlon of X i ,  and we wlll use the notatlon f ,F ,4 for the 
correspondlng functlons for the sum S, . In the convolutlon method, we argue as 
follows: 

F ( z ) = P ( X ~ + * * . + X ~ L ~ : )  

= J r~[ f i ( Y i )  Fn(x-Y1-  * . - ~ n - 1 )  dyi  * 

i <n i < n  

Also, 

f ( z )  = J n f i ( Y i )  fn (z -Y1-  * * * qYn-1)  n dy i  * 

i e n  i < n  

Except In the slmplest cases, these convolutlon lntegrals are dlfflcult to compute. 
In many Instances, I t  1s more convenlent to derive the 
flndlng Its characterlstlc functlon. By the lndependence of 

j = I  
n 

= n4j(t>- 
3 =1 

If the X i ' s  are lld , then 4 = Q l n .  

dlstrlbutlon of Sn by 
the Xi  's, we have 

Example 4.8. Sums of normal random variables. 

varlable 1s e- t  / 2 .  To see thls, note that It can be computed a s  follows for t ER : 
Flrst, wezshow that the characterlstlc functlon of a normal (0,l) random 
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From the deflnltlon of the characterlstlc functlon we see that If X has charac- 
terlstlc functlon q5(t ), then aX+b has characterlstlc functlon e ibt 9 (at  ). Thus, a 
normal (p ,a2 )  random varlable has characterlstlc functlon 

e i t p  4(at )  . 
If Xi 1s normal (p i  ,ai2), then S, has characterlstlc functlon 

n e i t p ,  e -cJ 2 t 2 / 2  

whlch 1s the characterlstlc functlon of a normal random varlable wlth parameters 
C p j  and Eaj'. 

Example 4.9. Sums of gamma random variables. 

tlon of a gamma ( a  , b  ) random varlable. I t  can be computed as follows: 
In thls example too, I t  1s convenlent to flrst obtaln the characterlstlc func- 

03 s y a - l e - y ' b  e itY dy (by deflnltlon ) 
0 J 3 a ) b a  

a-1 e - z  / b  03 

=.J dz (use z = y ( l - i t b )  ) 
(1-itb l a  r ( a  ) b  a 

1 - - 
(1-itb ) a  

Thus, If XI, . . . , X, are lndependent gamma random varlables wlth parameters 
a; and , then the sum S, Is gamma wlth parameters C u i  and b . 

I t  1s perhaps worth to mentlon that when the Xi ' s  are lld random varlables, 
then S,, , properly normallzed, 1s nearly normally dlstrlbuted when n grows large. 
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If the dlstrlbutlon of x, has mean p and varlance a2>0, then ( S f l - n p ) / ( a 6 )  
tends In dlstrlbutlon to a normal (0,l) random varlable, Le, 

Thls Is called.the central llmlt theorem (Chow and Telcher, 1978). This will be 
explolted further on In the deslgn of algorlthms for famllles o f  dlstrlbutlons that 
are closed under addltlons, such as the gamma or Polsson famllles. If the varl- 
ance 1s not flnlte, then the llmlt law Is no longer normal. See for example exer- 
clse 4.17, where an example 1s found of such non-normal attraction. 

4.5. Sums of independent uniform random variables. 
In thls sectlon we consider the dlstrlbutlon of 

where the a i ' s  are posltlve constants and the vi's are lndependent unlform [O,l] 
random varlables. We start wlth the maln result of thls sectlon. 

Theorem 4.4. 
n 

The dlstrlbutlon functlon of ai Vi (where ai >O , all i ,  and the Vi's are 
1 =l 

lndependent unlform [0,1] random varlables) 1s glven by 

1 .  f l  F ( x )  = (z+ -C(x-aj)+fl + ( z - a i - a j ) + n -  * ' . 
a l a 2  a i # j  

- a n n !  

Here (.)+ Is the posltlve part of (.). The denslty 1s obtained by taklng the derlva- 
tlve wlth respect to z . 

Proof of Theorem 4.4. 

Conslder the slmplex S formed by the orlgln and the vertlces on the n coor- 
dlnate axes at dlstances z / a , ,  . . . , x / a f l ,  where z >O 1s the polnt at which we 
want to calculate F (17: ). Let us deflne the sets Bi as 

Bi = [o,cQ)~-'x(l,co)x [o,m>fl-i 

where 15; 5 n  . Note now that the flrst quadrant mlnus the unlt cube [O,lIfl  can 
be decomposed by the lncluslon/excluslon prlnclple a s  follows: 

[o,oo)" --[O,1lfl 

= - p i - x B i n B j + .  . . . 
i i # j  

I 
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- ,  - 

Now, slnce F (a: ) = area (S n[O,l]" ) = area (S )-area (S n([O,oo)" -[O,i]" )), we 
obtaln 

I 

0 '  If z < o  
a: l f O < a : L l  
2-2 If 1 5 x 5 2 '  

0 l f 2 < 2  
\ 

F (a: ) = area (S )-E area (S nBi )+ area (S nBi n B j  )- 

Thls Is all we need, because for any subset J of 1, . . . , n ,  we have 
I i f j  

( Z - x a i  I+" 
i c J  area (S n Bi ) = 

i E J  a , . . .  a,  n ! 

Thls concludes the proof of Theorem 4.4. 

It Is lnstructlve to do the proof of Theorem 4.4 for the speclal case n=2,  
and to draw the slmplex and the varlous sets used In the geometrlc proof. For 
the lmportant case a1=a2= . * =a, =1, the dlstrlbutlon function Is 

In other words, the denslty has the shape of an lsosceles trlangle. In general, the 
densify of U , + U 2 +  3 - - +U, conslsts of pleces of polynomlals of degree n-1 
Wth  breakpoints at the Integers. The form approaches that of the normal den- 
S l t J '  as 71 ' 0 0 .  
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4.6. Exercises. 
1 .  

2 .  

3. 

4. 

5. 

6. 

7. 

8. 

If h 1s strlctly monotone, h' exlsts and 1s contlnuous, g 1s a glven denslty, 
and x 1s a random varlable wlth denslty h'(x )g ( h  (x )), then h ( X )  has den- 
slty g . (Thls 1s the lnverse of Theorem 4.1.)  

If X has denslty l / ( x 2 d z )  (x Z l ) ,  then d a  1s dlstrlbuted as the 
absolute value of a normal random varlable. (Use exerclse 1 . )  

If x 1s a gamma ( 1 , l )  random varlable, 1.e. X has denslty 

e-' /& (5 >O), then ?- 2 X  1s dlstributed as the absolute value of a nor- 
mal random varlable. (Use exerclse 1.)  

Let A be a d X d  matrlx wlth nonzero determlnant. Let Y=AX where 
both X and Y are R -valued random vectors. If x has denslty f , then Y 
has denslty 

f (A-ly) I detA-' I ( y E R d ) .  
s 

Thus, If x has a unlform denslty on a set 
dlstrlbuted on a set C of 
If Y 1s gamma ( a  , 1 )  and X 1s exponentlal ( y ) ,  then the denslty of x 1s 

of R ', then Y 1s unlformly 
. Also, determlne C from B and A . 

A random variable 1s sald to have the I? dlstrlbutlon wlth a and b degrees 
of freedom when Its denslty 1s 

a --1 
cx (x >O)  . f ( X I =  a + b  ' 

ax 2 
(1+$ 

a 
a + b  a 2 a b  Here, c 1s the constant I?(-)(-) /I'(-)l?(-). Show that when X and 

2 b  2 2  

- 

Y are lndependent chl-square random varlables wlth parameters a and b 
respectlvely, then (-)/(-) 1s F ( a  , b  ). Show also that when X 1s F ( a  , b  ), 

then - 1s F ( b  , a ) .  Show flnally that when X 1s t-dlstrlbuted wlth a 

degrees of freedom, x 2  1s F ( 1 , a ) .  Draw the curves of the denslties of 
F ( 2 , 2 )  and F ( 3 , l )  random varlables. 
When N, and N 2  are lndependent normal random varlables, the random 
variables N 12+N22 and N JN2 are lndependent. 
Let f be the trlangular denslty deflned by 

X Y  
a b  

1 
X 
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When U, and U, are lndependent unlform [ O , l ]  random varlables, then the 
followlng random varlables all have denslty f : 

2 mln (V,,U,> : 
2 I U,+U,-l I ; 

z ( 1 - G )  * 

n 

i = 1  

9. Show that  the denslty of the product n vi of n lld unlform I O , l ]  random 

varlables 1s 

10. When X 1s gamma ( a  ,l), then l /X has denslty 
1 -- 

k 

i=l  
11. Let Y = nxi where x,, . . . , xk are lld random varlables each dlstrl- 

buted as the maxlmum of n lld unlform [0,1] random varlables. Then Y has 
denslty 

f W = -  n k  x -l(-log(x ))k -l ( 0 5 x  51) . r(k 1 
(Rlder, 1955; Rahman, 1964). 

12. Let X,, . . . , xn be lld unlform [-1,1] random varlables, and let Y be equal 
to (rnln(X,, . . . , xn )+max(X,, . . . , xn ))/2. Show that Y has density 

(Neyman and Pearson, 1928; Carlton, 1940). 
2 and varlance 

13. We say that the power dlstrlbutlon wlth parameter a >-1 is the dlstrlbutlon 
correspondlng to the denslty 

(n +l)(n +2) 

I ( a : )  = ( a + l ) s U  (oca: <1) . 
If x,, ... are lld random varlables havlng the power dlstrlbutlon wlth parame- 
ter a ,  then show that 

A. x1/x2 has denslty 

o<x  < I  FXU 2 
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8 3x 2 1 1 
-<a; < 1  ----- 

3 2 3 $ 2 + 8 2 3  2 -  

2 x  8 3 

3 6 3x2 2x3 
--+-+--- l < x  < 2  

n 

i=l 
B. n X i  has denslty 

n-1 
x a (log-) (o<x <1)  . ( a  + 1 y  

r ( n  1 X 

(Springer, 1979, p. 161). 

14. The ratlo G, /Gb of two lndependent gamma random varlables wlth param- 
eters ( a  ,1) and ( b  ,1) respectlvely has denslty 

a-1  1 
(x >o) . 

( a  ,b 1 ( l+x  )a + b  

Here B ( a  ,b ) 1s the standard abbreviation for the constant in the beta 
Integral, Le. B ( a  ,b ) = r(a )r(b )/r(a +b ). Thls is called the beta density of 
the second kind. Furthermore, G, / ( G a  +Gb ) has the beta denslty with 
parameters a and b .  

15. Let u,, . . . , U ,  be lld unlform [0,1] random variables. Show that 
( U l +  u2)/( U3+ U,) has denslty 

1 o<x  <- 
2 

16. Show that NlN2+N3N,  has the Laplace density (Le., L e - 1 ’  I) ,  whenever 

the Ni ’s are lld normal random varlables (Mantel, 1973). 

17. Show that the characterlstlc functlon of a Cauchy random variable 1s e - ]  I . 
Uslng this, prove that when X , ,  . . . , X ,  are lld Cauchy random varlables, 

2 

1 n  
then xi 1s again Cauchy dlstrlbute.d, Le. the average 1s dlstrlbuted as 

ni=l 
X l .  

18. Use the convolution method to obtaln the densltles of Ul+U,  and 
Ul+U2+U3 where the Vi’s are lld unlform [-1,1] random variables. 

19. In the oldest FORTRAN subroutlne Ilbrarles, normal random varlates were 
generated as 

where the U j ’ s  are lld unlform [ O , l ]  random varlates. Usually n was equal to 
12. Thls generator is of course Inaccurate. Verlfy however that the mean 
and variance of such random varlables are correct. Bolshev (1959) later 
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proposed the corrected random varlate 

3X,-xh3 
Y =x,- 

100 

Deflne a notlon of closeness between densltles, and verlfy that Y is closer to 
a normal random varlable than X,. 

20. Let U,, . . . , U, ,VI ,  . . . , v,,, be lld unlform [0,1] random varlables. Deflne 
x=max(U1,  . . . , U,) , Y=max(V,, . . . , v,). Then X / Y  has denslty 

nm 
n +m 

where c =- (Murty, 1955). 

21. Show that If x 5 Y 52 are the order 5-atlstlcs for three lld normal random 
varlables, then 

mln(2-Y, Y -X) 
2 -x 

has denslty - 

See e.g. Llebleln (1952). 



Chapter Two 
GENERAL PRINCIPLES 
IN RANDOM VARIATE GENERATION 

1. INTRODUCTION. 
In thls chapter we lntroduce the reader to the fundamental prlnclples In 

non-unlform random varlate generatlon. Thls chapter 1s a must for the serlous 
reader. On Its own I t  can be used as part of a course In simulation. 

These baslc prlnclples apply often, but not always, to both contlnuous and 
dlscrete random varlables. For a structured development I t  1s perhaps best to 
develop the materlal accordlng to the guldlng prlnclple rather than accordlng to  
the type of random variable Involved. The reader 1s also cautloned that we do 
not make any recomrnendatlons at thls palnt about generators for varlous dlstrl- 
butlons. All the examples found In thls chapter are of a dldactlcal nature, and 
the most lmportant famllles of dlstrlbutlons wlll be studled In chapters IX,X,XI In 
more detall. 

2. THE INVERSION METHOD. 

2.1. The inversion principle. 
The lnverslon method 1s based upon the followlng property: 

i 



28 II.2.INVERSION METHOD 
~ ~ ~~ 

Theorem 2.1. 
Let F be a contlnuous dlstrlbutlon functlon on R wlth lnverse F-' deflned 

by 

F - ' ( u )  = 1nf {a::F(a:)=u,  O<U <I} . 

If U 1s a unlform [O,l] random varlable, then F - ' ( U )  has dlstrlbutlon functlon 
F .  Also, If X has dlstrlbutlon functlon F ,  then F ( X )  1s unlformly dlstrlbuted 
on [0,1]. 

Proof of Theorem 2.1. 
The flrst statement follows after notlng that for all a: ER , 

P ( F - ' ( U ) < s )  = P(1nf { g : F ( y ) = U } j z )  

= P ( U < F ( s ) )  = F ( z ) .  

P ( F ( X ) l u )  = P ( X L F - ' ( u ) )  
= F (F- l (u  )) = u I. 

I 

The second statement follows from the fact that for all O<u <1, 

Theorem 2.1 can be used to generate random varlates wlth an arbltrary con- 
tlnuous dlstrlbutlon functlon F provlded that F-' 1s expllcltly known. The fas- 
ter the Inverse can be computed, the faster we can compute X from a glven unl- 
form [0,1] random varlate U .  Formally, we have 

The inversion method 

Generate a uniform [0,1] random variate U .  
RETURN X +F-'( U )  

In the next table, we glve a few lmportant examples. Often, the formulas for 
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F-'( U )  can be slmpllfled, by noting for example that 1-U 1s dlstrlbuted as U. 

Cauchy(a) 
U 

n(x a+$) 

-~ 

Density f (F ) F ( x )  I X = F - ' ( u )  I Simplified form 
Exponential(X) I I 

1 1  X 1 
-+-arctan(-) atan(A( U--)) atan( n u )  
2 A  U 2 

Rayleigh(u) 
2 2  

_I_ 

2 2  -- 
- e  2 a02 , X ~ O  1-e m2 
U 

ad-log( 1- u ) a m  

I I I 
Triangular on(0,a ) I 

I Tail of Rayleigh I I I 1 

I I I 
Pareto( a , b ) 

There are many areas In random varlate generatlon where the lnverslon 
method 1s of partlcular Importance. We clte four examples: 

Example 2.1. Generating correlated random variates. 
. When two random varlates X and Y are needed wlth dlstrlbutlon functlons 

F and G respectlvely, then these can be obtalned as F-'( U )  and G-'( V )  where 
U and V are unlform [0,1] random varlates. If U and V are dependent, then so 
are F - ' ( U )  and C- ' (V) .  Maxlmal correlatlon Is achleved by uslng V = U ,  and 
maxlmal negatlve correlatlon 1s obtalned by settlng v=-U. Whlle other 
methods may be avallable for generatlng X and/or Y lndlvldually, few methods 
allow the flexlblllty of controlllng the correlatlon as descrlbed here. In varlance 
reductlon, negatlvely correlated random varlates are very useful (see e.g. Ham- 
mersley and Handscomb, 1964, or Bratley, Fox and Schrage, 1984). 
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Example 2.2. Generating maxima. 

wlth dlstrlbutlon functlon F ,  we could: 
To generate X=max(X,,  . . . , x, ), where the Xi's are lld random varlates 

(I)  Generate X, ,  . . . , X, ,  and take the maslmum. 
(11) Generate a unlform [0,1] random varlate U and And the solutlon X of 

(111) Generate V ,  a random varlate dlstrlbuted as the maximum of n lld unl- 
form [0,1] random varlates, and And the solutlon x' of F (X) = V .  

Pyx) = u. 

Thus, the elegant solutlons (11) and (111) lnvolve lnverslon. 

Example 2.3. Generating all order statistics. 
A sample X( , ) ,  . . . , X(n) of order statlstlcs of a sequence X , ,  . . . , X ,  of 

lld random varlables wlth dlstrlbutlon functlon F can be obtalned a s  
F-'(U(,)) ,  . . . , F-l(U(n$ where the U( i ) ' s  are the order statlstlcs of a unlform 
sample. ks we wlll see further on, thls 1s often more efnclent than generatlng the 
Xi sample and sortlng It .  

Example 2.4. A general purpose generator. 
The lnverslon method 1s the only truly unlversal method: If all we can do 1s 

compute F (a: ) for all 2 ,  and we have enough (Le., lnflnlte) tlme on our hands, 
then we can generate random varlates wlth dlstrlbutlon functlon F .  All the 
other methods described In thls book requlre addltlonal lnformatlon In one form 
or another. 
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2.2. Inversion by numerical solution of F(X)=U. 
The lnverslon method 1s exact when an expllclt form of F-’ 1s known. In 

other cases, we mtist solve the equatlon F (X) = U numerlcally, and thls 
requlres an lnflnlte amount of tlme when F 1s contlnuous. Any stopplng rule 
that we use wlth the numerlcal method leads necessarlly to  an lnexact algorlthm. 
In thls sectlon we wlll brlefly descrlbe a few numerlcal lnverslon algorlthms and 
stopplng rules. Desplte the fact that the algorlthms are lnexact, there are sltua- 
tlons In whlch we are vlrtually forced to use numerlcal lnverslon, and I t  1s lmpor- 
tant to compare dlfferent lnverslon algorlthms from varlous polnts of vlew. 

In what follows, X 1s the (unknown, but exact) solutlon of F (X) = U ,  and 
X *  1s the value returned by the numerlcal lnverslon algorlthm. A stopplng rule 
whlch lnslsts that I X*-X I <6 for some small 6>0 1s not reallstlc because for 
large values of X ,  thls would probably lmply that the number of slgnlflcant 
dlglts 1s greater than the bullt-ln llmlt dlctated by the wordslze of the computer. 
A second cholce for our stopplng rule would by I F (X*)-F ( X )  I < E ,  where E > O  
1s a small number. Slnce all F values are In the range [0,1], we do not face the 
above-mentloned problem any more, were I t  not for the fact that small varlatlons 
In X can lead to large varlatlons In F (X>values. Thus, I t  Is posslble that even 
the smallest reallzable lncrement ln X yields a change In F(X)  that exceeds the 
glven constant E .  A thlrd posslblllty for our stopplng rule would be 
I X*-X I <6 I X I where the value of 6 1s determined by the wordslze of the 

computer. Whlle thls addresses the problem of relatlve accuracy correctly, I t  wlll 
lead to more accuracy than 1s orlnarlly requlred for values of X near 0. Thus, no 
stopplng rule seems universally recommendable. If we know that x takes values 
In [-1,1], then the rule I X*-X I <6 seems both practlcal and amenable to 
theoretlcal analysls. Let us flrst see what we could do when the support of F falls 
outslde [-1,1]. 

Let h :I? +(-1,l) be a strlctly monotone contlnuous transformatlon. 
Assume now that we obtaln X *  by the followlng method: 

Let Y* be the numerical solution of F ( h - ’ ( y ) )  = u ,  where u is a uniform [0,1] random 
variable and y* is such that it is within 6 of the exact solution Y of the given equation. 
x* +- h-‘(Y*)  

Here we used the fact that Y has dlstrlbutlon functlon F ( h - ’ ( y ) )  , I y I <1 . 
Let us now look at what happens to the accuracy of the solutlon. A varlatlon of 
dy on the value of y leads to  varlatlon of h-”(y)  dx = h-”(h (5)) dx on the 
correspondlng value of x . The expected varlatlon thus 1s about equal to v6 
where 

1 v = E(h-”(h ( X ) ) )  = E(- 
h f ( X )  ) * 
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Unfortunately, the best transformatlon h , 1.e. the one that mlnlmlzes V ,  depends 
upon the dlstrlbutlon of x. We can glve the reader some lnslght In how to 
choose h by an example. Conslder for example the class if transformatlons 

h ( x )  = x -m 
s+lx-m I ' 

where s >O and m E R  are constants. Thus, we have 
h - ' ( y ) = m + s y / ( l - I y  I ) , a n d  

1 
S S 

v = E (-(s + I X-m I 12) = s + 2 ~  ( I x - m  I )+'E ( ( x - m  12) . 

For symmetrlc random varlables x, thls expresslon 1s mlnlmlzed by settlng 
m =O and s = d m .  For asymmetrlc X, the mlnlmlzatlon problem 1s very 
dlfflcult. The next best thlng we could do 1s mlnlmlze a good upper bound for V ,  
such as the one provlded by applylng the Cauchy-Schwarz lnequallty, 

Thls upper bound 1s mlnlmal when 

m = E ( X ) , s  =d-. 
The upper bound for V then becomes 4 d m .  Thls approach requlres elther 
exact values or good approxlmatlons for m and s . We refer to Exerclse 1 for a 
detalled comparlson of the average accuracy of thls method wlth that of the 
dlrect solutlon of F ( X )  = U glven that the same stopplng rule 1s used. 

We wlll dlscuss three popular nurnerlcal lnverslon algorlthms for F ( X ) =  U : 

The bisection method 

Find an initial interval [ a  , b ] to  which the solution belongs. 
REPEAT 

X+(a + b  )/2 

IF F ( X ) <  u 
THEN a+X 
ELSE b +X 

UNTIL b -a  526 
RETURN x 
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The secant method (regula falsi method) 

Find an interval [ a  , b  ] to which the solution belongs. 
REPEAT 

IF F ( X ) < U  
THEN a t X  
ELSE b +X 

UNTIL b -a  56 
RETURN x 

The Newton-Raphson method 

Choose an initial guess X 
REPEAT 

UNTIL stopping rule is satisfled. (Note: f is the density corresponding to F .) 
RETURN X . 

In the flrst two methods, we need an lnltlal lnterval [a  ,b ] known to  contaln 
the solutlon. If the user knows functlons G and H such that 
G ( x ) L F ( a : ) L H ( x )  for all x ,  then we could start wlth 
[ a  , b ]  = [G- ' (U) ,H- ' (U) ] .  In particular, If the support of F 1s known, then we 
can set [ a  , b  ] equal to  It. Because I t  1s lmportant to  have reasonably small lnter- 
vals, any a prlorl lnformatlon should be used to select [ a  ,b 1. For example, If F 
has varlance o2 and Is symrnetrlc about 0, then by Cantelll's extenslon of 
Chebyshev's lnequall ty, 

X 2  

X 2+02 
F ( x )  L (a: >o) . 

1 
2 

Thls suggests that when U > -, we take 
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1 
2 

When u I-, we argue by symmetry. Thus, lnformatlon about moments and 
quantlles of F can be valuable for lnltlal guesswork. For the Newton-Raphson 
method, we can often take an arbltrary polnt such as 0 a s  our lnltlal guess. 

The actual cholce of an algorlthm depends upon many factors such as 

(1) Guaranteed convergence. 
(11) Speed of convergence. 
(111) A prlorl lnformatlon. 
(lv) Knowledge of the denslty f . 

If f 1s not expllcltly known, then the Newton-Raphson method should be 
avolded because the approxlmatlon of f (z ) by -(F (a: +6)-F (z )) 1s rather lnac- 

curate because of cancelatlon errors. 
Only the blsectlon method 1s guaranteed to  converge In all cases. If 

F ( X ) =  U has a unlque solutlon, then the secant method converges too. By "con- 
vergence" we mean of course that the returned varlable x* would approach the 
exact solutlon X if we would let the number of lteratlons tend to 03. The 
Newton-Raphson method converges when F 1s convex or concave. Often, the 
denslty f 1s unlmodal wlth peak at m . Then, clearly, F 1s convex on (-m,m 1, 

1 
6 

and concave on [m,m) ,  and the Newton-Raphson method started at 
verges. 

Let us conslder the speed of convergence now. For the blsectlon 
started at [a  , b  ] = [g U ) , g , (  U)] (where g 1,g2 are glven functlons), we 
lteratlons If and only if 

2N-1 < g 2 ( U ) - g 1 ( U )  5 2N . 

The solutlon of thls 1s 

m con- 

method 
need N 

where log+ 1s the posltlve part of the logarlthm wlth base 2. From thls expres- 
slon, we retaln that E ( N )  can be lnflnlte for some long-talled dlstrlbutlons. If the 
solutlon 1s known to belong to  [-1,1], then we have determlnlstlcally, 

N 5 l+log ( L ) .  
+ 6  

1 
s And In all cases in whlch E ( N )  < 00, we have as 610, E(N)-log(-). Essen- 

tlally, addlng one blt of accuracy to  the solutlon 1s equlvalent to  addlng one 
lteratlon. As an example, let us take 6 = lo-', whlch corresponds to  the stan- 
dard cholce for problems wlth solutlons In [-1,1] when a 32-blt computer 1s used. 
The value of N In that case 1s In the nelghborhood of 24, and thls 1s often lnac- 
ceptable. 

The secant and Newton-Raphson methods are both faster, albelt less robust, 
than the blsectlon method. For a good dlscusslon of the convergence and rate of 
convergence of the W e n  methods, we refer to Ostrowskl (1973). Let us merely 
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state one of the results for E ( N ) ,  the quantlty of lnterest to  us, where N 1s the 
number of lteratlons needed to get to wlthln 6 of the solutlon (note that thls 1s 
lmposslble to verlfy when an algorlthm 1s runnlng !). Also, let F be the dlstrlbu- 
tlon functlon correspondlng to a unlmodal denslty wlth absolutely bounded 
derlvatlve f'. The Newton-Raphson method started at the mode converges, and 
for some number N o  dependlng only upon F (but posslbly 00) we have 

where all logarlthms are base 2. For the secant method, a slmllar statement can 
be made but the base should be replaced by the golden ratlo, -(l+&). In both 

cases, the Influence of 6 on the average number of lteratlons 1s practlcally nll, and 
the asyrnptotlc expresslon for E ( N )  1s smaller than In the blsectlon method 
(when 610). Obvlously, the secant and Newton-Raphson methods are not unlver- 
sally faster than the blsectlon method. For ways of acceleratlng these methods, 
see for example Ostrowskl (1973, Appendlx I, Appendlx G). 

1 
2 

2.3. Explicit approximations. 
When F-' 1s not expllcltly known, I t  can sometlmes be well approxlmated by 

another expllcltly known functlon g (U).  In lteratlve methods, the stopplng rule 
usually takes care of the accuracy problem. Now, by resortlng to a one-step pro- 
cedure, we squarely put the burden of verlfylng the accuracy of the solutlon on 
the shoulders of the theoretlclan. Also, we should define once agaln what we 
mean by accuracy (see Devroye (1982) for a crltlcal dlscusslon of varlous 
deflnltlons). Iteratlve methods can be notorlously slow, but thls 1s a small prlce 
to pay for thelr conclseness, slmpllclty, flexlblllty and accuracy. The four maln 
llmltatlons of the dlrect approxlmatlon method are: 
(1) The approxlmatlon 1s valid for a glven F :  to use I t  when F changes fre- 

quently durlng the slmulatlon experlment would probably requlre extraordl- 
nary set-up tlmes. 

(11) The functlon g must be stored. For example, g 1s often a ratlo of two poly- 
nomlals, In whlch case all the coemclents must be put In a long table. 

(111) The accuracy of the approxlmatlon 1s fixed. If a better accuracy 1s needed, 
the entlre functlon g must be replaced. Thls happens for example when one 
swltches to a computer wlth a larger wordslze. In other words, future Corn- 
puter upgrades wlll be expensive. 

(lv) Certaln functlons cannot be approxlmated very well by standard aPProx1- 
matlon technlques, except posslbly by lnacceptably compllcated functions. 
Also, approxlmatlons are dlmcult to develop for multlparameter famllles Of 
functlons. 
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How one actually goes about deslgnlng approxlmatlons g wlll not be 
explalned here. For example, we could start from a very rough approxlmatlon of 
F - l 1  and then expllcltly compute the functlon that corresponds to  one or two or 
a Axed number of Newton-Raphson lteratlons. Thls 1s not systematlc enough In 
general. A spllne method was developed In Kohrt (1980) and Ahrens and Kohrt 
(1981). In the general Ilterature, one can And many examples of approxlmatlons 
by ratlos of polynomlals. For example, for the lnverse of the normal dlstrlbutlon 
functlon, Odeh and Evans (1974) suggest 

4 4 
where A (a: )= ai z i t  and B (a: )= bi x i ,  and the coefllclents are as shown In 

I =o 
the table below: 

i =O 

-0.322232431088 0.0993484626060 
-1.0 0.588581570495 
-0.342242088547 0.531103462366 
-0.0204231210245 0.103537752850 

I 4 I -0.0000453642210148 I 0.0038560700634 
1 
2 

For u In the range [-,1-10-20], we take -g (l-u ) l  and for u In the two tlny left- 

over lntervals near 0 and 1, the approxlmatlon should not be used. Rougher 
approxlmatlons can be found In Hastlngs (1955) and Balley (1981). Balley’s 
approxlmatlon requlres fewer constants and 1s very fast. The approxlmatlon of 
Beasley and Sprlnger (1977) 1s also very fast, although not as accurate as the 
Odeh-Evans approxlmatlon glven here. Slmllar methods exlst for the lnverslon of 
beta and gamma dlstrlbutlon functlons. 

2.4. Exercises. 
1. Most stopplng rules for the numerlcal lteratlve solutlon of F (X)=U are of 

the type b -a 56 where [a  , b  ] 1s an lnterval contalnlng the solutlon X ,  and 
6>0 1s a small number. These algorlthms may never halt If for some u ,  
there 1s an lnterval of solutlons of F(X)=u (thls applles especlally to the 
secant method). Let A be the set of all u for whlch we have for some 
x < y F (x )=F (y  )=u . Show that P ( U  EA )=O, 1.e. the probablllty of 
endlng up In an lnAnlte loop 1s zero. Thus, we can safely llft the restrlctlon 
lmposed throughout thls sectlon that F (X)=u has one solutlon for all u . 
Show that  the secant method converges if F (X)=U has one solutlon for 
the glven value of U. 
Show that If F(O)=O and F 1s concave on [O,oo), then the Newton-Raphson 
method started at 0 converges. 

2. 

3. 
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4. Student’s t distribution with 3 degrees of freedom. 
Consider the denslty 

2 f (x)= 
n(l+Z 2)2 ’ 

and the correspondlng dlstrlbutlon functlon 

1 1  X 
F (z) = -+-(arc tan  z +- > .  

2 7 r  1+x2 

These functions deflne the t dlstrlbutlon with 3 degrees of freedom. Else- 
where we wlll see very efflclent methods for generating random varlates from 
thls dlstrlbutlon. Nevertheless, because F-l  is not known expllcltly (except 
perhaps as an inflnlte series), thls distribution can be used to  illustrate many 
points made In the text. Note A r s t  that the dlstrlbutlon is symmetric about 
0. Prove flrst that 

1 1  1 2  -+-arc tan  x 5 F ( z )  5 -+-arc tan x 
2 7 r  2 7 r  

Thus, for U >‘, the solutlon of F (X)=U lles In the lnterval 
2 

[tan( -( 7r U--)),tan(n( 1 U-?))I 1 2 2 

Using thls lnterval as a startlng lnterval, compare and tlme the blsectlon 
method, the secant method and the Newton-Raphson method (In the latter 
method, start at 0 and keep iterating untll X does not change In value any 
further). Flnally, assume that we have an efflclent Cauchy random varlate 
generator at our disposal. Recalling that a Cauchy random varlable c IS 

1 dlstrlbuted as tan(n(U--)), show that we can generate X by solving the 
2 

e quat ion 
X 

1+x2 arc tan X +- = arc tan C , 

and by startlng wlth lnltlal lnterval 

when c>O (use symmetry In the other case). Prove that thls Is a valid 
method. 
Develop a general purpose random varlate generator whlch 1s based upon 
lnverslon by the Newton-Raphson method, and assumes only that F and the 
correspondlng denslty f can be computed at all points, and that 1 1s uni- 
modal. Verlfy that your method 1s convergent. Allow the user to Wec!m a 
mode If thls information 1s avallable. 

5 .  
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6. Wrlte general purpose generators for the blsectlon and secant methods In 
whlch the user speclfles an lnltlal lnterval [g 

7. Dlscuss how you would solve F (x)= u for X by the blsectlon method If no 
lnltlal lnterval 1s avallable. In a Arst stage, you could look for an lnterval 
[ a  ,b ] whlch contalns the solutlon x .  In a second stage, you proceed by ordl- 
nary blsectlon untll the lnterval’s length drops below 6. Show that regardless 
of how you organlze the orlglnal search (thls could be by looklng at adjacent 
lntervals of equal length, or adJacent lntervals wlth geometrlcally lncreaslng 
lengths, or adJacent lntervals growlng as 2,22,222,...), the  expected tlme taken 
by the entlre algorlthm 1s 00 whenever E (log, I X I )=m. Show that for 
extrapolatory search, I t  1s not a bad strategy to double the lnterval slzes. 
Finally, exhlblt a dlstrlbutlon for whlch the glven expected search tlme 1s 00. 

(Note that for such dlstrlbutlons, the expected number of blts needed to 
represent the lnteger portlon Is lnflnlte.) 

8. An exponential class of distributions. Conslder the dlstrlbutlon func- 
tlon F (a: )=1-e - A n ( z )  where A, (a:)= 5 ai x i  for a: 20 and A, (a:)=O for 

z <O. Assume that all coefflclents ai are nonnegatlve and that a ,>O. If U 
1s a unlform [0,1] random varlate, and E 1s an exponentlal random varlate, 
then I t  1s easy to see that the solutlon of l -e-An(X)=U 1s dlstrlbuted as the 
solutlon of A, (X)=E.  The baslc Newton-Raphson step for the solutlon of 
the second equatlon 1s 

u),g,( V ) ] .  

: =1 

A n  (X1-E xc-x- 
An’(X) * 

Slnce a ,>O and A ,  1s convex, any startlng polnt X 20 wlll yleld a conver- 
gent sequence of values. We can thus start at X” =O or at x =E / a  (whlch 
1s the flrst value obtalned In the Newton-Raphson sequence started at 0). 
Compare thls algorlthm wlth the algorlthm In whlch X 1s generated as 

where E,,  . . . , E, are lld exponentlal random varlates. 
Adaptive inversion. Conslder the sltuatlon in whlch we need to  generate 
a sequence of n lld random varlables wlth continuous dlstrlbutlon functlon 
F by the method of lnverslon. The generated couples (x,,u,), ... are stored 
(X,=F-l(U,) and U l  1s unlform [O,l]). Deflne an algorlthm based upon a 
dynamlc hash table for the Vi’s In whlch the table 1s used to And a good 
startlng lnterval for lnverslon. Implement, and compare thls adaptlve 
method wlth memoryless algorithms (Yuen, 1981). 

10. Truncated distributions. Let X be a random varlable wlth dlstrlbutlon 
functlon F .  Deflne the truncated random variable Y by Its dlstrlbutlon 

9. 
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functlon 

G ( x )  = 

0 x < a  

1 x > 6  

Here -cos& <6 500. Show that Y can be generated as 
F-l (F  ( a  )+ U ( F  (6 )-F ( a  ))) where U 1s a unlform [0,1] random varlate. 

11. Find a monotonlcally decreaslng denslty f on [O,co) such that the Newton- 
Raphson procedure started at X=O needs N steps to get wlthln 6 of the 
solutlon of F ( X ) =  U where N 1s a random varlable wlth mean E ( N  )=00 

for all 6>0. 
12. The logistic distribution. A random varlable X 1s sald to  have the logls- 

t lc  dlstrlbutlon wlth parameters a ER and 6 > O  when 
1 .  F ( x )  = 

2 -a -- 
b l + e  

It Is obvlous tha t  a 1s a translatlon parameter and that  b 1s a scale parame- 
ter. The standardlzed loglstlc dlstrlbutlon has a =o,b =l. The denslty 1s 

e-$ 

( l + e +  l2 
f ( X I =  = F(x)( l -F(x))  . 

The loglstlc denslty 1s symmetrlc about 0 and resembles In several respects 
the normal denslty. Show the followlng: 

A. When U 1s unlformly dlstrlbuted on [0,1], then x=log(-) has the 

standard loglstlc dlstrlbutlon. 

U 
1- u 

r, u B. - 1s dlstrlbuted as the ratlo of two lld exponentlal random varlables. 
1- u 

C. We say that a random varlable 2' has the extremal value dlstrlbutlon 
with parameter a when F ( x ) = ~ - ' ~ * .  If X 1s dlstrlbuted as Z with 
parameter Y where Y 1s exponentlally dlstrlbuted, then X has the 
standard loglstlc dlstrlbutlon. 

7n4 , and E(X4)=-. n2 D. E ( X 2 ) = -  
3 15 

E. If X1,X2 are lndependent extremal value dlstrlbuted random varlables 
wlth the same parameter a ,  then Xl-x, has a loglstlc dlstrlbutlon. 

. .  
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Theorem 3.1. 
Let X be a random vector with denslty f on R d ,  and let U be an lndepen- 

1 dent unlform [0,1] random varlable. Then (x,cuf (x)) 1s unlformly dlstrlbuted 
on A ={(x ,u ):x ER , O s u  5 c f (x)}, where c > O  1s an arbltrary constant. 
Vlce versa, If ( X , U )  1s a random vector In R d-C1 unlformly dlstrlbuted on A , 
then X has denslty f on R d .  

40 

3. THE REJECTION METHOD. 

3.1. Definition. 

densltles: 
The rejectlon method 1s based upon the followlng fundamental property of 

Proof of Theorem 3.1. 

B at x , 1.e. B, ={ u :(x ,u )EB }. By Tonelll's theorem, 
For the flrst statement, take a Borel set B &A , and let B, be the sectlon of 

Since the area of A 1s c ,  we have shown the flrst part of the Theorem. The 
second part follows If we can show that for all Borel sets B of R d ,  

P ( X E B  )=Sj (x ) dx (recall the deflnltlon of a denslty). But 
B 

P ( X E B )  = P ( ( X , U ) E B ,  = ((x,u):sEB ,o<u Scf (x)}) 
du dx 

A 

whlch was to be shown. 
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Theorem 3.2. 

let A C R  
taklng values In A .  Then Y has a dlstrlbutlon that 1s determlned by 

Let x1,x2, ... be a sequence of lld random vectors taklng values In R d ,  and 
be a Borel set such that P(X,EA ) = p  BO. Let Y be the flrst Xi 

P (X,EA nB ) 
P ( Y E B )  = , B Borel set of R 

' P  
In partlcular, If x, 1s unlformly dlstrlbuted In A , where A , 2 A  , then Y 1s unl- 
formly dlstrlbuted In A .  

Proof of Theorem 3.2.' 
For arbltrary Borel sets B , we observe that 

03 

P ( Y E B ) =  C P ( X , @ i ,  . . . , X i - 1 4 A , X ; E B n A )  
t =1 

00 
= (1 -p  )j-lP (X,EA n B  ) 

i =1  
1 

whlch was to be shown. If XI 1s unlformly dlstrlbuted In A , ,  then 

This concludes the proof of Theorem 3.2. 

The baslc verslon of the reJectlon algorlthm assumes the existence of a den- 
slty g and the knowledge of a constant c 21 such that 

f ( X I  L W ( X )  (all 2 ) .  

Random varlates wlth denslty f on R can be obtalned as follows: 
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The rejection method 

REPEAT 
Generate two independent random variates x (with density g on R ) and U (uni- 
formly distributed on [0,1]). 

UNTIL UT 51 
RETURN x 

By Theorem 3.1, ( X , c U g  ( X ) )  (where X and U are as explalned In the flrst llne 
of the REPEAT loop) 1s unlformly dlstrlbuted under the curve of cg  In R d + l .  
By Theorem 3.2, we conclude that the random varlate ( x , c U g  ( x ) )  generated by 
thls algorlthm (1.e. at tlme of exlt) 1s unlformly dlstrlbuted under the curve of f . 
By the second part of Theorem 3.1, we can then conclude that Its d-dlmenslonal 
proJectlon X must have denslty f . 

The three thlngs we need before we can apply the reJectlon algorlthm are (1) 
a domlnatlng denslty g ; (11) a slmple method for generatlng random varlates wlth 
denslty g ; and (111) knowledge of c . Often, (1) and (111) can be satlsfled by a prlorl 
lnspectlon of the analytlcal form of f . Baslcally, g must have heavler talls and 
sharper lnflnlte peaks than f . In some sltuatlons, we can determlne cg  for entlre 
classes of densltles f . The domlnatlng curves c g  should always be plcked wlth 
care: not only do we need a slmple generator for g (requlrement (ll)), but we 
must make sure that the cornputatlon of - ’ 1s slmple. Flnally, c g  must be 

such that the algorlthm 1s efflclent. 

( X , u )  requlred before the algorlthm halts. We have 

f (XI  

Let N be the number of lteratlons In the algorlthm, Le. the number of pairs 

where 

and Var(N)=-- - c  -c . In other 

words, E ( N )  1s one over the probablllty of acceptlng X .  From thls we conclude 
that we should keep c as small as posslble. Note that the dlstrlbutlon of N 1s 

1 2 1  Thus, E (N)=-=c  , E (N2)=--- 
P P 2  p P 2  

1 

C 
geometrlc wlth parameter p =- . Thls 1s good, because the probabllltles 
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P ( N  =z' ) decrease monotonlcally, and at an exponentlal rate (note that 
P ( N  > i ) = ( l - p  1' 5 e +  1. 

The reJectlon method has an almost unllmlted potentlal. We have glven up 
the prlnclple that one unlform (0,1] random varlate ylelds one varlate X (as In 
the lnverslon method), but what we recelve In return 1s a powerful, slmple and 
exact algorlthm. 

Example 3.1. Bounded densities of compact support. 
Let cMaa ,b  be the class of all densltles on [ a  ,b ] bounded by M. Any such 

denslty 1s clearly bounded by M. Thus, the rejectlon algorlthm can be used wlth 
unlform domlnatlng denslty g ( x )=(b  -a )-' ( a  5. 5 b ), and the constant c 
becomes M ( b  -a ). Formally, we have 

The rejection method for C M , ~ , ~  

REPEAT 
Generate two lndependent unlform [o,i] random varlates U and V .  
Set X+a+(b-a)V. 

UNTIL U M < f  ( X )  
RETURNX 

The reader should be warned here that thls algorlthm can be horrlbly lnemclent, 
and that the cholce of a constant domlnatlng curve should be avolded except In a 
few cases. 

3.2. Development of good rejection algorithms. 
Generally speaklng, g 1s chosen from a class of easy densltles. Thls class 

lncludes the unlform denslty, trlangular densltles, and most densltles that can be 
Generated qulckly by the lnverslon method. The sltuatlon usually dlctates whlch 
densltles are consldered as "easy". There are two maJor technlques for determln- 
lng c and g In the lnequallty f L c g  : one could flrst study the form of f and 
apply one of many analytlcal devtces for obtalnlng lnequalltles. Many of these 
are Illustrated throughout thls book (collectlng them In a speclal chapter would 
have forced us to dupllcate too much materlal). Whlle thls approach glves often 
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qulck results (see Example 3.2 below), I t  1s ad hoc, and depends a lot on the 
mathematlcal background and lnslght of the deslgner. In a second approach, 
whlch 1s also lllustrated In thls sectlon, one starts wlth a famlly of domlnatlng 
densltles g and chooses the denslty wlthln that class for whlch c 1s smallest. 
Thls approach 1s more structured but could sometlmes lead to dlmcult optlmlza- 
tlon problems. 

Example 3.2. A normal generator by rejection from the Laplace density. 

to obtainlng 

Let f be the normal denslty. Obtalnlng an upper bound for bolls down 
X 2  a lower bound for -. But we have of course 
2 

1 
2 -( 

Thus, 

1 
-- 22 1 e 2 - 1 Z  1 I 

e 2 < -  = cg (x ) 7 
- 
6 -6 

where g (x ) = f e - l  I 1s the Laplace denslty, and c = 1s the rejectlon 
2 

constant. Thls suggests the followlng algorlthm: 

A normal generator by the rejection method 

REPEAT 
Generate an exponential random variate x and two independent uniform [OJ] ran- 

1 dom variates U and V .  If U <- set X t - X  (X is now distributed as a Laplace 

random variate). 
2 ’  

X2 1 f-IXI 1 -2 5xe . 
UNTIL v 
RETURN X 

7ze 

1 The condltlon In the UNTIL statement can be cleaned up. The constant - 
cancels out on left and rlght hand sldes. It 1s also better to take logarithms on 
both sldes. Flnally, we can move the slgn change to the RETURN statement 
because there 1s no need for a slgn change of a random varlate that wlll be 
rejected. The random varlate U can also be avolded by the trlck lmplemented In 
the algorlthm glven below. 

6 
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A normal generator by rejection from the Laplace density 

REPEAT 
Generate an exponential random variate X and an independent uniform [-l,l] ran- 
dom variate V .  

UNTlL (x-1)25-21~g( I v I ) 
RETURN X-X sign ( V )  

For glven densltles f and g ,  the rejectlon constant c should be at least 
equal t o  

We cannot loose anythlng by settlng c equal t o  thls supremum, because thls 
lnsures us that the curves of f and c g  touch each other somewhere. Instead of 
letting g be determlned by some lnequallty whlch we happen to  come across as 
In Example 3.2, I t  Is often wlser to take the best ge In a famlly of densltles 
parametrlzed by 8. Here 8 should be thought of as a subset of R k  (In whlch case 
we say that there are k parameters). Deflne the optlmal rejectlon constant by 

The optlmal 8 1s that for whlch c e 1s mlnlmal, Le. for whlch c 8 1s closest to 1. 

We wlll now lllustrate thls optlmlzatlon process by an example. For the sake 
of argument, we take once agaln the normal denslty f . The famlly of domlnat- 
lng densltles 1s the Cauchy famlly wlth scale parameter 8: 

There 1s no need to  conslder a translatlon parameter as well because both f and 
the Cauchy densltles are unlmodal wlth peak at 0. Let us flrst compute the 
optlmal reJectlon constant c 8 .  We wlll prove that 



46 11.3.REJECTION METHOD 

We argue as follows: f / g o  1s maxlmal when log(f / g o )  1s maxlmal. Settlng the 
derlvatlve wlth respect to  x of log( f / g  e)  equal to  0 ylelds the equatlon 

2 x  - x + -  = 0 
e 2 + x  2 

Thls glves the values z=O and ~ = f d 2 - 8 ~  (the latter case can only happen 

when 1 9 ~ 5 2 ) .  At x = O ,  f / g o  takes the value 8 A. At z=&&F ,f / g o  
6Q 6 -  takes the value - e . It 1s easy to see that for e<&, the maxlmum of f / g o  

1s attalned at z =&m and the mlnlmum at x =O. For e>&, the maxlmum 
is attalned at x =O. Thls concludes the verlflcatlon of the expresslon for c 8. 

The remalnder of the optlmlzatlon 1s slmple. The functlon c e  has only one 

mlnlmum, at 8=1. The mlnlmal value 1s c &. Wlth thls value, the con- 
dltlon of acceptance Uc eg &X)L f (x) can be rewrltten as 

X2 

et9 

--- < - 1 e--T 
e T l+x2 - 6 9 

or as 

&- -$ U 5 (1+X2)-e 
2 

A normal generator by rejection from the Cauchy density 

[SET-UP] 
dT a+- 
2 

[GENERATOR] 
REPEAT 

Generate two independent uniform [0,1] random variates u and v 
Set X+tan(rV)  , S+x2 (x is now Cauchy distributed). 

s _- 
UNTIL U l a ( l + S ) e  
RETURN x 

The algorlthm derlved here, though I t  has a reJectlon constant near 1 . 4  1s no 
match for most normal generators developed further on. The reason for thls 1s 
that we need falrly expenslve Cauchy random varlates, plus the evaluatlon of exp 
In the acceptance step. 
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3.3. Generalizations of the rejection method. 
Some generallzatlons of the rejectlon method are lmportant enough to  war- 

rant speclal treatment ln thls key chapter. The flrst generallzatlon concerns the 
following case: 

f ($1 = c g ( z )  $(z) 9 

where the functlon $ 1s [O,l]-valued, g 1s an easy denslty and c 1s a normallza- 
tion constant at least equal to 1. The rejectlon algorlthm for thls case can be 
rewrltten as follows: 

The rejection method 

REPEAT 
Generate independent random variates X , U  where X has density g and U is uni- 
formly distributed on [O, l ] .  

UNTIL U <$(z ) 

RETURN x 

Vaduva (1977) observed that for speclal forms of $, there 1s another way of 
proceedlng. Thls occurs when $=l-Q where \k Is a dlstrlbutlon functlon of an 
easy denslty. 

Vaduva’s generalization of the rejection method 

REPEAT 
Generate two independent random variates x, Y ,  where x has density g and Y has 
distribution function 9. 

UNTIL x< Y 
RETURN x 

For $=*, we need to  replace X 5 Y In the acceptance step by X 2 Y .  

Theorem 3.3. 

Vaduva’s rejectlon method produces a random varlate X wlth denslty 
1 =cg (l-q),  and the rejectlon constant (the expected number of lteratlons) Is c . 
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Proof of Theorem 3.3. 
We prove thls by showlng that Vaduva's algorlthm 1s entlrely equlvalent to 

the orlglnal reJectlon algorlthm. Note that the condltlon of acceptance, X <_ Y Is 
wlth probablllty one satlsfled If and only If l-\k(X)zl-\k( Y). But by the proba- 
blllty lntegral transform, we know that l-\k(y) 1s dlstrlbuted as U ,  a unlform 
[0,1] random varlable. Thus, we need only verlfy whether U l l - \ k ( X ) ,  whlch 
ylelds the orlglnal acceptance condltlon glven at the beglnnlng of thls section. 

The cholce between generatlng U and computlng 1-\k(X) on the one hand 
(the orlglnal rejectlon algorlthm) and generatlng Y wlth dlstrlbutlon functlon \k 
on the other hand (Vaduva's method) depends malnly upon the relatlve speeds of 
computlng a dlstrlbutlon functlon and generatlng a random varlate wlth that dls- 
t rlb utlon. 

Example 3.3. 
Conslder the denslty 

where a >O 1s a parameter and c 1s a normallzatlon constant. Thls denslty 1s 
part of the gamma ( a )  denslty, wrltten here in a form convenient to us. The 
domlnatlng denslty 1s g ( ~ ) = a a : ~ - ~ ,  and the functlon $ 1s e-' .  Random varlates 

wlth denslty g can be obtalned qulte easlly by lnverslon (take V a where V 1s a 
unlform [0,1] random varlate). In thls case, the ordlnary rejectlon algorlthm 
would be 

1 - 

REPEAT 
1 - 

Generate two iid uniform [ O , l J  random variates U , V ,  and set X t V  '. 
UNTIL U s e - '  
RETURN x 

Vaduva's modlflcatlon essentially consists In generatlng X and an exponentlal 
random varlate E untll E zx. It 1s faster If we can generate E faster than we 
can compute e-x (thls 1s sometlmes the case). Of course, In thls slmple example, 
we could have deduced Vaduva's modlflcatlon by taklng the logarlthm of the 
acceptance condltlon and notlng that E 1s dlstrlbuted as -log( U). 
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We now proceed wlth another generallzatlon found In Devroye (1984): 

Theorem 3.4. 
Assume that a denslty f on R can be decomposed as follows: 

f (z 1 = Js (Y ,z ) h (Y 9 2  ) dY 9 

where s dy 1s an integral In R , 9 (y ,x ) 1s a density In y for ail 2 ,  and there 
ex1st.S a functlon H ( z )  such that O<h (y  , x ) L H ( x )  for all y , and H / S H  is an 
easy denslty. Then the followlng algorlthm produces a random varlate wlth den- 
sity f , and takes N lteratlons where N 1s geometrlcally dlstrlbuted wlth param- 
eter - (and thus E ( N ) = J H ) .  1 

SH 

Generalized rejection method 

REPEAT 
Generate X with density H / $ H  (on R ). 

Generate Y with density g (y ,X),y ER 
Generate a uniform [0,1] random variate U . 

(X is k e d ) .  

UNTTL.UH(X)Lh(Y,X) 
RETURN X 

Proof of Theorem 3.4. 
We wlll prove that thls Theorem follows dlrectly from Theorem 3.2. Let us 

deflne the new random vector W , = ( X , Y , u )  where w, refers to the trlple gen- 
erated In the REPEAT loop. Then, If A 1s the set of values w l = ( x , y , u )  for 
whlch uH (a: )< - h (y ,z ), we have for all Bore1 sets B In the space of w ,, 

P 
where p = P ( W , E A )  and W refers to the value of W ,  upon exlt. Take 
B =(-oo,z ] XR X (0,1], and conclude that 

P ( X ( r e t u r n e d ) s z )  = ‘ P ( X s z , W ( X ) < h ( Y , X ) ) .  
P 
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We note first that by settlng z=00, p = I .  But then, clearly, the varlate pro- 

duced by the algorlthm has denslty f as requlred. 
SH 

3.4. Wald’s equation. 
We wlll rather often be asked to  evaluate the expected value of 

6 +(Wj) 9 

{==I 
i 

where Wi 1s the collectlon of all random varlables used In the i - th  lteratlon of 
the rejectlon algorithm,@ 1s some functlon, and N 1s the number of lteratlons of 
the reJectlon method. The random varlable N 1s known as a stopplng rule 
because the probabllltles P ( N = n )  are equal to  the probabllltles that 
W,, . . . , W, belong to  some set B,. The lnterestlng fact  1s that,  regardless of 
whlch stopplng rule 1s used (l.e., whether we use the one suggested In the reJec- 
tlon method or not), as long as the wi’s are lid random varlables, the following 
remalns true: 

Theorem 3.5. (Wald’s equation.) 
Assume that Wl ,  ... are lid R -valued random varlables, and that $ 1s an 

arbltrary nonnegatlve Bore1 measurable functlon on R d .  Then, for all stopplng 
rules N ,  

N 

(-1 

Proof of Theorem 3.5. 
To slmpllfy the notatlon we wrlte Zi =$( Wi ) and note that the Zi ’s are lld 

nonnegatlve random varlables. The proof glven here 1s standard (see e.g. Chow 
and Telcher (1978, pp. 137-138)), but wlll be glven In Its entlrety. We start  by 
notlng that 2; and I l ~ . . i ]  are lndependent for all 2 .  Thus, so are zi and I [ N > j ] .  
We wlll assume that E(Z,)<oo and E(N)<co .  I t  1s easy t o  verlfy that t h e  
chaln of equalltles glven below remalns valld when one or both of these expecta- 
tlons 1s 00. 

i = l  i = 1  
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@I 

= C E (zi I [ ~ > i l )  

= C E ( Z i ) P ( N > i )  

t =1 

co 

i =1 

= E ( & )  E P ( N l 2 )  
i = 1  

= E ( & )  E ( N )  . 

The exchange of the expectatlon and lnflnlte sum ls'allowed by the monotone 
convergence theorem: Just note that for any sequence of nonnegatlve random 

n n M 

i = i  i = i  t = I  

It should be noted that for the reJectlon method, we have a speclal case for 
whlch a shorter proof can be glven because our stopplng rule N 1s an lnstantane- 
ous stopplng rule: we deflne a number of declslons Di , all 0 or 1 valued and 
dependent upon Wi only: Dl=O lndlcates that  we "reJect" based upon W, ,  
etcetera. A 1 denotes acceptance. Thus, N 1s equal to n If and only If D, =1 and 
Di =O for all 2 <n . Now, 

E ( . g  $(wj 1) 
1 =1 

= E ( $( wi ))+E ($( wN 1) 
i < N  

= E ( N - W  Wl) I D ,=O)+E (II( W , )  I D 1 = 1 >  

whlch proves thls speclal case of Theorem 3.5. 
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3.5. Letac's lower bound. 
In a profound but llttle publlclzed paper, Letac (1915) asks whlch dlstrlbu- 

tlons canebe obtalned for X=UN where N 1s a stopplng tlme and Ul ,U2 ,  ... 1s an 
lld sequence of unlform [0,1] random varlables. He shows among other thlngs that 
all densltles on [0,1] can be obtalned In thls manner. In exerclse 3.14, one unlver- 
sal stopplng tlme wlll be descrlbed. It does not colnclde with Letac's unlversal 
stopplng rule, but wlll do for dldactlcal purposes. 

More Importantly, Letac has obtalned lower bounds on the performance of 
any algorlthm of thls type. Hls maln result 1s: 

Theorem 3.6. (Letac's lower bound) 

deflned above. For any such stopplng rule N (Le., for any algorlthm), we have 
Assume that X=UN has denslty f on [0,1], where N and the Ui's  are as 

E" I I f  I 1 0 3 ,  

where I I . I I 03 Is the essentlal supremum of f . 

Proof of Theorem 3.6. 

used In the proof of Wald's equatlon), we have 
BY the lndependence of the events [ N  >n ] and [ Un EB] (whlch was also 

P ( N 2 n , U n E B )  = P ( N > n ) P ( U , E B ) .  

But, 
03 

P (XEB) = P (N=n EB) 
n =i  

00 

- < P ( N r n , U n E B )  e 

= P ( N > n )  - P ( U , E B )  

= E ( N ) P ( U , E B ) .  

n = I  
00 

n =1 

Thus, for all Bore1 sets B , 

If we take the supremum of the rlght-hand-slde 
I I f  I IcCl.W 

over all B ,  then we obtaln 

I 
.- I 
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There are qulte a few algorithms that fall Into this category. In partlcular, if 
we use reJectlon wlth a constant dominating curve on [O,i], then we use N unl- 
form random variates where for contlnuous f , 

. ww L: SUP, f  ( z )  . 
We have seen that In the reJectlon algorithm, we come within a factor of 2 of this 
lower bound. If the ui’s have density g on the real llne, then we can construct 
stopping times for all densltles f that are absolutely contlnuous wlth respect to  
g , and the lower bound reads 

f f .  For continuous -, the lower bound is equal to sup- of course. Again, wlth the 
9 Q 

reJectlon method-with g as domlnatlng denslty, we come wlthin a factor of 2 of 
the lower bound. 

There Is another class of algorlthms that A t s  the descrlptlon glven here, not- 
ably the Forsythe-von Neumann algorlthms, whlch wlll be presented in section 
N.2. 

3.6. The squeeze principle. 
In the reJectlon method based on the inequality f s c g  , we need to compute 

the ratio - N tlmes where N Is the number of Iterations. In most cases, this Is 

a slow operation because f 1s presumably not a slmple functlon of Its argument 
(for otherwlse, we would know how to  generate random variates from f by other 
means). In fact, sometimes f Is not known expllcltly: In this book, we wlll 
encounter cases In whlch I t  is the integral of another function or the solutlon of a 
nonllnear equatlon. In all these situations, we should try to avold the computa- 
tlon of - either entlrely, or at least most of the time. For prlnclples leadlng to 

the total avoidance of the computation, we refer to the more advanced chapter 
N. Here we will briefly discuss the squeeze princlple (a term lntroduced by 
George Marsaglla (1977)) designed to avoid the computation of the ratlo with 
hlgh probability. One should In fact try to And functlons h and h ,  that are easy 
to evaluate and have the property that 

f 
9 

f 
9 

h , ( X )  5 f ( z )  L h , ( s ) .  

Then, we have: 
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The squeeee method 

REPEAT 
Generate a uniform [0,1] random variate u.  
Generate a random variate x with density g . 
Set W - Ucg (X). 
Accept -[ w sh l(x)]. 
IF N O T  Accept 

THEN IF W s h , ( X )  THEN Accept --[ W <_f (X)]. 
UNTIL, Accept 
RETURN x 

In thls algorlthm, we lntroduced the boolean varlable "Accept" to streamllne 
the exlt from the REPEAT loop. Such boolean varlables come In handy whenever 
a program must remaln structured and readable. In the algorlthm, we count on 
the fact that "Accept" gets Its value most of the tlme from the comparlson 
between W and h , ( X ) ,  whlch from now on wlll be called a qulck acceptance 
step. In the remalnlng cases, we use a qulck reJectlon step ( w > h 2 ( X ) )  , and In 
the rare cases that W Is sandwlched between h , ( X )  and h 2 ( X ) ,  we resort to the 
expenslve comparlson of W wlth f ( X )  to set the value of "Accept". 

The valldlty of the algorlthm 1s not Jeopardlzed by dropplng the qulck 
acceptance and qulck reJectlon steps. In that case, we slmply have the statement 
A c c e p t t [  W 5 f (X)], and obtaln the standard reJectlon algorlthm. In many 
cases, the qulck reJectlon step Is omltted slnce I t  has the smallest effect on the 
efflclency. Note also that I t  1s not necessary that h l > O  or h 2 < c g ,  although 
nothlng wlll be galned by conslderlng vlolatlons of these boundary condltlons. 

We note that N 1s as In the reJectlon algorlthm, and thus, E (N)=c . T' 
galn wlll be In the number of computatlons N j  of f , the domlnatlng far+ 
the tlme complexlty. The computatlon of E ( N f  ) demonstrates the usefulnt. 
Wald's equatlon once agaln. Indeed, we have 

N 

1 = 1  

where Wi 1s the W obtalned In the i - th  lteratlon, and Xi 1s the x used In the 
i - th  lteratlon. To thls sum, we can apply Wald's equatlon, and thus, 
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Here we used the fact that we have proper sandwlchlng, 1.e. O l h  < h , < c g .  
If h,=O and h,=cg (l.e., we have no squeezlng), then we obtaln the result 
E(N1  )=c for the reJectlon method. Wlth only a quick acceptance step (1.e. 
h 2 = c g ) ,  we have E(N1  ) = c - J h l .  When h,>O - and/or h 2 5 c g  are vlolated, 
equallty In the expresslon for E (N1 ) should be replaced by lnequallty (exerclse 
3.13). 

Inequalities via Taylor's series expansion. 
A good source of lnequalltles for functlons f in terms of slmpler functlons is 

provided by Taylor's series expanslon. If f has n contlnuous derlvatlves 
(denoted by f (l), . . . , f (n) ), then I t  1s known that 

X n  

n !  

n -1 

l! n -l! 
f (x) = f ( o ) + - q  (1)(0)+ . . +-f (n-l)(O)+-f ' " ' ( S )  9 

where < Is a number In the lnterval [O,x] (or [x,O], dependlng upon the slgn of 
s). From thls, by lnspectlon of the last term, one can obtaln lnequalltles whlch 
are polynomlals, and thus prlme candldates for h and h,. For example, we have 

From thls, we see that for x 20, e-' is sandwlched between consecutlve terms of 
the well-known expanslon 

X' 
i !  

03 
e - Z  = (-1)i - . 

i =O 

In partlcular, 

Example 3.4. The normal density. 
For the normal denslty f , we have developed an algorlthm based upon 

rejection from the Cauchy denslty In Example 3.2. We used the lnequallty 
and h ,  we should look 

for slmple functlons of x . Applylng the Taylor serles technlque descrlbed above, 
we see that 

. For h f < c g  where c = 6 and g(x)= 
1 

7r(l+x2) 

X 2  x 2  x4 
1-- 5 &f ( 3 )  5 1--+- . 

2 2 8  
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Uslng the lower bound for h, ,  we can now accelerate our normal random varlate 
generator somewhat: 

Normal variate generator by rejection and Squeezing 

REPEAT 
Generate a uniform (0,1] random variate U 
Generate a Cauchy random variate x. 
Set W e  2 u  . (Note: W t c V g  (X)&.) 6 (l+X2) 

X 2  Accept --[ W 51--]. 
2 

IF NOT Accept THEN Accept -[ W se 
X 2  -- 

1. 
UNTIL Accept 
RETURN X 

Thls algorlthm can be lmproved In many dlrectlons. We have already got rld of 
the annoylng normallzatlon constant 6. For I X I >A, the qulck acceptance 
step 1s useless ln vlew of h ,(X)<O. Some further savlngs In computer tlme result 
lf we work wlth Y t - X 2  throughout. The expected number of computatlons of 1 

2 
f 1s 

Example 3.6. Proportional squeezing. 

same form as In 
I t  1s sometimes advantageous to  sandwich f between two functions of the 

b9 I f  < C 9 ?  

where g 1s an eSY density (as ln the rejectlon method), and 6 1s a posltlve con- 
stant. When b and c are close t o  1, Such a proportlonal squeeze can be very use- 
ful. For example, random variates can be generated as follows: 
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The proportional squeeze method 

REPEAT 
Generate a uniform [0,1] random variate U .  
Generate a random variate X with density g 

Accept +-[ u 5 -1. b 
C 

f (XI 1. IF NOT Accept THEN Accept t[ U 5 - 
cg (X) 

UNTIL Accept 
RETURN x 

Here the expected number of computatlons of f 1s qulte slmply c - 6 .  The maln 
area of appllcatlon of thls method 1s In the development of unlversally appllcable 
algorlthms In whlch the real llne 1s flrst partitloned Into many Intervals. On each 
lnterval, we have a nearly constant or nearly llnear plece of denslty. For thls 
plece, proportlonal squeezlng wlth domlnatlng denslty of the form 
g (z )=a,+a 1z can usually be applled (see exercises 3.10 and 3.11 below). 

Example 3.6. Squeezing based upon an absolute deviation inequality. 

sense: 
Assume that a denslty f 1s close to  another denslty h In the followlng 

Here g 1s another functlon, typlcally wlth small Integral. Here we could lmple- 
ment the rejectlon method wlth as domlnatlng curve g +h , and apply a sueeze 
step based upon f >h -9. After some slmpllflcatlons, thls leads to  the followlng 
algorlthm: 
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REPEAT 
Generate a random variate x with density proportional to h +g , and a uniform [0,1] 
random variate U . 
Accept -[-5 V(X) -1 1-LJ 

h ( X )  1+u 
IF NOT Accept THEN Accept --[ V(g ( X ) + h  (x))< f (x)] 

UNTIL Accept 
RETURN x 

Thls algorlthm has rejectlon constant 1 + s g ,  and the expected number of evalua- 
tlons of f Is at most 2 s g .  Algorlthms of thls type are malnly used when g has 
very small lntegral. One lnstance 1s when the startlng absolute devlatlon lnequal- 
lty 1s known from the study of llmlt theorems In mathematical statlstlcs. For 
example, when f 1s the gamma ( n )  denslty normallzed to have zero mean and 
unlt varlance, I t  1s known that f tends to  the normal denslty as n+m.  Thls 
convergence 1s studled In more detall In local central llmlt theorems (see e.g. 
Petrov (1975)). One of the by-products of thls theory 1s an lnequallty of the form 
needed by us, where g 1s a functlon dependlng upon n , wlth lntegral decreaslng 
at the rate 1 / 6  as n+m. The rejectlon algorlthm would thus have lmproved 
performance as n+x. What 1s lntrlgulng here 1s that thls sort of lnequallty 1s 
not llmlted to  the gamma denslty, but applles t o  densltles of sums of lld random 
varlables satlsfylng certaln regularlty condltlons. In one sweep, one could thus 
deslgn general algorlthms for thls class of densltles. See also sectlons XrV.3.3 and 
xIv.4. 

3.7. Recycling random variates. 
In thls sectlon we have emphaslzed the expected number of lteratlons In our 

algorlthms. Sometlmes we have looked at the number of functlon evaluatlons. 
But by and large we have steered clear of maklng statements about the expected 
number of unlform random varlates needed before an algorlthm halts. One of the 
reasons 1s that we can always recycle unused parts of the unlform random varl- 
ate. The recycling prlnclple 1s harmless for our infinite preclslon model, but 
should be used wlth extreme care In standard slngle preclslon arlthmetlc on com- 
puters. 

For the reJectlon method, based upon the lnequallty f <cg where g 1s the 
domlnathg density, and c 1s a constant, we note that glven a random varlate X 
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wtth denslty g and an independent unlform [0,1] random varlate U ,  the haltlng 
rule is Ucg (I)/ f (X)<l .  Glven that we halt, then Ucg ( X ) / f  (X) Is agaln unl- 
form on [0,1]. If we reJect, then 

is again unlformly dlstributed on [0,1]. These recycled unlforms can be used 
either In the generation of the next random varlate (If more than one random 
varlate is needed), or In the next iteration of the rejectlon algorlthm. Thus, In 
theory, the cost of unlform [0,1] random varlates becomes negllglble: I t  Is one If 
only one random varlate must be generated, and I t  remalns one even If n random 
varlates are needed. The followlng algorlthm incorporates these Ideas: 

Rejection algorithm with recycling of one uniform random variate 

Generate a uniform [0,1] random variate u 
REPEAT 

REPEAT 
Generate a random variate x with density g . 

Ut- V-r (prepare for recycling) T-1 
UNTIL U 50 (equivalent to V 51) 
RETURN x (X has density f ) 
U + V (recycle) 

UNTJL False (this is an inflnite loop; add stopping rule) 

In thls example, we merely want to make a polnt about our ldeallzed model. 
Recycling can be (and usually Is) dangerous on flnlte-preclslon computers. When 
f 1s close to c g ,  as In most good rejectlon algorithms, the upper portlon of U 
(1.e. (V- l ) / (  2'-1) in the notatlon of the algorlthm) should not be recycled since 
T-1 1s close to 0. The bottom part Is more useful, but thls 1s at the expense of 
less readable algorithms. All programs should be set up as follows: a unlform 
random varlate should be provided upon lnput, and the output consists of the 
returned random varlate and another unlform random varlate. The input and 
output random varlates are dependent, but I t  should be stressed that the 
returned random varlate X and the recycled unlform random variate are 
Independent! Another argument agalnst recycllng Is that I t  requlres a few multl- 
Pllcatlons and/or dlvlslons. Typlcally, the time taken by these operatlons Is 
longer than the time needed to generate one good unlform [O,l]  random variate. 
For all these reasons, we do not pursue the recycllng prlnclple any further. 
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3.8. Exercises. 

11.3 .REJECTION METHOD 

1. 

2. 

3. 

Let I and g be easy densltles for whlch we have subprograms for comput- 
lng f (z ) and g (z)  at all z ER d .  These densltles can be comblned Into 
other densltles In several manners, e.g. 

h = c max(f , g )  
h = c m h ( f  , g )  
h = c  fi 
h = c j a g 1 *  

where c 1s a normallzatlon constant (dlfferent In each case) and aE[0,1] 1s a 
constant. How would you generate random varlates wlth denslty h ? Glve 
the expected tlme complexlty (expected number of lteratlons, comparlsons, 
etc.). 

Decompose the denslty h (z ) = L d s  on [-1,1] as follows: 
7i- 

3 1 
7r 4 2 

where c =- &, f (z)=-(l-z2) and g (z)=-, and 13: 1 51. Thus, h 

1s In one of the forms speclfled In exerclse 3.1. Glve a complete algorlthm 
and analysls for generatlng random varlates wlth denslty h by the general 
method of exerclse 3.1. 

The algorlthm 

REPEAT 
Generate X with density g . 
Generate an exponential random variate E 

UNTIL h ( X ) < E  
RETURN X 

when used wlth a nonnegative functlon h produces a random varlate x 
wlth denslty 

c g ( z )  e - h ( z )  , 

where c 1s a normallzatlon constant. Show thls. 

How does C , the rejectlon constant, change wlth n (l.e., what 1s Its rate of 
lncrease as n -00) when the rejectlon method 1s used on the beta (n ,n ) 
denslty and the dominating denslty g 1s the unlform denslty on [O, l ]  ? 

Lux (1879) has generalized the rejectlon method as follows. Let g be a glven 
denslty, and k t  F be a glven dlstrlbutlon functlon. Furthermore, assume 

4. 

5.  
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that T 1s a Axed posltlve-valued monotonlcally decreaslng functlon on (0,oo). 
Then a random varlate X wlth denslty 

Lux's algorithm 

REPEAT 
Generate a random variate X with density g . 
Generate a random variate Y with distribution function F .  

UNTIL Y < r ( X )  
RETURN x 

Also, the probablllty of acceptance of a random couple ( X ,  Y )  In Lux's algo- 

rlthm 1s 

The followlng denslty on [O,oo) has both an lnflnlte peak at 0 and a heavy 
tall: 

00 

F ( T  (z )) g (z ) dz . 
0 

6 .  

2 
(5 >o) . 

(l+x )G f (XI= 

Conslder as a posslble candldate for a domlnatlng curve c 0 g 0 where 

7rX 

where c g  1s a constant dependlng upon 8 only and B>O 1s a design parame- 
ter. Prove flrst that lndeed f < c s  go. Then show that c g  1s mlnlmal for 

. Glve also a descrlptlon of the entlre reJec- 8=2lI3 and takes the value 7 

tlon algorithm together wlth the values for the expected number of ltera- 
tlons, cornparlsons, square root operatlons, multlpllcatlons/dlvlslons, and 
asslgnment statements. Repeat the same exerclse when the domlnatlng den- 
slty 1s the denslty of the random varlable 8 U 2 / V  where B>O 1s a parameter 
and u and V are two lld unlform [0,1] random varlates. Prove that In thls 

case too we obtaln the same reJectlon constant -. 

6 
- 

7r2 3 

6 
1 - 

m 3  



62 II.3.REJECTION METHOD 

8(z 

e 
TIT( e2+ 5 2) 

e e A Z  

Cauchy (e): 

Laplace (e): - e 4 1 z  I 

Logistic (e): 
1 6  

m i n ( - , T >  

6 
2 

l + e  

40 dX 

7. Optimal rejection algorithms for the normal density. Assume that 
normal random varlates are generated by rejectlon from a denslty g o  where 
0 1 s  a deslgn parameter. Dependlng upon the class of go's that 1s consldered, 
we may obtaln dlfferent optlmal reJectlon constants. Complete the followlng 
table: 

Optimal 8 Optimal rejection constant c 

1 

1 

? ? 

? ? 

8.  Sibuya's modified rejection method. Slbuya (1962) noted that the 
number of unlform random varlates In the rejectlon algorlthrn can be 
reduced to one by repeated use of the same unlform random varlate. Hls 
algorlthm for generatlng a random varlate wlth denslty f (known not t o  
exceed cg for an easy denslty g ) 1s: 

Generate a uniform [ O , l ]  random variate U . 
REPEAT 

Generate a random variate x with density 9 .  

UNTIL cg (X) U 5 f (X) 
RETURN x 

Show the followlng: 
(1) The algorlthm Is valld If and only If c =ess SUP (f (x)/g (x)). 
(11) If N 1s the number of X ' s  needed In Slbuya's algorlthm, and N* 1s 
the number of X's needed In the orlglnal rejectlon algorlthm, then 

and 

(Hlnt: use Jensen's lnequallty.) We conclude from (11) that Slbuya's 
method 1s worse than the reJectlon method In terms of number of 
requlred lteratlons. 
(111) We can have P(N=oo)>o (Just take g = f  ,c >i). We can also 
have P (N =m)=o,E (N)=m (Just take f (z )=2(1-z ) on [0,1], c =2 
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9. 

10. 

11. 

12. 

and g (z)=1 on [O,l]). Glve a necessary and sufflclent condltlon for 
P ( N  =co)=O, and show that thls requlres that c 1s chosen optlmally. 

See also Greenwood (1976). 

There exlsts a second moment analog of Wald's equatlon whlch you should 
try to  prove. Let w,, . . . , and $ 2 0  be as In Theorem 3.5. Assume further 
that $( W , )  has mean p and varlance a2<co. Then, for any stopplng rule N 
wlth E (N)<m, 

N 2 

E ( (  C (Wi-pU)) = a2 E ( N )  1 

i=i  

See for example Chow and Telcher (1978, pp. 139). 

Assume that we use proportlonal squeezlng for a denslty f on [0,1] whlch 1s 
known to be between 26 (1-z) and 2c (1-z) where 0 5 6  <i<c <co. Then, 
we need In every lteratlon a unlform random varlate U and a trlangular ran- 
dom varlate x (whlch ln turn can be obtained as mln(U,,U,) where U1,U2  
are also unlform [0,1] random varlates). Prove that If U ( l ) s  U ( 2 )  are the 
order statlstlcs of U,,U, , then 

1s dlstrlbuted as ( X , U ) .  Thus, uslng thls devlce, we can "save" one unlform 
random varlate per lteratlon. Wrlte out the detalls of the corregpondlng pro- 
portlonal squeeze algorlthm. 
Assume that the denslty f has support on [OJ] and that we know that I t  1s 
Llpschltz wlth constant C , 1.e. 

I f (Y1-f (5) I L c I s-Y I (z ,Y €3 ) + 

Clearly, we have f (O)=f (1)=0. Glve an efflclent algorlthm for generatlng 
a random varlate wlth denslty f whlch 1s based upon an n-part equl-spaced 
partltlon of [0,1] and the use of the proportlonal squeeze method for nearly 
llnear densltles (see prevlous exerclse) for generatlng random varlates from 
the n lndlvldual pleces. Your algorlthm should be asymptotlcally efflclent, 
Le. I t  should have E (Nf )=o (1) as n +co where Nf 1s the number of com- 
putations of f . 
Random variates with density f(x)=c(l-x2)" ( I x I 51) . The famlly of 
densltles treated In thls exerclse colncldes wlth the famlly of symmetrlc beta 
densltles properly translated and rescaled. For example, when the parameter 
a 1s Integer, f 1s the denslty of the medlan of 2a +1 lld unlform [-1,1] ran- 
dom varlates. It 1s also the denslty of the marglnal dlstributlon of a random 
vector unlformly dlstrlbuted on the surface of the unlt sphere In R where 
d and a are related by a=- . For the latter reason, we wlll use I t  later 

as an lmportant tool In the generatlon of random vectors that are unlfOrmIY 
dlstrlbuted on such spheres. The parameter a must be greater than -1. We 
have 

d -3 
2 
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Y 
. c  = 

&r<a +I) ’ 
and the lnequalltles 

a22 -- 
c e  1-z2 < - j (a:) 5 ce-az2 ( l a :  I 51). 

The followlng reJectlon algorlthm wlth squeezlng can be used: 

Translated symmetric beta generator by rejection and squeezing 

REPEAT 

REPEAT 

Generate a normal random variate X . 
Generate an exponential random variate E .  

UNTIL Y l l  

x+&, Y+X2 
a 

Accept +-[l-Y(l+-Y)zO]. 

IF NOT Accept THEN Accept +[aY+E f a  log(1-Y)>o]. 
E 

UNTIL Accept 

RETURN x 

A. 

B. The expected number of normal/exponentlal palrs needed 1s 
Verlfy that the algorlthm 1s valld. 

3 
r ( a  +$ 

. Selected values are 
6 r ( a  +I) 

1.329340 ... 

i.174982 ... 

1.119263 ... 105 
a = 3  - 

Show that thls number tends t o  1 as a -00 and to 00 as a lo. 
C. From Part B we conclude that I t  1s better to  take care of the case 

O<a 51 separately, by boundlng as follows: c (l-z2)<f (a: ) h c  . The 
expected number of lteratlons becomes 2 c .  whlch takes the values - at 

a=1 and 1 at a=O. Does thls number vary monotonlcally wlth a ? 
How does E (NJ ) vary wlth a ? 

3 
2 
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13. 

14. 

D. 

E. 

Wrlte a generator whlch works for all a >-1. (Thls requlres yet another 
solutlon for a In the range (-l,O).) 
Random varlates from f can also obtalned In other ways. Show that all 
of the followlng reclpes are valld: 

(1) 
1 
2 

S fl where B 1s beta(-,a +1) and S 1s a random slgn. 

1 where Y , Z  are lndependent gamma(-,i) and 
(11) s p Y + Z  2 

gamma(a +l,l) random varlates, and S 1s a random slgn. 

Conslder the squeeze algorlthm of sectlon 3.6 whlch uses the lnequallty 
f <cg - for the reJectlon-based generator, and the lnequalltles h , < f  < h ,  
for the qulck acceptance and reJectlon steps. Even If h ,  1s not necessarlly 
posltlve, and h ,  1s not necessarlly smaller than cg , show that we always 
have 

(111) 2B-1 where B 1s a beta(a + l , a  +1) random varlate. 

E (Nf = S(mln(h,,cg )-max(h ,,o)) L !(h,-h J 

where Nf 1s the number of evaluatlons of f . 
A universal generator a la Letac. Let f be any denslty on [O, l l ,  and 
assume that the cumulatlve mass functlon M ( t  )= f (a: ) dz 1s known. 

Conslder the followlng algorlthm: 
f 2t 

Generate a random integer z where P (z =i)=M(i)-M(i fl). 

REPEAT 
Generate (x,v) uniformly in [0,lIz 

UNTIL Z + v s f  (X) 
RETURN X 

Show that the algorlthm 1s valld (relate I t  to the reJectlon method). Relate 
the expected number of X ’ s  generated before haltlng to I I f I I co, the 
essentlal supremum of f . Among other thlngs, conclude that the expected 
tlme Is 00 for every unbounded denslty. Compare the expected number of 
x’s wlth Letac’s lower bound. Show also that if lnverslon by sequentlal 
search 1s used for generatlng 2 ,  then the expected number of lteratlons In 
the search before haltlng 1s flnlte If and only If J f  2 < ~ .  A Anal note: usu- 
ally, one does not have a cumulatlve mass functlon for an arbltrary denslty 
f .  
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4. DECOMPOSITION AS DISCRETE MIXTURES. 

4.1. Definition. 
If our target denslty f can be decomposed lnto a dlscrete mlxture 

00 

f ($1 = C P i f i ( ” )  
1 =1 

where the f ’s are glven densltles and the p i  ’s form a probablllty vector (l.e., 
p i  2 0  for all t‘ and Cpi =l), then random varlates can be obtained as follows: 

i 

The composition method. 

Generate a random integer Z with probability vector p 1, . . . , p i  ,... (Le. P ( Z = i ) = p i ) .  
Generate a random variate x with density f . 
RETURN x 

Thls algorlthm 1s Incomplete, because I t  does not speclfy Just how Z and X are 
generated. Every tlme we use the general form of the algorlthm, we wlll say that 
the composltlon method 1s used. 

We wlll show In thls sectlon how the decomposltlon method can be appiled 
In the deslgn of good generators, but we wlll not at thls stage address the prob- 
lem of the generatlon of the dlscrete random varlate Z .  Rather, we are lnterested 
In the decomposltlon Itself. It should be noted however that in many, If not most, 
practlcal sltuatlons, we have a Anlte mlxture wlth K components. 

4.2. Decomposition into simple components. 
Very often, we wlll decompose the graph of f lnto a bunch of very slmple 

structures such as rectangles and Wangles, malnly because random varlates wlth 
rectangular-shaped or trlangular-shaped densltles are so easy to  generate (by 
llnear comblnatlons of one or two unlform [OJ]  random varlates). Thls decompo- 
sltlon 1s Anlte If f 1s plecewlse llnear wlth a Anlte number of ‘pleces (thls forces 
f to have compact support). In general, one wlll decompose f as follows: 

K-2 

i = 1  
f ($ = P i  f i ($1 + P K - 1 f K - I ( ”  +PK f K ($1 

where f~ 1s a tall denslty ( I t  1s zero on a central lnterval [ a  , b  I ) ,  p~ 1s usually 
very small, and all other f i ’ s  vanlsh outslde the central lnterval [ a  , b  1. The 
structure of f 1, . . . , f ~ - ~  1s slmple, e.g. rectangular. After havlng plcked the 
rectangles In such a way that the correspondlng p i ’ s  add up to nearly 1, we 



II.4.DISCRETE MIXTURES 67 

collect the leftover plece In p ~ - ~ f l ~ - ~ .  Thls last plece 1s often strangely shaped, 
and random varlates from I t  are generated by the rejectlon method. The polnt 1s 
that p ~ - ~  and p~ are so small that  we do not have to generate random varlates 
wlth thls denslty very often. Most of the ttme, 1.e. wlth probablllty 
p 1+ . . . + p ~ - ~ ,  I t  sufflces to generate one or two uiilform [O,l] random varlates 
and to shlft or rescale them. Thls technlque wlll be called the jigsaw puzzle 
method, a term coined by Marsaglla. The careful decomposltlon requlres some 
reflned analysls, and 1s usually only worth the trouble for frequently used Axed 
densltles such as the normal denslty. We refer to the sectlon on normal varlate 
generatlon for several appllcatlons of thls sort of decomposltlon. Occaslonally, I t  
can be applled to famllles of dlstrlbutlons (such as the beta and gamma famllles), 
but the problem 1s that the decomposltlon ltself 1s a functlon of the parameter(s) 
of the famlly. Thls wlll be lllustrated for the beta famlly (see sectlon IX.4). 

T o  glve the readers a flavor of the sort of work that 1s lnvolved, we wlll try 
to  decompose the normal denslty lnto a rectangle and one resldual plece: the rec- 
tangle wlll be called p f l(z),  and the resldual plece p 2 f  2(z) .  It 1s clear that p 
should be as large as possible. But slnce p f l(z)s f (z ), the largest p must 
satisfy 

1 
2 

Thus, wlth f l (a:)=-8,  I x I 5 8  where 8 1s the wldth of the centered rectangle, 

we see that at best we can set 

e2 
22 -- 

28e =I 2- 8 e-T 
l -  t;L & 6 

The functlon p 1  1s maxlmal (as  a functlon of 8 ) when 8=1, and the correspond- 

lng value 1s &. Of course, thls welght 1s not close to 1, and the present 

decomposltlon seems hardly useful. The work lnvolved when we decompose In 
terms of several rectangles and trlangles 1s baslcally not dlfferent from the short 
analysls done here. 

4.3. Partitions into intervals. 

Into lntervals A 
Many algorlthms are based on the followlng prlnclple: partltlon the real llne 

. . . , A, ,  and decompose f as 
K 

f (4 = f (.I I A , W  ' 
t =I 

If we can generate random varlates from the restrlcted densltles f IA , /p i  (where 
P i  = f ), then the decomposltlon method 1s appllcable. The advantages offered 

A ,  



68 11.4 .DISCRETE MIXTURES 

by partltlons lnto lntervals cannot be denled: the decomposltlon 1s so simple that 
I t  can be rnechanlzed and used for huge classes of densltles (In that case, there 
are usually very many Intervals); troublespots on the real llne such as lnflnlte 
talls or unbounded peaks can be convenlently Isolated; and most lmportantly, the 
decomposltlon 1s easlly understood by the general user. 

In some cases, random varlates from the component densltles are generated 
by the reJectlon method based on the lnequalltles 

f ( x )  5 h i ( $ )  ,$€Ai  ,1LisK . 
Here the hi's are glven domlnatlng curves. There are two subtly dlfferent 
methods for generatlng random varlates wlth denslty f , glven below. One of 
these needs the constants p i  = J r  , and the other one requlres the constants 

Qi - - J h i .  Note that the q i ' s  are nearly always known because the hi's  are 

chosen by the user. The p i ' s  are usually known when the dlstrlbutlon functlon 
for F 1s easy to compute at arbltrary polnts. 

A ,  

A,  

The composition method. 

Generate a discrete random variate with probability vector p l ,  . . . , p~ on 

REPEAT 
(1, . . . , K } .  

Generate a random variate x with density hi / q i  on Ai , 
Generate an independent uniform [0,1] random variate u .  

UNTIL uhi ( x ) l f  (x) 
RETURN x 
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The modified composition method. 

REPEAT 
Generate a discrete random variate with probability vector proportional to 
P I ,  . * 

Generate a random variate x with density hi /Pi on A i .  
Generate a uniform [0,1] random variate U. 

, PK on (1, . 1 . ? K ) .  

UNTIL Uhi(X)<f  (X) 
RETURN x 

In the second algorlthm we use the rejectlon method wlth as domlnatlng curve 
h IIA ,+ . . * +h, IA,, and use the composltlon method for random varlates from 
the domlnatlng denslty. In contrast, the Arst algorlthm uses true decomposltlon. 
After havlng selected a component wlth the correct probablllty we then use the 
rejectlon method. A brlef comparison of both algorlthms 1s In order here. Thls 
can be done In terms of four quantltles: Nz,N,,Nh and Nh , where N 1s the 
number of random varlates requlred of the type speclfled by the lndex wlth the 
understandlng that Nh refers to  h i ,  1.e. I t  1s the total number of random vari- 

ates needed from any one of the K domlnatlng densltles. 

K 

i = 1  

I Theorem 4.1. 

I K 
Let q = q i ,  and let N be the number of Iterations In the second algo- 

i = 1  
rlthm. For the second algorlthm we have NU =Nz =Nh = N ,  and N 1s geometrl- 
cally dlstrlbuted wlth parameter -. In partlcular, 

E ( N )  = q ; E ( N 2 )  = 2q2-q  . 

1 

Q 
* 

For the flrst algorlthm, we have Nz  =l. Also, Nu =Nh satlsfy 

I Flnally, for both algorlthms, E(Nh, )  = qi . 
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Proof of Theorem 4.1. 
The statement for the second algorlthm 1s obvlous when we note that the  

reJectlon constant Is equal to  the area q under the domlnatlng curve (the sum of 
the hi's  In thls case). For the flrst algorlthm, we observe that glven the value of 
2 ,  Nu Is geometrlcally dlstrlbuted wlth parameter p z / q z  . F r o m  the propertles 
of the geometrlc dlstrlbutlon, we then conclude the followlng: 

Qi Qi 

To show that the last expresslon Is always greater or equal to 2q2 -q we use the 
C auchy-S chw arz lne qual1 ty : 

Flnally, we conslder E (Nh ). For the flrst algorlthm, Its expected value Is 
Qi 

P i  
p i ( - )  = q i .  For the second algorlthm, we employ Wald's equallty after notlng 

N 

In standard clrcumstances, q 1s close to 1, and dlscrete random varlate gen- 
erators are ultra efflclent. Thus, N, Is not a great factor. For all the other quan- 
tltles lnvolved In the comparlson, the expected values are equal. But when we 
examlne the hlgher moments of the dlstrlbutlons, we notlce a strlklng difference, 
because the second method has In all cases a smaller second moment. In fact, the 
dlfference can be substantlal when for some i , the ratlo qi / p i  Is large. If we take 
qi =pi  for i 2 2  and q l=q - ( l -p  1 ) ,  then for the flrst method, 

2(q -1+p 1 
E ( N U 2 )  = +2(1-P 1) -q = (2q 2-q ) +2( q - 1 ) 2 ( - - 1 )  

P I  P 1  

The dlfference between the two second moments In thls example 1s 

2(q -1)2(--1) . Thus, lsolating a small probablllty plece in the decomposltlon 

method and uslng a poor reJectlon rate for that  partlcular plece 1s dangerous. In 
such sltuatlons, one Is better off uslng a global reJectlon method as suggested In 
the second algorlthm. 

1 

P l  
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4.4. The waiting time method for asymmetric mixtures. 
In large slmulatlons, one needs lid random varlates XI, . . . , X,, ,.... If these 

random varlates are generated by the composition method, then for every ran- 
dom varlate generated we need one dlscrete random varlate 2' for selectlng a 
component. When f 1s decomposed lnto a maln component p I f  ( p  is close to 
1) and a small Component p 2 f  2, then most of these selectlons wlll choose the 
flmt component. In those cases, i t  1s useful to generate the tlmes of occurrence of 
selectlon of the second component Instead. If the second component 1s selected at 
tlmes T 1 , T 2 ,  ..., then I t  1s not dlmcult to see that T 1 , T 2 - T , ,  ... are lid geometrlc 
random varlables with parameter p 2, 1.e. 

P(T,=i) = (1-p2)i-1 p 2  (i 21) . 

A random varlate TI can be generated as 1- lo$ 2) 1 where E 1s an exponen- 

tlal random varlate. Of course, we need to keep track of these tlmes as we go 
along, occaslonally generatlng a new tlme. These tlmes need to be stored locally 
In subprograms for otherwlse we need to pass them as parameters. In some cases, 
the overhead assoclated wlth passlng an extra parameter 1s comparable to the 
tlme needed to generate a unlform random varlate. Thus, one should carefully 
look at how the large slmulatlon can be organized before uslng the geometrlc 
waltlng tlmes. 

4.5. Polynomial densities on [0,1]. 
In thls sectlon, we conslder densltles of the form 

i 
K 

i =O 
f (x) = c jx  ( o L x < 1 >  

where the c i ' s  are constants and K Is a posltlve Integer. Densltles wlth polyno- 
mlal forms are Important further on a s  bulldlng blocks for constructlng plecewlse 
polynomlal approxlmatlons of more general densltles. If K is 0 or 1, we have the 
unlform and trlangular densltles, and random variate generatlon 1s no problem. 
There 1s also no problem when the ti's are all nonnegatlve. To see thls, we 
observe that the dlstrlbutlon functlon F 1s a mixture of the form 

K + l  
where of course -=i. Slnce x *  1s the dlstrlbutlon functlon of the max- 

: = I  * 
\mum of i lld unlform [O,l] random varlables, we can proceed as follows: 
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C i  -1 
Generate a discrete random variate Z where P (2 =i)=- , i < i  <K+i .  

RETURN X where X is generated as max(U,, . . . , uz) and the Q.'s are iid uniform [0,1] 
random variates. 

a 

We have a nontrlvlal problem on our hands when one or more of the c i ' s  are 
negative. The solution glven here is due to Ahrens and Dleter (1974), and can be 
applled whenever c ,+  ci 2 0 .  They decompose f as follows: let A be the 

collectlon of lntegers In (0, . . . , K }  for which c i  LO, and let B the collectlon of 
lndlces In (0, . . . , K }  for whlch ci  <O. Then, we have 

K 

i =o 

i : c ,  <O 

f ( a : ) =  C C i Z '  

where p o = c  ci  (whlch is 20 by assumptlon). If we set p i  equal to  

c i  /(i +I) for i EA ,i >1, - and to - ic i  /(i +1) for i EB , then p , , p  1, . . . , p~ Is a 
probablllty vector, and we have thus decomposed f as a Anlte mlxture. Let us 
brlefly mentlon how random variate generatlon for the component denslties can 
be done. 

i EB 

Lemma 4.1. 
Let U 1, U2, ... be lld uniform [0,1] random variables. 

For a >1, U l  a U, has density 
1 - 

A. I 
a 

a -1 
- (1-za-1) (05s 51) 

B. Let L be the lndex of the flrst U; not equal to max( U,,  . . . , U, ) for n 2 2 .  
Then U, has denslty 

n 
n -1 
- (1-z"-'> (05a: 51) . 

C. The density of max(U,, . . . , U,) is n x n - l  ( 0 5 .  51). 



11.4 .DISCRETE MIXTURES 73 

Proof of Lemma 4.1. 
Part C 1s trlvlally,true. Part A 1s a good exerclse on transformatlons of ran- 

dom varlables. Part B has a partlcularly elegant short proof. The denslty of a 
randomly chosen 1s 1 (all densltles are understood to be on (O,l]). Thus, when 
f 1s the denslty of U,, we must have 

n -1 1 -j  (x)+;nxn-' = 1 . 
n 

1 
n 

Thls uses the fact that  wlth probablllty -, the randomly chosen Vi 1s the maxl- 

mal v i ,  and that wlth the compllrnentary probablllty, the randomly chosen Vi 1s 
dlstrlbuted as u,. 

We are now In a posltlon to glve more detalls of the polynomlal density al&- 
rlthm of Ahrens and Dleter. 

Polynomial density algorithm of Ahrens and Dieter 

[SET-UP] 
Compute the probability vector p , , p  1, . . . , p~ from c o, . . . , CK according to the formu- 
las given above. For each i E { O , l ,  . . . , K }, store the membership of i ( i  EA if ci 20 and 
i EB otherwise). 
[GENERATOR] 
Generate a discrete random variate 
IF ZEA 

with probability vector p , , p  1, . . . , p~ . 

1 - 
THEN RETURN x t u z + ' ( o r  X+max(Ul,  . . . , Uz+,) where U,ul, ... are iid uni- 
form (0,1] random variates). 

ELSE RETURN X + U l z + '  U2(or X t u ,  where L is the ui with the lowest index 
not equal to max(U,, . . . , UZ+~)). 

1 - 
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4.6. Mixtures with negative coefficients. 
Assume that the denslty f (a: ) can be wrltten as 

03 

f ( a : )  = CPif iW 9 

i=1 

where the f i  ’s are densltles, but the pi’s are real numbers summlng to  one. A 
general algorlthm for these densltles was glven by Blgnaml and de Mattels (1971). 
It uses the fact that If p i  1s decomposed lnto Its posltlve and negatlve parts, 
Pi =Pi +-Pi -t then 

03 

f ( a : )  L ! J ( a : )  = EPi+fiW * 
a =1 

Then, the followlng rejectlon algorlthm can be used: 

Negative mixture algorithm of Bignami and de Matteis 

REPEAT 
00 00 

Generate a random variate x with density 

Generate a uniform [0,1] random variate u . 
pi + f i / pi  +. 

i = 1  i - 1  

i -1 1-1 

RETURN x 

03 

The rejectlon constant here 1s s g  = p i + .  The algorlthm 1s thus not 

valld when thls constant 1s 00. One should observe that for thls algorlthm, the 
rejectlon constant 1s probably not a good measure of the expected tlme taken by 
I t .  Thls 1s due to the fact that the tlme needed to verlfy the acceptance condltlon 
can be very large. For flnlte mlxtures, or mlxtures that are such that for every 
a : ,  only a Anlte number of f (a: )’s are nonzero, we are In goo(I shape. In all cases, 
I t  1s often posslble to  accept or reject after havlng computet1 .lust a few terms In 
the serles, provlded that we have good analytical estimates of the tall sums of the 
serles. Slnce thls Is the maln ldea of the serles method of sectlon IV.5, I t  will not 
be pursued here any further. 

i= l  

Example 4.1. 
3 
4 

The denslty f (a:)=-(1-z2), I x 151, can . be wrltten as 

6 1  2 x 2  f (a: )==y(yI[-1,1j(a: >>--(--lr-l,ll(a: 4 6  )). The algorlthm glven above 1s then 
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entirely equivalent to ordlnary rejectlon from a unlform denslty, which In thls 
case has a rejection constant of -: 3 

2 

REPEAT 
Generate a uniform [-1,1] random variate X ,  
Generate a uniform (0,1] random variate u. 

UNTIL u 5 1-x2 
R E T U R N X  

5. THE ACCEPTANCE-COMPLEMENT METHOD. 

5.1. Definition. 

two nonnegative functions: 
Let f be a given denslty on which can be decomposed into a sum of 

f (5 1 = f >+f 2 ( 2  > * 

Assume furthermore that there exists an easy denslty g such that f L l g .  Then 
the followlng algorithm can be used to generate a random varlate X wlth density 
f :  

The acceptance-complement method 

Generate a random variate x with density g 

Generate a uniform [0,1] random variate U .  

f 2  THEN Generate a random variate x with density - where p = f j  2 .  

P 
RETURN x 

Thls, the acceptance-complement method, was flrst proposed by Kronmal and 
Peterson (1981,1984). It generalizes the composltlon method a s  can be seen if we 
take f l = f I A ,  g =f ,/If , and f 2 = f I A C  where A is an arbltrary set of R d 
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and A e 1s Its complement. It 1s competltlve 14 three condltlons are met: 
(1) g 1s an easy density. 
(11) f 2/p 1s an easy denslty when p 1s not small (when p 1s small, thls 
does not matter much). 
(111) f J g  1s not dlfflcult to  evaluate. 

As wlth the composltlon method, the algorlthm glven above 1s more a prlnclple 
than a detalled reclpe. When we compare I t  wlth the rejectlon method, we notice 
that lnstead of one deslgn varlable (a domlnatlng denslty) we And two deslgn 
varlables, f and g .  Moreover, there 1s no rejectlon involved at all, although 

Is generated by the very often, I t  turns out that a random varlate from - 
rejectlon method. 

Let us flrst show that thls method 1s valld. For thls purpose, we need only 
show that for all Bore1 sets B d ,  the random varlate generated by the algo- 
rlthm (whlch wlll be denoted here by X) satlsfles P (XEB )=SF (x ) dx . To 

B 
avold confuslon wlth too many x's, we wlll use Y for the random varlate wlth 
density g . Thus, 

f 2  

P 

= .f/ ( x )  dx . 
B 

In general, we galn If we can RETURN the flrst X generated in 
rlthm. Thus, I t  seems that we should try to maxlmlze Its probablllty 
tance, 

the algo- 
of accep- 

subject of course to  the constralnt f l l g  where g 1s an easy denslty. Thus, good 
algorlthms have g "almost" equal t o  f . 

There 1s a VlSUal explanatlon of the method related to that of the rejectlon 
method. What 1s important here 1s that the areas under the graphs of g-f and 
f are equal. In the next sectlon, we wlll glve a slmpllfled verslon of the 
acceptance-complement algorlthm developed lndependently by Ahrens and Dleter 
(1981,1983). Examples and detalls are glven In the remalnlng sectlons and In 
some of the exerclses. 
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5.2. Simple acceptance- complement methods. 

deflned by an arbltrary denslty g on R 
Ahrens and Dleter (1981,1983) and Deak (1981) consldered the speclal case 

and the followlng decomposltlon: 

f (z 1 = f I($ >+f 2(a: 1 ; 
f 1 = m w  (a: >,s (x 11 
f 2 ( 2  1 = (f (z 1-s (z )I+ * 

(note :f 15s 1 ; 

We can now rewrlte the acceptance-complement algorlthm qulte simply as fol- 
lows: 

Simple acceptance-complement method of Ahrens and Dieter 

Generate a random variate x with density g 
Generate a uniform [0,1] random variate U . 

THEN Generate a random variate X with density (f -g ) + / p  where p = 1 (f -g ) . 
I > P  

RETURN x 

Deak (1981) calls thls the economical method. Usually, g 1s an easy denslty 
close to f . It should be obvlous that generatlon from the leftover denslty 
(f -g ) + / p  can be problematlc. If there Is some freedom In the deslgn (Le. In the 
choke of g ), we should try to mlnlmlze p . Thls slmple acceptance-complement 
method has been used for generatlng gamma and t varlates (see Ahrens and 
Dleter (1981,1983) and Stadlober (1981) respectlvely). One of the maln technical 
obstacles encountered (and overcome) by these authors was the determlnatlon of 
the set on whlch f ( a : ) > g  (5). If we have two densltles that are very close, we 
must first verlfy where they cross. Often thls leads to compllcated equatlons 
whose solutlons can only be determlned numerlcally. These problems can be 
sldestepped by exploltlng the added flexlblllty of the general acceptance- 
complement method. 
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5.3. Acceleration by avoiding the ratio computation. 

In the acceptance condltlon can be The time-consumlng ratlo evaluation - 
avoided some of the time If we know two easy-to-compute functlons h and h* 
wlth the property that  

f l  

9 

The IF step In the acceptance-complement algorlthm can be replaced in those 
cases by 

Squeeze step in acceptance-complement method 

IF U > h ( X )  
T H E N I F  u z h * ( X )  

f 2  THEN Generate a random variate x with density - where p = J j  2. 
P 

f 2  THEN Generate a random variate x with density - where p = J f  2. 
P 

RETURN x 

A slmllar but more spectacular acceleration 1s posslble for the Ahrens-Dleter 
algorlthm If one can qulckly determine whether a point belongs to A , where A 1s 
a subset of f > g  . In partlcular, one will And that the set on which f > g  often 
1s an interval, In whlch case this acceleratlon 1s easy to apply. 

Accelerated version of the Ahrens-Dieter algorithm 

Generate a random variate x with density g . 
IF X E A  

THEN 
Generate a uniform [0,1] random variate u .  

THEN Generate a random variate x with density (f -9 ) + / p  . 
RETURN x 

With probablllty P (XEA ), no unlform random variate 1s generated. Thus, what 
one should try to do 1s to choose g such that P (XEA ) 1s maxlmal. Thls in turn 
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suggests chooslng g such that 

1s large. 

5.4. An example: nearly flat densities on [0,1]. 

We wlll develop a unlversal generator for all densltles f on [-l,l] whlch 

satlsfy the followlng property: sup f (a: )-lnf f (z )L-. 1 Because we always have 

OClnf f ( z ) < - S s u p  f (z), we see that sup f (a;)Sl. We wlll apply the 

acceptance-complement method here wlth as slmple a decomposltlon as posslble, 
for example 

2 2 2 
1 

- 2  2 2 
- 

2 

1 
2 s ( z ) = -  ( I S  151); 

f 1(x 1 = f (X Hf m a x - 2 )  
1 (f max=SUP f (5 1) ; 

2 

The condltlon lmposed on the class of densltles follows from the fact that we 
must ask that f be nonnegatlve. The algorlthm now becomes: 

Acceptance-complement method for nearly flat densities 

Generate a uniform [-1,1] random variate X .  
Generate a uniform [0,1] random variate U . 

E- u >2(f (X1-f mm+;) 
THEN Generate a uniform [-1,1] random variate x 

RETURN x 

To thls, we could add a squeeze step, because we can exlt whenever 
u _<2(lnf f (a:)-! max+-), and the probablllty of thls fast  exlt Increases wlth the 

"flatness" of f . It Is 1 when f 1s the unlform denslty. 

1 
2 2 

A comparlson wlth the reJectlon method Is In order here. Flrst we observe 
that  because we plcked g and f both unlform, we need only unlform random 
varlates. The number N of such unlform random varlates used up In the algo- 
rlthm 1s elther 2 or 3. We have 
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where x stands for a unlform [-1,1] random varlate. Thus, 

-1 - 

= 2+2f max-l = l+2f max 

In addltlon, If no squeeze step 1s used, we requlre exactly one computatlon of f 
per varlate. The obvlous rejectlon algorlthm for thls example 1s 

Rejection algorithm for nearly flat densities 

REPEAT 
Generate a uniform [-1,1] random variate x 
Generate a uniform [0,1] random variate u .  

UwXL Uf m a x l f  (XI 
RETURN X 

Here too we could lnsert a squeeze step (uf max<lnf f (z)). Wlthout It, the 

expected number of unlform random varlates needed 1s 2 tlmes the expected 
number or lteratlons, 1.e. 4f In addltlon, the expected number of computa- 
tlons or 1 1s 2 j  max. On both counts, thls 1s strlctly worse than the acceptance- 
complement method. 

We have thus establlshed that for some falrly general classes of densltles, we 
have a strlct lmprovement over the reJectlon algorlthm. The unlversallty of the 
algorlthms depends upon the knowledge of the lnflmum and supremum of f . 
Thls 1s satlsfled for example If we know that f 1s symrnetrlc unlmodal In whlch 
case the lnflmum 1s 1 (1) and the supremum 1s f (0). 

The algorlthrn W e n  above can be applled t o  the maln body of most sym- 
metric unlmodal densltles such as the normal and Cauchy densltles. For the 
truncated Cauchy densify 

2 

2 1 our condltlons are satlsfled because f max=- and the lnflmum of f 1s -, the 
7r 7r 

1 

dlfference belng smaller than In thls case, the expected number of unlform 

random varlates needed 1s I+-. Next, note that If we can generate a random 

varlate X wlth denslty then a standard Cauchy random varlate can be 
obtalned by exploltlng the Property that the random varlate Y deflned by 

2 
4 

lr 
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1 X wlth probablllty - 
2 

Y = I 1  - wlth probablllty - 1 
X 2 

IS Cauchy dlstrlbuted. For thls, we need an extra coln fllp. Usually, extra coln 
Alps are generated by borrowlng a random blt from U. For example, In the 
unlversal algorlthm shown above, we could have started from a unlform [-1,1] 
random varlate u ,  and used I u 1 In the acceptance condltlon. Slnce slgn(U) is 
lndependent of I u I ,  slgn(U) can be used to replace X by -, so that the 

returned random varlate has the standard Cauchy denslty. The Cauchy generator 
thus obtalned was flrst developed by Kronmal and Peterson (1981). 

We were forced by technlcal conslderatlons to llmlt the densltles somewhat. 
The rejectlon method can be used on all bounded densltles wlth compact support. 
Thls typlfles the sltuatlon In general. ,In the acceptance-complement method, once 
we choose the general form of g and f 2, we loose In terms of unlversallty. For 
example, If both f and g are constant on [-1,1], then f =f l+f 2 5 g  +f 2<1. 
Thus, no denslty f wlth a peak hlgher than 1 can be treated by the method. If 
unlversallty 1s a prlme concern, then the reJectlon method has llttle competltlon. 

1 
X 

5.5. Exercises. 
1. Kronmal and Peterson (1981) developed yet another Cauchy generator based 

upon the acceptance-complement method. It 1s based upon the followlng 
decomposltlon of the truncated Cauchy denslty f (see text for the 
deflnltlon) lnto f l+f 2: 

We have: 
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A Cauchy generator of Kronmal and Peterson 

Generate iid uniform [-1,1] random variates X and U , 
2 
A 

IF IUI>--. 

THEN IF I u 150.7225 
4 2 

THENIF --(I- I x I )  7r(1+X2) f f  

THEN Generate iid uniform [-1,1] random variates X,U. 

ELSE Generate a uniform [-1,1] random variate u. 
X t l X l - l U l .  

x t  IX 1 - 1  u I .  
IF us0 

THEN RETURN x 
ELSE RETURN - X 

1 

The Arst two IF’S are not requlred for the algorlthm to  be correct: they 
correspond to  squeeze steps. Verlfy that the algorlthm generates standard 
Cauchy random varlates. Prove also that the acceleratlon steps are valld. 
The constant 0.7225 1s but an approxlmatlon of an lrratlonal number, whlch 
should be determlned. 

i 



Chap fer Three 
DISCRETE RANDOM VARIATES 

1. INTRODUCTION. 
A dlscrete random varlable 1s a random varlable taklng only values on the 

nonnegatlve integers. In probablllty theorltlcal texts, a dlscrete random varlable 
1s a random variable whlch takes wlth probablllty one values In a glven countable 
set of polnts. Since there 1s a one-to-one correspondence between any countable 
set and the nonnegatlve integers, I t  1s clear that we need not consider the general 
case. In most cases of interest to the practltloner, thls one-to-one correspondence 
1s obvlous. For example, for the countable set 1,-,-,-,. .., the mapplng Is 

t rlvlal. 

bablllty vector p o , p  

1 1 1  
2 4 8  

The dlstrlbutlon of a dlscrete random varlable X 1s determlned by the pro- 

P ( X = i )  = p i  (i =0,1,2 ,...) . 
The probablllty vector can be glven to us In several ways, such as 
-1. 

B. 

A table of values p o , p  . . . , p~ . Note that here I t  Is necessary that X can 
only take dnltely many values. 
A n  analytlcal expression such as p i  =2-' (i 2 1). Thls 1s the standard form 
In statlstlcal appllcatlons, and most popular dlstrlbutlons such as the blno- 
mlal, Poisson and hypergeometrlc dlstrlbutions are glven In thls form. 
A subprogram whlch allows us to compute p i  for each i. Thls is the "black 
box" model. 
Indirectly.. For example, the generating function 

C. 

D. 

i =O 

can be glven. Sometlmes, a recurslve equatlon allowlng us to compute pi 
from pi , j  < i ,  1s glven. 

12 cases B, C and D, we should also dlstlngulsh between methods for the genera- 
:l,?n of X when X has a Axed dlstrlbutlon, and methods that should be 
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Name of distribution 

Poisson( A) 

Parameters P ( X = i )  Range for i 

i 20 e - X>O .'I 

Logarithmic series( 6) 

I Geometric( p ) I o < p < 1  I p (1-p y-1 I i 2 1  

W i > I  - - 0 < 6 < 1  

We refer the reader to  Johnson and Kotz (1969, 1982) or Ord (1972) for a 
survey of the propertles of the most frequently used dlscrete dlstrlbutlons In 
statlstlcs. For surveys of generators, see Schmelser (1983), Ahrens and Kohrt 
(1981) or Rlpley (1983). 

Some of the methods descrlbed below are extremely fast: thls Is usually the 
case for well-deslgned table methods, and for the allas method or Its varlant, the 
allas-urn method. The method of gulde tables 1s also very fast. Only flnlte- 
valued dlscrete random varlates can be generated by table methods because 
tables must be set-up beforehand. In dynamlc sltuatlons, or when dlstrlbutlons 
are lnflnlte-talled, slower methods such as the lnverslon method can be used. 
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avolded altogether as can be seen from the followlng example. 

Example 2.1. Poisson random variates by sequential search. 
We can qulckly verlf’y that for the Poisson ( A )  dlstrlbutlon, 

x - ,-A P i + l  = - i+ l  P i  ’ P o  - 
Thus, the sequentlal search algorlthm can be slmpllfled somewhat by recursively 
computlng the values of pi durlng the search: 

Poisson generator using sequential search 

Generate a uniform [OJ] random variate u .  
Set x+-o ,P+e-’ ,S+P.  
WHILE u>s DO 

X-X+l ,P+- y , S t S + P .  

RETURN x 

We should note here that the expected number of comparlsons is equal to 
E (x+l)=x+l. 

A sllght lmprovement In whlch the varlable S 1s not needed was suggested 
by Kemp(1981). Note however that thls forces us to destroy U: 

Inversion by sequential search (Kemp, 1981) 

Generate a uniform [ O , l ]  random variate U. 
x t o  
WHILE U >px DO 

u-v-p, 
X+X+l 

RETURN x 
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2. THE INVERSION METHOD. 

2.1. Introduction. 
In the inversion method, we generate one unlform [0,1] random varlate U 

and obtaln x by a monotone transformatlon of U whlch 1s such that 
P (X=i  )=pi .  If we deflne X by 

F ( X - 1 ) =  Cpi < u 5 Cpi = F ( X ) ,  
i <X i <X 

then I t  1s clear that P (x=z )=F (z' )-F ( i - l ) = p i .  Thls Is comparable to the 
lnverslon method for contlnuous random varlates. The solutlon of the lnequallty 
shown above 1s unlquely deflned wlth probablllty one. An exact solutlon of the 
lnverslon lnequalltles can always be obtalned ln flnlte tlme, and the lnverslon 
method can thus truly be called unlversal. Note that for contlnuous dlstrlbutlons, 
we could not lnvert In flnlte tlme except In speclal cases. 

There are several posslble technlques for solvlng the lnverslon lnequalltles. 
We start wlth the slmplest and most unlversal one, 1.e. a method whlch Is appll- 
cable to all dlscrete dlstrlbutlons. 

Inversion by sequential search 

Generate a uniform [0,1] random variate U ,  
Set X+o , S+po. 
WHJLE u>s DO 

x-x+1;s +-s +px 
RETURN X 

Note that S 1s adJusted as we lncrease X In the sequential search algorithm. 
Thls method applies to the "black box" model, and I t  can handle lnflnlte tails. 
The tlme taken by the algorithm Is a random varlable N ,  whlch can be equated 
In flrst approxlmatlon wlth the number of comparlsons In the WHILE condltlon. 
But 

P ( N = i )  = P(X=i -1 )  = pi -1  (i 21) . 

Thus, E ( N ) = E ( X ) + l .  In other words, the tall of the dlstrlbutlon of X deter- 
mlnes the expected time taken by the algorithm. Thls 1s an uncomfortable sltua- 
tlon In vlew of the fact that E ( X )  can posslbly be 00. There are other more prac- 
tical obJectlons: p i  must be computed many tlmes, and the consecutlve addltlons 
S+S+px may lead to  lnadmlsslble accumulated errors. For these reasons, the 
sequentlal search algorithm 1s only recommended as a last resort. In the 
remainder of this sectlon, we wlll descrlbe varlous methods for lmprovlng the 
sequentlal search algorlthm. In partlcular cases, the computatlon of p , ~  can be 
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2.2. Inversion by truncation of a continuous random variate. 

that G agrees wlth F on the Integers, 1.e. 

G (i +1) = F ( i )  

If we know a contlnuous dlstrlbutlon functlon G on [O,oo) wlth the property 

(i =0,1, ...) , G (0) = 0 , 

then we could use the followlng algorlthm for generatlng a random varlate X 
wlth dlstrlbutlon functlon F : 

Inversion by truncation of a continuous random variate 

Generate a uniform [O,l] random variate u . 
RETURN X+ \G-'(Lr)l 

Thls method 1s extremely fast  If G-' 1s expllcltly known. That I t  1s correct fol- 
lows from the observatlon that for all i 20, 

P ( X 5 i )  = P(G- ' (U)<i+l )  = P ( U < G ( i + l ) )  = G ( i + l )  = F ( i ) .  

The task of Andlng a G such that G (i +l)-G (i )=pi  , all i , 1s often very slm- 
ple, as we lllustrate below wlth some examples. 

Example 2.2. The geometric distribution. 
When G (z)=l-e-'' , z 20, we have 

G (i + 1 ) - ~  (i = e -Xi -e -Wi+1) 

- - e -'i (1-e -') 

= (1-q h a  (i 20) 9 

where q =e-'. From thls, we conclude that 
r 1 

Is geometrlcally dlstrlbuted wlth parameter e -'. Equlvalently, 

geometrlcally dlstrlbuted wlth parameter p . Equlvalently, 
E 

geometrlcally dlstrlbuted wlth the same parameter, when E 1s' an exponentlal 
random varlate. 
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Example 2.3. A family of monotone distributions. 
Conslder G ( x ) = l - ~ - ~  , x 21 , G (1)=0 , 6 >O. We see that 

G (i +1)-G (i)=iqb -(i +I)-~ . Thus a random varlate x wlth probablllty vector 
1 

can be generated as \.-'I. In partlcular, 1% 1 has probablllty vector 

Example 2.4. Uniformly distributed discrete random variates. 
A dlscrete random varlable 1s sald to be unlformly dlstrlbuted on 

1 {1?2, . . . , K }  when p i = -  for all 1 L i L K .  Slnce p i = G ( i + l ) - G ( i )  where 

, 1 5 3  <K +l , we see that X t  Ll+KUJ 1s unlformly dlstrlbuted 
K 

x -1 G (x )=- K 
on the lntegers 1 through K .  

2.3. Comparison-based inversions. 
The sequentlal search algorlthm uses comparlsons only ( between U and cer- 

taln functlons of the p j ' s  ). I t  was convenient to compare U flrst wlth p o t  then 
wlth p o + p  and so forth, but thls is not by any means an optlmal strategy. In 
thls sectlon we wlll hlghllght some other strategles that are based upon comparls- 
ons only. Some of these requlre that the probablllty vector be flnlte. 

For example, If we were allowed to  permute the Integers flrst and then per- 
form sequentlal search, then we would be best off If we permuted the integers In 
such a way that p o 2 p 1 2 p z >  . Thls 1s a consequence of the fact that the 
number of comparlsons 1s equal to  1+X where X 1s the random varlate gen- 
erated. Reorganlzatlons of the search that result from thls wlll usually not 
preserve the monotonlclty between U and X.  Nevertheless, we wlll keep uslng 
the term lnverslon. 

The lmprovements In expected tlme by reorganlzatlons of sequentlal search 
can sometlmes be dramatlc. Thls 1s the case In partlcular when we have peaked 
dlstrlbutlons wlth a peak that 1s far removed from the orlgln. A case In point 1s 
the blnomlal dlstrlbutlon whlch has a mode at Lnp] where n and p are the 

. 
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parameters of the blnomlal dlstrlbutlon. Here one could flrst verlfy whether 
I/ <F - ( Lnpj ), and then perform a sequentlal search "up" or "down" dependlng 
upon the outcome of the comparlson. For Axed p , the expected number of com- 
parkions grows as 6- lnstead of as n as can easlly be checked. Of course, we 
have to compute elther dlrectly or In a set-up step, the value of F at LnpJ. A 
slmllar improvement can be Implemented for the Poisson dlstrlbutlon. Interest- 
lngly, In this slmple case, we do preserve the monotonlclty of the transformatlon. 

Other reorganlzatlons are posslble by uslng Ideas borrowed from computer 
sclence. We wlll replace llnear search (l.e., sequentlal search) by tree search. For 
good performance, the search trees must be set up In advance. And of course, we 
will only be able to handle a flnlte number of probabllltles In our probablllty vec- 
tor. 

One can construct a blnary search tree for generatlng X .  Here each node In 
the tree 1s elther a leaf (termlnal node), or an lnternal node, In whlch case I t  has 
two chlldren, a left chlld and a rlght chlld. Furthermore, each lnternal node has 
assoclated wlth I t  a real number, and each leaf contalns one value, an lnteger 
between 0 and K .  For a glven tree, we obtaln X from a unlform [0,1] random 
varlate U In the followlng manner: 

Inversion by binary search 

Generate a uniform [0,1] random variate U .  
Ptr + Root of tree (Ptr points to a node). 
WHILE Ptr # Leaf DO 

IF Value (Ptr) > U 
THEN Ptr - Leftchild (Ptr) 
ELSE Ptr t Rightchild (Ptr). 

RETURN X+- Value (Ptr) 

Here, we travel down the tree, taklng left and rlght turns accordlng to the com- 
parlsons between U and the real numbers stored in the nodes, untll we reach a 
leaf. These real numbers must be chosen In such a way that the leafs are reached 
wl th  the correct probabllltles. There 1s no partlcular reason for chooslng K+1 
leaves, one for each posslble outcome of X ,  except perhaps economy of storage. 
Havlng Axed the shape of the tree and deflned the leaves, we are left wlth the 
task of determlnlng the real numbers for the K lnternal nodes. The real number 
for a glven lnternal node should be equal to the probabllltles of all the leaves 
encountered before the node In an lnorder traversal. At the root, we turn left 
wl th  the correct probablllty, and by lnductlon, I t  1s obvlous that we keep on 
dolng so when we travel to a leaf. Of course, we have qulte a few posslbllltles 
where the shape of the tree 1s concerned. We could make a complete tree, 1.e. a 
tree where all levels are full except perhaps the lowest level (whlch 1s fllled from 
left to rlght). Complete trees wlth 2K+1 nodes have 
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L = 1+ [log2(2K+1) 1 
levels, and thus the search takes at most L comparlsons. In llnear search, the 
worst case 1s always n(l" ), whereas now we have L -log&. The data structure 
that can be used for the lnverslon 1s as follows: deflne an array of 2K+1 records. 
The last K+1 records correspond to the leaves (record K+z' corresponds to 
lnteger z'-1). The flrst K records are Internal, nodes. The j - t h  record has as chll- 

dren records 2 j  and 2 j + l ,  and as father 1 f 1. Thus, the root of the tree 1s 
L A  

record 1, Its chlldren are records 2 and 3, etcetera. Thls glves us a complete 
blnary tree structure. We need only store one value In each record, and thls can 
be done for the entlre tree In tlme o ( K )  by notlng that we need only do an 
lnorder traversal and keep track of the cumulatlve probablllty of the leaves 
vlslted when a node 1s encountered. Uslng a stack traversal, and notatlon slmllar 
t o  that of Aho, Hopcroft and Ullman (1982), we can do I t  as follows: 

Set-up of the binary search tree 

(BST[l] ,..., BST(PKS.11 is our array of values. TO save space, we can store the probabilities 
po, . . . , p~ in BST[K+l] ,..., BST[PK+l].) 
(S is an auxiliary stack of integers.) 
h4AKENULL(S) (create an empW stack). 
P t r t l ,  PUSH(Ptr,S) (start at  the root). 
P -0 (set cumulative probability to  zero). 
REPEAT 

IF P t r S K  

THEN PUSH(Ptr,S), P t r t 2  P t r  
ELSE 

P +-P + BST[Ptr] 
Ptr+TOP(S), POP(S) 
BST[Ptr] +P 
P t r t 2  P t r + l  

UNTIL EMPTY (S) 

The blnary search tree method descrlbed above 1s not optlmal wlth respect 
to  the expected number of comparlsons requlred to reach a declslon. For a Axed 

blnary search tree, thls number 1s equal to  p i  Di where Di 1s the depth of the 

i - th  leaf (the depth of the root 1s one, and the depth of a node 1s the number of 
nodes encountered on the path from that node to the root). A blnary search tree 
1s optlmal when the expected number of comparlsons 1s mlnlmal. We now deflne 
Huffman's tree (Huffman, 1952, Zlmmerman, 1959), and show that I t  1s optlmal. 

K 

i =O 
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The two s m a l k ;  probablllty leaves should be furthest away from the root, 
for If they are nor;. :".en we can always swap one or both of them wlth other 
nodes at a deeper 1 ~ 4 .  and obtaln a smaller value for Cpi Di . Because lnternal 
nodes have two chl:f:ell, we can always make these leaves chlldren of the same 
lnternal node. But l i  ;'?e lndlces of these nodes are j and I C ,  then we have 

K 
C P i D i  = PiDi + ( p j + ~ k ) D *  + ( ~ j + ~ k ) .  

i =O : = j , k  

Here D* 1s the der:> of the lnternal father node. We see that mlnlmlzlng the 
rlght-hand-slde of r;Zs espresslon reduces to a problem wlth K lnstead of 1<+1 
nodes, one of these x d e s  belng the new lnternal node wlth probablllty p j  + p k  
assoclated wlth I t .  Thus, we can now construct the entlre (Huffman) tree. 
Perhaps a small e x a i 2 i e  is lnformatlve here. 

Example 2.5. 
Consider the pr:"?sbllltles 

0.25 

0.21 
D *  0.13 

We note that we a'r?~ld Joln nodes 0 and 4 flrst and form an lnternal node of 
cumulatlve welght 2-24. Then, thls node and node 3 should be Jolned lnto a 
supernode of welgh: 3-45. Next, nodes 1 and 2 are made chlldren of the same 
lnternal node of we!z31 0.55, and the two leftover lnternal nodes flnally become 
chlldren of the root. 

For a data s t r c su re .  we can no longer use a complete blnary tree, but we 
can make use of the -ray lmplementatlon In whlch entrles 1 through I< denote 
lnternal nodes, and pnrrles K+1 through 2K+1 deflne leaves. For leaves, the 
entrles are the glves ?robabllltles, and for the lnternal nodes, they are the thres- 
hold values as deflne2 b r  general blnary search trees. Slnce the shape of the tree 
must also be determlzed. we are forced to add for entrles 1 through I< two flelds, 
a leftchlldpolnter a23 3 rlghtchlldpolnter. For the sake of slmpllclty, we use 
BST[.] for the t h r e s h i d  values and probabllltles, and Left[.], Rlght[.] for the 
polnter fields. The r x - t  can be constructed In tlme 0 ( K  logic ) by the Hu-Tucker 
algorlthm (Hu,Tuckt:. ISi1): 
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Construction of the Huffman tree 

Create a heap H with elements (K+l,p,), . . . , ( 2 K + l , p ~ )  and order denned by the keys 
p i  (the smallest key is at the top of the heap). (For the definition of a heap, we refer to 
Aho, Hopcroft and Ullman (1982)). Note that  this operation can be done in 0 ( K )  time. 
FOR i:=1 T O  K DO 

Take top element ( j  , p  ) off the heap H and fix the heap. 
Take top element (k ,q ) off the heap H and Ax the heap. 
Left[i 1-J' , Right[i]+k . 
Insert ( i  , p  f q  ) in the heap H. 

Compute the array BST by an inorder traversal of the tree. (This is analogous to the 
traversal seen earlier, except that for travel down the tree, we must make use of the fields 
Left[.] and Right[.] instead of the positional trick that  in a complete binary tree the index 
of the leftchild is twice that  of the father. The time taken by this portion is 0 (K).) 

The entire set-up takes time 0 (I< logK) In view of the fact that lnsertlon and 
deletlon-off-the-top are 0 (logK ) operatlons for heaps. 

It 1s worth polntlng out that for families of dlscrete dlstrlbutlons, the extra 
cost of setting up a binary search tree is often inacceptable. 

We close thls section by showing that for most distrlbutlons the expected 
number of cornparlsons ( E ( C ) )  wlth the Huffman binary search tree 1s much less 
than with the complete binary search tree. T o  understand why thls is posslble, 
conslder for example the slmple dlstrlbution wlth probability vector 

1 1  -- . It is trivial to see that the Huffman tree here has a llnear 1 1  -- 
2'4'. ' * '  2 K  ' 2 K  

shape: we can deflne I t  recursively by putting the largest probability in the rlght 
chlld of the root, and putting the Huffman tree for the leftover probabilities in 
the left subtree of the root. Clearly, the expected number of comparisons is 
1 1 1 

(-)2+(7)3+(;)4+ - . . For any K ,  this is less than 3, and as I<-+oo, the 
2 

value 3 is approached. In fact, this flnite bound also applies t o  the extended 
Huffman tree for the probabillty vector 7 ( 2  2 1 )  . Similar asymmetric trees 

are obtalned for all dlstrlbutions for whlch E ( e  tx)<oo for some t >0: these are 
dlstrlbutions wlth roughly speaking exponentlally or subexponentlally decreaslng 
tail probabilltles. The relatlonship between the tail of the dlstrlbutlon and E (C ) 
is clarlfled in Theorem 2.1. 

1 
2 
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Theorem 2.1. 

struct a blnary search tree (lncludlng the Huffman tree) for whlch 
Let p l , p  2,... be. an arbltrary probablllty vector. Then I t  1s possible to con- 

E ( c )  5 1+4 bogz(14-E (x))] , 

where x Is the dlscrete random varlate generated by uslng the blnary search tree 
for lnverslon. 

Proof of Theorem 2.1. 
The tree that wlll be consldered here Is as follows: choose flrst an lnteger 

k >1. We put leaves at levels k +1,2k +1,3k +1,... only. At level k +I, we have 
2k-slots, and all but one 1s fllled from left to rlght. The extra slot Is used as a 
root for a slmllar tree wlth Z k  -1 leaves at  level 2k  + l .  Thus, C 1s equal to: 

2k -1 
k +1 wlth probablllty p i  

i = 1  
2( -1 )  

2 k + l  wlth probablllty p i  . 
i =2' 

. . .  

Taking expected values glves 

i = 1  i i -1 
2 -1 2k -1 
-<jSl+- 

If we take k = bog2(l+E ( X ) ) \  , then 2k -l>E (X), and thus, 

) = 1+4 [10g2(l+E (x))] 
Thls concludes the proof of Theorem 2.1. 1 
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We have shown two thlngs In thls theorem. Flrst, of all, we have exhlblted a 
partlcular blnary search tree wlth deslgn constant k 21 (k 1s an Integer) for 
whlch 

E ( X ) .  E ( C )  _< 1 + 2 k + -  
2 k  -1 

2k  

Next, we have shown that the value of E ( C )  for the Huffman tree does not 
exceed the upper bound glven In the statement of the theorem by manlpulatlng 
the value of k and notlng that the Huffman tree 1s optlmal. Whether In practlce 
we can use the constructlon successfully depends upon whether we have a falr 
ldea of the value of E ( X ) ,  because the optlmal k depends upon thls value. The 
upper bound of the theorem grows logarlthmlcally in E ( X ) .  In contrast, the 
expected number of comparlsons for lnverslon by sequentlal search grows llnearly 
wlth E (X) .  It goes wlthout saylng that If the pi ' s  are not In decreaslng order, 
then we can permute them to order them. If In the constructlon we All empty 
slots by borrowlng from the ordered vector p ( l ) , p ( 2 ) , . . . ,  then the lnequallty 

- .  remains valld If we replace E ( X )  by ~ p ( ~ ) .  We should also note that Theorem 

2.1 1s useless for dlstrlbutlons wlth E (X)=cm. In those sltuatlons, there are other 
posslble constructlons. The binary tree that we construct has once again leaves at 
levels k + 1 , 2 k + l ,  ..., but now, we deflne the leaf posltlons as follows: at level 
k + 1 ,  put one leaf, and deflne 2 k - 1  roots of subtrees, and recurse. Thls means 
that at level 2 k  +1 we And 2k -1 leaves. We assoclate the pi ' s  wlth leaves In the 
order that they are encountered In thls constructlon, and we keep on golng untll 
K leaves are accommodated. 

i=1 

~ ~~~ 

Theorem 2.2. 
For the blnary search tree constructed above wlth Axed deslgn constant 

k > I ,  - we have 

and, for k = 2 ,  

where X 1s a random varlate wlth the probablllty vector p that 1s 
used In the constructlon of the blnary search tree, and C Is the number of com- 
parlsons in the lnverslon method. 

. . . , 
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C = '  
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, 
k + 1  wlth probablllty p 

2k +1 wlth probablllty p 2+ . * + p , + ,  

3 k  +1 wlth probablllty p m  +2+ . * * +pm2+m +1 
' 

. . .  
\ 

In such expresslons, we assume that  p i  =O for i > K .  The constructlon also 
works for lnflnite-tailed dlstrlbutlons, so that  we do not need K any further. 
Now, 

I+. . . t-mJ-1 
E(C) <, l + k p l + k E  j c P i  

j = 2  i = 1 + 1 + .  . . +mJ-l 
0 

= l + k p l + k C  p ;  c j 
i = 2  ,+I+ . . . +mJ-2<i  <I+ 9 . . +mJ-' 
M 

O3 logi 

2k O0 

5 l + k p  ,+k (2-1 
logm i =2 

= 1+kp ,+- pi mi 
logm 

logm 
= 1+kp1+- 2k E(1ogX) . 

Thls proves the flrst lnequallty of the theorem. The remainder follows wlthout 
work. 

The bounds of Theorem 2.2 grow as E(1ogX) and not as log(E(X)). The 
dlfference 1s that E (logX)Llog(E (X)) (by Jensen's lnequallty), and that  for 
long-talled dlstrlbutlons, the former expresslon can be flnlte whlle the second 
expresslon 1s 00. 

1 
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2.4. The method of guide tables. 
We have seen tha t  lnverslon can be based upon sequentlal search, ordlnary 

blnary search or modlfled blnary search. All these technlques are comparlson- 
based. Computer sclentlsts have known for a long tlme that hashlng methods are 
ultra fast  for searchlng data structures provlded that the elements are evenly dls- 
trlbuted over the range of values of Interest. Thls speed Is bought by the explol- 
tatlon of the truncatlon operatlon. 

Chen and Asau (1974) flrst suggested the use of hashlng technlques to  handle 
the lnverslon. To insure a good expected tlme, they lntroduced an lngenlous trick, 
whlch we shall descrlbe here. Thelr method has come to  be known as the 
method of guide tables. Agaln, we have a monotone relatlonshlp between X ,  
the generated random varlate, and U ,  the unlform [0,1) random varlate whlch 1s 
lnve r t  e d. 

We assume that a probablllty vector p o , p  1, . . . , p~ 1s glven. The cumula- 
tlve probabllltles are deflned as 

I 

Qi Pj (05; S K )  . 
j -0 

If we were to throw a dart (In thls case u )  at the segment [0,1], whlch 1s partl- 
tloned Into K+1 lntervals [O,qo) , [qo ,q , ) ,  . . . , (qK-l, l] ,  then I t  would come to  
rest In the lnterval [ q i - l , q j )  wlth probablllty q i - q i - l = p i .  Thls 1s another way of 
rephraslng the lnverslon prlnclple of course. It 1s another matter to  And the lnter- 
val to  whlch U belongs. Thls can be done by standard blnary search In the array 
of qi 's (thls corresponds roughly to the complete blnary search tree algorlthmj. If 
we are t o  explolt truncatlon however, then we somehow have to  conslder equl- 

a -1 a 
K + I ' K + I  spaced Intervals, such as [- - ) , l<t'sE( +l. The method of gulde 

tables helps the search by storlng In each of the K+1 lntervals a "gulde table 
value" gi where 

Si = max j . 
i 

qJ <- K + i  

Thls helps the lnverslon tremendously: 
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Method of guide .tables 

97 

Generate a uniform [0,1] random variate u . 
Set x+ L(K+l)U+lA (this is the truncation). 
Set X+gx +1 (guide table look-up). 
W I L E  gx-l> U DO XCX-1. 
RETURN x 

I t  1s easy to  determlne the valldlty of thls algorlthm. Note also that no 
expenslve computatlons are Involved. 

Theorem 2.3. 

guide tables 1s always bounded from above by 2. 
The expected number of comparlsons (of qx-l  and V )  In the method of 

Proof of Theorem 2.3. 
Observe that  the number of comparlsons C 1s not greater than the number 

of qi values In the lnterval X (the returned random variate) plus one. But slnce 
all lntervals are equl-spaced, we have 

l K  
K+1 j=o 

E(C) 5 l+- (number of values of q i  In lnterval %' ) 

Theorem 2.3 1s very lmportant because I t  guarantees a unlformly good per- 
3rmance  for all dlstrlbutlons as long as we make sure that the number of Inter- 
v d s  and the number of posslble values of the dlscrete random varlable are equal. 

Thls lnverslon method too requlres a set-up step. The table of values 
2 ?.g ?, . . . , gK+1 can be found In tlme 0 ( K ) :  
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Set-up of guide table 

FOR i :=I TO K +I DO gi +-0. 

s +o. 
FOR i:= 0 TO K DO 

S+-S+p; (S  is now q i ) .  

j + Ls ( K  +1)+1 . (Determine interval for qi .) 
gj t i .  

FOR i :=2 TO K +1 DO gi tmax(gi-,,gi). 

There Is a trade-off between expected number of comparlsons and the slze of 
the gulde table. It 1s easy to  see that lf we have a gulde table of a(K+l )  ele- 
ments for some a>O, then we have 

E(C) 5 1+'. 
a! 

If speed Is extremely lmportant, one should not hesltate to  set Q equal t o  5 or 10. 
Of all the lnverslon methods dlscussed so far, the method of gulde tables shows 
clearly the greatest potential in terms of speed. Thls Is conflrmed In Ahrens and 
Kohrt (1 981). 

2.5. Inversion by correction. 
I t  Is sometlmes posslble to. And another dlstrlbutlon functlon G that 1s close 

to the dlstrlbutlon functlon F of the random varlable X .  Here G 1s the dlstrlbu- 
tlon functlon of another dlscrete random varlable, Y .  It Is assumed that G 1s an 
easy dlstrlbutlon. In that case, I t  1s posslble to generate X by flrst generatlng Y 
and then applylng a small correctlon. It should be stressed that the fact that G 
1s close to F does not lmply that the probabllltles G (i )-G (i-1) are close to  the 
probabllltles F (i)-F (i-1). Thus, other methods that are based upon the close- 
ness of these probabllltles, such as the reJectlon method, are not necessarlly appll- 
cable. We are slmply uslng G to obtaln an lnltlal estlmate of X .  
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Inversion by correction; direct version 

Generate a uniform [ O , i ]  random variate U. 
Set X+G-’(U) (i.e. X is an integer such that G (X-1)< U 5 G ( X )  . This usually means 
that x is obtained by truncation of a continuous random variable.) 
IF U < F ( X )  

THEN WHILE U <-F(X-1)  DO X + X - l .  
ELSE WHILE U > F ( X + 1 )  DO x+x+1. 

RETURN x 

We can measure the tlme taken by this algorithm In terms of the number of 
F -computations. We Eave: 

Theorem 2.4. 

above 1s 
The number of computatlons C of F in the lnversion algorithm shown 

2+ I Y - x  I 
where X ,  Y are deflned by 

F ( X - I ) < U L F ( X ) ,  G ( Y - I ) < U < G ( Y ) .  

It is clear that E ( C ) = 2 + E  ( I Y - X  I ) where Y ,X are as deflned In the 
theorem. Note that Y and X are dependent random variables In thls deflnltlon. 
We observe that In the algorithm, we use lnverslon by sequentlal search and start 
thls search from the lnltlal guess Y .  The correction Is I Y - X  I . 

There 1s one lmportant special case, occurring when F and G are stochastl- 
cally ordered, for example, when F G . Then one computatlon of F can be 
saved by notlng that we can use the followlng lmplementatlon. 
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Inversion by correction; F 5 G 

Geaerate a unlform [ O J ]  random varlate U. Set X t G - ’ ( U ) .  
WHILE U > F ( X )  DO X t X t - 1 .  
RETURN X 

What 1s saved here 1s the comparison needed t o  declde whether we should search 
up or down. Slnce In the notatlon of Theorem 2.4, Y <X, we see that 

E ( C )  = 1+E(X-Y). 
When E (X) and E ( Y )  are Anlte, thls can be wrltten as i+E (X )-E (Y ). In any 
case, we have 

E(C) = 1+C I F ( i ) - G ( i )  I . 
i 

To see thls, use the fact that E (X)=C(i-F (i )) and E ( Y  )=C( i -G ( i  )). When 

F 2 G , we have a symmetrlc development of course. 
In some cases, a random varlate with dlstrlbutlon functlon G can more 

easlly be obtalned by methods other than lnverslon. Because we stlll need a unl- 
form [0,1] random varlate, I t  1s necessary to cook up such a random varlate from 
the prevlous one. Thus, the lnltlal palr of random varlates ( V , X )  can be gen- 
erated lndlrectly: 

: i 

Inversion by correction; indirect version 

Generate a random variate X with distribution function G , 
Generate an independent uniform [0,1] random variate V ,  and set 

IF U S F ( X )  
U+G (X-l)+ V (  G (X)-G (X-1)). 

THEN WHILE U < F ( X - I )  DO X t X - 1 .  
ELSE WHILE U > F ( X + l )  DO X+X+i.  

RETURN X 

It is easy t o  verlfy that the dlrect and lndlrect verslons are equlvalent because the 
Jolnt dlstrlbutlons of the starting palr ( V , X )  are ldentlcal. Note that In both 
cases, we have the same monotone relatlon between the generated x and the 
random varlate U, even though In the lndlrect verslon, an auxlllary unlform [0.1] 

I 
I 

- 
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random varlate v 1s needed. 

Example 2.6. 

Consider 

where a >O and p >1 are given constants. Explicit lnverslon of F 1s not feaslble 
except perhaps In speclal cases such a s  p =2 or p =3. If sequential search is used 
started at 0, then the expected number of F computations Is 

l + a  O 0 1  
00 03 

1+ (1-F (i)) = 1+ L l + C - .  
i = 1  j=1 i p  +ai i = 1  z 'P 

Assume next that we use lnverslon by correctlon, and that as easy dlstributlon 
functlon we take G (i)=l-- , i 21. First, we have stochastic ordering 1 

i p  
because F 5 G . 
2.4) 1s equal to 

that G-'( U )  (the lnverse being deflned as in Theorem 

. Furthermore, the expected number of computations 
of F 1s 

* aiP-ai  m u '  00 

I+ G ( i ) -F  ( i )  = I+ <1+c-. 
i=1  ;=2 i p  ( i P  +ai ) - j = 2  i p  

Thus, the lmprovement In terms of expected number of cornputatlons of F Is at 

least l+(l-a ) -, and this can be considerable when a 1s small. 0 3 1  

j = 2  i p  

2.6. Exercises. 
1. Glve a one-llne generator (based upon lnversion via truncation of a continu- 

ous random varlate) for generatlng a random varlate X wlth dlstrlbutlon 

P ( X = i )  = a ( i< i  L n )  . 
n ( n  +I) 

2 

2. By empirical measurement, the following discrete cumulative dlstributlon 
functlon was obtalned by Nlgel Horspool when studylng operatlng systems: 

F ( i )  = mln(1 , 0.114 log(l+- i )-0.069) 
0.731 

(i 21) . 
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Glve a one-llne generator for thls dlstrlbutlon whlch uses truncation of a 
contlnuous random varlate. 
Glve one-llne generators based upon lnverslon by truncatlon of a contlnuous 
random varlate for the followlng probablllty dlstrlbutlons on the posltlve 
Integers: 

3. 

I I 

3. TABLE LOOK-UP METHODS. 

3.1. The table look-up principle. 
We can generate a random varlate X very qulckly If all probabllltles p i  are 

ratlonal numbers wlth common denomlnator M .  It sumces t o  note that the sum 
of the numerators is also M .  Thus, If we were to  construct an array A of slze M 
wlth Mp, entrles 0, Mp entries 1, and so forth, then a unlformly plcked element 
of thls array would yleld a random varlate wlth the glven probablllty vector 
p o,p  Formally we have: 

Table look-up method 

[ SET-UP] 
k o  k ,  Given the probability vector ( p , = - , p  M M 

Integers, we deflne a table A =(A [O], . . . , A [M-11) where ki entries are t', E' 20. 

Generate a uniform (0,1] random variate u. 
RETURN A [ LMU] ] 

where the ki 's and M are nonnegative 

[GENERATOR] 

The beauty of thls technlque Is that I t  takes a constant tlme. Its dlsadvantages 
lnclude Its llmltatlon (probabllltles are rarely rational numbers) and its large 
table slze (M can be phenomenally blg). 
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We wlll glve two lmportant examples to  lllustrate its use. 

Example 3.1. Simulating dice. 
We are asked to generate the sum of n lndependently thrown unblased dlce. 

Thls can be done nalvely by uslng x,+x,+ * - +X, where the Xi ' s  are lid unl- 
form {1,2, . . . , 6) random varlateS. The tlme for thls algorlthm grows as n. 
Usually, n wlll be small, so that thls 1s not a major drawback. We could also 
proceed a s  follows: flrst we set up a table A [O], . . . , A [M-11 of slze M=0" 
where each entry corresponds to one of the 0' posslble outcomes of the n throws 
(for example, the flrst entry corresponds to l , l , l , l ,  . . . , 1, the second entry to 
2,1,1,1J . . . , 1, etcetera). The entrles themselves are the sums. Then A [ LMU]] 
has the correct dlstrlbutlon when u 1s a unlform [O,l] random varlate. Note that 
the tlme 1s 0 ( l ) ,  but that the space requlrements now grow exponentlally In n . 
Interestlngly, we have one unlform random varlate per random varlate that 1s 
generated. And If we wlsh to lmplement the lnverslon method, the only thlng 
that we need to  do Is to sort the array accordlng to  lncreaslng values. We have 
thus bought tlme and pald wlth space. It should be noted though that In thls 
case the space requlrements are so outrageous that we are practlcally llmlted to 
n 55. Also, the set-up 1s only admlsslble If very many lld sums are needed In the 
slmulatlon. 

Example 3.2. The histogram method. 
Statlstlclans often construct hlstograms by countlng frequencles of events of 

a certaln type. Let events 0,1, . . . , K have assoclated wlth them frequencles 
k , ,k  1, . . . , k~ . A questlon sometlmes asked 1s to generate a new event wlth the 
probabllltles defined by the hlstogram, Le. the probablllty of event z' should be 
ki K - where M= M ki. In thls case, we are usually glven the orlglnal events In 

i =o 
table form A [O], . . . , A [M-11, and l t  1s obvlous that the table method can be 
applled here wlthout set-up. We wlll refer to thls speclal case as the histogram 
method. Note that for Example 3.1, we could also construct a hlstogram, but I t  
dlffers ln that a table must be set up. 

Assume next that we wish to  generate the number of heads In n perfect coln 
tosses. It 1s known that thls number 1s blnomlally dlstrlbuted wlth parameters n 

1 and -. By the method of Example 3.1, we can use a table look-up method wlth 
2 
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table of slze 2 n ,  so for n <lo ,  - thls 1s entlrely reasonable. Unfortunately, when 
the coln 1s not perfect and the probablllty of heads 1s an lrratlonal number p , the 
table look-up method cannot be used. 

3.2. Multiple table look-ups. 
The table look-up method has a geometric Interpretatlon. When the table 

slze 1s M ,  then we can thlnk of the algorlthm In terms of the selectlon of one of 
M equl-spaced lntervals of [0,1] by flndlng the Interval to whlch a unlform [o,i] 
random varlate u belongs. Each lnterval has an lnteger assoclated wlth it, whlch 
should be returned. 

One of the problems hlghllghted In the prevlous sectlon 1s the table she.  One 
should also recognlze that there normally are many ldentlcal table entrles. These 
dupllcates can be grouped together to reduce the table slze. Assume for example 
that there are ki entrles wlth value i where i 2 0  and ICi =M. Then, if 

M=M&, for two lntegers M,,M,, we can set up an auxlllary table 
B [O], , . . , B [Mo-l] where each B [ i ]  polnts to a block of M ,  entrles In the true 
table A [O], . . . , A [M-11. If thls block 1s such that all values are ldentlcal, then 
i t  1s not necessary t o  store the block. If we thlnk geometrlcally agaln, then thls 
corresponds to  deflnlng a partltlon of [0,1] lnto M ,  lntervals. The orlglnal partl- 
tlon of M lntervals 1s Aner, and the boundarles are allgned because M Is a multl- 
ple of M,. If for the i - th  blg Interval, all M ,  values of A [j] are ldentlcal, then 
we can store that value dlrectly In B [ i ]  thereby savlng M,-1 entrles In the A 
table. By rearranglng the A table, I t  should be posslble to repeat thls for many 
large lntervals. For the few large lntervals coverlng small lntervals wlth non- 
ldentlcal values for A ,  we do store a placeholder such as * . In thls manner, we 
have bullt a three-level tree. The root has M ,  chlldren wlth values B [i]. When 
B [i ] 1s an lnteger, then i 1s a termlnal node. When B [i ]= * , we have an Inter- 
nal node. Internal nodes have in turn M ,  chlldren, each carrylng a value A [ j ] .  It 
1s obvlous that thls process can be extended to  any number of levels. Thls struc- 
ture Is known as a trle (Fredkln, 1960) or an extendlble hash structure (Fagln, 
Nlevergelt, Plppenger and Strong, 1979). If all lnternal nodes have preclsely two 
chlldren, then we obtaln In effect the blnary search tree structure of sectlon 111.2. 
Since we want to  get as much as posslble from the truncatlon operation, I t  1s 
obvlous that the fan-out should be larger than 2 ln all cases. 

Conslder for example a table for look-up wlth 1000 entrles deflned for the 

i 20 
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followlng probablllty vector: 

Probability 
p ,  0.005 

P 2  0.123 

P 4  0.355 
p ,  0.240 

p ,  0.277 

105 

Number of entries in table A 
5 

123 
240 
355 
277 

The lnterpretatlon 1s that If B [ z ] = j  then j appears 100 tlmes In table A , and 
If B [;I=* then we must consult a block of 100 entrles of A whlch are not all 
Identlcal. Thus, If B [ 8 ]  or B[9] are chosen, then we need to consult 
A [800], . . . , A [999], where we make sure that there are 5 "i"'s, 23 "2"'s, 40 
'*3"'s, 55 "4"'s and 77 "5"'s. Note however that we need no longer store 
A [O], . . . , A [799] ! Thus, our space requlrements are reduced from 1000 words 
to 210 words. 

Af'ter havlng set-up the tables B (01, . . . , B [9] and A [800], . . . , A [999], we 
can generate X as follows: 

Example of a multiple table look-up 

Generate a uniform [0,1] random variate U . 
Set X c B  [ LloUJ]. 
IF X#* 

THEN RETURN x 
ELSE RETURN A [ [lo00 U J  ] 

Here we have explolted the fact that the same U can be reused for obtalnlng a 
random entry from the table A .  Notlce also that In 80% of the cases, we need 
not access A at all. Thus, the auxlllary table does not cost us too much tlmewlse. 
Flnaily, observe that the condltlon X # *  can be replaced by x > 7 ,  and that 
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therefore B [8] and B [9] need not be stored. 
What we have descrlbed here forms the essence of Marsaglia's table 

look-up method (Marsaglla, 1963; see also Norman and Cannon, 1972). We can 
of course do a lot of flne-tunlng. For example, the table A [SOO], . . . , A [999] can 
In turn be replaced by an auxlllary table c grouplng now only 10 entrles, whlch 
could be plcked as follows: - 

2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
* 
* - 

Glven that B [;I= * for our value of u, we can In 90% of the cases return 
C [ LlOOUj]. Only lf once more an entry * 1s seen do we have to access the table 
A (9801, . . . , A [999] at posltlon LlOOOU] . The numberlng In our arrays 1s con- 
venlent for accesslng elements for our representatlon, 1.e. B [; ] stands for 
C [ l O i ] ,  . . . , C[lOi+S], or for A [loo;], . . . , A [100;+99]. Some hlgh level 
languages do not permlt the use of subranges of the lntegers as lndlces. I t  Is also 
convenlent t o  comblne A ,B and C lnto one blg array. All of thls requires addl- 
tlonal work durlng the set-up stage. 

We observe that In the multllevei table look-up we must group ldentlcal 
entrles In the orlglnal table, and thls forces us to  lntroduce a nonmonotone rela- 
tlonshlp between U and x. 

The method descrlbed here can be extended towards the case where all p i ' s  
or 2-32. In these cases, the p i ' s  are usually approxlma- are multlples of elther 

tlons of real numbers truncated by the wordslze of the computer. 
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4. THE ALIAS METHOD. 

4.1. Definition. 
Walker (1974, 1977) proposed an lngenlous method for generatlng a random 

varlate X wlth probablllty vector p o,p 1, . . . , p ~ - ~  whlch requlres a table of slze 
0 ( K )  and has a worst-case tlme that 1s lndependent of the probablllty vector 
and K . His method 1s based upon the following property: 

Theorem 4.1. 

able mlxture of K two-polnt dlstrlbutlons. 
Every probablllty vector p , ,p  . . . , p K - l  can be expressed as an equlprob- 

Proof of Theorem 4.1. 

and K probabllltles qo ,  . . . , q K - l  such that 
We have to show that there are K palrs of lntegers ( i o , j o ) ,  . . . , ( i ~ - ~ , j ~ - ~ )  

1 K-1 

l=o 
P i  = K C (Q1 I[i,=i] + (I-ql )I[j,=iI) (O<i - <K 1 . 

Thls can be shown by lnductlon. It 1s obvlously true when K =l. Assuming that 
I t  1s true for K < n  , we can show that I t  1s true for K = n  as follows. Choose the 
mlnlmal p i .  Slnce I t  1s at most equal to - we can take io equal to the lndex of 

thls mlnlmum, and set q o  equal to Kpio. Then choose the lndex j o  whlch 
corresponds to the largest p i .  Thls defines our flrst palr In the equlprobable mlx- 

< p i o  because --< The other ture. Note that we used the fact that 

K-1 palrs In the equlprobable mlxture have to be constructed from the leftover 
probabllltles 

1 
K '  

(1-q 0) 1 
K --PjO. K -  

whlch, after deletlon of the io-th entry, Is easlly seen to be a vector of K-1 non- 
negatlve numbers summlng to - -' . But for such a vector, an equlprobable mlx- 
ture of K -1 two-polnt dlstrlbutlons can be found by our lnductlon hypothesls. 

K 

To turn thls theorem into profit, we have two tasks ahead of us: flrst we 
need to actually construct the equlprobable mlxture (thls Is a set-up problem), 
and then we need to generate a random varlate X .  The latter problem 1s easy to 
solve. Theorem 4.1 tells us that I t  sufflces to  throw a dart at the unlt square In 
the plane and to read off the lndex of the reglon In whlch the dart has landed. 
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The unlt square 1s of course partltloned lnto reglons by cuttlng the x-axls up lnto 
K equl-spaced Intervals whlch define slabs In the plane. These slabs are then cut 
lnto two pleces by the threshold values q1. If 

1 K-1 
P i  = - ( Q I  J l i / = i ]  + (1-ql ) I / j / = i j )  (05; < K )  , 

K 1 =o 

then we can proceed as follows: 

The alias method 

Generate a uniform [OJ] random variate U. Set X +  LKUJ. Generate a uniform [O,i] ran- 
dom variate v. 
IF V<qx  

THEN RETURN ix 
ELSE RETURN jx 

Here one unlform random varlate 1s used to  select one component In the 
equlprobable mlxture, and one unlform random varlate 1s used t o  declde whlch 
part In the two-polnt dlstrlbutlon should be selected. Thls unsophlstlcated ver- 
slon of the allas method thus requlres preclsely two unlform random varlates and 
two table look-ups per random varlate generated. Also, three tables of slze K are 
needed. 

We observe that one unlform random varlate can be saved by notlng that 
for a unlform [O,l]  random varlable U ,  the random varlables X =  LKUJ and 
V=KU-X are Independent: X 1s unlformly dlstrlbuted on 0, . . . , K-1, and 
the latter 1s agaln unlform [0,1]. Thls trlck 1s not recommended for large K 
because I t  relles on the randomness of the lower-order dlglts of the unlform ran- 
dom number generator. Wlth our ldeallzed model of course, thls does not matter. 

One of the arrays of slze K can be saved too by notlng that we can always 
lnsure that io, . . . , i ~ - ~  1s a permutatlon of 0, . . . , K-1. Thls 1s one of the 
dutles of the set-up algorlthm of course. If a set-up glves us such a permuted 
table of i-values, then I t  should be noted that we can In tlme 0 ( I C )  reorder the 
structure such that il =I! ,  for all I!. The set-up algorlthm glven below wlll dlrectly 
compute the tables j and q In tlme 0 ( K )  and 1s due to Kronmal and Peterson 
(1979, 1980): 
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The allas method can further be lmproved by mlnlmlzlng thls expresslon, but thls 
won't be pursued any further here. The maln reason for not dolng so 1s that there 
exlsts a slmple generallzatlon of the allas method, called the allas-urn method, 
whlch 1s deslgned to  reduce the expected number of table accesses. Because of its 
Importance, we wlll descrlbe I t  In a separate sectlon. 

4.2. The alias-urn method. 
Peterson and Kronmal (1982) suggested a generallzatlon of the allas method 

In the followlng manner: think of the probablllty vector p o , p  1, . . . , p K - l  as a 
speclal case of a probablllty vector wlth K* L K  components where p i  - -0 for all 
i L K .  Everythlng that was sald In the prevlous sectlon remalns valld for thls 
case. In partlcular, If we use the llnear set-up algorlthm for the tables q and j ,  
then I t  should be noted that q1 > O  for at most K values of I .  At least for all 
I > K -1 we must have q1 =O. For these values of I , one table access Is necessary: 

The alias-urn method 

Generate a random integer X uniformly distributed on 0, . . . , K*-i. 
I F X Z K  

THEN RETURN jx 
ELSE 

Generate a uniform [0,1] random variate V .  
IF v59x 

THEN RETURN x 
ELSE RETURN jx 

Per  random varlate, we requlre elther one or two table look-ups. It 1s easy to  
see that the expected number of table look-ups (not countlng qx)  1s 

The upper bound of 1 may somehow seem llke maglc, but one should remember 
that Instead of one comparlson, we now have elther one or two comparlsons, the 
expected value belng 

K 
K* 1+-. 

Thus, as K* becomes large compared to K ,  the expected number of comparlsons 
and the expected number of table accesses both tend to one, as for the urn 
method. In thls llght, the method can be consldered as an urn method wlth sllght 
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Set-up of tables for alias method 

Greater 4-0, Smaller -0 (Greater and Smaller are sets of integers.) 
FOR I :a0 T O  K-1 DO 

Q1 CKPl 
IF PI <1 

THEN Smaller t Smaller + { I  }. 
ELSE Greater - Greater + { I  }. 

WHILE NOT EMPTY ( Smaller) DO 
Choose k. E Greater , I  E Smaller (ql is flnalized]. 

Set jr +k [ j l  is flnalized]. 

IF qk (1 THEN Greater +- Greater - { k  }, Smaller + Smaller + { k  }. 
Smaller + Smaller -{I }. 

4% +Q, -(l-Q1). d 

109 

The sets Greater and Smaller can be lmplemented In many ways. If we can do I t  
In such a way that the operatlons "grab one element", "Is set empty ?", "delete 
one element" and "add one element" can be done In constant tlme, then the algo- 
rlthm glven above takes tlme 0 ( K ) .  Thls can always be lnsured If llnked llsts 
are used. But slnce the cardlnalltles sum to K at all tlmes, we can organlze I t  by 
uslng an ordlnary array In whlch the top part 1s occupied by Smaller and the bot- 
tom part by Greater. The allas algorlthm based upon the two tables computed 
above reads: 

Alias method with two tables 

Generate a random integer X uniform./ distributed on 0, . . . , K-1.  

Generate a uniform (0,1] random variate V . 
IF V 5 Q X  

THEN RETURN X 
ELSE RETURN ix 

Thus, per random varlate, we have elther 1 or 2 table accesses. The expected 
number of table accesses 1s 

i K-I 
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flne-tunlng. We are paylng for thls luxury in terms of space, slnce we need to 
store K*+K values: io, . . . , j ~ # - ~ , q ~ ,  . . . , qK-l. Flnally, note that the com- 
parlson X 2 K  takes much less tlme than the comparlson V 5 q x .  

4.3. Geometrical puzzles. 
We have seen the geometrlcal lnterpretation of the alias method: throw a 

dart at random and unlformly on the unlt square of R 2  properly partltioned lnto 
2K rectangles, and return the lndex that 1s assoclated wlth the rectangle that is 
hlt. The lndlces, or allases, are stored in a table, and so are the deflnttions of the 
rectangles. The power of the allas method is due to  the fact that we can take K 
ldentlcal slabs of height 1 and base - and then split each slab lnto two rectan- 

gles. It should be obvlous that there are an unllmited number of ways in whlch 
the unlt square can be cut up convenlently. In general, if the  components are 
A 

1 
K 

. . . , A M ,  and the aliases are jl, . . . , j ~ ,  then the algorlthm 

General alias algorithm 

Generate a random variate (X, Y )  uniformly distributed in [0,112. 
Determine the index Z in 1, . . . , M such that (X, Y ) E A Z .  
RETURN jz  

produces a random varlate which takes the value k wlth probabillty 

area(A1) . 
l : j , = k  

Let us lllustrate this wlth an example. Let the probabillties for consecutlve 
C - , where n Is a posltlve Integer, c c c c c c  Integers 1,2 ,... be c ,-,-,--,-,- 

2 2 4 4  4 4 ' " "  2n 
and c=- 1s a normalization constant. It is clear that we can group the 

values In groups of s h e  1,2,4, . . . , 2 n ,  and the probability welghts of the groups 
are all equal to c . Thls suggests that we should partltion the square flrst into 

n +I 

1 
n +1 equal vertlcal slabs of height 1 and base - . Then, the i - th  slab should n +I 
be further subdlvlded lnto 2i equal rectangles to dlstlngulsh between dlfferent 
lntegers In the groups. The algorlthm then becomes: 
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0 0 0 0 0  
0 1 1 1 1  
0 1 2 2 2  

0 1 2 3 3 .  

0 1 2 3 4  
0 1 2 3 4  

TII.4.ALIAS METHOD 

Generate a random variate x with a uniform distribution on {0,1, . . . , n }. 
Generate a random variate Y with a uniform distribution on g X ,  . . . , 2x +1-1. 
RETURN Y. 

In thls slmple example, I t  1s posslble to  comblne the unlform ‘arlate g-nera 
and membershlp determlnatlon lnto one. Also, no table Is needed. 

Conslder next the probablllty vector 

lon 

I 

4.4. Exercises. 
1. Glve a slmple llnear tlme algorlthm for sortlng a table of records 

R . . . , R, If I t  1s known that the vector of key values used for sortlng 1s 
a permutatlon of 1, . . . , n .  
Show that there exlsts a one-llne FORTFLAN or PASCAL language generator 
for random varlates wlth. probablllty vector p i  =-(1--) , 05; < n  

(Duncan McCallum). 
Comblne the reJectlon and geometrlc puzzle method for generatlng random 

C varlates wlth probablllty vector p i  =- , 1s i < K ,  where c 1s a normallza- i 
tlon constant. The method should take expected tlme bounded unlformly 

2. 
2 i 

n + l  n 

3. 

c c c c c c  
2 2 4 4 4 4  

over K .  Hlnt: note that the vector c ,-,-,-,-,-,- ,... domlnates the 
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given probability vector. 
Repeat the previous exercise for the two-parameter class of probablllty vec- 
tors p i = -  , 15; S K  where 

4. 
C 

Is a positive integer. 
i M  

5. OTHER GENERAL PRINCIPLES. 

5.1. The rejection method. 

the probablllty vector p ;  , i 20, Is such that 
The rejection prlnclple remalns of course valid for discrete dlstrlbutions. If 

where c 21 Is the rejectlon constant and qi , z' 20, is an easy probability vector, 
then the following algorithm Is valld: 

The rejection method 

REPEAT 
Generate a uniform [0,1] random variate u.  
GENERATE a random variate x with discrete distribution determined by 
qi , i > o .  

UNTIL UCqx <px 
RETURN x 

We recall that the number of iterations Is geometrically dlstributed with parame- 

px . In ter - (and thus mean c ). Also, In each Iteratlon, we need to compute - 1 

C CQX 
vlew of the ultra fast methods described In the previous sections for flnlte-valued 
random varlates, I t  seems that the rejection method is mainly applicable In one of 
two situations: 
A. The distribution has an lnAnlte tall. 

B. The distribution changes frequently (so that we do not have the time to set 
up long tables every time). 

Often, the body of a dlstrlbutlon can be taken care of by the gulde table, allas or 
alias-urn methods, and the tall (whlch carries small probability anyway) Is dealt 
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with by the rejection method. 
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Example 5.1. 
Conslder the probabillty vector 

(iL1) . 6 p i  = - 
n2i 

Sequential search for this dlstrlbutlon is undeslrable because the expected number 

of cornparlsons would be 1+ 
03 

;pi =m. Wlth the easy probability vector 
i = 1  

we can apply the rejectlon method. The best possible rejectlon constant 1s 

P i  6 i +1 12 = sup- = -sup- - 
i y 1  qi n 2 a l i  a n2 

c 

Slnce 

able), we can proceed as follows: 

has probabillty vector q (where U 1s a uniform [0,1] random vari- 

REPEAT 

If 1. Generate iid uniform [OJ] random variates U,V. Set X t  

UNTIL 2VX5X+i 
RETURNX 

L J  

Example 5.2. Monotone distributions. 

that p i  5- for all i . Thus, the followlng rejectlon algorlthm 1s valld: 
When the probablllty vector p l ,  . . . , p n  1s nonincreaslng, then I t  is obvious 

1 
a 
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REPEAT 
1 - Generate a random variate X with probability vector proportional to 1,- 1 

2 ’ ” ”  n . 
Generate a uniform [O,l] random variate U. 

UNTIL V s X p ,  
RETURN x 

n 1  The expected number of lteratlons 1s -<l+log(n).  For example, a blnomlal 

(n  , p )  random varlate can be generated by thls method In expected tlme 
0 (log(n )) provlded that the probabllltles can be computed In tlme 0 (1) (thls 
assumes that the logarlthm of the factorlal can be computed In constant tlme). 
For the domlnatlng dlstrlbutlon, see for example exerclse III.4.3. 

i = 1  i -  

Example 5.3. The hybrid rejection method. 
As In example 5.1, random varlates wlth the domlnating probablllty vector 

are usually obtalned by truncatlon of a continuous random variate. Thus, I t  
seems lmportant to dlscuss very brlefly how we can apply a hybrld reJectlon 
method based on the followlng lnequallty: 

p i  5 cg ( 5 )  (all z E [ i  ,i+l) , i 20) . 
Here c 21 Is the rejection constant, and g 1s an easy denslty on [O,oo). Note that 
p can be extended to a denslty f ln the obvious manner , 1.e. 
f (5 )=p i  ,all 5 E[i  ,i +1). Thus, random varlates wlth probablllty vector p can 
be generated as follows: 
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Hybrid rejection algorithm 

REPEAT 
Generate a random variate Y with density g . Set X+ LY]. 
Generate a uniform [O,l] random variate U .  

UNTIL UCg (Y)<px 
R E T U R N X  

5.2. The composition and acceptance-complement methods. 
It goes wlthout saylng that the entlre dlscusslon of the composltlon and 

acceptance-complement methods for contlnuous random varlates can be repeated 
for dlscrete random varlates. 

5.3. Exercises. 
1. Develop a reJectlon algorithm for the generation of an Integer-valued random 

varlate X where 
C C P ( X = i )  = --- 

2i-1 2i 
(i =1,2, ...) 

1 and c=- 1s a normallzatlon constant. Analyze the efflclency of your 
210g2 

algorlthm. Note: the serles 1--+--- +--. . . converges to log2. There- 1 1 1  1 
2 3 4  5 

fore, the terms considered In palrs and dlvlded by log2 can be considered as 
probabllltles deAnlng a probabllity vector. 

2. Conslder the famlly of probabillty vectors c ( a )  , iL1, where a 20 1s a 

parameter and c ( a  )>0 1s a normallzatlon constant. Develop the best possl- 
ble reJectlon algorlthm that is based upon truncation of random varlables 
wlth dlstributlon functlon 

( a  

F (x ) = l-- a+1 ( x > l ) .  
a +x 

Flnd the probablllty of acceptance, and show that i t  1s at least equal to 
. Show that the lnfimum of the probablllty of acceptance over U 

a +2 
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a E[o,oo) Is nonzero. 
The discrete normal distribution. A random varlable X has the discrete 
normal dlstrlbutlon wlth parameter a>O when 

3. 

( I  i I +$ l 2  

- 
P ( X = i )  = ce 2 2  ( z  Integer) . 

Here c > O  1s a normallzation constant. Show flrst that 

1 1  
c = -(-+o(l)) 

0 6  

. its o+oo. Show then that X can be generated by the following rejectlon 
algor1 thm: 

REPEAT 
Generate a normal random variate Y, and let x be the closest integer to Y, 
Le. X+round( Y). Set + I X I f ~ .  1 

Generate a uniform [0,1] random variate U. 
UNTIL -2a210g( U ) 2 Z2- Y2 
RETURN x 

Note that -log( u )  can be replaced by an exponential random varlate. Show 

that  the probablllty of rejectlon does not exceed - &. In other words, 

the algorlthm 1s very emclent when u 1s large. 
U 

' I  
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Chapter Four 
SPECIALIZED ALGORITHMS 

1. INTRODUCTION. 

1.1. Motivation for the chapter. 
The maln technlques for random varlate generatlon were developed In 

chapters I1 and 111. These wlll be supplemented In thls chapter wlth a host of 
other technlques: these lnclude hlstorlcally lmportant methods (such as the 
Forsythe-von Neumann method), methods based upon speclflc propertles of the 
unlform dlstrlbutlon (such as the polar method for the normal denslty), methods 
for densltles that are glven as convergent serles (the serles method) and methods 
that have proven partlcularly successful for many dlstrlbutlons (such as the 
ratlo-of-unlforms method). 

T o  start off, we lnsert a sectlon of exerclses requlrlng technlques of chapters 
I1 and 111. 

1.2. Exercises. 
1. Give one or more reasonably emclent methods for the generatlon of random 

varlates from the followlng densltles (whlch should be plotted too to  galn 
some lnslght): 
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O l Z < l  n 2 2 ,  n integer 

2 > O  

2 ER 

2 >1 

2 2  
2 z n - l e  2 

-- 
n z > O  n positive integer 

Density 

- l  

(-logs )" 
Range of z Range of the parameter(s) 

o<z <1 n positive integer I 

I 

2 + e 2  +e-' 
a - (2a  -2)z 

In number 2 we recognlze the Laplace denslty. Number 4 1s the loglstlc den- 
slty. 

z ER 

o<z 51 1 S a  5 2  



120 IV.1.INTRODUCTION 

4. Show how one can generate a random varlate of one's cholce havlng a den- 
slty f on [O,oo) wlth the property that llmf (a: )=oo , f (. )>0 for all a : .  

Glve random varlate generators for the followlng slmple densltles: 
x 10 

5. 

Here G is Cat lan's constant (0.9 15965594 1772190.. . ). 
6. Flnd a dlrect method (l.e., one not lnvolving reJectlon of any klnd) for fen- 

eratlng random varlates wlth dlstrlbutlon functlon F (a: )=1-e - a x - b x  -'" 

Someone shows you the rejectlon algorlthm glven below. Flnd the denslty of 
the generated random varlate. Flnd the domlnatlng denslty used In the 
reJectlon method, and determlne the reJectlon constant. 

(a: >O), where a ,b ,c > O  are parameters. - 
7. 

REPEAT 
Generate iid uniform [0,1] random variates U,,  U,, Us. 

UNTIL us(l+ u, U2)5 1 
RETURN X+-lOg( U, U,) 

8. Flnd a slmple functlon of two lld unlform [0,1] random varlates whlch has 
(a: >O). Thls dlstrlbutlon func- dlstrlbutlon functlon F (a: )=l- 

n. 
.Ir 

tlon 1s lmportant In the theory of records (see e.g. Shorrock, 1972). 

Glve slmple rejectlon algorlthms wlth good reJectlon constants for generatlng 
dlscrete random varlates wlth dlstrlbutlons determlned as follows: 

9. 
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4 1 -arctan( 7) 
A 2n 

8 1 
R f4n  +1)(4n +3) 

8 1  
?iL (2n +i)2 

4 1 -arctan( 
R n2+n +I 

- 
- 
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n 2 1  

n 20 

n 20 

n 21 

Pn I Range for n 

10. The hypoexponential distribution. Glve a unlformly fa s t  generator for 
the family of hypoexponentlal densltles glven by 

where p>h>O are the parameters of the dlstrlbutlon. 
! 

2. THE FORSYTHEVON NEUMANN METHOD. 

2.1. Description of the method. 
In 1951, von Neumann presented an lngenlous method for generatlng 

exponentlal random varlates whlch requlres only comparlsons and a perfect unl- 
form [0,1] random varlate generator. The exponentlal dlstrlbutlon 1s entlrely 
obtalned by manlpulatlng the outcomes of the comparlsons. Forsythe (1972) later 
generallzed the technlque to  other dlstrlbutlons, albelt at the expense of slmpll- 
clty slnce the method requlres more than Just comparlsons. The method was then 
applled wlth a great deal of success In normal random varlate generatlon (Ahrens 
and Dleter, 1973; Brent, 1974) and even In beta and gamma generators (Atklnson 
and Pearce, 1976). Unfortunately, in the last decade, most of the algorlthms 
based on the Forsythe-von Neumann method have been surpassed by other algo- 
rlthms partlally due to  the dlscovery of the allas and acceptance-complement 
methods. The method 1s expenslve In terms of unlform [0,1] random varlates 
unless speclal ”trlcks” are used t o  reduce the number. In addltlon, for general dls- 
tributlons, there 1s a tedlous set-up step whlch makes the algorlthm vlrtually 
lnaccesslble to the average user. 

Just how comparlsons can be manlpulated to create exponentlally dlstrl- 
buted random varlables 1s clear from the followlng Theorem. 

I 
._ 
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Theorem 2.1. 
Let X 1 , X 2 ,  ... be lld random varlables wlth dlstrlbutlon functlon F . Then: 

(1) P ( s  L X , ?  . * . zxk-l<xk) = F ( ~ ) ~ - l  - F ( z ) ~  (all x ). ( k  -I)! I C !  
(11) If the random varlable I< 1s determlned by the condltlon 
2 Z X  1 -  > . 
(111) If Y has dlstrlbutlon functlon G and 1s lndependent of the X j  ' s ,  and If 
K 1s deflned by the condltlon Y z x l L  * . * > X K - ~ < X K ,  then 

. > X K - , < X ~ ,  then P ( K  odd) = ,all x. 

z 

e - F ( y )  dG (y ) 
-03 

(all x )  . 
+W 

P ( Y 5 x  ( K  o d d ) =  

I e - F ( y )  dG (y ) 
-03 

Proof of Theorem 2.1. 
For Axed x , 

Thus, 

- F (x),-l - F - 
( I C  -l)! I C !  

Also, 

Part (111) of the theorem flnally follows from the followlng equalltles: 
2 2 

P(YLx,K odd) = J P ( K  odd I Y = y )  d G ( y )  = J d G ( y ) ,  
-00 -W 

+03 

P(IC odd) = e - F ( y )  d G ( y )  .I 
-03 
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We can now descrlbe Forsythe’s method (Forsythe, 1972) for densltles f 
which can be wrltten as follows: 

f ( I I : )  = cg (a: ) e - F ( z )  , 

where g 1s a denslty, O s F  (5 )s1 is some functlon (not necessarily a dlstrlbutlon 
function), and c 1s a normallzatlon constant. 

Forsythe’s method 

REPEAT 
Generate a random variate x with density g . 
W’F(X) 
K +-I 

Stop 4- False (Stop is an auxiliary variable for getting out of the next loop.) 
REPEtiT 

Generate a uniform [0,1] random variate u . 
IF u > w  

THEN Stop + True 

ELSE W + U ,K +K +1 
UNTIL Stop’ 

UNTIL K odd 
RETURN x 

We wlll flrst verlfy wlth the help of Theorem 2.1 that thls algorlthm 1s valld. 
Flrst, for Axed X=x  , we have for the first lteratlon of the outer loop, 

P ( K  odd) = 

Thus, at the end of the flrst lteratlon, 

P ( X  iz ,I< odd) = 
2 

e - F ( y ) g  (y ) dy 
4 0  

Arguing as In the proof of the propertles of the rejectlon method, we deduce that: 

(1) The returned random varlate X satlsfles 
2 

P ( X  5x1 = J c e - F ( y ) g  (y  dy . 

Thus, I t  has denslty ce - F ( z  ) g  (x ). 

(11) The expected number of outer loops executed before haltlng 1s - where p is 

the probabillty of exlt, Le. p =P (I( odd)= 

-03 

1 

P +oo 
e - F ( y ) g  (y ) dy  . 

-00 



(111) In any slngle iteration, 

= J e F ( z )  g ( a : )  da: . 

124 N.2.FORSYTHE-VON NEUMANN METHOD 

3N (iv) If N Is the total number of uniform [O,l] random v 
Wald’s equation) 

ria then 

In addltlon to the N unlform random varlates, we also need on the average - 1 

P random varlates with density 9 .  It should be mentioned though that g 1s often 
unlform on [0,1] so that thls causes no major drawbacks. In that case, the total 
expected number of unlform random variates needed is at least equal to  
I I f I I oo (thls follows from Letac’s lower bound). From (iv) above, we deduce 

that 

2 5 E ( N )  5 - l + e  = e + e 2 .  
1 
e 
- 

Observe that Forsythe’s method does not requlre any exponentlatlon. There 
are of course about - evaluatlons of F .  If we were to use the rejection method 

with as domlnatlng density g ,  then p would be exactly the same as here. Per 
Iteration, we would also need a g-dlstrlbuted random variate, one uniform ran- 
dom varlate, and one computation of e-F.  In a nutshell, we have replaced the 
latter evaluation by a (usually) cheaper evaluation of F and some additional unl- 
form random variates. If exponentlal random varlates are cheap, then we can in 
the reJectlon method replace the eWF evaluatlon by an evaluation of F If we 
replace also the unlform random varlate by the exponentlal random varlate. In 
such situatlons, i t  seems very unllkely that Forsythe’s method wlll be faster. 

One of the dlsadvantages of the algorlthm shown above is that F must take 
values In [0,1], yet many common denslties such as the exponential and normal 
densities when put In a form useful for Forsythe’s method, have unbounded F 

such as F (x )=a: or F (x )=- . To get around thls, the real line must be broken 
up into pieces, and each plece treated separately. This wlll be documented 
further on. It should be pointed out however that the reJection method for 
f =ce-F g puts no restrictions on the size of F .  

1 

P 

X 2  

2 
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2.2. Von Neumann’s exponential random variate generator. 
A basic property of the exponentlal dlstribution is glven in Lemma 2.1: 

I Lemma 2.1. 
An exponentlal random variable E 1s dlstributed as (2-l)p+Y where Z,Y 

are independent random varlables and p>O is an arbltrary posltlve number: Z Is 
geometrically dlstrlbuted wlth 

i P  

( i - -1)P 
(i 21) 9 

P ( z = ~ ) =  J e-* dz = e - ( i - I ) ~ - e  - i ~  

I and Y Is a truncated exponentlal random varlable wlth denslty 

Proof of Lemma 2.1. 
S t ralg h t forw ar d . 

If we choose p = l ,  then Forsythe’s method can be used dlrectly for the gen- 
eratlon of Y .  Slnce in thls case J’ (z )=z , nothlng but unlform random varlates 
are requlred: 
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van Neumann’s exponential random variate generator 

REPEAT 
Generate a uniform [0,1] random variate Y. Set W t Y . 
K+l 
Stop + False 
REPEAT 

Generate a uniform [0,1] random variate u . 
IF u > w  

THEN Stop t- True 
ELSE w+- U ,K +K +-I 

UNTIL Stop 
UNTIL K odd 

i -1  

Generate a geometric random variate Z with P (2 = i  )=(i--)(-) ( i  2 1). e e  
RETURN X +( Z -I)+ Y 

The remarkable fact 1s that thls method requlres only comparlsons, unlform ran- 
dom varlates and a counter. A qulck analysls shows that 

1 

p =P (I(odd)=Se-’ dx = 1-’. Thus, the expected number of unlform ran- 
e 0 

dom varlates needed 1s 

Thls 1s a hlgh bottom Ilne. Von Neumann has noted that t o  generate 2 ,  we need 
not carry out a new experlment. It sufflces to  count the number of executlons of 
the outer loop: thls 1s geometrlcally dlstrlbuted wlth the correct parameter, and 
turns out to be lndependent of Y .  
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2.3. Monahan’s generalization. 

lng random varlates X wlth dlstrlbutlon functlon 
Monahan (1979) generallzed the Forsythe-von Neumann method for generat- 

where 

n =I 

l=a  I l a , > ,  * . 
tlon function. 

20 1s a glven sequence of constants, and G 1s a glven dlstrlbu- 

Theorem 2.2. (Monahan, 1979) 

function F : 
The followlng algorlthm generates a random varlate X wlth dlstrlbutlon 

Monahan’s algorithm 

REPEAT 
Generate a random variate X with distribution function G . 
K t i  
Stop t False 
REPEAT 

Generate a random variate u with distribution function G . 
Generate a uniform [0,1] random variate v. 

aK + i  IF u<x AND v<- 
QK 

THEN K +K +1 
ELSE Stop + True 

UNTIL Stop 
UNTIL K odd 
=TURN X 

The expected number of random varlates wlth dlstrlbutlon Punctlon G Is 

i+H (1) 
-H (-1) * 
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Proof of Theorem 2.2. 

where the vi's refer to the random varlates 
the Zi 's are Bernoulll random variables equal to consecutlve values of I 

We deflne the event A, by [X'=max(X,U,, . . . , U,),Z,= . . . =z, =1], 
generated In the inner loop, and 

a,+, . 
IV_<--I 

a, 
Thus, 

We will 

P ( X s x , A , )  = a, G ( s ) ,  , 
P ( X S x , A , , A n + l C )  = an G ( X ) ~ - U , + , G ( Z ) ~ + ~  . 

call the probability that x Is accepted p o .  Then 
00 

P O  = P ( K  Odd) = an (-I),+' = H(-1) . 
n =I 

Thus, the returned X has dlstrlbution function 

The expected number of G -distributed random varlates needed 1s E ( N )  where 

an -an +I 03 

= (n+1)  
n =I P o  

Example 2.1. 
Consider the dlstrlbutlon functlon 

F ( x )  = 1-cos(-) 7i-X (053 51) . 2 

To put thls In the form of Theorem 2.2, we choose another dlstrlbutlon functlon, 
G ( a ) = x 2  ( O s x  sl), and note that 
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where 
7r2i-2 . 

H ( z )  = x + - x 2 + -  .T2 7r4 x 3 + .  . . f .  z t + .  . . 
48 5760 22t-3(2i )! 

8 One can easlly show that po=H(-l)=-, whlle E ( N )  1s approxlmately 2.74. 

Also, all the condltlons of Theorem 2.2 are satlsfled. Random varlates wlth this 
dlstrlbutlon functlon can of course be obtalned by the lnversion method too, as 
2 -arccos(U) where U 1s a unlform [0,1) random varlate. Monahan's algorlthm 

avoids of course any evaluatlon of a transcendental functlon. The complete algo- 
rithm can be summarlzed as  follows, after we have noted that 

7r2 

7r 

an + I  7 r 2  1 -- - (-I an 2 (2n+2)(2n+1) * 

REPEAT 
Generate X+max( U , ,  v,) where u,, Uz are iid uniform [0,1] random variates. 
K-1 
Stop - h s e  
REPEAT 

Generate U , distributed as X. 
Generate a uniform [0,1] random variate v. 

l r 2  

IFusxANDv< 
4K2+6K +2 

THEN K -K +1 

ELSE Stop + True 
UNTIL Stop 

UNTIL K odd 
RETURN x 

I 
1 

! 
- 
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2.4. An example: Vaduva's gamma generator. 
We wlll apply the Forsythe-von Neumann method to develop a gamma gen- 

erator when the parameter u 1s In (0,1]. Vaduva (1977) suggests handllng the 
part of the gamma denslty on [0,1] separately. Thls part 1s 

( x )  = c ( ~ z ' - ~ ) e - '  (O<S 51) , 
where c is a normallzatlon constant. Thls 1s in the form cg ( ~ ) e - ~ ( ~ )  for a den- 
slty g and a [O,l]-valued functlon F . Random varlates wlth denslty g (z )=uz '-' 
can be generated as U ' where u 1s a unlform [0,1] random varlate. Thus, we 
can proceed as follows: 

1 - 

Vaduva's generator for the left part of the g a m m a  density 

REPEAT 
1 - 

Generate a uniform [0,1] random variate u.  Set X t U  a 

w + x  
K -1 
Stop t False 
REPEAT 

Generate a uniform [0,1] random variate U . 
IF u > w  

THEN Stop +- True 
ELSE W i- U ,K +-K +I 

UNTIL Stop 
UNTIL K odd 
RETURN X 

Let N be the number of unlform [0,1] random varlates requlred by thls method. 
Then, as we have seen, 

1 

1+Sux '-'e dz 

S u x  '-le-' dx 

0 
E ( W =  1 

0 
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Lemma 2.2. 
For Vaduva's partlal gamma generator shown above, we have 

n 

Proof of Lemma 2.2. 
Flrst, we have 

1 1 

1 = SUX"-' dx 2 Saxa-le-z  dx 
0 0 

Also, 

= &(e-') 

2 e (by Jensen's lnequallty) 

( where Y 1s a random varlable wlth denslty ax'-') 

1 

1 5 Juxa - l ez  ds 

a a 
0 

+ = 1+- + . . . (by expanslon of e ' ) 
a+1 2 ! ( a + 2 )  

< l + a ( l + ~ + ~ +  1 1  * . ) - 

= l + a ( e - i ) .  

131 

Puttlng all of thls together glves us the flrst lnequallty. Note that the supremum 
of the upper bound for E ( N )  1s obtalned for a =l. Also, the llmlt as a 10 fol- 
lows from the Inequallty. 

What 1s lmportant here 1s that the expected tlme taken by the algorlthm 
remalns unlformiy bounded In a .  We have also establlshed that the algorlthm 
seems most emclent when a 1s near 0. Nevertheless, the algorlthm seems less 
efflclent than the rejectlon method wlth domlnatlng denslty g developed In 
Example 11.3.3. There the rejectlon constant was 

1 

s a x a - l e - z  dx 

c =  
1 

0 
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a - 
whlcli 1s lcnown to Ile between 1 and e '+' . Purely on the bask of expected 
number of unlform random varlates required, we see that the rejectlon method 

has 2 < E  ( N ) 5 2 e  '+' 5 2 & .  Thls 1s better than for Forsythe's method for all 
values of a .  See also exercise 2.2. 

a - 

2.5. Exercises. 
1. Apply Monahan's theorem t o  the exponentlal dlstrlbutlon where 

H ( x ) = e Z - l ,  G ( s ) = x , O < x < l ,  and F ( x ) =  . Prove that 
( l - e -x )  

1 
1-- 

e 
1 e 
e e -1 

po=l-- and that E(N)=-  (Monahan, 1979). 

We can use decomposition to generate gamma random varlates wlth parame- 
ter a 51. The restrlctlon of the gamma density to  [0,1] 1s dealt wlth In the 
text. For the gamma denslty restricted to [l,co) rejectlon can be used based 
upon the domlnatlng denslty g (x)=e '-' (x 21). Show that thls leads to 
the followlng algorlthm: 

2. 

REPEAT 
Generate an exponential random variate E .  Set X t i t - E .  

Generate a uniform [0,1] random variate u .  Set Y.-u '-'. 
1 -- 

UNTIL X 5 Y 
RETURN x 

1 
Show that the expected number of lteratlons 1s o3 , and that thls 

S e  l-x X a - '  dx 
1 

1 
varles inoiiotoiilcally from 1 (for a =I) to oo a Lo). 

dx 5 
3. Complicated densltles are often cut up into pleces, and each plece 1s treated 

separately. Thls usually ylelds problems of the followlng type: 
f (x )=ce-F(2) ( a  sx Sb) ,  where O < F ( x ) < F * < l ;  - - - and F* 1s usually 
much smaller than 1. Thls 1s another way of putting that f varles very llt- 
tle on [ a  ,b 1. Show that the expected number of unlform randoin varlates 
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needed In Forsythe's algorlthm does not exceed e F* +e 2F*. In other words, 
thls approaches 2 very qulckly as F* lo. 

3. ALMOST-EXACT INVERSION. 

3.1. Definition. 
A random variate wlth absolutely continuous distribution functlon F can be 

generated as F-'(U) where U Is a uniform [O,i] random variate. Often, F-' Is 
not feaslble to compute, but can be well approxlmated by an easy-to-compute 
strictly lncreaslng absolutely contlnuous functlon $. Of course, $( U) does not 
have the deslred dlstrlbutlon unless 7/l=F-l. But I t  is true that $ ( Y )  has dlstrl- 
butlon functlon F where Y Is a random variate wlth a nearly uniform denslty. 
The denslty h of Y Is glven by 

where f Is the denslty corresponding to F .  The almost-exact Inversion method 
can be summarlzed as follows: 

Almost-exact inversion 

Generate a random variate Y with density h . 
RETURN $( Y) 

The polnt 1s that we galn If two condltlons are satlsfled: (1) $ Is easy to compute; 
(11) random variates wlth denslty h are easy to generate. But because we can 
choose $ from among wide classes of transformatlons, lt should be obvlous that 
thls freedom can be explolted to make generation wlth density h easler. Mar- 
saglla (1977, 1980, 1984) has made the almost-exact lnverslon method Into an art. 
Hls contrlbutlons are best explalned In a serles of examples and exercises, Includ- 
Ing generators for the gamma and t dlstrlbutlons. 

Just how one measures the goodness of a certaln transformatlon 1c, depends 
upon how one wants to generate Y .  For example, If straightforward rejection 
from a uniform denslty Is used, then the smallness of the reJectlon constant 

c = sup h (y) 
Y 

would be a good measure. On the other hand, If h Is treated via the mlxture 
method and h 1s decomposed a s  
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then the probablllty p 1s a good measure, slnce the resldual denslty T Is normally 
dlfIlcult. A value close to 1 1s hlghly deslrable here. Note that In any case, 

Thus, 2L, wlll often be chosen so as to mlnlmlze c or to  maxlmlze p ,  dependlng 
upon the generator for h . 

All of the above can be repeated If we take a convenlent non-uniform dlstri- 
butlon as our startlng polnt. In partlcular, the normal density seems a useful 
cholce when the target densities are the gamma or t densltles. Thls generallzatlon 
too wlll be discussed In thls section. 

3.2. Monotone densities on [O,.oo). 

Nonlncreaslng densltles f on the posltlve real llne have sometimes a shape 
A U 

that 1s slmllar t o  that of where B>O 1s a parameter. Slnce thls 1s the 
(1+9x l2 

OX 
denslty of the dlstrlbutlon functlon - , we could look at transformations $ l+ex 
deflned by 

In thls case, h becomes: 

For example, for the exponentlal denslty, we obtaln 
U 

Assume that we use reJectlon from the unlform density for generatlon of random 
varlates wlth denslty h . Thls suggests that we should try t o  mlnlmize sup h . By 
elementary computatlons, one can see that h 1s maxlmal for 1-y=-, and that 

the maxlmal value 1s 

1 
29 

1 
--2 

40e e , 
4 

e 
whlch is mlnlmal for 8=1. The mlnlmal value 1s -= 1.4715177 .... The rejectlon 

algorlthm for h requlres the evaluation of an exponent In every Iteratlon, and Is 
therefore not competltlve. For thls reason, the composltlon approach is much 
more llkely to  produce good results. 
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3.3. Polya's approximation for the normal distribution. 
In thls sectlon, we wlll Illustrate the composltlon approach. The example 1s 

due to Marsaglla (1984). For the lnverse F-' of the absolute normal dlstrlbutlon 
functlon F , Polya (1949) suggested the approxlmatlon 

$(?I 1 = d-8log(l-y 2, (059 51) 9 

7r 

2 
where he took d=-. Let us keep 8 free for the tlme belng. For thls transforma- 

tlon, the denslty h (y ) of Y 1s 
e 

--1 

Let us now choose 8 so that lnf h ( y )  Is maxlmal. Thls occurs for 6-1.553 
l0,11 

(whlch 1s close to but not equal to Polya's constant, because our crlterlon for 
closeness 1s dlfferent). The correspondlng value p of the lnflmum 1s about 0.985. 
Thus, random varlates with denslty h can be generated as shown In the next 
algorithm: 

Normal generator based on Polya's approximation 

Generate a uniform [0,1] random variate u . 
IF U < p  ( p  is about 0.985 for the optimal choice of 6) 

U 
P 

THEN RETURN $(-) (where $ ( y ) = d - B l o g ( l - y ' )  ) 

ELSE 

Generate a random variate Y with residual density ( h  (y 1-p (Oiy 51). 
(1-P 1 

RETURN $( Y )  

The detalls, such as a generator for the resldual denslty, are delegated to exerclse 
3.5. It Is worth polntlng out however that the unlform random varlate U 1s used 

U In the selectlon of a mlxture denslty and In the returned varlate $(-). For thls 
P 

reason, I t  1s "almost" true that we have one normal random varlate per unlform 
random varlate. 
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Method 

Freeman-Tukey 

3.4. Approximations by simple functions of normal random variates. 
In .analogy wlth the development for the unlform dlstrlbution, we can look 

at other common distrlbutions such as the normal distribution. The question 
now 1s to And an easy to  compute functlon ?+!I such that ?+!I( ?‘> has the deslred den- 
sity, where now y is nearly normally distrlbuted. In fact, y should have denslty 
h given in the introduction: 

h (Y 1 = f (?&Y > > l y ( Y  1 (Y 1 . 
Usually, the purpose is to  maximlze p in the decomposltlon 

+(Y 1 Reference 

U f Y 6  Central limit theorem 

Freeman and Tukey (1950) (y +G )2 
A 

where r is a residual density. Then, the followlng algorithm suggested by Mar- 
saglia (1984) can be used: 

Wilson-Hilferty 

Marsaglia 

Marsaglia’s almost-exact inversion algorithm 

Wilson and Hilferty (1931) 

Marsaglia (1984) 

a (++I--) l J  
9 a  ga 

0.16 
a --+py 6 +- Y2 , p =1-- 

a 
1 

Generate a uniform [O,l] random variate U .  
IF USP 

THEN Generate a normal random variate Y . 
ELSE Generate a random variate Y with residual density T 

RETURN $J( Y) 

For the selectlon of $J, one can elther look at large classes of slmple functlons or 
scan the llterature for transformations. For popular distrlbutions, the latter route 
is often surprlsingly emclent. Let us lllustrate thls for the gamma ( a  ) density. In 
the table shown below, several choices for @ are glven that transform normal ran- 
dom variates In nearly gamma random varlates (and hopefully nearly normal ran- 
dom varlates into exact gamma random varlates). 

j ( Y + k i ) 2  

I 

Fisher 

In this table we omitted on purpose more complicated and often better approxi- 
matlons such as those of Cornish-Fisher, Severo-Zelen and Peizer-Pratt. For a 
comparatlve study and a blbllography of such approxlmatlons, the reader should 
consult Narula and Li (1977). Bolshev (1959, 1963) glves a good account of how 
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one can obtain normalizing transformations In general. Note that our table con- 
talns only simple polynomial transformations. For example, Marsaglla's quadratlc 
transformation is such that 

Y 2  
1 -- 

, h ( ? d = p ( -  e )+(l-p I T  (Y I 7 6 
0.16 

a 
where p=l-- . For example, when a =16, we .,ave p =O.,,. See exerclse 3.1 

for more lnformation. 
The Wilson-Hilferty transformatlon was flrst used by Greenwood (1974) and 

later by Marsaglla (1977). We flrst verify that h now 1s 

h ( y )  = Cz3~-i -az3 Y 1 
e (2 =-+1-- >O) , Jsa 9 a -  

where c Is a normallzatlon constant. The algorithm now becomes: 

Gamma generator based upon the Wilson-Hilferty approximation 

Generate a random variate Y with density h , 
RETURN x+$(Y)=a ( r + i - - )  Y l 3  

9 a  QU 

Generation from h 1s done now by rejection from a normal density. The detalls 
require careful analysis, and i t  is worthwhlle to do this once. The normal density 
used for the rejectlon differs slightly from that used by Marsaglla (1977). The 
story is told In terms of lnequalitles. We have 

Lemma 3.1. 
I 1 

3a-1 3 
) . Deflne 

,z 20 (note: this 1s a density in y , not In z )  , 

1 Y +1-- 1 , and zo=(- Assume that a >-. Deflne z =- 
3 6 ga 3a 

the density h (y ) = cz3'-l e 
where c is a normallzatlon constant. Then, the following lnequality 1s valld for 
z 2 0 :  

1 where 02= 
1 



138 IV.3.ALMOS T-EXAC T INVERSION 

Proof of Lemma 3.1. 

lnstead of h (y ) for notational convenience. Thus, 
The proof 1s based upon the Taylor serles expanslon. We wlll wrlte e g ( ' )  

g ( 2 )  = -az3+(3a -1)lOgZ +lOgC . 

Thls functlon 1s majorlzed by a quadratic polynomial In z for thls wlll glve us a 
normal domlnatlng denslty. In such sltuatlons, l t  helps to expand the functlon 
about a polnt zo. Thls polnt should be picked In such a way that I t  corresponds 
to the peak of g because dolng so wlll ellmlnate the llnear term In Taylor's serles 
expanslon. Note that 

3U -1 
g ' ( Z )  = -3UZ2+- , 

Z 
3 a  -1 

g " ( z )  =.-6az-- , 
Z 2  

6 a  -2 
g"'(Z ) = -6a +- 

- 3  * 

We see that g'(z )=0 for z =zo. Thus, by Taylor's serles expanslon, 

where 
that 

1s In the lnterval [ z , zo ]  (or [ zo ,z ] ) .  We obtain our result If we can show 

sup g"(Q 5 -- 1 . 
€20 a2 

1 

3a-1 3 
But when we look at g'", we notlce that i t  1s zero for z=(- ) . It 1s not r-lU 

dlfflcult to verlfy that for thls value, g" attalns a maximum on the posltlve half 
of the real Ilne. Thus, 

1 

sup g"(C) 5 -9a (1-- 1 )" 
€20 3 a  

Thls concludes the proof of Lemma 3.1. 

The flrst verslon of the reJectlon algorlthm 1s glven below. 

I 
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First version of the Wilson-Hilferty based gamma generator 

[SET-UP] 

[GENERATOR] 
REPEAT 

Generate a normal random variate N and a uniform (0,1] random variate U ,  
Set Z+-z,+aN 

-a ( ~ 3 - ~ ~ 3 )  
3a-1 

(Z-td2 -- 
UNTIL z 20 AND Ue 2a2 Lc-) e 

RETURN x+43 
ZO 

139 

Y 1 Note that we have used here the fact that  z=-+1--. There are two 

thlngs left to the deslgner. Flrst, we need to check how emclent the algorlthm is. 
Thls In effect bolls down to verlfylng what the rejectlon constant 1s. Then, we 
need to streamllne the algorlthrn. Thls can be done In several ways. For example, 
the acceptance condltlon can be replaced by 

6 9a  

z 
<(3~ --1)iog(-)-a (Z3--2O3) (2 -2 Ol2 

UNTIL z 20 AND -E- 
2a2 - Z O  

where 8 1s an exponentlal random variate. Also, (2 -2 0>2 1s nothlng but -. N 2  
2a2 2 

Addltlonally, we could add a squeeze step by uslng sharp lnequalltles for the loga- 
rlthm. Note that -=1+=, so that for large values of a ,  1s close to  z o  

whlch In turn Is close to 1. Thus, lnequalltles for the logarlthm should be sharp 
near 1. Such lnequalltles are glven for example In the next Lemma. 

2 
Z O  20 
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~ ~~ 1 Lemma 3.2. 

I Let x E[O,l). Then the followlng serles expanslon Is valld: 

I Thus, for k 21, 
k l '  1 .  l X k  -2' > log(1-x) 2 - E -2' --- - 

k 1-x - 
i=1 2 i < k  

Furthermore, for z SO, and kodd, 
k + l 1  . k l ;  -c -xl  5 log(1-x) 5 -E -3 . 

. a  i=1 2 1 =1 

Proof of Lemma 3.2. 
We note that In all cases, 

k l .  X k  

1 . i  =1 k (Wk 
-log(l-x) = -xl  + 

where c 1s between 0 and x . The bounds are obtalned by looklng at the k-th 
term In the sums. Conslder Arst O_<cLx <l. Then, the k-th term 1s at least 

. If x LcSO and k 1s odd, then the same 1s true. If however k 1s equal to - 
even, then the k - t h  term 1s majorlzed by -. 

X k  

k 
X k  

k 
We also note that  for OSx  <1, 

1 
2 

. . . < x + . * . +-xk 1 ( l+x+x2+x3+ . . ) 
k - -log(l-x ) = x +-x2+ 

Let us return now to the algorlthm, and use these lnequalltfes t o  avold com- 
putlng the logarlthm most of the tlme by lntroduclng a qulck acceptance step. 
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Second version of 'the Wilson-Hilferty based gamma generator 

[SET-UP] 

141 

[GENERATOR] 
REPEAT 

Generate a normal random variate N and an exponential random variate E .  
Set 2 +to+aN (auxiliary variate) 
Set X+aZ3 (variate to be returned) 

w+- aN (note that W=i--) Z O  

2 z 
N2 

Set S +-E -- +(X- t  1) 

.Accept + ( s S ( a a - l ) ( W + ~ W a + l W 3 ) 1  AND [ Z ~ O ]  

IF NOT Accept 

2 

3 

THEN Accept +[S <-(sa -l)log(l-W)] AND [Z 201 
UNTIL Accept 
RETURN x 

In thls second verslon, we have Implemented most of the suggested lmprove- 

algorlthms proposed In Greenwood (1974) and Marsaglla (1977). Obvlous things 

rule, are not usually shown In our algorlthms. There are two quantities that 
should be analyzed: 
(1) The expected number of lteratlons before halting. 
(11) The expected number of computations of the logarithm In the acceptance 

step (a comparlson wlth (1) wlll show us how efflclent the squeeze step Is). 

ments. The algorlthm 1s only appllcable for a >- 1 and dlffers sllghtly from the 

such as the observation that ( W+- 1 W2+- 1 W 3 )  should be evaluated by Horner's 

3 

2 3 
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The expected number of lteratlons of the algorlthm glven above (or Its reJec- -1 Lemma 3.3. 

tlon constant) is 

1 - 
For a 2 -, 1 thls 1s less than e ". It tends to 1 as a +oo and to 00 as a 1-. 1 

2 3 

Proof of Lemma 3.3. 
The area under the domlnatlng curve for h 1s 

M ( z -2 Ol2 

1 

. Slnce dy=& d z ,  we 1 3 a - 1 ) 3  where we recall that z=- Y +1--, zo=(- Jsa 9a  3a 
see that this equals 

3 4  -1 e - 4 z t c  1 = c z o  2n 
1 

1 1 - 1 
4 -- 3 - a + -  

)(=) e , 
&a 4 - 1  

r(a 1 3a 3a -1 
= (  

Here we used the fact that the normallzatlon constant c In the deflnltlon of h 1s 
G a  4 - 1  

r(a 1 
, whlch is verlfied by notlng that 

The remainder of the proof 1s based upon simple facts about the I? functlon: for 
example, the functlon stays bounded away from 0 on [0,00). Also, for a >0, 

where Osds1. We wlll also need the elementary exponentlal lnequalltles 
PZ -- 

e-P2 > - (1-z)P 2 e 1-2 ( p  >o,oLs 51) . 
Using thls In our expresslon for the reJectlon constant glves an upper bound 
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1 1 -a +- a -- & a a - l e a G e  3 (3a-I) 2 
c 

a a  d2n ’ 3a 
1 a -- I - 

- 3  1 2  - e (I--) 
3a  

1 1 --(a --)(3a )-I < e 3  2 - 

L whlch Is 1+-+0(&)  as a - m .  
6 a  a 2  

From Lemma 3.3, we conclude that the algorlthrn Is not unlformly fast  for 
a E(-,m). 1 On the other hand, slnce the reJectlon constant Is 1+-+0 1 (-) 1 as 

6 a  a 2  3 
a +m, I t  should be very emclent for large values of a .  Because of thls good At, I t  
does not pay to lntroduce a qulck reJectlon step. The qulck acceptance step on 
the other hand Is very effectlve, slnce asymptotlcally, the expected number of 
computatlons of a logarlthm 1s 0 (1) (exerclse 3.1). In fact, thls example Is one of 
the most beautlful appllcatlons of the effectlve use of the squeeze prlnclple. 

3.5. Exercises. 
1. 

2. 

Conslder the Wllson-Hllferty based gamma generator developed In the text. 
Prove that the expected number of logarlthm calls 1s o (1) as a --too. 
For the same generator, give all the detalls of the proof that the expected 
number of lteratlons Oends to 00 as a J-. 

For Marsaglla’s quadratlc gamma-normal transformatlon, develop the entlre 
comparlson-based algorlthm. Prove the valldlty of hls clalms about the value 
of p as a function of a .  Develop a Axed residual denslty generator based 
upon rejectlon for 

1 
3 

3. 

r * ( z )  = sup r ( 5 ) .  
a 2 a o  

Here a. 1s a real number. Thls helps because I t  avolds settlng up constants 
each tlme. See Marsaglla (1984) for graphs of the resldual densltles T . 

4. Student’s t -distribution. Conslder the t -denslty 
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Find the best constant p If f 1s to  be decomposed lnto a mlxture of a nor- 
mal and a resldual denslty ( p  1s the welght of the normal denslty). Repeat 
the same thlng for h (y  ) If we use almost-exact lnverslon wlth transforma- 
tlon 

?NY 1 = Y +? Y +Y3 

Compare both values of p as a functlon of a .  (This transformation was sug- 
gested by Marsaglla (1984).) 

Work out all the detalls of the normal generator based on Polya's approxl- 
matlon. 
Bolshev (1959, 1963) suggests the followlng transformations whlch are sup- 
posed to produce nearly normally dlstrlbuted random varlables based upon 

sums of lld unlform [0,1] random varlates. If X, 1s && Vi where the 

Vi's are lid unlform [0,1] random varlates, then 

5. 

6. 

: = 1  

and 
41 2, = x,- (Xn 5-10X, 3+15X, ) 

13440n 

are nearly normally dlstrlbuted. Use thls to generate normal random varl- 
ates. Take n =1,2,3. 

1 - 
e *  6 

Show that the rejectlon constant of Lemma 3.3 1s at most (- ) 
1 1 

- < a  <-. 
3 - 2  

7. when 
3a -1 

8. For the gamma'denslty, the quadratlc transformations lead to very slmple 

rejectlon algorlthms. As an example, take s = a  --,t 1 = A. Prove the 
following: 

A. 

2 

The denslty of X=s  ( --1) (where 2 1s gamma ( a  ) dlstrlbuted) 1s 

2 2  -- 
fi 

2 a - 1  

f (z)  = c (I+-) e-22 e ' (5 2 - s  1 S 

where c =2s a - 1 c - ' 2 / r ( a  ). 
B. We have 

2 2  -- f ( z )  L ce s . 

C. If thls lnequallty 1s used to generate random varlates wlth denslty f , 

then the rejectlon constant, c 6, 1s e at a=1 ,  and tends to 

.- i 
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1 
2 

6 as a loo. Prove also that for all values a >-, the reJectlon constant 

1s bounded from above by f i e  4 a .  

The raw almost-exact lnverslon algorlthm 1s: 

1 - 
D. 

Almost-exact inversion algorithm for gamma variates 

REPEAT 
Generate a normal random variate N and an exponential random 
variate E .  
X t t N  

X UNTIL X 2 8  AND E-2X+29 log(l+-)>O 
8 

RETURN s (1+-)2 X 
S 

E. Introduce qulck acceptance and rejection steps In the algorlthm that are 
so accurate that the expected number of evaluatlons of the logarlthm 1s 
o (1) as a too. Prove the clalm. 

Remark: for a very efflclent 4mplementatlon based upon another quadratlc 
transformatlon, see Ahrens and Dleter (1982). 

4. MANY-TO-ONE TRANSFORMATIONS. 

4.1. The principle. 
Sometlmes I t  1s posslble to  explolt some dlstrlbutlonal propertles of random 

varlables. Assume for example that $(x) has an easy denslty h ,where X has 
denslty f . When -1c, 1s a one-to-one transformatlon, x can then be generated as 
+-'( Y )  where Y 1s a random varlate wlth the easy denslty h . A polnt In case 1s 
the lnverslon method of course where the easy denslty 1s the unlform denslty. 
There are lmportant examples In whlch the transformatlon 9 1s many-to-one, so 
that the lnverse lg not unlquely deflned. In that case, If there are k solutlons 
X , ,  . . . , Xk of the equatlon $ ( X ) = Y ,  I t  sufflces to choose among the xi' s. 
The probabllltles however depend upon Y .  The usefulness of thls approach was 
flrst reallzed by Mlchael, Schucany and Haas (1976), who gave a comprehenslve 
descrlptlon and dlscusslon of the method. They were motlvated by a slmple f a s t  
algorlthm for the lnverse gausslan famlly based upon thls approach. 

By far the most lmportant case 1s k=2 ,  whlch 1s the one that we shall deal 
wlth here. Several lmportant examples are developed In subsectlons. 
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Assume that there exlsts a polnt t such that @‘ 1s of one slgn on (-oo,t ) and 
on (t ,m). For example, If @(z)=z2, then $‘(z)=2z 1s nonposltlve on (-oo,o) 
and nonnegatlve on (O,co), so that we can take t =O. We wlll pse the notatlon 

5 = I ( y ) , s  = r ( y )  

for the two solutlons of y =@(a: ): here, I 1s the solutlon In (-oo,t ), and r 1s the 
solutlon In ( t  ,GO). If ?) satlsAes the condltlons of Theorem 1.4.1 on each lnterval, 
and X has denslty f , then $(x) has denslty 

h (3  1 = I U Y  1 I f (I (Y 1) + I r’(y  1 I f ( r  (Y 1) . 
Thls 1s qulckly verlfled by computlng the dlstrlbutlon functlon of @ ( X )  and then 
taklng the derlvatlve. Vlce versa, glven a random varlate Y wlth denslty h ,  we 
can obtaln a random varlate X wlth denslty f by chooslng X=1 (Y) wlth pro- 
bablllty 

I I’(Y) I f (U)) 
h(Y) 

and chooslng x = r ( Y )  otherwlse. Note that I l ‘ (y)  I = 1/ 1 .Jr‘(l (y)) I . Thls, 
the method of Mlchael, Schucany and Haas (1976), can be summarlzed as follows: 

Inversion of a many-to-one transformation 

Generate a random variate Y with density h 
Generate a uniform [0,1] random variate U . 
Set X , t / ( Y ) ,  XZ+r ( Y )  

THEN RETURN X t x ,  
ELSE RETURN X+X2 

It wlll be clear from the examples that In many cases the expresslon In the selec- 
tlon step takes a slmple form. 
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4.2. The absolute value transformation. 
The transformatlon y = I x - t  I for Axed t satlsfles the condltlons of the 

prevlous sectlon. Here we have l ( y ) = t - y  , r ( y ) = t + y .  Slnce I +' I remalns 
constant, the declslon 1s extremely slmple. Thus, we have 

Generate a random variate Y with density h ( y )=f ( t  -y )+ f ( t  + y ). 
Generate a uniform [0,1] random variate u.  

THEN RETURN X t t - Y  
ELSE RETURN X t t  + Y 

If f Is symmetrlc about t , then the declslons t -Y and t + Y 
Another lnterestlng case occurs when h 1s the unlform denslty. 
slder the denslty 

(05% +) . l+cosz 
7r 

f ( X I =  

7r 

2 
Then, taklng t =-, we see that 

are equally Ilkely. 
For example, con- 

Thus, we can generate random varlates wlth thls denslty as follows: 

Generate two iid uniform [0,1] random variates u , v . 
TV Set Y t - .  
2 

THEN RETURN X+Y 
ELSE RETURN X-T-Y 

Here we have made use of addltlonal symmetry In the problem. It should be 
noted that the evaluatlon of the cos can be avolded altogether by appllcatlon of 
the serles method (see sectlon 5.4). 
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4.3. The inverse gaussian distribution. 
Mlchael, Schucany and Haas (1976) have successfully applled the many-to- 

one transformation method to the inverse gaussian distribution. Before we 
proceed with the detalls of their algorithm, I t  1s necessary to give a short intro- 
ductory tour of the dlstrlbutlon (see Folks and Chhlkara (1978) for a survey). 

A random varlable x 2 0  wlth denslty 

Is sald to have the inverse gausslan dlstributlon with parameters p>O and X>o. 
We wlll say that a random varlate x 1s I ( p , A ) .  Sometlmes, the dlstrlbution 1s 
also called Wald's distribution, or the Arst passage tlme distributlon of Brownlan 
motlon wlth posltive drlft. 

The densltles are unimodal and have the appearance of gamma denslties. 
The mode is at 

The densltles are very flat near the orlgln and have exponentlal talls. For thls 
reason, all positlve and negative moments exlst. For example, 

(X-" )=E ( X a + 1 ) / p 2 a + 1 ,  all a ER . The mean 1s ,u and the varlance 1s -. P3 
x 

The main distrlbutfonal property 1s captured In the followlng Lemma: 

Lemma 4.1. (Shuster, 1968) 
When X is I ( p , X ) ,  then 

vx -PI2 
P2X 

is distrlbuted as the square of a normal random variable , 1.e. I t  Is chl-square wlth 
one degree of freedom. 

Proof of Lemma 4.1. 
Straightforward. 

Based upon Lemma 4.1, we can apply a many-to-one transformatlon 

i 
._. 
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Here, the lnverse has two solutions, one on each slde of p.  The solutlons of 
$(X)= Y are 

x ,  = p+--- p 2 y  J4pXY+p2Y2 
2x 2x 

One can verlfy that 

Thus, X ,  should be selected wlth probabillty - ' . Thls leads to the following 
P+X,  

algorlthm: 

Inverse gaussian distribution generator of Michael, Schucany and Haas 

Generate a normal random variate N . 
Set Y + N 2  

Set Xl+p+--- p2y J4pXY+/.PY2 

Generate a uniform [0,1] random variate u ,  
2x 2x 

THEN RETURN X-X, 
ELSE RETURN X + E  

2 

x, 

Thls algorlthm was later rediscovered by Padgett (1978). The tlme-consuming 
components of the algorlthm are the square root and the normal random varlate 
generation. There are a few shortcuts: a few multipllcatlons can be saved If we 
replace Y by p Y  at the outset, for example. There are several exerclses about 
the Inverse gausslan distrlbutlon following thls sub-section. 
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4.4. Exercises. 
1. First passage time distribution of drift-free Brownian motion. Show 

that as p+co  while remalns Axed, the I ( p , x )  denslty tends to  the denslty 

1 
2 

whlch 1s the one-slded stable denslty wlth exponent -, or the denslty for the 

flrst passage tlme of drlft-free Brownlan motlon. Show that thls 1s the den- 
1 0  
L Y  slty of the lnverse of a gamma (- -) random varlable (Wasan and Roy, 
2 ’ X  

A 1967). Thls 1s equlvalent to  showlng that I t  1s the denslty of - where N 1s 

a normal random varlable. 
Thls 1s a further exerclse about the propertles of the lnverse gausslan dlstrl- 
butlon. Show the followlng: 
(1) If X 1s r ( p , x ) ,  then cx 1s I ( c  p , c  A). 

(11) The characterlstlc functlon of X 1s e 
(111) If xi , 15; < n  , are lndependent I ( p i  ,c  pj 2, random varlables, then 

Xi 1s r ( C p i  ,c ( C p i  )2). Thus, If the Xi ’ s are lld 1 (p ,X) ,  then E X ;  

N 2  

2. 

4 1- d q )  2 i p  t 

n 

i=1 
IS I(n p,n ,A). 

(lv) Show that when N, , N, are lndependent normal random varlables 

1s normal wlth varlance NIN2 wlth variances o12 and o,,, then Jrn 
1 1 1  as2 determlned by the relatlon -=- +-. 
03 0 1  *2 

(v) The dlstrlbutlon functlon of X 1s 

where <I> is the standard normal dlstrlbutlon functlon (Zlganglrov, 1962). 

I 
._ 
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5. THE SERIES METHOD. 

5.1. Description. 
In thls sectlon, we conslder the problem of the computer generatlon of a ran- 

dom varlable X wlth denslty f where f can be approxlmated from above and 
below by sequences of functlons f and gn . In partlcular, we assume that: 

(1) llm f n  f ; 
n --roo 

n --too 
llm g n  = f . 

(11) f n  5 f L g n  - 
(111) f 5 ch for some constant c > 1  and some easy 

denslty h . 
The sequences f, and gn should be easy to  evaluate, whlle the domlnatlng den- 
slty h should be easy to sample from. Note that f ,  need not be positive, and 
that gn need not be Integrable. Thls settlng 1s common: often f 1s only known 
as a serles, as in the case of the Kolmogorov-Smlrnov dlstrlbutlon or the stable 
dlstrlbutlons, so that random varlate generatlon has to be based upon thls serles. 
But even If f 1s expllcltly known, I t  can often be expanded In a fast converglng 
serles such as In the case of a normal or exponentlal denslty. The serles method 
descrlbed below actually avolds the exact evaluatlon of f all the tlme. It can be 
thought of as a rejectlon method wlth an lnflnlte number of acceptance and reJec- 
tlon condltlons for squeezlng. Nearly everythlng ln thls sectlon’ was flrst 
developed In Devroye (1980). 

The series method 

REPEAT 
Generate a random variate X with density h . 
Generate a uniform [0,1] random variate u. 
W +- Uch (X) 
n t o  
REPEAT 

1) +-n fl 
IF w<f,,(X) THENRETURNX 

UNTIL W >gn (X) 
UNTIL False 

The fact that the outer loop In thls algorlthm 1s an lnflnlte loop does not matter, 
because wlth probablllty one we wlll exlt In the lnner loop (In vlew of 
f, -+f ,gn -.f ). We have here a true reJectlon algorlthm because we exlt when 
w 5 Uch (x). Thus, the expected number of outer loops 1s c , and the cholce of 
the domlnatlng denslty h 1s lmportant. Notlce however that the tlme should be 
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measured In terms of the number of f n and gn evaluatlons. Such analysls wlll be 
glven further on. Whlle In many cases, the convergence to  f 1s so fast that the 
expected number of f ,  evaluatlons 1s barely larger than c , I t  1s true that there 
are examples In whlch thls expected number 1s 03. It 1s also worth observlng that 
the squeeze steps are essentlal here for the correctness of the algorlthm. They 
actually form the algorlthm. 

In the remalnder of thls sectlon, we wlll glve three lmportant speclal cases of 
approxlmatlng serles. The serles method and Its varlants wlll be lllustrated wlth 
the ald of the exponentlal, Raab-Green and Kolmogorov-Smlrnov dlstrlbutlons 
further on. 

Assume flrst that f can be wrltten as a convergent serles 
03 

f (5)- s n ( 5 )  L c h ( 5 )  
n =I 

where 

1s a known estlmate of the remalnder, and h 1s a glven denslty. In thls speclal 
instance, we can rewrlte the serles method In the followlng form: 

The convergent series method 

REPEAT 
Generate a random variate X with density h . 
Generate a uniform [ O , l ]  random variate U. 
W t Uch (X) 
s t o  
n c 0  

REPEAT 
n +n $1 
s t s  +Sa (x) 

UNTIL I S - W  I >R,+,(X) 
UNTIL s l w  
RETURN X 

Assume next that f can be wrltten as an alternatlng serles 

f (5 ) = ch (5 )(1-a >+a 2(5 )-a 3(5 >+ * * . ) 

where a, 1s a sequence of functlons satlsfylng the condltlon that a, ( 3 ) J . O  as 
n - t w ,  for all 2 ,  c Is a constant, and h 1s an easy denslty. Then, the serles 
method can be wrltten as follows: 

I 
.-. 
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The alternating series method 

REPEAT 
Generate a random variate X with density h . 
Generate a uniform [O,e ] random variate U . 
f l  t o ,  W e 0  
REPEAT 

f l  +fl+1 

w + w+a, (X) 
IF U > w  T H E N R E T U R N X  

n +fl+1 

W+W-a, ( X )  
UNTIL u < w 

UNTIL False 

Thls algorlthm 1s valld because f 1s bounded from above and below by two con- 
verglng sequences: 

k k +i 

j=i ch(a: )  j=i 
1+ (-1)’ aj  (a: ) 5 < 1+ (-1)j a j  (a: ) , k odd . 

That thls 1s lndeed a valld lnequallty follows from the monotonicity of the terms 
[conslder the terms pairwlse). As In the ordinary series method, f 1s never fully 
computed. In addltlon, h 1s never evaluated either. 

f = ch e - a 1 ( ~ ) + 4 2 ( ~ ) - .  . . 
A second lmportant speclal case occurs when 

where c ,h ,a, are as for the alternatlng serles method. Then, the alternating 
serles method is equlvalent to: 
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Th lternatin 

REPEAT 

r ie meth d; exponential version 

Generate a random variate X with density h . 
Generate an exponential random variate E .  
n t o ,  W t o  
REPEAT 

n t n + 1  
w + w +a, (X) 
IFEZWTHEP 
fl  e n  +1 
w t  W-a, (X) 

UNTIL E < W 
UNTIL False 

IV.5.SERIES METHOD 

RETURI’ 

5.2. Analysis of the alternating series algorithm. 
For the four verslons of the serles method denned above, we know that the 

expected number of lteratlons 1s equal to the reJectlon constant, c . In addltlon, 
there 1s a hldden contrlbutlon t o  the tlme complexlty due t o  the fact that the 
lnner loop, needed to declde whether Uch ( X ) s  f (x), requlres a random number 
of computatlons of a,. The computatlons of a, are assumed t o  take a constant 
tlme lndependent of n - If they do not, Just modll’y the analysls given In thls sec- 
tlon sllghtly. In all the examples that wlll follow, the an computatlons take a 
const ant tlme. 

In Theorem 5.1, we wlll glve a preclse answer for the alternatlng serles 
method. 
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Theorem 5.1. 

lows: 
Conslder the alternatlng serles method for a denslty f decomposed as fol- 

f (z ) = ch (a: )(1-a 1(z )+a& )- * * . ) , 

where c 21 1s a normallzatlon constant, h 1s a denslty, and 
a o ~ 1 ~ a l > a 2 ~  . . - BO. Let N be the total number of computatlons of a fac- 
tor  a, before the algorlthm halts. Then, 

c o c o  
E ( N )  = c j - [  U i ( 5 ) ]  h ( s )  da: . 

0 i=o 0 i=o 

c o c o  
E ( N )  = c j - [  U i ( 5 ) ]  h ( s )  da: . 

Proof of Theorem 5.1. 
By Wald’s equatlon, E ( N )  1s equal to c tlmes the expected number of a, 

computatlons In the flrst lteratlon. In the flrst lteratlon, we flx X = z  wlth den- 
slty h . Then, dropplng the dependence on a : ,  we see that for the odd terms a, ,  
we require 

1 wlth probablllty 1-a 
2 wlth probablllty a l-a 
3 wlth probablllty a 2-a 
4 wlth probablllty a 3-a 

I 

... 
computatlons of a, .  The expected value of thls 1s 

Collectlng these results glves us Theorem 5.1. 

Theorem 5.1 shows that the expected tlme complexlty 1s equal to the oscllla- 
tlon In the serles. Fast converglng serles lead to  fast  algorlthms. 

I 
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5.3. Analysis of the convergent series algorithm. 

terins s, before the algorithm halts. We have: 
As In the previous sectlon, we wlll let N be the number of computatlons of 

Theorem 5.2. 
For the convergent serles algorithm of sectlon 5.1, 

E ( N )  5 2 J (  5 Rn (x >I dx 
fl=1 

Proof of Theorem 5.2. 
By Wald’s equatlon, E ( N )  Is equal to c tlmes the expected number of s, 

computatlons In the flrst global iteration. If we flx X with denslty h ,  then if N 
Is the number of s, computations In the flrst lteratlon alone, 

Thus, 
00 

E ( N  IX)= C P ( N > n  I X )  
n =O 

Hence, turnlng to the overall number of sn computatlons, 

1 
n It 1s lmportant to note that a serles converglng at the rate - or slower can- 

not yleld flnlte expected tlme. Lucklly, many important serles, such as those of 
all the remalnlng subsectlons on the series method converge at an exponentlal 
rather than a polynomlal rate. In view of Theorem 5.2, thls virtually insures the 
flnlteness of thelr expected tlme. It 1s stlll necessary however to verlf’y whether 
the expected tlme statements are not upset in an lndlrect way through the depen- 
dence of R,  (x ) upon x : for example, the bound of Theorem 5.2 1s liiflnlte when 
SR,  (z ) dx =oo for some n . 
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5.4. The exponential distribution. 
It 1s known that for all odd k and all 2 >0, 

We wlll 

157 

apply the alternatlng serles method to the truncated exponentlal denslty 

e -z 
1-e -fi 

! ( a : ) = -  ( 0 9  <PI  9 

where lLpu>O 1s the truncatlon polnt. As domlnatlng curve, we can use the unl- 
form denslty (called h ) on [O,p]. Thus, In the decomposltlon needed for the alter- 
natlng serles method, we use 

c =-, c1 
1-e -IJ 

2, 

n !  
a , ( x )  = - . 

The monotonlclty of the an’s 1s insured when I x I 5 1 .  Thls forces us to choose 
p 5 1. The expected number of a, cornputatlons 1s 

For example, for p=l,  the value e 1s obtalned. But lnterestlngly, E(N)Ji  as 
pJ0.  The truncated exponentlal denslty 1s Important, because standard exponen- 
tlal random varlates can be obtalned by addlng an lndependent properly scaled 
geometrlc random varlate (see for example sectlon N . 2 . 2  on the Forsythe-von 
Neumann method or sectlon IX.2 about exponentlal random varlates). The algo- 
rlthm for the truncated exponentlal denslty 1s glven below: 
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A truncated exponential generator via the alternating series method 

REPEAT 
Generate a uniform [O,p] random variate X. 
Generate a uniform [OJ] random variate U. 
n to, W+O,V+l (V is used to facilitate evaluation of consecutive terms in the al- 
ternating series.) 

REPEAT 
n +n +I 
V-- 1/x 

n 
w + w + v  
IF u 2 w THEN RETURN x 
fl  t f l 1 - 1  
V+- vx 

f l  

w t w - v  
UNTIL u < w  

UNTIL False 

The alternatlng serles method based upon Taylor’s serles 1s not appllcabie to  
the exponential dlstrlbutlon on ( 0 , ~ )  because of the lmposslblllty of flndlng a 
domlnatlng density h based upon thls serles. In the exerclse sectlon, the ordlnary 
serles method 1s apglled wlth a famlly of domlnatlng densities, but the squeezing 
1s stlll based upon the Taylor serles for the exponential denslty. 

5.5. The Raab-Green distribution. 
The density 

l+cos(x ) 
j ( x ) =  ( 1 .  Im 
- - -(1---++-- 1 1 x 2  1 x 4  * 

2n 

1 
7r 2 2! 2 4! 

was suggested by Raab and Green (1961) as an approxlmatlon for the normal 
densltY. The serles expansion 1s very slmllar to that of the exponentlal function. 
A g a h  we are In a position to  apply the alternatlng serles method, but now wlth 

. It 1s easy, to verlfy that a, 10 
as n --+m for  all x In the range: 

h (x I=- 1 ( 15 I sn), c =2 and a, (x)=-- 1 x2, 
2n 2 2n! 
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Note however that a ,  Is not smaller than 1, which was a condition necessary for 
the application of Theorem 5.1. Nevertheless, the alternating series method 
remains formally valid, and we have: 

A Raab-Green density generator via the alternating series method 

REPEAT 
Generate a uniform [-7r,7r] random variate X. 
Generate a uniform (0,1] random variate u . 
n t o ,  wtO,v+l (V is used to facilitate evaluation of consecutive terms in the al- 
ternating series.) 
REPEAT 

12 e n  +1 

m2 

(2n )(2n -1) 
V c  

w t w c v  
IF u> w THEN RETURN x 
f l  t n  +1 

V t  

w t w - v  

ma 
(2n )(2n -1) 

UNTIL U < W  
UNTIL False 

The drawback with thls algorlthm Is that c , the rejection constant, Is 2. But thls 
can be avoided by the use of a many-to-one transformation descrlbed In section 

W.4. The principle Is thls: If ( X , U )  Is uniformly distributed In [--,-]X[O,2], 

then we can exlt with X when U ~ l + c o s ( X )  and with 7r slgnX-X otherwise, 
thereby avoiding reJections altogether. Wlth thls Improvement, we obtain: 

7 t . K  

2 2  



160 IV.5.SERIES METHOD 

An improved Raab-Green density generator based on the alternating series 
method 

A T  Generate a uniform [-- --] random variate X .  

Generate a uniform [0,1] random variate U .  
n t o ,  W t O ,  V+-l (V is used to facilitate evaluation of consecutive terms in the alternating 
series.) 
REPEAT 

2 ’ 2  

n t n  +1 

V t  m2 
(2n )(2n -1) 

w + w + v  
IF V > W  THENRETURNX 
n t n  +1 

v t  
w+- w-v 
IF U < W  THEN 

mz 
(2n )(2n -1) 

UNTIL False 

RETURN A signX-X 

Thls algorithm improves over the algorithm of section rV.4 for the same dlstrlbu- 
tlon In whlch the cos was evaluated once per random varlate. We won’t glve a 
detalled time analysis here. It 1s perhaps worth notlng that  the probability that 
the UNTIL, step 1s reached, 1.e. the probability that one iteration is completed, 1s 
about 2.54%. Thls can be seen as follows: If N* 1s the number of completed 
Iterations, then 

A 4i+1 
2 (-1 2 1 x4i 1 2  dx = - P (N* > i )  = 

- 

xi2- 7r (4i+1)! * 

and thus 
4 i + l  

(-1 m 1  2 E ( N * ) =  E -  
i = g T  (4 i+ l ) !  * 

In partlcuiar, P (N* >I)=-- T4 -0.0254. Also, E ( N * )  is about equal to 
3840 

1+2P(N*  >1)-1.0254 because P (N* >2) 1s extremely small. 
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5.6. The Kolmogo r ov- Smir nov distribution. 
The Kolmogorov-Smirnov distribution function 

00 

F (a:) = (-iln e-2n2z2 (a: 20) 
n =-00 

appears as the llmlt dlstrlbutlon of the Kolmogorov-Smlrnov test statlstlc (Kol- 
mogorov (1933); Smlrnov (1939); Feller (1948)). No slmple procedure for lnvertlng 
F 1s known, hence the lnverslon method 1s llkely to be slow. Also, both the dls- 
trlbutlon functlon and the correspondlng denslty are only known as lnflnlte serles. 
Thus, exact evaluatlon of these functlons 1s not posslble In flnlte tlme. Yet, by 
uslng the serles method, we can generate random varlates wlth thls dlstrlbutlon 
extremely efflclently. Thls lllustrates once more that generatlng random varlates 
1s slmpler than computlng a dlstrlbutlon functlon. 

Flrst, I t  1s necessary to  obtaln convenlent serles expanslons for the denslty. 
Taklng the derlvatlve of F , we obtaln the denslty 

co 
f (2) = 8 (-l)n+1n2xe-2n222 (5 20) 9 

n =I 

whlch Is In the format of the aiternatlng serles method lf we take 
2 ch (x) = 8xe-22 , 

(n 2 0 )  . an (5 ) = (n +lye -2z2((n +112-1) 

There 1s another serles for F and f whlch can be obtalned from the flrst serles 
by the theory of theta functlons (see e.g. Whlttaker and Watson , 1927): 

*(2n -I)*$ 

(x >o> ; 6.. - 82 F ( z )  = - C e 
n. 

Agaln, we have the format needed for the alternatlng serles method, but now 
wlth 

We wlll refer to thls serles expanslon as the second serles expanslon. In order for 
the zllternatlng serles method to be appllcable, we must verlfjr that the a n ' s  
satisfy the monotonlclty condltlon. Thls 1s done In Lemma 5.1: 
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Lemma 5.1. 

The terms a, In the first serles expanslon are monotone -1 for x > 
7r For the second serles expanslon, they are monotone 1 when x <-. 
2 

Proof of Lemma 5.1. 
In the flrst serles expanslon, we have 

2 
n 

2 --+2(2n + l ) x 2  2 -2+6x2 > O  . 

For the second serles expanslon, when n Is even, 

7r2 - (n  +1l2lr2 an (X 1 
an +1(x 1 4x 42 

> -  > l .  - - 

Also, 

. The last expresslon 1s lncreaslng In y for y 2 2  and all n 2 2 .  where y=- 

Thus, I t  1s not smaller than 2n-2log(n +1)>0. 

7r2 

23 

We now glve the algorlthm of Devroye (1980). It uses the mlxture method 
because one serles by ltself does not yleld easlly ldentlflable upper and lower 
bounds for f on the entlre real llne. We are fortunate that the monotonlclty 

condltlons are satlsfled on ( -,m) and on (O,--) for the two serles respec- 

tlvely. Had these lntervals been dlsJolnt, then we would have been forced to look 
for yet another approxlmatlon. We deflne the breakpolnt for the mlxture method 

by t E( $,z). The value 0.75 1s suggested. Deflne also p =F ( t  ). 

lr 8 2 

3 2  
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Generate a uniform [0,1] random variate u . 
IF u<p 

f THEN RETURN a random variate x with density - ,O<z < t . 
ELSE RETURN a random variate X with density - , t  cz . 7 

1-P 

For generatlon In the two Intervals, the two serles expanslons are used. Another 

. We have: constant needed In the algorlthm 1s t’=- 
8 t 2  

7r2 
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Generator for -he lef'tmost intern 

REPEAT 
REPEAT 

Generate two iid exponential random variates, E,,E l .  

Eo&--- EO 
1 1-- 

2t' 
E l + 2 E l  
G +-t'+Eo 
Accept +l(Eo)*l t 'E,(G +t')] 
IF NOT Accept 

THEN Accept +-[7-i-log(--)<El] G G 

UNTIL Accept 

x+7% 
w+o 

1 z+-- 
2G 

P 

Q + 1  

n -1 

Generate a uniform [O,l] random variate U. 
REPEAT 

W + W + Z Q  
IF u 2 w THEN RETURN X 
n +-n +2 
Q <pn2-l 
W+ W-naQ 

UNTIL u < W 
UNTIL False 

I 
I 

I 
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Generator for the rightmost interval 

REPEAT 
Generate an exponential random variate E .  
Generate a uniform I0,lI random variate U .  

The algorlthms are both stralghtfonvard appllcatlons of the alternatlng serles 
method, but perhaps a few words of explanatlon are In order regardlng the algo- 
rlthms used for the domlnatlng densltles. Thls 1s done In two lemmas. 

Lemma 5.2. 

The random varlable (where E 1s an exponentlal random varl- 

able and t >0) has denslty 

I I where c >O 1s a normallzatlon constant. 

Proof of Lemma 5.2. 
that the dlstrlbutlon functlon of the random varlable 1s 

-2(22-t Verlq (5 2 t ). Taklng the derlvatlve of thls dlstrlbutlon functlon ylelds the 
deslred result. H 
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Lemma 5.3. 
3 
2 

If G 1s a random varlable wlth truncated gamma (-) denslty 
TIr2 7T 

c &eMY (y  2 t'=,), then - 
8 t  rn has density 

where the c 's stand for (possibly dlfferent) normallzatlon constants, and t > O  1s a 
constant. A truncated gamma (-) random varlate can be generated by the algo- 

rlthm: 

3 
2 

Truncated gamma generator 

REPEAT 
Generate two iid exponential random variates, Eo& 

EO Eo*- 
1 

1-- 
2 t' 

El+2EI 
G +t'+Eo 
Accept - [ ( E o ) 2 ~ t ' E I ( G  + t o ]  
IF NOT Accept 

G G THEN Accept + [ - - l - l o g ( ~ ) ~ E l ]  t' 

UNTIL Accept 
RETURN G 

Proof of Lemma 5.3. 
7r2 4n 

82 Ir2 
'J'he Jacoblan of the transformation y=- 1s - . Thls glves the dls- 

trlbutlonal result wlthout further work If we argue backwards. The valldlty of 
the reJectlon algorlthm wlth squeezlng requlres a llttle work. Flrst, we start from 
the lncquallty 

3 

(8Y 

Y - t' 
y . <  - e (Y  3') 9 

-Y - 
which can be obtalned by maxlmlzlng ye " In the sald lnterval. Thus, 
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where E 1s an E The upper bound 1s proportlonal to the denslty of t'+ 
1 1-- 

2 t' 
exponentlal random varlate. Thls random varlate 1s called G In the algorlthm. 
Thus, If U 1s a unlform random varlate, we can proceed by generatlng couples 
G ,U until 

Thls condltlon 1s equlvalent to 

--l-lOg(F) G 5 2E , G 
t' 

where E ,  1s another exponentlal random varlable. A squeeze step can be added 
( u  20) (exerclse 5.1). 2u 

by notlng that log(l+u )2- 
2+u 

All the prevlous algorlthms can now be collected lnto one long (but fas t )  
algorlthm. For generalltles on good generators for the tall of the gamma denslty, 
we refer to the sectlon on gamma varlate generatlon. In the lmplementatlon of 
Devroye (1980), two further squeeze steps were added. For the rlghtmost lnterval, 
we can return X when U 1 4 e " t a  (whlch 1s a constant). For the leftmost lnter- 

4 t  Val, the same can be done when U 2-. For t =0.75, we have p =0.373, and 

the qulck acceptance probabllltles are respectlvely a0.86 and X0.77 for the 
latter squeeze steps. 

n2 

Related distributions. 
The empirical distribution function F, (a: ) for a sample X , ,  . . . , X ,  of 

lld random varlables 1s deflned by 

" 1  F, (a: 1 = c Y I [ X '  <z] 
i = l  

where I Is the lndlcator functlon. If Xi has dlstrlbutlon functlon F (a: ), then the 
followlng goodness-of-flt statlstlcs have been proposed by varlous authors: 
(1) The asymmet rlcal Kol mogorov-S ml rnov statlstlcs 

I(, SUP (F, -F ) , K, -=dF SUP ( F  -F, ). 
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(11) The Kolmogorov-Smlrnov statlstlc K,  =max(K, +,Kn -). 
(111) Kulper's statlstlc V, =IC, ++Kn -. 
(lv) von Mlses' statlstlc W, 2=n s ( F ,  -F ) 2 d F .  
(v) Watson's statlstlc U, =n J ( F ,  -F - ( J (F ,  -F ) d ~  ) ) ? d ~ .  

(vl) The Anderson-Darllng statlstlc A ,  2=n s 
For surveys of the propertles and appllcatlons of these and other statlstlcs, see 
Darllng (1955), Barton and Mallows (1965), and Sahler (1968). The llmlt random 
varlables (as n+m)  are denoted wlth the subscrlpts 00. The llmlt dlstrlbutlons 
have characterlstlc functlons that are lnflnlte products of characterlstlc functlons 
of gamma dlstrlbuted random varlables except In the case of A, .  From thls, we 
note several relatlons between the llmlt dlstrlbutlons. Flrst, 2K,+2 and 2K,-2 
are exponentlally dlstrlbuted (Smlrnov, 1939; Feller, 1948). K ,  has the 
Kolmogorov-Smlrnov dlstrlbutlon functlon dlscussed In thls sectlon (Kolmogorov, 
1933; Smlrnov, 1939; Feller, 1948). Interestlngly, V, 1s dlstrlbuted as the sum of 
two lndependent random varlables dlstrlbuted as K ,  (Kulper, 1960). Also, as 
shown by Watson (1961, 1962), U, 1s dlstrlbuted as -6. Thus, generatlon 

for all these llmlt dlstrlbutlons poses no problems. Unfortunately, the same can- 
not be sald for A ,  (Anderson and Darllng, 1952) and W ,  (Smlrnov, 1937; 
Anderson and Darllng, 1952). 

( F n - F 1 2  d F .  
F (1-F) 

1 
7r 

5.7. Exercises. 
1. Prove the followlng lnequallty needed In Lemma 5.3: 

(u >o). log(l+u )>- 2u 
2+u 

2. The exponential distribution. For the exponentlal denslty, choose a 
domlnatlng denslty h from the famlly of densltles 

nu " 
(x +a )" +l 

(5 >o) 9 

where n 2 1  and a >O are deslgn parameters. Show the followlng: 
1 -- 

h Is the denslty of a (U "-1) where u Is a unlform [0,1] random varl- 
able. It 1s also the denslty of a (max-'( U,, . . . , U, )-1) where the Vi 's 
are lld unlform [0,1) random varlables. 

, and show n + 1  "+l  e a  a-" 
e n 

Show that the rejection constant 1s c=(-) 

that thls 1s mlnlmal when a - n .  - 
Show that wlth a = n ,  we have c =-(1+-) 

1 n+1 1 
e n 

-+1 as n +00. 
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(v) Glve the serles method based upon reJectlon from h (where a -  -n and 
n 21 1s an Integer). Use qulck acceptance and rejectlon steps based 
upon the Taylor serles expanslon. 

(vl) Show that the expected tlme of the algorlthm 1s 00 when n = 1  (thls 
shows the danger lnherent In the use of the serles method). Show also 
that the expected tlme 1s flnlte when n 22. 

(Devroye, 1980) 

Apply the serles method for the normal denslty truncated to  [-a , a ]  wlth 
rejectlon from a qnlform denslty. Slnce the expected number of lteratlons 1s 

3. 

2a 

&(F ( a  )-F (-a )) 

where F 1s the normal dlstrlbutlon functlon, we see that I t  1s lmportant that 
a be small. How would you handle the talls of the dlstrlbutlon ? How would 
you choose a for the cornblned algorlthm ? 

In the study of spectral phenomena, the followlng densltles are lmportant: 

(1) f l ( X >  = -(- sin(x ) (the FeJer-de la Vallee Poussln denslty); 

(11) f 2(5 1 = -(- ) (the Jackson-de la Vallee Poussln denslty) . 
These densltles have osclllatlng talls. Uslng the fact that 

4. 
2 

7 r x  
3 sIn(x) 
7 r x  

x 2  x 4  -- -I--+--. . . sln( x ) 
X 3! 5! 

falls between consecutive partlal sums In thls serles, derlve sfn( x ) and that - 
a good serles algorlthm for random varlate generatlon for f and f 2 .  Com- 
pare the expected tlme complexlty wlth that  of the obvlous reJectlon algo- 
rlthms. 
The normal distribution. Conslder the serles method for the normal den- 

X 

5 .  

slty based upon the domlnatlng denslty h (x )=mln(a ,- ' ) where a >O 1s 
16ax2 

a parameter. Show the followlng: 

(1) has denslty V 
If ( U , V )  are lld unlform [-1,1] random varlates, then - 

4aU 
h .  

(11) Show that 
X* - 

1 32a 
a e  

-- 
e < - max(-,-)h(x) 

and deduce that the best constant a 1s 

(111) Prove that the followlng algorlthm 1s valld: 
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Normal generator via the series method 

REPEAT 
Generate two iid uniform [-l,l] random variates vl,v2 and a uni- 
form [0,1] random variate u .  

ELSE We-- * 1  
G X 2  

X2 n -0, Y c-,P +-1 
2 

REPEAT 
n t n  fl 

PY p c-- 
n 

w-W+P 
IF w <O THEN RETURN x 
n e n  +1 

PY P-- 
n 

w-W+P 
UNTIL W>O 

UNTIL False 

4 (lv) Show that In thls algorlthm, the expected number of lteratlons 1s - 
(An lteratlon 1s deflned as a check of the UNTIL False statement or a 
permanent return.) 

Erdos and Kac (1946) encountered the followlng dlstrlbutlon functlon on 

6. 

6. 
[ O m ) :  

Thls shows some resemblance to  the Kolmogorov-Smlrnov dlstrlbutlon func- 
tlon. Apply the serles method t o  obtaln an emclent algorlthm for generatlng 
random varlates wlth thls dlstrlbutlon functlon. Furthermore, show the lden- 
tlty 

00 

F (z ) = (-1)’ ( @ ( ( 2 j  +l)z ) - @ ( ( 2 j - 1 ) ~  )) , 
j =-m 
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where 1s the normal dlstrlbutlon functlon (Grenander and Rosenblatt, 
1953), whlch can be of some help In the development of your algorlthm. 

6. REPRESENTATIONS OF DENSITIES AS INTEGRALS. 

6.1. Introduction. 
For most densltles, one usually flrst trles the lnverslon, rejectlon and mlxture 

methods. When elther an ultra fast  generator or an ultra unlversal algorlthm is 
needed, we mlght conslder looklng at some other methods. But before we go 
through thls trouble, we should verlf’y whether we do not already have a genera- 
tor for the denslty wlthout knowlng I t .  Thls occurs when there exlsts a speclal 
dlstrlbutlonal property that we do not know about, whlch would provlde a vltal 
llnk to other better known dlstrlbutlons. Thus, I t  1s lmportant t o  be able to 
declde whlch dlstrlbutlonal propertles we can or should look for. Lucklly, there 
are some general rules that Just require knowledge of the shape of the denslty. 
For example, by Khlnchlne’s theorem (given In thls sectlon), we know that a ran- 
dom varlable wlth a unlmodal denslty can be wrltten as the product of a unlform 
random varlable and another random varlable, whlch turns out to  be qulte slmple 
In some cases. Khlnchlne’s theorem follows from the representatlon of the unlmo- 
dal denslty as an lntegral. Other representatlons as integrals wlll be dlscussed 
too. These lnclude a representatlon that wlll be useful for generatlng stable ran- 
dom varlates, and a representatlon for random varlables possesslng a Polya type 
characterlstlc functlon. There are some general theorems about such representa- 
tlons whlch wlll also be dlscussed. It should be mentloned though that thls sec- 
tlon has no dlrect llnk wlth random varlate generatlon, slnce only probablllstlc 
propertles are explolted to obtaln a convenlent reductlon to slmpler problems. We 
also need qulte a lot of lnformatlon about the denslty In questlon. Thus, were i t  
not for the fact that several key reductlons wlll follow for lmportant densltles, we 
would not have lncluded thls sectlon In the book. Also, representlng a denslty as 
an lntegral really bolls down to deflnlng a contlnuous mlxture. The only novelty 
here 1s that we wlll actually show how to  track down and lnvent useful mlxtures 
for random varlate generatlon. 

6.2. Khinchine’s and related theorems. 
By far the most lmportant class of densltles .J the class of unlmoda densl- 

tles. Thus, I t  1s useful to have some lntegral representatlons for such densltles. 
Formally, a dlstrlbutlon 1s called convex on a set A of the real llne If for all 
x , y E A ,  

F ( h + ( l - X ) y )  5 XF(x)+(l-X)F(y)  (oLX51)  . 
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It Is concave If the lnequallty 1s reversed. It 1s unimodal If I t  1s convex on (-m,O] 
and concave on [O,w), and In that case the polnt 0 1s called a mode of the dlstrl- 
butlon. The ratlonale for thls deflnltlon becomes obvlous when translated to the 
denslty (If I t  exlsts). We wlll not conslder other posslble locatlons for the mode 
to keep the notatlon slmple. 

Theorem 6.1. Khinchine’s theorem. 
A random varlable x 1s unlmodal If and only If x 1s dlstrlbuted as UY 

where U,Y are lndependent random varlables: U 1s unlformly dlstrlbuted on 
[O, l )  and Y 1s another random varlable not necessarlly possesslng a denslty. If Y 
has dlstrlbutlon functlon G on [O,w), then UY has dlstrlbutlon functlon 

1 

F ( z )  = JG(&) du . 
o ‘  

Proof of Theorem 6.1. 
We refer to Feller (1971, p. 158) for the only If part. For the If part we 

observe that P (UY s x  I U =u )= G ( a : ’ u ) ,  and thus, lntegratlng over [0,1] 

wlth respect to  du glves us the result. 
U 

To handle the corollarles of Khlnchlne’s theorem correctly, we need to recall 
the deflnltlon of an absolutely contlnuous functlon f on an lnterval [ a  ,b 1: for all 
c>O, there exlsts a 6>0 such that for all nonoverlapplng lntervals 
(zi ,yi ),ls 2’ 5 n , and all lntegers n , 

n 

i = 1  

lmplles 

.e I f ( Z i  ~f ( Y i )  I < 
t =1 

When f 1s absolutely contlnuous on [ a  , b ] ,  Its derlvatlve f ’  Is defined almost 
everywhere on [a  ,b 1. Also, I t  1s the lndeflnlte lntegral of Its derlvatlve: 

X 

f ( z ) - f ( a ) = J f ’ ( W u  ( a 9 5 b ) .  
a 

See for example Royden (1968). Thus, Llpschltz functlons are absolutely contlnu- 
ous. And If f 1s a denslty on [O,w) wlth dlstrlbutlon functlon F ,  then F 1s abso- 
lut ely contlnuous , 

X 

F ( z )  = J f  ( u )  du 9 

0 
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and 

F’(z) = f (5.) almost everywhere . 
A denslty f 1s called monotone on [O,co) (or, In short, monotone) when f 1s 
nonlncreaslng on [O,co) and f vanlshes on (-00,0). However, l t  1s posslble that 
llm f (z)=00. 
2 10 

Theorem 6.2. 
Let X be a random varlable wlth a monotone denslty f . Then 

Ilm zf ( a : )  = lim zf (5) = 0 . 
2 -+a3 2 10 

If f 1s absolutely contlnuous on all closed lntervals of (O,co), then f’ exlsts 
almost everywhere, 

00 

f ( . ) = - j f ‘ ( u ) d u  9 

2 

and X 1s dlstrlbuted as UY where U 1s a unlform [0,1] random varlable, and Y 
1s lndependent of U and has denslty 

9 (z)  = -zf‘(z) (z >o) . 

I 

Proof of Theorem 6.2, 
Assume that Ilm sup zf ( z ) L 2 a  >O. Then there exlsts a subsequence 

- * such that zi+1L2zi and xi f ( z i ) > a  > O  for all i. But 
2 +m 

z,<z,< 

O 0 1  00 
00 

1 = jf ( z>  dz L (zi+1-zi)f (zi+1) L c ~ z i + l f  (z i+i)  03 9 

0 I =1 1 = I  

whlch 1s a contradlctlon. Thus, Ilm zf (z)=O. 
2 4 0 3  

Assume next that Ilm sup zf ( z ) z 2 a  >O. Then we can And z l > z 2 >  

such that ~ i + ~ s -  and zi f ( z i ) L a  > O  for all i. Agaln, a contradlctlon 1s 

ob t a1 ned : 

2 10 
xi 
2 

O 0 1  00 
00 

1 = J f (a: 1 dz 2 (Z i  - X i  +1) f (Si 1 2 c 2”’ f (Si ) = co . 
0 i = 1  t =1 

Thus, Ilm zf (z)=O. Thls brlngs us to the last part of the Theorem. The first 

two statements are trlvlally true by the properties of absolutely contlnuous func- 
tlons. Next we show that g 1s a denslty. Clearly, 1’50 almost everywhere. Also, 

1s absolutely contlnuous on all closed lntervals of (0,~). Thus, for 
O<a < b  <co, we have 

2 10 
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b b 

bf ( b ) - a f  ( a )  = I f  ( a : )  dz+Jzf‘(z) dz . 
a a 

By the flrst part of thls Theorem, the left-hand-slde of thls equatlon tends to  0 as 
a Jo,6 +oo. By the monotone convergence theorem, the rlght-hand slde tends to  

l+Jsf’(z )dz , whlch proves that g 1s lndeed a denslty. Flnally, If Y has denslty 

g , then UY has denslty 

00 

0 

00 03 Jm du = - J f ’ ( u )  du = f ( a ) .  
z u  Z 

This proves the last part of the Theorem. 

The extra condltlon on f In Theorem 6.2 1s needed because some monotone 
densltles have f ‘=O almost everywhere (thlnk of stalrcase functlons). The extra 
condltlon ln Theorem 6.2 not present In Khlnchlne’s theorem essentlally guaran- 
tees that the mlxlng Y varlable has a denslty too. In general, Y needs to  have 
dlstrlbutlon functlon 

m 

1-xf (z)-Jf ( u )  du (z >o) . 
2 .  

(exerclse 6.9). We also note that Theorem 6.2 has an obvious extenslon to  unlmo- 
dal densltles. 

For monotone f that are absolutely continuous on all closed lntervals of 
(O,oo), the followlng generator 1s thus valld: 

Generator for monotone densities based on Khinchine’s theorem 

Generate a uniform (0,1] random variate U . 
Generate a random variate Y with density g (z )=-zf ‘(z ) ,z BO. 
RETURN X t U Y  

Example 6.1. The exponential power distribution (EPD). 
Subbotln (1923) lntroduced the followlng symrnetrlc unlmodal densltles: 
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where r>O 1s a parameter. Thls class contalns the normal (-2) and Laplace 
(-1) densltles, and has the unlform denslty as a llmlt (r+oo). By Theorem 6.2, 
and the symmetry ln f , I t  1s easlly seen that 

1 - x + V Y T  

has the glven denslty where V 1s unlformly dlstrlbuted on [-1,1] and Y 1s 

gamma(1-t-,1) dlstrlbuted. In partlcular, a normal random varlate can be 

obtalned as v m  where Y 1s gamma (-) dlstrlbuted, and a Laplace random 

varlate can be obtalned as V(,!?,+,!?,) where E,,,!?, are lld exponentlal random 
varlates. Note also that X can be generated as  SY”‘ where Y 1s gamma (-) 

dlstrlbuted. For dlrect generatlon from the EPD dlstrlbutlon by reJectlon, we 
refer to  Johnson (1979). 

1 
7 

3 
2 

1 
7 

Example 6.2. The Johnson-Tietjen-Beckman family of densities. 

posed by Johnson, TletJen and Beckman (1980): 
Another stlll more flexlble famlly of symmetrlc unlmodal densltles was pro- 

00 

where a>O and r>O are shape parameters. An lnflnlte peak at 0 1s obtalned 
whenever a s r .  The EPD dlstrlbutlon 1s obtalned for a=r+ l ,  and another dlstrl- 

1 butlon derlved by Johnson and Johnson (1978) 1s obtalned for T=-. By Theorem 

6.2 and the symmetry In f , we observe that the random varlable 
2 

X + V Y T  

has denslty f whenever V 1s unlformly dlstrlbuted on [-1,1] and Y 1s gamma 
( a )  dlstrlbuted. For the speclal case r=l ,  the gamma-lntegral dlstrlbutlon 1s 
obtalned whlch 1s dlscussed in exerclse 6.1. 
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Example 6.3. Simple relations between densities. 

for the generatlon of some of them. 
In the table below, a varlety of dlstrlbutlonal results are glven that can help 

There are a few other representation theorems In the splrit of Khlnchlne’s 
theorem. For particular forms, one could consult Lux (1978) and Mlkhallov 
(1965). For the stable dlstrlbutlon dlscussed in thls sectlon, we wlll need: 

Theorem 6.3. 
Let U be a unlform [0,1] random varlable, let E be an exponentlal random 

has dlstributlon varlable, and let g :[O,l]-+[O,oo) be a glven functlon. Then - 
functlon 

E 
9 ( W  

1 

F ( z )  = l - Je -zg(U)  du 
0 

and denslty 
1 

f ( z )  = s g  ( u ) e - ’ g ( ’ )  du . 
0 
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Proof of Theorem 6.3. 
For z >0, 

1 

> z )  = P ( E  >zg ( V ) )  = E ( e - x Y ( U ) )  = Je-xY(U) du . p (- 
E 

g ( W  0 

The derlvatlve wlth respect to z 1s -f ( z )  where f 1s deflned above. 

177 

Flnally, we mentlon a useful theorem of Mlkhallov's about convolutlons wlth 
exponentlal random variables: 

Theprem 6.4. (Mikhailov, 1965) 

Y ,  then E + Y has denslty 
If Y has denslty f and E 1s an exponentlal random varlable lndependent bf 

00 X 

h ( z )  = J e - ' f  ( z + u )  du = J f (u)e"- '  du . 
0 -00 

Furthermore, If g 1s an absolutely contlnuous denslty on [O,co) wlth g (O)=O and 
g +g'>O, - then X t E  +Y has denslty g where now Y has denslty g +g', and E 
1s stlll exponentlally dlstrlbuted. 

Proof of Theorem 6.4. 
The flrst statement 1s trlvlal. For part two, we note that g +g' 1s lndeed a 

denslty slnce g +g'>O and J(g +g')=l. (Thls follows from the fact that g 1s 

absolutely contlnuous and has g (O)=O.) But then, by partlal lntegratlon, X has 
denslty 

00 

0 

X 

J ( h ( u  )+h'(u ))e u - x  du = h (5)  .I 
-m 



178 lV.6.REPRESENTATIONS OF DENSITIES 

6.3. The inverse-of-f method for monotone densities. 
Assume that f 1s monotone on [O,m) and contlnuous, and tha t  Its lnverse 

f -' can be computed relatlvely easlly. Slnce f -' ltself 1s a monotone denslty, we 
can use the followlng method for generatlng a random varlate wlth denslty f : 

The inverse-of-f method for monotone densities 

Generate a random variate Y with density f 
Generate a uniform [0,1] random variate U. 
RETURN x t uf -I(  Y )  

The correctness of the algorlthm follows from the fact that ( Y  ,x) 1s unlformly 
dlstrlbuted under the curve of f -l, and thus that ( X ,  Y )  1s unlformly dlstrlbuted 
under the curve of f . 

Example 6.4. 
If Y Is exponentially dlstrlbuted, then Ue-' has denslty -log(%) (O<z 5 1 )  

where U Is unlformly dlstrlbuted on [0,1]. But by the well-known connectlon 
between exponentlal and unlform dlstrlbutlons, we see that the product of two lld 
unlform [O,l] random variables has denslty -log(x) (Oca 51). 

Example 6.5. 
If Y has denslty 

2 2  f -YP 1 = (log(-)) ( O L y  5 p) , 
TY 2 

and u 1s uniformly dlstrlbuted on (0,1], then X + u f  - l (Y )  has the halfnormal 
dlstrlbutlon. 
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6.4. Convex densities. 
The more we know about a denslty, the easler I t  1s to generate random varl- 

ates wlth thls denslty. There are for example a multltude of tools avallable for 
monotone densltles, ranglng from very speclflc methods based upon Khlnchlne's 
theorem to black box or unlversal methods. In thls sectlon we look at an even 
smaller class of densltles, the convex densltles. We wlll conslder the class C, of 
convex densltles on [O,oo), and the class C of densltles that are convex on [O,co) 
and on (-oo,O). Thus, c, 1s a subclass of the monotone densltles dealt wlth In 
the prevlous sectlon. 

Convex densltles are absolutely contlnuous on all closed sublntervals of 
(O,co), and possess monotone rlght and left derlvatlves everywhere that are equal 
except possibly on a countable set. If the second derlvatlve f" exlsts, then f 1s 
convex If f "Z0 .  We wlll glve one useful representatlon for convex densltles. 

Theorem 6.5. (Mixture of triangles) 
For every EC,, we have 

where F 1s a dlstrlbutlon functlon wlth F (O)=O deflned by: 
co 

F ( u )  = 1+9'(Zd)-(Uj ( u ) + J f  ) ( u  >O) , 
U 

2 

where f' 1s the rlght-hand derlvatlve of f (whlch exlsts on [O,co)), If F 1s abso- 
lutely contlnuous, then I t  has denslty 

1 
g ( u )  = 2 q y u  ( u  BO) . 

Proof of Theorem 6.5. 
We have, to show flrst that If V ,  Y are independent random varlables, where 

V has a trlangular denslty 2(1-2)+ and Y has dlstrlbutlon functlon F ,  then 
X +- V Y  has denslty f . But for z >0, 

00 03 co 
= J dF, ( u  )-2zJ dF ( u  1 + z 2 J  dF ( u  1 

f (x) = J-(l--)dF(U) 2 s  = 2J dF(u)-2rJ 

Z z u  z u 2  

O3 dF ( u )  00 co 

x u 2  
9 

x u  z u  

I 
I 
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and 

In our case, I t  can be verlfled that the interchange of lntegrals and derlvatlves 1s 
allowed. Substitute the value of f’ In the rlght-hand sldes of the equalltles for f 

and J f  . Then check that 
03 

z 

and thls glves us the Arst result. If F 1s absolutely contlnuous, then taklng the 

derlvatlve glves Its denslty, - f “(2 ). X 2  
2 

Thls theorem states that for f EC,, we can use the followlng algorlthm: 

Generator for convex densities 

Generate a triangular random variate v (this can be done as min(U,,U,) where the Ui’s 
are iid uniform [O,l) random variates). 
Generate a random variate Y with distribution function 

03 
U Y  F ( u  ) = i+--f‘(u )-(uf (u  )+ff  ) ( u  >O) . (If F is absolutely continuous, then Y has 
2 s 

5 2  density -1 I f  ( x  ).) 
2 

RETURN Xt w 

6.5. Recursive methods based upon representations. 
Representatlons of densltles as lntegrals lead sometlmes to propertles of the 

followlng klnd: assume that three random varlables X ,  Y ,Z have densltles 
f ,g ,h whlch are related by the decomposltlon 

9 (3 1 = Ph (a: )+(l--P If (z 1 . 
Assume that X 1s dlstrlbuted as @ ( Y , u )  for some functlon ?,b and a unlform [0,1] 
random varlable U lndependent of Y (thls 1s always the case). Then, we have 
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wlth probablllty p , X X ? ) ( Z ,  U )  and wlth probablllty 1-p , XX?)(?)( Y’,U’), U )  
where (Y’,u’) 1s another palr dlstrlbuted as ( Y , U ) .  (The notatlon 1s ued for 
“1s dlstrlbuted as”.) Thls process can be repeated untll we reach a substltutlon by 
2 .  We assume that Z has an easy denslty h . Notlce that we never need to actu- 
ally generate from g ! Formally, we have , startlng wlth 2 :  

Recursive generator 

Generate a random variate z with density h , and a uniform [0,1] random variate U 
X+$(Z ,U)  
REPEAT 

Generate a uniform [O,l]random variate V ,  

IF V l P  
THEN RETURN X 
ELSE 

Generate a uniform [0,1] random variate U. 
X - $ ( X ,  u 1 

UNTIL False 

The expected number of 1 teratlons In the REPEAT loop 1s - because the 
V 

number of V-varlates needed 1s geometrically dlstrlbuted wlth paAmeter p . Thls 
algorlthm can be flne-tuned In most appllcatlons by dlscoverlng how unlform 
varlates can be reiused. 

Let us lllustrate how thls can help us. We know that for the gamma denslty 
wlth parameter a E(O,l), 

S ( X )  = - a : f ’ ( a : )  = a h ( x ) + ( l - a ) f  ( a : ) ,  

where h 1s the gamma ( a + 1 )  denslty. Thls 1s a convenlent decomposltlon slnce 
the parameter of h 1s greater than one. Also, we know that a gamma ( a  ) random 
varlate 1s dlstrlbuted as U Y  where U 1s a unlform [0,1] random varlate and Y 
has denslty - s f ‘ ( s )  (apply Theorem 6.2). Recall that we have seen several f a s t  
gamma generators for a 21 but none that was unlformly fas t  over all a .  The 
prevlous recurslve algorlthm would boll down to generating x as 

z h  vi 
i = 1  

where Z 1s gamma ( a  +1) dlstrlbuted, L 1s geometrlc wlth parameter a ,  and the 
Vi’s are lld unlform [0,1] random varlates. Note that thls In turn 1s dlstrlbuted as 
Ze-GL where GL 1s a gamma ( L  ) random varlate. But the denslty of GL 1s 
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03 a -1 e -z 
(x >o) . a ( 1 4  )i-1 - e  - -a2 

i =1 ( a  -l)! 

Thus, we have shown that the followlng generator Is valld: 

A gamma generator for a < 1 

Generate a gamma ( a  +1) random variate 2 .  
Generate an exponential random variate E .  

E 
RETURN X-ze  a 

_- 

The recurslve algorlthin does not require exponentlatlon, but the expected 
number of iterations before halting 1s -, and thls 1s not unlformly bounded over 

E 
(0,l). The algorlthm based upon the decomposltlon as Ze a on the other hand 1s 
unlformly fast. 

1 
U 

-- 

Example 6.6. Stuart’s theorem. 
Without knowlng it, we have proved a speclal case of a theorein of Stuart’s 

(Stuart, 1902): if Is gamma ( a  ) dlstrlbuted, and Y is beta (6 ,a -6 ) distributed 
and lndependent of 2 ,  then z Y , Z ( l - Y )  are lndependent gamma ( 6 )  and 
gamma(a -b ) random varlables. If we put b =1, and formally replace a by a +1 

then I t  Is clear that ZU a 1s gamma ( a )  dlstrlbuted, where U 1s a unlform [0,1] 
random varlable. 

1 - 

There are other slmple examples. The von Neumann exponentlal generator Is 
also based upon a recurslve relationship. It Is true that an exponentlal random 

1 varlate E 1s wlth probablllty 1-- dlstrlbuted as a truncated exponentlal random 
e 

varlate (on [O, l ] )  , and that E is wlth probabillty - dlstrlbuted a s  1+E. Thls 

recurslve rule leads preclsely to the exponentlal generator of sectlon N.2. 

1 
e 
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6.6. A representation for the stable distribution. 
The standardlzed stable dlstrlbutlon 1s best deflned In terms of Its charac- 

terlstlc functlon 4: 
-i 2 ij; 6 sgn(t ) 

(a#l) 2 

loggl(t) = I-' - I t ' I Q e  (i+i 6-sgn(t)log( 2 I t I )) (a=i) n. 

Here &[-1,1] and aE(0 ,2]  are the shape parameters of the stable dlstrlbutlon, and 
5 1s deflned by mln(a,2-a). We omlt the locatlon and scale parameters in thls 
standard form. To save space, we wlll say that X 1s stable(a,S) when I t  has the 
above mentioned characterlstlc functlon. Thls form of the characterlstlc functlon 
1s due to Zolotarev (1959). By far the most lmportant subclass 1s the class of sym- 
metric stable dlstrlbutlons whlch have 6=0: thelr characterlstlc functlon 1s slmply 

4( t>  = e - l t  I ( * .  

Desplte the slmpllclty of thls characterlstlc functlon, I t  1s qulte dlfflcult to obtaln 
useful expressions for the correspondlng denslty except perhaps In the speclal 
cases a=2 (the normal denslty) and a=l (the Cauchy denslty). Thus, I t  would 
be convenlent If we could generate stable random varlates wlthout havlng to 
compute the denslty or dlstrlbutlon functlon at any polnt. There are two useful 
representatlons that wlll enable us to apply Theorem 6.4 wlth a sllght 
modlflcatlon. These wlll be glven below. 

Theorem 6.6. (Ibragimov and Chernin, 1959; Kanter, 1975) 
For a<l,  the denslty of a stable(a,l) random varlable can be wrltten as 

where 
1 

sln(au ) I-a sln((l-a)u ) 
sin( u ) sln(au ) 1 s ( u ) = (  

When U 1s unlformly dlstrlbuted on [0,1] and E 1s lndependent of U and 
exponentlally dlstrlbuted, then 

1s stable(a,l) dlstrlbuted. 
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Proof of Theorem 6.6. 
For the flrst statement, we refer to Ibraglmov and Chernln (1959). The latter 

statement 1s an observation of Kanter's (1975) whlch 1s qulte easlly verlfled by 
l-a 

I --. - ' (Tu ) a , and notlng that i t  1s equal computlng the dlstrlbutlon functlon of ( 

to 
E 

Taklng the derlvatlve glves us the denslty f . 

The second part of the proof uses a sllght extenslon of Theorem 6.4. Thls 
representatlon allows us to generate stable(a,l) random varlates qulte easlly - In 
most computer languages, one llne of computer code wlll sufflce! There are two 
problems however. Flrst, we are stuck wlth the evaluatlon of several trl- 
gonometrlc functlons and of two powers. We wlll see some methods of generatlng 
stable random varlates that do not require such costly operatlons, but they are 
much more compllcated. Our second problem 1s that Theorem 6.6 does not cover 
the case 6#l. But thls 1s easlly taken care of by the followlng Lemma for whlch 
we refer to Feller (1971): 

Lemma 6.1. 

A. If X and Y are lld'stable(a,l), then Z t p X - q Y  1s stable(a,6) where 
TE(1+6) 

p a  = sin( )/sln(rE) , 
2 

rE( 1-6) 
q a  = sln( )/sln(nE) . 

2 

B. If X 1s s t ab le (2 , i )  and N 1s lndependent of X and normally dlstrlbuted, 
then N m  1s stable(cu,O), all aE(O,2]. 

2 

Uslng thls Lemma and Theorem 6.6, we see that we can generate all stable 
random varlates wlth elther c u < l  or 6=0. To All the vold, Chambers, Mallows 
and Stuck (1976) proposed to  use a representatlon of Zolotarev's (1966): 
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Theorem 6.7. (Zolotarev, 1966; Chambers, Mallows and Stuck,1976) 
7 r 7 r  

2 2  
Let E be an exponentlal random variable, and let U be a unlform [--,-I 

random variable lndependent of E .  Let further 7 = -- 7 r f i .  Then, for af.1, 
2 a  

1-0 - 
sin( a( U -7)) cos( U -a( U -7)) a 1 E ( 1 

X t  - 
(cos u ) a 

1s stable(a,S) dlstrlbuted. Also, 

1) X+--((T+6U)tan( 2 7 r  U )-6log( 7rE cos( U ) 
7r 7r+26U 

1s stable(1,S) dlstrlbuted. 

We leave the determlnatlon of the lntegral representatlon of f to the 
reader. It 1s noteworthy that Theorem 6.7 1s a true extension of Theorem 6.6 

(Just note that for a < l , 6 = l ,  we obtaln 7=--. There are three speclal cases 

worth notlng: 
(1) A stable(2,O) random variate can be generated as a sln(2 U )  ’ = 2 a  sln( U). Thls 1s the well-known Box-Muller representa- 

tlon of 
(11) A stable(1,O) random varlate can be obtalned a s  tan(U),  whlch ylelds the 

lnverslon method for generatlng Cauchy random varlates. 

(111) A stable(-,1) random varlate can be obtalned as 

7r 

2 

c o s y  1 
2 tlmes a normal random varlate (see sectlon V.4). 

1 
2 

1 

1 U T ’  
4E s h 2 (  --- 

2 4  

whlch 1s dlstrlbuted In turn as 
1 

4E cos2( U )  ’ 

where N 1s normally dlstrlbuted. whlch 1s In turn dlstrlbuted as - 1 

2 N 2  
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Characteristic function #( t ) 
e-l'lO,O<a~l 

, O < f f U < _ l  
1 

l + l t  I "  
(1- I t I )", I t I <l,rr>l 
1- I t 1 O ,  I t I < l , O < c y < l  

6.7. Densities with Polya type characteristic functions. 
Thls sectlon 1s added because I t  lllustrates that representatlons offer unex- 

pected help In many ways. It 1s frustratlng to come across a dlstrlbutlon wlth a 
very slmple characterlstlc functlon In one's research, and not be able to generate 
random varlates wlth thls characterlstlc functlon, at least not wlthout a lot of 
work. But we do know of course how to generate random varlates wlth some 
characterlstlc functlons such as normal, unlform and exponentlal random varl- 
ates. Thus, If we can And a representatlon of the characterlstlc functlon (b in 
terms of one of these slmpler characterlstlc functlons, then there 1s hope of gen- 
eratlng random varlates wlth characterlstlc functlon (b. By thls process, we can 
take care of qulte a few characterlstlc functlons, even some for whlch the denslty 
1s not known In a slmple analytlc form. Thls wlll be lllustrated now for the class 
of Polya characterlstlc functlons, 1.e. real even contlnuous functlons (b wlth 
+(0)=1, llm +( t )=O, convex on (0,~). Thls class 1s lmportant both from a practl- 

cal polnt of vlew (it contalns many lmportant dlstrlbutlons) and from a dldactlcal 
polnt of vlew. The examples that we wlll conslder In thls subsectlon are llsted In 
the table below. 

t+m 

Name 
Symmetric stable distribution 

Linnik's distribution 

The second entry In thls table is the characterlstlc functlon of a unlmodal 
denslty for aE(0,2] (Llnnlk (1962), Lukacs (1970, pp. 96-97)), yet no slmple form 
for the denslty 1s known. We are now ready for the representatlon. 

~ ~~ ~ 

Theorem 6.8. (Girault, 1954; Dugue and Girault, 1955) 
Every Polya characterlstlc functlon (b can be decomposed a s  follows: 

03 t 
(bu 1 = so- I - I I+ dF (8 1 ( t  9 

S 0 

(b(t ) = 4 - t  ) ( t  <o) f 

F (s ) = l-$(S )+s d'(s ) 

where F 1s a dlstrlbutlon functlon wlth F (O)=O and deflned by 

(s >O) . 

Here (b' 1s the rlght-hand derlvatlve of (b (whlch exlsts everywhere). If F 1s abso- 
lubely contlnuous, then I t  has denslty 

g (s ) = s $"(s ) (s >o) . 
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From thls, l t  1s a mlnor step to conclude: 

187 

I Theorem 6.9. (Devroye, 1984) 
Y I If 4 1s a Polya characterlstlc functlon, then X + ,  has thls characterlstlc 
L 

functlon when Y ,Z are Independent random varlables: Z has the dlstrlbutlon 
functlon F of Theorem 6.8, and Y has the FeJer-de la Vallee Poussln (or: FVP) 
denslty 

Theorem 6.9 uses Theorem 6.8 and the fact that the FVP denslty has 
characterlstlc functlon (1- I t I )+. There are but two thlngs left to  do now: flrst, 
we need to obtaln a fast  FVP generator because i t  1s used for all Polya type dls- 
trlbutlons. Second, I t  1s lmportant to demonstrate that the dlstrlbutlon functlon 
F In the varlous examples 1s often quite slmple and easy to  handle. 

Remark 6.1. A generator for the Fejer-de la Vallee Poussin density. 
Notlce that If X has denslty 

1 sln(z) 4- 1 ,  7 r x  

then 2X has the F W  denslty. In vlew of the osclllatlng behavlor of thls denslty, 
I t  1s best to  proceed by the rejection method or the serles method We note first 
that sln(x) 1s bounded from above and below by consecutlve terms In the serles 
expanslon 

1 1 
3! 5! 

sln(x) = x---z3+-~5- . . , 

and that I t  s bounded In absolute value by 1. Thus, the denslty f of X 1s 
bounded as follows: 

1 1  

4 42 
where h (x )=mln(-,7), whlch 1s the denslty of V B ,  where v 1s a unlform 

[-1,1] random variable, and B 1s fl wlth equal probablllty. The reJectlon 
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4 

7r 
constant of - In thls lnequallty 1s usually qulte acceptable. Thus, we have: 

FVP generator based upon rejection 

REPEAT 
Generate iid uniform [-1,1] random variates u ,x. 
IF u<o 

THEN 
1 X+- 
X 

Accept --[ I U 1 <sin2(X)] 
ELSE Accept +[ I u I X2ss in2(X) )  

UNTIL Accept 
RETURN 2x 

The expected tlme can be reduced by the Judlclous use of squeeze steps. Flrst, If 

I X I 1s outslde the range [O,-1, I t  can always be reduced to a value wlthln that 

range (as far as the value of sin2(X) 1s concerned). Then there are two cases: 

(1) If I x I st, we can use 

A 

2 

A A  7r (11) If I X I E(--,--], then we can use the fact that sln(X)=cos(---X)=cos(Y), 
where Y now is In the range of (1). The followlng lnequalltles wlll be helpful: 

4 2  2 

Y 2  Y 4  1-Yz < sln(X> I--+-- .m 
2 -  2 24 

Example 6.7. The symmetric stable distribution. 
In Theorem 6.9, has denslty g glven by 

g (s ) = (012s2*-1+01(l-a)sa-1)e-S (s >o) . 

But we note that  Z a  has denslty 

cr(se-8 )+(l-a)(e-' ) (s BO) , 
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whlch 1s a mlxture of a gamma (2) and an exponentlal denslty. Thus, Z 1s dlstrl- 
buted as 

1 - 

where E,,E, and U are lndependent random varlables: E ,  and E ,  have an 
exponentlal denslty, and U 1s unlformly dlstrlbuted on [0,1]. It 1s also worth 
observlng that If we use Ul ,  ... for lld unlform [0,1] random varlables, then Z 1s 
dlstrlbuted as 

1 - 
( E  ,+max(E ,+log(a),O)) a 

and as 

Example 6.8. Linnik's distribution 
We verlfy that 2 In Theorem 6.9 has denslty g glven by 

g (s ) = ((a2+a)s2a-1+(a-a2)S"-1)(1+Sa)-3 (s >o) * 

It 1s perhaps easler to work wlth the denslty of Za: 

(s >O) . s (a+l)+(l-a) 
(l+s )3 

l+a + a The latter denslty has dlstrlbutlon functlon 1-- , and thls Is easy 
l+s ( l+sP 

to  Invert. Thus, a random varlate Z can be generated & 

where U 1s a unlform [o,1] random varlate. If speed 1s extremely Important, the 
square root can be avolded If we use the rejectlon method for the denslty of z", 
wlth domlnatlng denslty ( i + ~ ) - ~ ,  whlch 1s the denslty of --1. A little work 

shows that Z can be generated as follows: 

1 
U 
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REPEAT 
Generate iid uniform [ O , l ]  random variates U ,  V .  

UNTIL 2aU 5 v (Now, x is distributed as zp.)  
RETURN X' 

1 

The expected number of iterations 1s l+a. 

Example 6.9. Other examples. 
Assume that $( t  ) = (1- I t I for a>l. Then $(s )-s $'(s ) 1s absolutely 

contlnuous. Thus, the random varlable Z of Theorem 6.9 has beta (2,a-1) den- 

There are sltuatlons In whlch the dlstrlbutlon functlon F of Theorems 6.8 
and 6.9 1s not absolutely contlnuous. To lllustrate thls, take q5(t)=(l- I t I O)+, 

and note that F (s) = (1-a)s" ( 0 5 s  51). Also, F (l)=l. Thus, F has an atom 
of welght a at 1, and I t  has an absolutely contlnuous part of welght l-a wlth 
support on (0,l). The absolutely contlnuous part has denslty ( 0 5 s  si), 

which 1s the denslty of U where u 1s unlform on [0,1]. Thus, 

slty g (s )=a(a-l)s (l-s ( 0 5 s  51). 

1 - 

1 wlth probablllty a 

U wlth probablllty l-a 
z = (  - 1 

Here we can use the standard trlck of recuperatlng part of the unlform [O,l] ran- 
dom varlate used t o  make the "wlth probablllty a'' cholce. 
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A. 

B. 
f 1s convex If and only If a , 6  21. It 1s concave If and only If a ,6  <I. 
Y b  has denslty f , where Y Is beta ( b  ,a +1) dlstrlbuted. 

- 

b 
) has denslty f where Y 1s gamma ( 6  ) dlstrlbuted, and 2 is c. (rtz 

gamma ( a  +1) dlstrlbuted and lndependent of Y .  
6. Thls 1s a contlnuatlon of exerclse 5 for the speclal case b =l. The denslty is 

f (z)=(a +l)(l-s)' (05% 51). From the prevlous exerclse we recall that a 

random varlate wlth thls dlstrlbutlon can be obtalned as 1-U at-1 and as 
1 - 

- 
where U Is a uniform [0,1] random varlate, E 1s an exponentlal 

E +Ga +1 
random varlate, and G,+l 1s a gamma ( a  +1) random varlate lndependent of 
E .  Both these methods requlre costly operatlons. The followlng reJectlon 
algorlthms are usually faster: 

Rejection method #1, recommended for a > 1 

REPEAT 
REPEAT 

Generate two iid exponential random variates, E I ,E2 .  
E 

U N T I L X I 1  
Accept t[Ez(l-X)-ux2~O] 
IF NOT Accept THEN Accept +[uX+E2+a l o g ( l - X ) ~ O ]  

X 4 - 1  
U 

UNTIL Accept 
RETURN X 

Rejection method #2, recommended for a < 1 

REPEAT 
Generate two iid uniform [0,1] random variates, U ,X . 

UNTIL U<(l-X)' 
RETURN X 

Show that the reJectlon algorlthms are valld. Show furthermore that the 
expected number of lteratlons 1s - a and a +1 respectlvely. (Thus, a unl- 

formly fast  algorlthm can be obtalned by uslng the Arst method for a 21 
U 

I 

I 
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6.8. Exercises. 
1. 

2. 

3. 

4. 

5. 

191 

The gamma-integral distribution. We say that X 1s GI(a)  (has the 
gamma-lntegral dlstrlbutlon wlth parameter a >0) when Its denslty 1s 

Oo U a - 2 e - u  

2 r ( a >  
f ( a : ) = J  du (a: >o) . 

Thls dlstrlbutlon has a few remarkable propertles: I t  decreases monotonlcally 
on [O,co). It has an lnflnlte peak at 0 when a 5 1 .  At a =1, we obtaln the 

1 

a -1 
exponentlal-lntegral denslty. When a >1, we have f (O)=- . For a=2,  

the exponentlal denslty 1s obtalned. When a >2, there 1s a polnt of lnflectlon 
at a -2, and f'(O)=O. For a =3, the dlstrlbutlon 1s very close to  the normal 
dlstrlbutlon. In thls exerclse we are malnly lnterested In random varlate gen- 
eratlon. Show the followlng: 
A. X can be generated as U Y  where U 1s unlformly dlstrlbuted on [O,l] 

and Y 1s gamma ( a  ) dlstrlbuted. 
B. When a 1s Integer, X 1s dlstrlbuted as GZ where 1s unlformly dlstrl- 

buted on 1, . . . , a-1, and Gz 1s a gamma ( 2 )  random varlate. Note 
that  X 1s dlstrlbuted as -log( U, . . U, ) where the .Vi's are lld unl- 
form [0,1] random varlates. Hlnt: use lnductlon on a .  

As a +co, - tends In dlstrlbutlon to  the unlform [0,1] denslty. 

Compute all moments of the GI(a ) dlstrlbutlon. (Hlnt: use Khlnchlne's 
theorem .) 

X C. 

D 

The denslty of the energy spectrum of flsslon neutrons 1s 

U 

1. Apply 
1 
2 

where a ,6 >O are parameters. Recall that  slnh(x )=-(e2 -e-' 

Theorem 6.4 for deslgnlng a generator for thls dlstrlbutlon(Mlkhallov, 1965). 
How would you compute f (a:) wlth seven dlglts of accuracy for the 
exponentlal-lntegral denslty of Example 6.3? Prove also that for the same 
dlstrlbutlon, F (a: )=(1-e -' )+xf (x ) where F 1s the dlstrlbutlon functlon. 

If U,T/ are lid unlform [O,l] random varlables, then for O<a <1, Uv 
has denslty x-' -1 (OC x < 1). 
In the next three exerclses, we conslder the followlng class of monotone den- 
sltles on [%I]: 

1 - 

where a ,6 > O  are parameters. The coefflclent wlll be called B .  The mode of 
the denslty occurs at x =0, and f (O)=B. Show the followlng: 
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and the second method for a <1.) 

Contlnuatlon of exerclse 5 for 6 =- . The denslty we are conslderlng here 

can be wrltten as follows: 

1 
2 

7. 

f ( x )  = B(l-x2)a ( O S X  5 1 )  . 

N .  
A. 

B. 

C. 

3 r(a +TI 
.) From exerclse 5 we recall that a random varlate 

where N 1s a normal 

1s a gamma ( a  +1) random varlate lndependent of 

2 (Here B =- 

wlth thls denslty can be generated as 

random varlate, and G, 

J;; r(a+i) 
N 

d m  

Show that We can also use I 2Y-1 I where Y 1s beta ( a  + l , a  +1) dlstrl- 
buted. 
Show that If we keep generatlng lld unlform [0,1] random varlates u,x 
untll u s ( 1 - x 2 ) " ,  then X has denslty f , the expected number Of 

lteratlons 1s B , and B lncreases monotonlcally from 1 ( a  =0) to 

Show that the followlng reJectlon algorithm 1s valld and has reJectlon 
00 ( a  -)00). 

3 r(a +,I 
4 constant (whlch tends monotonlcally to 1 as a 400): Ja r ( a  +I)  

Rejection from a normal density 

REPEAT 
Generate independent normal and exponential random variates 
N , E .  

I N \  , y t x a  x'\/20 
aY Accept -[ Y - 11AND [ 1- Y (1+ E) 2 01 

IF NOT Accept . THEN Accept - [Y<l:  A i  
[ u Y + E + u  ~ o ~ ( I - Y ) L o ]  

UNTIL Accept 
RETURN x 

X Hlnt: use the lnequalltles -- < l o g ( l - x ) ~ - x  (O<x el). 
1-x - 

8.  The exponential power distribution. Show that If S Is a random sign. 

and G has the exponentla1 
1 - 1 

T 
1s a gamma (-) random varlate, then S ( G  ) 

7 
- 
7 
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9. 

10. 

11. 

12. 

power dlstrlbutlon wlth parameter 7, that is, Its denslty 1s of the form 
c e -  I 
Extend Theorem 6.2 by showlng that for all monotone densltles, I t  sufflces to 
take Y wlth dlstrlbutlon functlon 

I 'where c 1s a normallzatlon constant. 

03 

F ( s )  = 1-Jf ( u )  d u - z f  ( a : )  ( Z E R ) .  
z 

Extend Theorem 6.5 t o  all convex densltles In C. 
The Pareto distribution. Let E ,  Y be lndependent random varlables, 
where E 1s exponentlally dlstrlbuted, and Y has denslty g on [O,m). Glve 
an lntegral form for the denslty and dlstrlbutlon functlon of X =E / Y .  Ran- 
dom varlables of thls type are called exponentlal scale mlxtures. Show that 
when Y 1s gamma ( a  ), then 1-l-E / Y  Is Pareto wlth parameter a ,  1.e. 
i+E / Y has denslty a / a :  
Develop a unlformly fa s t  generator for the famlly of densltles 

(a: > 1) (see e.g. Harrls, 1968). 

where n 21 1s an lnteger parameter, and C, 1s a constant dependlng upon 
n only. 

7. THE RATIO-OF-UNIFORMS METHOD. 

7.1. Introduction. 
The reJectlon method has one blg drawback: densltles wlth lnflnlte talls have 

to be handled wlth care; often, talls have to be cut off and treated separately. In 
many cases, thls can be avolded if the ratlo-of-unlforms method 1s used. Thls 
method 1s partlcularly well sulted for bell-shaped densltles wlth talls that 
decrease at least as f a s t  as z - ~ .  The ratlo-of-unlforms method was flrst proposed 
by Klnderman and Monahan (1977), and later applled t o  a varlety of dlstrlbu- 
tlons such as the t dlstrlbutlon (Klnderman and Monahan,ig79) and the gamma 
dlstrlbutlon (Cheng and Feast, 1979). 

Because the resultlng algorlthms are short and often fast, and because we 
have yet another beautlful lllustratlon of the reJectlon and squeeze prlnclples, we 
wlll devote qulte a blt of space to thls method. The treatment wlll be systematlc 
and slmple: we are not looklng for the most general form of algorlthm but for one 
that 1s easy to understand. 

We begln wlth 
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Theorem 7.1. (Kinderman and Monahan, 1977) 

Let A ={ (u  , v ) :Osv  < where f 30 Is an lntegrable functlon. If 
V 
U 

- 
( U , V )  1s a random vector unlformly dlstrlbuted over A ,  then - has denslty 
1 -f where c =Jf =2 area ( A  ). 
C 

Proof of Theorem 7.1. 

The Jacoblan of the transformatlon V Deflne ( X , Y )  by X = U , Y = -  U' 
u =z ,v  =zy 1s x . The denslty of (u  ,-v) 1s IA (u  ,v )/(c /2). Thus, the denslty of 

V ( X , Y )  1s z tlmes IA ( z , y z ) / ( c  /2) = z I p ~ ~ ~ ~ ~ ( x ) / ( c  /2). The denslty of Y = -  
U 

Is the marglnal denslty computed as 

But we already know how to generate unlformly dlstrlbuted random vectors: 
I t  sufflces t o  enclose the area A by a slmple set such as a rectangle, In whlch we 
know how to generate unlform random vectors, and to apply the rejectlon prlncl- 
ple. Thus, I t  1s lmportant to verlfy what A looks llke In general. Flrst, A 1s a 
subset of [O,m)XR . It Is symrnetrlc about the u -axls If f 1s symrnetrlc about 0. 
It vanlshes In the negatlve v-quadrant when f 1s the denslty of a nonnegatlve 
random varlable. But what lnterests us more than anythlng else are condltlons 
lnsurlng that A C [ O , b ) X [ a - , a + ]  - for some flnlte constants 6 ~ O , a - ~ O , a + ~ O .  It 
helps to note that the boundary of A can be found parametrlcally by 
{ ( u  ( x ) , v  (z )):z ER } where 

u ( z ) =  m, 
v (5) = x m F j  . 

Thus, A can be enclosed In a rectangle If and only If 

(1) I (z)  Is bounded; 
(11) z2f (x ) 1s bounded. 

Baslcaily, thls lncludes all bounded densltles wlth subquadratlc talls; such as the 
normal, gamma, beta, t and exponentlal densltles. From now on, the encloslng 
rectangle wlll be called B =[o,6 ) X  [a-,a +]. For the sake of slmpllclty, we wlll 
only treat densltles satlsfylng (1) and (11) In thls sectlon. 
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The ratio-of-uniforms method 

[SET-UP] 

Compute b ,a - ,a+  ror an enclosing rectangle. Note that 
b > s u p d m , a _ 5 i n r  x ~ , a + L s u p  z m. 
[GENERATOR] 
REPEAT 

Generate U uniformly on [o,b I ,  and V uniformly on [ a  ,,a +]. 
V X + -  U 

UNTIL UaSf  (x) 
RETURN x 

By Theorem 11.3.2, ( U , V )  1s unlformly dlstrlbuted In A . Thus, the algorlthm 1s 
valld, 1.e. X has denslty proportlonal to the functlon f . We can also replace f 
by cf for any constant c . Thls allows us to  ellmlnate all annoylng normallzatlon 
constants. In any case, the expected number of lteratlons 1s 

6 ( ~ , - a , )  26 b+-d - 
03 area A 
J f ( a : )  dx 

-00 

Thls wlll be called the reJectlon constant. Good densltles are densltles In whlch A 
fills up most of Its encloslng rectangle. As we wlll see from the examples, thls 1s 
usually the case when f puts most of Its mass near zero and has monotonlcally 
decreaslng talls. Roughly speaklng, most bell-shaped f are acceptable candl- 
dates. 

The acceptance condltlon U 2 s  f (x) cannot be slmpllAed by uslng loga- 
rlthmlc transformatlons as we sometlmes dld in the reJectlon method - thls 1s 
because U 1s expllcltly needed In the deflnltlon of X .  The next best thlng 1s to 
make sure that we can avold computlng f most of the tlme. Thls can be done 
by lntroduclng one or more qulck acceptance and qulck reJectlon steps. Typlcally, 
the algorlthm takes the followlng form. 
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The ratio-of-uniforms method with two-sided squeezing 

[SET-UP) 

Compute b ,a-,a+ for an enclosing rectangle. Note that 
b > s u p d T G T , a - ~ i n f  x m , a + > s u p  x \/r?.'-i. 
[ G E N E U T O R ]  
REPEAT 

Generate U uniformly on [O, b 1, and I/ uniformly on [ a  -, a +]. 
V X+- U 

IF [Quick acceptance condition] 
THEN Accept 4- True 
ELSE IF [Quick rejection condition] 

THEN Accept + False 
ELSE Accept + [Acceptance condition ( u2s f (x) )] 

UNTIL Accept 
RETURN x 

In the next sub-sectlon, we wlll glve varlous qulck acceptance and qulck reJectlon 
condltlons for the dlstrlbutlons llsted In thls lntroductlon, and analyze the perfor- 
mance for these examples. 

7.2. Several examples. 

lng Lemma can be useful In thls respect. 
We wlll need varlous lnequalltles In the deslgn of squeeze steps. The follow- 
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Lemma 7.1. 
X 

1-x (1) -x 2 log(1-x) 2 -- ( O S X  <1) . 
(11) -x-- > log(1-s ) X 2  

2 -  
X 2  

2( 1-x ) 
2 -x- ( O I X  a). 

(111) log(x) 5 x-1 (x >o). 
(lv) 5-- X 2  5 log(l+x) 

2 

( 0 - 3  <1). 
x 2  x3 < x--+- x 
2 3  - 

2x +3x2 < log(l+x ) 
2(l+x)2 - (VI 

2 s  +3x 2+x < - 
2(1+$ l2 

X 
(5 20). = 2-  

2(l+x ) 
(vl) Reverse the lnequalltles In (v) when - l < x  SO. 

Proof of Lemma 7.1. 
Parts  (1) through (lv) were obtalned In Lemma IV.3.2. By the Taylor serles 

for g (x )=(l+z )log(l+x ), we see that 

for some & between 0 and 5.  But 
g (O)=O,g’(x )=l0g(l +x )--1 ,g’(O)=1 ,g”(x )= - . Thus, for x >O, 1 

l + x  
X 2  X 2  

X +  L g ( x )  5 a:+-. 2(1+x) 2 

Thls proves (v) and (vl). 

For varlous densltles, we llst qulck acceptance and reJectlon condltlons In 
terms of u , v  , x .  When used in the algorlthm, these runnlng varlables should be 
replaced by the random varlates U , V , X  of course. Other useful quantltles such 

I 
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Acceptance condition 

Quick acceptance condition 

199 

dlre 
2’ 5 -4lOgu 
za  .e 4(-cu +l+l0gc ) (e >O) 

x a  5 4-4u 

2’ 5 6-8u +2u’ 

za 5 44-12u + 6 u ~ - % ~  
3 

a s  the reJectlon constant and values for 6 ,a- ,a,  are llsted too. 

Example 7.1, The normal density. 
All of the above 1s summarized In the table glven below: 

I _- .J* I 

I 

T 

2 
area ( A  ) - 
Rejection constant 14 

I 4 Quick rejection condition I za 2 ,-4 
u 

2 z a  2 ---2u I 
The table 1s nearly self-explanatory. The qulck acceptance and reJectlon condl- 
tlons were obtalned from the acceptance condltlon and Lemma 7.1. Most of these 
are rather stralghtforward. The fastest experlmental results were obtalned wlth 
the thlrd entrles In both llsts. It 1s worth polntlng out that the flrst qulck accep- 
tance and rejection condltlons are valld for all constants c >O lntroduced In the 
condltlons, by uslng lnequalltles for log(uc ) glven In Lemma 7.1. The parameter 
c should be chosen so that the area under the qulck acceptance curve 1s maxl- 
mal, and the area under the qulck reJectlon curve 1s mlnlmal. 
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e 
Acceptance condition 2 5 -2logu 

Quick acceptance condition 2 5 2(1-u) - 

Example 7.2. The exponential density. 
In analogy wlth the normal denslty, we present the followlng table. 

area (A ) I "  
I Rejection constant I '  

I 2 1 2 2 7 - 2  

Quick rejection condition 
l 2  

(u --) 2 e 
eu U 

2 2 -- 

It 1s lnslghtful to draw A and to construct slmple qulck acceptance and reJectlon 
condltlons by examlnlng the shape of A .  Slnce A 1s convex, several linear func- 
tlons could be useful. 

Example 7.3. The t distribution. 
The ratlo-of-unlforms method has led to some of the fastest known algo- 

rlthms for the t dlstrlbutlon. In thls sectlon, we omlt, as we can, the normallza- 
tlon constant of the t denslty wlth parameter a ,  whlch 1s 

U 6 r(?) 

Slnce for large values of a ,  the t denslty 1s close to the normal denslty, we would 
expect that the performance of the algorlthm would be slmllar too. Thls 1s indeed 
the case. For example, as a + m ,  the reJectlon constant tends to - whlch 1s 6' 
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. a ’  
. b   SUP^ 1 

a -1 - (I -1 - 

the value for the normal denslty. 

area (A ) 

I 
0 - 1  - 

G ( a - 1 )  ‘ 
a + I  

2 - 

Rejection constant . ,  I d  

I I -- I 
Acceptance condition I 2 2  5 a ( u  “+l-1)  

I a + I  - , -  - 
1 4  I Quick acceptance condition I Z 2  5 5 - 4 U ( l + - )  

4 1 4  I Quick rejection condition I z2  3 -3+-(l+-) (only valid for a 23) I 

We observe that the ratlo-of-unlforms method can only be useful when a 21 for 
otherwise A would be unbounded. The qulck acceptance and rejectlon steps fol- 
low from lnequalltles obtalned by Klnderman and Monahan (1979). The 
correspondlng algorlthm 1s known In the llterature as algorlthm TROU: one can 
show that the expected number of lteratlons 1s uniformly bounded over a 21, 

and that I t  varles from - at a =1 to  - 4 4 

7r Jnl; asa4cQ. 
There are two important speclal cases. For the Cauchy denslty ( a = l ) ,  the 

acceptance condltlon 1s u 2L - , or, put dlfferently, u 2 f v 2 L 1 .  Thus, we 

obtaln the result that If ( U , V )  1s unlformly dlstrlbuted In the unlt clrcle, then 
V - 1s Cauchy dlstrlbuted. Wlthout squeeze steps, we have: U 

l + x 2  

A Cauchy generator based upon the ratio-of-uniforms method 

REPEAT 
Generate iid uniform [-1,1] random variates u , v. 

UNTIL U2+ vas  1 
V RETURN Xt- U 
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For the t denslty wlth 3 degrees of freedom (a =3), 
. 2  1 

x 2  1 the acceptance condition 1s -5--1, or w 2 5 3 u  (1-u). Thus, once agaln, the 

acceptance reglon A 1s elllpsoldal. The unadorned ratlo-of-unlforms algorlthm 1s: 
3 u  

t3 generator based upon ratio-of-uniforms method 

REPEAT 
Generate U uniformly on [OJ]. 

Generate V uniformly on [--,-I. didi 
2 2  

UNTIL Va<3U(1-u)  
V RETURN x +- - 
U 

Thls 1s equlvalent t o  

t3 generator based upon ratio-of-uniforms method 

REPEAT 
Generate iid uniform [-1,1] random variates u , v. 

UNTIL Us+ va<l 
RETURN X - 6 -  V 

Both the Cauchy and t3 generators have obvlously reJectlon constants of -, 4 and 
should be accelerated by the Judlclous use of qulck acceptance and rejection con- 
dltlons that a re  llnear In thelr arguments. 

7r 
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Example 7.4. The gamma density. 

the orlgln, 
In thls example, we conslder the centered gamma ( a  ) denslty wlth mode at 

e a-1  
(z +a-l)a-le++a-l) (z +a - D O )  . f ( z ) = c  ( a  -1y-1 - 

Here c 1s a normallzatlon constant equal to whlch wlll be 

dropped.The table wlth facts 1s glven below. Notlce that the expected number of 
lteratlons 1s - at a =1, and /i- as a -+m, Just as for the t densltu. 

e a- l r (a  ) 

4 4 

f (2 )  

Q   SUP^ 
a+=suPz m , a - = i n f X  
area ( A  ) 
Rejection constant 

Acceptance condition 

e 0-1 

l )a - l  (5 +a -1)a -1 e 43 + a  -1) (5 +a - 1 3 0 )  
3 

- 
1 

z + d f  (%+) where z + = l + f i  , z - J f  ( z - )  where z-=i-= 
a +-a - 
2c  (a+%) 

?l I (  
0--1 ++a-1  

e ( z + a - 1 )  2 -- 
) e 2  

a -1 

Quick acceptance condition 

Quick rejection condition 
(a-1)(2u2-2)  2 -uz2 (2 50) 

We leave the verlflcatlon of the lnequalltles lmpllclt In the qulck acceptance and 
reJectlon steps to the readers. All one needs here 1s Lemma 7.1. Tlmlngs wlth thls 
algorlthm have shown that good speeds are obtalned for a greater than 5. The 
algorlthm 1s unlformly fast  for a E[l,m). The ratlo-of-unlforms algorithms of 
Cheng and Feast (1979), Robertson and Walls (1980) and Klnderman and 
Monahan (1979) are dlfferent In conceptlon. 

7.3. Exercises. 
1. For the qulck acceptance and reJectlon condltlons for Student's t dlstrlbu- 

tlon, the followlng lnequallty due to  Klnderman and Monahan (1979) was 
used: 

a +1 -- 
1 4  

a - a +I 4 4(1+-) -- 
1 4  

U U 
5-4(1+-) u 5 a ( u  '"-1) 5 -3+ (u 2 0 )  ' 
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The upper bound Is only valid for a 23. Show thls. Hlnt: first show that the 
mlddle expression g (u  ) 1s convex In u . Thus, 

9 ( u  1 L 9 ( 2  >+(u -2 )$'(Z 1 . 
Here z 1s to be plcked later. Show that the area under the qulck acceptance 

curve Is maxlmal when z=(l+-) , and substltute thls value. For the 
a +I -- 

1 4  

U 
1 

U 
lower bound, show that g (u  ) as a functlon of - 1s concave, and argue slml- 

larly. 
Barbu (1982) has polnted out that when (u,v) Is unlformly dlstrlbuted In 
A = { ( u  , v ) :O<u - -  < f  ( u  +v)}, then U + v  has a denslty whlch Is propor- 
tlonal to  f . Slmllarly, If In the deflnltlon of A , we replace f ( u  +TI ) by 

has a denslty whlch 1s proportlonal to  f . Show thls. (f (-)) , then - 
3. Prove the following property. Let x have denslty f and define 

Y = d m m a x ( U , , U , )  where U, ,U ,  are lld unlform [0,1] random varl- 
ables. Deflne also u = Y  V==XY. Then (u ,V)  1s unlformly dlstrlbuted In 

A ={ (u  ,v):O<u 5 f (-)}. Note that thls can be useful for reJectlon In 
the (u  ,v  ) plane when rectangular rejectlon 1s not feaslble. 

4. In this exerclse, we study sufflcient condltlons for convergence of perfor- 
mances. Assume that f, is a sequence of densltles converging In some sense 
to a denslty f as n --too. Let b,  ,a+ ,  ,a+ be the deflnlng constants for the 
encloslng rectangles In the ratlo-of-unlforms method. Let b ,a +,a - be the 
constants for f . Show that the rejection constants converge,l.e. 

2. 

2 
v 3  V 

- 
6- m 

c 
Ilm 6,(a+,-a-,) = b(a+-a- )  

n -KXI 

when 

or when 

5. 

6. 

7. 

Glve an example of a bounded denslty on [O,m) for whlch the reglon A 1s 

Let f be a mixture of nonoverlapplng unlform densltles of varylng wldths 
and helghts. Draw the reglon A .  
From general prlnclples (such as exerclse 4), prove that the rejectlon con- 
stant for the t dlstrlbutlon tends to  the reJectlon constant for the normal 
denslty as a - m .  

unbounded In the v-dlrectlon, 1.e. b -09. - 
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8. Prove that all the qulck acceptance and rejection lnequalltles used for the 
gamma denslty are valld. 



Chapter Five 
UNIFORM AND EXPONENTLAL SPACINGS 

1. MOTIVATION. 
The goal of thls book 1s to demonstrate that random varlates wlth varlous 

dlstrlbutlons can be obtalned by cleverly manlpulatlng lid unlform [0,1] random 
varlates. As we wlll see In thls chapter, normal, exponentlal, beta, gamma and t ” 

dlstrlbuted random varlates can be obtalned by manlpulatlon of the order statls- 
tlcs or spaclngs deflned by samples of lld unlform [0,1] random varlates. For 
example, the celebrated polar method or Box-Muller method for normal random 
varlates wlll be derlved In thls manner (Box and Muller, 1958). 

There 1s a strong relatlonshlp between these spaclngs and radlally symmetrlc 
dlstrlbutlons In R d ,  so that wlth a llttle extra effort we wlll be able to handle the 
problem of generatlng unlform random varlates In and on the unlt sphere of R d .  

The polar method can also be consldered as a speclal case of a more general 
method, the method of deconvolutlon. Because of thls close relatlonshlp I t  wlll 
also be presented In thls chapter. 

We start  wlth the fundamental propertles of unlform order statlstlcs and 
unlform spaclngs. Thls materlal 1s well-known and can be found in many books 
on probablllty theory and mathernatlcal statlstlcs. It 1s collected here for the con- 
venlence of the readers. In the other sectlons, we wlll develop varlous algorlthms 
for unlvarlate and inultlvarlate dlstrlbutlons. Because order statlstlcs and spac- 
lngs lnvolve sortlng random varlates, we wlll have a short section on fast  
expected tlme sortlng methods. Just as chapter W ,  thls chapter 1s hlghly speclal- 
ked,  and can be sklpped too. Nevertheless, I t  1s recommended for new students In 
the flelds of slmulatlon and mathernatlcal statlstlcs. 
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2. PROPERTIES OF UNIFORM AND EXPONENTIAL SPACINGS. 

2.1. Uniform spacings. 

U(l)< u(,)5 
Let u,, . . . , u, be lld unlform [O,l]  random varlables wlth order statlstlcs 

5 u(, ). The statlstlcs Si defined by 

sj = u(j)-u(j-l) (15i I n  +1) 
where by conventlon u(o)=O , u(,+,)=l, are called the unlform spaclngs for thls 
sample. 

Theorem 2.1. 
(s  ,, . . . , S, ) 1s unlformly dlstrlbuted over the slmplex 

n 

i =1  
A ,  = {(x,, . . . , 2,) : xi 20, xi 51) . 

Proof of Theorem 2.1. 
We know that u(,), . . . , u,,) 1s unlformly dlstrlbuted over the slmplex 

B, = {(x,, . . . ,x,) : OLzl< . * . <Z - n -  <I}. 

The transformatlon 
51 = u 1  

52 = U 2 - u l  

. . .  
6% = Un-Un-1  

has a s  lnverse 
u 1 =  $ 1  

u2  = S,+SQ 

and the Jacoblan of the transformatlon, 1.e. the determlnant of the matrlx formed 
85; 

du i 
by - 1s 1. Thls shows that the denslty of S,, . . . , S, 1s unlformly dlstrl- 

buted ;n the set A , .  



208 V.2.UNIFORM SPACINGS 

Proofs of thls sort can often be obtained wlthout the cumbersome transfor- 
matlons. For example, when x has the unlform denslty on a set A C R  d ,  and B 
1s a h e a r  nonslngular transformatlon: R -tR d ,  then Y =BX 1s unlformly dls- 
trlbuted on BA as can be seen from the followlng argument: for all Bore1 sets 
C E R d ,  

- 

P ( Y € C )  = P ( B X E C )  = P(X€B- - ’C)  

s dx 
C n ( B A  ) - - 

s dx - (B-’ C ) n A  - 
s dx 
A 

s dx 
BA 

Theorem 2.2. 
S,, . . . , Sn+l 1s distributed as 

El En +l 

Ei C Ei 
n+1 ” * * ’  n + I  

i = 1  I =1 

where E,, . . . , E,+, 1s a sequence of lld exponentlal random variables. Further- 
more, If G,+, 1s lndependent of (s,, . . . , s,+,) and 1s gamma (n  +I) distrl- 
buted, then 

1s dlstrlbuted as &,,E,, . . . , En+,* 

The proof of Theorem 2.2 1s based upon Lemma 2.1: 

Lemma 2.1. 
For any sequence of nonnegatlve numbers x,, . . . , xn+,, we have 

Proof of Lemma 2.1. 
n + I  

i = l  
Assume wlthout loss of generallty that xi 51 (for otherwlse the lemma 1s 

obvlously true). We use Theorem 2.1. In the notatlon of Theorem 2.1, we start 
from the fact that S,, . . . , Sn 1s unlformly dlstrlbuted in A n .  Thus, our proba- 
blllty 1s equal to 

n 

i = l  
P(S ,>Z , ,  . . . , S, >xn 91-C Si > X n + 1 ) .  
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Thls 1s the probablllty of a set An* whlch 1s a slmplex just as A ,  except that its 
top 1s not at (O,O, . . . , 0) Put rather at ( x  1, . . . , x, ), and that Its sldes are not 

n + I  
of length 1 but rather of length 1- 

can be calculated as ratlos of areas. In thls case, we have 

xi. For unlform dlstrlbutlons, probabllltles 
i = i  

Proof of Theorem 2.2. 
n +I 

Part one. Let G =Gn+l be the random varlable E;.  Note that we need 

only show that 

En 
G ' "  " G 

- E l  - 

I =1 

1s taken care of by 1s unlformly dlstrlbuted In A n .  The last component - 
notlng that I t  equals 1 mlnus the sum of the flrst n components. Let us use the 

symbols ei ,y ,xi for the runnlng varlables correspondlng to Ei ,G ,-. We flrst 

En +1 

G 

Ei 
G 

compute the Jolnt denslty of E,,  . . . , En ,G : 
n 

i = I  
e+ , = n e-es , - i ~ - e l - . .  . - e n )  = f ( e  1' * . , en ,Y 

n 

i=1 
valld when ei 20, all i ,  and y 2 e i .  Here we used the fact that the Jolnt den- 

slty 1s the product of the denslty of the flrst n varlables and the denslty of G 
glven E l=e 

easlly seen that the jolnt denslty of - 
. . . , E, =en . Next, by a slmple transformatlon of varlables, I t  1s 

En - . ,  ,G 1s E l  
G ' "  

en , . * . , xn=--,y=y}. e 1  
Thls 1s easlly obtalned by the transformatlon { x l = y  

I I  Y J 

1s obtalned by lntegratlng the En - E l  
G Flnally, the marglnal denslty of - G'"" 

last denslty wlth respect to dy , whlch glves us 
co 
J y n  e-' dy IAn(x1, ... X ,  ) = n !  I A , ( x ~ ,  . . , Xn ) 
0 
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Thls concludes the proof of part one. 
Part two. Assume that zl>O, . . . , X ~ + ~ > O .  By Lemma 2.1, we have 

P ( G S , > x 1 ,  . . 7 GSn+1>zn+i) 

i= i  

A myrlad of results follow from Theorem 2.2. For example, if 
U,U,, . . . , U, are lld unlform [0,1] random varlables, E 1s an exponentlal ran- 
dom varlable, and G, 1s a gamma (n) random varlable, then the followlng ran- 
dom varlables have ldeptlcal dlstrlbutlons: 

mfn(U,, . . . , V,)  

1-u 

1-e ,I 

1 - 
E -- 

( E  ,Gn are lndependent ) E 
E -+G, 

(-)--(-) 1 E 2  +-(-) 1 E 3  - .  1 .  . E 
n 2! n 3! n 

Gn -1 max(Ul, . . . , U,) 
1s dlstrlbuted as l+- , that It 1s also easy t o  show that 

mln(Ul, . . . , U,) E 
'max( u,, . . . , un )-mln(U,, . . . , Vn ) 1s dlstrlbuted as i-,!31-Sn+l (1.e. as 

Gk where Gk and Gn+l-k 
Gn -1 

), and that U ( k )  1s dlstrlbuted as 
Gn-l+G* Gk + G, +1-k 

are lndependent. Since we already know from sectlon 1.4 that U ( k )  1s beta 
(k ,n +I-k ) dlstrlbuted, we have thus obtained a well-known relatlonshlp 
between the gamma and beta dlstrlbutlons. 
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2.2. Exponential spacings. 

lng to a sequence of Ild exponentlal random varlables E 1,E2, . . . , E,. 
In thls sectlon, E( , )5E( , )5  + S E ( , )  are the order statlstlcs correspond- 

Theorem 2.3. (Sukhatme, 1937) 
If we deflne E(o)=O, then the normallzed exponentlal spaclngs 

(n- i+l ) (E( i ) -E( i - l ) )  1 l i  < n ,  * 

are lld exponentlal random varlables. Also, 

E l  En , . . . , -+ - ,-+- * +- E l  El  E2 

n n n-1 n 1 

are dlstributed as . . . , E ( n ) .  I 
Proof of Theorem 2.3. 

random varlables of the flrst statement El,E2, . , . , E, and to note that 
The second statement follows from the flrst statement: I t  sutnces to call the 

To prove the Arst statement, we note that the Jolnt denslty of E( l ) ,  . . . , E,,, 1s 
n 

-E 2: 
n !  e '4 ( 0 5 z 1 5 x 2 5  * Fx, <m) 

n 
- ( n  -i + l)(z, - z l d  

= n !  e '--' (o<x15z25 . - * sx, <m) . 
Deflne now Yi =(n 4 +1)(E (i )-E ( i  -1)) , yi  =(n -i +l)(si -xi -l). Thus, we have 

Y1 

n 
x l = - ,  

._  

Y1 Y 2  
x 2  = -+- , 

n n-1 . . .  

dXi 1 The determlnant of the matrlx formed by - 1s - . Thus, Y, ,  . . . , Y, has 

de nsl t y 
dy j n !  
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Theorem 2.3 has an lmportant corollary: In a sample of two lld exponentlal 
random varlates, E (2)-E 1s agaln exponentlally dlstrlbuted. Thls 1s baslcaily 
due to the memoryless property of the exponentlal dlstrlbutlon: glven that  E Zz, 
E - x  1s agaln exponentlally dlstrlbuted. In fact, If we show the memoryless pro- 
perty (thls Is easy), and if we show that the mlnlmum of n lld exponentlal ran- 
dom varlables 1s dlstrlbuted as - (thls 1s easy too), then we can prove Theorem 

2.3 by lnductlon. 

E 
n 

Theorem 2.4. (Malmquist, 1950) 
Let 05 U(,)S - . . < - U ( n ) s l  be the order statlstlcs of U l , U z ,  . . . , Un , a 

sequence of lld unlform [0,1] random variables. Then , If U(n+ll=l,  

U ( i  1 ) , 15; sn) Is dlstrlbuted as U,,  . . . , U,. 

1 -  1 

1 

U(i+l )  
A* {( 

1 - 1 - 1 - - 
B. U, ,un unA1 n -I , . . . , Un * * - U l  1s dlstrlbuted as u(n),  . . . , U(l). 

Proof of Theorem 2.4. 
In Theorem 2.3, replace Vi by e-E’ and U ( i )  by Then, In the nota- 

tlon of Theorems 2.3 and 2.4 we see t h a t  the followlng sequences are ldentlcally 
dlstrlbuted: 

Thls proves part A. Par t  B follows wlthout work from part A. 
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2.3. Exercises. 
1. Glve an alternatlve proof of Theorem 2.3 based upon the memoryless pro- 

perty of the exponentlal dlstrlbution (see suggestion following the proof of 
that theorem). 
Prove that In a sample of n lid unlform [0,1] random varlates, the maxlmum 
minus the minlmum (l.e., the range) 1s dlstributed as 

2. 

1 1  - -  u n v n - i  

where U,v are ild unlform [O,l] random varlates. 
Show that the mlnlmum spaclng In a uniform sample of slze n Is distrlbuted 3. 

1 - 
(1-U " )  where U ltself is unlformly dlstrlbuted on [0,1]. 1 as- 

n +I 
1s unlformly dlstrlbuted on [O,l] when U , V are lld 4. Prove or dlsprove: - U 

u+v 
unlform [0,1] random varlables. 
Prove Whltworth's formula: If Si , 15 i 5 n +1 are unlform spaclngs, then 5 .  

P(max  Si Lx) = [ Tj (1-x )+- 12") (1-2x ' * . . 
i 

(Whltworth, 1897) 

Let E 1,E2,E3 be lld exponentlal random varlables. Show that the followlng 

random varlables are independent: 

Furthermore, show that thelr densities are the unlform [0,1] denslty, the trl- 
angular denslty on [O,l] and the gamma (3) denslty, respectlvely. 

6. 

9 El+E,+E3- 
E l  ( E  ,+E 2) 

E ,+E ' E ,+E 2+E 

3. GENERATION OF ORDERED SAMPLES. 
The flrst appllcatlon that one thlnks of when presented wlth Theorem 2.2 Is 

a method for generatlng the order statlstlcs Ucl,< . . . < - U,,) directly. By this 
we mean that I t  1s not necessary to generate U , ,  . . . , Un and then apply some 
sorting method. 

In thls sectlon we will descrlbe several problems whlch requlre such ordered 
samples. We wlll not be concerned here wlth the problem of the generation of one 
order statlstlc such as the maxlmum or the medlan. 
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3.1. Generating uniform [0,1] order statistics. 

st at lstl Cs : 
The prevlous sectlons all suggest methods for generatlng unlform [O,l]  order 

A. Sorting 

Generate iid uniform [OJ] random variates U,, . . . , U,, , 
Obtain U(l), . . . , U,,) by sorting the Ui 's. 

B. Via uniform spacings 

Generate lid exponential random variates E 1, . . . , E,, +1,  and compute their sum G . 
U(O)+--O 
FOR j:=l TO n DO 

C. Via exponential spacings 

U(n+I)+1 
FOR j:=n DOWNTO 1 DO 

Generate a uniform [0,1] random variate u. 
u(j)+u 'U(j+i) 

1 

Algorlthm A 1s the nalve approach. Sortlng methods usually found In computer 
llbrarles are cornparlson-based. Thls means that lnformatlon 1s moved around In 
tables based upon palrwlse comparlsons of elements only. It 1s known (see e.g. 
Knuth (1973) or Baase (1978)) that the worst-case and expected tlmes taken by 
these algorlthms are n(n logn ). Heapsort and mergesort have worst-case tlmes 
that are 0 (n  logn ). Quicksort has expected tlme 0 (n  logn ), but worst-case tlme 
both 0 (n 2, and n(n 2). For detalls, any standard textbook on data structures can 
be consulted (see e.g. Aho, Hopcroft and Ullman , 1983). What 1s dlfferent In the 
present case 1s that the Vi's are unlformly dlstrlbuted on [0,1]. Thus, we can 
hope to  take advantage of truncatlon. As we wlll see In the next sectlon, we can 
bucket sort the Vi's In expected tlme 0 (n  ). 
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Algorlthms B and C are o(n )  algorlthms In the worst-case. But only 
method C 1s a one-pass method. But because method C requlres the computatlon 
of a power In each lteratlon, it 1s usually slower than elther A or B. Storagewlse, 
method A 1s least emcient slnce addltlonal storage proportlonal t o  n 1s needed. 
Nevertheless, for large n , method A wlth bucket sortlng is recommended. Thls 1s 
due to the accumulatlon of round-off errors In algorlthms B and C. 

Algorlthms B and C were developed In a series of papers by Lurle and Hart- 
ley (1972), Schucany (1972) and Lurle and Mason (1973). Experlmental comparls- 
ons can be found In Rablnowltz and Berenson (1974), Gerontldes and Smlth 
(1982), and Bentley and Saxe (1980). Ramberg and Tadlkamalla (1978) conslder 
the case of the generatlon of U(k) ,U(k+l) ,  . . . , U(m) where 1 L k  s m  L n  . Thls 
requlres generatlng one of the extremes U ( k )  or U ( m ) ,  after whlch a sequentlal 
method slmllar to algorlthms B or C can be used, so that the total tlme 1s pro- 
portional to m-k +I. 

3.2. Bucket sorting. Bucket searching. 

ing n [0,1] valued elements X , ,  . . . , X ,  . 
We start wlth the descrlptlon of a data structure and an algorlthm for sort- 

Bucket sorting 

[SET-UP] 
We need two auxiliary tables of size n called Top and Next. Top [ i ]  gives the lndex of the 

i-1 i top element in bucket i (Le. [-,-)). A value of 0 indicates an empty bucket. Next [ i ]  
n n  

gives the index of the next element in the same bucket as xi. If there is no next element, 
its value is 0. 

FOR i:=1 T O  n DO Next [;]to 
FOR i :=0 T O  n -1 DO Top [ i ] t O  

FOR i:=1 TO n DO 

Bucket + \nx J 
Next [ i ] t T o p  [ Bucket ] 
Top [ Bucket ] t i  

[SORTING] 

, Sort all elements within the buckets by ordinary bubble sort or selection sort, and con- 
catenate the nonempty buckets. 

The set-up step takes tlme proportlonal to n In all cases. The sort step 1s 
where we notlce a dlfference between dlstrlbutlons. If each bucket contalns one 
element, then thls step too takes tlme proportlonal to n. If all elements on the  
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other hand fall In the same bucket, then the tlme taken grows as n 2  slnce selec- 
tlon sort for that one bucket takes tlme proportlonal t o  n2. Thus, for our 
analysls, we wlll have to  make some assumptions about the Xi 's. We wlll assume 
that the Xi ' s  are lld wlth denslty f on [0,1]. In Theorem 3.1 we show that the 
expected tlme 1s Q ( n  ) for nearly all densltles f . 

Theorem 3.1. (Devroye and Klincsek, 1981) 
The bucket sort glven above takes expected tlme 0 ( n  ) If and only if 

J f 2 ( z )  dx < 0 0 .  

I I 

Proof of Theorem 3.1. 

Ni 1s blnomlally dlstrlbuted wlth parameters n and p i  where 
Assume that the buckets recelve No,  . . . , Nn-l polnts. I t  1s clear that each 

i + I  
n 
- 

P i  = J f dz 
I - 
n 

By the properties of selectlon sort, we know that there exlst flnlte posltlve con- 
stants c c 2, such that the tlme Tn taken by the algorlthm satisfies: 

Tn 
c 1 -  < n -1 < c 2 *  

n + C N i 2  
i =O 

By Jensen's lnequallty for convex functlons, we have 
fl  -1 n -1 

E W E  (N; 2, = 'h-(npi ( l -p i  )+n 2pi  2, 

2 
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Thls proves one lmpllcatlon. The other lmpllcatlon requlres some flner tools, espe- 
cially 1f we want to  avold lmposlng smoothness condltlons on f . The key meas- 
ure theoretlcal result 'needed 1s the Lebesgue denslty theorem, whlch (phrased In 
a form sultable to  us) states among other thlngs that for any denslty f on R , 
we have 

Consult for example Wheeden and Zygmund (1977). 

If we deflne the denslty 
( o < k 2  <-<l) ,  i +1 

- n -  n f n  (x 1 =Pi 

then I t  1s clear that 
i +I - 

1 z +- n 

L n J I f ( Y ) - f ( x ) l  dY 9 

1 
X -- 

n 

and thls tends to 0 for for almost all I .  Thus, by Fatou's lemma, 
1 1 1 

Ilm lnfJfn 2 ( x )  dx 2 Jllm Inf f n  2 ( x )  dx = J f  2 ( x )  dx . 
0 0 0 

But 

n 1 1 n-1 n -1 n -1 - 01 C E ( N i 2 )  2 C n p i 2  = J f n 2 ( x )  dx = J f n 2 ( x )  dx . 
i =O i =O i=o i 0 - I *  

n 

T n  
Thus, J f  2=m lmplles ilm inf-=oo. 

n 

In selectlon sort, the number of comparlsons of two elements 1s 

. Thus, the total number of comparlsons needed n (n  -1) 
2 

( n  -l)+(n -2)+ * . 

In bucket sort Is, In the notatlon of the proof of Theorem 3.1, 

+I= 

n-1 Ni (Ni  -1) c 
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The expected number of comparlsons 1s thus 

1 
n -1 - < --Jf"a:) da: . 

2 0  

Thls upper bound Is, not unexpectedly, mlnlmlzed for the uniform denslty on 

[0,1], In whlch case we obtaln the upper bound - . In other words, the 
expected number of comparlsons 1s less than the total number of elements ! Thls 
1s of course due to  the fact that most of the sortlng 1s done In the set-up step. 

If selectlon sort 1s replaced by an 0 ( n  logn ) expected tlme comparlson-based 
sortlng algorlthm (such as qulcksort, mergesort or heapsort), then Theorem 3.1 
remalns valid provlded that the condltlon If 2<co 1s replaced by 

n -1 
2 

03 

J r  (a: )log+! (a: 1 da: < 
0 

See Devroye and Kllncsek (1981). The problem wlth extra space can be alleviated 
to some extent by clever programming trlcks. These tend to slow down the algo- 
rlthm and won't be dlscussed here. 

Let us now turn to  searchlng. The problem can be formulated as follows. 
[O,l]-valued data XI, . . . , X ,  are glven. We assume that thls 1s an lld sequence 
wlth common denslty f . Let Tn be the tlme taken to determlne whether Xz 1s 
In the structure where 1s a random lnteger taken from (1, . . . , n }  lndepen- 
dent of the Xi 's. Thls 1s called the successful search tlme. The tlme T,* taken to 
determlne whether Xn+l (a random varlable dlstrlbuted as XI but lndependent 
of the data sequence) 1s In the structure 1s called the unsuccessful search tlme. If 
we store the elements in an array, then llnear (or sequentlal search) yields 
expected search tlmes that are proportlonal to n . If we use blnary search and the 
array 1s sorted, then i t  1s proportlonal to log(n). Assume now that we use the 
bucket data structure, and that the elements wlthln buckets are not sorted. 
Then, wlth llnear search wlthln the buckets, the expected number of comparlsons 
of elements for successful search, glven No, . . . , N,-l, 1s 

n-1 Ni Ni+1 

i C - 7 - T .  =O 

For unsuccessful search, we have 

Argulng now as in Theorem 3.1, we have: 
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Theorem 3.2. 

If 2 < ~ .  Also, E(T,*)=O(l) of and only If [f 2 < ~ .  

When searchlng a bucket structure we have E (T, )=0 (1) If and only if 

I 

3.3. Generating exponential order statistics. 

algorlthms parallellng algorlthms A and C for the unlform dlstrlbutlon. 
To generate a sorted sample of exponentlal random varlables, there are two 

A. Bucket sorting 

Generate iid exponential random variates E ,, . . . , E,, . 
Obtain E(,,< <E(,) by bucket sorting. 

C. Via exponential spacings 

E (0)- 

FOR i:=1 TO n DO 
Generate an exponential random variate E .  

Method C uses the memoryless property of the exponentlal dlstrlbutlon. It 
takes tlme 0 (n ). Careless bucket sortlng applled to  algorlthm A could lead to a 
superllnear tlme algorlthm. For example, thls would be the case If we were to 
dlvlde the lnterval [O,max E ; ]  up into n equl-stzed Intervals. Thls can of course 
be avolded If we flrst generate 5 U ( f l )  for a unlform sample In 
expected tlme 0 (n), and then return -logU(,), . . . , -logU(,). Another posslbll- 
I t Y  1s to construct the bucket structure for ai mod 1 , 15; s n  , 1.e. for the frac- 
tlonal parts only, and t o  sort these elements. Slnce the fractlonal parts have a 
bounded denslty, 

U(l ,L 

e - x  40,1](T 1 
9 

1 
1-- 

e 
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we know from Theorem 3.1 that a sorted array can be obtalned In expected tlme 
0 ( n  ). But thls sorted array has many sorted sub-arrays. In one extra pass, we 
can untangle I t  provlded that we have kept track of the unused lnteger parts of 
the data, pi 1. Concatenatlon of the many sub-arrays requires another pass, 

but we stlll have linear behavlor. 

3.4. Generating order statistics with distribution function F . 
The order statlstlcs X ( l ) s  . . . Sx(.) that correspond to X , ,  . . . , X ,  , a 

sequence of lld random varlables wlth absolutely contlnuous dlstrlbutlon functlon 
F on R 1  can be generated as 

or as 

startlng from unlform or exponentlal order statlstlcs. The exponentlal order 
statfstlcs method based on C (see prevlous sectlon) was proposed by Newby 
(1979). In general, the cholce of one method over the other one largely depends 
upon the form of F . For example, for the Welbull dlstrlbutlon functlon 

z n  -(TI 
F (x) = 1-e (x 2 0 )  

1 - 1 - 
we have F-'(u )=b (-log(1-u )) a and F-'(l-e-" )=bu a ,  so that the exponentlal 
order statlstlcs method seems better sulted. 

In many cases, I t  Is much faster to Just sort x,, . . . , X ,  so that the costly 
lnverslons can be avolded. If bucket sortlng 1s used, one should make sure that 
the expected tlme Is O ( n ) .  Thls can be done for example by transformlng the 
data In a monotone manner for the purpose of sortlng to (0,1] and lnsurlng that 
the denslty f of the transformed data has a small value for s f '. Transforma- 

tlons that one mlght conslder should be slmple, e.g. - Is useful for transform- 
lng nonnegatlve data. The parameter u > O  Is a deslgn parameter whlch should be 
.picked such that the denslty after transformatlon has the smallest posslble value 
for J f '. 

X 

u +x 

The so-called grouplng method studled by Rabonowltz and Berenson (1974) 
and Gerontldes and Smlth (1982) Is a hybrld of the lnverslon method and the  
bucket sortlng method. The support of the dlstrlbutlon Is partltloned Into k 
Intervals, each havlng equal probablllty. Then one keeps for each lnterval a 
llnked Ilst. Intervals are selected wlth equal probablllty, and wlthln each lnterval, 
random polnts are generated dlrectiy. In a Anal pass, all llnked llsts are sorted 
and concatenated. The sortlng and concatenatlng take llnear expected tlme when 
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IC =n , because the lnterval cardlnalltles are as for the bucket method In case of a 
unlform dlstrlbutlon. There are two maJor dlfferences wlth the bucket sortlng 
method: Arst of all, the determlnatlon of the lntervals requlres IC-1 lmpllclt lnver- 
slons of the dlstrlbutlon functlon. Thls 1s only worthwhlle when I t  can be done In 
a set-up step and very many ordered samples are needed for the same dlstrlbu- 
tlon and the same n (recall that k 1s best taken proportlonal to n ). Secondly, we 
have to be able to generate random varlates wlth a dlstrlbutlon restrlcted to 
these Intervals. Candldates for thls include the rejectlon method. For monotone 
densltles or unlmodal densltles and large n , the reJectlon constant will be close to 
one for most lntervals If rejectlon from unlform densltles 1s used. 

But perhaps most promlslng of all 1s the rejection method ltself for gen- 
erating an ordered sample. Assume that our denslty f 1s domlnated by cg where 
g Is another denslty, and c > 1  1s the rejectlon constant. Then, exploltlng proper- 
tles of polnts unlformly dlstrlbuted under f , we can proceed as follows: 

Rejection method for generating an ordered sample 

[NOTE: n is the size of the ordered sample; m >n is an 
I 

recommended value is 1 nc + dnc -l)lOg [ zrr(:-l) ] 
nteger picked by the user. Its 

REPEAT 
Generate an ordered sample x,, . . . , xm with density g . 
Generate rn iid uniform [0,1] random variates U1, . . . , urn. 
Delete all .& 's for which > cg (Xi )/f (4. ). 

UNTIL the edited (but ordered) sample has N I n  elements 
Delete another N-n  randomly selected xi 's from this sample, and return the edited sam- 
ple. 

The maln loop of the algorlthm, when successful, glves an ordered sample of 
random slze N >n  . Thls sample 1s further edlted by one of the well-known 
methods of selectlng a random (un1for.m) sample of slze N - n  from a set of slze n 
(see chapter XI). The expected tlme taken by the latter procedure 1s 
E (N -n I N zn ) tlmes a constant not dependlng upon N or n . The expected 
tlme taken by the global algorlthm 1s m / P  (N L n )  + E ( N - n  I N > n  ) If con- 
stants are omltted, and a unlform ordered sample wlth denslty g can be gen- 
erated In llnear expected tlme. 
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Theorem 3.3. 

above. 
0 ( n  ). If In addltlon m -cn = o  ( n  ) and ( m  -cn )/& 400, then 

Let m ,n , N , f  ,c ,g keep thelr meanlng of the reJectlon algorlthm deflned 
Then, if m Z c n  and m = o ( n ) ,  the algorlthm takes expected time 

m 
+E(N-n  I N > n ) -  cn - 

Tn - P ( N 2 n )  

Proof of Theorem 3.3. 
In order to  analyze the success probablllty, we need some result about the 

closeness between the blnomlal and normal dlstrlbutlons. Flrst of all, slnce N 1s 
1 

C 
blnomlal ( m  ,-), we know from the central llmlt theorem that as m 300, 

m n -- 

where @ 1s the normal dlstrlbutlon functlon. If m z c n  at all tlmes, then we see 
that f ' ( N  < n )  stays bounded away from 1, and osclllates asyrnptotlcally 
between 0 and 1/2 .  I t  can have a llmlt. If (m-cn>/&-+oo, then we see that 
P ( N  < n )+o. 

We note that E ( N - n  I N z n . ) = E ( ( N - n ) + ) / P ( N z n ) .  Slnce 
N-n  Srn -n , we see that T,, s ( 2 m  -n ) / P  ( N  2 n ). The bound 1s 0 ( n  ) when 
m =O ( n  ) and P ( N  2 n ) 1s bounded away from zero. Also, T, -cn when 
P ( N  <n )+O and m -cn . I 

Remark 3.1. Optimal choice of m. 
The best posslble value for T, 1s cn because we cannot hope to accept n 

polnts wlth large enough probablllty of success unless the orlglnal sample 1s at 
least of slze cn.  I t  Is fortunate that we need not take m much larger than cn. 
Detalled cornputatlons are needed to obtaln the followlng recomrnendatlon for m : 
take m close to 
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Wlth thls cholce, T,, 1s cn +O ( d m ) .  See exerclse 3.7 for guldance wlth the 
derlvatlon. 

3.5. Generating exponential random variates in batches. 

erated as follows: 
By Theorem 2.2, lld exponentlal random varlates E, ,  . . . , E, can be gen- 

Exponential random variate generator 

Generate an ordered sample u,,,s * . . 5 U(,-l) of uniform [0,1] random variates. 
Generate a gamma (n ) random variate G, . 
RETURN (G, U(i),G, oJ(2)-u(i), 1 G, (1-u(n-i)))* 

Thus, one gamma varlate (whlch we are able to generate In expected tlme 
0 (1)) and a sorted uniform sample of slze n-1 are all that 1s needed to obtaln an 
lid sequence of n exponentlal random varlates. Thus, the contrlbutlon of the 
gamma generator to the total tlme 1s asyrnptotlcally negllglble. Also, the sortlng 
can be done extremely qulckly by bucket sort If we have a large number of buck- 
ets (exerclse 3.1), so that for good fmplementatlons of bucket sortlng, a super- 
efflclent exponentlal random varlate generator can be obtalned. Note however 
that by taking dlfferences of numbers that are close to each other, we loose some 
accuracy. For very large n , thls method 1s not recommended. 

One speclal case 1s worth mentlonlng here: UG, and (1-U)G2 are lld 
exponentlal random varlates. 

3.6. Exercises. 
1. In bucket sortlng, assume that lnstead of n buckets, we take kn buckets 

where k 21 1s an Integer. Analyze how the expected tlme 1s affected by the 
cholce of k. Note that there 1s a tlrne component for the set-up whlch 
lncreases as kn . The tlme component due to selectlon sort wlthln the buck- 
ets 1s a decreaslng functlon of k and f . Determlne the asymptotlcally 
optlmal value of k as a functlon of Jf and of the relatlve weights of the 
two tlme components. 
Prove the clalm that If an 0 (n logn ) expected tlme comparlson-based sort- 

lng algorlthm 1s used wlthln buckets, then Jf log+f <co lmplles that the 

2 .  
1 

0 
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3. 

4. 

5. 

6. 

7. 

expected tlme 1s 0 ( n  ). 
Show that If log+f <oo lmplles sf 2<oo for any denslty . Glve an 
example of a denslty f on [0,1] for whlch sf log+f <oo, yet sf 2=m. 
Glve also an example for whlch Sf log+f =oo. 
The randomness In the tlme taken by bucket sortlng and bucket searchlng 

can be approprlately measured by N i 2 ,  a quantlty that wk shall call T, . 
I t  1s often good to know that T, does not become very large wlth high pro- 
bablllty. For example, we may wlsh to  obtaln good upper bounds for 
P (T, >E(T,)+a), where a>O 1s a constant. For example, obtaln bounds 
that decrease exponentlally fast  In n for all bounded densltles on [OJ] and 
all a>O.  Hlnt: use an exponentlal verslon of Chebyshev's hequallty and a 
Polssonlzatlon trlck for the sample she. 
Glve an 0 (n  ) expected tlme generator for the maxlmal unlform spacing In a 
sample of slze n . Then give an 0 (1) expected tlme generator for the same 
problem. 
If a denslty f can be decomposed as pf l+(l-p )f are densl- 
tles and p E[O,l] 1s a constant, then an ordered sample x(l,s * 

f can be generated as follows: 

n -1 

I =o 

where f l,f 
< X ( n )  of . 

Generate a binomial (n , p  ) random variate N . 
Generate the order statistics Y(,)< 
densities and f respectively. 
Merge the sorted tables into a sorted table X,, ,s  * 

s Y ( N )  and Zcl,< * - <_Z,,,,, for 

<X(n). 

The acceleratlon 1s due to the fact that the method based upon lnverslon of 
F 1s sometlmes slmple for f but not for f ; and that n coln fllps 
needed for selectlon In the mlxture are avolded. Of course, we need a blno- 
mlal random varlate. Here 1s the questlon: based upon thls decomposltlon 
method, derlve an efflclent algorlthm for generatlng an ordered sample from 
any monotone denslty on [O,co). 
Thls 1s about the optlmal cholce for m In Theorem 3.3 (the reJectlon method 
for generatlng an ordered sample). The purpose 1s t o  And an m such that 
for that cholce of m , T, -cn -1nf (T, -cn ) as n --too. Proceed as follows: 

Arst show that I t  sufflces t o  consider only those m for whlch T, -cn . Thls 
lmplles that E ( (N-n  )+)=o ( m  -cn ), P ( N  < n )+O, and ( m  -cn )/& --roo. 
Then deduce that for the optlmal m , 

+ P ( N < n ) ) ) .  m -cn T, = cn (l+(l+o (I))(- cn 

and f 

m 

I 

... 
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Clearly, m -cn , and ( m  -cn )/cn 1s a term whlch decreases much slower 
than 1 / G .  By the Berry-Esseen theorem (Chow and Telcher (1978, p. 299) 
or Petrov (1975)), flnd a constant C dependlng upon c only such that  

m n -- C 

Conclude that 

( m  -cn )/(cn )+@ 

I t  sufflces to  flnd the m whlch mlnlmlzes 
m n -- 
C . Next, uslng the fact that  as u -00, 

U 2  

1 e-'2 1-@(u ) - - 
uJ2.rr 

9 

reduce the problem to  that  of mlnlmlzlng 
' P2 &+*e -- f 

where m -cn =pd- for some p+m,  p=o (G ). Approxlmate 
asyrnptotlc mlnlmlzatlon of thls ylelds 

cn 
27r( c -1) 

Flnally, verlfy that for the correspondlng value for m , the mlnlmal value of 
T, 1s asymptotlcally obtalned (In the " - *' sense). 

4. THE POLAR METHOD. 

4.1. Radially symmetric distributions. 
Here we wlll explaln about the lntlmate connectlon between order statlstlcs 

and random vectors wlth radlally symmetrlc dlstrlbutlons In R d .  Thls connectlon 
wlll provlde us wlth a wealth of algorlthms for random varlate generatlon. Most 
Importantly, we wlll obtaln the tlme-honored Box-Muller method for the normal 
dlstrlbutlon. 

IS radially symmetric If AX 
1s dlstrlbuted a s  X for all orthonormal d X d  matrlces A . It 1s strlctly radlally 
symmetrlc If also P (X=o)=O. Notlng that AX corresponds to  a rotated verslon 
Of x, radlal symmetry 1s thus nothlng else but lnvarlance under rotatlons of the 

A random vector X = ( X , ,  . . . , xd) In R 
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coordlnate axes. We wrlte cd for the unit sphere In R ,. x IS uniformly dlsr-I- 
buted on C, when X 1s radlally symmetrlc and I I x I I =1 wlth probab;:::?. 
one. Here I I . I I 1s the standard L ,  norm. Sometlmes, a radlally symmetr:? 
random vector has a denslty f , and then necessarlly I t  1s of the form . 

f ( x 1 , . . . , x d ) = g ( l  1 %  I 1 )  ( x = ( x l , + * * ~ z d ) E R d )  

for some functlon g . Thls functlon g on [O,m) 1s such that 

J ~ v ,  r d - l g  ( r  dr = 1 , 

I 
co 

0 

where 

1s the volume of the unlt sphere C,. We say that g defines or determlnes the 
radlal denslty. Elllptlcal radlal symmetry 1s not be treated In thls early chapter, 
nor do we speclflcally address the problem of multlvarlate random varlate genera- 
tlon. For a blbllography on radlal symmetry, see Chmlelewskl (1981). For the 
fundamental propertles of radlal dlstrlbutlons not glven below, see for example 
Kelker (1970). 
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Theorem 4.1. (Uniform distributions on the unit sphere.) 

1. 

2. 

3. 

1s unlformly dlstrlbuted X 
11x1 I If X 1s strlctly radlally symmetrlc, then 

on c d .  
If X IS uniformly dlstrlbuted on cd, then (X12, . . . , & 2, IS dlstrlbuted as 

. . . , Yd are lndependent gamma (-) random (7, . . . , T ) ,  where Y , ,  1 
2 

Y l  yd 

varlables wlth sum S . 
1 d-1 If x 1s unlformly dlstrlbuted on cd, then x12 1s beta (-,-). 

T 7  2 2  
I Equlvalently, X12 1s dlstrlbuted as - where Y , Z  are lndependent 

Y + Z  
1 d -1 gamma (-) and gamma (-) random varlables. Furthermore, Xl has den- 
2 2 

slty 

Proof of Theorem 4.1. 

AX 1s dlstrlbuted as 

because X 1s strlctly 

X u = 1 ,  statement 1 fol- 

1.p 1 . 1  
I P I  I 

I I X l I  l ' = I I x I I  

For all orthogonal d X d  matrices A ,  
Ax , whlch In turn 1s dlstrlbuted as I I A X I  I 

radlally symmetrlc. Slnce I I 
lows. 

To  prove statement 2, we define the lld normal random varlables 
N , ,  . . . , Nd, and note that N = ( N l ,  . . . , Nd) 1s radlally symmetrlc wlth den- 
slty determlned by 

r* 
1 -- 

s ( r )  = - e d ( r  LO) . - 
( 2 4  

1s unlformly dlstrlbuted Thus, by part 1, the vector wlth components 

on cd . But slnce N i 2  1s gamma (-,2), we deduce that the random vector wlth 

components 1s dlstrlbuted as a random vector wlth components 

- . Thls proves statement 2. 

Ni 
I IN1 I 1 

2 
Ni 

2 Yi I I N 1  l 2  
2s 
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The flrst part of statement 3 follows easlly from statement 2 and known pro- 
1 d-1 
2 2  

pertles of the beta and gamma dlstrlbutlons. The beta (-,-) denslty is 

(O<s <1> , (1-x) 
IE C 

d 

1 d-1 

r(2)  
where c = . Puttlng Y = a ,  we see that Y has denslty 

yj- > 
d - 3  - 

c (l-y2) 2 1  -2y ( o c y  <1) 9 

Y '  
1 d-1 
2 2  

when X Is beta (-,-) dlstrlbuted. Thls proves statement 3. 

Theorem 4.2. (The normal distribution.) 
If N , ,  . . . , Nd are lld normal random varlables, then (Nl, . . . , N d )  1s 

radlally symrnetrlc wlth denslty defined by 
r 2  

( T  Lo) 1 e-2 g ( r )  = - d 

(2n)T 

Furthermore, If ( X I ,  , . . , xd) 1s strlctly radlally symrnetrlc and the xi's are 
Independent, then the xi's are lld normal random varlables wlth nonzero varl- 
ance. 

Proof of Theorem 4.2. 

example In Kelker (1970). 
The flrst part was shown In Theorem 4.1. The second part is proved for 
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Theorem 4.3. (Radial transformations.) 
1. 

2. 

3. 

If X 1s strlctly radlally symmetrlc In R 
R = I 1 X I I has denslty 

wlth deflnlng functlon g ,  then 

dV, r d-lg ( r  ) ( r  2 0 )  . 
If X 1s uniformly dlstrlbuted on Cd, and R Is lndependent of X and has 
the denslty glven above, then RX 1s strlctly radlally symmetrlc In R wlth 
deflnlng functlon g . 
If X 1s radlally symrnetrlc In R wlth deflnlng functlon g ,  and If R 1s a 
random varlable on [O,oo) wlth density h , lndependent of X ,  then RX Is 
radlally symrnetrlc wlth deflnlng functlon 

Proof of Theorem 4.3. 

dlmenslonal volume dVd . By a slmple polar transformatlon, 
For statement 1, we need the fact that  the surface of Cd has d-1- 

P ( R I r ) =  J s ( l  15 I I > d z  = J dvdYd-'9(Y)dY ( T L O ) .  
I I z  I I < r  Y 1 7  

Thls proves statement 1. 

R X  1s radlally symmetrlc because for all orthogonal d X d  matrlces A ,  
A ( R X )  1s dlstrlbuted as R ( A X )  and thus as R X .  But such dlstrlbutlons are 
unlquely determlned by the dlstrlbutlon of I I RX I I =R I I X I I = R ,  and 
thus, statement follows from statement 1. 

Conslder flnally part 3. Clearly, RX 1s radlally symrnetrlc. Glven R ,  
R I I X I I has denslty 

1 r d-l  r 
--dVd'Z' R 9($ ( e o )  * 

Thus, the denslty of I 1 X I I 1s the expected value of the latter expresslon wlth 
respect to R , whlch 1s seen to be g * .  

Let us brlefly dlscuss these three theorems. Conslder first the marglnal dlstrl- 
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d 

2 

3 

4 
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Density of X, (on [ - 1 , 1 ] )  
1 

Name of density 

Arc sine density 
7rm 

1 - Uniform [-1,1] density 
2 

2 4 2  - 
1 I I  

3 
4 

5 -( l-X2) 
% 

6 
" - 

8 
-( 1 - x 2 )  2 

Slnce all radlally symmetrlc random vectors are dlstrlbuted as the product of a 
unlform random vector on Cd and an lndependent random varlable R , I t  follows 
that the flrst component X, 1s dlstrlbuted as R tlmes a random varlable wlth 
densltles as glven In the table above or In part 3 of Theorem 4.1. Thus, for d 22, 
X ,  has a marglnal denslty whenever X 1s strlctly radlally symmetrlc. By 
Khlnchlne's theorem, we note that for d 23, the denslty of x, 1s unlmodal. 

Theorem 4.2 states that radlally symmetrlc dlstrlbutlons are vlrtually useless 
If they are to be used as tools for generatlng lndependent random varlates 
XI, . . . , X ,  unless the Xi's are normally dlstrlbuted. In the next section, we 
wlll clarlfy the speclal role played by the normal dlstrlbutlon. 

4.2. Generating random vectors uniformly distributed on C d .  

a unlform dlstrlbutlon on Cd : 
The followlng two algorlthms can be used to generate random varlates wlth 

Via normal random variates 

Generate iid normal random variates, N , ,  . . . , N d ,  and compute S + , / N 1 2 +  . + N d 2  
N ,  N d  RETURN (7,. . . , 7). 
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Via rejection from the enclosing hypercube 

REPEAT 
Generate iid uniform [-1,1] random variates XI, . . . , Xd, and compute 
Stx12-k ' * +xd2. 

In addltlon, we could also make good use of a property of Theorem 4.1. Assume 
that d 1s even and that a d -vector x 1s unlformly dlstrlbuted on Cd . Then, 

(x12+x,2~ * > Xd-i2+xd 2 ,  

1s dlstributed as 

where the Ei's are lld exponentlal random varlables and S = E , +  +Ed.  - 
n 

X l  x2 
4 

Furthermore, glven XI2+X:=r 2, (-,-) 1s unlformly dlstrlbuted on C,. 
r r  

Thls leads to the followlng algorlthm: 

Via uniform spacings 

Generate iid uniform [OJ] random variates U,, . . . , Ud . 

Sort the uniform variates (preferably by bucket sorting), and compute the spacings 

-1 
2 

S I , .  * * I s.. 
2 

Generate independent pairs (VI ,  V2)1 . . . (vd-1, vd ), all uniformly distributed on 0,. 
RETURN ( v 1 f l , v 2 f 1 9 v 8 f i , v 4 f i 2  . . , vd-i& vd 

The normal and spaclngs methods take expected tlme 0 ( d  ), whlle the reJec- 
tlon method takes tlme lncreaslng faster than exponentlally wlth d .  By Stlrllng's 
formula, we observe that the expected number of lteratlons In the rejectlon 
method 1s 
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whlch lncreases very rapidly to 00. Some values for the expected number of ltera- 
tlons are glven In the table below. 

d I EXpected number of iterations 

The reJectlon method 1s not recommended except perhaps for d 5 5 .  The normal 
and spaclngs methods dlffer In the type of operatlons that are needed: the normal 
method requlres d normal random varlates plus one square root, whereas the 
spaclngs method requlres one bucket sort , - square roots and --1 unlform ran- 

dom varlates. The spaclngs method 1s based upon the assumptlon that  a very fas t  
method 1s available for generating random vectors with a unlform dlstrlbutlon on 
C,. Slnce we work wlth spaclngs, I t  1s also posslble that some accuracy 1s lost for 
large values of d .  For all these reasons, I t  seems unllkely that the spaclngs 
method wlll be competltlve wlth the normal method. For theoretlcal and experl- 
mental cornparlsons, we refer the reader to Deak (1979) and Rublnsteln (1982). 
For another derlvatlon of the spaclngs method, see for example Slbuya (1962), 
Tashlro (1977), and Guralnik, Zemach and Warnock (1985). 

d d 
2 2 
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4.3. Generating points uniformly in and on C,. 
We say that a random vector 1s unlformly dlstrlbuted In cd when I t  1s radl- 

ally symrnetrlc wlth deflnlng functlon g ( r  )=- (O<r 51). For d =2, such ran- 

dom vectors can be convenlently generated by the rejection method: 

1 

vd 

Rejection method 

REPEAT 
Generate two iid uniform [-l,l] random variates U,, U,. 

UNTIL UIa+ U , " i  1 
RETURN (u,, U,) 

4 

7r 
On the average, - palrs of unlform random varlates are needed before we exlt. 

For each palr, two multlpllcatlons are requlred as well. Some speed-up 1s posslble 
by squeezlng: 

Rejection method with squeezing 

REPEAT 
Generate two iid uniform [-1,1] random variates u , ,U ,  , and compute 
z+ I ui I + I ua I .  
Accept +[z 5 1 )  
IF NOT Accept THEN IF Z 2 6  

THEN Accept t [ U l a + U 2 < l ]  
UNTIL Accept 
RETURN (u,, v,) 

In the squeeze step, we avold the two multlpllcatlons preclsely 50% of the tlme. 
The second, sllghtly more dlfflcult problem 1s that of the generatlon of a 

polnt unlformly dlstrlbuted on C,. For example, If (X,,X,) 1s strlctly radlally 
symrnetrlc (thls 1s the case when the components are lld normal random varl- 
ables, or when the random vector 1s unlformly dlstrlbuted In C, ) ,  then I t  sufflces 

to  take (- -) where S = d X m .  At flrst slght, I t  seems that the costly 

square root 1s unavoldable. That thls 1s not so follows from the followlng key 
theorem: 

Xl x2 

s ' s  
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1 Theorem 4.4. 

1. 

2. 

3. 

4. 

5. 

6.  

If (X,,X,) 1s unlformly dlstrlbuted In c,, and S = d m ,  then: 

S and (- -) are Independent. 
x, x2 
s ’ s  

S2 1s unlformly dlstrlbuted on [0,1]. 

1s Cauchy dlstrlbuted. 
1 2  

Xl 
XI x2 

- 
(-,-) 1s unlformly dlstrlbuted on C,. 

When u 1s unlform [0,1], then ( ~ 0 ~ ( 2 n U ) , s l n ( 2 ~ ~ ) )  1s unlformly dlstrlbuted 
on C,. 

s s  

x 12-x,2 2x ,x , 
) 1s unlformly dlstrlbuted on C,. 

( s2 ’ s2 

Proof of Theorem 4.4. 

Propertles 1,3 and 4 are valld for all strlctly radlally symrnetrlc random vec- 
tors (X,,X,). Propertles 1 and 4 follow dlrectly from Theorem 4.3. From 
Theorem 4.1, we recall that S has denslty dVd 7 d-1=2r (O<r 51). Thus, S 2  1s 
unlformly dlstrlbuted on [0,1]. Thls proves property 2. Property 5 1s trlvlally true, 

and wlll be used to prove propertles 3 and 6 .  From 5, we know that - 
trlbuted as tan(2nu) ,  and thus as tan(.nU), whlch In turn 1s Cauchy dlstrlbuted 
(property 3). Flnally, In vlew of 

IS dls- 
x2 

Xl 

cos(4nU) = cos2(2nU)-sin2(2~U) , 
sln(4nU) = 2sln(2nU)cos(2nU) , 

x12-x22 2x,x, 
s2 ’ s2 

we see that ( ) 1s unlformly dlstrlbuted on C,, because I t  1s dls- 

trlbuted as (cos(4nu),sln(4nU)). Thls concludes the proof of Theorem 4.4. 

I 

Thus, for the generatlon of a random vector unlformly dlstrlbuted on C,, 
the followlng algorlthm 1s fast: 
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REPEAT 
Generate iid uniform [-1,1] random variates Xl,X,. 
Set Yl+-X12, Y,+X$,S c y 1 +  Y2. 

UNTIL s<i 
Y,-Y, 2x1x2 
S ’ S  RETURN (- - 1 

235 

4.4. Generating normal random variates in batches. 

mal random varlates: 
We begln with the descrlptlon of the polar method for generatlng d lld nor- 

Polar method for normal random variates 

Generate X uniformly on c d  . 

Generate a random variate R with density d v d  r d-le 
r 2  -_. 

( r  2 0 ) .  ( R  is distributed as 
d 
2 

where G is gamma (-) distributed.) 

RETURN RX 

In partlcular, for d =2, two lndependent normal random varlates can be obtalned 
by elther one of the followlng methods: 

Here (X, ,X,)  1s unlformly dlstrlbuted In C,, S = d X , 2 + X 2 2 ,  U 1s unlformly 
dlstrlbuted on [0,1] and E 1s exponentlally dlstrlbuted. Also, E 1s lndependent of 
the other random varlables. The valldlty of these methods follows from Theorems 
4.2, 4.3 and 4.4. The second formula 1s the well-known Box-Muller method 
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(1958). Method 4, proposed by Marsaglla, 1s slmllar to  method 1, but uses the 

observatlon that s2 1s a unlform [0,1] random varlate lndependent of (- -) 

(see Theorem 4.4), and thus that -2log(s) 1s exponentlally dlstrlbuted. If the 
exponentlal random varlate In E 1s obtalned by lnverslon of a unlform random 
varlate, then I t  cannot be competltlve wlth method 4. Method 3, published by 
Bell (1968), 1s based upon property 6 of Theorem 4.4, and effectlvely avolds the 
compufatlon of the square root In the deflnltlon of S .  In all cases, I t  1s recom- 
mended that (X,,x,) be obtalned by reJectlon from the encloslng square (wlth an 
acceleratlng squeeze step perhaps). A closlng remark about the square roots. 
Methods 1 and 4 can always be lmplemented wlth Just one (not two) square 
roots, If we compute, respectlvely, 

XI x2 
s ' s  

and 

In one of the exerclses, we wlll lnvestlgate the p c - x  method wlth the next 
hlgher convenlent cholce for d ,  d =4. We could also make d very large , In the 
range 100 . - 300 , and use the spaclngs method of sectlon 4.2 for generatlng X 
wlth a unlform dlstrlbutlon on Cd (the normal method 1s excluded since we want 
to generate normal random varlates). A gamma (-) random varlate can be gen- 

erated by one of the fa s t  methods descrlbed elsewhere In thls book. 

d 
2 

4.5. Generating radially symmetric random vectors. 

metric random vectors In R 
Theorem 4.3 suggests the followlng method for generatlng radlally sym- 

wlth deflnlng functlon g : 

Generate a random vector x uniformly distributed on cd . 
Gcnerate a random variate R with density dvd r d-lg ( r  ) ( r  20). 
RETURN RX 

Slnce we already know how to generate random varlates wlth a unlform dlstrlbu- 
tlon on cd, we are just left wlth a unlvarlate generatlon problem. But In the 
multlpllcatlon wlth R , most of the Informatlon In x' 1s lost. For example, to  

I 
-.. 
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Thls 1s the denslty of the square root of a beta ( - + l , a  -1) random varlable. d 
2 

Example 4.2. The multivariate Pearson VI1 density. 
d 
2 

The multlvarlate Pearson VI1 denslty wlth parameter a >- 1s deflned by 

the functlon 

where 

The densltles of R for the standard and Johnson-Ramberg methods are respec- 
tlvely, 

CdVd T d - l  

and 

( l+Py+l  * 

d d  In both cases, we can generate random l? as dz where Is beta ( - ,a - - )  2 2  

In the former case, and beta ( -+l ,u--)  In the latter case. Note here that for 

the speclal cholce a =- +' , the multlvarlate Cauchy denslty Is obtalned. I 

d d 
2 2 

2 

Example 4.3. 
The multlvarlate radlally symrnetrlc dlstrlbutlon determlned by 
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leads to a density for R glven by 

dr d - l  

1 

U T  
Thls 1s the denslty of (-) where U 1s a unlform [O,l] random varlable. 

1- I/ 

4.6. The deconvolution method. 
Assume that we know how to generate 2 ,  a random varlable whlch 1s dlstrl- 

buted as the sum x+Y of two lld random varlables x , Y  wlth denslty f . We 
can then generate the palr x ,  Y by looklng at the condltlonal denslty of X glven 
the value of 2. The followlng algorlthm can be used: 

The deconvolution method 

Generate a random variate Z with the density h (t )=si (z )f ( z  -z ) dz . 
Generate x with density f (2 )f (2-2) 

h ( Z )  
RETURN ( X , Z - X )  

Flrst, we notlce that h 1s lndeed the denslty of the sum of two lld random varl- 

ables wlth denslty f . Also, glven 2 ,  X has denslty ('If ('-'). Thus, the 

algorlthm 1s valld. 
h ( 2 )  

1 
2 

To lllustrate thls, recall that  if X , Y  are lld gamma (-), then X + Y  1s 

exponentlally dlstrlbuted. In thls example, we have therefore, 

whlch 1s the arc slne denslty. Thus, applylng the deconvolutlon method shows the 
followlng: If E 1s an exponentlal random varlable, and W 1s a random varlable 
wlth the standard arc slne denslty 
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1 
2 

then (EW,E  (1-W)) 1s dlstrlbuted as a palr of lld gamma (-) random varlables. 

But tlils leads preclsely to the polar method because the followlng palrs of ran- 
dom varlables are ldentlcally dlstrlbuted: 

( N l , N 2 ) (  two lld normal random varlables); 

( d r n  ,d2E (1-W)); 

<&F cos(2n.u ),AT s i n ( 2 n ~  1) . 

Here U is a unlform [0,1] random varlable. The equlvalence of the A r s t  two palrs 
1s based upon the fact that a normal random varlable 1s dlstrlbuted as the square 

root of 2 tlmes a gamma (-) random varlable. The equlvalence of the flrst and 

the thlrd palr was establlshed in Theorem 4.4. As a slde product, we observe that 

1 
2 

where (X,,X,)  is unlformly dls- XI2 
X12+XZ2 

W is dlstributed as c0s2(27rU), 1.e. as 

trlbuted In C,. 

4.7. Exercises. 
1. Write one-line random varlate generators for the normal, Cauchy and arc 

slne dlstrlbutlons. 

1s Cauchy dlstrlbuted, If N 1 , N 2  are ild normal random varlables, then - 
N :+N22 1s exponentlally distrlbuted, and d h  has the Raylelgh 

Nl 
2.  

2 2  -- 
distributlon (the Raylelgh denslty 1s xe (x YON. 

3. Show the followlng. If X 1s unlformly dlstrlbuted on cd and R 1s lndepen- 
dent of x and generated as max( U,, . . . , ud ) where the Vi’s are lld unl- 
form (0,1] random varlates, then RX 1s unlformly dlstrlbuted In C,. 
Show that If X 1s unlformly dlstrlbuted on Cd , then Y /  I I Y I I is unl- 
formly dlstrlbuted on C, where k 5 d and Y =(Xl ,  . . . , Xk ). 
Prove by a geometrlcal argument that lf (Xl,X2,X,) is unlformly dlstrlbuted 
on c,, then X , , X ,  and X ,  are unlform [-1,1] random varlables. 

If x 1s radlally symmetrlc wlth deflnlng functlon g ,  then Its flrst com- 
ponent, X , has denslty 

4. 

5.  

6. 

d - 1  

1 
2 

7. Show that two lndependent gamma (-) random variates can be generated 
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8. 

9. 

10. 

11. 

as (4 log( U2),-(1-S )log( U,)), where S =sln2(2nU,) and U,,  U ,  are lndepen- 
dent unlform [0,1] random varlates. 
Consider the palr of random varlables deflned by 

(rn-%rn-) 1-s  
1 + s  1 + s  

where E 1s an exponentlal random varlable, and S+tan2(nU)  for a unlform 
[0,1] random varlate U .  Prove that the palr 1s a palr of lld absolute normal 
random varlables. 
Show that when (X,,X2,x,,x,) 1s unlforrnly dlstrlbuted on C,, then 
(X,,X,) 1s unlformly dlstrlbuted In C ,'- 
Show that both N and d L  are unlformly dlstrlbuted on 

[O,1] when N , E  and G are Independent normal, exponentlal and gamma 
G +E 

1 (5) random varlables, respectlvely. 

Generating uniform random vectors on C,. Show why the followlng 
algorlthm 1s valid for generatlng random vectors unlformly on e,: 

Generate two iid random vectors uniformly in C,, (Xl,x2),(X3,X4) (this is best 
done by rejection). 
s+-x1'+x:, wtx:+x,a 

(Marsaglla, 1972). 

12. Generating random vectors uniformly on C,. Prove all the starred 
statements In this exerclse. To obtaln a random vector wlth a unlform dlstrl- 
butlon on c, by rejection from [-l,1l3 requlres on the average -= 5.73 ... 
unlform [-1,1] random varlates, and one square root per random vector. The 
square root can be avolded by an observatlon due t o  Cook (1957): If 
(X,,X,,x,,X,) 1s unlformly dlstrlbuted on C,, then 

18 
n 

1s unlformly dlstrlbuted on C3 (*). Unfortunately, If a random vector wlth a 
unlform dlstrlbutlon on C ,  1s obtalned by reJectlon from the encloslng 
hypercube, then the expected number of' unlform random varlates needed 1s 
4(--;-)X13. Thus, both methods are qulte expenslve. Uslng Theorem 4.4 and 32 

n 
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exerclses 4 and 5, one can show (*) that 

XlJ1-z. X , d Z  
( 6  ' 6  92 1 

1s unlformly dlstrlbuted on C, when (xl,x,) 1s unlformly dlstrlbuted In C,, 

S=X12+x22, and 1s lndependent of (- -) and unlformly dlstrl- 

buted on [-1,1]. But 2s-1 ltself 1s a candidate for 2 (*). Replaclng Z by 
2s-1, we conclude that 

Xl x2 a'& 

( 2 X 1 r n  , 2 x 2 m  ,2S-1) 

Is uniformly dlstrlbuted on C, (thls method was suggested by Marsaglia 
(1972)). If the random vector (x,,x,) 1s obtained by rejectlon from [-1,112, 
the expected number of unlform [-1,1] random varlates needed per three- 
dimenslonal random vector 1s 8m2.55 (*). 

13. The polar methods €or normal random variates, d=4. Random vec- 
tors unlformly dlstrlbuted on C, can be obtalned qulte emclently by 
Marsaglla's method descrlbed in exerclse 11. To apply the polar method for 
normal random varlates, we need an lndependent random varlate R dlstrl- 
buted as 4- where ,!?,,E, are lndependent , exponentlal random 
varlates. Such an R can be generated In a number of ways: 

(11) A s  J-210g(U1U,) where U,,U,  are lndependent unlform [0,1] random 

(111) As ,/-2log( WU,) where U, 1s as in (11) and W 1s an lndependent ran- 

Why 1s method (111) valld ? Compare the three methods experlmentally. 
Compare also wlth the polar method for d =2. 

14. Implement the polar method for normal random varlates when d is large. 
Generate random vectors on Cd by the spaclngs method when you do so. 
Plot the average tlme per random varlate versus d .  

15. The spacings method for uniform random vectors on Cd when d is 
odd. Show the validlty of the followlng method for generatlng a unlform 
random vector on C, : 

7r 

(1) As @cmn. 
varl at es. 

dom varlate as In exerclse 11. 
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Generate -- -I 1 iid uniform [O, l ]  random variates. 

Obtain the spacings SI,  . . . , Sd-1 by bucket sorting the uniform random vari- 

ates. 

Generate independent gamma (-) and gamma (-) random variates G , H .  

2 

- 
2 

d-1 1 
2 2 

Generate iid random vectors (V, ,  V2),  . . . , ( Vd-2, Vd-J uniformly on C,. 
RETURN (RV,&,RV,f i ,  RVsJSa, . . . R v d - l f i  - R*).  

16. Let x be a random vector unlformly dlstrlbuted on cd-1. Then the random 
vector Y generated by the following procedure 1s unlformly dlstrlbuted on 
Cd : 

d-1 1 
2 2 

Generate independent gamma (-) and gamma (-) random variates G ,H . 

RETURN Y t ( B x , k m )  where f is a random sign. 

Show thls. Notlce that thls method allows one to generate Y lnductlvely by 
startlng wlth d =1 or d =2. For d =1, X 1s merely f l .  For d =2, R 1s dls- 

trlbuted as sln(-). For d=3, R 1s dlstrlbuted as d? where U 1s a 

unlform [0,1] random varlable. To lmplement thls procedure, a fa s t  gamma 
generator Is requlred (Hlcks and Wheellng, 195Q; see also Rublnsteln, 1982). 

17. In a slmulatlon I t  1s requlred at one polnt to obtaln a random vector ( X , Y )  
unlformly distrlbuted over a star on R2. A star Sa wlth parameter a > O  1s 
deflned by four curves, one In each quadrant and centered at the orlgln. For 
example, the curve In the positlve quadrant 1s a plece of a closed llne satlsfy- 
lng the equatlon 

TU 
2 

I l-a: I a +  11-y I a = 1 .  
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The three other 
about the orlgln. 

curves are defined by symmetry about all the axes and 
For a =-, we obtaln the clrcle, for a =1, we obtaln a dla- 1 

2 
mond, and for a=2, we obtaln the complement of the union of four clrcles. 
Glve an algorlthm for generatlng a polnt unlformly dlstrlbuted In S a ,  where 
the expected tlme 1s unlformly bounded over a .  

18. The Johnson-Ramberg method for normal random variates. Two 
methods for generatlng normal random varlates In batches may be competl- 
tlve wlth the ordlnary polar method because they avold square roots. Both 
are based upon the Johnson-Ramberg technlque: 

Generate x uniformly in 0, by rejection from [--IJ]~. 

Generate , which is distributed as where G is a gamma (-) random 

variable. (Note that R has density - e  

RETURN Rx 

3 
2 

7 2  r 2  -- 
.) 2 

Generate X uniformly in C, by rejection from [-l,l]'. 
Generate R , where R is distributed as and G is a gamma (2) random 

7 2  

variable. (Note that R has density (z) J?(--)e .) 

RETURN Rx 

r s  5 - -  

These methods can only be competltlve If f a s t  direct methods for generatlng 
R are avallable. Develop such methods. 

19. Extend the entlre theory towards other norms, Le. Cd 1s now defined as the 
collectlon of all polnts for whlch the p- th  norm 1s less than or equal to one. 
Here p >O 1s a parameter. Reprove all theorems. Note that the role of the 
normal denslty 1s now lnherlted by the denslty 

( 5 )  = c e - 1 2  I P  , 
where c > O  1s a normallzatlon constant. Determlne thls constant. Show that 

a random varlate wlth thls denslty can be obtalned as X p  where x 1s 
1 - 

1 gamma (-) dlstrlbuted. Flnd a formula for the probablllty of acceptance 
P 
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when random variates wlth a unlform dlstribution In Cd are obtalned by 
reJectlon from [-1,112. (To check your result, the answer for d =2 is 

r2(-)r '(-) (Beyer, 1908, p. 630).) Dlscuss varlous methods for generatfng 

random vectors uniformly distrlbuted on Cd, and deduce the marglnal den- 
slty of such random vectors . 

1 - 2  
P P 



Chap fer Six 
THE POISSON PROCESS 

1. THE POISSON PROCESS. 

1.1. Introduction. 
One of the most lmportant processes occurrlng In nature 1s the Polsson polnt 

process. It 1s therefore lmportant t o  understand how such processes can be slmu- 
lated. The methqds of slmulatlon vary wlth the type of Polsson polnt process, 1.e. 
wlth the space In whlch the process occurs, and wlth the homogenelty or non- 
homogenelty of the process. We wlll not be concerned wlth the genesls of the 
Polsson polnt process, or wlth lmportant appllcatlons In varlous areas. To make 
thls materlal come allve, the reader 1s urged to read the relevant sectlons In 
Feller (1965) and Clnlar (1975) for the baslc theory, and some sectlons in Trlvedl 
(1982) for computer sclence appllcatlons. 

In a flrst step, we will deflne the homogeneous Polsson process on [O,m): the 
process 1s entlrely determlned by a collectlon of random events occurrlng at cer- 
taln random tlmes O< T,<  T 2 <  . . * . These events can correspond t o  a varlety 
of thlngs, such as bank robberles, blrths of qulntuplets and accldents lnvolving 
Montreal tax1 cabs. If N( t , , t , )  1s the number of events occurrlng In the tlme 
lnterval ( t  l , t 2 ) ,  then the following two condltlons are often satlsfied: 
(I) For dlsjolnt lntervals ( t i , t 2 ) , ( t 3 , t 4 ) ,  . . . , the random varlables 

N ( t  l , t 2 ) ,N( t3 , t4 ) , . . .  are Independent. 
(11) N ( t , , t 2 )  1s dlstrlbuted as N(0,t2-t ,) ,  1.e. the dlstrlbutlon of the number of 

events In a certaln tlme lnterval Just depends upon the length of the Inter- 
val. 
The amazlng fact 1s that these two condltlons lmply that all random varl- 

ables N ( t  , , t 2 )  are Polsson dlstrlbuted, and that there exlsts a constant 120 such 
that N ( t  ,t +a  ) 1s Polsson ha for all t 20, a >O. See e.g. Feller (1965). Thus, 
the Polsson dlstrlbutlon occurs very naturally. 

d .  Let A be a subset of d ,  
and let N be a random varlable taking only lnteger values. Let X,, . . . , X N  be 
a sequence of random vectors talclng values In A .  Then we say that the & ' s  

The prevlous concept can be generallzed to 
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deflne a unlform (or: homogeneous) Polsson process on A lf 

(A) For any flnlte callectlon of flnlte-volume nonoverlapplng subsets of A ,  say 

(B) For any Bore1 subset B G A  , the dlstrlbutlon of N ( B )  depends upon 

Agaln, these assumptlons lmply that all N ( B ) ’ s  are Polsson dlstrlbuted wlth 
parameter V o l ( B )  for some 120. X wlll be called the rate , or rate parameter, 
of the homogeneous Polsson process on A .  Examples of such processes In multldl- 
menslonal Euclldean space lnclude bacterla on a Petrl plate and locatlons of 
murders In Houston. 

A ,, . . . , A,  , the random varlables N ( A  1), . . . , N (Ak ) are lndependent. 

Vol ( B  ) only. 

1 Theorem 1.1. 
Let B S A  be Axed sets from R d ,  and let O< Vol ( B  )<w. Then: 
If X 1 , x 2 , . . .  determlnes a unlform Polsson process on A wlth parameter A, 
then for any parltlon B I, . . . , Bk of B , we have that N ( B  J, . . . , N (Bk ) 
are lndependent Polsson dlstrlbuted wlth parameters 
Let N be Polsson dlstrlbuted wlth parameter A Vol (B) ,  and let 
X , ,  . . . , X N  be the flrst N random vectors from an lid sequence of random 
vectors unlformly dlstrlbuted on B . For any partltlon B 1, . . . , Bk of B , 
the  sequence N ( B l ) ,  . . . , N ( B k )  1s sequence of lndependent Polsson ran- 
dom varlables wfth parameters Vol (Bk ). In other words, 
X , ,  . . . , lYN determlnes a unlform Polsson process on B wlth rate parame- 
ter A. 

Vol (Bi ). 

Vol ( B  1), . . . , 

Proof of Theorem 1.1. 
We wlll only show part (11). Assume that Vol(B)=l and that B 1s partl- 

tloned lnto two sets, A ,,A wlth respectlve volumes p and q =1-p . For any two 
lntegers i , j  20 wlth z’ + j  = k  , we have 

P ( N  ( A  ,)=i ,N ( A  J= j  ) 

= P ( N ( B ) = k ) P ( N ( A , ) = i , N ( A , ) = j  I N ( B ) = k )  

and therefore, N ( A  1) and N ( A  2) are lndependent Polsson random varlables as 
clalmed. Thls argument can be extended towards all flnlte partltlons and all posl- 
tlve values for Vol ( B  ). 
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1.2. Simulation of homogeneous Poisson processes. 
If we have to slmulate a unlform Polsson process on a set A E R  d ,  then we 

need to generate a number of random vectors Xi EA . Thls can be done as follows 
(by Theorem 1.1): 

Homogeneous Poisson process generator 

Generate a Poisson random variate N with parameter X Vol (A ). 
Generate iid random vectors X,, . . . , XJ uniformly distributed on A ,  
RETURN XI, . . . , XJ 

To generate N I t  1s vlrtually useless to use an O(1) expected tlme algorlthm 
because In the remalnder of the algorlthm, at least tlme n(N) 1s spent. Thus, I t  
1s recommended that lf the algorlthm 1s used, the Polsson random varlate be gen- 
erated by a very slmple algorlthm (wlth expected tlme typlcally growlng as A). 
For speclflc sets A ,  other methods can be used whlch do not requlre the expllclt 
generatlon of a Polsson random varlate. There are three cases that we wlll use to 
Illustrate this: 

(I)  A 1s [O,oo). 
(1) A 1s a circle. 
(111) A 1s a rectangle. 

To do so, we need an lnterestlng connectlon between Polsson processes and the 
exponentlal dlstrlbutlon. 

Theorem 1.2. 

parameter h>O. Then 
Let o<T,<T,< . be a unlform Polsson process on [O,oo) wlth rate 

A( T f-O),h( 2- T ,>,q T 3- T 2), . .. 
are dlstrlbuted as lld exponentlal random varlables. 
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Thus, glven Tk , Tk+,-Tk 1s exponentlal wlth parameter A. Generallzlng this 
argument to obtaln the clalmed lndependence as well, we see that for any Anlte 
I C ,  and any sequence of nonnegatlve numbers zo,xl,  . . . , 

p ( q + l - T k  >q ,Tk-Tk-,>q-,, * - * , T,-T,>5T,-o>s,)  

= p (N(O,zo+z,+ . . . +z,)=o) 

- - ( N (  Tb ,Tk +zk)=O, * * * N ( ~ , z o ) = o )  

k 

-1 2, 
1 - 0  = e  

i =O 

Thls concludes the proof of Theorem 1.2. 

Theorem 1.2 suggests the followlng method for slmulatlng a unlform Polsson 
process on A =[O,m): 

Uniform Poisson process generator on the real line: the exponential spacings 
method 

T t 0  (auxiliary variable used for updating the "time") 
k t o  (initialize the event counter) 
REPEAT 

Generate an 
k + - k + l  

E T+-T+- x 
T k t T  

exponential random variate E .  

UNTIL False (this is an inf l i te  loop; a stopping rule can be added if desired). 

Thls algorlthm 1s easy to lmplement because no Polsson random varlates are 
needed. For other slmple sets A ,  there exlst trlvlal generallzatlons of Theorem 
1.2. For example, when A 1s [O,t]X[0,1] where posslbly t=m, 
O<T,<T,<. . * 1s a unlform Polsson process wlth rate A on [O,t 1, and 
ul,u ,,... 1s a sequence of lld unlform [0,1] random varlables, then 

( 1' u 114 T,, U,),... 
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determlnes a unlform Polsson process wlth rate X on A . 

Example 1.1. A uniform Poisson process on the unit circle. 
If the set A 1s the clrcle wlth unlt radlus, then the varlous properties of unl- 

form Polsson processes can be used t o  come up wlth several methods of genera- 
tlon (these can be extended to  d dlmenslonal spheres). Assume that X ls the 
deslred rate. Flrst, we could slmply generate a Polsson x.lr random varlate N ,  and 
then return a sequence of N lld random vectors unlformly dlstrlbuted In the unlt 
clrcle. If we apply the order statlstlcs method suggested by Theorem 1.2, then the 
Polsson random varlate 1s lmpllcltly obtalned. For example, by swltchlng to 
polar coordlnates ( R  ,e), we note that for a unlform Polsson process, R and 8 are 
lndependent, and that a randomly chosen R has denslty 2r  (O<r 51) and that 
a randomly chosen 8 1s unlformly dlstrlbuted on [0,2n]. Thus, we could proceed as 
follows: generate a unlform Polsson process 0<8,<82< . . * < e N  wlth rate 
parameter - on [ 0 , 2 ~ ]  by the exponentlal spaclngs method. Exlt wlth x 

2T 

(e1,R 11, . > ( 6 ,  ,RN) 

where the Ri 's are lld random varlates wlth denslty 2r ( 0 5 r  51) whlch can be 
generated indlvldually as the maxlma of two lndependent unlform [0,1] random 
varlates. There 1s no speclal reason for applylng the exponentlal spaclngs method 
t o  the angles. We could have plcked the radll as well. Unfortunately, the ordered 
radll do not form a one-dlmenslonal unlform Polsson process on [0,1]. They do 
form a nonhomogeneous Polsson process however, and the generatlon of such 
processes wlll be clarlfled In the next subsectlon. 

1.3. Nonhomogeneous Poisson processes. 
There are sltuatlons In whlch events occur at "random tlmes" but some 

tlmes are more llltely than others. Thls 1s the case for arrlvals In lntenslve care 
units, for Job submlsslons In a computer centre and for lnjurles to  NFL players. A 
very good model for these cases 1s the nonhomogeneous Polsson process model, 
deflned here for the sake of convenlence on [O,GO). Thls 1s the most important 
case because "tlme" 1s usually the runnlng variable. 

A nonhomogeneous Polsson process on [O,GO) 1s determlned by a rate func- 
tlon h(t)>O ( t  L O )  , whlch can be consldered as a denslty of sorts, wlth the 

dlfference that J h ( t )  dt 1s not necessarlly 1 (usually, I t  1s GO). The process 1s 

deflned by the followlng property: for all flnlte collectlons of dlsjolnt lntervals 
A . . . , Ak , the numbers of events happenlng In these lntervals ( N , ,  . . . , Nk ) 
are lndependent Polsson random varlables wlth parameters 

00 

0 



VI.1.THE POISSON PROCESS 251 

Let us now revlew how such processes can be slmulated. By slmulatlon, we under- 
stand that the tlmes of occurrences of events O< T I <  T,< . . . are to be glven 
In lncreaslng order. The maJor work on slmulatlon of nonhomogeneous Polsson 
processes Is Lewls and Shedler (1979). Thls entlre sectlon 1s a reworked verslon of 
thelr paper. I t  1s lnterestlng to observe that  the general prlnclples of contlnuous 
random varlate generation can be extended: we wlll see that there are analogs of 
the lnverslon, reJectlon and composltlon methods. 

The role of the dlstrlbutlon functlon wlll be taken over by the lntegrated 
rate functton 

t 
A ( t )  = sX(u  ) du . 

0 

We begln by notlng that glven T, =t , T,  +l-Tn has dlstrlbutlon functlon 

(3 20) F (z ) = 1-e -(Nt +z tNt 1) 

00 

provlded that  Ilm A(t )=co (l.e, J x ( t  ) dt  =co). Thls follows from the fact that 
t - 0  0 

F ( z )  = P(T,+,-T, >z I T,=t) 
= P ( N ( t , t + z ) = o  1 T,=t) 
- - e 4 N t + z ) - a t ) )  (z 20) . 

Thus, Tn+l 1s dlstrlbuted as T,  +F-'( U )  where U 1s a uniform [0,1] random 
varlate. Interestlngly, wrltlng U as l-e-E (where E denotes an exponentlal ran- 
dom varlable), we see that T,  +, Is also dlstrlbuted as A-'(E +A( T, )). In other 
words, we need to lnvert A. Formally, we have (see also Clnlar (1975) or Bratley, 
Fox and Schrage, 1983): 
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Algorithm based on inversion of the integrated rate function 

T t o  ( T  will be an auxiliary variable) 
k t o  (k is a counter) 

REPEAT 
Generate an exponential random variate E .  
k + k + 1  

T + T +a-l(E +a( T )) 
Tk *T 

UNTIL False 

Example 1.2. Homogeneous Poisson process. 
For the speclal case x ( t  )=A , A ( t ) = h t ,  I t  is easily seen that in the algo- 

rlthm glven above, the step T + T +A-l(E +A( T )) reduces to T + T +-. Thus, 

we obtaln the exponentlal spaclngs method agaln. 1 
E 
x 

Example 1.3. 
To model mornlng pre-rush hour trafflc, we can sometlmes take x ( t ) = t ,  

whlch glves A(t  )=-. The step T + T +A-'(E +A( T )) now needs to be replaced 

by 

t 2  
2 

T + m  .I 

If the rate function can be split lnto a sum of rate functions, as in 

X ( t ) =  & ( t )  
I =I.  

and lf O <  T i l <  Ti,< . . , 15; sn are lndegendent reallzatlons of the indlvl- 
dual nonhomogeneous Poisson processes, then the merged ordered sequences form 
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a reallzatlon of the nonhomogeneous Polsson process wlth rate functlon X(t ). 
Thls corresponds to the composition method, but the dlflerence now 1s that we 
need reallzatlons of all component processes. The decomposltlon can be used 
when there 1s a natural decomposition dlctated by the analytlcal form of h ( t  ). 
Because the baslc operatlon In merglng the processes 1s to take the mlnlmal value 
from the n processes, I t  could be advantageous for large n to store the tlmes In a 
heap contalnlng n elements. We summarlze: 

The composition method 

Generate T I , ,  . . . , T,,, for the n Poisson processes, and store these values together with 
the indices of the corresponding processes in a table. 
T t o  ( T is the running time) 
k -0 REPEAT 

Find the minimal element (say, T;j)  in the table and delete it. 
k -k fl 

Tk +- Tij 
Generate the value Ti j + ,  and insert it into the table. 

UNTIL False 

The third general prlnclple 1s that of thinning (Lewls and Shedler, 1979). 
Slmllar to what we dld In the reJectlon method, we assume the exlstence of an 
easy domlnatlng rate function p( t ): 

h ( t )  5 p ( t ) ,  all t . 

Then the idea 1s to generate a homogeneous Polsson process on the part of the 
posltlve halfplane between 0 and p ( t ) ,  then to conslder the homogeneous Pols- 
son process under h ,  and flnally to exlt wlth the x-components of the events In 
thls process. Thls requlres a theorem slmllar to that precedlng the reJectlon 
method. 
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Theorem 1.3. 
Let A ( t  ) L O  be a rate functlon on [O,oo), and let A be the set of all (5 ,y ) 

wlth 2’ L0,OS y <A(x ). The followlng 1s true: 
(1) If (Xl,Yl), ... (wlth ordered Xi’s ) 1s a homogeneous Polsson process wlth 

unlt rate on A ,  then O<X,<X,< * * . 1s a nonhomogeneous Polsson pro- 
cess wlth rate functlon x ( t  ). 

(11) If 0<x1<x2< * . . 1s a nonhomogeneous Polsson process wlth rate func- 
tlon x ( t ) ,  and U 1 , u 2 ,  ... are lld unlform [ O , l ]  random varlables, then 
(X,, U,x(X,)),(X,, U,A(X,)), ... 1s a homogeneous Polsson process wlth unlt 
rate on A .  

(111) If B S A  , and (Xl,Yl), ... (wlth ordered Xi’s ) 1s a homogeneous Polssoii 
process wlth unlt rate on A , then the subset of polnts (Xi ,Y i )  belonglng to 
B forms a homogeneous Polsson process wlth unlt rate functlon on B . 

Proof of Theorem 1.3. We verlfy that for nonoverlapplng lntervals 
A . . . , Ak , the number of Xi’s falllng In the lntervals (whlch we shall denote 
by N ( A  . . . , N ( A k ) ) ,  satisfy: 

P (N(A ,)=il, . . . , N(Ak )=ik ) - 
= P ( N ( A , ) = i , ,  . . . , N(Xk)= ik )  

where xi refers to the lntersectlon of the lnflnlte sllce wlth vertlcal proJectlon Ai 
wlth A .  Thls concludes the proof of part (1). 

To show (ll), we can use Theorem 1.1: I t  sufflces t o  show that for all flnlte 
sets Xi, the number of random vectors N falllng In x, 1s Polsson dlstrlbuted 
wlth parameter Vol (x l ) ,  and that  every random vector In thls set 1s unlformly 
dlstrlbuted In I t .  The dlstrlbutlon of N 1s lndeed Polsson wlth the glven parame- 
ter because the Xi sequence determlnes a nonhomogeneous Polsson process wlth 
the correct rate functlon. Also, by Theorem 11.3.1, a random vector (X,Uh(X)) 
Is unlformly dlstrlbuted In xi If U 1s unlformly dlstrlbuted on [0,1] and X 1s a 
random vector wlth denslty proportlonal to A(s ) restrlcted to A 1. Thus, I t  
sufflces to show that If an X 1s plcked at random from among the Xi’s In A 
then X 1s a random vector wlth denslty proportlonal to A ( E )  restrlcted to A 
Let B be a Bore1 set contalned In A 1,  and let us wrlte A B  and A A ~  for the 
lntegrals of X over B and A respectlvely. Thus, 

P ( X E B  IXEA,)=P(XEB lN(Al)=l)  
P ( N ( B ) = l , N ( A  I-B)=O) - - 

P (N(A , > = I >  
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A B  

A, 1 

=- 

1 
= -JA(s) &a: , 

'A1 B 

whlch was to be shown. 

further work. 
Par t  3 follows from Theorem 1.1 on homogeneous Polsson processes wlthout 

Consider now the thlnnlng algorlthm of Lewls and Shedler (1979): 

The thinning method (Lewis and Shedler) 

T+o 
k t o  
REPEAT 

Generate 2 ,  the first event in a nonhomogeneous Poisson process with rate function 
p occurring after T . Set T +Z . 
Generate a uniform [0 ,1 ]  random variate u .  

THEN k + k + 1 ,  Xk+T 
UNTIL Faise 

The sequence of .Yk 's thus generated 1s claimed to determlne a nonhomogeneous 
Polsson process wlth rate functlon A .  Notlce that we have taken a nonhomogene- 
ous Polsson process O< Y 1< Y,< . . * wlth rate functlon p and ellmlnated some 
polnts. As we know, ( Y l , U l p (  Yl)), ... 1s a homogeneous Polsson process wlth unlt 
rate under the curve of p If U l , U 2 ,  ... are lld unlform [0,1] random varlates 
(Theorem 1.3). Thus, the subsequence falllng under the curve of A determlnes a 
homogeneous Polsson process wlth unlt rate under that curve (part (111) of the 
same theorem). Flnally, taklng the s-coordlnates only of that  subsequence glves a 
nonhomogeneous Polsson process wlth rate functlon A .  

The nonhomogeneous Polsson process wlth rate functlon p 1s usually 
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Example 1.4. Cyclic rate functions. 
The following example 1s also due to Lewis and Shedler (1979): conslder a 

cycllc rate functlon 

A ( t )  = A(l+COS(t)) 

wlth as obvlous cholce for domlnatlng rate functlon p(t  )=2x. We have 

T ~ o  
k t o  
REPEAT 

Generate an exponential random variate E .  
T t T + -  E 

2x 
Generate a uniform [0,1] random variate U .  
u 5 l+cos(T) 

2 

THEN k t k + 1 ,  X b t T  
UNTIL False 

It goes wlthout saylng that the squeeze prlnclple can be used here to help avold- 
ing the coslne computation most of the tlme. 

A Anal .word about the emclency of the algorithm when used for generatlng a 
nonhomogeneous Polsson process on a set [ O , t ] .  The expected number of events 

t 

needed from the domlnatlng process 1s s p ( u  ) du , whereas the expected number 

of random varlates returned 1s sA(u ) du . The ratlo of the expected values can be 

considered as a falr measure of the emclency, comparable In splrlt to the reJectlon 
constant In the standard rejectlon method. Note that we cannot use the expected 
value of the ratlo because that would In general be 00 In vlew of the posltlve pro- 

bablllty ( e  O ) of returnlng no varlates. 

0 t 

0 

-JX(u) du 
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1.4. Global methods for nonhomogeneous Poisson process simulation. 
Nonhomogeneous Polsson processes on [O,oo) can always be obtalned from 

homogeneous Polsson processes on [O,m) by the followlng property (see e.g. Cln- 
lar (1975, pp. 98-99)): 

Theorem 1.4. 

[O,oo), and If A 1s an lntegrated rate functlon, then 
If O<T,<T,< * 1s a homogeneous Polsson process wlth unlt rate on 

o<A-~(T, )<A-~(T, )<  . . . 
determlnes a nonhomogeneous Polsson process wlth lntegrated rate functlon A. 

Proof of Theorem 1.4. 
We have lmpllcltly shown thls In the prevlous sectlon. Let i l ,  ... be Integers, 

let IC be an Integer, and let N ( A  ) be the number of polnts In a set A C [O,m). 
Then, N ( A  ) 1s equal to N* (A(A )) where N* refers to the homogeneous Polsson 
process, and A(A ) 1s the set A transformed under A. Thus, If A . . . , Ak are 
dlsJolnt sets, I t  1s easlly seen that N ( A l ) ,  . . . , N ( A k )  are dlstrlbuted as 
N* (A(A . . . , N* (A(Ak )), whlch 1s a sequence of lndependent Polsson ran- 
dom varlables wlth parameters equal to the Lebesgue measures of the sets A(Ai ), 
1.e. A( t ) dt where A 1s the a.e. derlvatlve of A. Thls shows that the transformed 

process 1s a nonhomogeneous Polsson process wlth lntegrated rate functlon A. 
A ,  

co 
We observe that If J A ( t )  d t  e m ,  then the functlon A-1 1s not deflned for 

very large arguments. In that case, the Ti's wlth values exceedlng J A ( t )  dt 

should be Ignored. We conclude thus that only a flnlte number of events occur In 
such cases. No matter how large the flnlte value of the lntegral is, there 1s always 
a posltlve probablllty of not havlng any event at all. 

Let us apply thls theorem t o  the slmulatlon restrlcted to a flnlte lnterval 
[O, to ] .  Thls 1s equlvalent to the lnflnlte lnterval case provlded that A ( t )  1s 
replaced by 

a3 
0 

0 

{ ,X't 1 ( o l t  9 0 )  

( t  > t o >  

Thus, I t  sufflces to use A-l( Tl), ... for all Ti ' s  not exceedlng A(to). The lnverslon 
Of A 1s sometlmes not practlcal. The next property can be used to avold I t ,  Pro- 
vlded that we have fast methods for generatlng order statlstlcs wlth non-unlform 
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densltles (see e.g. chapter V). The stralghtfonvard proof of Its valldlty 1s left to 
the reader (see e.g. Cox and Lewls, 1966, chapter 2). 

- ~- 

Theorem 1.5. 
Let N be a Polsson random varlate wlth parameter A(to). Let 

. c TN be order statlstlcs correspondlng to the dlstrlbutlon o< T I <  T,< . 
functlon 

then thls subsequence determlnes a nonhomogeneous Polsson process on [O,t 0] 
wlth lntegrated rate functlon A. 

Both Theorem 1.4 and Theorem 1.5 lead to global methods, 1.e. methods ln 
which a nonhomogeneous Polsson process can be obtalned from another process, 
usually In a separate pass of the data. The methods of the prevlous sectlon, In 
contrast, are sequentlal: the event tlmes of the process are generated dlrectly 
from left to rlght. Slnce the one-pass sequentlal approach allows optlonal stop- 
plng and restartlng anywhere In the process, I t  1s deAnltely of more practlcal 
value. In some appllcatlons, there 1s also a conslderable savlngs In storage because 
no lntermedlate (or auxlllary) process needs to  be stored. Flnally, some global 
methods requlre the computatlon of A-', whereas the thlnnlng method does not. 
Thls 1s an lmportant conslderatlon when A 1s dlfflcult t o  compute. 

For more examples, and addltlonal detalls, we refer to the exerclses and the 
other sectlons In thls chapter. Readers who do not speclallze In random process 
generatlon wlll probably not galn very much from readlng the other sectlons In 
thls chapter. 

1.5. Exercises. 

1. 
03 

When I x ( t  ) dt  <oo, the lnverslon and thlnnlng methods for nonhomogene- 

ous Polsson process generatlon need modlfylng. Show how. 
Let N be the total number of events (polnts) In a nonhomogeneous Polsson 
process on the posltlve real llne wlth rate functlon x ( t ) .  Show that there are 
only two posslble sltuatlons: 

0 

2. 

\ 

-. 
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3. 

4. 

5 .  

6. 

03 

P ( N  <oo)=l ( J X ( t )  dt <oo) 

P(N<m)=O ( J X ( t )  d t=m) .  

0 
03 

0 

The followliig rate functlon 1s glven to you: X(t ) 1s plecewlse constant wlth 
breakpolnts at a ,2a ,3a , 4 a ,  . . . , where for t E [ i a  ,(i +l )a  ), x ( t  )=Xi, 
z =0,1,2, .... Generallze the exponentlal spaclngs method for generatlng a 
nonhomogeneous Polsson process wlth thls rate functlon. Hlnt: do not use 
transformatlons of exponentlal random varlates when you cross breakpolnts, 
but rely on the memolyless property of the exponentlal dlstrlbutlon. 
We are lnterested In the generatlon of a nonhomogeneous Polsson process 
wlth log-llnear rate functlon 

c o t - c t  X ( t )  = c o e  ( t  20) . 
where co>O , c ER . There are two lmportant sltuatlons: when c <0, the 
process dles out and only a flnlte number of events occurs. The process 
corresponds to an exponentlal populatlon exgloslon however when c >O. 
Generate such a process by the lnverslon-of-A method. 
Thls 1s a contlnuatlon of the prevlous exerclse related to a method of Lewls 
and Shedler (1976) for slmulatlng non-homogeneous Polsson processes wlth 

log-llnear rate functlon. Show that If N 1s a Polsson (--) random varlable, 

and E 1,E2,... 1s a sequence of lld exponentlal random varlates, then, assum- 
lng c €0, 

C O  

C 

( l<i  g v )  Ei 
c ( N - i  +I) 

- 

are dlstrlbuted as the gaps 'between events In a nonhomogeneous Polsson 
( t  20) on [O,m). Glve the process wlth rate functlon X ( t )  = c o e  

algorlthm that exploits thls property. Note that thls lmplles that the 
C O  expected number of events In such a process 1s --<ea. For the case c >0, 

show how by fllpplng the tlme axls around, you can reduce the problem to 
that of the case c <O provlded that one 1s only lnterested In slmulatlon on a 
Anlte tlme lnterval. 
Glve an algorlthm for generatlng random varlates wlth a log-quadratlc rate 
functlon. Hlnt: coiislder several c s e s  a s  In the prevlous two exerclses (Lewls 
and Shedler, 1979). 

co+ct 

c 
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2. GENERATION OF RANDOM VARIATES WITH A GIVEN 
HAZARD RATE. 

2.1. Hazard rate. Connection with Poisson processes. 
In thls sectlon we conslder the problem of the computer generatlon of ran- 

dom varlables wlth a glven hazard rate h on (0,~). If X 1s a random varlable 
wlth density f and dlstrlbutlon functlon F ,  then the hazard rate h and 
cumulative hazard rate H are Inter-related as follows: 

h(x) = f ( X I  . 
l - F ( x )  ' 
X 

H ( x )  = J h ( y )  dy = - log(l-F(x)) ;  
0 

F (z = l -e - f ' (z )  ; 

f (3)  = h(x ) e - N ( x )  . 
The hazard rate plays a cruclal role In rellablllty studles (Barlow and Proschan, 
lQS5) and In all sltuatlons lnvolvlng llfetlme dlstrlbutlons. Note that 

J h  ( y )  dy =m and thus llm H(z)=oo. The key dlstrlbutlon now 1s the 

exponentlal: I t  has constant hazard rate of value 1. Roughly speaklng, hazard 
rates tending to  0 correspond to  densltles wlth larger-than-exponential talls, and 
diverglng hazard rates are for densltles wlth smaller-than-exponential talls. For 
compact support dlstrlbutlons, we have llm H(x)=m for some Anlte c 

(correspondlng to  the rlghtmost polnt In the support). Sometlmes, h or H Is 
glven, and not f or F. In partlcular, when only h 1s glven, f cannot be com- 
puted exactly because we would flrst need to  compute H by numerlcal lntegra- 
tlon. Thus, {here 1s a need for methods whlch allow us t o  generate random varl- 
ates wlth a glven hazard rate h .  Fortunately, such random varlates are lntl- 
mately connected to  Polsson polnt processes. 

00 

5 -+oo 0 

z t c  

Theorem 2.1. 
Let O<T,<T,< * be a nonhomogeneous Polsson process wlth rate 

functlon h (and thus lntegrated rate functlon H ) .  Then T ,  1s a random varlable 
wlth hazard rate h . c 

Proof of Theorem 2.1. 
Note that.for x >0, 

P (7' , 5 s  ) = 1-P (no event tlmes ln [o,x I) 
I 

- $ h ( t )  dt 
1-e O 
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= l - e - H ( z )  

whlch was to be shown. 

261 

Thls connectlon helps us understand the algorlthms of thls sectlon. We wlll 
dlscuss the lnverslon, composltlon and thlnnlng methods. For speclal sub-classes 
of hazard rate functlons, there are unlversally appllcable (black box) methods 
that are worth reportlng. In partlcular for DHR distributions (dlstrlbutlons 
wlth decreaslng hazard rate), the method of dynamlc thlnnlng wlll be lntroduced 
and analyzed (Devroye, 1985). Other classes, such as the class of IHR distribu- 
tions (dlstrlbutlons wlth lncreaslng hazard rate), are dealt wlth lndlrectly in the 
text and exerclses. 

2.2. The inversion method. 

to lnvert an exponentlal random varlate: 
For generatlng a random varlate wlth cumulatlve hazard rate H ,  i t  sufflces 

Inversion method 

Generate an exponential random variate E 
RETURN X +H-'(E ) 

If H-' 1s not expllcltly known, then we are forced to solve H ( X ) = E  for X by 
some lteratlve method. Here the dlscusslon of the standard lnverslon method for 
dlstrlbutlon Punctlons applles agaln. 

We can easily verlfy that  the algorlthm 1s valld, either by uslng the connec- 
tlon wlth Polsson processes glven In Theorem 2.1, or dlrectly: for z > O  observe 
that If H 1s strlctly lncreaslng, then 

P ( H - ' ( E ) L Z )  = P ( E L H ( X ) )  = l - e - H ( z ) =  F ( x )  3 
When H 1s not strlctly lncreaslng, then the chaln of lnequalltles remains valld for 
any conslstent deflnltlon of Ha'. 

Thls method 1s dlfflcult to attrlbute to one person. It was mentloned In the 
works of Clnlar (1975), Kamlnsky and Rumpf (1977), Lewls and Shedler (1979) 
and Gaver (1979). In the table below, a llst of examples Is glven. Baskally, thls 
llst contalns dlstrlbutlons wlth an easlly lnvertlble dlstrlbutlon functlon because 
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a x  "-l  ax "-1 -?"  e ( a  >O)(Weibull) 
1 - 

2 "  E "  
a 

( l + X  ) " + l  
(Pareto) 

2.3. The composition method. 
. +hfl where the hi ' s  are in turn hazard rates, then we 

can use Theorem 2.1 dlrectly and use the fact that I t  sumces to conslder the 
mlnlmum of n random varlables x,, . . . , x, wlth the lndlvldual hazard rates 
hi .  When the lndlvldual cumulatlve hazard rates are H i ,  then thls can be shown 
dlrectly: for 5 >0, 

When h =h ,+ 

fl  P(mln(X, ,  . . . , X f l ) L x ) =  ne - K ( z )  = , - H ( z )  
i = 1  

03 

If the decomposltlon 1s such that for some hi we have J h i  ( t  ) dt <co, then the 

method Is stlll appllcable if we swltch to nonhomogeneous Polsson processes. 
0 

Y - - a a log(l+x ) e "-1 
l + X  

Composition method 

X-cx, 
F O R i = 1  TO n DO 

Generate Z distributed as the first event time in a nonhomogeneneous Poisson pro- 
cess with rate function hi (ignore this if there are no events in the process; if 

J h i  =co, then z has hazard rate hi ). 

IF <x THEN x+z 

00 

0 

RETURN x 

Usually, the composltlon method 1s slow because we have to deal wlth all the 
lndlvldual hazard rates. There are shortcuts to speed thlngs up a blt. For exam- 
ple, after we have looked at the flrst component and set x' equal to the random 
varlate wlth hazard rate h I t  sufflces to conslder the nonhomogeneous Polsson 
processes restrlcted to [O,X]. The polnt 1s that if X 1s small, then the probablllty 
of observlng one or more event tlmes In thls liiterval 1s also small. Thus, often a 
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qulck check sufflces to avold random varlate generatlon for the remalnlng nonho- 
mogeneous Polsson processes. To lllustrate thls, decompose h as follows: 

h (a: 1 = l(a: )+h& 1 
where h 1s a hazard rate whlch puts Its mass near the orlgln. The functlon h 2  1s 
nonnegatlve, but does not have to be a hazard rate. It can be considered as a 
small acifustment, h ,  belng the maln (easy) component. Then the followlng algb- 
rlthm can be used: 

Composition method with quick acceptance 

Generate a random variate X with hazard rate h 1. 

Generate an exponential random variate E .  
IF E 5 H 2 ( X )  (H, is the cumulative hazard rate for h a )  

THEN RETURN X+H2-' (E)  
ELSE RETURN x 

Somethlng can be galned If we replace X t H 2 - ' ( E )  by a step In whlch we return 
a random varlate X dlstrlbuted wlth hazard rate 

whlch can be done by methods that do not lnvolve lnverslon. The expected 
number of tlmes that we need to use the second (tlme-consumlng) step In the 
algorlthm 1s the probablllty that E s H 2 ( X )  where X has hazard rate h 1: 

03 

- H l ( y  )( l-e - H z ( y  1) dY p ( E  5 H , ( X ) )  = J h  1 ( Y  ) e  

= 1-Jh l(y ) e  - H ( y )  d y  

0 
co 

0 
03 

= 1 - j ( h  ( ~ ) - h , ( y ) ) e - ~ ( Y )  d y  
0 

00 

= J h 2 ( y  ) , - H ( y )  d y  
0 

where f 1s the denslty correspondlng to f . From the last expresslon we conclude 

that I t  1s lmportant to keep - small. h2 

h 
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2.4. The thinning method. 
Comblnlng the theorem about thlnnlng Polsson processes (Theorem 1.4) wlth 

Theorem 2.1 shows that the followlng algorlthm produces a random varlate wlth 
hazard rate h ,  provlded that we can generate a nonhomogeneous Polsson polnt 
process wlth rate functlon g where 

h (z 1 L 9 (5 1 (all 5 1 + 

Thinning method (Lewis and Shedler, 1979) 

x+o 
REPEAT 

Generate a random variate A with hazard rate g (x+s ) (z 20) (equivalently, gen- 
erate the flrst occurrence in a nonhomogeneous Poisson point process with the same 
rate function). 
Generate a uniform [0,1] random variate U. 
X+X+A 

UNTIL Ug ( X ) < h  (X) 
RETURN x 

Thls algorlthm Is most efflclent when g Is very slmple. In partlcular, constant 
E domlnatlng rate functlons g =go are practical, because A can be obtalned as - 
9 0  

where E Is an  exponentlal random varlate. We wlll now see what the  expected 
coinplexlty Is for thls algorlthm. It Is annoylng that the dlstrlbutlon of the 
number of lteratlons (whlch we shall call N )  depends very heavily on h and g .  
Recall, in comparlson, that for the reJectlon method, t h e  dlstrlbutlon 1s always 
geometrlc. For  the thlnnlng method, we mlght even have E(N)=oo, so that I t  Is 
absolutely essentlal to clarlfy Just how E ( N )  depends upon h and g . The follow- 
lng theorem Is due to Devroye (1985): 

Theorem 2.2. (Analysis of the thinning method.) 
Let f and F be the denslty and dlstrlbutlon functlon correspondlng to a hazard 
rate h . Let g >h be another hazard rate havlng cumulatlve hazard rate G . 
Then the expected number of lteratlons in the thlnnlng algorlthrn glven above 1s 

03 03 
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Proof of Theorem 2.2. 
Let us call the X varlates In subsequent lteratlons X i ,  where i = i , 2 ,  .... 

Slmllarly, the unlform [0,1] random varlates used In the algorlthm have also sub- 
scripts referrlng to the Iteration, as In u1,u2, .... In Theorem 1.4 we have shown 
that  ( X I ,  Ulg ( x l ) ) , (X , ,  U 2 g  (I,)), ... If contlnued at lnflnltum form a homogene- 
ous Polsson process wlth unlt rate on the area bounded by the s-axls and the 
curve g . The only thlng that  we lntroduce In the thlnnlng method 1s a stopplng 
rule. We condltlon now on x ,  the random varlate returned In the algorlthm. 
Notlce that N 1s 1 plus the number of event tlmes In a nonhomogeneous Polsson 
process wlth rate Punctlon g-h restrlcted to [O,X). Thus, condltloned on X ,  

N-1 1s Polsson dlstrlbuted wlth parameter J ( g - h ) .  Thls observatlon uses the 

propertles of Theorem 1.4 connectlng homogeneous Poisson processes In the plane 
wlth nonhomogeneous Polsson processes on the Ilne. 

X 

0 

It 1s a slmple matter to compute E ( N ) :  
X X 

E ( N )  = l + E ( J ( g - h ) )  = l + E ( J g ) - E ( H ( X ) )  

= E ( J 9 )  

= J f G  

= J g ( 1 - F ) .  

0 0 
X 

0 

co 

0 
03 

0 

Here we used the fact that H ( X )  1s exponentlally distrlbuted, and, In the last 
step, partial Integratlon. 

Theorem 2.2 establlshes a connectlon between E ( N )  and the size of the tall 
of x. For example, when g =c 1s a constant, then 

E ( N )  = c E ( X )  . 

Not unexpectedly, the value of E ( N )  1s scale-lnvarlant: it, depends only upon the 
shapes of h and g . When g Increases, as for example In 

n 

i =o 
g ( x ) =  C c i x '  9 

then E ( N )  depends upon more than just the flrst moment: 
tl c i  

E ( N )  = c - E ( x i + l )  . 
0 2 +l  
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There are plenty of examples for whlch E (N)=oo even when g (x )=1 for all x . 
Conslder for example h (x )=-, whlch corresponds to the long-talled denslty 

r ( X I =  . Generally speaklng, E ( N )  1s small when g and h are close. 

For example, we have the followlng helpful lnequalltles: 

1 
x +1 

(5 +1)2 

Theorem 2.3. 
The thlnnlng algorlthm satlsfles 

where F ,F* are the dlstrlbutlon functions for h and g respectlvely. 

Proof of Theorem 2.3. 
The flrst lnequallty follows from 

03 .. 

E ( N )  = J- f (x) dx , 
0 h ( X )  

and the second lnequallty 1s a consequence of 

where f * 1s the denslty correspondlng to g . 

There are examples In whlch g and h appear to be far apart 
(llm - g ( x )  - - oo), Yet E (N)<oo: conslder for example 

h (x )=- 9 s(z)= ,O<a 5 1 .  The explanation 1s that g and h 
z t m  h(x) 

1 

x +1 (a: + l I a  
should be close to each other near the origln and that the dlflerence does not 
matter too much In low denslty regions such as the talls. 

The expresslon for E ( N )  can be manlpulated to choose the best domlnatlng 
hazard rate g from a parametrlzed class of hazard rates, Thls wlll not be 
explored any further. 
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2.5. DHR distributions. Dynamic thinning. 
In thls sectlon we wlll try to obtaln a black box generator for DHR dlstrlbu- 

tlons, 1.e. a generator whlch does not requlre a prior1 expllclt knowledge of the 
form of h .  The method that wlll be glven In thls sectlon 1s the method of 
dynamic thinning. Thls prlnclple In ltself 1s also useful for other dlstrlbutlons 
and for the nonhomogeneous Polsson process on the real Ilne. The algorlthm 
resembles the thlnnlng algorlthm, but the domlnatlng hazard rate 1s dynamlc, 1.e. 
I t  varies durlng the executlon of the algorlthm. 

The DHR dlstrlbutlons form a sub-class of the monotone densltles because 
f =he-H,  h -1 and Hf. It contalns the Pareto dlstrlbutlon wlth parameter a >0: 

the Weibull dlstrlbutlon wlth parameter a 51 and the gamma dlstrlbutlon wlth 
parameter a 51. The peak of the density 1s at 0, wlth value f (O)=h (0). Thls 
value can of course be 00 as for the gamma ( a )  density wlth O<a <l .  The class 
has some desirable propertles, for example, I t  1s closed under convex comblnatlons 
(see exerclses), whlch means that mlxtures of DKR dlstrlbutlons are agaln DHR. 

The lnversion method 1s based upon the fact that the solutlon X of 
H ( X ) = E  where E 1s exponentlally dlstrlbuted, has cumulative hazard rate H .  
But for DHR dlstrlbutlons, H 1s concave (Its derlvatlve h 1s nonlncreaslng). 
Thus, Newton-Raphson lteratlons started at 0 converge whenever h (0)<00: 

Inversion method for DHR distributions 

x+-0 
REPEAT 

UNTIL False 

In practlcal appllcatlons, an approprlate stopplng rule must be added. An exact 
solutlon usually requlres lnflnlte time (thls 1s not the case If h Is plecewlse con- 
stant !). The thlnnlng method, If I t  Is to be used In black box mode, can only use 
the constant dominating hazard rate g = h ( O ) ,  In whlch case the expected 
number of iteratlons becomes 

h (0)E (X) . 

We recall however that DHR dlstrlbutlons have heavler-than-exponentlal talls. 
Thus, the fact that E ( N ) ,  the expected number of lteratlons, 1s proportlonal to 
J!?(,Y) could be a serlous drawback. The two prototype examples that we wlll 
conslder throughout thls sectlon are the exponentla1 density 
( E  (N)=h  (0)E (X)=l) and the Pareto ( a  ) denslty 
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for whlch h (a : )=- ,~(x)=a U log(l+x),h (O)=a, and, If a >1, E(X)=-. 1 
l + x  a -1 

Thus, 

03 O<a 51 
E ( N )  = 15 a >1 

We are now ready to present the dynamic thinnlng algorithm: 

Dynamic thinning algorithm for DHR distributions 

x-0 
REPEAT 

A-h (X) 
Generate an exponential random variate E and a uniform [O,l] random variate U .  

E X-X+- x 
UNTIL XU s h  (X) 
RETURN X 

The method uses thinning wlth a constant but continuously adjusted dominating 
hazard rate A. When h decreases as X grows, so wlll 1. Thls forces the probabll- 
lty of acceptance up. The complexlty can agaln be measured in terms of the 
number of lteratlons before haltlng, N .  Note that the number of evaluatlons of h 
1s 1+N (and not 2N as one mlght conclude from the algorlthm shown above, 
because some values can be recuperated by lntroduclng auxlllary ’varlables). If 
X t h  (X) 1s taken out  of the loop, and replaced at the top by X t h  (0), we obtain 
the standard thlnnlng algorithm. Whlle both algorithms do not requlre any 
knowledge about h except that h Is DHR, a reductlon in N Is hoped for when 
dynamlc thlnnlng is used. In Devroye (1985), varlous useful upper bounds for 
E ( N )  are obtalned. Some of these are glven In the next subsectlon and in the 
exercise sectlon. The value of E ( N )  is always less than or equal that of the thln- 
ning method. For example, for the Pareto ( a  ) dlstrlbution, we obtain 

whlch 1s flnlte for all a >O. In fact, we have the following chain of lnequallties 
showlng the lmprovement over standard thlnnlng: 

I 
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1 
E ( W =  o3 

2 -l Je"(i+-) dz 

(use Jensen's lnequallty; note: 

U 0 

1 <- a -I-' 1s convex In z ) 
a - 

(1+-% 
U 

U <- (for all a >I) 

= ,u = h ( O ) E ( X )  . 
a -1 

For example, at a =1, we have E (N)<Z whereas h (0)E (X)=co. 

2.6. Analysis of the dynamic thinning algorithm. 
Throughout thls section, we wlll use the followlng notatlon: 

P = h ( o ) E ( X )  , 

P =  

r =  

E =  

00 

SUP e -yh (' )( h (a: )-h (a:  +y )) dy , 
2 2 0 0  

where p$,r and [ are varlous quantltles that wlll appear In the upper 5ounds for 
E ( N )  glven In thls subsectlon. Note that 6 1s the logarlthmlc moment of h (O)X,  
for whlch we have, by Jensen's lnequallty, 

SO that 6 1s always Anlte when ,u 1s Anlte. Obtalnlng an upper bound of the form 
0 ([) Is, needless to say, strong proof that dynarnlc thlnnlng 1s a drastlc lmprove- 
ment over standard thlnnlng. Thls 1s the goal of thls subsectlon. Before we 
Proceed wIth the technlcalltles, I t  1s perhaps helpful to collect all the results. 
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Bounds C and D are never better than bound B, but often 7 Is easler to compute 
than ,8. For the Pareto family, we obtain via D, 

a +i E ( N )  _< 7 =  -, 
a 

a result that can be obtalned from B vla Jensen's lnequallty too. Inequalltles E-H 
relate the size of the tall of x to E ( N ) ,  and glve us more insight lnto the 
behavlor of the algorlthm. Of these, lnequallty H Is perhaps the easiest to under- 
stand: E ( N )  cannot grow faster than the logarithm of p.  Unfortunately, when 
p=m, I t  1s of llttle help. In those cases, the logarithmic moment E is often flnlte. 
For example, thls Is the case for all members of the Pareto famlly. We will now 
prove Theorem 2.4. It requires a few Lemmas and other technical facts. Yet the 
proofs are lnstructlve to those wlshlng to learn how to apply embeddlng tech- 
niques and well-known lnequalltles In the analysis of algorithms. Non-technical 
readers should most certalnly not read beyond thls point. 

Proof of Theorem 2.4. 

Part A. Thls part uses embeddlng. Conslder the sequence of random vectors 
(Y,,h (0)ul),( Y,,h (0)u2), ... where the vi's are lld unlform [0,1] random varl- 
ables, and O=Y,< Y,< Y,< * . are deflned by the relatlons: 

where E1,E2,... are Ild exponential random varlates. Thls 1s the sequence con- 
sldered In standard thlnnlng, where we stop when for the flrst tlme 
h (0)Vi sh ( Y i ) .  We recall from Theorem 2.3 that In that case 
E ( N ) = p = E  ( h  (0)X) .  Let us use starred random varlables for the subsequence 
satlsfylng h (0)Vi <h - (Yi-,). Observe flrst that thls sequence 1s dlstrlbuted as the 
sequence of random vectors used In dynamic thlnnlng. Then, part A follows 
wlthout work because we still stop when the flrst random vector falllng below the 
curve of h 1s encountered. 
Part B. used In 
dynamlc thlnnlng satlsfles: Yo=O, and 

Let the Ei's be as before. The sequence Y,<Y,< . * * 

Note that thls 1s the sequence of possible candldates for the returned random 
variate X In the algorithm. The lndex z refers to the Iteratlon. Taking the stop- 
Plng rule lnto account, we have for z 21, 
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Theorem 2.4. 
The expected number of lteratlons In the dynamlc thlnnlng algorlthm 

applled to a DHFt dlstrlbutlon wlth bounded h does not exceed any of the follow- 
lng quantltles: 

A. 
1 

e 
e -1 

B. -* 1-p ' 
c. - 7: 

D. 7 (when h 1s also convex): 
1 1 

O C  
E. (8p) +4(8p) : 

Part A states that  we have an lmprovement over standard thlnnlng. Inequalltles 
B and D are sharp: for example, for the exponentlal dlstrlbutlon, we have p=O, 
~ = 1 ,  whlch leads to E ( N ) S l .  Inequallty B 1s also sharp for the Pareto famlly 
defined above. One can easlly verlfy that  

0 
03 

Je-2 

0 1+- 
a 

where we used the transformatlon z=- . By carefully checlclng the lnductlon 
l+X 

argument used ln the proof of Theorem 2.4, we see that  for any i 20, 
P ( N  > z )=pi and thus that  
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Thus, for i 22, 
, P ( N > i  I Y o , .  . . > Yi-1) 

and we obtaln, by a slinple lnductlon argument on i , tha t  

P ( N  > i )  5 p’ ( i  20) . 
Thus, 

1 E ( N ) =  C P ( N > i )  5 - a 

i =o 1-P 

Part C. Part C 1s obtalned from B by boundlng ,8 from above. Flx z and c >O. 
Then 

03 

Je -Yh( ’ ) (h ( z ) -h ( z+y) )  d y  
0 

Inequallty C follows after taklng c =l. 

Part D. Inequallty D follows by applylng Jensen’s lnequallty to an lntermedlate 
expresslon In the precedlng chaln of lnequalltles: 

03 

J e-yh(’ ) (h  (z 1-h (3 + y  1) d y  
0 
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Lemma 2.1, needed for parts E H .  We wlll show tha t  for x 20, p >2, and 
Integer m In {0,1, , . . , n }, 

l r n  P ( N > n )  5 P(X>x)+-  (o)x +(I--)  ( n  >o> P n - m  P 

Deflne the E j  and Yi sequences as In the proof of part B, and let u , , U 2 ,  ... be a 
sequence of lld unlform [0,1] random varlables. Note that  the random varlate X 
returned by the algorlthm 1s YN where N 1s the flrst Index z for whlch 
U i h ( Y i - , ) S h ( Y j ) .  Deflne N, ,N ,  by: 

n 

Then we can wrlte the followlng: 

[ N > n  ] ~ [ ~ > ~ ] U [ X ~ x , N , ~ n - m  ,N > n ] u [ N , L m  ,N > n ]  

Now, 

and 
l m  

P 
P ( N , > m , N > n )  _< P ( N > n  I N2>rn) 5 ( I - - )  . 

Thls concludes the proof of the Lemma. 
Part E. Conslder Lemma 2.1, and take x=$, random, lndependent of x and 

] where C > O  1s a constant to be chosen unlformly dlstrlbuted on [- - 
Ch,-(O); Ch (0) 

n 

further on. Take m=m,= 

We wlll apply the formula 

, and take p constant and lndependent of n .  

00 

E ( N )  = P ( N > n )  
n =O 

and use Lemma 2.1, averaged over 2,. Thls ylelds an upper bound conslstlng Of 

three terms: 

(1) 
n + I  

00 co 
P ( X > X n )  = J P ( C h ( O ) X > t )  dt  

n =O n=O n 
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03 

= JP(Ch(o)X>t)  dt = E(Ch(0)X) = C p  . 
0 

1 2( 1--) 1 m n  00 1 i  03 

(I---) = 1+2 (1--) = 1+ p 2p-1 . 
1 n = o  P j = 1  P - 
P 

P 
2 ,  1 . 2  1 . +- 2 )  

= -  
1 fl---) C ( - T  

1-- 

1 
1+- 

- 2 P -- c 1 2 '  
(1-p)  

These estlmates are substltuted In 

Thls glves the upper bound 

2 P(P+1) 1 --) . E ( N )  5 l+CcL-P ( X  >z0)+2(p -1)+--( c (p-1)2 4 

Slnce h(0)X 1s stochastlcally greater than an exponentlal random varlate, we 
have 

t 1 -- 1 

P(X>xo)  = J P ( C h ( o ) X > t )  dt  2 J e  dt 
0 0 

1 
C 1 
- 

1 -- 
= c J e +  ciz = C(1-e '> 2 I--. 

0 2c 

Thus, 
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The optlmal cholce for C Is 

whlch, after substltutlon, glves 

2d8p 

P -1 
= 2(p-1)+-+&. 

1 - 
The rlght-hand-slde 1s mlnlmal for p -1=(8p) * , and thls cholce glves lnequallty 
E. 
Part I?. In Lemma 2.1, replace n by 2 j ,  and sum over j .  Set m 2 j = j ,  
p = p  >2, and h ( 0 ) ~  = ( p  -1)J . Slnce for any random variable 2' , 

ca 
M 

we see that 

j =o 

ca 1 j  

j =O P 
5 2 ( P  ( h  (0)X > ( p  -1)i )+2(1--) ) 

Part G .  Inequallty G follows from lnequallty F for t,,e followlng c&:e of p : 

e 
210g2(1+{) 

p = 2 +  

Thls value was obtalned as follows: lnequallty F 1s sharpest when p 1s plcked as 

2 
the solutlon of ( p  -i)log*(p --I)=-. < But because we want p >2,  and because we 

want a good p for large values of {, I t  1s good to  obtaln R rough solutlon by func- 
tlonal lteratlon, and then addlng 2 to thls to make si1 I ( 3  that  the restrktlons on p 
are satlsfled. Resubstltutlon ylelds: 
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Part H. Use the bound of part G, and the fact that  f s l o g ( l + p ) .  In fact, we 
have shown that 

2.7. Exercises. 
1, 

2. 

3. 

4. 

5. 

6. 

Sketch the hazard rate for the halfnormal denslty for 3: >O. Determlne 
-1. whether i t  is monotone, and show that llm -- 

Glve an efflclent algorlthm for the generatlon of random varlates from the 
left tall of the extreme value distrlbution truncated at c <O (the extreme 
value dlstrlbutlon function before truncatlon Is eve‘). Hlnt: when E 1s 

exponentlally dlstrlbuted, then --log(l+bEe -a ) has hazard rate 

h (x)=e a + b z  for x >O , b >O. 

Show that when H 1s a cumulatlve hazard rate on [O,co), then - H ( x )  1s a 

hazard rate on [0,00). Assume now that random variates wlth cumulatlve 
hazard rate H are easy to generate. How would you generate random varl- 
ates wlth hazard rate - 

h ( x )  
z t03  5 

1 
b 

5 

H ( x )  .? 

1 
X 

Prove that - cannot be a hazard rate on [O,co). 

Construct a hazard rate on [O,co), contlnuous at all polnts except at c >0, 
havlng the addltlonal propertles that h (x)>O for all I >0, and that 
llm h ( x ) =  Ilm h ( x ) =  00. 

In thls exerclse, we conslder a tlght A t  for the thlnnlng method: 
M = J ( g - h )  < 00. Show flrst that 

Tc z I C  

03 

E ( N )  L 1+J(g-h)  f 

0 

Prove also that the probabillty that N is larger than Me decreases very 
rapldly to 0, by establishlng the lnequality 

To do this, start  wlth P ( N  2;) 5 e - t iE (e  t N )  where t 20 1s arbltrary (thls 
1s Jensen’s lnequallty). Evaluate the expected value, bound thls value by 
lntroduclng M ,  and optlmlze wlth respect to t . 
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I 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

10. 

a: 
Consider the family of hazard rates hb (a:)=- (a: >O), where 6 > O  Is a 
parameter. Dlscuss random variate generation for this family. The average 
tlme needed per random variate should remain unlformly bounded over 6. 
Give an algorithm for the generation of randoni variates with hazard rate 
hb (5)=b +a: (a:  >0) where b 20 1s a Parameter. Inverslon of an exponen- 
tial random variate requires the evaluation of a square root, which is con- 
sidered a slow operation. Can you think of a potentially faster method ? 

Develop a thlnnlng algorlthm for the famlly of gamma densltles wlth param- 
eter a 2 1  whlch takes expected tlme unlformly bounded over a .  

The hazard rate has inflnlte peaks at all locations at whlch the density has 
lnflnlte peaks, plus possibly an extra lnflnlte peak at 00. Construct a mono- 
tone density f whlch Is such that i t  oscillates lnflnltely often In the follow- 
ing extreme sense: 

2 too 

z Too 

1+6a: 

lim sup h (a: ) = 00 ; 

Ilm inf h ( a : )  = o . 

Notfce that h 1s neither DHR nor IHR. 
If X is a random variate with hazard rate h ,  and $J Is a suitable smooth 
monotone transformation, give a formula for the hazard rate of $ J ( X )  and 
condltlons under whlch your formula 1s valld. See Gaver (1979) for several 
examples of such transformations. 
Show that a mixture of DHR distributions Is again a DHR distribution (Bar- 
low, Marshall and Proschan, 1963). 

Show that for any DHR random varlable X ,  p=E ( h  (0)X)Zl. 
Construct a DHR distribution for which the logarithmic moment 
J=E (log+(h (O)X>)=0O. 

a For the Pareto family (density f (a : )=  , a: > O  ), And the rate of 

increase of c, the logarithmic moment, as a 10 (the answer should be of .the 
form: c- slmple expression involving a ). 
Develop a black box method for DHR distributions with h (0)=00. 

Let the hazard rate h be piecewise constant with breakpoints at 
O=z,<x:,<s,< + * and values hi on ( ~ i - ~ , x i ] ,  i > 1 .  - Assume that  these 
numbers are given In an lnflnlte table. Describe the inversion algorithm. 
Determine the expected number of iterations as a function of the x i ' s  and 
the hi's .  

Show that for the dynamic thlnnlng method for DHR distributions, 
E ( N ) < 4 + 6 ,  where p=E (h ( 0 ) X )  (Devroye, 1985). 
Thls exercise 1s concerned wl th  an lmprovement over Inequalltles F - H  In 
Theorem 2.4. Deflne the random varlable Y=log+(h (O)X) ,  and the quantity 

( l + x  )' +l  

T/ 

I 

1 
= *( log ( l+Y)  1 .  
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A. 

B. 

C. 

Show that x<oo lmplles c<oo (try to do thls by establlshlng an lne- 
qual 1 t y ). 
Show by example that there exlsts a denslty f for whlch x<m,  yet 
t=m. 
Flnd posltlve constants a >O,b > O  such that for the dynamlc thlnnlng 
method, E ( N ) s a  + b  x. Hint: In Lemma 2.1, choose 

m=mn=j  log(n n +1) 1, 
for an approprlate n o  (Devroye, 1985). 

3. GENERATING RANDOM VARIATES WITH A GrVEN 
DISCRETE HAZARD RATE. 

3.1. Introduction. 
Assume that we wlsh to generate a random varlate wlth a glven probablllty 

vector p l,p 2,..., and that the discrete hazard 'rate function hn ,n =l,2, ... 1s 
glven, where 

Pn 

Qn 
h n = - ,  

rn 
Qn = pi . 

= n  

One verlfles qulckly tha t  

Pn hn (1-hj) . 
i < n  

In some appllcatlons, the orlglnal probablllty vector of pn 's has a more compll- 
cated form than the dlscrete hazard rate functlon. 

The general methods for random varlate generatlon In the contlnuous case 
have natural extenslons here. As we wlll see, the role of the exponentlal dlstrlbu- 
tlon 1s lnherlted by the geometrlc dlstrlbutlon. In dlfferent sectlons, we wlll 
brlefly touch upon varlous technlques, whlle examples wlll be drawn from the 
classes of logarlthmlc serles dlstrlbutlons and negative blnomlal dlstrlbutlons. In 
general, If we have flnlte-valued random varlables that remaln Axed throughout 
the slmulatlon, table methods should be used. Thus, I t  seems approprlate to draw 
all the examples from classes of dlstrlbutlons wlth unbounded support. 
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3.2. The sequential test method. 
The followlng method wlll be called the sequential test method. Although 

I t  1s conceptually very slmple, I t  seems to have been formally proposed for the 
flrst tlme by Shanthlkumar (1983,1985). 

Sequential test method 

X t o  
REPEAT 

Generate a uniform [ O , l ]  random variate u 
xtx+1 

UNTIL u 5 hx 
RETURN x 

The valldlty of thls method follows dlrectly from the fact that all hn 's  are 
numbers In [ O , l ] ,  and that 

P, = h, n[ (1-hi 1 * 

i c n  

It 1s obvlous that the number of lteratlons needed here Is equal to X .  The 
strength of thls method 1s that I t  1s unlversally appllcable, and that I t  can be 
used In the black box mode. When I t  1s compared wlth the lnverslon method for 
dlscrete random varlates, one should observe that In both cases the expected 
number of lteratlons 1s E ( X ) ,  but that In the lnverslon method, only one unlform 
random varlate 1s needed, versus one unlform random varlate per lteratlon In the 
sequentlal test method. If h, 1s computed In 0 ( 1 )  tlme and p n  1s computed as 
the product of n factors lnvolvlng h 1, . . . , hn , then the expected tlme of the 
lnverslon method grows as E ( X 2 ) .  Fortunately, there 1s a slmple recurslve for- 
mula for pn : 

hn + I  

hn 
Pn +I = Pn (-)(l-hn ) . 

Thus, If the p ,  's are computed recurslvely In thls manner, the lnverslon method 
takes expected tlme proportlonal to E ( X ) ,  and the performance should be com- 
parable to that of the sequentlal test method. 
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3.3. Hazard rates bounded away from 1. 
Conslder the class of dlscrete hazard rates h, wlth supremum p<l. Thls 

class wlll be called the class H(p). For such hazard rates, the sequentlal test 
method can be accelerated by observlng that we can Jump ahead more than 1 In 
each lteratlon. To see thls, assume that x 1s geometrlcally dlstrlbuted wlth 
parameter p : 

P (X=n  ) = p (1-p )n-1 (n 2 1 ) .  

Then X has hazard rate h,=p. But In that case the sequentlal test method 
counts the number of lld unlform [0,1] random varlates generated untll for the 
flrst tlme a number smaller than p 1s obtained. Thls 1s of course known to  be 
geometrlcally dlstrlbuted wlth parameter p . In thls speclal case, the lndlvldual 
unlform random varlates can be avolded, because we can generate X dlrectly by 
lnverslon of a unlform random varlate U as 

r 

E 
-log(l-P ) 

or as Xc- I 1 , where E 1s an exponentlal random varlate. For the 

llmlt case p =1, we haGe X=1 wlth probablllty one. The smaller p , the more 
dramatlc the Improvement. For non-geornetrlc dlstrlbutlons, I t  1s posslble to  glve 
an algorlthm whlch parallels to some extent the thlnnlng algorlthm. 

Thinning method for discrete distributions 

NOTE: This algorithm is valid for hazard rates in H ( p )  where pE(O,l] is a given number. 
x-0 
REPEAT 

Generate iid uniform [0,1] random variates U t  I/ 
log u 

x+x+ 1 log(1-p) 

hX UNTIL V<- 
P 

RETURN X 

Thls algorlthm 1s due to  Shanthlkumar (1983,1985). We have to  show that I t  1s 
valld, and verlfy what the expected tlme complexlty 1s. 
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Theorem 3.1. (Shanthikumar, 1983,1985) 

hazard rate h, . 
The dlscrete thlnnlng method generates a random varlate wlth dlscrete 

Proof of Theorem 3.1. 
Let G1,G2,  ... be the sequence of lld geometric ( p )  random varlates used In 

the dlscrete thlnnlng method. Let x be the returned random varlate. Thus, 
X = G  1+ . . . +GN where N 1s the number of lteratlons. Let us deflne the par- 

tlal sums S, = Gi . Thus, X = S N .  We compute the probablllty P (SN =n ) 

from the followlng formula: 

f l  

i=1 

P ( X = n  ,N=k+l,,S1=nl, . . . , Sr=nk)  

= h, p k  ( ~ - p ) , - l - ~  n (I--) 
k hn, 

i = 1  P 
(k <n -1) . 

Thls can be seen by Just computlng lndlvldual probabllltles of lndependent 
events. To obtaln P (X=n ), I t  sufflces to sum over all posslble values of k and 
ni . We note now that the followlng multlnomlal expanslon Is valld: 

c 
Thus, 

hfl n-1 hi 
P i=1 P 

P ( X  =n ) = p- n (p( l - - )+l-p)  

f l  -1 

= h, n ( l -hi)  ( n  =1,2, ...) , 
I =1 

whlch was to be shown. B 

If we use the algorlthm wlth p=l (whlch 1s always allowed), then the 
sequentlal test algorlthm Is obtalned. For some dlstrlbutlons, we are forced Into 
thls sltuatlon. For example, when X has compact support, with Pn >O,Pn+<=O 
for some n and all i 3 1 ,  then hfl =1. In any case, we have 
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Theorem 3.2. 

can be computed as follows: 
For the dlscrete thlnnlng algorlthm, the expected number of lteratlons E ( N )  

E ( N )  = p E ( X ) .  

Proof of Theorem 3.2. 
We observe that In the notatlon of the proof of the prevlous theorem, 

N 
X =  C G i ,  

I =1 

so that by Wald’s equatlon, 

E ( X )  = E(N)E(Gl )  = E ( N ) p  , 

whlch was to  be shown. 

Example 3.1. The logarithmic series distribution. 
For the logarlthmlc serles dlstrlbutlon deflned by 

(n 21) 9 

8, 
-iog(i-O) n 

- 1 P ( X = n )  = 

where BE(0,l) 1s a parameter, we observe that h, 1s not easy to  compute (thus, 
some preprocesslng seems necessary for thls dlstrlbutlon). However, several key 
propertles of h, can be obtalned wlth llttle dlmculty: 

+-+ * * * * 
1 n 8  n e 2  

h n  n + l  n+2 
(1) - = 1+- 

(11) h, 11-8 as n --too; 
e (Hi) p=sup h, =h 

n -log( 1-8) * 

Thus, while the sequentlal method has E (N)=E (X)=- , the dlscrete thln- 

nlng method satlsfles 
1-8 

-2 
E ( N )  = p E ( X )  = v .  

1-8 

Slnce p+O as O+l, we see that the lmprovement In performance can be 
dramatlc. Unfortunately, even wlth the thlnnlng method, we do not obtaln an 
algorlthm that 1s unlformly fast  over all values of 8: 
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3.4. Discrete dynamic thinning. 
Shanthlkumar (1983,1985) has also observed that for dlstrlbutlons wlth 

decreaslng dlscrete hazard rate (also referred to below as DHR dlstrlbutlons) that 
the value of p can be dynamlcally modlfled to lncrease the Jumps for the 
geometrlc random varlates, and thus lncrease the performance. The formal algo- 
rlthm 1s glven below. 

Dynamic thinning method for discrete DHR distributions 

x+o 
REPEAT 

Generate iid uniform [OJ] random variates U,V. 
P+-hx + 1 - 

log u 

UNTIL vl- hX 

P 
RETURN x 

The valldlty of thls algorlthm follows by a short recursive argument: 

P ( X  > n I X > n - 1 ,  the last partlal sum of geometrlc varlate-s 

less than n takes the value I C )  

= 14, . 

Thus, because thls does not depend upon k , 
P ( X > n )  = ( l - h , ) P ( X > n - I )  

= rl[ (1 -h j )  . 
n 

I =1 

I 
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3.5. Exercises. 
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1. 

2: 

3. 

4. 

5 .  

Prove the following for the logarlthmlc serles dlstrlbution wlth parameter 
em, 1):  

n 8  n o 2  
n+l n + 2  

-l+- +- + . . '  9 (1) - - 
hn 

(11) h, 1 1-8 as n-+m , 

Assume that dlscrete dynamic thlnnlng Is used for a DHR dlstrlbutlon. 
Obtaln good upper bounds for E ( N )  In terms of the slze of the tall of the 
dlstrlbution. Show also that for the logarithmic serles dlstrlbution the value 
of E (N)  1s not unlformly bounded In e € ( O , l )  , the parameter of the dlstrlbu- 
tlon. 
Show that in the dlscrete thlnnlng algorithm, quick acceptance and rejection 
steps can be lntroduced that would effectlvely reduce the expected number 
of evaluatlons of h, . Compute the expected number of such evaluatlons for 
two squeezlng sequences. 
A contlnuatlon of exerclse 3. For the logarlthmlc serles dlstrlbutlon wlth 
parameter 8, show that 

Show that If these bounds are used for squeeze steps In the dlscrete dynamic 
thlnnlng method, then the expected number of evaluatlons of h, 1s o ( 1 )  as 
811. (The lnequalltles are due to Shanthlkumar (1983,1985).) 
The negative binomial distribution. A random varlable Y has the 
negatlve blnomlal dlstrlbutlon wlth parameters (k , p  ) where k 2 1,p E ( 0 , i )  If 

Then, the normallzed random varlable X = Y - k + l  has a dlstributlon on all 
posltlve Integers. For this random varlable X ,  show that hn t p  a s  n tco. 
(Hlnt: the relatlonshlp 

k 
P 

1s helpful.) Show that In the sequentlal test algorlthm, &(N)=-, while In 

the dlscrete thlnnlng algorlthm (wlth p=p ), we have E ( N ) = k .  Compare 
thls algorlthm wlth the algorlthm based upon the observatlon that Y 1s dls- 
trlbuted as the sum of k lld geometrlc ( p )  random varlates. Flnally, show 
the squeeze type lnequalitles 
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6. Example 3.1 for the logarlthmlc serles dlstrlbutlon and the prevlous exerclse 
for the negatlve blnomlal dlstrlbutlon requlre the computatlon of hn . Thls 
can be done by settlng up a table up to some large value. If the parameters 
of the dlstrlbutlons change very often, thls Is not feaslble. Show that we can 
compute the sequence of values recurslvely durlng the generatlon process by 

h l = P 1 ;  

hn+l  = -- . P n + 1  hn 
~n 1-hn 



Chap fer Seven 
UNrVERSAL METHODS 

1. BLACK BOX PHILOSOPHY. 
In the next two chapters we wlll apply the tools of the prevlous chapters In 

the deslgn of algorlthms that are appllcable to large famllles of distrlbutlons. 
Descrlbed In terms of a common property, such as the famlly of all unlmodal den- 
sltles wlth mode at 0, these famllles are generally speaklng nonparametrlc In 
nature. A method that 1s appllcable to such a large famlly Is called a universal 
method. For example, the rejectlon method can be used for all bounded densltles 
on [O,l], and 1s thus a unlversal method. But to actually apply the rejectlon 
method correctly and emclently would requlre knowledge of the supremum of the 
denslty. Thls value cannot be estlmated In a flnlte amount of tlme unless we 
have more lnformatlon about the denslty In questlon, usually In the form of an 
expllclt analytlc deflnltlon. Unlversal methods whlch do not requlre anythlng 
beyond what 1s glven in the deflnltlon of the famlly are called black box methods. 

Conslder for example all dlscrete dlstrlbutlons on the posltlve Integers. 
Assume only that for each i we can evaluate p i  (conslder thls evaluation as 
belng performed by a black box). Then the sequentlal lnverslon method (sectlon 
111.2) can be used to generate a random varlate wlth thls dlstrlbutlon, and can 
thus be called a black box method for thls famlly. The lnverslon method for dls- 
trlbutlons wlth a contlnuous dlstrlbutlon functlon 1s not a black box method 
because flnlte tlme generatlon 1s only posslble in speclal cases (e.g., the dlstrlbu- 
tlon functlon 1s plecewlse h e a r ) .  

The larger the famlly for whlch we deslgn a black box method, the less we 
should expect from the algorlthm tlmewlse: a case In polnt 1s the sequentlal lnver- 
slon method for dlscrete random varlates. The undenlable advantage of havlng a 
few black box methods In one’s computer llbrary Is that one can always fall back 
on these when everythlng else falls. Comparatlve tlmlngs wlth algorlthms spe- 
clally deslgned for partlcular dlstrlbutlons are not falr. 

In chapters IX and X we wlll malnly be concerned wlth fast  algorlthms for 
parametrlc famllles that are widely used by the statlstlcal comrnunlty. In thls 
chapter too, we wlll be concerned wlth speed, but I t  1s by no means the drlvlng 
force. Because contlnuous dlstrlbutlons are more dlfncult to handle In general, we 
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wlll only focus on famllles wlth densltles. In sectlon 2, we present a case study for 
the class of log-concave densltles, to wet the appetlte. Slnce the whole story in 
black box methods 1s told In terms of lnequalltles when the reJectlon method 1s 
Involved, I t  1s lmportant to  show how standard probablllty theoretlcal lnequalltles 
can ald In the deslgn of black box algorlthms. Thls Is done In sectlon 3. In sectlon 
4, the lnverslon-rejectlon prlnclple 1s presented, whlch cornblnes the sequentlal 
lnverslon method for dlscrete random varlates with the reJectlon method. It 1s 
demonstrated there that thls method can be used for the generatlon of random 
varlables wlth a unlmodal or monotone denslty. 

2. LOG-CONCAVE DENSITIES. 

2.1. Definition. 
A density f on R 1s called log-concave when logf 1s concave on Its sup- 

port, In thls sectlon we wlll obtaln unlversal methods for thls class of densltles 
when d=1. The class of densltles 1s very lmportant In statlstlcs. A partlal llst of 
member densltles 1s glven In the table below. 

I Name of densitv I Density I Parameter(s) I 
2 2  - 1 ,-7 

J23; Normal 

Gamma ( a  ) 

(5 >O) a > 1  ax a -1 e -r a Weibull ( a  ) 

e - l *  I a 
Exponential power ( a  ) 

1 
2r(1+ -) 

I ' a '  I 
C Perks ( a  ) a >-2 

e * + e - + + a  
same as above, a =2 
same as above, a =O 

Logistic 
Hyperbolic secant 

Extreme value (k ) I C k  ,-kz-ke-= IC 2 1,integer 
(k - l l !  

-br -k 
Generalized inverse gaussian c x  '-'e a ( X  20) a >1,6 , b *  >o 

Important lndlvldual members of .thls fhfnlly also lnclude the unlform den-' 
slty (as a speclal case of the beta famlly), and the exponentlal denslty (as a spe- 
clal case of the gamma famlly). For studles on the less known members, see for 
example Perks (1932) (for the Perks densltles), Talacko (1956) (for the hyperbollc 
secant denslty), Gumbel (1958) (for the extreme value dlstrlbutlons) and Jorgen- 
sen (1982) (for the generallzed Inverse gausslan densltles). 

The famlly of log-concave densltles on R 1s also lmportant to the mathemat- 
leal statlstlclan because of a few key propertles lnvolvlng closedness under certaln 
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operatlons: for example, the class 1s closed under convolutlons (Ibraglmov (1956), 
Lekkerkerker (1953)). 

The algorlthms of thls sectlon are based upon reJectlon. They are of the 
black box type for all log-concave densltles wlth mode at 0 (note that all log- 
concave densltles are bounded and have a mode, that  Is, a polnt x such that f 
1s nonlncreaslng on [ x , m )  and nondecreaslng on (-m,z]). Thus, the mode must 
be glven to  us beforehand. Because of thls, we wlll malnly concentrate on the 
class LC,,,, the class of all log-concave densltles wlth a mode at 0 and f (0)=1. 
The restrlctlon f (0)=1 1s not cruclal: since f (0) can be computed at run-tlme, 
we can always rescale the axls after havlng computed. f (0) so that the value of 
f (0) after rescallng 1s 1. We deflne LCo as the class of all log-concave densltles 
wlth a mode at 0. 

The bottom llne of thls sectlon 1s that there 1s a reJectlon-based black box 
method for LC,  whlch takes expected tlme unlformly bouilded over thls class If 
the computatlon of f at any polnt and for any f takes one unlt of tlme. The 
algorlthm can be lmplemented In about ten lines of FORTFMN or PASCAL 
code. The fundamental lnequallty needed to achleve thls 1s developed In the next 
sub-sectlon. All of the results In thls sectlon were A r s t  Bubllshed In Devroye 
(1 Q84). 

2.2. Inequalities for log-concave densities. 

Theorem 2.1. 

f (0)=1. Then f ( x ) s g ( x )  where 
Assume that f 1s a log-concave denslty on [O,m) wlth a mode at 0, and that 

1 (052 51) 

the unlque solutlon t < 1 of t =e-x ( l - t )  (5 >1) - 
The lnequallty cannot be lmproved because g 1s the supremum of all densltles In 
the famlly. 

Furthermore, for any log-concave denslty f on (0,m) wlth mode at 0, 
03 

J f  5 e-Zf (O) (z 20) . 
2 
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Proof of Theorem 2.1. 

whlch ylelds the maxlmal value of f (x) when x >1 1s Axed 1s glven by 
We need only conslder the case x >l. The denslty f In the glven class 

for some a >O. Thus, f (u )=e-“ , 0 5 u  < x  . Here a 1s chosen for the sake of 
normallzatlon. We must have 

Replace 1-a by t .  
The second pslrt of the theorem follows by a slmllar, geometrlcal argument. 

Flrst Ax x >O. Then notlce that the tall probablllty beyond x 1s maxlmal for the 
exponentlal denslty, wlilch because of normallzatlon must be of the form 
f (0)eWYf ( O )  , y 20. The tall probablllty 1s e-‘/(’). 

Proof of Theorem 2.2. 
Flx z >l. Conslder the functlons f ,(u)=u and f 2 ( u ) = e - - z ( 1 - U )  for 

0 5 u  51. We have f ,(l)=f 2(1)=1 , f ’2( l )=x  >l=f’l(l), 
f ’ , (O)=xe  -’ < 1=f ,(O). Also, f 1s convex and lncreases from e -‘ at u =O to 
1 at u =l. Thus, there exlsts preclsely one solutlon in (0,l)  for the equatlon 
f l (u )=f l (u ). Thls solutlon can be obtalned by ordlnary functlonal lteratlon: If 
one starts wlth zo(x)=O, and uses z,+,(x)=f 2(zfl  (z)), then the unlque solutlon 
Is approached from below In a monotone manner. If we start wlth yo(” ) at least 
equal to the value of the solutlon, then the functlonal lteratlon 
Yfl+,(z)=/ 2(yfl(z)) can be used to approach the solutlon from above In a 
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monotone way. Slnce f (x)s- 1 for all monotone densltles f on [O,co), we have 

g (x)<-, 1 and thus, we can take y,(x)=-. 1 
X 

- 5  X 

When f 1s a log-concave denslty on [m ,co) wlth mode at m , then 

The area under the boundlng curve 1s exactly 2. The lnequallty applles to all log- 
concave densltles wlth mode at rn (In whlch case the condltlon z >O must be 
dropped and 1-x 1s replaced by 1- I x I ). But unfortunately, the area under the 
domlnatlng curve becomes 4. The two features that make the lnequallty useful 
for us are 
(1) The fact that  the area under the curve does not depend upon f . (Thls 

glves us a unlform guarantee about Its performance.) 
(11) The fact that  the top curve ltself does not depend upon f . (Thls 1s a neces- 

sary condltlon for a true black box method.) 

2.3. A black box algorithm. 
Let us start  wlth the reJectlon algorlthm based upon the lnequallty 

valld for log-concave densltles on [m ,m) wlth mode at m : 
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Rejection algorithm for log-concave densities 

[SET-UF'](can be omitted) 

c4-f  ( m )  
[GENERATOR] 
REPEAT 

Generate U uniformly on [0,2] and V uniformly on [0,1]. 

IF V l l  
THEN ( x , z ) + ( u , V )  
ELSE (X,Z)+(l-log( V-I), V( V-I)) 
X X t m  +- 
C 

UNTJL Z 5- f (X) 
C 

RETURN x 

The valldlty of thls algorlthm 1s qulckly verlfled: Just note that the random vec- 
tor ( X , Z )  generated In the mlddle sectlon of the algorlthm 1s unlformly dlstrl- 
buted under the curve mln(1,e (5 20) . Because of the excellent properties 
of the algorlthm, I t  1s worth polntlng out how we can proceed when f 1s log- 
concave wlth support on both sldes of the mode m .  It sufflces to add a random 
slgn to x Just after ( x , Z )  1s generated. We should note here that we pay rather 
heavlly for the presence of two talls because the reJectlon constant becomes 4. A 
qulck Ax-up 1s not posslble because of the fact that the sum of two log-concave 
functlons 1s not necessarily log-concave. Thus, we cannot "add" the left portlon 
of f to the rlght portlon sultably mlrrored and apply the glven algorlthm to the 
sum. However, when f Is symmetrlc about the mode m ,  I t  1s posslble to keep 

) 

v 
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A 

C 
the reJectlon constant at 2 by replaclng the statement X+m+- by 

sx 
2 c  

X t m  +- where S 1s a random slgn. 

Let us conclude thls sectlon of algorlthms wlth an exponentlal verslon of the 
prevlous method whlch should be fast  when exponentlal random varlates can be 
generated cheaply and If the computatlon of log(! ) can be done efflclently (In 
most cases, log(f ) can be computed faster than f ). 
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Rejection method for log-concave densities. Exponential version 

[SET-UPJ(can be omitted) 
c --f (m ), r +loge 
[GENERATOR] 
REPEAT 

Generate U uniformly on [0,2]. Generate an exponential random variate E ,  
IF us1 

THEN ( X  ,Z )+-( U ,-E ) 

ELSE (X,Z)+-(l+E* ,-E-E*) (E* is a new exponential random variate) 
CASE 

-f log-concave on [m ,m): X+m +- X 
C 

-f log-concave on (-m,oo): 

Generate a random sign S . 
CASE 

j symmetric: X+m +- sx 
2c 

not known to  be symmetric: X+m +- sx 
C 

UNTIL s l o g f  (X)-r 
RETURN x 

One of the practlcal stumbllng blocks 1s that often most of the tlme spent In 
the computatlon of f ( X )  1s spent computlng a cornpllcated normallzatlon factor. 
When f 1s glven analytlcally, I t  can be sldestepped by setting up a subprogram 
for the cornputatlon of the ratlo f ($)/I ( m )  slnce thls 1s all that  1s needed In 
the algorlthms. For example, for the generallzed lnverse gausslan dlstrlbutlon, the 
normallzatlon constant has several factors lncludlng the value of the Bessel func- 
tlon of the thlrd klnd. The factors cancel out In f (a: )/f (m ). Note however that 
we cannot entlrely lgnore the lssue slnce f ( rn  ) 1s needed In the computatlon of 
X .  Because m 1s Axed, we call thls a set-up step. 
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2.4. The optimal rejection algorithm. 
In thls sectlon, we assume that f 1s In LC,,,. The optlmal reJectlon algo- 

rlthm uses the best posslble unlform boundlng curve, that  Is, the functlon g of 
Theorem 2.1. The problem Is that g 1s only deflned lmpllcltly. Nevertheless, I t  1s 
posslble to generate random varlates wlth denslty g / J g  wlthout great dlfflculty: 

Theorem 2.3. 
Let E 1,E2, u ,D be lndependent random varlables wlth the followlng dlstrl- 

butlons: E ,,E, are exponentlally dlstrlbuted, U 1s unlformly dlstrlbuted on [0,1] 
and D 1s Integer-valued wlth P (D =n )=6/(n2n2) , n 2 1 .  Then 

1s unlformly dlstrlbuted In {(x ,y ) : x - >O,O<y - -  < g  (x)} where g 1s deflned In 
Theorem 2.1. In partlcular, x has denslty g / J g  and Y Is dlstrlbuted as Vg ( X )  
where v 1s a unlform [0,1] random varlable lndependent of X .  

Proof of Theorem 2.3. 
Fllp the axes around, and observe that the deslred Y should have denslty 

proportlonal to -log(y )/(l-y ) , O s y  51, and that X should be dlstrlbuted as 
u(-log(Y)/(l-Y)) where u 1s lndependent of Y .  By the transformatlon 
y =e-' , Y =e-', we see that Z has denslty proportlonal to 

Le., Is dlstrlbuted as ( E  +E,)/D (slnce E has denslty ze-' , z L O ) .  
Thus, the couple ( U z / ( l - e -  )) ,e B -2 ) has the correct unlform dlstrlbutlon. 

In the proof of Theorem 2.3, we have also shown that 

e 1.6433. 
7r2 

Thls 1s about 18% better than for the algorlthms of the prevlous sectlon. The 
algorlthm based upon Theorem 2.3 1s as follows: 
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Optimal rejection algorithm for log-concave densities 

[NOTE: f ELCq1] 
REPEAT 

Generate a uniform [O, l ]  random variate U .  
Generate iid exponential random variates E ,,E,. Set E -E,+E,. 
Generate a discrete random variate D with P (D = n  )=6/(7?n2) , n 21. 

- 
z +- D 

UZ Y+e-' ,X+- 
1- Y 

UNTIL Y < j  (x) 
RETURN x 

For the generatlon of D , we could use yet another reJectlon method such as: 

REPEAT 
Generate iid uniform [0,1] random variates u , v. 

12 If D 1s generated as suggested, we have a reJectlon constant of -. When used 

In the former algorlthm, thls wlll offset the 18% galn so palnstaklngly obtalned. 
Since the D generator does not vary with f , I t  should preferably be lmple- 
mented based upon a comblnatlon of the allas method and a reJectlon method for 
the tall of the dlstrlbutlon. 

7r2 
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2.5. The mirror principle. 
Conslder now a. normallzed log-concave f wlth two talls, m =0, and 

f (0)=1. In thls case, the orlglnal algorlthms have a reJectlon constant equal to 
4. However, there are two observatlons of Rlchard Brent whlch wlll conslderably 
Improve the performance. The flrst observatlon Is that If p =F (m ) 1s known (F 
Is the dlstrlbutlon functlon), then the rejectlon constant can be reduced to 2 
agaln. Thls Is based upon the followlng lnequallty: 

If f 1s a log-concave denslty wlth mode m =O and f (0)=1, then, wrltlng p 
Theorem 2.4. 

for F (0), we have 

1- IZI 
1- 121 

mln(1,e l -p ) (z LO) I mln(1,e P ) (z <O) 
f ( a : ) <  

The area under the boundlng curve 1s 2. 

Proof of Theorem 2.4. 

Note that - (.) 1s a log-concave denslty on (O,oo), and. that  - f (‘1 1s a 

log-concave denslty on (-o0,O). Slnce f (a: (1-p )) 1s log-concave on (O,oo), we have 
1-P P 

f ( ~ ( 1 - p ) )  5 mln(1,e l-’) (a: 20) . 
The lnequallty and the statement about the area follow wlthout further work. 

The detalls of the rejectlon algorlthm based upon Theorem 2.4 are left as an 
exerclse. Brent’s second observatlon applles to the case that F ( m )  1s not avall- 
able. The expected number of lteratlons In the reJectlon algorlthm can be reduced 
to between 2.64 and 2.75 at the expense of an Increased number of computatlons 
of f . 



296 VII.2.LOG-CONCAVE DENSITIES 

I 

2 ( z 9 )  

l + e  ( P 9 9 - P )  
z 

1-- 

z 2 I-- I---. 
, e  P+e  l - p  (I-p Lz<co) 

Theorem 2.5. 

for z >O, 
Let f be a log-concave denslty on wlth mode at 0 and f (0)=1. Then, 

z z 
1-- 1-- 

f (z )+f (-3) 5 g (z ) = sup (mln(1,e '-P)+mln(i,e P)) 
P E(0,l) 

2 (oszs-) 1 I 2 

Furthermore, 
00 00 

5 1 e-' du < -+-J- du 2.6491 . 5 1  e-" 
J s  =y+:J u 2  2 4 , l + U  

O O+T) 
1 
2 

Deflne another functlon g *  where g*=g except on (-,l), where g*  1s llnear 

wlth values g*(-)=2,g*(1)=1. Then g* > g  and jg*=-. 1 11 
2 4 

To prove the maln statement of Theorem 2.5, we flrst show that g 1s at least 
1 
2 

equal to the rlght-hand-slde of the maln equatlon. For x <-, we have 
1 h 1/2(2)=2. For -5. 5 1 ,  observe that hl-z ( ~ ) = l + e ~ - ' / ( ' - ~ ) .  Flnally, for z 2 1 ,  
2 

we have h,(z )=e . We now show that g 1s at most equal to  the rlght-hand- 
slde of the maln equatlon. To do thls, decompose hp as h p l + h p 2 + h p 3  where 
h, l=hp Ilo,p 1) hp 2=hp I ( ,  , l - p  1, hp 3=hp ,OO). Clearly, hp 1< g for all 
p <_',z 20. Slnce ( p  , l -p)&[O,~] ,  we have h p 2 L g  for all p <',z 20. It sufflces 

2 - 2  
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1 
2 

to show that h p 3 <  e '-' for all 2 z l , p  5-. Thls follows If for all such p , 

1 1 
1 e P + e  l-P < - 
e 

because thls would Imply, for 2 .>i, 

-- -- 
- 

1 '  -- 1 '  -- 
e ( ( e  P )  +(e '-P> ) 

1 1 -- -- 

Puttlng u =- we have 
P 

1 -- 1 1 -- -- 
e ( e  P + e  l - P )  = e-'+e ' . 

The last functlon has equal maxlma at u =O and u too, and a mlnlmum at u =1. 

The maximal value 1s 1 and the mlnlmal value is -. Thls concludes the proof of 

the maln equatlon In the theorem. 

2 
e 

Next, j g  1s 
1 03 

e-' du u -2 
1 -_. 

- + e 2 j e  5 '-' dx = 5 + . 1 1 ( 1 + 2 )  
2 1  - 4 0  

2 

where we used the transformatlon u =-- 2. The .rest follows easlly. For exam- 

ple, a formula for the exponentlal lntegral 1s used at one polnt (Abramowltz and 
Stegun, 1970, p. 231). The last statement of the theorem is a dlrect consequence 

1-x 

1 
2 

of the fact that h p 2  is convex on [-,1]. 

We conclude thls sectlon by mentlonlng the algorlthm derlved from Theorem 
2.5. It requlres on the average 2.75 lteratlons and 5.5 evaluatlons of f per ran- 
dom varlate. It should be used only when the number of unlform random varlates 
Per generated random varlate must be kept reasonable. 

1 

I 
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Rejection method for log-concave densities on the real line 

[NOTE] 
We assume that f has a mode at 0 and that f (0)=1. Otherwise, use a linear transforma- 
tion to  enforce this condition. 
[GENERATOR] 
REPEAT 

Generate iid uniform [OJ] random variates ut v, w . 
4 
11 

IF us- 
W 
2 

THEN (x, y)+( -,2 v )  
7 ELSEIJ? us- 
11 

THEN 
Generate a uniform [0,1] random variate w* . 
(X , Y )+( -;-+zmin( W ,2 W* ), V( 1+2( 1-X))) 1 1  

ELSE (X,Y)+(l-log( W ) , V W )  
UNTIL Y < f  (X)+f (-X) 
Generate a uniform [OJ] random variate z (this can be done by reuse of the unused por- 
tion of U). 

THEN RETURN x 
ELSE RETURN -X 

2.6. Non-universal rejection methods. 
The unlversal rejectlon algorlthm developed In the previous sectlons 1s 

suboptimal for lndlvldual log-concave densltles In the followlng sense: one can 
And domlnatlng curves whlch conslst of a constant functlon around the mode and 
two exponentlal talls and have at the same tlme a smaller lntegral than that of 
the domlnatlng curves for the unlversal method. The lmprovements are lndlvl- 
dual, because for each denslty we requlre addltlonal lnformatlon about the den- 
sity not normally avallable In the black box model. The resultlng algorlthms are 
comparable wlth the ratlo-of-unlforms method, where the exponentlal talk are 
replaced wlth quadratlc talls. Slnce log-concave densltles have sub-exponentlal 
talls, the A t  wlll often be much better than wlth the ratlo-of-unlforms method. 
More Importantly, we can glve a very elegant reclpe for flndlng the optlmal 
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domlnatlng curve whlch 1s valld for all log-concave densltles. 
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By log-concavlty, we know that h = log(! ) can be majorlzed by the derlva- 
tlve of h at any polnt (the derlvatlve belng consldered as a llne). This 
corresponds to flttlng an exponentlal curve over f . The problem we have 1s that 
of Andlng polnts m +a >m and m -6 s m  (where m 1s the mode of f ) such 
that the area under 

g (a:) = mln(f ( m )  , ( m  +a ) e ( Z - ( m + a ) ) h ' ( m + a )  , 

1 ( Z  -(m -b ))h'(m -b ) f ( m  -6 ) e  

1s mlnlmal. We wlll formally allow h'(m +a )=--00 and h'(m -6 )=+oo. In those 
cases, the correspondlng terms In the deflnltlon of 9 are elther 00 or 0. Thls dls- 
tlnctlon 1s lmportant for compact support densltles where a or b polnt at the 
extrema1 polnt In the support of f . We can offer the followlng general prlnclple 
for flndlng a and b . 

Theorem 2.6. 
Let f be decomposed as f ,. + f l  where f ,., f 1 refer to  the parts of of f to 

the rlght and left of the mode respectlvely. The lnverses of f ,. and f are well- 
deflned when evaluated at a polnt strlctly between 0 and f ( m ) .  (In case of a 
contlnuous f, , there 1s no problem. If f ,. has a discontlnulty at y , then we 
know that f, (z )>0 for z < y  and f ,. (z)=O for x >y  . In that case, the Inverse, 
If necessary, 1s forced to  be y .) 

The area under g 1s mlnlmal when 

m+iz = f,.-l( f ( m ) )  
e 

m-b = f l - (  l f ( m ) )  
e 

The mlnlmal area 1s glven by 

f (m >(a+b  1 * 

2 e  
e -1 Furthermore, the mlnlmal area does not exceed - , and can be as small a s  

1. When In g we use values of m +a and m -b further away from the mode than 
those glven above, the area under g 1s bounded from above by f ( m  ) (a +b ). 

Proof of Theorem 2.6. 
We wl l l  prove the theorem for a monotone denslty f on [ m 9 ~ )  only. "he 

rUll theorem T3en follows by a slmple comblnatlon of antlsymmetrlc results. We 
h l n  thus w 1 ~ h  the lnequallty 

g ( 5 )  = mln(f ( m )  , 1 ( m  +a ) e ( z - ( m + a ) ) h ' ( m + a )  > .  
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The cross-over polnt between the top curves 1s at a polnt t between m and 
m+a: 

1 f ( m >  ) .  z = m + a +  log( 
h ’ ( m + a )  f ( m + a )  

The area under the curve g to the rlght of m 1s glven by 
00 

(2 -U )h’(m + a  dx f ( m  I(2-m )+Jf  ( m  +a  > e  
2 

The derlvatlve of thls expresslon wlth respect to a 1s 

f ( m  )h”(m +a )(l+h ( m  +a )-h (m  )) 
ht2(m +a ) 

whlch 1s zero for h ( m  +a )=h ( m  )-1, Le. f ( m  +a )= ( m ) .  Note also that 
e 

h”(m +a  )LO, and thus that the derlvatlve 1s nonposltlve for values of m +a 
smaller than thls threshold value, and that I t  1s nonnegatlve for larger values of 
m + a ,  so that we do lndeed have a global mlnlmum for the area under g . At the 
suggested value of m + a ,  the area 1s glven by a f  ( m  ). For m +a larger than the 
suggested value, the area 1s bounded from above by af (m ), slnce h‘(m +a  )LO, 

To obtaln a dlstrlbutlon-free upper bound for the area af ( m )  when a 1s 
optlmally chosen, we use the lnequallty of Theorem 2.1. If we use the upper 

h ( m  )-h ( m  +a )-1Lo. 

1 bound on f glven there, and set I t  equal t o  -, then the solutlon 1s a number 

greater than af ( m ) .  But that solutlon 1s - . Thus, for the optlmal a ,  

e 
e 

e -1 

Theorem 2.6 1s important. If a lot 1s known about the denslty in questlon, 
good reJectlon algorlthms can be obtalned. Several examples wlll be glven below. 
If we want to bound f from above by a comblnatlon of pleces of exponentlal 
functlons, then the area can be reduced even further although, as we wlll see 
from the examples glven below, the reductlon 1s often hardly worth the extra 
effort slnce the reJectlon constant 1s already good to begln wlth. 

The formal algorlthm 1s as follows: 
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Rejection with two exponential tails touching at m-b and m+a 

[SET-UP] 
m is the mode; a , b  2 0  are assumed given. 
A, +--l/h'(m +a ),AI +-l/h'(m -b ) (where h =log(f )). 

a* -a  + A r  log( f ( m + a ) ) ,  b*-b+A~log( f ( m - b ) ) ,  (m+a*  and m-b* are the thres- 

f m - f  ( m )  

f m  f m  
holds') 
Compute the mixture probabilities; u +-AI + A r  + a  * + 6 * , p I  t A I  / u  , pr +-A, /a , 

[GENEWTOR] 
REPEAT 

Pm + - ( a * + b * ) / u .  

Generate lid uniform [0,1] random variates u , v. 
IF' U s p m  THEN 

Generate a uniform [0,1] random variate Y (which can be done as 

X t m  -b* + Y ( a * + b * )  

Accept * [ V f m  < f  (X)I 

Generate an exDonential random variate E (which can be done as 

Y+u/pm 

ELSE IF' p m  < U S p m  +Pr THEN 

X+-m+a*+A,E  

Accept - [  V/ e - < f (x)] (whlch is equivalent to Accept -(X+ +**) ) /A,  

U-Pm 
-[ Vf e -E  5 f (x)], or to  Accept -[ vf - Lf (X)l) 

Pr 

ELSE 
Generate. an exponential random variate E (which can be done as 

U 4 P m  +Pr 1 
1-Pm -Pr 

E +-log( 11% 

X+m-b*-XIE 
If (x)] (which b equivalent M Accept (X-(m-b*))& Accept -[vf ,,, e 

U 4 P m  +Pr 1 
1-Pm -Pr 

--[Vim < f  (x)], or to Accept --[vfm If (XI11 

UNTIL Accept 
RETURN X 

In most lmplementatlons, thls algorlthm can be conslderably slmpllfled. For one 
thlng, the set-up step can be Integrated In the algorlthm. When the denslty IS 
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monotone or symrnetrlc unlmodal, other obvlous slmpllflcatlons are posslble. 

Example 2.1. The exponential power distribution (EPD). 
The EPD denslty wlth parameter T>O 1s 

Generatlon for thls denslty has been dealt wlth In Example N.6.1, by transfor- 
matlons 'of gamma random varlables. For T> 1, the denslty 1s log-concave. The 
values of a , b  In the optlmal reJectlon algorlthm are easlly found In thls case: 
a = b  =l. Before glvlng the details of the algorlthm, observe that the reJectlon 
constant, the area under the domlnatlng curve, 1s f (O)(a +b ), whlch 1s equal to 
l/l?(l+-). As a functlon of 7, the rejection constant 1s a unlmodal functlon wlth 

value 1 at the extremes ~ = 1  (the Laplace denslty) and ~ f c o  (the unlform [-1,1] 

1 
7 

'I I 
denslty), and peak at T== . At  the peak, the value 1s 

(see e.g. Abramowltz and Stegun (1970, p. 259)). Thus, unl- 
0.4616321449... 

1 
0.885603 1944. .. 
formly over all ~21, the reJectlon rate 1s extremely good. For the lm ortant case 

of the normal denslty (7=2) we obtaln a value of l/r(-) 3 = &. The algo- 
2 

rlthm can be summarlzed as follows: 
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REPEAT 
Generate a uniform [0,1] random variate U and an exponential random variate E*.  

1 
7 

IJ? U<l- -  

THEN 
1 
7- 

X-U (note that X Is uniform on [O,i--]) 

Accept --[ I X I ‘<E*] 

Generate an exponential random variate E (which can be done as 
ELSE 

E *-log( 7( I- U ))) . 
Xtl--+-E 

Accept -[ I X I ‘ e E + E * ]  

1 1  
7 - 7  

UNTIL Accept 
RETURN SX where 5‘ is a random sign. 

The reader wlll have llttle dlmculty verlfylng the valldlty of the algorlthm. Con- 
slder the monotone density on [O,m) glven by ( r ( l+L)) - le-zr .  Thus, wlth 

m =O,a =l,h’(l)=-7, we obtaln a*=l--. Slnce we know that I x I ‘ 1s dlstrl- 

buted as a gamma (-) random varlable, I t  1s easlly seen that we have at the 

same tlme a good generator for gamma random varlates wlth parameter less than 
one. For the sake of easy reference, we glve the algorlthm In full: 

7 
1 
7 

1 
7 
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Gamma generator with parameter a less than one 

REPEAT 
Generate a uniform [0,1] random variate u and an exponential random variate E*. 
IF u 5 1 - a  

THEN 
1 - 

x-u ' (note that u is uniform on [O,i-a]) 
Accept -[ I X I s E * ]  

Generate an exponential random variate E (which can be done as 
ELSE 

1- u E +--log( -)). 
U 

1 - 
X-(1-a +aE)O 
Accept +--[ I x I <E+E*] 

UNTIL Accept 
R E T U R N X  

Example 2.2. Complicated densities. 
For more compllcated densltles, the equatlon f ( ~ ) = f  ( m ) / e  can be 

dlmcult to solve expllcltly. It 1s always posslble to take the pesslmlstlc, or 
mlnlmax, approach, by settlng a and b both equal to . In some 

cases, 6 can be set equal to 0. In the set-up of the algorlthm, I t  Is stlll necessary 
to evaluate the derlvatlve of log(f ) at the polnts m + a ,  m -b  , but thls can be 
done expllcltly when f 1s glven In analytlc form. Thls approach can be 
automated for the beta and generallzed lnverse gausslan dlstrlbutlons, for exam- 
ple. When rn +a or m -b  fall outslde the support of f , one should conslder 
one-talled domlnatlng curves wlth the constant sectlon truncated at the relevant 
extrema1 polnt of the support. For the beta denslty for example, thls leads to an 
algorlthm whlch resembles In many respects algorlthm BBPE of Schmelser and 
Babu (1980). 1 

' e  
( e  -1)f ( m  1 
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Example 2.3. Algorithm B2PE (Schmeiser and Babu, 1980) for beta 
random variates, 

In 1980, Schmelser and Babu proposed a hlghly emclent algorlthm for gen- 
eratlng beta random variates wlth parameters a and b when both parameters 
are at least one. Recall that for these values of the parameters, the beta denslty 
Is log-concave. Schmelser and Babu partltlon the lnterval [O,i] lnto three lnter- 
vals: In the center lnterval, around the mode m = , they use as dom- 

lnatlng functlon a constant functlon f ( m ) .  In the tall lntervals, they use 
exponentlal domlnatlng curves that touch the graph of f at the breakpolnts. At 
the breakpolnts, Schmelser and Babu have a dlscontlnulty. Nevertheless, analysls 
slmllar t o  tha t  carrled out In Theorem 2.6 can be used to obtaln the optlmal 
placement of the breakpolnts. Schmelser and Babu suggest placlng the break- 
polnts at the lnflectlon polnts of the denslty, If they exlst. The lnflectlon polnts 
are at 

a -1 
u + 6  -2 

max( m -o,O) 

and 

m h ( m  +a, l )  

where a = If a +b > 3  and a = 00 otherwlse. Two lnflectlon 

polnts exlst on [0,1] when m -a and m +a both take values In [0,1]. In that case, 
the area under the domlnatlng curve 1s easlly seen to be equal to 

l. ( ( m  +a)(l-m -a)+(m -a)(l-m +a))) - - f ( m  a(a  +b -2) 

= f (m)(2a+ 2m(1-m)(1- 1) 
O(U + 6  -2) a + 6 - 3  

1 m (1-m ) 
= f (m)(20+2.\/ u +b -3 

= 4f (771 )a . 

Thus, we have the lnterestlng result that the probablllty mass under the 
exponentlal talls equals that under the constant center plece. One or both of the 
talls could be mlsslng. In those cases, one or both of the contrlbutlons f ( m ) a  
needs to be replaced by f ( m  )m  or f ( m  )(1-m ). Thus, 4f  ( m  )a 1s a conserva- 
tlve upper bound whlch can be used In all cases. It can be shown (see exerclses) 

tha t  as a ,b +00, 4f ( m  )a+@. Furthermore, a llttle addltlonal analysls 

shows that the expected area under the domlnatlng curve Is unlformly bounded 
over all values of a ,b 21. Even though the  A t  1s far from perfect, the algorlthm 
can be made very fast by the Judlclous use of the squeeze prlnclple. Another 
acceleratlon trlck proposed by Schmelser and Babu (algorlthm B4PE) conslsts Of 

Partltlonlng [0,1] lnto 5 lntervals lnstead of 3 ,  wlth a llnear domlnatlng curve 

lr 
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Algorithm B2PE for beta (a,b) random variates 

[SET-UP] 
a -1 

m t  
a+b-2 

I F a + b > 3 T H E N a c  

IF a <2 

THEN z +o,p t o  
ELSE 

z t m - u  
a - 1  b - 1  xt--- 

2 1-z 
(a  - ~ ) l o g ( ~ ) + ( b - l ) l o g ( l - o ) + ( a  +b-2)log(a + b  -2) 

4 -1 b -1 v +e 

Now, z is the left breakpoint, p the probability under the left exponential 
ponential parameter, and v the value of the normalized density f at z . 
IF b < 2  

THEN y c 1 , q  t 0  

ELSE 
y+m+a 

a - 1  b -1 pc--+- 
Y 1-Y 

( 4  - 1 ) l o g ( L ) + ( b  - 1 ) l o g ( ~ ) + ( o  + b  -2)lOg(4 + b  -2) 
4 -1 w -e  

tail, the ex- 

Now, y is the left breakpoint, q the probability under the left exponential tail, p the ex- 
ponential Parameter, and w the value of the normalized density f at y . 

I’  
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[GENERATOR] 
REPEAT 

Generate iid uniform [O,l] random variates u , v. Set u - u (p +q + y -x ). 
CASE 

u < y - x :  
X - x  +u (x is uniformly distributed on [x ,y I )  
m X < m  

1 (X-x )(l-V ) 
m -x 

Y-m 

THEN Accept -[ v < v  + 
ELSE Accept --[ v < w + (Y -X)(l-W 1 ] 

y-x < U < y - x + p :  
U + '-(? -' 
X-x +--log( U )  (X is exponentially distributed) 

(create a new uniform random variate) 
P 
1 
x 

1 X(X-x)+1 
U 

Accept -[ v 5 
v- vuv (create a new uniform random variate) 

U - '-(' -' +' 
1 x-y --log( u) (x is exponentially distributed) 
cc 

Accept +-[ V 5 
v - Vuw (create a new uniform random variate) 

y-x+p s u :  
(create a new uniform random variate) 

Q 

P(Y -X)+11 
U 

IF NOT Accept THEN 
T -log( V )  
IF T >-2(a + b  -Z)(X-m)2 

THEN 
X 1-x Accept -[ T < ( a  -l)log( -)+( b -l)log( -)+( a + b -2)log( a + b -2)] 

a -1 b -1 
UNTIL Accept 
RETURN x 

The algorlthm can be Improved In many ways. For example, many constants can 
be computed In the set-up step, and qulck reJectlon steps can be added when x 
Palls outslde [0,1]. Note also the presence of another qulck reJectlon step, based 
upon the followlng lnequallty: 
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The qulck reJectlon step 1s useful In sltuatlons Just llke this, 1.e. when the A t  1s 
not very good. 

Example 2.4. Tails of log-concave densities. 
When f 1s log-concave, and a random varlate from the rlght tall of f , 

truncated at t > m  where m 1s the mode of f , 1s needed, one can always use the 
exponentlal maJorlzlng functlon: 

The flrst systematlc use of these exponentlal talls can be found In Schmelser 
(1980). The expected number of lteratlons In the reJectlon algorlthm 1s 

2.7. Exercises. 
1. 

1 
2 

The Pearson IV density. The Pearson IV denslty on R has two parame- 
ters, m > - and s ER , and 1s glven by 

e -5 arctanz C f ( X I =  
(1+x2)" 

Here c 1s a normallzatlon constant. For s =O we obtain the t denslty. Show 
the followlng: 
A. If X 1s Pearson N ( m  ,s), and m 21, then arc tan(X)  has a log- 

concave denslty 

S 
B. The mode of g occurs at arctan(- 1- 2( m -1) 
C. Glve the complete reJectlon algorlthm (exponentlal verslon) for the dls- 

trlbutlon. For the symrnetrlc case of the t denslty, glve the detalls of 
the reJectlon algorlthm wlth reJectlon constant 2. 
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D. 
Prove that a mlxture of two log-concave densltles 1s not necessarily log- 
concave. 
Glve the detalls of the rejection algorlthm that 1s based upon.the lnequallty 
of Theorem 2.4. 

Log-concave densltles can also occur ln R d .  For example, the multlvarlate 
normal denslty 1s log-concave. The closure under convolutlons also holds In 
R (Davldovlc et al., 1969), and marglnals of log-concave densltles are agaln 
log-concave (Prelcopa, 1973). Unfortunately, I t  1s useless to  try to look for a 
generallzatlon of the lnequalltles of thls sectlon t o  R wlth d 2 2  because of 
the followlng fact whlch you are asked to show: the supremum over all log- 
concave densltles wlth mode at 0 and f (0)=1 1s the constant functlon 1. 

To speed up the algorlthms of thls sectlon at the expense of preprocesslng, 
we can compute the normallzed log-concave denslty at n >1 carefully 
selected polnts, and use rejectlon (perhaps comblned wlth squeezlng) wlth a 
domlnatlng curve conslstlng of several pleces. Can you glve a unlversal 
reclpe for locatlng the polnts of measurement so that the rejectlon constant 
1s guaranteed to be smaller than a functlon of n only, and thls function of n 
tends to  1 as n --too? Make sure that random varlate generatlon from the 
domlnatlng denslty 1s not dlfflcult, and provlde the detalls of your algorlthm. 

6. Thls Is about the area under the domlnatlng curve In algorlthm B2PE 
(Schmelser and Babu, 1980) for beta random varlate generatlon (Example 
2.3). Assume throughout that a ,b 21. 
(1) a s m  If and only If a 2 2 ,  a<l-m If and only If 6 2 2 .  (Thus, for 

Flnd a formula for the computatfon of c . 
2. 

3. 

4. 

5. 

a ,b 2 2 ,  the area under the domlnatlng curve 1s preclsely 4f (m)a. )  - 
(11) Ilm 4f  (rn )a = d:. Use Stlrllng's approxlmatlon. 

a , b  -03 

(111) The area under the domlnatlng curve 1s unlformly bounded over all 
a ,b 21. Use sharp lnequalltles for the gamma functlon to bound f ( m  ). 
Conslder 3 cases: both a ,b 2 2 ,  one of a ,6 1s >_2, and one 1s <2, and 
both a ,b are <2. Try to obtaln as good a unlform bound as posslble. 

(lv) Prove the qulck reJectlon lnequallty used In the algorlthm: 
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3. INEQUALITIES FOR DENSITIES. 

3.1. Motivation. 
The prevlous sectlon has shown us the utlllty of upper bounds In the 

development of unlversal methods or black box methods. The strategy 1s to 
obtain upper bounds for densltles In a large class whlch 

(1) have a small Integral; 
(11) are deflned in terms of quantltles that are elther computable or present In 

the deflnltlon of the class. 
For the log-concave densltles wlth mode at 0 we have for example obtalned an 
upper bound In sectlon VII.2 wlth Integral 4, whlch requlres knowledge of the 
posltlon of the mode (thls 1s In the deflnltlon of the class), and of the value of 
f (0) (thls can be computed). In general, quantltles that are known could lnclude: 

A. A unlform upper bound for f (called M); 
B. The r- th  moment pr : 
C. The value of a functlonal Jf 
D. A Llpschltz constant; 
E. A unlform bound for the s- th  derlvatlve; 
F. The entlre moment generatlng functlon M ( t ) ,  t €h !  ; 
G. The entlre dlstrlbutlon functlon F (a: ), z ER ; 
H. The support of f . 

When thls lnformatlon 1s cornblned In varlous ways, a multltude of useful dom- 
lnatlng curves can be obtalned. The goodness of a domlnatlng curve 1s measured 
In terms of Its lntegral and the ease wlth whlch random varlates wlth a denslty 
proportlonal to the domlnatlng curve can be generated. We show by example how 
some lnequalltles can be obtalned. 

3.2. Bounds for unimodal densities. 
Let us start  wlth the class of monotone densltles on [O,l] whlch are bounded 

by M .  Note that if M 1s unknown, I t  can easlly be computed as f (0). Thus, the 
only true restrlctlon Is that we must know that f vanlshes off [0,1]. The trlvlal 
lnequall ty 

1s not very useful, slnce the lntegral under the domlnatlng curve is M. There are 
several ways to lncrease the emclency: 
1. Use a table method by evaluatlng In a set-up step the value of f at many 

polnts. Baslcally, the domlnatlng curve 1s plecewlse constant and hugs the 
curve of f much better. These methods are very fast  but the need for extra 
storage (usually growlng wlth M ) and an addltlonal preprocesslng step 
makes thls approach somehow dlfferent. It should not be compared wlth 
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methods not requlrlng these extra costs. It wlll be developed systematlcally 
in chapter VIII. 

2. Use as much lnformatlon as posslble to lmprove the bound. For example, In 
the lnequallty f ($)<Ad, the monotonlclty 1s not used. 

3. Ask the user If he has addltlonal knowledge In the form of moments, quan- 
tlles, functlonals and the llke. Then construct good domlnatlng curves. 

We wlll lllustrate approaches 2 and 3. For all monotone densltles, the followlng 1s 
true: 
-~ 

Theorem 3.1. 
For all monotone densltles f on [O,co), 

If f 1s also convex, then 

Proof of Theorem 3.1. 
Flx a: >O. Then, by monotonlclty, 

z 

sf (a: 1 I If (Y 1 dY I 1 
0 

When f is also convex, we can In fact use a geometrlcal argument: If we wlsh to 
flnd the convex f for whlch f ( a : )  1s maxlmal, I t  sufflces to  conslder only trlan- 
gles. Thls class 1s the class of all densltles 2 a  (l-aa:)+ , Osz 5-. Thus, we flnd 

a for whlch f ( a : )  1s maxlmal. Settlng the derlvatlve wlth respect to a equal to  0 

glves the equatlon 1-ax-ax =0, 1.e. a =- . Resubstltutlon glves the bound. 

1 
U 

22 

The bounds of Theorem 3.1 cannot be improved in the sense that for every 
a : ,  there exlsts a monotone (or monotone and convex) f for whlch the upper 
bound 1s attalned. If we return now to  the class of monotone densltles on [0,1] 
bounded by M ,  we see that the followlng lnequallty can be used: 

The area under the domlnatlng curve 1s l+log(M). Clearly, thls 1s always less 
than M. In most appllcatlons the lmprovement In computer tlme obtalnable by 
Wing the last lnequallty 1s notlceabie If not spectacular. Let us therefore take a 
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moment to glve the detalls of the corresponding reJectlon algorlthm. The dom- 
lnatlng denslty for reJectlon 1s 

I t  has dlstrlbutlon functlon 

Uslng lnverslon for generatlon from 9 ,  we obtaln 

Rejection algorithm for monotone densities on [0,1] bounded by M 

REPEAT 
Generate iid uniform [OJ] random variates U ,  V 

I F U S  1+log(M) 
THEN 

X-- (l+log(M 1) 

IF VM < f  (X) THEN RETURN x 

x c l c  U(1+lor(Mn-1 

M 

ELSE 

M 
IF V <Xf (X) THEN RETURN X 

UNTIL False 

When f 1s also convex, we can use the lnequallty 

f I C’ (2) 

where 
n 

It has dlstrlbutlon functlon 

Uslng lnverslon for generatlon from 9 ,  we obtaln 
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Rejection algorithm for monotone convex densit.ts on [O,l 

REPEAT 
Generate iid uniform [OJ] random variates U , V . 
IFUS 

1+log( 2M ) 
THEN 

bounded by M 

X C -  (l+log('LM)) 
2M 

IF VM 5 f ( X I  THEN RETURN x 
ELSE 

IF v <2xf ( X )  THEN RETURN x 
UNTIL False 

The expected number of lteratlons now 1s whlch 1s for large M 
roughly speaklng half of the expected number of lteratlons for the nonconvex 
cases. 

2 

1 

X 
The functlon - 1s not lntegrable on [ l , ~ ) ,  so that Theorem 3.1 1s useless for 

handllng lnflnlte talls of monotone densltles. We have to tuck the talls under 
some lntegrable functlon, yet unlformly over all monotone densitles we cannot 

I 

X 
get anythlng better than -. Thus, additlonal lnformatlon 1s requlred. 

Theorem 3.2. 
Let f be a monotone denslty on [O,m). 

If s x r  f (x) dx L.ir <oo where r >0, then A. 

B. In any case, for all O < c r L 1 ,  
1 

(x >o) . 
(Sf 9" 

1 - f (5) L 
X f f  

I 
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Information A 

Proof of Theorem 3.2. 
For part A we proceed as follows: 

a 

For part B, we use the trlvlal observatlon 

w Y s >  5 J f O  .. 

For monotone densltles on [O,m), bounded by M =  f (0), Theorem 3.2 pro- 
vldes us wlth bounds of the form 

A 
X a  

f (z )  5 mln(M,-) (5 >o) 

where we can take (A ,a ) as follows: 

In all cases, the area under the domlnatlng curve 1s 
1 a-1 - -  - a A ~ M  a . 

a -1 

Furthermore, random varlate generatlon for the domlnatlng density can be done 
qulte easlly vla the lnverslon method or the Inverse-of-f method (sectlon N.6 .3 ) :  
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Theorem 3.3. 

Let g be the denslty on [O,oo) proportional to m i n ( M , T )  A where 

M>O,A >O,a > 1  are parameters. Then the followlng random variables X have 
denslty g : 

X 

1 

where U , V  are lid uniform [0,1] random varlates. A T  U 
A. x=(-) - M V U - 1  

1 - 
ux* If B. Let x* be (-) and let U be uniform on [0,1]. Then X t -  A 4  U 

M a -1 
a -1 X* U<- , a n d X t  else. 

1 - - a 
(UU-(a -1)) a-1 

Proof of Theorem 3.3. 
By the Inverse-of-f method (sectlon IV.6.3), it sufflces to note that a random 

variate with monotone denslty f can be obtained as Uf -I( Y )  where Y has den- 
slty f -'. It is easy to see that for monotone g not necessarily lntegratlng to one, 
U g - ' ( Y )  has denslty proportional to g If Y has denslty proportional to 9-l .  In 

our case, g - ' ( y )  = (-) , O < y  - -  <M. To generate Y with denslty proportional 

to thls, we apply the lnverslon method. Verlfy that MV has dlstrlbutlon 

function (-) on [O,M], which yields a denslty proportional to 9-l .  Plugglng 

thls Y back into Ug-'( Y )  proves part A. 

1 - 
A 4  
Y 

4 - 
1 

1-- 
Y 4  

M 

Part  B Is obtainable by straightforward inverslon. Note that x* is the break- 

the two areas Is 
1 

1 
a -1 

I-- 
AaM '(I+-). 

, X is distributed unlformly on [O,z*], and with the a -1 Thus, with probabillty - 
U 

complementary probablllty, X Is dlstributed as - X* where V Is uniformly dis- - V 4 - 1  

trlbuted on [0,1] (the latter random varlable has denslty decreaslng as x-' on 
[ ~ * , C O ) ) .  The unlform random varlates needed here can be recovered from the 
llnlform random varlate U used in the comparlson wlth a. . glven that 

a -1 

a -1 , aU-( a -1) 1s in turn C'<-, - u- 1s agaln uniform. Glven that U >- a -1 U 

U a -1 U 

I 
I 
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unlformly dlstrlbuted on [0,1]. 

For the sake of completeness, we wlll now glve the rejectlon algorlthm for 
generatlng random varlates wlth denslty f based upon the lnequallty 

f (x) 5 m l n ( M , - - )  A (x Lo) . 
X U  

Rejection method based upon part A of Theorem 3.3 

REPEAT 
Generate iid uniform [0,1] random variates u , v. 

1 

A 7  
Y X+U(-) 

UNTIL Y<f  (X) 
RETURN X 

The vaildlty of thls algorlthm 1s based upon the fact that  ( Y ,  Vg-'( Y ))=( Y , X )  
1s unlformly dlstrlbuted under the curve of g- ' .  By swapplng coordlnate axes, we 
see that ( X , Y )  1s unlformly dlstrlbuted under g , and can thus be used In the 
reJectlon method. Note that the power operatlon 1s unavoldable. Based upon 
part B, we can use reJectlon wlth fewer powers. 

I 
I 
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Rejection method based upon part B of Theorem 3.3. 

REPEAT 
Generate lid uniform [0,1] random varkates U , V 

a -1 
a 

IF us- 
THEN 

X + L  ux * 
IF V M S f ( X ) T H E N R E T U R N X  

X+Z*(aU-(a-l)) O - l  

a -1 

ELSE 
1 -- 

IF T/A <x" f (x) THEN RETURN x 
U N T L  False 

For both lmplementatlons, the expected number of computatlons of I 1s equal to 
the expected number of lteratlons, 

1 a-1  
E ( N )  = - a A Q M a  

a -1 

It 1s lnstructlve to analyze thls measure of the performance In more detall. Con- 
slder the moment verslon for example , where A =(r +i)p,. , a =r +1 and p r  Is 
the r -th moment of the monotone denslty. We have 

Theorem 3.4. 
Let E ( N ) , k f  ,r ,A ,a , p r  be as deflned above. Then for all monotone densl- 

tles on [O,oo), 

E ( N )  2 I+'. 
r 

For all monotone densltfes that are concave on thelr support, I 1 

Flnally, for all monotone log-concave densltles, I 1 

I 

I 
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Proof of Theorem 3.4. 
We, s tar t  from the expresslon 

1 - 
E ( N )  = ( 1 + 1 )  ((1' +l)Mr p ,  ) , + l  . 

r 

The product Mpr 1s scale lnvarlant, so that we can take M = i  without loss of 
generallty. For all such bounded densltles, we have 1-F (x ) z ( l - x  )+. Thus, 

03 (x, 

p,  = J x " f  (x) dx = Jrxr- ' ( l -F(x) )  dz 
0 0 

1 

> - JrXr-l(l-x) dx 
0 

r 1 
r 3-1 r fl 

- - I-- = - . 
Thls proves the flrst part of the theorem. Note that we have lmpllcltly used the 
fact that every random varlable wlth a denslty bounded by 1 on [O,co) 1s sto- 
chastlcally larger than a unlform [0,1] random varlate. 

For the second part, we use the fact that all random varlables wlth a mono- 
tone concave denslty satlsfylng f (O)=M=l are stochastlcally smaller than a 

2 random varlable wlth denslty (1--)+ (exerclse 3.1). Thui, for thls denslty, 
2 

Resubstltutlon glves us part B for concave densltles. Flnally, for log-concave den- 
sltles we need the fact that f (0)X 1s stochastlcally smaller than an exponentlal 
random varlate. Thus, In partlcuiar, 

00 

Mr p,  5 J y r  e-y  dy = r ( r  +I) . 
0 

Thls proves the last part of t h e  theorem. 

A brlef dlscusslon of Theorem 3.4 I s  in order here. Flrst of all, the lnequall- 
tles are qulte Inemclent when r 1s near 0 In vlew of the lower bound 
E ( N ) Z l + - .  Wh'at 1s lmportant here 1s that for lmportant subclasses of mono- 

tone densltles, the performance 1s unlformly bounded provlded that we know the 
r - th  momeiit of the denslty In case. For example, for the log-concave densltles, 

1 
T 
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r 
1 
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E ( N ) <  I Approximate value 
di I 2.82 ... 

we have the followlng values for the upper bound for E ( N ) :  

Ita3 I t 2  I I 

The upper bound 1s mlnlmal for T near 6. The algorlthm 1s guaranteed to per- 
form at Its best when the slxth moment 1s known. In the exerclses, we wlll 
develop a sllghtly better lnequallty for concave monotone densltles. One of the 
features of the present method 1s that we do not need any lnformatlon about the 
support of f - such lnformatlon would be requlred If ordlnary rejectlon from a 
unlform denslty 1s used. Unfortunately, very few lmportant densltles are concave 
on thelr support, and often we do not know whether a density 1s concave or not. 

The famlly of log-concave densltles is more lmportant. The upper bound for 
E ( N )  In Theorem 3.4 has acceptable values for the usual values of T : 

2.7256. .. 

-24 2.9511 ... 

In thls case, the optlmal lnteger value of T 1s 2. Note that If p,. 1s not known, 

but 1s replaced ln the algorlthm and the analysls by Its upper bound 9 

then both the algorlthm and the performance analysls of Theorem 3.4 remaln 
valld. In that case, we obtain a black box method for all log-concave densltles on 
[O,oo) wlth mode at 0, as In the prevlous sectlon. For T =2, the expected number 
Of lteratlons (about 2.72) 1s about 30% larger than the algorlthm of the prevlous 
sectlon whlch was speclally developed for log-concave densltles only. 

r(r +I) 
M' 
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Theorem 3.5. 
When f Is a denslty In L i p , ( C )  for some C >0, a E ( O , l ] ,  then 

3.3. Densities satisfying a Lipschitz condition. 
We say that a functlon f 1s Lipschitz (C ) when 

When f 1s absolutely contlnuous wlth a.e. derlvatlve f', then we can take 
C=sup I f' I . Unfortunately, some lmportant functlons are not Llpschltz, such 
as 6. However, many of these functlons are Llpschltz of order a: formally, we 
say that f 1s Llpschltz of order a wlth constant C (and we wrlte f ELip , (C) )  
when 

Here aE(O,l] 1s a constant. It can be shown (exercise 3.6) that the classes 
L i p J C )  for a>l contaln no densltles. The fundamental lnequallty for the 
Llpschltz classes Is glven below: 

a 
1 -  

Here F Is the dlstrlbutlon functlon for f . In partlcular, for a=l, we have 

j (z 1 5 d 2 ~  mln(F (z ) , i - ~  (a: >) . 

Proof of Theorem 3.5. 
Flx 5 , and deflne y =f (z ). Then Ax z >a: .  We clearly have 

I (2 1 2 I (5 1-c (2 --5 1" f 

The denslty f whlch ylelds the maxlmal value for f ( z )  1s equal to the lower 
bound for f (2 ) glven above. It vanlshes beyond 

1 

z* = z+(- f (-5)); 

C 
By lntegratlon of the prevlous lnequallty we have 

Z* 

1-F(z) 2 J(/ (z)-C(z-z)") dz 
X 
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a+ 1 1 .~ 
Ly -- - 

= ! ( a : )  - C " .  
@+l 
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By symmetry, the same lower bound 1s valld for F ( z ) .  Rearranglng the terms 
glves us our result. 

Theorem 3.5 provldes us wlth an lmportant brldglng devlce. For many dls- 
trlbutlons, tall lnequalltles are readlly avallable: standard textbooks usually glve 
Markov's and Chebyshev's lnequalltles, and these are sometlmes supplemented by 
varlous exponentlal lnequalltles. If f 1s In L i p a ( C )  on ( 0 , ~ )  (thus, a dlscon- 
tlnulty could occur at 0), then we stlll have 

Before we proceed wlth some examples of the use of Theorem 3.5, we collect some 
of the best known tail lnequalltles In a lemma: 

Lemma 3.1. 

lng lnequalltles are valld: 
Let F be a dlstrlbutlon functlon of a random varlable X .  Then the follow- 

, T >O (Chebyshev's lnequallty) . 
A- P ( I X I L z > L  I ,  I '  

I *  I 
B. l-F(z) 5 M ( t ) e - t Z  , t >O where M ( t ) = E ( e t X )  1s the moment generat- 

lng functlon (Markov's lnequallty); note that by symmetry, 
~ ( z )  5 M ( - t ) e t Z  , t >o. 

C. For log-concave f wlth mode at 0 and support on [O,co), 
l - ~ ( z )  < - e - f ( o ) z .  

D. For monotone f on [O,W), l-F(z) 5 (-) 'U , X , T > O  
r +1 12 1 '  

I .  

(Narum 1 's lne qual 1 t y ). 

Proof of Lemma 3.1. 

that  1c, 1s a nonnegatlve functlon at least equal to one on a set A . Then 
Parts A and B are but speclal cases of a more general lnequallty: assume 

P ( X E A )  = s d F ( z )  5 I$(.) d F ( z )  L E ( $ ( X ) ) .  
A A 

For part A, take A =[z,co)U(-m,z] and $(y)= u. For part B, take 
12 I '  
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A =is ,m) and $(y )=e t ( y - z )  for some t >O. Par t  C follows slmply from the fact 
that for log-concave densltles on [O,oo) wlth mode at 0, f (0)X 1s stochastlcally 
smaller than an exponentlal random varlable. Thus, only part D seems non- 
trlvlal; see exerclse 3.7. 

If lnequalltles other than those glven here are needed, the reader may want 
to consult the survey artlcle of Savage (1961) or the speclallzed text by Godwln 
(1964). 

Example 3.1. Convex densities. 
When a convex denslty f on [O,oo) 1s In Lip ,(C ), we can take C = f  '(0). 

By Naruml's lnequallty for monotone densltles, 
~ 

d 2 f  l(o)(-)r T p r  

?-+l ) ,  r - f (x) I m w  (O), 
X 2  

where pr =E ( ] X I ' ). Thls 1s of the general form dealt wlth In Theorem 3.3. It 
should be noted that for thls lnequallty to  be useful, we need T > 2 .  I 

Example 3.2. Densities with known moment generating function. 
Patel, Kapadla and Owen (1976) glve several examples of the use of moment 

generatlng functlons M ( t  ) In statlstlcs. Uslng the exponentlal verslon of 
Markov's lnequallty, we can bound any Lip C ) denslty as follows: 

Here t >O 1s a constant. There 1s nothlng that keeps us from maklng t depend 
upon x except perhaps the slmpllclty of the bound. If we do not wlsh to  upset 
thls slmpllclty, we have t o  take one t for all x. When f 1s also symmetrlc about 
the orlgln, then the bound can be wrltten as follows: 

f (z 1 L cg (a: 1 
t 

t $2 I t where g ( x ) = - e  1s the Laplace denslty wlth parameter -, and 2 
c = d 3 2  C M ( t  ) / t 2  Is a constant whlch depends upon t only. If thls bound 1s 

I 
--. 
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used In a reJectlon algorlthm, the expected number of lteratlons 1s c .  Thus, the 
best value for t is the value that  mlnlmlzes M ( t ) / t 2 .  Note that  c lncreases 
wlth C (decreaslng smoothness) and wlth M ( t )  (lncreaslng slze of the tall). Hav- 
lng picked t , the followlng reJectlon algorlthm can be used: 

Rejection method for symmetric Lipschitz densities with known moment gen- 
erating function 

[SET-UP] 
b 
[GENERATOR] 
REPEAT 

Generate E ,  u ,  independent exponential and uniform [0,1] random variates. 
2 
t 

X t - E  

UNTIL f (X) 
RETURN Sx where S is a random sign. 

Example 3.3. The generalized gaussian family. 
The generallzed gausslan famlly of dlstrlbutlons contalns all dlstrlbutlons for 

whlch for some constant s 20, M ( t  )<e s 2 t 2 / 2  for all t (Chow, 1966). The mean 
of these dlstrlbutlons exists and 1s 0. Also, as shown by Chow (1966), both 
1-F (z ) and F (-z ) do not exceed e-z2/(282) for all 5 >O. Thus, by Theorem 3.5, 
when f € L i p  l(C), 

The functlon In parentheses 1s a normal (0,s 6) denslty. The reJectlon constant 
IS S m. In Its crudest form the algorlthm can be summarlzed as folloWS: 
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Rejection algorithm for generaliced gaussian distiibutions with a Lipschitc den&- 
t Y  

REPEAT 
Generate N , E ,  independent normal and exponential random variates. 
X+Ns & 

UNTIL - 2 - E  N2 <log(,=-) f (XI 

RETURNX 

Example 3.4. Densities with known moments. 
The prevlous three examples apply to rather small famllles of dlstrlbutions. 

If only the r -th absolute moment p,  1s known, the we have by Chebyshev's lne- 
quallty, 

for all a: ,r  >O. Thls leads to the lnequallty 

whlch 1s only useful to us for r >2 (otherwlse, the domlnatlng functlon 1s not 

Integrable). The lntegral of the domlnatlng curve 1s a - p r  r '. Just whlch r 
r decreases monotonlcally wlth r 

1s best depends upon the dlstrlbutlon: - 
r - 2  

1 - 
r -2 

1 - 
whereas p t  r 1s nondecreaslng In r (thls 1s known as Lyapunov's lnequallty, 
whlch can be obtalned In one llne from Jensen's lnequallty). I 
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Example 3.5. Log-concave densities. 
Assume that f 1s log-concave wlth mode at 0 and support contalned In 

[O,ca). Uslng 1-F (a: ) '5 ('I, we observe that 

tlmes a Laplace denslty. It 1s thus not dlfflcult to see The top bound 1s - 
that the followlng algorlthm 1s useful: 

m 
f (0) 

Rejection method for log-concave Lipschitz densities 

REPEAT 
Generate iid exponential random variates E ,,E2 

RETURNX 

3.4. Normal scale mixtures. 
Many dlstrlbutlons In statlstlcs can be written as mlxtures of normal densl- 

tles In whlch the varlance 1s the mlxture parameter. These normal scale mlxtures 
have far-reachlng appllcatlons ranglng from modellng to mathernatlcal statlstlcs. 
The correspondlng random varlables X are thus dlstrlbuted as N Y ,  where N 1s 
normal, and Y 1s a posltlve-valued random varlable. The class of normal scale 
mlxtures 1s selected here to be contrasted agalnst the class of log-concave densl- 
tles. It should be clear that  we could have plcked other classes of mlxture dlstrl- 
butlons. 

There are two sltuatlons that should be clearly dlstlngulshed: In the flrst 
case, the dlstrlbutlon of Y 1s known. In the second case, the dlstrlbutlon of Y 1s 
not expllcltly glven, but I t  1s known nevertheless that X 1s a normal scale mlx- 
ture. The flrst case 1s trlvlal: one just generates N and Y and exlts wlth N Y .  In 
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DENSITY OF x 
Cauchy 
Laplace 
Logistic 

t* 

Symmetric stable (a) 

DENSITY OF Y 
Density of 1/N where N is normal 
Density of 
Density of 2K where K has the Kolmogorov-Smirnov distribution 

where E is exponential 

U 

2 
where G is gamma (-) 

Density of 6 where s is positive stable (5) 
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Theorem 3.6. 
Let f be the denslty of a normal scale mlxture, and let X be a random 

varlable wlth denslty f . Then f 1s symmetrlc and unlmodal, f (3)s f (0), and 
for all a 2-1, 

where 

P a  = E (  I x I a )  

1s the a - th  absolute moment of x, and 
l+ a 

1 
1+a 

l + a  - 
2 r(-) 2 

For a =1 and a =2, we have respectlvely, 

4 The areas under the domlnatlng curves are r e s p e c t l v e l y , - d m ,  and 

C (p2 f (0)2)1/3 where C = 3 ( 3 / e  )1/2(2n)-1/6. 
6 

Proof of Theorem 3.6. 

simllar upper bounds for the normal denslty. Note that we have, for all x ,o>O, 
The unlmodallty is obvlous. The upper bounds for f follow dlrectly from 

1+ a - 2 2  

l+a  2 
-- U 

e 20' < . - 1 x 1  e 

Observe that 

where Y 1s a random varlable used In the mlxture (recall that  x = N Y ) .  Using 
the normal-polynomlal bound mentloned above, thls leads to the lnequallty 
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But In vlew of the relatlonshlp X =NY , we have 
use the fact that 

l + a  I?(-) (whlch follows by deflnltlon of the gamma 

E ( Y ~ ) = E (  I X  I 4 ) m  I N I 4 ) .  

E (  I N I a ) &  = 2 

Now, 
1+ 4 - 

2 
Integral). Thls glves the maln lnequallty. The speclal cases are easlly obtalned 
from the maln lnequallty, as are the areas under the domlnatlng curves. 

The algorlthms of sectlon 3.2 are once agaln appllcable. However, we are In 
much better shape now. If we had Just used the unlmodallty, we would have 
obtalned the lnequallty 

whlch 1s useful for a >O. See the proof of Theorem 3.2. The area under thls dom- 
lnatlng curve 1s larger than the corresponding area for Theorem 3.6, whlch should 
come as no surprlse because we are uslng more lnformatlon In Theorem 3.6. 
Notice that,  Just as In sectlon 3.2, the areas under the domlnatlng curves are 
scale lnvarlant. The cholce of u depends of course upon f . Because the class of 
normal mlxtures contalns densltles wlth arbltrarlly large talls, we may be forced 
to  choose a very close to  0 In order to  make pa  flnlte. Such a strategy 1s 
approprlate for the syrnmetrlc stable denslty. 

3.5. Exercises. 
1. 

2. 

3. 

Prove the followlng fact needed ln Theorem 3.4: all monotone densltles on 
[ O m )  wlth value 1 at 0 and concave on thelr support are stochastlcally 
smaller than the trlangular denslty f (a: )=(1--)+, 1.e. thelr dlstrlbutlon 

functions all domlnate the dlstrlbutlon functlon of the trlangular denslty. 
In the reJectlon algorlthm lmmedlately preceding Theorem 3.4, we exlt some 
of the tlme wlth X +  . The square root 1s costly. The speclal 

case a = 3  1s very l ipor tan t .  Show that 1s distrlbuted as 
max(3U-2, W )  where W Is another unlform [0,1] random varlate. 
Concave monotone densities. In thls exerclse, we conslder densltles f 
whlch are concave on thelr support and monotone on [O,co). Let us use 

2 

2 

X* 

UU-(a -1) 

M= f (o), p r  =Jz' f (x) d z .  
2I-l' ( T  +I> 

-M >+I. 3: r + I  
A. Show that f (a:) 5 mln(M,( 

1 - 
B. Show that the area under the domlnatlng curve 1s 2-2'+' tlmes the 
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area under the domlnatlng curve shown In Theorem 3.4. That is, the 
area 1s 

1 - 1 r 
1 -  
r 

- 
(2-2 +l )(I+-)M + l  ( ( r  +l)pr ) +l  

C. Notlng that the Improvement 1s most outspoken for r = i  (2-6250.59)  
and r =2 and that I t  1s negllglble when r 1s very large, glve the detalls 
of the reJectlon algorlthm for these two cases. 

Glve the strongest counterparts of Theorems 3.1-3.4 you can And for unlmo- 
dal densltles on the real llne wlth a mode at 0. Because thls class contalns 
the class dealt wlth In the sectlon, all the bounds glven In the sectlon remaln 
valld for f ( I a: I ), and thls leads to  performances that are preclsely double 
those of the varlous theorems. Mlmlcklng the development of sectlon VII.2 
for log-concave densltles, thls can be lmproved If we know F (0), the value of 
the dlstrlbutlon functlon at 0, or are wllllng to apply Brent's mlrror prlnclple 
(generate a random varlate X wlth denslty f (a:)+! ( -a : )  ,a: >0, and exlt 

f ) respec- wlth X or -x wlth probabllltles 

tlvely ). Work out the detalls. 
5. Compare the rejectlon constant of Example 3.5 (log-concave densltles on 

[O,oo)) wlth 2, the reJectlon constant obtalned for the algorlthm of sectlon 
VII.2. Show that I t  1s always at least 2, that Is, show that for all log- 
concave densltles on [O,co) belonglng to  Lip 

4. 

f (. >+f (-a: 1 
and f (a: >+f (-.a: 1 

C ), 

Hlnt: Ax C ,  and try to  And the denslty ln the class under conslderatlon for 
which f (0) 1s maxlmal. Conclude that one should never use the algorlthm of 
Example 3.5. 

Show that the class L i p a ( C )  has no densltles whenever a > l .  

Prove Naruml's lnequalltles (Lemma 3.1, part D). 
When f 1s a normal scale mlxture, show that for all a >0, the bound of 
Theorem 3.6 1s at least as good as the correspondlng bound of Theorem 3.2. 

Show that f 1s an exponentlal scale mlxture If and only If for all a: >0, the 
derlvatlves of f are of alternatlng slgn (see e.g. Feller (1971), Kellson and 
Steutel (1974)). These mlxtures conslst of convex densltles densltles on [O,m). 
Derlve useful bounds slmllar to those of Theorem 3.6. 

lG. The z-distribution. Barndorff-Nlelsen, Kent and Sorensen (1982) lntro- 
duced the class of z-dlstrlbutlons wlth two shape parameters. The sym- 
metric members of thls famlly have denslty 

( a : E R ) ,  

6. 

7. 
8.  

8 .  

1 
f ( a : > =  ... 

4a Ba,a cosh2' (L) 
2 
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where a >O Is a parameter. The translatlon and scale parameters are omit- 
ted. For a=1/2,  thls gives the hyperbollc coslne dlstrlbutlon. For a = i  we 
have the loglstlc dlstrlbutlon. For lnteger a I t  1s also called the generallzed 
loglstlc dlstrlbutlon (Gumbel, 1944). Show the followlng: 
A. The symrnetrlc z -dlstrlbutlons are normal scale mlxtures (Barndorfl- 

Nlelsen, Kent and Sorensen, 1982). 

B. A random varlate can be generated as log(-) where Y 1s symmetrlc 

beta dlstrlbuted wlth parameter a .  

If a random variate 1s generated by reJectIon based upon the lnequalltles 
of Theorem 3.8, the expected tlme stays unlformly bounded over all 
values of a .  

Addltlonal note: the general z dlstrlbutlon wlth parameters a ,b > O  1s 

defined as the dlstrlbutlon of log(-) where Y 1s beta ( a  ,b ). 

Y 
1- Y 

C. 

Y 
1- Y 

11. The residual life density. In renewal theory and the study of Polsson 
processes, one can assoclate wlth every dlstrlbutlon functlon F on [O,oo) the 
resldual llfe denslty 

I-F ( X  ) 
c1 

f w =  9 

where p=!(l-F ) 1s the mean for F . Assume that besldes the mean we also 
know the second moment p2. Thls 1s the second moment of F ,  not f . Show 
the followlng: 

B. The black box algorlthm shown below 1s valld and has reJectlon con- 
stant n&/p. The reJectlon constant 1s at least equal t o  n, and can be 
arb 1 t r arlly 1 arge . 

REPEAT 
Generate a Cauchy random variate Y ,  and a uniform [0,1] random vari- 
ate U. 
x+&y 

UNTDL U S(l+Y*)(l-F(X)) 
RETURN x 

12. Assume that 1s a monotone denslty on [O,oo) wlth dlstrlbutlon functlon 
F .  Show that for all O s t  e x ,  

1-F ( t  ) 
x - t  ' 

f 
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Derlve from thls the lnequallty 
1 f (a: 1 I f (O)( l -F  (x -- f (0) )) * 

Note that these lnequalltles can be used to derlve reJectlon algorlthms from 
tall lnequalltles for the dlstrlbutlon function. 

4. THE INVERSION-REJECTION METHOD. 

4.1. The principle. 
Assume that f 1s a density on R , and that we know a few thlngs about f , 

but not too much. For example, we may know that f 1s bounded by M ,  or that 
f € L i p  l(C),  or that f 1s unlmodal with mode at 0. We have In addltlon two 
black boxes, one for computing f , and one for computing the dlstrlbution func- 
tlon F . The rejectlon method 1s not appllcable because we cannot a prlorl flnd an 
lntegrable domlnatlng curve as for example In the case of log-concave densltles. 
In many cases, thls problem can be overcome by the lnverslon-rejectlon method 
(Devroye, 1984). In Its most elementary form, I t  can be put as follows: consider a 
countable partltlon of R into Intervals [ai,ai+l) where i can take posltlve and 
negatlve values. Thls partition is Axed but need not be stored: often we can com- 
pute the next point ai from t' and/or the prevlous point. Generate a unlform 
[0,1] random varlate U ,  and flnd the lndex i for which 

Thus, lnterval [xi ,xi +1) Is chosen wlth probablllty F ( Z ~ + ~ ) - F  (ai ) by lnverslon. If 
the xi 's  are not stored, then some version of sequentlal search can be used. After 
2' 1s selected, return a random varlate X wlth denslty f restrlcted to the glven 
Interval. What we have galned 1s the fact that the lnterval 1s compact, and that 
In most cases we can easily And a unlform domlnatlng denslty and use reJectlon. 
For example, If f 1s known to be bounded by M ,  then we can use a unlform 
curve with value M. When f ELzp, (C) ,  we can use a triangular domlnatlng 
curve with value min(f (a i )+C(x-x i ) , f  (ai+l)+C(xi+l-a)). When f 1s unlmo- 
dal, then a domlnatlng curve wlth value max(f ( x i ) , f  (ai+l))  can always be used. 

There are two contributors to the expected time taken by the lnverslon- 
reJectlon algorithm: 
(1) E (N,  ): the expected number of computatlons of F In the sequentlal search. 
(11) E ( N , ) :  the expected number of lteratlons In the rejection method. It 1s not 

dlfflcult to see that thls 1s the area under the domlnatlng curve. 
In the example of a denslty bounded by M but otherwlse arbltrary, the area 
under the domlnatlng curve is 00. Thus, E (N, )=00. Nevertheless N ,  <00 with 
Probability one. Thls fact does not come as a surprlse conslderlng the magnitude 
of the class of densltles Involved. For unlmodal f , even with an lnflnlte peak at 
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the mode and two blg talls, I t  1s always posslble to construct a partltlon such 
that the area under the domlnatlng plecewlse constant functlon 1s flnlte. Thus, In 
the analysls of the dlfferent cases, I t  wlll be lmportant t o  dlstlngulsh between the 
famllles of densltles. 

The Inversion-reJectlon method 1s of the black-box type. Its main dlsadvan- 
tage 1s that programs for calculatlng both f and F are needed. On the posltlve 
slde, the famllles that can be dealt wlth can be glgantlc. The method 1s not 
recommended when speed 1s the most lmportant lssue. 

We look at the three famllles introduced above In separate sub-sections. A 
llttle extra tlme 1s spent on the lmportant class of unlmodal densltles. The 
analysls 1s In all cases based upon the dlstrlbutlonal propertles of N, and Nr . 

4.2. Bounded densities. 
As our flrst example, we take the famlly of densltles f on [O,co) bounded by 

Ad. There 1s nothlng sacred about the posltlve half of R , the choke 1s made for 
convenlence only. Assume that [O,co) 1s partltloned by a sequence 

.. 

O=so<z1<z,< - * * . 

Let us wrlte p i  =F ( Z ~ + ~ ) - F  (q ) , k 20. In a black box method, the lnverslon 
step should preferably be carrled out by sequentlal search, startlng from 0. In 
that case, we have 

00 
00 

P ( N ,  2.i) = p i  = j- f = l-F(q-1) (J.11). . .  
I = I  -1 ‘ J  -1 

Also, 
03 00 

E (N, ) = 1+ i p i  = (1-F (Xi )) . 
I ==o i =O 

Glven that we have chosen the i - th  Interval, the number of lteratlons In the 
reJectlon step 1s geometrlcally dlstrlbuted wlth parameter 
pi / ( M ( ~ i + ~ - z i  )) , k 20. Thus, 

Also, 
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Example 4.1, Equi-spaced intervals. 

lnverslon-rejection type. We can summarlze Its performance as follows: 
When ~i+~-zi=S>O, we obtaln perhaps the slmplest algorlthm of the 

The sequential search 1s lntlmately llnked wlth the slze of the tall of the denslty 
(as measured by E ( X ) ) .  It seems reasonable to take 6=cE ( X )  for some unlversal 
constant c . When we take c too large, the probabilities P (N; L j )  could be 
unacceptably hlgh. When c 1s too small, E ( N , )  1s too large. What  1s needed 
here 1s a compromise. We cannot choose c so as to mlnlmlze E (N,  +Nr ) for 
example, slnce thls 1s 00. Another method of deslgn can be followed: Ax j ,  and 
mlnlmlze P (Nr 2 j ) + P  (N, 2 j ). Thls 1s 

where J 1s a posltlve lnteger to be plcked later. We have used the following sim- 
ple lnequallty: 

Slnce we have dlfflculty mlnlmlzlng the orlginal expresslon and the last upper 
Sound, I t  seems loglcal to attempt to mlnlmlze yet another bound. This strategy 
1s dellberately suboptlmal. What  we hope to buy 1s slmpllclty and lnslght. 
Assume tha t  p=E ( X )  1s known. Then the tall sums of pi's  can be bounded from 

above by Markov's lnequallty. In partlcuiar, uslng also (l+-)j 1 

last expression 1s bounded by 

2 2  , j 21, the 
3 

p J M 6  + P+2 -+ 
6J 2 ( j + i )  6 ( j + i )  . 

The optlmai non-Integer J 1s 

:ind we will take the  celllng of thls. Our upper bound now reads 
p+2 1M6 

j +l 

+- 
2 
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The last thlng left t o  do 1s to mlnlmlze thls wlth respect to  6, the lnterval wldth. 
Notlce however that thls wlll affect only the second order term In the upper 
bound (coefflcient of -), ' and not the maln asymptotlc term. For the cholce 

6=dT, the second term 1s 
3 +1 

j +I 

The lmportant observatlon 1s that for any cholce of 6 that 1s lndependent of j , 

The factor k f p  1s scale lnvarlant, and Is both a measure of how spread out f 1s 
and how dlfflcult f 1s for the present black box method. For thls bound t o  hold, 
I t  1s not necessary to know p. The maln term In the upper bound 1s the contrlbu- 
tlon from N,. If we assume the exlstence of hlgher moments of the dlstrlbutlon, 
or the moment-generatlng functlon, we can obtaln upper bounds whlch decrease 
faster than l/& as j+co (exerclse 4.1). 1 

There are other obvlous chokes for lnterval slzes. For example, we could 
s tar t  wlth an lnterval of wldth 6, and then double the wldth of consecutlve lnter- 
vals. Because thls wlll be dealt wlth In greater detall for monotone densltles, I t  
wlll be sklpped here. Also, because of the better complexlty for monotone densl- 
tles, I t  1s worthwhlle to  spend more tlme there. 

4.3. Unimodal and monotone densities. 
Thls entlre subsectlon 1s an adaptatlon of Devroye (1984). Let us A r s t  reduce 

the problem to one that 1s manageable. If we know the posltlon of the mode of a 
unlmodal denslty, and If we can compute F (z ) at all 2 ,  whlch 1s our standlng 
assumptlon, then I t  1s obvlous that we need only conslder monotone densltles. 
These can be conven!ently fllpped around and/or translated to 0, so that all 
monotone densltles to  be consldered can be assumed t o  have a mode at 0 and 
support on [O,co). Unfortunately, compact support cannot be assumed because 
nonllnear transformatlons to  [0,1] could destroy the monotonlclty. One thing we 
can assume however 1s that we elther have an lnflnlte peak at 0 or an lnflnlte tall 
but  not both. Just use the followlng spllttlng devlce: 
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Splitting algorithm for monotone densities 

[SET-Up) 
Choose a number z >O. (If f is known to be bounded, set z -0, and if f is known to 
have compact support contained in [O,c 1, set z - c  .) 

[GENERATOR] 
Generate a uniform [O,l] random variate U. 
IF U > t  

t + F ( . )  

THEN generate a random variate x with (bounded monotone) density f ( z ) / ( l - t )  
on [ z  ,w). 
ELSE generate a random variate x with (compact support) density f ( ~ ) / t  on 
[o,z I .  

RETURN x 

Thus, I t  sumces to treat compact support and bounded monotone densltles 
separately. We wlll provlde the reader with three general strategles, two for 
bounded monotone densltles, and one for compact support monotone densltles. 
Undoubtedly, there are other strategles that could be preferable for certaln densl- 
tles, so no clalms of optlmallty are made. The emphasls 1s on the manner In 
whlch the problem 1s attacked, and on the lnteractlon between deslgn and 
analysls. A s  we polnted out In the lntroductlon, the whole story 1s told by the 
quantltles E (N,  ) and E (N ,  ) when they are flnlte. 

4.4. Monotone densities on [0,1]. 
In thls sectlon, we wlll analyze the followlng lnverslon-rejectlon algorlthm: 
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Inversion-rejection algorithm with intervals shrinking at a geometrical rate 

Generate a uniform [O,l] random variate U. 
x-1 

REPEAT 

UNTIL U L F ( X )  
REPEAT 

Generate two independent uniform [0,1] random variates, V ,  W . 
Y + X ( l + ( r - l ) V )  (Y  is uniform on [ X , r X ) )  

RETURN Y 

The constant T > 1  1s a deslgn constant. For a flrst qulck understandlng, one can 
take r = 2 .  In the flrst REPEAT loop, the lnverslon loop, the followlng lntervals 
are consldered: [-,1),[-,-), ... . For the case T =2, we have lnterval halvlng as 

we go along. For thls algorlthm, 

1 1 1  

T r 2  r 

4: -1) 
00 

E ( N , ) =  J f(.)da: 9 

i =1  r-1 

The performance of thls algorlthm 1s summarlzed In Theorem 4.1: 
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Theorem 4.1. 
Let f be a monotone denslty on [0,1], and deflne 

Then, for the algorlthm descrlbed above, 

and 
15 E ( N r )  5 r . 

The functlonal H (f  ) satlsfles the followlng lnequalltles: 
A. 1 < H ( f ) .  

B. log 5 H (f  ) (valld even If f has unbounded support). 1 1 $.I (2) d x l  

c. H(f 1 L 1+log(f (0)). 
1 

4 D. H(f ) 5 -+2Jlog+f (a:) f (a:) dx (valld even If f 1s not monotone). 
e o  

Proof of Theorem 4.1. 
For the flrst part, note that on [ r - i  ,r4'-')], 

Thus, resubstltutlon In the expresslon of E ( N , )  yields the flrst lnequallty. We 
also see that E (Nr )> 1. To obtaln the upper bound for E (Nr ), we use a short 
geometrical argument: 
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Inequality A uses the fact that  -log(% ) and f (z ) are both nonlncreaslng on [0,1], 
and therefore, by Steffensen's lnequallty (1925), 

1 1 1 

J-log(z ) f (a: ) da: 2 J-log(z ) dzJ f (a: ) dx = 1 . 
0 0 0 

Inequallty B uses the convexity of -log(z ) and Jensen's lnequallty. If x 1s a ran- 
dom varlable wlth denslty f , then 

H (f ) = E (-WX 2 -log(E (X 1) . 
Inequality C can be obtalned as a speclal case of another inequallty of 
Steffensen's (1918): In I t s  orlglnal form, lt states that If O l h  5 1 ,  and If g 1s 
nonlncreaslng and lntegrable on [0,1], then 

- 

1 a 

Js (a: ) h  (a: 1 5 Js (a: 1 da: 
0 0 

1 
where a = J h  (z ) dz . Apply thls lnequallty wlth g (a: )=-log(s ), h (a: )=- f ( a : )  

0 f (0) * 

f (0) 
Thus, a=- . Therefore, 

00 
1 - - J ye-Y dy = -(l+log(f (0)) . 

lo@;(! (0 ) )  f (0) 
Inequallty D 1s a Young-type lnequallty whlch can be found In Hardy, Llttlewood 
and Polya (1952, Theorem 239). 

In Theorem 4.1, we have shown that E(N,)<oo If and only If H(f )<m. 
On the other hand, E ( N , )  1s unlformly bounded over all monotone f on [0,1]. 
Our maln concern 1s thus wlth the sequentlal search. We do at least as well as in 
the black box method of sectlon 3.2 (Theorem 3.2), where the expected number of 
lteratlons In the rejectlon method was l+log(f (0)). We are guaranteed to have 
E (N,  )<l+(l+log(f (O)))/log(r ), and even tf f (O)=oo, the lnverslon-rejectlon 
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method can have E (N,  )<m. 

Example 4.2. The beta density. 
Conslder the beta (1,a +1) denslty f ( x ) = ( a  +l)(l-z)" on [0,1] where a >o 

1 1s a parameter. We have f (O)=a+l, E(X)=- . Thus, by lnequalltles B 

and C of Theorem 4.1, 
a +2 

log(a+2) 5 H ( f  ) 5 l+ log(a+1) .  

We have H ( f  )-log(a) as a- too:  the average tlme of the glven lnverslon- 
reJectlon algorithm grows as log(a ) as a 400. 

In the absence of extra lnformatlon about the denslty, I t  1s recommended 
that T be set equal to 2. Thls cholce also glves small cornputatlonal advantages. 
It 1s lmportant nevertheless to reallze that thls cholce 1s not optlmal In general. 
For example, msume that we wlsh to mlnlmize E (N,  +N,. ) , a crlterlon in whlch 
both contrlbutlons are glven equal welght because both N, and N,. count In 
effect numbers of computatlons of f and/or F .  The mlnlmlzatlon problem Is 
rather dlmcult. But 1f we work on a good upper bound for E (N,  +N,. ), then I t  1s 
nevert heless posslble to obtaln: 

Theorem 4.2. 

T >1, we have 
For the lnverslon-reJection algorithm of thls sectlon wlth deslgn constant 

lnf E (N, +N,. ) 
r > I  

I 
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Proof of Theorem 4.2. 
We start from 

Resubstltutlon of the value of r glven In the theorem glves us the lnequallty. 
This value was obtalned by functlonal lteratlon applled to 

an equatlon whlch must be satlsfled for the mlnlmum of the upper bound (set the 
derlvatlve of the upper bound wlth respect t o  r equal to 0). The functlonal ltera- 
tlon was started at r =H (f ). That  the value 1s not bad follows from the fact 
that  for H ( f  ) L e ,  

so tha t  at least from an asyrnptotlc polnt of view no lmprovement 1s posslble over 
the glven bound. 

As a curlous appllcatlon of Theorem 4.2, conslder the case again of a mono- 
tone denslty on [0,1] wlth flnlte f (0). Recalllng that  H (  f )<l+log( f (0)), we see 
that  If we take 

1+f (0) r =  
log2(l+f (0)) ’ 

a cholce whlch 1s lndeed lmplementable, then 

E (N, +Nr 1 
< l+l+ 

- log 

log( f (0)) W f  (0))  

log2(l+log( f (0))) + log(l+log(f (o>>>-2l0g(log(l+log(f (0)))) 
- 

(f (0)) 
log(l+log(f (0))) 

as f (O)--too. Thls should be compared wlth the value of E(Nr)=l+log(f  (0)) 
for the black box rejectlon algorlthm followlng Theorem 3.1. 

For densltles that  are also known to be convex, a sllght lmprovement In 
E (N, ) 1s posslble. See exerclse 4.5. 

I 

I 
-- 
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4.5. Bounded monotone densities: inversion-rejection based on 
Newt on-Rap hson iterations. 

In thls sectlon, we msume that f Is monotone on [O,oo) and that f (O)<oo. 
It 1s posslble that f has a large tall. In an attempt to automatlcally balance 
E (N,  ) agalnst E (N,  ), and thus to avold the eternal problem of havlng to And a 
good design constant, we could determine lntervals for sequentlal search based 
upon Newton-Raphson lteratlons started at x o=O. Recall the deflnltlon of the 
hazard rate 

If we try to  solve F (x )=1 for x by Newton-Raphson lteratlons started at xo=O, 
we obtaln a sequence X ~ S X ~ L Z ~ <  . 1 where 

1 = xn+- . 
1-F (2,) 

f (xn 1 h (xn 1 % + I  = xn 3- 

The xn 's need not be stored. Obvlously, storlng them could conslderably speed 
up the algorlthm. 

Inversion-rejection algorithm for bounded densities based upon Newton- 
Rsphson iterations 

Generate a uniform [0,1] random variate u . 
X-O , R + F ( X )  , 2-1 (X) 
REPEAT 

I-R 
Z x*+x+- , R * + F ( X * ) ,  z*-f (X*) 

IF U<R* 
THEN Accept - True 
ELSE R+R* , Z+Z* , X+X* 

UNTIL Accept 
REPEAT 

Generate two independent uniform [0,1] random variates V I  W . 
Y+-x+(x*-x) V , T - WZ (Y is uniformly distributed on [x ,x*)) 
Accept +[T <z*] (optional squeeze step) 
IF NOT Accept THEN Accept --[ T 5 f (Y)] 

UNTIL Accept 
RETURN Y 

One of the dlfferences wlth the algorlthm of the prevlous sectlon 1s that In evr:rY 
1tWatlOn of the lnverslon step, one evaluatlon of both F and f 1s required as 
compared to one evaluatlon of F .  The performance of the algorlthm 1s dealt with 
In Theorem 4.3. 

I 
I 

-- 
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Theorem 4.3. 

lnverslon-reJectlon algorlthm glven above, 
Let f be a bounded monotone denslty on [O,oo) wlth mode at 0. For the 

03 

E(N8 1 = E(Nr 1 = (1-F(zi)) 
i =O 

where O = x o ~ x l _ < x z ~  . . * 1s the sequence of numbers defined by 

If f 1s also DHR (has nonlncreaslng hazard rate), then 

1 5 E ( N , )  = E ( N 8 )  5 l + E ( X f  (0)). 

If f 1s also IHR (has nondecreaslng hazard rate), then 

1 5 E(Nr)  = E ( & )  5 - e * 
e -1 

Proof of Theorem 4.3. 

When f 1s DHR, then 

For IHR densltles, the lnequallty should be reversed. Thus, for DHR densltles, 
$1 

J (1-F (a: 1) dx 
O3 XI-1 

03 

xi -xj -1 
(1-F (xi 1) L 1+ 

i =O i=l  

03 

= 1+ J (1-F ( a : ) )  dx h (xi-1) 
1 =12,-1 

03 

5 1+Jf (O)(l-F(s)) da: = l+E(Xf (0)) . 
0 

When f 1s IHR, then 
*I +1 

*I 

- / h ( z )  dz 

1-F (si + 1 )  = ( I -F  ( ~ i  ))e 
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Name 

Halfnormal 

Gamma ( a ) ,  a 2 1  

Exponential 

343 

Density f Hazard rate h E ( N ,  )=E ( N ,  ) 

e 
e -1 
e 

r i a  1 e -1 
e -' 1 

- <- 

I- 
a -I e -2 

e - 

1-F (Xi ) 

Beta (1,a +l), a 20 

Thus, 

1-x a e -1 

- 
1-s 

( a  +l)(l-z)a ( 0 5 2  5 1 )  

00 0 0 .  
C ( l - F ( z i ) )  5 e-' = - e *I 

e -1 i =O i =O 

Truncated extreme value, a >O 

We have thus found an algorlthm wlth a perfect balance between the two 
parts, slnce E (N,  )=E (N,. ). Thls does not mean that the algorlthm 1s optlmal. 
However, In many cases, the performance 1s very good. For example, Its expected 
tlme 1s unlformly bounded over all IHR densltles. Examples of IHR densltles on 
[O,co) are glven ln the table below. 

e *-I  
e' e 1 z-- 

a a e -  
- e  a - I, 

e I, -z4  e - Weibull ( a  ), a 2 1 

Thls 1s not the place to  enter lnto a detalled study of IHR densltles. It sumces to 
state that they are an lmportant famlly In dally statlstlcs (see e.g. Barlow and 
Proschan (1965, 1975),  and Barlow, Marshall and Proschan (1963)). Some of Its 
sallent propertles are covered In exerclse 4.6. Some entrles for (N,  ) In the table 
glven above are expllcltly known. They show that the upper bound of Theorem 
4.3 1s sharp In a strong sense. For example, for the exponentlal denslty, we have 
z, =n , and thus 

e e+' = - 
e -1 

00 00 

E ( N , )  = E ( N , . )  = c ( I - F ( ~ ) )  = 
i =o i =O 

For the beta (1,u +1) denslty mentloned In the table, we can verlfy that 
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and thus, 
a n  

xn = I-(-) (n 20). 
a +1 

Thus, 
00 03 

i =O i =O 

E (N,  = (1-F (xi )) = (1-xi )a+ '  

-1 
03 a i(at-1) a + l  

1-(1--) ) = l  a + 1  
= E(-) 

i =O a +1 

e e 
e -1 e -1 

Thls varles from 1 ( a  =0) to - ( a  Too) wlthout exceedlng - . Thus, once 
agaln, the lnequallty of Theorem 4.3 1s tlght. 

For DHR densltles, the upper bound 1s often very loose, and not as good as 
the performance bounds obtalned for the dynamlc thlnnlng method (sectlon 

VI.2). For example, for the Pareto denslty (where a > O  1s a parame- U 

-1 
(l+x > a  +l 

ter), we have a hazard rate h (x )=- U , and l?(lV6)=[l-(i+~)-'] . Thls 
l+x U 

can be seen as follows: 
1 

(3, +,+I) = (xn +1)(1+-) ; 
U 

( n  20) : l n  
(3, +I) = (l+;) 

-1 00 - i a  
E (N, ) = (I+;) 

i =O 

e 
e -1 

The last expression varles from - ( a  loo) to  2 ( a  =1) and up to 00 as a io. 

4.6. Bounded monotone densities: geometrically increasing interval 
sizes. 

For bounded densltles, we can use a sequentlal search from left to  rlght, 
symrnetrlc to  the method used for unbounded but compact support densltles. 
There are two deslgn parameters: t >O and r >1, and the consecutlve lntervals 
are 

[O,t ) , [ t  ,tr ) , [ t r  ,tr 2) ,... . 
A typlcal cholce 1s t =1 , r =2. General guldellnes follow after the performance 
analysls. Let us begln wlth the algorlthm: 
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Inversion-rejection method for bounded monotone densities based upon geometr- 
ically exploding intervals 

Generate a uniform [0,1] random variate U .  

WHILE u > F ( X * )  DO 
X t o  , X*+t 

X+X* , X* +-rX* 
REPEAT 

Generate two iid uniform [0,1] random variates, V ,  W .  
Y + x + ( x * - x ) V  ( Y  is uniformly distributed on [ X , X * ) )  

RETURN Y 

Theorem 4.4. 
Let f be a bounded monotone denslty, and let t >O and r >1 be constants. 

Deflne 

Then, for the algorlthm glven above, 

Proof of Theorem 4.4. 
We repeatedly use the fact that  tri-’<z <tr If and only lf 

i--151og(;)/log(r > < i  , i >I. NOW, 

tr ’ CQ t tr ’ 
E (N,  ) = J f (5 ) dz + 5 ( i  +1) J f (5 da: = l+ 2 J f (5 
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Also, 

and 

We would llke the algorlthm to perform at a scale-lnvarlant speed. Thls can 
be achleved for t =- . In that case, the upper bounds of Tbeorem 4.4 read: 

f (0) 

where 

1s the scale lnvarlant counterpart of the quantlty H ( f  ) deflned In Theorem 4.1. 
H* (f ) can be consldered as the normallzed logarlthmlc moment for the denslty 
f . For the vast majority of dlstrlbutlons, H*(f )Coo. In fact, one must search 
hard t o  flnd a monotone denslty for whlch H*(f )=m. The tall of the denslty 
must at least of the order of l/(s l o g 2 ( s ) )  as s +oo, such as 1s the case for 

1 f (XI= (x >o) . 
(5  +e )log2(% + e  ) 

I 
I 

I 
-.- 
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Wlth llttle a prlorl lnformatlon, we suggest the cholce 

It Is lnterestlng to derlve a good guldlng formula for r . We start from the lne- 
quallty ' 

H*(f 1 E (N,  )+E (N , )  5 3+r + 
log(r ) ' 

whlch 1s mlnlmal for the unlque solutlon r >1 for whlch r log2(?- )=H* (f ). By 
functlonal lteratlon started at r =H* (f  ), we obtaln the crude estlmate 

H*(f 1 
log2(H* (f >> r =  

For thls cholce, we have as H*(f )+m, 

Example 4.3. Moment known. 
A loose upper bound for H* (f  ) 1s afforded by Jensen's lnequallty: 

co 

H* (f 5 J W l + Z f  (o))f (Z> dx 5 W l + E  (Xf (0))) 
0 

where X 1s a random varlable with density f . Thus, the expected tlme of the 
algorlthm grows at worst as the logarlthm of the flrst moment of the dlstrlbutlon. 
For example, for the beta ( l , a + l )  denslty of Example 4.1, thls upper bound Is 

a +1 
a+2  - log(i+-) < log(2) for all a >O. Thls 1s an example of a famlly for whlch the 

flrst moment, hence H*( f  ), 1s unlformly bounded. From thls, 

E ( N , )  5 1+r . 

The ad hoc cholce r =2 makes both upper bounds equal to 3. 
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4.7. Lipschitz densities on [o,oo). 

The lnverslon-reJectlon method can also be used for Llpschltz densltles f on 
[ o , ~ ) .  This class 1s smaller than the class of bounded densltles, but very large 
compared to  the class of monotone densltles. The black box method of sectlon 3 
for thls class requlred knowledge of a moment of the dlstrlbutlon. In contrast, the 
method presented here works for all densltles f €Lip  1( C ) where only C must be 
glven beforehand. The moments of the dlstrlbutlon need not even exlst. If the 
posltlve half of the real llne 1s partltloned by 

0=s0<x1<x2< * * , 

where the last lnequallty 1s based upon Theorem 3.5. The areas under the respec- 
tive domlnatlng curves are 

and 

n =o 

where A, = x, The value of E (N,  ) depends only upon the partltlon, and 
not upon the lnequalltles used In the reJectlon step, and plays no role when the 
lnequalltles are compared. Generally speaklng, the second inequality is better 
because I t  uses more Information (the value of F 1s used). Conslder the flrst lne- 
quallty. To guarantee that E (N,  ) be flnlte, for the vast majorlty of Lip densl- 
tles we need to ask that 

E A n 2 < w .  
03 

n =o 

But, slnce we requlre a valld partltlon of R , we must also have 
03 

E A ,  = w .  
n =o 

In partlcular, we cannot afford to  take A,=b>O for all n .  Conslder now A,, 
satlsfylng the condltlons stated above. When A, -n-' , then I t  1s necessary that 

a €(-,l]. Thus, the lntervals shrlnk rapldly to  0. Consider for example 1 
2 
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For thls cholce, the Intervals shrlnk so rapldly that we spend too much time 
searchlng unless f has a very small tall. In partlcular, 

03 n 
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E ( N s ) =  P ( X L  C A i )  
n =o a =o 

5 5 P ( X  2 c log(n + 2 ) )  
n =O 

X 03 - 
= C P ( e  "n+2)  

5 E ( e C ) .  

n =o 
X 

A slmllar lower bound for E (N, ) -xlst-, so that we conc,Jde that E 
and only If the moment generating functlon at - Is flnlte, 1.e. 1 

C 
X - 1 m ( - )  = E ( e  c ,  < 0 0 .  

C 

In other words, f must have a sub-exponential tail for good expected tlme. 
Thus, lnstead of analyzlng the first lnequallty further, we concentrate on the 
second lnequallty. 

The algorlthm based upon the second lnequallty can be summarlzed as fol- 
lows: 

Inversion-rejection algorithm for Lipschitz densities 

Generate a uniform [O,l] random variate U. 
X+O , R +-F(X) 
REPEAT 

X*+ Next ( X ) ,  R*+F(X*)  (The function Next computes the next value in the 
partition.) 
IF U<R* 

THEN Accept + True 
ELSE R+R* , X+X* 

UNTIL Accept 
REPEAT 

Generate two independent uniform [0,1] random variates v , w . 
Y + X + V ( X * - X )  ( Y  is uniformly distributed on [ X , X * ) .  

UNTIL w m 5 f  ( Y )  
RETURN Y 
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There are three partltlonlng schemes that stand out as belng elther lmportant or 
practlcal. These are defined as follows: 
A. 
B. x , + ~  = t r n  for some t >O,r > 1  , x 1  = t (note that z,+~ = TZ, for all 

c. $,+I = x,+ d T  (thls cholce provldes a balance between E ( N , )  

Schemes A and B requlre addltlonal deslgn constants, whereas scheme C 1s com- 
pletely automatlc. Whlch scheme 1s actually preferable depends upon varlous fac- 
tors, foremost among these the size of the tall of the dlstrlbutlon. By lmposlng 
condltlons on the tall, we can derlve upper bounds for E (N,  ) and E (N,  ). These 
are collected In Theorem 4.5: 

x, = n 6 for some 6>0 (thus, x,+l-x, =6). 

n 21). The lntervals grow exponentlally fast .  

and E (N,. )). 
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Theorem 4.5. 

p -th moment exlsts, I t  1s denoted by p p  . 
Let f € L i p  ,(C) be a denslty on [O,oo). Let p >1 be a constant. When the 

For scheme A, 

. 

1 and when 6=- 67' 
1 1 

For scheme B, 

For scheme C, 

At the same tlme, even If p2=00, the followlng lower bound 1s valld: 
co 
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Proof of Theorem 4.5. 

In thls proof, X denotes a random varlate wlth density f . Rewrlte E ( N , )  
as follows: 

Thls can be obtalned by an lnterchange of 
by Jensen's lnequallty and trlvlal bounds, 

J 

the sum and the Integral. But then, 

M 

Next, 

so that  by Chebyshev's lnequallty, 

. By a simple argument, we see that 

Comblnlng thls shows that  

1 - 
p (P2p > 2 p  

= 2+- 
p - 1  6 * 

Thls brlngs us to the lower bounds for scheme A. We have, by the Cauchy- 
Schwarz lnequallty, 

1 , 
I 
~ , 
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03 

03 

1 X > -jxJ (x)max(l,-) dx 

> -  

- 6 2  5 

1 P 2  

s - JII;max(19--) 

Also, 

Pl 
s 2 max(1,-). 

For scheme B, we have 
03 

E ( N , ) =  I+ ( l - F ( t r n ) )  
n =O 

m o o  
=1+E J f  ( x ) d x  

n =Otrn 

Also, 

E ( N r ) =  5 &?? 
n =O 

t ( r - l y  
n =O t p r n p  

353 
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Flnally, we conslder scheme C. Conslder the graph of l - d m .  Construct for 
glven x ,  the trlangle wlth top on the glven curve, and base [ x ,  ,x f l  +J at helght 1. 

. The trlangle lles completely above the glven curve because Its area 1s 

the slope of the hypothenusa 1s &?, whlch 1s at least as steep as the derlvatlve 
of 1-m at any polnt. To see thls, note that the latter derlvatlve at x 1s 

1-F ( x f l )  
m 

f ( 5 )  < J 2 C ( l - F ( X  1) = fi 
2 m -  2 G i q r )  

Thus, the sums of the areas of the trlangles 1s not greater than the lntegral 

J d m  d x  . But thls sum 1s 
00 

0 

00 1--F(Xf l )  E ( & )  E ( N 8 )  - - - - 
f l  E m  =O m m *  

00 

Also, twlce the area of the trlangles 1s at least equal to Jm dx . The 

bounds In terms of the varlous moments mentloned are obtalned wlthout further 
trouble. Flrst, by Chebyshev’s lnequallty, 

0 

00 00 1 1 

Also, by the Cauchy-Schwarz lnequallty, 
10300 

We observe that n x  1s a scale-lnvarlant quantlty. Thus, one upper bound 
for scheme A (cholce 6=- ) and the upper bound for scheme C are scale- 

lnvarlant: they depend upon the shape of the denslty only. Scheme C 1s attrac- 
tlve because no deslgn constants have to  be chosen at any tlme. In scheme A for 
example, the cholce of 6 1s crltlcal. The geometrlcally lncreaslng lnterval shes of 
scheme B seem t o  offer llttle advantage over the other methods, because E (N,  ) 1s 
relatlvely large. 

m 
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4.8. Exercises. 
1. 

2. 

3. 

4. 

5. 

355 

Obtaln an upper bound for P ( N ,  2 j )  In terms of J’ when equl-spaced lnter- 
vals are used for bounded densltles on [O,m) as In Example 4.1. Assume flrst 
that the T -th moment p,  1s flnlte. Assume next that E (e tX)=m ( t  )coo for 
some t >O. The lnterval wldth 6 does not depend upon j .  Check that the 
main term In the upper bound 1s scale-lnvarlant. 
Prove lnequallty D of Theorem 4.1. 

Give an example of a monotone denslty on [0,1], unbounded at 0, wlth 

Inequalltles A through C In Theorem 4.1 are best posslble: they can be 
attalned for some classes of monotone densltles on [0,1]. Descrlbe some 
classes of densltles for whlch we have equallty. 
When f 1s a monotone convex denslty on [0,1], then the lnverslon-rejectlon 
algorlthm based on shrlnklng intervals glven In the text can be adapted so 
that reJectlon 1s used wlth a trapezoldal domlnatlng curve Jolnlng [X,f (I)] 
and [TX ,  f (rx)] where r >1 1s the shrlnkage parameter used ln the orlglnal 
algorlthm. Such a change would leave N, the same. It reduces E ( N ,  ) how- 
ever. Formally, the algorlthm can be wrltten as follows: 

H(f  ><m. 

Inversion-rejection algorithm with intervals shrinking at a geometrical 
rate 

Generate a uniform [0,1] random variate u .  
X t l  
REPEAT 

X X t -  
r 

Z+f (X) ,Z*+f ( r X )  
UNTIL u z F ( X )  

REPEAT 
Generate three independent uniform [0,1] random variates, u , v , W I 

) 
z+z* R t m i n (  U , V- z -z* 

Y + X ( l + ( r  -1)R ) ( Y  has the given trapezoidal density) 

Accept +[T <z*] (optional squeeze step) 
IF NOT Accept THEN Accept -[ W < f (Y)] 
T +- W (2 +(Z* -2 )R ) 

UNTIL Accept 
RETURN Y 

1 
2 

Prove that E (Nr )<-(l+r ). In other words, for large values of T , thls 
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corresponds to  an lmprovement of the order of 50%. 

A. 
6. IHR densities. Prove the followlng statements: 

If X has an MR denslty on [ O m ) ,  then Xf (0) 1s stochastlcally smaller 
than an exponentlal random varlate, Le. for all 5 )o, 
P ( X f  (O)>s)Se-’ .  Conclude that for r >0, E ( X r ) S  r ( r  +I) 

f ( O Y  
B. For T >0, E (x‘ )sr(r +l)Er (x) (Barlow, Marshall and Proschan, 

C. 

D. 

1963). 
The convolutlon of two IHR densltles 1s agaln IHR. 
Let Y , Z  be lndependent IHFt random varlables wlth hazard rates h y  
and h z .  Then, lf h y + ~  1s the hazard rate of thelr sum, 

E. Construct an IHR denslty whlch 1s contlnuous, unbounded, and has 

7. Show how to  choose r and t In the lnverslon-rejectlon algorlthm wfth 
geometrlcally explodlng lntervals so as to  obtaln performance that 1s sub- 
logarlthmlc In the flrst moment of the dlstrlbutlon In the followlng sense: 

b + Z  Lmln(hy thz >. 
lnflnltely many peaks. 

where p = B ( X )  , C 1s some unlversal constant, and X 1s a random varlable 
wlth denslty f . 

8. Bounded convex monotone densities. Glve an algorlthm analogous to 
that studled ln Theorem 4.4 for thls class of densltles: Its sole dlfference 1s 
that the rejectlon step uses a trapezoldal domlnatlng curve. For thls algc- 
rlthm, In the notatlon of Theorem 4.4, prove the lnequallty 

C 
9. Prove that If A,, = - In the algorlthm for Llpschltz densltles, then 

E (N,  )<m If and only If E ( e  
10. Suggest good cholces for t and r In scheme B of Theorem 4.5. These cholces 

should preferably mlnlmlze E (N ,  )+E (Nr ), or the upper bound for thls sum 
given in the theorem. The resultlng upper bound should be scale-lnvarlant. 

11. Conslder a denslty f on [ O m )  whlch 1s In L@,(C) for some a€(O,l]. Uslng 
the lnequallty of Theorem 3.5 for such densltles, glve an algorlthm generallz- 
lng scheme C of Theorem 4.5 for L i p ,  densltles. Make sure that 
E (N ,  )=E (N,. ) and glve an upper bound for E (N,  ) whlch generallzes the 
upper bound of Theorem 4.5. 

12. The lower bound for scheme C In Theorem 4.5 shows that when p2=m, 
then E(N,)=m.  Thls 1s a nearly optlmal result, In that for most densltles 
wlth Anlte second moment, E(N,)<oo. For example, If p2+(<m for some 

n + 1  - 
)<oo. 
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c>O, then E ( N ,  )<m. Flnd densltles for whlch pz<oo, yet E (N, )=m. 



Chap fer Eight 
TABLE METHODS FOR 
CONTINUOUS RANDOM VARIATES 

I 

i 

1. COMPOSITION VERSUS REJECTION. 
We have lllustrated how algorlthms can be sped up If we are wllllng to  com- 

pute certaln constants beforehand. For example, when a dlscrete random varlate 
1s generated by the lnverslon method, I t  pays to compute and store the lndlvldual 
probabllltles p n  beforehand. Thls lnformatlon can speed up sequentlal search, or 
could be used In the method of gulde tables. For contlnuous random varlates, the 
same remalns true. Because we know many ultra fast  dlscrete random varlate 
generatlon methods, but very few f a s t  contlnuous random varlate generatlon 
technlques, there 1s a more presslng need for acceleratlon ln the contlnuous case. 
Globally speaklng, dlscretlzlng the problem speeds generatlon. 

We can for example cut up the graph of f lnto pleces, and use the composl- 
tlon method. Chooslng a plece Is a dlscrete random varlate generatlon problem. 
Generatlng a contlnuous random varlate for an lndlvldual plece 1s usually slmple 
because of the shape of the plece whlch 1s selected by us. There are only a few 
drawbacks: flrst of all, we need to know the areas of the pleces. Typlcally, thls 1s 
equlvalent to knowlng the dlstrlbutlon functlon. Very often, as wlth the normal 
denslty for example, the dlstrlbutlon functlon must be computed as the lntegral 
of the denslty, whlch In our model 1s an lnflnlte tlme operatlon. In partlcular, the 
composltlon method can hardly be made automatlc because of thls. Secondly, we 
observe that there usually are several nonrectangular pleces, whlch are commonly 
handled vla the reJectlon method. Rectangular pleces are of course most con- 
venlent slnce we can Just return a properly translated and scaled unlform random 
varlate. For thls reason, the total area of the nonrectangular pleces should be 
kept as small as posslble. 

There 1s another approach whlch does not requlre lntegratlon of f . If we 
And a functlon g zf , and use reJectlon, then slmllar acceleratloiis can be 
obtalned If we cut the graph of g up lnto convenlent pleces. But because g 1s 
plcked by us, we do of course know the areas (welghts) of the pleces, and we can 
choose g plecewlse constant so that each component plece 1s for example 
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rectangular. One could object that for thls method, we need to  compute the ratlo 
f /g rather often as part of the reJectlon algorlthm. But thls too can be avolded 
whenever a glven plece lles completely under the graph of f . Thus, In the deslgn 
of pleces, we should try to maxlmlze the area of all the pleces entlrely covered by 
the graph of f . 

From thls general descrlptlon, I t  1s seen that all bolls down to decomposl- 
tlons of densltles lnto small manageable pieces. Baslcally, such decomposltlons 
account for nearly all very fast methods avallable today: Marsaglla's rectangle- 
wedge-tall method for normal and exponentlal densltles (Marsaglla, Maclaren and 
Bray, 1964; Marsaglla, Ananthanarayanan and Paul, 1976), the method of Ahrens 
and Kohrt (1981), the allas-reJectlon-mlxture method (Kronmal and Peterson, 
1980), and the zlggurat method (Marsaglla and Tsang, 1984). The acceleration 
can only work well If we have a flnlte decomposltlon. Thus, lnflnlte talls must be 
cut off and dealt wlth separately. Also, from a dldactlcal polnt of vlew, rectangu- 
lar decomposltlons are by far the most lmportant ones. We could add trlangles, 
but thls would detract from the maln polnts. Slnce we do care about the general- 
lty of the results, I t  seems polntless to descrlbe a partlcular normal generator for 
example. Instead, we wlll present algorlthms whlch are appllcable to large classes 
of densltles. Our treatment dlffers from that found In the references clted above. 
But at the same tlme, all the ldeas are borrowed from those same references. 

In sectlon 2, we wlll dlscuss strlp methods, 1.e. methods that are based upon 
the partltlon of f lnto parallel strlps. Because the strlps have unequal probablll- 
tles, the strlp selectlon part of the algorlthm 1s usually based upon the allas or 
allas-urn methods. Partltlons lnto equal parts are convenlent because then fas t  
table methods can be used dlrectly. Thls 1s further explored In sectlon 3. 

2. STRIP METHODS. 

2.1. Definition. 
1s a 

bounded denslty on [0,1]; the lnterval [O,l] 1s dlvlded lnto n equal parts ( n  Is 
chosen by the user); g Is a functlon constant on the n Intervals, 0 outslde [0,1], 
and at least equal to f everywhere. We set 

The followlng wlll be our standlng assumptlons In thls sectlon: f 

Define the strlp probabllltles 

Then, the followlng rejectlon algorlthrn 1s valld for generatlng a random varlate 
wlth denslty f : 
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REPEAT 
Generate a discrete random variate z whose distribution is determined by 
P(Z=i)=pi  (15i I n ) .  
Generate two iid uniform [O,l] random variate u , v . 

Z-l+V 
n x+ 

As n Increases, the reJectlon rate should dlmlnlsh slnce l t  1s posslble to And 
better and better domlnatlng functions g .  But regardless of how large n 1s 
plcked, there 1s no avoldlng the two unlform random varlates and the computa- 
tlon of f ( X ) .  Suppose now that each strlp 1s cut lnto two parts by a horlzontal 
llne, and that the bottom part 1s completely tucked under the graph of f . For 
part i , the horlzontal llne has helght hi. We can set up a table of 2n probablll- 
tles: p . . . , p 2n to  the 
top portlons. Then, random varlate generatlon can proceed as follows: 

. . . , pn correspond to the bottom portlons, and pn 

REPEAT 
Generate a discrete random variate 2' whose distribution is determined by 
P(Z=i)=pi ( 1 s i < 2 n ) .  
Generate a uniform [0,1] random variate V .  

X +  

IF Z F n  

z-1+ v 
n 

THEN RETURN x 
ELSE 

Generate a uniform [0,1] random variate U . 
IF hz-,  + U ( g z - , - h Z - , ) < f  (X-1 )  THEN RETURN X-1 

UNTIL False 

When the bottom probabllltles are domlnant, we can get away wlth generatlng 
Just one dlscrete random varlate and one unlform [0,1] random varlate V most 
of the tlme. The performance of the algorlthm 1s summarlzed In Theorem 2.1: 
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Theorem 2.1. 

1. 

2. 

3. 

For the rejectlon method based upon n spllt strlps of equal wldth, we have: 
1 *  The expected number of lteratlons 1s - g i .  This 1s also equal to the 

expected number of dlscrete random varlates 2 per returned random varlate 
X .  

l n  
The expected number of computatlons of f 1s (s i  -hi ). 

ni=l 
The expected number of unlform [0,1] random varlates 1s 

i n  

Proof of Theorem 2.1. 

Wald's equatlon. 
The proof uses standard propertles of rejectlon algorlthms, together wlth 

The algorlthm requlres tables for gi ,hi, 152 s n  , and p i  , 152 < 2 n .  Some 
of the 4 n  numbers stored away contaln redundant lnformatlon. Indeed, the pi ' s  
can be computed from the si ' s  and hi's. We store redundant lnformatlon to 
Increase the speed of the algorlthm. There may be addltlonal storage requlre- 
ments dependlng upon the dlscrete random varlate generatlon method: see for 
example what 1s needed for the method of gulde tables, and the allas and allas- 
urn methods whlch are recommended for thls appllcatlon. Recall that the 
expected tlme of these generators does not depend upon n . 

Thus, we are left only wlth the cornputatlon of the s i ' s  and hi's. Conslder 
flrst the best posslble constants: 

hi = lnf f ( 5 ) .  

-52 <- i -1 t 

n n 

Normally, we cannot hope to  compute these values In a flnlte amount of tlme. 
For speclally restrlcted densltles f , I t  1s posslble however to do so qulte easlly. 
Regardless of whether we can actually compute them or not, we have the follow- 
lng important observation: 
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Theorem 2.2. 

deflned by: 
Assume that f 1s a Rlemann lntegrable denslty on [O,l] .  Then, If g i  , hi are 

S i  = SUP . f (a:): 
-52 C L  

hi = inf . f (a:), 
-5x <-I. 

i-1 
n n 

i -1 

n n 

we have: 

Proof of Theorem 2.2. 
It sufflces to  prove the second statement, In view of the fact that 

1 "  l n  - C Si 5 I+- 
n i = l  n i = l  

( g i - h i )  * 

But the second statement 1s a dlrect consequence of the deflnltlon of Rlemann 
lntegrablllty. 

Thus, for sufflclently well-behaved densltles, If we have optlmal bounds , 
hi at our dlsposal, the algorlthm becomes very efflclent when n grows large. 

2.2. Example 1: monotone densities on [0,1]. 

When f 1s monotone on [0 ,1] ,  we can set 

We also have 
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The performance of the algorlthm can be summarlzed qulte slmply: 

1. The expected number of lteratlons 1s 5 i+ - ' ('I. Thls 1s also equal to the 

expected number of dlscrete random varlates 2 per returned random varlate 
X .  

n 

2. 

3. 

We also note that to set up the tables g;, h i ,  I t  sufflces to evaluate f at the 
n +1 mesh polnts. Furthermore, the extremes of f are reached at the endpolnts 
of the lntervals, so that the constants are in thls case best possible. The only way 
to Improve the performance of the algorlthm would be by conslderlng unequal 
Interval slzes. It should be clear that the lnterval slzes should become smaller as 
we approach the orlgln. The unequal lntervals need to be plclced wlth care If real 
savlngs are needed. For a falr comparlson, we wlll use n lntervals wlth break- 
polnts 

The expected number of computatlons of f Is 5 -. f (0) 
The expected number of unlform [0,1] random varlates 1s 5 1+-. 2f (0) 

n 

n 

o=x,<x,<x,< * . . <x, = 1 ,  

where 

~ j + ~ - ~ i  = 6b' 

6 = - ,  

(05; s n - 1 )  , 
b -1 

b -1 

and b >1 1s a deslgn constant. The algorlthm 1s only sllghtly dlfferent now 
because an addltlonal array of zi 's 1s stored. 
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Theorem 2.3. 

strlp method shown above, 
A. 

Assume that f 1s a monotone denslty on [0,1]. Then for the reJectlon-based 

The expected number of lteratlons does not exceed 

1 
n 

B. If b =l+-log(l+f (O)+f (O)log(f (0))), then the upper bound 1s of the 

form 

as n+m. (Note: when f (0) 1s large, we have approxlmately I+  log(f (0)) .) 
n 

Proof of Theorem 2.3. 
The expected number of lteratlons 3 

n -1 

i 2 0  

= C S b ' f  (q) 

f (zi )(zi+l-zi ) 

n -1 

i =O 

What we retaln from Theorem 2.2 1s that wlth some careful deslgn, we can 
(10 much better than In the equl-spacri :zterval case. Roughly speaklng, we have 
reduced the expected number of ltelS-:::Ifs for monotone densltles on [0,1] from 

log(' ('I). Several C5:L-s of the last algorlthm are dealt wlth In 
n 

1+ (O) to 1+ 
11 
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2.3. Other examples. 
In the absence of lnformatlon about monotonlclty or unlinodallty, I t  1s vlrtu- 

ally lmposslble to  compute the best posslble constants gi and hi for the 
reJectlon-based table method. Other pleces of lnformatlon can ald In the derlva- 
tlon of sllghtly sub-optlmal constants. For example, when f EL@ ,(C ), then 

hi = 
f (i-l)+f (4 n 

C n 
--A 

2n 2 
9 

wlll do. These numbers can agaln be computed from the values of f at the n +I 
mesh polnts. We can work out the detalls of Theorem 2.1: 

Theorem 2.4. 

L i p , ( c )  denslty f on [0,1], we have: 
1. 

For the reJectlon method based upon n split strlps of equal wldth, used on a 

The expected number of lteratlons 1s 

Thls Is also equal t o  the expected number of dlscrete random varlates Z per 
returned random varlate X .  

C 
n 

2. The expected number of computatlons of f 1s 5-. 

3. 2c 
n 

The expected number of unlform [0,1] random varlates 1s 51+-. 

Proof of Theorem 2.4. 
The flrst expresslon follows dlrectly after resubstltutlon of the values of g i  

and hi lnto Theorem 2.1. The upper bound of parts 1 and 2 are obtalned by not- 
for all i. Flnally, part 3 1s obtalned by summlng the bounds C lng that gi  -hi =- 

n 
obtalned In parts 1 and 2. 
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Once agaln, we can control the performance characterlstlcs of the algorlthm 
by our cholce of n . The characterlstlcs can be lmproved sllghtly 1f we make use 
of the fact that for Llpschltz densltles known at mesh polnts, the obvlous plece- 
wlse llnear domlnatlng curve has sllghtly smaller lntegral than the plecewlse con- 
stant domlnatlng curve suggested here. It should be noted that the swltch to 
plecewlse llnear domlnatlng curves 1s costly in terms of the number of unlform 
random varlates needed, and In terms of the length of the program. It 1s much 
slmpler to lmprove the performance by lncreaslng n . 

2.4. Exercises. 
1. For the algorlthm for monotone densltles analyzed In Theorem 2.3, glve a 

good upper bound for the expected number of computatlons of f , both In 
terms of general constants b >1 and for the constant actually suggested In 
Theorem 2.3. 

When f 1s monotone and convex on [0,1], then the plecewlse llnear curve 
whlch touches the curve of f at the mesh polnts can be used as a domlnat- 
lng curve. If n equal lntervals are used, show that the expected number of 
evaluatlons of f can be reduced by 50% over the correspondlng plecewlse 
constant case. Glve the detalls of the algorlthm. Compare the expected 
number of unlform [0,1] random varlates for both cases. 
Develop the detalls of the rejectlon-based strlp method for Llpschltz densl- 
tles whlch uses a plecewlse llnear domlnatlng curve and n equl-spaced lnter- 
vals. Compute good bounds for the expected number of lteratlons, the 
expected number of computatlons of f , and the expected number of unl- 
form [0,1] random varlates actually requlred. 

4. Adaptive methods. Conslder a bounded monotone denslty f on [O,i]. 
When f (0) 1s known, we can generate a random varlate by reJectlon from a 
unlform denslty on [0,1]. Thls corresponds to the strlp method wlth one 
Interval. As random varlates are generated, the domlnatlng curve for the 
strlp method can be adjusted by conslderlng a stalrcase functlon wlth break- 
polnts at the Xi 's. Thls calls for a dynamlc data structure for adjustlng the 
probabllltles and sampllng from a varylng dlscrete dlstrlbutlon. Deslgn such 
a structure, and prove that the expected tlme needed per adjustment 1s 0 (1) 
as n +m, and that the expected number of f evaluatlons 1s o (1) as n 3 0 0 .  

Let F be a contlnuous dlstrlbutlon functlon. For Axed but large n , compute 
zi =F-'(-) , 05 i 5 n . Select one of the x i ' s  ( O s  i < n ) wlth equal proba- 

blllty l / n  , and deflne X=oi + U ( ~ i + ~ - x i  ) where u 1s a unlform [O,l] ran- 
dom varlate. The random varlable X has dlstrlbutlon functlon G, whlch 1s 
close to F .  It has been suggested as a fast unlversal table method In a 
varlety of papers; for slmllar approaches, see Barnard and Cawdery (1974) 
and Mltchell (1977). When x0=-m or 2, =a, deflne x In a sensible way on 
the lnterval In questlon. 

2. 

3. 

5.  
i 
n 
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[SET-UP]  
b -1 

b " - 1  
Choose b > I ,  and integer n >I .  Set 6t- . Set xo+-O. 

FOR i :=1 TO n DO 

g i  t - f  ( Z i - 1 ) ;  hi --f ( x i  1 
p i  +-hi ( x i - z j - 1 )  

P n  +i  + ( S i  -hi ) ( x i  - Z i - J  

Normalize the vector of p i  's. 
[GENERATOR] 
REPEAT 

Generate a discrete random variate whose distribution is determined by 
P ( Z = i ) = p i  (15; <2n  ). 
Generate a uniform [0 ,1 ]  random variate V .  
W +-( Z -1)modn 

w Z < n  
X-w + V b w + 1 - W  1) 

THEN RETURN x 
ELSE 

Generate a uniform [0,1] random variate U. 
IF hz-n -I- u(g,-, -hz-,  )I -f (x) THEN RETURN x 

UNTIL False 
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A. 

B. 
Prove that In all cases, sup I F-G, I -0 as n -00. 

Prove that when F has a denslty f , then I f -gn I +O as n-w, 
where gn 1s the denslty of G, . Thls property holds true wlthout excep- 
tlon. 
Determlne an upper bound on the L error of part B In terms of f’ and 
n whenever f 1s absolutely contlnuous wlth almost everywhere derlva- 
tlve f I .  

C. 

3. GRID METHODS. 

3.1. Introduction. 
Some acceleratlon can be obtalned over strlp methods If we make sure that 

all the components boxes (usually rectangles) are of equal area. In that case, the 
standard (very fast) table methods can be used for generatlon. The cost can be 
prohlbltlve: the boxes must be flne so that they can capture the detall In the out- 
llne of the denslty f , and thls forces us to  store very many small boxes. 

The versatlllty of the prlnclple 1s lllustrated here on a varlety of problems, 
ranglng from the problem of the generatlon of a unlformly dlstrlbuted random 
vector In a compact set of R d ,  to avoldance problems, and fast random varlate 
generatlon. 

3.2. Generating a point uniformly in a compact set. 
Let us enclose the compact set A of R wlth a hyperrectangle H wlth sldes 

hi h I , h 2 ,  . . . , hd . Dlvlde each slde up lnto Ni lntervals of length - , l<i Id.  
N; - 

There are three types of grld rectangles, the good rectangles (entlrely contalned 
In A ), the bad rectangles (those partlally overlapplng wlth A ), and the useless 
rectangles (those entlrely outslde A ). Before we start  generatlng, we need to  set 
up an array of addresses of rectangles, whlch we shall call a dlrectory. For the 
tlme belng, we can thlnk of an address of a rectangle as the coordlnates of Its 
leftmost vertex (In all dlrectlons). The dlrectory (called 0) 1s such that In posl- 
tlons 1 through k we have good rectangles, and In posltlons k + l  through k + I ,  
we have bad rectangles. Useless rectangles are not represented In the array. The 
lnformal algorlthm for generatlng a unlformly dlstrlbuted polnt In A 1s as fol- 
lows: 
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REPEAT 
Generate an integer Z uniformly distributed in 1,2, . . . , k + I .  
Generate x uniformly in rectangle D [z] (D [ Z ]  contains the address of rectangle 

Accept +[z sk] (Accept is a boolean variable.) 
IF NOT Accept THEN Accept +[XEA 1. 

z 1. 

UNTIL Accept 
RETURN x 

The expected number of lteratlons 1s equal to 
area( C ) 
area(A ) 

where C 1s the unlon of the good and bad rectangles (If the useless rectangles are 
not dlscarded, then C=H).  If the area of one rectangle 1s a ,  then 
area(C)=a (k +I). For most bounded sets A , thls can be made to go to 1 as the 
grld becomes flner. That thls 1s not always the case follows from thls slmple 
example: let A be [0,lId unlon all the ratlonal vectors ln [1,2ld . Since the ratlon- 
als are dense In the real llne, any grld cover of A necessarlly covers [ O , l l d  and 
[1,2Id, so that the ratlo of the areas 1s always at least 2. Fortunately, for all com- 
pact (Le., closed and bounded) sets A ,  the glven ratio of areas tends to one a s  
the grld becomes flner (see Theorem 3.1). 

The speed of the algorithm follows from the fact that when a good rectangle 
1s chosen, no boundary checklng needs to be done. Also, there are many more 
good rectangles than bad rectangles, so that the contrlbutlon to the expected 
tlme from boundary checklng 1s small. Of course, we must In any case look up an 
entry In a dlrectory. Thls 1s remlnlscent of the urn or table look-up method and 
Its modlflcatlons (such as the allas method (Walker, 1977) and the alias-urn 
method (Peterson and Kronmal, 1982)). Flner grlds yleld faster generators but 
requlre more space. 

One of the measures of the efflclency of the algorlthm 1s the expected 
nqmber of lteratlons. We have to  make sure that as the grld becomes flner, thls 
expected number tends to one. 



370 VIII.3.GRID METHODS 
-. 

Theorem 3.1. 
Let A be a compact set of nonzero area (Lebesgue measure), and let us con- 

slder a sequence of grlds G 1,G2,... whlch 1s such that as n -00, the dlameter of 
the prototype grld rectangle tends to 0. If c, 1s the grld cover of A deflned by 

G, , then the ratlo 
area( C, ) 
area(A ) 

tends to 1 as n+m. 

Proof of Theorem 3.1. 
Let H be an open rectangle coverlng A ,  and let B be the lntersectlon of H 

wlth the complement of A .  Then, B 1s open. Thus, for every ~ € 8 ,  we know 
that the grld rectangle In G, to whlch I t  belongs 1s entlrely contained In B for 
all n large enough. Thus, by the Lebesgue dominated convergence theorem, the 
Lebesgue measure of the ”useless” rectangles tends to the Lebesgue measure of 
B .  But then, the Lebesgue measure of C, must tend to the Lebesgue measure of 
A*.  

The dlrectory ltself can be constructed as follows: deflne a large enough 
array (of slze n =N,N,  Nd ), lnltlally unused, and keep two stack polnters, 
one for a top stack growlng from posltlon 1 down, and one for a bottom stack 
growlng from the last posltlon up. The two stacks are tled down at the ends of 
the array and grow towards eacff other. Travel from grld rectangle to grld rectan- 
gle, ldentlfy the type of rectangle, and push the address onto the top stack when 
I t  corresponds to a good rectangle, and onto the bottom stack when we have a 
bad rectangle. Useless rectangles are Ignored. After thls, the array 1s partlally full, 
and we can move the bottom stack up to flli posltlons k +1 through k +1. If the 
number of useless rectangles 1s expected to be unreasonably large, then the stacks 
should flrst be lmplemented as llnked llsts and at the end copled to the dlrectory 
of slze k: + I .  In any case, the preprocesslng step takes time equal to n , the cardl- 
nallty of the grld. 

It 1s lmportant to obtaln a good estlmate of the slze of the dlrectory. We 
have 

* 

area(A ) area(A ) 
U area(H ) 

n .  - - k + l  2 

We know from Theorem 3.1 and the fact that area( C, )=(k +1 ) a  , that 
k + l  area(A) llm - = 

n-oo n area(H ) ’ 

provlded that as n 300, we make sure that lnf Ni --+m (thls wlll lnsure that the 

dlameter of the prototype rectangle tends to 0). Upper bounds on the slze of the 
dlrectory are harder to come by In general. Let us conslder a few speclal cases In 

a 

I 
.. 
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the plane, to lllustrate some polnts. If A 1s a convex set for example, then we can 
look at all N ,  columns and N ,  rows In the grld, and mark the extrema1 bad rec- 
tangles on elther slde, together wlth thelr lmmedlate nelghbors on the lnslde. 
Thus, In each row and column, we are puttlng at most 4 marks. Our clalm 1s that 
unmarked rectangles are elther useless or good. For If a bad rectangle 1s not 
marked, then I t  has at least two nelghbors due north, south, east and west that 
are marked. By the convexlty of A ,  I t  1s physlcally lmposslble that thls rectangle 
1s not completely contalned In A .  Thus, the number of bad rectangles 1s at most 
4(N,+N2).  Therefore, 

+4(N1+N2) 
area(A ) 
area( H ) 

k + 1  I n  
If A conslsts of a unlon of K convex sets, then a very crude bound for k + I  
could be obtalned by replaclng 4 by 4K (Just repeat the marklng procedure for 
each convex set). We summarize: 

Theorem 3.2. 
The slze of the dlrectory 1s k + I ,  where 

<-=  area(A) k+Z area(A ) 
area(H ) - n ('1) area(H) * 

The asymptotlc result 1s valld whenever the dlameter of the grld rectangle tends 
to 0. For convex sets A on R 2 ,  we also have the upper bound 

k + l  area(A) Ni+N2 - <  + 4  
n - area(H ) N l N 2  * 

We are left now wlth the cholce of the N; 's. In the example of a convex set 
In the plane, the expected number of lteratlons 1s 

area(H) 4 (k + I  )a  
area(A ) < - If area(A) n - (N,+N2)  ' 

The upper bound 1s mlnlmal for N,=N2=&- (assume for the sake of convenl- 
ence that n 1s a perfect square). Thus, the expected number of lteratlons does 
not exceed 

area(H) 8 '+ area(A) fi * 

- 

where n 1s the cardlnallty of the encloslng grld. This Is of the form I+ 

By controlllng n , we can now control the expected tlme taken by the algorlthm. 
The algorlthm Is fast If we avold the bad rectangles very often. It 1s easy to see 
tha t  the expected number of lnspectlons of bad rectangles before haltlng 1s the 

expected number of lteratlons tlmes - 

const ant 
&- 

1 whlch equals to 1 area(H) = o ( l )  k + l '  n area(A ) 
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I 
n 

slnce -+O (as a consequence of Theorem 3.1). Thus, asymptotlcally, we spend a 

negllglble fractlon of tlme lnspectlng bad rectangles. In fact, uslng the speclal 
example of a convex set In the plane wlth N , = N , = 6 ,  we see that the 
expected number of bad rectangle lnspectlons 1s at most 

area(H) 8 
area(A) 6 ' - 

3.3. Avoidance problems. 
In some slmulatlons, usually wlth geometrlc lmpllcatlons, one 1s asked to 

generate polnts unlformly in a set A but not In UAi where the Ai 's  are glven 
sets of R d .  For example, when one slmulates the random parklng process (cars of 
length one park at random In a street of length L but should avold each other), 
I t  1s lmportant to generate polnts unlformly In [ O , L ]  minus the unlon of some 
lntervals of the same length. Towards the end of one slmulatlon run, when the 
street fllls up, I t  1s not feaslble to keep generatlng new polnts untll one falls in a 
good spot. Here a grld structure wlll be useful. In two dlmenslons, slmllar prob- 
lems occur: for example, the clrcle avoldance problem 1s concerned wlth the gen- 
eratlon of uniform polnts In a clrcle glven that the polnt cannot belong to any of 
a glven number of clrcles (usually, but not necessarlly, havlng the same radius). 
For appllcatlons lnvolvlng nonoverlapplng clrcles, see Alder and Walnwrlght 
(1902), Dlggle, Besag and Gleaves (1976), Talbot and Wlllls (1980), Kelly and 
Rlpley (1976) and Rlpley (1977, 1979). Rlpley (1979) employs the rejectlon 
method for sampllng, and Lotwlck (1982) trlangulates the space In such a way 
that each trlangle has one of the data polnts as a vertex. The trlangulatlon 1s 
deslgned to make sampllng easy, and to  improve the rejection constant. Lotwlck 
also lnvestlgates the performance of the ordlnary rejectlon method when checking 
for lncluslon In a clrcle 1s done based upon an algorlthm of Green and Slbson 
(1978). 

We could use the grld method In all the examples glven above. Note that 
unllke the problems dealt wlth In the prevlous subsectlon, avoldance problems are 
dynamlc. We cannot afford to  recompute the entlre dlrectory each tlme. Thus, we 
also need a fast method for updatlng the dlrectory. For thls, we wlll employ a 
dual data structure (see e.g. Aho, Hopcroft and Ullman, 1983). The operatlons 
that we are lnterested In are "Select a random rectangle among the good and bad 
rectangles", and "Update the dlrectory" (whlch lnvolves changlng the status of 
good or bad rectangles to bad or useless rectangles, because the avoldance reglon 
grows contlnuously). Also, for reasons explalned above, we would llke to keep the 
good rectangles together. Assume that we have a d-dlmenslonal table for the rec- 
tangles contalnlng three pleces of lnformatlon: 
(1) The coordlnates of the rectangle (usually of vector of Integers, one per coor- 

dlnate). 
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(11) The status of the rectangle (good, bad or useless). 
(111) The posltlon of the rectangle In the dlrectory (thls 1s called a polnter to the 

dlrectory). 
The dlrectory 1s as before, except that I t  wlll shrink In size as more and more rec- 
tangles are declared useless. The update operatlon lnvolves changlng the status of 
a number of rectangles (for example, If a new clrcle to be avolded 1s added, then 
all the rectangles entlrely wlthln that  clrcle are declared useless, and those that 
straddle the boundary are declared bad). Slnce we would llke to  keep the tlme of 
the update proportlonal to the number of cells lnvolved tlmes a constant, I t  1s 
obvious that we wlll have to  reorganlze the dlrectory. Let us use two llsts agaln, 
a llst of good rectangles tled down at 1 and wlth top at k ,  and a llst of bad rec- 
tangles tled down at n and wlth top at n- I+1  ( I t  has I elements). There are 
three sltuatlons: 
(A) A good rectangle becomes bad: transfer from one llst to the other. Flll the 

hole ln the good llst by fllllng I t  wlth the top element. Update k and I .  
(B) A good or bad rectangle becomes useless: remove the element from the 

approprlate Ilst, and All the hole as In case (A). Update k or I .  
(C) A bad rectangle remalns bad: lgnore thls case. 
For generation, there 1s only a problem when z > k  : when thls happens, replace 
Z by 2' +n -I - k ,  and proceed as before. Thls replacement makes us jump to the 
end of the dlrectory. 

Let us turn now to the car parklng problem, to see why the grid structure 1s 
to be used with care, If at all, In avoidance problems. At flrst, one mlght be 
tempted to thlnk that for Ane enough grlds, the performance 1s excellent. Also, 
the number of cars ( N )  that  are eventually parked on the street cannot exceed 
L , the length of the street. In fact, E ( N )  - XL as L 4 0 0  where 

t 

00 - 2 [ ( l - e - " ) / u  du 

0 
A = J e  O d t  = 0.748 ... 

(see e.g. Renyl (1958), Dvoretzky and Robblns (1964) or Mannlon (1964)). What 
determines the tlme of the slmulatlon run 1s of course the number of uniform 
[0,1] random varlates needed In the process. Let E be the event 

[ Car 1 does not lntersect [0,1] 1. 
Let T be the tlme (number of uniforms) needed before we can park a car to the 
left of the flrst car. Thls Is lnflnlte on the complement of E, so we wlll only con- 
slder E. The expected tlme of the entlre slmulatlon 1s at least equal to 
P ( E ) E  ( T  I E). Clearly, P (E)=(L -1)/L 1s posltlve for all L > 1. We wlll show 
t h a t  E ( T  I E)=o~, which leads us to the concluslon that for all L > 1, and for 
all grld slzes n ,  the expected number of uniform random varlates needed 1s 00. 

Recall however that the actual slmulatlon tlme 1s flnlte wlth probablllty one. 
Let w be the posltlon of the leftmost end of the flrst car. Then 
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1 
1+- 

n 
dt  > -  - L-1 L J E ( T  I W = t ) -  L 

1 l+- 

Slmllar dlstresslng results are true for d -dlmenslonal generallzatlons of the car 
parklng problem, such as the hyperrectangle parklng problem, or the problem of 
parklng clrcles in the plane (Lotwlck, 1984)(the clrcle avoldance problem of flgure 
3 1s that of parklng clrcles wlth centers In uncovered areas untll the unit square IS 

covered, and 1s closely related to the clrcle parklng problem). Thus, the reJectlon 
method of Rlpley (1979) for the clrcle parklng problem, whlch 1s nothlng but the 
grld method wlth one glant grld rectangle, suffers from the same drawbacks as 
the grld method In the car parklng problem. There are several posslble cures. 
Green and Slbson (1978) and Lotwlck (1984) for example zoom in on the good 
areas In parklng problems by uslng Dlrlchlet tessellations. Another posslblllty 1s 
t o  use a search tree. In the car parklng problem, the search tree can be defined 
very slmply as follows: the tree 1s blnary; every lnternal node corresponds to a 
parked car, and every termlnal node corresponds to  a free lnterval, 1.e. an lnter- 
Va l  In whlch we are allowed to park. Some parked cars may not be represented at 
all. The lnformatlon In one lnternal node conslsts of: 

p 1  : the total amount of free space In the left subtree 

p ,  : the total amount of free space in the rlght subtree. 
of that node; 

For a termlnal node, we store the endpolnts of the lnterval for that node. To 
park a car, no reJectlon 1s used at all. Just travel down the tree taklng left turns 
wlth probablllty equal to  pf / ( p l  + p r  ), and rlght turns otherwise, untll a termlnal 
node 1s reached. Thls can be done by uslng one unlform random varlate for each 
lnternal node, or by reuslng (mllklng) one unlform random varlate tlme and 
agaln. When a termlnal node 1s reached, a car 1s parked, 1.e. the mldpolnt of the 
car 1s put unlformly on the lnterval In questlon. Thls car causes one of three 
sltuatlons to occur: 

1. The lnterval of length 2 centered at the mldpolnt of the car 
covers the entire orlglnal lnterval. 

2. The lnterval of length 2 centered at the mldpolnt of the car 
forces the orlglnal lnterval t o  shrlnk. 

3. The lnterval of length 2 centered at the mldpolnt of the car 
spllts the orlglnal lnterval In two Intervals, separated by the 
parked car. 

In case 1, the termlnal node 1s deleted, and the slbllng termlnal node 1s deleted 
too by movlng I t  up to  Its parent node. In case 2, the structure of the tree 1s 
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unaltered. In case 3, the termlnal node becomes an lnternal node, and two new 
termlnal nodes are added. In all cases, the lnternal nodes on the path from the 
root to the termlnal node In questlon need to  be updated. It can be shown that 
the expected tlme needed In the slmulatlon 1s 0 ( L  log(L )) as L +oo. Intultlvely, 
thls can be seen as follows: the tree has lnltlally one node, the root. At the end, I t  
has no nodes. In between, the tree grows and shrlnks, but can never have more 
than L lnternal nodes. It 1s known that the random blnary search tree has 
expected depth 0 (log(L )) when there are L nodes, so that,  even though our tree 
1s not dlstrlbuted as a random blnary search tree, I t  comes as no surprlse that the 
expected tlme per car parked 1s bounded from above by a constant tlme log(L ). 

3.4. Fast random variate generators. 
It 1s known that when ( X , U )  1s unlformly dlstrlbuted under the curve of a 

denslty f , then x has denslty f . Thls could be a denslty In R d ,  but we wlll 
only conslder d =1 here. All of our presentatlon can easlly be extended t o  R d .  
Assume that f 1s a denslty on [0,1], bounded by M .  The lnterval [0,1] 1s dlvlded 
lnto N ,  equal Intervals, and the lnterval [O,M] for the y -dlrectlon 1s dlvlded lnto 
N 2  equal Intervals. Then, a dlrectory 1s set up with k good rectangles (those 
completely under the curve of f ), and 1 bad rectangles. For all rectangles, we 
store an lnteger i whlch lndlcates that the rectangle has 2-coordlnates 
[-- - i + l  ). Thus, ranges from 0 t o  N , - l .  In addltlon, for the bad rectangles, 

we need t o  store a second lnteger j lndlcatlng that the y coordlnates are 
j j+l [M-,M-). Thus, O l j  < N 2 .  It 1s worth repeatlng the algorlthm now, 

N2 N2 
because we can re-use some unlform random varlates. 

i 
N , '  N l  
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Generator for density f on [0,1] bounded by M 

(NOTE: D [l], . . . , D [k + I ]  is a directory of integer-valued x-coordinates, and 
Y[k+l], . . . , Y [ k + / ]  is a directory of integer-valued y-coordinates for the bad rectan- 
gles.) 
REPEAT 

Generate a uniform [0,1] random variate u. 
2 6  L(k + I  )U] (2 chooses a random element in D ) 
A+(k + I  )v-Z (A is again uniform [0,1]) 

Accept -[z 5 k ] 
IF NOT Accept THEN 

Generate a uniform [OJ] random variate v. 
Accept --[M(Y[Z]+V)_<f (X)N,]  

UNTIL Accept 
RETURN x 

Thls algorlthm uses only one table-look-up and one unlform random varlate most 
of the tlme. It should be obvlous that more can be galned If we replace the D [z] 
entrles by - ['I , and that in most hlgh level languages we should Just return 

from lnslde the loop. The awkward structured exlt was added for readablllty. 
Note further that In the algorlthm, I t  1s Irrelevant whether f 1s used or cf 
where c 1s a convenlent constant. Usually, one mlght want to choose c In such a 
way that an annoylng normallzatlon constant cancels out. 

When f 1s nonlncreaslng (an lmportant speclal case), the set-up 1s faclll- 
tated. I t  becomes trlvlal to declde qulckly whether a rectangle 1s good, bad or 
useless. Notlce that when f 1s In a black box, we wlll not be able to declare a 
partlcular rectangle good or useless In our llfetlme, and thus all rectangles must 
be classified as bad, Thls wlll of course slow down the expected tlme qulte a blt. 
Still for nonlncreaslng f , the number of bad rectangles cannot exceed N , + N , .  
Thus, notlng that the area of a grld rectangle 1s -, we observe that the 

expected number of lteratlons does not exceed 

N l  

M 
n 

n 
1 Taklng N 1 = N 2 = 6 ,  we note that the bound 1s l+O(-). We can adjust n 

t o  off-set large values of M ,  the bound on f . But In comparlson with strlp 
methods, the performance 1s sllghtly worse In terms of n :  In strlp methods wlth 
n equal-slze Intervals, the expected number of lteratlons for monotone densltles 

&- 



VIII.3.GRID METHODS 

M 
n 

does not exceed 1+- .  For grld 

expected number of computatlons c 

377 

methods, the n 1s replaced by fi. The 

f for monotone densltles does not exceed 
- 1 ( ( k + l ) M ) -  1M < M ( N i + N d  
k +I n n -  n 

For unlmodal densltles, a slmllar dlscusslon can be glven. Note that In the case of 
a monotone or unlmodal denslty, the set-up of the dlrectory can be automated. 

I t  1s also important to prove that as the grld becomes flner, the expected 
number of lteratlons tends t o  1. Thls 1s done below. 

Theorem 3.3. 
For all Rlemann lntegrable densltles f on [0 ,1 

lnf (Nl ,N2)+oo ,  the expected number of lteratlons, 
bounded by M ,  we have, a s  

tends to 1 .  The expected number of evaluatlons of f 1s o ( 1 ) .  

Proof of Theorem 3.3. 
Glven an n -grid, we can construct two estlmates of f , 

N1-1 1 
E- 

i=o N ,  L S Z  5- 
S U P  f . ( 4  Y 

i +1 

N1 N1 

and 

By the deflnltlon of Rlemann lntegrablllty (Whltta,er and M Atson, 1 9 2 7 ,  p.63), 
these tend to J f  as N l+oo. Thus, the dlfference between the estlmates tends to 
0. By a slmple geometrlcal argument, I t  1s seen that the area taken by the bad 
rectangles 1s at most thls dlfference plus 2 N 1  tlmes the area of one grld rectangle, 
that Is, o ( I ) + - - 0  2 M -  ( 1 ) .  

N2 

Densltles that are bounded and not Rlemann lntegrable are somehow pecu- 
Ilar, and less lnterestlng In practice. Let us close thls sectlon by notlng that extra 
savings In space can be obtalned by grouplng rectangles In groups of slze m , and 
Puttlng the groups In an auxlllary dlrectory. If we can do thls In such a way that 
many groups are homogeneous (all rectangles In I t  have the same value for D [i ]  
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and are all good), then the correspondlng rectangles In the dlrectory can be dls- 
carded. Thls, of course, 1s the sort of savings advocated In the multiple table 
look-up method of Marsaglla (1963) (see sectlon 111.3.2). The prlce pald for this is 
an extra comparlson needed to examlne the auxlllary dlrectory. 

A Anal remark 1s In order about the space-time trade-off. Storage is needed 
for at most N,+N2 bad rectangles and - good rectangles when f 1s monotone. 
The bound on the expected number of lteratlons on the other hand 1s 

l+M(N,+N,). If N,=N2=&, then keeplng the storage Axed shows that the 

expected tlme lncreases In proportlon to M .  The same rate of Increase, albelt 
wlth a dlfferent constant, can be observed for the ordinary rejectlon method wlth 
a rectangular domlnatlng curve. If we keep the expected tlme Axed, then the 
storage lncreases In proportlon to  M .  The product of storage ( 1 + 2 M / K )  and 
expected tlme ( 2 6  +n /M) 1s 4 6  +n /M +4M. Thls product 1s mlnlmal for 
n =1,M=& /2, and the mlnlmal value 1s 8. Also, the fact that storage tlmes 
expected time 1s at least 4M shows that there 1s no hope of obtalnlng a cheap 
generator when M 1s large. Thls Is not unexpected slnce no condltlons on f 
besldes the monotonlclty are Imposed. It Is well-known for example that for 
speclflc classes of monotone or unlmodal densltles (such as all beta or gamma 
densltles), algorlthms exlst which have unlformly bounded (In M ) expected tlme 
and storage. On the other hand, table look-up 1s so fast  that grld methods may 
well outperform standard reJectlon methods for many well known densltles. 

n 
M 

n 



Chapter Nine 
CONTINUOUS UNIVARIATE DENSITIES 

Chapters IX and X are lncluded for the convenlence of a large sub- 
populatlon of users, the statlstlclans. The maln prlnclples In random varlate gen- 
eratlon were developed In the flrst elght chapters. Most partlcular dlstrlbutlons 
found here are members of speclal classes of densltles for whlch unlversal 
methods are avallable. For example, a short algorlthm for log-concave densltles 
was developed In sectlon VII.2. When speed 1s at a premlum, then one of the 
table methods of the prevlous chapter could be used. Thls chapter 1s purely com- 
plementary. We are not ln the least lnterested In a hlstorlcal revlew of the 
dlfferent methods proposed over the years for the popular densltles. Some 
lnterestlng developments whlch glve us new lnslght or lllustrate certain general 
prlnclples wlll be reported. The llst of dlstrlbutlons corresponds roughly speaklng 
to  the llst of dlstrlbutlons In the three volumes of Johnson and Kotz. 

1. THE NORMAL DENSITY. 

1.1. Definition. 
A random varlable X 1s normally distributed If I t  has density 

2 2  
1 -- 2 

! ( X I = -  d G e  
When x 1s normally dlstrlbuted, then ,%+ax 1s sald to be normal (,%,a2). The 
mean ,u and the varlance a2 are unlnterestlng from a random varlate generatlon 
polnt of vlew. 

Comparatlve studles of normal generators were publlshed by Muller (1959), 
Ahrens and Dleter (1972), Atklnson and Pearce (1976), Klnderman and Ramage 
(1970), Payne (1979) and Best (1979). In the  table below, we glve a general out- 
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Marsaglia's method for the tail-of-the-normal density (Marsaglia, 19 64) 

REPEAT 
Generate iid uniform [0,1] random variates U ,  V .  
x +\ /a  2-210g( u ) 

UNTIL Wsa 
RETURN x 

Marsaglla's method 1s based upon the trlvlal lnequallty 
2 2  2 2  

x -7 
a 

-- 
e 2 < - e  - ( e a ) .  

a 2-z - 
But xe (x 2 a ) 1s a denslty havliig dlstrlbutlon functlon 

a 2-z - 
( e a ) ,  2 F (x) = 1-e 

whlch 1s the tall part of the Raylelgh dlstrlbutlon functlon. Thus, by lnverslon, 
da2-210g( U )  has dlstrlbutlon functlon F , whlch explalns the algorlthm. The 
probablllty of acceptance In the reJectlon algorlthm 1s 

as a -00. Thus, the reJectlon algorlthm 1s asymptotlcally optlmal. Even for small 
values of a ,  the probablllty of acceptance 1s qulte hlgh: I t  1s about 66% for a =1 
and about 88% for a=3. Note that Marsaglla's method can be sped up some- 
what by postponlng the square root untll after the acceptance: 

REPEAT 
Generate iid uniform [OJ] random variates u , b'. 
X + c  -log(U) (where c = a 2 / 2 )  

UNTIL v2xsc 
RETURN 

An algorlthm whlch does not requlre any square roots can be obtalned by reJec- 
tlon from an exponentlal denslty. We begln wlth the lnequallty 
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a 2  -- az 22 -- 
e 2 < e 2  - ( e a > ,  

which follows from the observatlon that (x -a )220. The upper bound 1s propor- 

tloiial to the denslty of a +- where E 1s exponentlally dlstrlbuted. Thls ylelds 

wlthout further work the followlng algorlthm: 

E 
U 

REPEAT 
Generate iid exponential random variates E ,E*. 

UNTIL E '5 2 a 2E* 
E 

RETURN X + U  f- 
a 

The probablllty of acceptance 

P (E* > E 2 / ( 2 , 2 ) )  = 

1s preclsely as for Marsaglla's method: 

If a fast  exponentlal random varlate generator 1s avallable, the second reJectlon 
algorlthm 1s probably faster than Marsaglla's. 

1.3. Composition/rejection methods. 
The prlnclple underlying all good composltlon/reJectlon methods 1s the fol- 

lowing: decompose the denslty of f lnto two parts, f (x )=pg  (a )+(l-p )h  (x ) 
where p E(0,l) 1s a mlxture parameter, g 1s an easy denslty, and h 1s a resldual 
denslty not very often needed when p 1s close to 1. We rarely stumble upon a 
good cholce for g by accldent. But we can always And the optlmal g e  In a famlly 
of suitable candldates parametrlzed by 6. The welght of go In the mlxture 1s 
denoted by p (8): 

The candldates g e should preferably be densltles of slmple transformatlons of 
lndependent unlform [O,l] random varlables. Among the slmple transformatlons 
one mlght conslder, we clte: 

i 
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(1) 
(2) 

(4) 61V1+02(V1)3 . 

O(V,+ * . . +Vn); 
8 median( V,,  . . . , Vn ); 

(3) 61 V 1+02 V2; 

Here v1,v2, ... are lld unlform [-1,1] random varlates, and 8,8,,8, are parameters 
t o  be selected. Marsaglla and Bray (1964) used the flrst cholce wlth n = 3  and 
wlth the dellberately suboptlmal value 8=1 (because a tlme-consumlng multlpll- 
catlon 1s avolded for thls value). Klnderman and Ramage (1976) optlmlzed 8 for 
cholce (1) when n =2. And Ahrens and Dleter (1972) proposed to use cholce (3). 
Because the shape of g e  1s trapezoldal, thls method 1s known as the trapezoidal 
method. All three approaches lead to  algoflthms of about equal length and 
speed. We wlll look at cholces (1) and (2) In more detall below, and provlde 
enough detall for t h e  reader to be able to reconstruct the algorlthms of Marsaglla 
and Bray (1964) and Klnderman and Ramage (1976). 

Theorem 1.1. 
The denslty of 6 medlan( V,, . . . , V 2 , + , )  for n posltlve and 8>0 1s 

(2n +I)! where c = . The maxlmal value of p (8) 1s reached for 6==, and 
2 2 n  +In !28 I takes the value 

I We have 
I 

Proof of Theorem 1.1. 

2n +1 lld unlform [O,l] random varlables has a symmetrlc beta denslty glven by 
The denslty can be derlved very easlly after recalllng that the medlan of 

(2n +I)! 

n !2 
(a:(l-z))fl (OLa: 51) 

Deflne ge(x)  = c ( 1 - ( ~ ~ / 6 ~ ) ) *  ( l a :  I 56), and note that log(f /go) attalns an 
extremum at some polnt a: for whlch the derlvatlve of the logarithm Is 0. Thls 
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y le1 ds the equation 
2x 12 -a:+-- = 0 ,  
e2 x 2  

x = O  ; x 2 = e 2 - 2 n  . 
When e2<2?2, f / g e  attalns only one mlnlmum, at x =O. When O2>2n, the 
functlon f /go 1s symmetrlc around 0: l t  has a local peak at 0, dlps to  a mlm- 
lmum, and lncreases rnonotonlcally agaln t o  03 as x t8. Thus, we have 

A2 

We stlll have to maxlmlze thls functlon wlth respect to 8. The functton p ( 8 )  
lncrezises llnearly from 0 up to  e=&. Then, I t  lncreases some more , peaks, 
and decreases In a bell-shaped fashlon. The maxlmum 1s attalntd for some value 
8> 6. Since In that reglon, p (8) 1s a constant tlmes 02n +'e -e2/2, the maxlmum 
1s attalned for 8 = d E .  Thls glves the deslred result. 

Had we consldered the Taylor serles expanslon of f about 0, given by 

1 9  f ( X I =  - 1 x 2  (I--+--- x4 x 6  + . . .  
J2n 2 a 4 8  

whlch 1s known t o  glve partlal sums that alternately overestlmate and underestl- 

mate f , then we would have been tempted to choose g (5)  = - 3 4& (1-71, X 2  

because of 

4 where p =- -0.7522528 1s the welght of g In the mixture. Thls lllustrates 

usefulness and the shortcomlngs of Taylor's serles. Slmple polynomlal bounds 
very easy to  obtain, but the cholce could be suboptlmal. From Theorem 1.1 

3J;; 
the 

are 
for 

example, we recall that  the optlmal g of the lnverted parabollc form 1s a con- 

stant tlmes (1--) ( I x 1 56). Sometlmes a suboptlmal cholce of O 1s prefer- X 2  
3 

able because the resldual denslty h 1s easler to handle. Thls Is the case for n= l  
In Theorem 1.1. The suboptlmal cholce e=&, whlch 1s the cholce lmgllclt In 
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Taylor’s serles expanslon, ylelds a much cleaner resldual denslty. For n =2, we 
need 5 random varlates lnstead of 3, an lncrease of 669’6, whlle the galn In 
efflclency (In value of p )  1s only of the order of 10%. For thls reason, the case 
n >1 1s less lmportant In practlce. Let us brlefly descrlbe the entlre algorlthm for 
the case n =1, e==&. We can decompose f as follows: 

where 

p =- 0.7522528; 
3J;; 

e-22/2 dx 0.15729921; S 7 z  r =  
l Z l > &  

X Z  ) dx % 0.09044801 . J -(e-Z2/2-(1-- 1 
G 2 9 =  

I z  Iifi 
Sampllng from the tall denslty t has been dlscussed In the prevlous sub-sectlon. 
Sampllng from g 1s slmySle: Just generate three lld unlform [-1,1] random varl- 
ates, and take 6 tlmes the medlan. Sampllng from the resldual denslty h can 
be done as follows: 

REPEAT 
Generate v uniformly on [-1,1], and u uniformly on [0,6]. 

Accept -[ u >x2] 
IF NOT Accept THEN 

X t f i V / I  v 

X2 IF U >_x2(1--) THEN 
8 

U N T i  Accept 
RETURN x 

Thls 1s a slmple reJectlon algorlthm wlth squeezlng based upon the lnequalltles 
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The reader can easlly work out the detalls. The probablllty of lmmedlate accep- 
tance In the flrst lteratlon 1s 

5 - 
6 

3 7  7 7 
- - -  - 2 2 6 2  - -+- 

4&32 

The same smooth performance for a resldual denslty could not have been 
obtalned had we not based our decomposltlon upon the Taylor serles expanslon. 

Let us next look at the denslty g e  of 8(V,+Vz+V3) where the Vi's are Ild 
unlform [-1,1] random varlables. For the denslty of e( VI+ V2), the trlangular 
denslty, we refer to the exerclses where among other thlngs I t  1s shown that  the 
optlmal 8 1s 1.1080179... , and that the correspondlng value p (8) 1s 0.8840704... . 

~ ~ _ _  

Theorem 1.2. 
The optlmal value for 8 In the decomposltlon of the normal denslty into 

p (8)g& ) plus a resldual denslty (where g o  1s the denslty of e( V l + V 2 + v 3 )  and 
the vi 'S are lld unlform [-1,1] random varlables), 1s 

e = 0.956668451229... . 

The corresponding optlmal value for p (8) 1s 0.962365327... . 

Proof of Theorem 1.2. 
The d,enslty g e  of e( Vl+V2+V3) 1s 
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0 

b 

e 
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2 ea< - 
- 3  

86' 

11= J 

b 2  

$=';;T 48s 1>@2 
2R 3 

e=1 

C 2  -- 

The functlon h,=f /go can be wrltten as 

I -- 

when x >O. We need to And the value of 8 for whlch mln h,(a:) 1s maxlmal. 
0 < ~ 1 3 e  I 

By settlng the derlvatlve of log(h0) wlth respect to x equal to 0, and by analyz- 
lng the shape of he ,  we see that the mlnlmum of he  belongs to the followlng set 
of values: 0, 8, b , c , where 

The followlng table glves all the local mlnlma together with the values for 
~-~ 

Local minimum I Value of h ,  at minimum I Local minimum exists when: 

The general shape of he  1s as follows: when 02>1, there 1s no local mlnlmum on 
(O,e), and he decreases monotonlcally to reach a global mlnlmum at a: = c  equal 
to 4, after whlch I t  lncreases agaln. When d2=1, the same shape 1s observed, but 
a zero derlvatlve occurs at x=8, although thls does not correspond to a local 
mlnlmum. When -<02<1, there are two local mlnlma, one on (0,O) (at b ,  of 8 

9 
2 8 
3 9 

value $), and one on (e,38) (at c , of value 4). For -<e2<-,  the local mlnlmum 

at c ceases to exlst. We have agaln a functlon wlth one mlnlmum, thls tlme at 
6 <8, of value $. Flnally, for d 2 < - ,  the functlon lncreases monotonlcally, and 

Its global mlnlmum occurs at x = O  and has value 77. 

2 
3 
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Conslder now the behavlor of q and $J as a functlon of 8. Clearly, q 
Increases llnearly wlth 8. Furthermore, $ 1s gamma shaped wlth global peak at 
8=1, and q=$ for 02=-. The value of q!~ on the other hand decreases monotonl- 

cally on the set e2z-. We verlfy easlly that d and $J cross each other on the seg- 

2 
3 

8 
9 

8 ment - < d2< 1. It 1s at thls polnt that mln h e(X ) 1s maxlmal. Thls cross-over 
9 O < Z  <3e 

polnt 1s preclsely the value glven in the statement of the theorem. 

Theorem 1.2 can be used In the deslgn of a fast composltlon/reJectlon algo- 
rlthm. In partlcular, the tall beyond the optlmal 38 1s very small, havlng proba- 
blllty 0.004104648 ... . The resldual denslty on [-38,38] has probablllty 
0.033530022... , but has unfortunately .enough flve peaks, the largest of whlch 
occurs at the orlgln. It 1s clear once agaln that the maxlmlzatlon crlterlon does 
not take the complexlty of the resldual denslty lnto account. A suboptlmal value 
for 8 sometlmes leads to better resldual densltles. For example, when 8=1, we 
save one multlpllcatlon and end up wlth a more manageable resldual density. 
Thls cholce was flrst suggested by Marsaglla and Bray (1964). We conclude thls 
sectlon by glvlng thelr algorlthm In its entirety. 

From the proof of Theorem 1.2, we see that (In the notatlon of that proof), 

- 0.86385546. .. . 16 p(e)  = 4 = - - G 
The normal denslty f can be decomposed as follows: 

4 

f ( z ) =  C P i f i ( z ) ,  
i =1  

where (p l,p 2tp31p4) 1s a probablllty vector, and the f i ' s  are densltles deflned as 
follows: 

(1) 1s the denslty of vl+v,+V,, where the Vi's are lld 

(11) p4=0.002699796063 ...= J f : f 1s the tall-of-the-normal denslty res- 

p1=0.86385546 ... , f 
unlform [-1,1] random varlables. 

1 2  123 
trlcted to I x I 2 3 .  

1 3 
9 2 

(111) f 2 ( 5 )  = -(6-4 5 I ) ( I 2 I s-); p2=0.1108179673 ... . 
1 

P 3  
(1V) p3=l-p ,-P,-P2= 0.02262677245... ; f 3=-(f -P 1 f 1-P 2f  2-P4 f 4). 

In the deslgn, Marsaglla and Bray declded upon the trlangular form of f flrst, 
because random varlates wlth thls denslty can be generated slmgly as -( V,+ V,) 
where the Vi's are agaln lld unlform [-1,1] random varlates. After havlng plclced 
thls slmple f 2, I t  1s necessary to choose the best (largest) welght p z  , glven by 

3 
4 
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Thls lnflmum 1s found a s  follows. The derlvatlve of the ratlo 1s 0 at I z I =2 and 
at I z I =0.87386312884 ... . Only the latter I z I corresponds to a mlnlmum, 
and the correspondlng value for p 1s p 2=0.1108179673 ... . Havlng determlned 
random varlate generatlon methods for all parts except f 3, I t  remalns to estab- 
llsh Just thls for f 3. Flrst, note that f has supremum 0.3181471173... . If we 
use rejectlon from a rectangular denslty wlth support on [-3,3], then the expected 
number of lteratlons 1s 

6 X0.3181471173 ... 
P 3  

= 1.9088827038 ... 

Comblnlng all of thls lnto one algorlthm, we have: 
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Normal generator of Marsaglia and Bray (1964) 

[NOTE: This algorithm follows the implementation suggested by Kinderman and Ramage 
(1977).] 
Generate a uniform [O,l] random variate U .  
CASE 

05 u 50.8638: 
Generate two iid uniform [-1.11 random variates V, W. 
RETURN xt2.3153508 ... u-1+ v+ w 

0.8638< u 50.9745: 
Generate a uniform [0,1] random variate V. 

3 
2 

RETURN Xt-( v-1+9.0334237 ...( u-0.8638)) 

0.9973002 ... < u51: 
REPEAT 

Generate iid uniform [0,1] random variates v , W , 
9 
2 

x t --log( w ) 
UNTIL m25E 

2 
RETURN x + m  sign( U-O.9986501 ...) 

0.9745< u 50.9973002 ... : 
REPEAT 

Generate a uniform [-3,3] random variate X and a uniform [OJ] ran- 
dom variate u. 
V t l X l  
w +6.6313339...(3- v)2 
Sum e 0  
IF v<- 3 THEN Sum +6.0432809...(--v) 3 

2 2 
IF V <1 THEN Sum t Sum +13.2636678...(3-v2)-w 

V* -- 
UNTIL u 549.0024445 ... e 
RETURN x 

-Sum-W 
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1.4. Exercises. 

391 

1. 

2. 

3. 

4. 

5. 

0. 

In the trapezoldal method of Ahrens and Dleter (1972), the largest sym- 
metric trapezold under the normal denslty 1s used as the maln component In 
the mlxture. Show that thls trapezold 1s deflned by the vertlces 
( -&o) , (~ ,O) , (q ,p ) , ( -q ,p )  where t=2.1140280833 ... ,q= 0.2897295736... , 
p=0.3825445560.,. . (Note: the area under the trapezold 1s 0.9195444057... .) 
A random varlate wlth such a trapezoldal denslty can be generated as 
aV,+bV,  for some constants a ,b > O  where V, ,V ,  are lld unlform [-l,l] 
random varlates. Determlne a , b  In thls case. 
Show that as a too, 

X 2  a2 
1 -2 O3 -- 

J e  - - e  
U a 

The optlmal probablllty p In Theorem 1.1 depends upon n .  Use Stlrllng’s 
formula to determlne a constant c such that p >1--, valld for all n 2 3 .  

n 
If we want to generate a normal random varlate by reJectlon from the 
exponentlal density -ee’ I I , the smallest reJectlon constant 1s obtalned 

when x=1. The constant 1s &. Show thls. Note that the correspondlng 

reJectlon algorlthm 1s: 

C 

x 
2 

REPEAT 
Generate two iid exponential random variates, X , E .  

UNTLL 2E <(X-1)” 
RETURN SX where S is a random sign. 

Thls algorlthm 1s mentloned In Abramowltz and Stegun (1970), where von 
Neumann 1s credlted. Butcher (1961) attrlbutes I t  to Kahn. Others have 
redlscovered I t  later. 
Teichroew’s distribution. Telchroew (1957) has shown that the functlons 

m )  = are valld characterlstlc functlons for all values a > O  of the 
( l + t  

parameter. Show that random varlates from thls famlly can be generated as 
(1) G ,-G,, where the Gi ‘s are lld gamma ( a  ) random varlables; 
(11) N m  where N ,G are lndependent random varlables wlth a normal 

and gamma ( a  ) dlstrlbutlon respectlvely. 
Thls questlon 1s related to  the algorlthm of Klnderman and Ramage (1970) 
(programs glven In Klnderman and Ramage (1977)). Conslder the lsosceles 
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trlangular denslty g 6 of the random varlable 8( V V,) where V 1, V 2  are lld 
unlform [-l,l] random varlates. Show that the largest trlangle to A t  under 
the normal denslty f touches f at the orlgln. Show next that the sldes of 
the largest trlangle touch f somewhere else. Conclude that the optlmal 8 1s 
glven by 8=1.1080179 ... , and that the correspondlng optlmal welght of the 
trlangle Is p =0.88407040 ... . 
The lognormal density. When N 1s normally dlstrlbuted, then 8+ec+aN 
1s lognormal wlth parameters B,(,a, all real numbers. The lognormal dlstrlbu- 
tlon has a denslty wlth support on (8,m) glven by 

7. 

(log(2 -6)-cY 

Random varlate generatlon requires the exponentlatlon of a normal random 
varlate, and can be beaten speedwlse by the Judlclous use of a 
composltlon/reJectlon algorlthm, or a reJectlon algorlthm wlth a good 
squeeze step. Develop Just such an algorlthm. To help you flnd a solutlon, I t  
Is lnstructlve to draw several lognormal densltles. Conslder only the case 
8=0 slnce 8 ls2 a translatlon parameter. Show also that In that case, the 
mode 1s at e sa , the inedlan Is at e 5, and that the T -th moment is e s+r2g2/2 

when T >O. 

In the composltlon/reJectlon algorithm of Marsaglla and Bray (1964), we 
return the sum of three lndependent unlform [-1,1] random varlates about 
86% of the tlme. Schuster (1983) has shown that by conslderlng sums of the 
form a V,+a,V,+a,V,, where the Vi 's  are lid unlform [-1,1] random varl- 
ates, I t  1s posslble to flnd coemclents a 2 , a 3  such that we can return the 
sald sum about 97% of the tlme (note however that the multlpllcatlons 
could actually cause a slowdown). Flnd these coefflclents, and glve the 
e nt Ire algor1 t hm. 

8. 

2. THE EXPONENTIAL DENSITY. 

2.1. Overview. 
We hardly have to convlnce the reader of the cruclal role played by the 

exponentlal dlstrlbutlon In probablllty and statlstlcs and In random varlate gen- 
eratlon. We have dlscussed varlous generators In the early chapters of thls book. 
No method 1s shorter than the lnverslon method, whlch returns -log( U )  where U 
1s a unlform [0,1] random varlate. For most users, thls method Is satlsfactory for 
thelr needs. In a hlgh level language, the lnverslon method Is dlmcult to beat. A 
varlety of algorlthms should be consldered when the computer does not have a 
log operatlon In hardware and one wants to obtaln a faster method. These 
Include: 
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1. 

2 .  

3 .  

4. 

5 .  
6. Table methods. 
The methods llsted under points 4 and 5 wlll not be dlscussed agaln In thls 
chapter. Methods 2, 3 and 6 are all based upon the memoryless property of the 
exponentlal dlstrlbutlon, whlch states that glven that an exponentlal random 
varlable E exceeds s >0, E - s  Is agaln exponentlally dlstrlbuted. Thls 1s at the 
basis of Lemma N . 2 . 1 ,  repeated here for the sake of readablllty: 

The unlform spaclngs method (sectlon V.3.5). 

von Neumann’s method (sectlon N . 2 . 2 ) .  

Marsaglla’s exponentlal generator, or Its modlflcatlons (dlscussed below). 
The ratlo-of-unlforms method (sectlon N . 7 . 2 ) .  

The serles method (sectlon lV.5.3). 

Lemma IV.2.1. 

are lndependent random varlables and p>O 1s an arbltrary posltlve number: 
geornetrlcally dlstrlbuted wlth 

An exponentlal random varlable E 1s dlstrlbuted as (Z - l )p+Y where Z,Y 
1s 

i P  

( i  -1)P 
P ( Z = i )  = J e - Z  (js = & w P - e - i P  (i 21) ? 

and Y 1s a truncated exponentlal random varlable wlth denslty 

Slnce 2, Y are lndependent, exponentlal random varlate generatlon can 
truly be consldered as the problem of the generatlon of a dlscrete random varlate 
plus a contlnuous random varlate wlth compact support. And because the con- 
tlnuous random varlate has compact support, any fa s t  table method can be used . 

The unlform spaclngs method 1s based upon the fact that GS,, . . . , GS, 
are lld exponentlal random varlables when G 1s gamma (n), and SI, . , . , S, 
are spaclngs deflned by a unlform sample of slze n -1.  For n = 2  thls 1s sometlmes 
faster than stralghtforward lnverslon: 
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Generate iid uniform [0,1] random variates u , v , w . 
Y +-log( w ) 
RETURN WY,(l-W)Y 

Notlce that three unlform random varlates and one logarlthm are needed per cou- 
ple of exponentlal random varlates. The overhead for the case n =3 1s sometlmes 
a drawback. We summarlze nevertheless: 

Generate iid uniform [0,1] random variates u , , U , ,  u,, u,, u,. 

V+min( U,, U J ,  W + m a (  U,, U,) 
Y t - l O g (  U, USU,) 

RETURN VY,(W-V)Y,(l-W)Y 

2.2. Marsaglia’s exponential generator. 
Marsaglla (1961) proved the followlng theorem: 
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Theorem 2.1. (Marsaglia, 1961) 

Polsson random varlate wlth probablllty vector 
Let u1,u2, ... be lld unlform [0,1] random varlables. Let Z be a truncated 

where p>O 1s a constant. Let M be a geometrlc random vector wlth probablllty 
vector 

(i LO) . P ( M = i )  = (1-e+)e-p' 

Then X+p(M+mln(U,, . . . , Uz)) 1s exponentlally dlstrlbuted. Also, 
1 E ( M )  = - , 

E ( Z ) =  - .  

e p-1 

p e  
e p-1 

Proof of Theorem 2.1. 
We note that for p>a: >0, 

O0 1 pt 2 :  = --(1-(1--) ) 
i = 1  e p-1 2 !  IJ 

Thus, p mln(U,, . , . , Uz) has the exponentlal dlstrlbutlon truncated to [O,p ] .  
The flrst part of the theorem now follows dlrectly from Lemma W.2.1. For the 
second part, use the fact that M+1 1s geometrlcally dlstrlbuted, so that 

E(M+l)=- . Furthermore, 
1-e -1 

- -- p e p  .I 
e p-1 
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Mre can now suggest an algorlthm based upon Theorem 2.1: 

Marsaglia’s exponential generator 

Generate a geometric random variate M deflned by P(M=”=(i-e-’)e-’’ ( i  20). 
2 -1 
Generate iid uniform [OJ] random variates u , v , 
Y + V  
WHILE True Do 

i 
IF U < F ( Z )  (Note: F(i)=- T.) 

e ”1 j,l 

THEN RETURN x + p ( A d +  Y) 
ELSE 

2 +z +1 
Generate a uniform [ O , l ]  random variate v . 
Y+min(Y,V) . 

For the geometrlc random varlate, the lnverslon method based upon sequentlal 
search seems the obvlous cholce. Thls can be sped up by storlng the cumulatlve 
probabllltles, or by mlxlng sequentlal search wlth the allas method. Slmllarly, the 
cumulatlve dlstrlbutlon functlon F of can be partlally stored to speed up the 
second part of the algorlthm. The deslgn parameter p must be found by 
compromlse. Note that lf sequentlal search based lnverslon 1s used for the 

1 geometrlc random varlate kf, then - comparlsons are needed on the aver- 

age: thls decreaSes from 00 t o  1 as p varles from 0 to 00. Also, the expected 
number of accesses of F In the second part of the algorlthm 1s equal to 

1-e -fi 

E(Z)=- , and thls lncreases from 1 to  00 as p varles from 0 t o  00. Further- 
1-e + 

more, the algorlthm In Its entirety requlres on the average 2 + E ( Z )  unlform [0,1] 
random variates. The two effects have to be properly balanced. For most lmple- 
mentatlons, a value p In the range 0.40 ... 0.80 seems to be optlmal. Thls point 
was addressed In more detall by Slbuya (1861). Speclal advantages are offered by 
the cholces p=1 and p=log(2). 

The speclal case p=log(2) allows one to generate the deslred geoinetrlc ran- 
dom varlate by analyzlng the random blts In a unlform [O,l] random varlate, 
whlch can be done convenlently In assembly language by t h e  logical shift opera- 
tlon. Thls algorlthm was proposed by Ahrens and Dleter (1972), where the reader 
can also And an excellent survey of exponentlal random varlate generatlon. 
Agaln, a table of F ( i  ) values 1s needed. 

I 
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Exponential generator of Ahrens and Dieter (1972) 

i 
[NOTE: a table of values F ( i  )= 

M t o  
Generate a uniform [O,l] random variate u . 
WHILE u<$ DO U-2U , M t M f l o g ( 2 )  

(‘0g(2))i is required.] 
j - 1  j !  

(M is now correctly distributed. It is equal to the number of 0’s before the flrst 1 in 
the binary expansion of U. Note that U-2u is implementable by a shift opera- 
tion.) 

U t 2 u - 1  (u  is again uniform [0,1] and independent of M . )  
IF u <log(2) 

THEN RETURN x +-M + U 
ELSE 

2 4-2 
Generate a uniform [O,l] random variate v. 
Y t V  
WHILE True Do 

Generate a uniform [O,l] random variate v. 
Y +-min( Y, V )  
IF U < F ( Z )  

THEN RETURN x +-hf + Y log( 2) 

ELSE Z+Z+l 
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. I  

Ahrens and Dleter squeeze the flrst uniform [0,1] random varlate U dry. Because 
of thls, the algorlthm requires very few unlform random variates on the average: 
the expected number Is l+log(2), which is about 1.69315. 

2.3. The rectangle-wedge-tail method. 
One of the fastest table methods for the exponentlal dlstrlbutlon W a s  flrst 

Published by Maclaren, Marsaglia and Bray (1964). It is ideally sulted for Imple- 
mentatlon In machlne language, but even In a hlgh level language i t  Is faster than 
most other methods described in thls sectlon. The extra speed Is obtalned by 
Prlnciples related to the table method. Flrst, the tall of the denslty Is cut off at 
Some point n p where n 1s a deslgn integer and p>O Is a small deslgn constant. 
T h e  remainder of the graph of f Is then dlvided into n equal strlps of width p. 
And on Interval [ ( i - i )p , ipJ ,  we dlvide the graph lnto a rectangular Piece of 
height e - i p ,  and a wedge f ( ~ ) - e - ~ p .  Thus, the denslty ls decomposed lnto 

I 

I -  
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2n +1 

These 
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pleces of the followlng welghts: 

.one tall of welght e p; 
n rectangles wlth welghts 
n wedges of welghts e - i p (  e p-l-p) ,15 2 5 n . 

,1< - i 5 n ; 

numbers can be used to set up a table for dlscrete random varlate genera- 
tlon. The algorlthm then proceeds as follows: 

The rectangle-wedge-tail method 

[NOTE: we refer to the 2n +1 probabilities defined above.] 
x+o 
REPEAT 

Generate a random integer 2 with values in 1, . . . , 2n +1 having the given proba- 
bility vector. 
CASE 

Rectangle i chosen: RETURN x + X + ( i - l + u ) p  where u is a uniform [0,1] 
random variate. 

Wedge i chosen: RETURN X-x+(i-l)p+Y where Y is a random variate 
e fi-= -1 

having the wedge density g (z )=- , o I z  S p .  
e fi-1-p 

Tail is chosen: x -x + n p 

UNTIL False 

Note that when the tall 1s plcked, we do In fact reJect the cholce, but keep at the 
same tlme track of the number of reJectlons. Equivalently, we could have 
returned n p-log( U )  but thls would have been less elegant slnce we would In 
effect rely o n .  a logarlthm. The recurslve approach followed here seems cleaner. 
Random varlates from the wedge denslty can be obtalned In a number of ways. 
We could proceed by reJectlon from the trlangular denslty: note that 

and 

so that the followlng reJectlon algorlthm 1s valld: 
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Wedge generator 

399 

REPEAT 
Generate two iid uniform (0,1] random variates x, u . 
IF x > u THEN (x, u)+( u ,x) ((x, u) is now uniformly distributed under the tri- 
angle with unit sides.) 

UNTIL False 

The wedge generator requlres on the average 

- 1 p ( e p - - 1 )  

2 ep-1-p 

lteratlons. It 1s easy to see that thls tends to 1 as p10. The expected number of 
unlform random varlates needed 1s thus twlce thls number. But note that thls 
can be bounded as follows: 

Here we used an lnequallty based upon the truncated Taylor serles expanslon. In 
vlew of the squeeze step, the expected number of evaluatlons of the exponentlal 
functlon 1s of course much less than the expected number of lteratlons. Havlng 
establlshed thls, we can summarlze the performance of the algorithm by repeated 
use of Wald’s equatlon: 

. 

Theorem 2.2. 

shown above. 
Thls theorem 1s about the analysls of the rectangle-wedge-tall algorlthm 

1 
l - e - n p  

(1) The expected number of global lteratlons Is A = 

I (11) The expected number of unlform [0,1] random varlates needed (excludlng the 

I 



400 M.2.THE EXPONENTIAL DENSITY 

Proof of Theorem 2.2. 
Theorem 2.2 1s establlshed as follows: we have 1 unlform random varlate Der - -  

n e +-e -(n + 1 ) ~  
rectangle (the probablllty of thls 1s pee'" =p In the flrst ltera- 

i = 1  1-e -P 
e P-1 

e '1-1-1.1 
tlon). We have p per wedge (the probablllty of thls Is 

(ep-1-p) In the flrst Iteration). Thus, by estab- 
i-1 1-e -P 
llshlng the correctness of statement (I), and applylng Wald's equatlon, we observe 
that the expected number of unlform random varlates needed 1s 

n e -"-e 4 n  +I)P 
e -i p( e ~-1-p)= 

e-P-e-(n+l)P e p-1 e - ~ - e  -(n +I)P 

f P  ( e  P-l-P)) 
1-e -P eP-1-p 1-e+ 

A (11 

= A ( p e p  1 
e -P-e 4 n  +lk 

1-e -P 

The number of lntervals n does not affect the expected number of unlform 
random varlates needed In the algorlthm. Of course, the expected number of 
dlscrete random varlates needed depends very much on n , slnce I t  1s . It 

1-e --ff P 

1s clear that p should be made very small because as p l 0 ,  the expected number of 
unlform random varlates 1s I+-+o (1.1). But when p 1s small, we have t o  choose 

n large to keep the expected number of lteratlons down. For example, If we want 
the expected number of lteratlons to  be - , which 1s entlrely reasonable, then 

c1 
2 

1-e -4 

. When p=- 
4 we should choose n =- , the table slze 1s 2n +1=161. 
c1 20 

The algorlthm given here may dlffer sllghtly from the algorlthms found else- 
where. The ldea remalns baslcally the same: by plcklng certaln deslgn constants, 
we can practlcally guarantee that one exponentlal random varlate can be 
obtalned at the expense of one dlscrete random varlate and one unlform random 
varlate. The dlscrete random varlate In turn can be obtalned extremely qulckly 
by the allas method or the allas-urn method at the cost of one other unlform ran- 
dom varlate and elther one or two table look-ups. 
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2.4. Exercises. 
1. It 1s lmportant to have a fast generator for the truncated exponentlal denslty 

f ($)=e-’ /(l-e-p), O<sc <p .  From Theorem 2.1, we recall that a random 
varlate wlth thls denslty can be generated as p mln(U,, . : . , Uz) where the 
Vi’s are lld unlform [0,1] random varlates and z 1s a truncated Polsson varl- 
ate wlth probablllty vector 

The purpose of thls exerclse 1s to explore alternatlve methods. In particular, 
compare wlth a strlp table method based upon n equl-slzed lntervals and 
wlth a grld table method based upon n equl-slzed lntervals. Compare also 
wlth reJectlon from a trapezoldal domlnatlng functlon, comblned wlth clever 
squeeze steps. 

The Laplace density. The Laplace denslty 1s f ( x ) = - e - I  ’ I .  Show that 

a random varlate X wlth thls denslty can be generated as sa or as E, -E2  
where E ,E,,E, are lld exponentlal random varlates, and s 1s a random 
slgn. 
Flnd the denslty of the sum of two lld Laplace random varlables, and verlfy 

1 
2 

2. 

3. 
Its bell shape. Prove that such a random varlate can be generated as 

r r  rr  

) where the Ui’s are lld unlform [0,1] random varlates. Develop a u 1 u 2  
log( - 

U3U4 
reJectlon algorlthm for normal random varlates wlth qulck acceptance and 
rejectlon steps based upon the lnequalltles: 

Prove these lnequalltles by uslng Taylor’s serles expanslon truncated at the 
thlrd term. 

3. THE GAMMA DENSITY. 

3.1. The gamma family. 
A random varlable X 1s gamma ( a  ,b ) dlstrlbuted when I t  has denslty 
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Here a >O 1s the shape parameter and 6 > O  1s the scale parameter. We say that 
X is gamma ( a  ) dlstrlbuted when I t  1s gamma ( a  ,1). Before revlewlng random 
varlate generatlon technlques for th!s famlly, we wlll look at some key propertles 
that are relevant to us and that could ald In the deslgn of an algorlthm. 

The density 1s unlniodal wlth mode at ( a  -1)b when a 2 1. When a < 1, I t  is 
monotone wlth an lnAnlte peak at 0. The moments are easlly computed. For 
example, we have 

co 

= ab ; 
E(X) = J x j  ( z )  dx = r ( a  +1)6 

0 r ( a  ) b  a 
00 

= u ( a  +1)b2 . r( a +2)b  a +2 E ( X 2 )  = J x 2 J  ( a : )  dx = 
0 r ( a  ) b  a 

Thus, Var (X) = ab '. 
The gamma famlly 1s closed under many operatlons. For example, when x' 1s 

gamma ( a  ,b ), then cX 1s gamma ( a  ,bc ) when c >O. Also, summlng gamma ran- 
dom varlables yields another gamma random varlable. Thls 1s perhaps best seen 
by conslderlng the characterlstlc functlon d ( t )  of a gamma ( a  , b )  random varl- 
able: 

-2 (--it 1 ) 
b 

dx e co 
d ( t >  = E ( e i t x )  = J 

0 r ( a ) b a  

I - - 
(I-it6 )" 

Thus, If X,, . . . , Xn are lndependent gamma ( a , ) ,  . . . , gamma (a,) random 

varlables, then X = 
n 

i=i 
Xi has charactertstlc functlon 

1 - - 1 n w 1 = J-J 
j=1 ( 1 4  6'3 ' 

( 1 4  )' -1 

n 

j=1  

and 1s therefore gamma ( a j , l )  dlstrlbuted. The famlly 1s also closed under 

more cornpllcated transformatlons. To lllustrate thls, we conslder Kullback's 
result (Kullback, 1934) wblch states that when x, ,Xz are lndependent gamma 
( a  ) and gamma ( a  +-) random varlables, then 2,/= 1s gamma (2a  ). 

The gamma dlstrlbutloii Is related In lnnumerable ways to other well-known 
dlstrlbutlons. The exponentlal density 1s a gamma denslty wlth parameters (1,l). 

And when X 1s normally dlstrlbuted, then X 2  1s gamma (-,2) dlstrlbuted. Thls 

1 
2 

1 
2 
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ax, a x 1  
dy dz 

a x 2  a x 2  
dy dz 

-- 

-- 

1s called the chi-square dlstrlbutlon wlth one degree of freedom. In general, a 
gamma (-,2) random varlable 1s called a chl-square random varlable wlth T 

degrees of freedom. We wlll not use the chl-square termlnology In thls sectlon. 
Perhaps the most lmportant property of the gamma denslty 1s Its relatlonshlp 
wlth the beta denslty. Thls 1s summarlzed In the followlng theorem: 

T 

2 

- /I - 
-z 1-y 

Theorem 3.1. 
If X X 2  are lndependent gamma ( a 1 )  and gamma ( a 2 )  random varlables, 

and X1+X2 are lndependent beta ( a  , ,a2)  and gamma ( a  l+a2)  then 

random varlables. Furthermore, If Y 1s gamma ( a  ) and Z 1s beta ( b  ,a -b  ) for 
some b > a  >0, then YZ and Y(1-2) are lndependent gamma ( b  ) and gamma 
( a  -b ) random varlables. 

31 
x,+x, 

Proof of Theorem 3.1. 
We wlll only prove the flrst part of the theorem, and leave the second part 

to the reader (see exerclses). Consider flrst the transformatlon y =s J(z ,+s .J, 
z =x , + x 2 ,  whlch has an lnverse x ,=yz ,s2=(l-y )z . The Jacoblan of the 
transformatlon 1s 

= I z I  . 

whlch was to be shown. 1 

The observatlon that for large values of a ,  the gamma denslty 1s close to the 
normal denslty could ald In the cholce of a domlnatlng curve for the reJectlon 
method. Thls fact follows of course from the observatlon that sums of gamma 
random varlables are agaln gamma random varlables, and from the central llmlt 
theorem. However, sliice the central llmlt theorem 1s concerned wlth the conver- 
gence of dlstrlbutlon functlons, and slnce we are Interested In a local central llmlt 
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theorem, convergence of a deiislty to a denslty, I t  1s perhaps lnstructlve to glve a 
dlrect proof of thls result. We have: 

If X', 1s gamma ( a  ) dlstrlbuted and If f a  1s the denslty of the normallzed 
gamma random variable (xu -a )/& , then 

Proof of Theorem 3.2. 
The denslty of (Xu -a )/6 evaluated at 5 1s 

\- I V2n(a  
e 

( U - l ) X  (U--1)2* 
1 1  1 a-1 x 6 +  *T-za +o(+ 

(I+-) e N -- 
& e  a -1 

Here we used Stlrllng's approxlmatlon, and the Taylor serles expansion for 
log(i+u ) when o<u < I .  

3.2. Gamma variate generators. 
Features we could appreclate In good gamma generators lnclude 

(1) Unlform speed: the expected tline 1s unlforinly bounded over all values of a ,  
the shape parameter. 

(11) SlmPllCltY: short easy programs are more lllcely to  become wldely used. 
(111) Small or nonexlstent set-up tlmes: deslgn parameters whlch depend upon a 

need to be recalculated every tlme a changes. These recalculatlons take 
often more tlme than the generator. 

No famlly has recelved more attentlon In the llterature than the gamma famlly. 
Many experlinental comparlsons are avallable In the general Ilterature: see e.g. 
Atklnson and Pearce (1070), Vaduva (1977), or Tadllcamalla and Johnson 
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(1980,1981). 

For speclal cases, there are some good recipes: for example, when a =1, we 
return an exponential random varlate. When a Is a small Integer, we can return 
elther 

5 Ei 
i =I  

where the Ei ’s are lld exponential random variates, or 
a 

-log( vi 1 
t =1 

1 where the vi’s are lld unlform [0,1] random variates. When a equals -+k  for 
2 

some small integer k , I t  is possible to return 
k 

i=1 

1 -N2+ Ei 
2 

where N 1s a normal random variate independent of the E; ’s. In older texts one 
wlll often And the recommendation that a gamma ( a  ) random variate should be 
generated as the sum of a gamma ( l a ]  ) and a gamma ( a  - La J ) random varlate. 
The former random varlate Is to be obtalned as a sum of independent exponential 
random variates. The parameter of the second gamma variate Is less than 1. All 
these strategies take time llnearly increasing wlth a ;  none lead to good gamma 
generators In general. 

There are several successful approaches In the design of good gamma genera- 
tors: flrst and foremost are the reJectlon algorithms. The rejection algorithms can 
be classifled accordlng to the family of domlnatlng curves used. The dlfferences In 
tlmlngs are usually minor: they often depend upon the efflclency of some quick 
acceptance step, and upon the way the rejection constant varles with a as a too. 
Because of Theorem 3.2, we see that for the rejection constant to converge to 1 
as a too I t  Is necessary for the domlnatlng curve to approach the normal denslty. 
Thus, some reJectlon algorithms are suboptimal from the start. Curiously, this 1s 
sometlmes not a big drawback provided that the rejection constant remains rea- 
sonably close to  l. To dlscuss algorlthms, we wlll inherlt the names avallable In 
the llterature for otherwise our cllscusslon would be too verbose. Some successful 
reJectlon algorithms Include: 
GB. (Cheng, 1977): rejectlon from the Burr X I  dlstrlbutlon. To be discussed 

GO. (Ahrens and Dleter, 1974): reJectlon from a comblnatlon of normal and 

GC. (Ahrens and Dleter, 1074): reJectlon froin the Cauchy denslty. 
S G .  (Best, 1978): rejectlon from the t dlstrlbution with 2 degrees of freedom. 
TAD2. 

below. 

exponential densities. 

(Tadllcamalla, 1078): reJectlon froin the Laplace denslty. 
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Of these approaches, algorlthm GO has the best asymptotic value for the reJec- 
tlon constant. Thls by ltself does not make it the fastest and certalnly not the 
shortest algorlthm. The real reason why there are so many reJectlon algorlthms 
around 1s that the normallzed gamma denslty cannot be fltted under the normal 
denslty because Its tall decreases much slower than the tall of the normal denslty. 
We can of course apply the almost exact lnverslon prlnclple and And a nonlinear 
transformatlon whlch would transform the gamma denslty lnto a denslty whlch is 
very nearly normal, and whlch among other thlngs would enable us to tuck the 
new denslty under a normal curve. Such normallzlng transformatlons lnclude a 
quadratic transformatlon (Flsher's transformatlon) and a cublc transformatlon 
(the Wilson-Hllferty transformatlon): the resultlng algorlthms are extremely fast 
because of the good At .  A prototype algorlthm of thls klnd was developed and 
analyzed In detail In section IV.3.4, Marsagiia's algorlthm RGAMA (Marsaglla 
(1977), Greenwood (1974)). In sectlon IV.7.2, we presented some gamma genera- 
tors based upon the ratlo-of-unlforms method, whlch lmprove sllghtly over slml- 
lar algorlthms published by Klnderman and Monahan (1977, 1978, 1979) (algo- 
rlthm GRUB) and Cheng and Feast (1979, 1979) (algorlthm GBH). Desplte the 
fact that no ratlo-of-uniforms algorithm can have an asyinptotlcally optlmal 
reJectlon constant, they are typlcally comparable to the best reJectlon algorlthms 
because of the slmpllclty of the domlnatlng denslty. Most useful algorlthms fall 
into one of the categorles descrlbed above. The unlversal method for log-concave 
densltles (sectlon VII.2.3) (Devroye, 1984) is of course not competltlve wlth spe- 
clally deslgned algorlthms. 

There are no algorlthms of the types described above whlch are unlformly 
fast for all a because the deslgn 1s usually geared towards good performance for 
large values of a ,  Thus, for most algorlthms, we have unlform speed on some 
interval [a* ,m) where a* Is typlcally near 1. For small values of a , the algo- 
rithms are often not valld - this 1s due to  the fact that  the gamma denslty has an 
lnflnlte peak at 0 when ct <1, wlille domlnatlng curves are often taken from a 
famlly of bounded denslties. We wlll devote a speclal sectlon to the problem of 
gamma generators for values a <1. 

Sometlmes, there 1s a need for a very fast algorlthm whlch would be applled 
for a Axed value of a .  What one should do In such case 1s cut off the tall, and use 
a strlp-based table method (sectlon V111.2) on the body. Slnce these table 
methods can be automated, I t  1s not worth spendlng extra tlme on thls Issue. It Is 
nevertheless worth notlng that some automated table methods have table slzes 
that In the case of the gamma denslty lncrease unboundedly as ct+m If the 
expected tlme per random varlate 1s to remaln bounded, unless one applles a spe- 
clally deslgned technlque slmllar to  what was done for the exponentlal denslty In 
the rectangle-wedge-tall method. In an lnterestlng paper, Schmelser and La1 
(1980) have developed a seml-table method: the graph of the denslty 1s partl- 
tloned lnto about 10 pleces, all rectangular, trlangular or exponentlal In shape, 
and the set-up tlme, about flve tlmes the time needed to generate one random 
varlate, 1s reasonable. Moreover, the table slze (number of pleces) remalns Axed 
for all values of a .  When speed per random varlate 1s at a premlum, one should 
certalnly use some sort of table method. When speed is Important, and a varles 
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I 2 \ - 
1 6 G ( x ) =  - 1+ 
2 

\ I 

Theorem 3.3. 
A. 

B. 

C. 

A random varlate wltli thls dlstrlbutlon can be generated as 

A( U-L) 
d q i T j  

2 

where U 1s a unlforin [0,1] random varlate. 
Let f be the amma ( a )  denslty, and let g, be the denslty of 

( a  -l)+ Y d e  where Y has denslty g . Then 

1 
3 '  f ( 2  1 5 c ,  sa. (z)  = 

2 -  
2 

where the reJectlon constant 1s glven by 

3 3a -- 
4 a-1  ,-I 

e (--> - c ,  = 
r ( a  > 

I I 

We have sup c, 5 e and Ilm c, = 
a 21 a too 

Proof of Theorem 3.3. 
The clalm about the dlstrlbutlon functlon G 1s qulclcly verlfied. When U 1s 

unlformly dlstrlbuted on [0,1], then the solutlon X of G (X)= U 1s preclsely 
1 A( U -,> 
z Thls proves part A. diT(iTj' X= 

Let Y have denslty g . Then ( a  -l)+ Y dT-: has denslty 

3 
2 -- 1 x - (a  - 1 )  2 

2 8  
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wlth each call, the almost-exact-lnverslon method seems to be the wlnner In most 
experlmental comparlsons, and certalnly when fast  exponentlal and normal ran- 
dom varlate generators are avallable. The best ratlo-of-unlforms methods and the 
best reJectlon methods (XG,GO,GB) are next In llne, well ahead of all table 
met hods. 

Flnally, we wlll dlscuss random varlate generatlon for closely related dlstrl- 
butlons such as the Welbull dlstrlbutlon and the exponentlal power dlstrlbutlon. 

3.3. Uniformly fast rejection algorithms for a 21. 

1s based upon reJectlon from the t denslty wlth 2 degrees of freedom: 
We begln wlth one of the shortest algorlthms for the gamma denslty, whlch 

3 

Thls denslty decreases as x - ~ ,  and 1s symmetrlc bout 0. Thus, I t  can be used as a 
domlnatlng curve of a properly rescaled and translated gamma denslty. Best’s 
algorlthm XG (Best, 1978) 1s based upon the followlng facts: 
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To prove statement B, we need only show that For x >0, 

1 a-1 a-1 
a -1 e+’ < e-) 

3 ’  - 
f? 
I 

2 -  2 x - (a  -1) [l+qd-] 1 
or, after resubstltutlon y =x - (a  -1), that For y ?-(a -1), 

3 a -1 

e-y  [ I+- < - [ 1+ y2; 
3 a  -- 

Taklng logarlthms, we see that we must show that 

h (y ) = -y + ( a  -l)log(l+-)+~1og 1+ Y 2  
a -1 I 3 a - 3  

I 4 

Clearly, h (O)=O. It sufflces to show that h’(y ) L O  For y 50 and that h’(y )<0 For 
y >O. - But 

a -1 3 2Y 1 h’(y ) = -1+ +- 
(a-l)(1+-) Y 2 3 a - -  3 1+ Y 2  

4 
3 a  -- 

4 
a- 1 

= -  y +  Y 
a-l+y 1 Y 2  a --+- 

4 3  

3 Y 2 )  Y (Y ---3 
4 

1 Y 2  ( a  -l+y >(a  --+-) 
4 3  

1 
4 

The denominator 1s 20 For a 2-. The numerator 1s 20 For y SO, and 1s 50 For 

Y 3  y 20 (this can be seen by rewrltlng I t  a s  --(Y--)~. Thls concludes the proof OF 
3 2 

part B. 
For part C, we apply Stlrllng’s approxlmatlon, and observe that 
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The flrst - 1s also an upper bound, so tha t  

when a 21. Thls proves part C .  

Based upon Theorem 3.3, we can now state Best's reJectlon algorlthm: 

Best's rejection algorithm XG for gamma random variates (Best, 1978) 

[SET-UP] 
3 b +a - 1 , ~  4-3~ -- 
4 

[GENERATOR] 
REPEAT 

Generate iid uniform [OJ] random variates U , V .  

W + U ( i - U ) , Y  +A( U-+),X+b +Y 

IFXZO 
THEN 

t 6 4  w3 v2 
2 Ya 
X Accept +[Z 5 I--] 

IF NOT Accept 
THEN Accept -[log(Z ) 5 2 (  b log( 5)- X Y ) ]  

UNTIL Accept 
RETURN X 

The randoin varlate X generated at the outset of the REPEAT loop has denslty 
ga . The acceptance condltlon 1s 

3 -- y a - 1  
e-Y(i+-) 

a -1 

Thls can be rewrltten In a number of ways: for example, In the notatlon of the 
algorlt hm, 
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Thls explalns the acceptance condltlon used ln the algorlthm. The squeeze step 1s 
derlved from the acceptance condltlon, by notlng that 
(1) log(2) 5 2-1; 

Y Y 2Y2 
X 

(11) 2(6 iog(i+T)-Y) 2 2Y(--) = --. 
The last lnequallty 1s obtalned by notlng that the left hand slde as a functlon of 

Therefore, by the Taylor serles Y 1s 0 at Y=O, and has derlvatlve -- 

expanslon truncated at the flrst term, we see that for YZO,  the left hand slde 1s 

Y 
6 +Y'  

V 
1 at least equal to 2(0+Y(-- )). For Y<O, the same bound 1s valid. Thus, 

b c Y  
when 2-15-2Y2/X,  we are able to conclude that the acceptance condltlon 1s 
satlsfled. It should be noted that In vlew of the rather large reJectlon constant, 
the squeeze step 1s probably not very effectlve, and could be omltted wlthout a 
blg tlrne penalty. 

We wlll now move on to Cheng's algorlthm GB whlch 1s based upon tejec- 
tlon from the Burr XI1 denslty 

1-1 

g(x> = x P  
(P+xx>2 

for parameters p , x > O  to be determlned as a functlon of a .  Random varlates 
wlth thls denslty can be obtalned as 

1 

where u 1s uniformly dlstrlbuted on [0,1]. Thls follows from the fact that the dls- 
trlbutlon functlon correspondlng to g 1s xx/(p+xx),x 20. We have to choose 
and p .  Unfortunately, mlnlmlzatlon of the area under the dominatlng curve does 
not glve expllcltly solvable equatlons. It 1s useful to match the curves of f and 
g , whlch are both unlmodsl. Slnce f peaks at a -1, I t  makes sense to match 
thls peak. The peak of g occurs at 

1 
(X-l)p T 

x = (  1 .  x+1 
If we choose X large, 1.e. lncreaslng wlth a ,  then thls peak wlll approxlmately 
match the other peak when p=aX.  Conslder now log(-). The derlvatlve of thls 

functlon 1s 

f 
9 

a -x-x , 2xxx-1 
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Thls derlvatlve attalns the value 0 when ( a  +A-s )zx+(a -A-s )a  '=O. By analyz- 
lng the derlvatlve, we can see that I t  has a unlque solutlon at z -  -0 when 
A==. Thus, we have 

f (Z 1 L cg (. 1 
where 

(2a '1' a a -1 e -a 
c =  

r ( a  > X U  

Resubstltutlon of the value of A ylelds the asymptotic value of 

fact, we have 

4 6  

unlformly over a 21. Thus, the reJectlon algorlthm suggested by Cheng has a 
good reJectlon constant. In the deslgn, we notlce that If X 1s a random varlate 
wlth denslty g ,  and U 1s a uniform (0,1] random varlate, then the acceptance 
condltlon 1s 

Equlvalently, sliice v = X X / ( a  '+X') 1s unlformly dlstrlbuted on [0,1], the accep- 
tance condltlon can be rewrltten as 

4 (21a  ~ X V ~ U  5 X X + ~  e-x , 
e 

or 

lOg(4)+(X+a )log(a )-a +log( U V 2 )  5 ( X + U  )log(S)-X , 

or 

log( uv2) 5 a -log(4)+(X+a )log(-)-X X . 
U 

A qulck acceptance step can be lntroduced whlch uses the lnequallty 

log( U V 2 )  5 d ( ul<2)-log(d )-1 

whlch 1s valid for all d . The value d =- 9 was suggested by Cheng. Comblnlng all 
2 

of thls, we obtaln: 
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Cheng’s rejection algorithm GB for gamma random variates (Cheng, 1977) 

[SET-UP] 
b +a-log(4) , e +a +fi 
[GENERATOR] 
REPEAT 

Generate iid uniform [OJ] random variates U ,  V .  
V Y t a  log(-) , X t a e  

1- v 
2 tuv2 
R t b  +cY-X 

9 9 9 Accept +-[R 2 -Z-(l+log(-))] (note that (l+log(-))=2.5040774 ...) 
2 2 2 

IF NOT Accept THEN Accept +[R >log(z)] 

UNTIL Accept 
RETURN x 

We wlll close thls sectlon wlth a word about the hlstorlcally lmportant algo- 
rlthm GO of Ahrens and Dleter (1974), which was the flrst unlformly fast  gamma 
generator. I t  also has a very good asyrnptotlc rejectlon constant, sllghtly larger 
than 1. The authors got around the problem of the tall of the gamma denslty by 
notlng that most of the gamma denslty can be tucked under a normal curve, and 
that the rlght tall can be tucked under an exponentlal curve. The breakpolnt 
must of course be to the rlght of the peak a-1. Ahrens and Dleter suggest the 

value ( a  -I)+ d q .  We recall that If X 1s gamma ( a )  dlstrlbuted, 

(X-a)  tends In dlstrlbutlon to a normal denslty. Thus, wlth the break- then 

polnt of Ahrens and Dleter, we cannot hope to construct a domlnatlng curve wlth 
Integral tendlng t o  1 as a Too (for thls, the breakpolnt must be at a -1 plus a 
term lncreaslng faster than 6 ). It Is true however that we are In practlce very 
close. The almost-exact lnverslon method for normal random varlates ylelds 
asymptotlcally optlinal rejectlon constants wlthout great dlmculty. For thls rea- 
son, we wlll delegate the treatment of algorlthm GO to the exerclses. 

6 
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3.4. The Weibull density. 

when I t  has denslty 
A random varlable has the standard Weibull density wlth parameter a >o 

1 (x) = a x a - l e - z o  (3 20) . 
1 - 

In thls, we recognlze the denslty of E a where E 1s an exponentlal random varl- 
able. Thls fact can also be deduced from the form of Its dlstrlbutlon functlon, 

F ( X I  = l - e - ’ @  (5 20) * 
Because of thls, I t  seems hardly worthwhlle to deslgn rejection algorlthms for thls 
denslty. But, turnlng the tables around for the moment, the Welbull denslty 1s 
very useful as an auxlllaiy denslty in generators for other densltles. 

Example 3.1. Gumbel’s extreme value distribution. 
When X 1s Welbull ( a  ), then Y=-a log(x)  has the extreme value denslty 

1 (5) = e-’ fp-* ( x E R ) .  
1 - 

By the fact that x 1s dlstrlbuted as E ’, we see of course that the parameter a 
1 
u plays no speclal role: thus, -log(E) and -log(log(-)) are both extreme value ran- 

dom varlables when E 1s exponentlally dlstrlbuted, and E 1s exponentlally dlstrl- 
buted. 

Example 3.2. A compound Weibull distribution. 
1 - 

Dubey (1968) has polnted out that the ratlo WU /Gb has the Pareto-llke 
denslty 

Here W, 1s a Welbull ( a  ) random varlable, and Gb 1s a gamma ( b  ) random varl- 
able. As a speclal case, we note that the ratlo of two independent exponentlal 

on [ o , ~ ) .  1 random varlables has denslty 
(1+x l2 
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Example 3.3. Gamma variates by rejection from the Weibull density. 
Conslder the gamma ( a  ) denslty f wlth parameter O c a  51. For thls den- 

slty, random varlates can be generated by reJectlon from the Welbull ( a  ) denslty 
(whlch wlll be called g ). Thls 1s based upon the lnequallty 

e x 4 - x  e b - b 4  < 
1 - 

-- - f (x) 
g ( z )  a r w  - r(a+i) 

where 

A reJectlon algorlthm based upon thls lnequallty has rejectlon constant 

r(i+a) . 

The rejectlon constant has the followlng propertles: 
1. 

2. 

It tends to 1 as a 40, or a tl. 

It 1s not greater than for any value of a E(O,l]. Thls can be seen by 

notlng that (1-a )6 51-a 51 and that r(l+a )20.8856031944 ... (the gamma 
functlon at l+a 1s absolutely bounded from below by Its value at 
l+a =1.4616321449 ...; see e.g. Abramowltz and Stegun (1970, pp. 259)). 

e 
0.88560 

Thls leads to a modlfled verslon of an algorlthm of Vaduva's (1977): 

Gamma generator for parameter smaller than 1 

[SET-UP] 
a - 

c +- , d t u  '-a(I-a ) 
U 

[GENERATOR] 
REPEAT 

Generate iid exponential random variates Z ,E .  Set X + Z C  (X is Weibull ( a  )). 

UNTIL Z + E s d + X  
RETURNX 

1 

I 
I _. 
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- 
Theorem 3.5. (Berman, 1971) 

Let a , b  > O  be glven constants, and let U , V  be lld unlform (0,1] random - 1 -  1 

varlables. Then, condltloned on u + v 5 1, the random varlable 
1 - 

3.5. Johnk’s theorem and its implications. 
Random varlate geiieratloii for the case a <1 can be based upon a speclal 

property of the beta and gamma dlstrlbutlons. Thls property Is usually attrlbuted 
to Johnk (1964), and bas later been redlscovered by others (Newman and Odell, 
1971; Whlttaker, 1974). We have: 

Theorem 3.4. (Johnk, 1964) 
Let a ,b > O  be glven constants, and let U ,V be lld unlform [O,l] random 

1 - 1 - 
varlables. Then, condltloned on u + v 5 1, the random varlable 

1 - 
U a  

1 -  1 

UQ+V 
1s beta ( a  ,b ) dlstrlbuted. 

U U  I 
1s beta ( a  , b  +1) dlstrlbuted. I 
Proof of Theorems 3.4 and 3.5. 

I - 
Note that  X = u  has dlstrlbutlon functlon x u  on [O,l]. The denslty 1s 

1 - 
ax ‘-’. Thus, the Jolnt denslty of x and Y = v Is 

(o_<x,y 51) . U - 1  b - 1  f (X,Y) =bx Y 
X 

Consider the transformatlon z =x + y  ,t =- wlth Inverse x =tz ,y =(1-t ) z .  
X +Y 

Thls transforinatlon has 

ax ax 
at a z  

ay ay 
at a x  

- -  
- - - -  

Jacoblan 
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X The Jolnt denslty of (z ,T )=(x + Y ,- 
X + Y )  Is 

I z I f ( tz , ( l - t )z )  = z ~ b ( t z ) ~ - ' ( ( l - t ) z ) ~ - ~  (05 tz ,(l-t )z <1) - 
= abt -l(i-t ) b  -lz (05 tz ,(I-t )Z 5 1) . 

The reglon In the ( z , t )  plane on whlch thls denslty 1s nonzero 1s 
1 1  
t 1-t 

A = { ( z  , t  ) : t  >O,O<z <mln(-,-)}. Let A,  be the collectlon of values z for 
1 1  
t 1-t 

whlch O<z cmln(-,-). Then, wrltlng 9 ( z  , t )  for the Jolnt denslty of (2 , T )  
at ( z  , t  ), we see that the denslty of T condltlonal on 51 1s glven by 

J s ( z 9 t ) d z  
I l , Z  €4 

J g ( z , t ) d z  dt 
A 

= 1 -- ab t U - l ( l - t ) b - l  
c a + b  

where c =Jg ( x  ,t )dz dt 1s a normallzatlon constant. Clearly, 
A 

This concludes the proof of Theorem 3.4. 
For Berman's theorem, conslder the transformatlon x =x ,z =x +y wlth 

lnverse x =x ,y =z -x . The Jolnt denslty of ( X . 2 )  Is 
f (x ,z -x )=abx ' - l ( z  -x ) b  -'IB (x ,z ) where B 1s the set of ( z  ,x ) satlsfylng 
O<x <l,O<x < z  <x+1.  Thls 1s a parallellepld In the ( z  , x )  plane. The denslty 
of X condltlonal on 2 <1 Is equal to  a constant tlmes 

J U ~ X ~ - ' ( ~ - X ) ' - '  dz = axa-l(l-x)b . 
2 < z  <1 

Thls concludes the proof of Theorem 3.5. 

These theorems provlde us wlth reclpes for generatlng gamma and beta varl- 
ates. For gamma random varlates , we observe that YZ Is gamma ( a  ) dlstrlbuted 
when Y 1s beta ( a  ,1-a ) and Z 1s gamma (1) (1.e. exponentlal), or when Y 1s 
beta ( a  ,2-a ) and Z Is gamma (2). Summarlzlng all of thls, we have: 
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Johnk's beta generator 

REPEAT 
Generate iid uniform [OJ] random variates U t  V 

1 1 - x t u " ,  Y- v 
UNTIL X + Y  <i 

X + Y  
RETURN - (x is beta ( a  , b ) distributed) 

Berman's beta generator 

REPEAT 
Generate iid uniform [0,1) random variates U t  V. 

1 1 

X+-U~,Y+-VT 
UNTIL X + Y < 1  
RETURN X (X is beta ( a  , b  +1) distributed) 

Johnk's gamma generator 

REPEAT 
Generate iid uniform [OJ] random variates U t  V. 

1 1 - x t  U T ,  y t  v 1-a 

UNTIL x + Y < 1  
Generate an exponential random variate E .  

RETURN - Ex (X is gamma ( a  ) distributed) 
X + Y  
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Berman's gamma generator 

419 

REPEAT 
Generate iid uniform [OJ] random variates U t  V. 

1 - 1 

x + u", y c v 1-a 

UNTIL x + Y s 1  

Generate a gamma (2) random variate Z (either as the sum of two iid exponential random 
variates or as -log( u*v* ) where u* , v* are iid uniform [0,1] random variates). 
RETURN zx (x is gamma ( a  ) distributed) 

Both beta generators requlre on the average 
1 +b +I) - 

P ( X + Y  si) r ( a  +i)r(6 +I) 

lteratlons, and thls lncreases rapldly wlth a and 6 .  It 1s however unlformly 
bounded over all a ,b wlth O<a ,6 51. The two gamma generators should only 
be used for a 5 1 .  The expected number of lteratlons 1s In both cases 

1 
r ( i + a  )r(2-~ ) ' 

I t  1s known that r ( a ) I ' ( l - a >  = n/sln(ra).  Thus, the expected number of ltera- 
tlons 1s 

slnna 

whlch 1s a symmet.rlc functlon of a 

polnts ( a  10, a =1), and peaklng at 
4 does not exceed - for any a E(O,l]. 
n 

1 
2 

around - taklng the value 1 near both end- 
I the polnt a =-: thus, the reJectlon constant 
2 

3.6. Gamma variate generators when a 51. 
We can now suminarlze the avalalble algorlthms for gamma ( a )  random 

varlate generatlon when the parameter 1s less than one. The fact that  there 1s an 
lnflnlte peak ellmlnates other tlme-honored approaches (such as the ratlo-of- 
unlforms method) from contentlon. We have: 
1. ReJectlon from the Welbull denslty (Vaduva, 1977): see sectlon IX.3.7. 
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2. The Johnlc and Berinan algorlthnis (Johnk, 1971; Berman, 1971): see sectlon 
IX.3.8. 

The generator based upon Stuart’s theorem ( see sectlon rV.6.4): G,+,U a is 
gamma ( a  ) dlstrlbuted when G, +]. 1s gamma ( a  f l )  dlstrlbuted, and U 1s 
unlformly dlstrlbuted on [0,1]. For G,+l  use an efflclent gamma generator 
wlth parameter greater than unlty. 
The Forsythe-von Neumann method (see sectlon W.2.4). 

The composltlon/reJectlon method, wlth reJectlon from an exponentlal den- 
slty on [l,m), and from a polynomlal denslty on [0,1]. See sectlons N . 2 . 5  
and 11.3.3 for varlous pleces of the algorlthm malnly due to  Vaduva (1977). 
See also algorlthm GS of Ahrens and Dleter (1974) and Its modlflcatlon by 
Best (1983) developed In the exerclse sectlon. 

6. The transformatlon of an EPD varlate obtalned by the reJectlon method of 
sectlon VII.2.6. 

All of these algorlthms are unlformly fast  over the parameter range. Compara- 
tlve tlmlngs vary froin experlineiit to experlment. Tadlkamalla and Johnson 
(1981) report good results wlth algorlthm GS but fall to  lnclude some of the other 
algorlthms in their comparlson. The algorlthms of Johnk and Berman are prob- 
ably better sulted for beta random varlate generatlon because two expensive 
powers of unlform random varlates are needed In every lteratlon. The Forsythe- 
von Neumann method seems also less efflclent tlme-wlse. Thls leaves us wlth 
approaches 1,3,5 and 6. If a very emclent gamma generator 1s avallable for a >1, 
then method 3 could be as fast  as algorlthm GS, or Vaduva’s Welbull-based 
reJectlon method. Methods 1 and 6 are probably comparable In all respects, 
although the reJectlon constant of method 6 certalnly 1s superlor. 

1 - 
3. 

4. 

5. 

3.7, The tail of the gamma density. 
A s  for the normal denslty, I t  1s worthwhlle to have a good generator for the 

tall gamma ( a  ) denslty truncated at t . It 1s only natural to look at domlnatfng 
densltles of the form b e  b ( t - z )  (x >t ). The parameter 6 has to be plcked as a 
functlon of a and t .  Note that a random varlate wlth thls denslty can be gen- 
erated as t+- where E 1s an exponentlal random varlate. We conslder the cases 

a <1 and a 21 separately. We can take 6 =1 because the gamma denslty 
decreases faster than e 

E 
6 

. Therefore, reJectloii can be based upon the lnequallty 

( x  I t )  * x a - l e - z  < t a - i e - z  - 
It 1s easlly seen that the correspondlng algorlthm 1s 
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REPEAT 
Generate a uniform random variate u and an exponential random variate E .  Set 
X t t  +E 

1 

UNTIL XU"< a 
RETURN x (x has the gamma density restricted to  [ t  ,m)) 

The efflclency of the algorithm 1s glven by the ratlo of the lntegrals of the two 
functlons. Thls glves 

t a - l e - t  

co 

Sxa-'e-' dx 
t 

co a - 1  
J(--) et-' dx 

0 

1-a = 1+- 
t 

+1 a s t  --too. 

When a 21, the exponentlal wlth parameter 1 does not sufflce because of the 
polynomlal portlon In the gamma denslty. It 1s necessary to take a sllghtly slower 
decreaslng exponentlal denslty. The lnequallty that we wlll use 1s 

2 
a-1 ( a  -I)( --I) t (7) < e  - 

~vhlch 1s easlly establlshed by standard optlmlzatlon methods. Thls suggests the 

cholce 6 =I--- In the exponentlal curve. Thus, we have 
a -1 

t 
( a  - I ) ( ~ - I ) - Z  

x a - l e - x  < ta - le  t - 
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Based on thls, the reJectlon algorlthm becomes 

REPEAT 
Generate two iid exponential random variates E ,E* , 
X t t  +- E 

a -1 
1-- 

t 
t E* 

-) 5 - x a - 1  
UNTIL --l+lOg( X t 
RETURN x’ (X has the gamma ( a  ) density restricted to [ t  ,m).) 

The algorlthm 1s valld for all a > 1  and all t > a  -1 (the latter condltlon states 
that the tall should not lnclude the mode of the gamma denslty). A squeeze step 
can be lncluded by notlng that 

. Here we used the lnequallty 

log(l+u )>2u / ( u  +2).  Thus, the qulck acceptance step to be lnserted In the algo- 
rlthm 1s 

X X - t  )>2-= X - t  2E l o g ( t ) = l o g ( l + t  - X + t  
(1-- a-1 ) ( X + t )  t 

E* THENRETURNX IF I- a -1 
E= 

(1-- a ;t (X+t  ) 
t 

We conclude thls section by showlng that the reJectlon constant 1s asymptotically 
optlmal as t too: the ratlo of the lntegrals of the two functlons lnvolved 1s 

ta-le-t 
03 

dx a -1 (l--)Jz 
t t  

whlch once agaln tends to 1 as t 400 .  We note here that the algorlthms glven In 
thls sectlon are due to Devroye (1980). The algorlthm for the case a > 1  can be 
sllghtly Improved at the expense of more cornpllcated deslgn parameters. Thls 

I 
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posslblllty 1s explored In the exerclses. 

423 

3.8. Stacy's generalized gamma distribution. 

parameters, c ,a >0: the denslty 1s 
Stacy (1962) lntroduced the generallzed gamma dlstrlbutlon wlth two shape 

Thls famlly of densltles lncludes the gamma densltles (c =l), the halfnormal den- 
slty ( a  =- ,c  =2) and the Welbull densltles ( a  =1). Because of the flexlblllty of 

havlng two shape parameters, thls dlstrlbutlon has been used qulte often In 
modellng stochastlc Inputs. Random varlate generatlon 1s no problem because we 

observe that G, has the sald dlstrlbutlon where G, 1s a gamma ( a  ) random 
varlable. 

Tadlkamalla (1979) has developed a reJectlon algorlthm for the case a >1 
whlch uses as a domlnatlng denslty the Burr XI1 denslty used by Cheng In hls 
algorlthm GB. The parameters p,A of the Burr XI1 denslty are A=c fi, 
p=a=. The reJectlon constant 1s a functlon of a only. The algorlthm 1s vlr- 

tually equlvalent to generatlng G, by Cheng's algorlthm GB and returning G, 
(whlch explalns why the reJectlon constant does not depend upon c ). 

1 
2 

1 - 

1 - 

3.9. Exercises. 
1. Show Kullback's result (Kullback, 1934) whlch states that when X , , X ,  are 

lndependent gamma ( a )  and gamma ( a + - )  random varlables, then 

2 d a  IS gamma (2a 1. 
2. Prove Stuart's theorem (the second statement of Theorem 3.1): If Y 1s 

gamma ( a )  and Z 1s beta ( 6  , a - b  ) for some 6 > a  >0, then YZ and 
Y (1-2 ) are lndependent gamma ( 6  ) and gamma ( a  -6  ) random varlables. 

3. Algorithm GO (Ahrens and Dieter, 1974). Deflne the breakpolnt 

6 =a  -1+ d q .  Flnd the smallest exponentlally decreaslng 

functlon domlnatlng the gamma ( a  ) denslty to the rlght of 6 . Flnd a normal 
curve centered at a-1 domlnatlng the gamma denslty to the left of 6 ,  whlch 
has the property that the area under the domlnatlng curve dlvlded by the 
area under the leftmost plece of the gamma denslty tends to a constant as 
a too. Also, And the slmllarly deflned asymptotlc ratlo for the rlghtmost 

1 
2 

i 
_. 
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4. 

5. 

6. 

piece, and establish that I t  1s greater than 1. By comblnlng thls, obtaln an 
expression for the llmlt value of the reJectlon constant. Havlng establlshed 
the bounds, glve a reJectlon method for generatlng a random varlate with 
the gamma denslty. Flnd emclent squeeze steps If posslble. 
The Weibull density. Prove the followlng propertles of the Welbull ( a )  
dlstrlbutlon: 

A. 
1 

For a 21, the denslty 1s unlmodal wlth mode at (l--)’. 1 -  The posltlon 
U 

or the mode tends to 1 as a loo. 
The value of the dlstrlbutlon functlon at s=1 is 1,” for all values of 

a .  

The r - th  moment 1s r(l+-). 

B. 
e 

1’ 

U 
C. 

D. The mlnlmum of n lld Welbull random varlables 1s dlstrlbuted as a 
constant tlmes a Welbull random varlable. Determlne the constant and 
the parameter of the latter random varlable. 

E. ks a tm, the first moment of the Welbull dlstrlbutlon varles as 
l--+o (-) where 7=0.57722 ... 1s Euler’s constant. Also, the varlance 7 1 

U U 
-?/sa ’. 

Obtaln a good uniform upper bound for the reJectlon constant In Vaduva’s 
algorlthm for gamma random varlates when a 51 whlch 1s based upon reJec- 
tlon from the Welbull denslty. 
Algorithm GS (Ahrens and Dieter, 1974). The followlng algorlthm was 
proposed by Ahrens and Dleter (1974) for generatlng gamma ( a )  random 
varlates when the parameter a 1s 51: 
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Rejection algorithm GS for gamma variates (Ahrens and Dieter, 1974) 

[SET-UP] 

b e -  1 , e-- 
e a 

e + a  

[GENERATOR] 
REPEAT 

Generate iid uniform [0,1] random variates U ,  W . Set V t b U  . 
IF V S l  

THEN 
x t v c  
Accept - [ w l e - X ]  

ELSE 
X t - l o g ( c  ( 6  -V)) 
Accept --[ w <x"-'] 

UNTIL Accept 
RETURN X 

The algorlthm 1s based upon the lnequall tles: 
U 

( O ~ z ~ l )  and f (a:)< 
e + a  

e-' (z 21). Show that  

. Show that the reJectlon constant 

U 

f ("5 r ( i + a  r(i+a 
the reJectlon constant 1s 

e r(i+a ) _  
1 approaches 1 as a io, tha t  I t  1s 1+- at a =1, and that I t  1s unlformly 
e 

bounded over aE(0,1] by a number not exceedlng 5. Show that In sam- 
pllng from the composlte domlnatlng denslty, we have probablllty welghts 

2 

e U - for axa-' (O<z Sl), and - for e '-' (z 2 1 )  respectlvely. 
e +a  e + a  

7. Show that the exponentlal functlon of the form ce-" (z 2 t )  of smallest 
lntegral domlnatlng the gamma ( a )  denslty on [ t  ,m) (for a >1, t >0) has 
parameter b glven by 

t -a +4- b =  
2 t  

Hlnt: show flrst that  the ratlo of the gamma denslty over e-b' reaches a 
a -1 a -1 peak at x=- (whlch 1s to the rlght of t when 6 >1--). Then com- 

pute the optlmal b and verlfy that b ?I--- . Glve the algorlthm for the 

tall of the gamma denslty that  corresponds to thls optlinal lnequallty. Show 

furthermore that as t 100, 6 =1--+o ($), whlch proves that the cholce 

1-b t 
a -1 

t 

a -1 
t 

I 

. I  
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of b In the text 1s asymptotlcally optlmal (Dagpunar, 1978). 
Algorithm RGS (Best, 1983). Algorlthm GS (of exerclse 6) can be optlm- 
lzed by two devlces: A r s t ,  the gamma denslty f wlth parameter a can be 
maxlmlzed by a functlon whlch 1s z a - ' / r ( a  ) on [ O , t ]  and t a - l e - z  /r(a ) on 
[t  ,m), where t 1s a breakpolnt. In algorlthm GS, the breakpolnt was chosen 
as t =l. Secondly, a squeeze step can be added. 
A. Show that the optlmal breakpolnt (In terms of mlnlmlzatlon of the area 

under the domlnatlng curve) 1s glven by the solutlon of the transcen- 
dental equatlon t = e - t  (1-a +t  ). (Best approxlmates thls solutlon by 
0.07f0.756 .) 

B. Prove the lnequalltles e-' 32-z) / (2+s)  (s  20) and 
( I+S) -~  >l/(l+cz) (z >O,l>c L O ) .  (These are needed for the squeeze 
steps.) 
Show that the algorlthm glven below 1s valld: 

8. 

C. 

Algorithm RGS for gamma variates (Best, 1983) 

[SET-UP] 
e-' a 1 t + 0 . 0 7 + 0 . 7 5 6  , b  +I+- , e +- t U 

[GENERATOR] 
REPEAT 

Generate iid uniform [0,1] random variates u ,  w. Set V + b U .  
IF v<l 

THEN 
X + t V C  

2-x 
2+x 

Accept --[ kk' 5 -1 
IF NOT Accept THEN Accept -[W 5e-X] 

ELSE 
X X +-log( c t  ( b  - V )), Y t- t 

Accept - [w(a+Y-aY)<l]  
IF NOT Accept THEN Accept --[ W 5 Y''-'] 

UNTIL Accept 
RETURN x 

9. Algorithm G4PE (Schmeiser and Lal, 1980). The graph of the gamma 
denslty can be covered by a collectlon of rectangles, trlangles and exponen- 
tlal curves havlng the propertles that (1) all parameters lnvolved are easy to 
compute: and (11) the total area under the domlnatlng curve 1s unlformly 
bounded over a 21. One such proposal 1s due to Schmelser and La1 (1980): 
deflne flve breakpolnts, 

I 
.-. 
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t3=a -1 
t 4=t 3+& 

.lo. 

Ll. 

where t 3  1s the mode, and t 2 , t 4  are the polnts of lnflectlon of the gamma 
denslty. Furthermore, t ,,t are the polnts at whlch the tangents of f at t 
and t ,  cross the x-axls. The domlnatlng curve has flve pleces: an exponentlal 
tall on (-w,t,] wlth parameter l - t3/ t ,  and touchlng f at t , .  On [t5,w) we 
have a slmllar exponentlal domlnatlng curve wlth parameter 1-t,/t 5. On 
[ t l , t 2 ]  and [ t 4 , t 5 ] ,  we have a llnear domlnatlng curve touchlng the denslty at 
the brealcpolnts. Flnally, we have a constant plece of helght f ( t 3 )  on [ t 2 , t 4 ] .  
All the strlps except the two tall sectlons are partltloned lnto a rectangle 
(the largest rectangle fltted under the curve of f ) and a leftover plece. Thls 
glves ten pleces, of whlch four are rectangles totally tucked under the 
gamma denslty. For the slx remalnlng pleces, we can construct very slmple 
llnear acceptance steps. 
A. Develop the algorlthm. 
B. Compute the area under the domlnatlng curve, and determlne Its 

asymptotlc value. 
C. Determlne the asymptotlc probablllty that we need only one unlform 

random varlate (the random varlate needed to select one of the four rec- 
tangles 1s recycled). Thls 1s equlvalent to computlng the asymptotlc area 
under the four rectangles. 

D. Wlth all the squeeze steps deflned above In place, compute the asymp- 
totlc value of the expected number of evaluatlons of f . 

Hlnt: obtaln the values for an approprlately transformed normal denslty and 
use the convergence of the gamma denslty to the normal denslty. 
The t -distribution. Show that when G G, /, are lndependent gamma 
random varlables, then ,/- 1s dlstrlbuted as the absolute value of 
a random varlable havlng the t dlstrlbutlon wlth a degrees of freedom. 
(Recall that the t denslty 1s 

- . -  
n -  

In partlcular, 1f G ,G* are lld gamma (L) random varlables, then 

1s Cauchy dlstrlbuted. 
The Pearson VI distribution. Show that Ga /Gb has denslty 

2 
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when G, ,Gb are lndependent gamma random variables wlth parameters a 
and 6 respectively. Here B, , b  =r(a ) r(b )/r(a +b ) 1s a normalizatlon coii- 
stant. The density In question is the Pearson VI density. It is also called the 
beta denslty of the second klnd wlth parameters a and b .  6 / a  times the 
random varlable in question 1s also called an F distrlbuted random varlable 
with 2 a  and 26 degrees of freedom. 

4. THE BETA DENSITY. 

4.1. Properties of the beta density. 

when I t  has denslty 
We say that a random varlable X on [0,1] is beta ( a  ,b ) distributed 

where a ,b >O are shape parameters, and 
_, .-,. . 1 

1s a normalization constant. The density can take a number of lnteresting 
shapes: 
1. 

2. 

3. 

4. 

5 .  

When O c a  ,6  <1, the density is U-shaped wlth lnflnlte peaks at 0 and 
1. 

When O<a <lSb, the denslty is sald to be J-shaped: I t  has an inflnite 
peak at 0 and decreases inonotoiiically to  a posltive constant (when 
b =I) or to  0 (when 6 >I). 
When a =1< 6 , the denslty is bounded and decreases monotonlcally to  
0. 
When a = 6  =1, we have the uniform [0,1] density. 
When l < a  ,b , the density is unimodal, and takes the value 0 at the 
endpoints. 

The fact that there are two shape parameters makes the beta denslty a solld 
candidate for illustratlng the various technlques of nonuniform random vari- 
ate generatlon. I t  1s lmportant for the deslgn t o  understand the baslc proper- 
tles. For example, when a ,b >1, the mode 1s located at . It 1s also 

qulte trivlal to show that for 1' > - a ,  

a -1 
u +6 -2 

Bu+-r,b E ( X ' )  = 
. b  
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U a6 In partlcular, E ( X )  = - and Var (X) = . There are 
a number of relatlonshlps wlth other dlstrlbutlons. These are summarlzed In 
Theorem 4.1: 

a + 6  ( a  + b  )2(a +b +I) 
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Theorem 4.1. 

other densltles. 
Thls 1s about the relatlonshlps between the beta ( a  , b )  density and 

A. 

B. 

C. 

D. 

E. 

Relatlonshlp wlth the gamma density: If G, ,G6 are lndependent 
/* 

gamma ( a  ), gamma ( b  ) random varlables, then 
b a  

Ga+Gh 
1s beta ( a  ,b ) 

dlstrlbuted. 

Relatlonshlp wlth the Pearson VI (or p2 ) density: If X 1s beta ( a  ,b ), 
1s p2(a ,6 ), that  is, Y 1s a beta of the second lclnd, wlth X 

then Y=- 1-x 
I a -1 
5 ~ 

denslty f ( z )  = (5 20) ’ 
B, ,* (l+z +6 

Relatlonshlp wlth the (Student’s) t dlstrlbutlon: If X 1s beta (-,-), l a  
2 2  

and S 1s a random slgn, then S ds 1s t-dlstrlbuted wlth a 

degrees of freedom, Le. I t  has denslty 

a +1 r ( 2 )  
f ( X I =  a +1 

By the prevlous property, note that 1s t-dlstrlbuted wlth parame- 
ter a when Y 1s p2(a ,b ). Furthermore, If X denotes a beta ( a  ,a ) ran- 
dom varlable, and T denotes a t random varlable wlth 2a degrees of 
freedom, then we have the followlng equallty In dlstrlbutlon: 

. In partlcular, when U 1s 1 1  T G (2X-1) 
2 d 5  

I=-+- 

dZ(U-,) 1 

unlform on [O,l], then 

Relatlonshlp wlth the F (Snedecor) dlstrlbutlon: when X 1s beta 

1s F-dlstrlbuted wlth a and 6 degrees of free- ( a , 6 ) ,  then 

dom, 1.e. I t  has denslty -f a (-) ax (z >O), where f 1s the p2(-,-) a b  den- 

slty. 

Relatlonshlp wlth the Cauchy denslty: when X 1s beta (- -) dlstrl- 

Is t wlth 2 degrees of freedom. dEiF 
6X 

a (1-X) 

b 6  2 2  

1 1  

/+ 
buted (thls 1s called the arc slne dlstrlbutlon), then 5 1s dlstrl- 

buted as the absolute value of a Cauchy random varlable. 
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Proof of Theorem 4.1. 
All the propertles can be obtalned by ap 

431 

lylng the methods for computlng 
densltles of transformed random varlables explalned for example In sectlon 1.4.1. 

We should also mentlon the lmportant connectlon between the beta dlstrlbu- 
tlon and order statlstlcs. When O <  U(l)< < U ( n  are the order statlstlcs of a 
unlform [0,1] random sample, then U ( k )  1s beta (k ,n -k +1) dlstrlbuted. See sec- 
tlon 1.4.3. 

* 

4.2. Overview of beta generators. 
Beta varlates can be generated by exp.Atlng speclal propertles of the dlstrl- 

butlon. The order statlstlcs method, appllcable only when both a and b are 
Integer, proceeds as follows: 

Order statistics method for beta variates 

Generate a + b  -1 iid uniform [O,l] random variates. 
Find the a -th order statistic x( u -th smallest) among these variates. 
RETURN x 

Thls method, mentloned as early as 1Q63 by Fox, requlres tlme at least propor- 
tlonal to a +b -1. If standard sortlng routlnes are used to obtaln the a -th smal- 
lest element, then the tlme complexlty ls even worse, posslbly 
n ( ( a  +b -l)log(a +b -1)). There are obvlous lmprovements: I t  1s wasteful to sort a 
sample Just to obtaln the a - th  smallest number. Flrst of all, vla llnear selectlon 
algorlthms we can And the a -th smallest In worst case tlme 0 (a +b -1) (see e.g. 
Blum, Floyd, Pratt ,  Rlvest and TarJan (1973) or Schonhage, Paterson and Plp- 
penger (1976) ). But In fact, there 1s no need to generate the entlre sample. The 
unlform sample can be generated dlrectly from left to rlght or rlght to left, as 
shown In sectlon V.3. Thls would reduce the tlme to 0 (mln(a ,b )). Except In spe- 
clal appllcatlons, not requlrlng non-lnteger or large parameters, t1i.h method 1s 
not recommended. 

When property A of Theorem 4.1 1s used, the tlme needed for one beta varl- 
ate 1s about equal to the tlme requlred to generate two gamma varlates. Thls 
method 1s usually very competltlve because there are many fast gamma genera- 
tors. In any case, If the gamma generator ls unlformly fa s t ,  so wlll be the beta 
generator. Formally we have: 
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Beta variates via gamma variates 

Generate two independent gamma random variates, G, and Gb . 

RETURN Ga 
Ga -k Gb 

Roughly speaklng, we wlll be able to  lmprove over thls generator by at most 
50%. There 1s no need to  dlscuss beta varlate generators whlch are not tlme 
emclent. A survey of pre-1972 methods can be found In Arnason (1972). None of 
the methods glven there has unlformly bounded expected tlme. Among the com- 
petltlve approaches, we mentlon: 
A. 

B. 

C. 

D. 

E. 

Standard rejectlon methods. For example, we have: 
ReJectlon from the Burr XI1 denslty (Cheng, 1978). 
ReJectlon from the normal denslty (Ahrens and Dleter, 1974). 
ReJectlon from polynomlal densltles (Atklnson and Whlttaker, 
1976, 1979; Atltlnson, 1979). 
ReJectlon and composltlon wlth trlangles, rectangles, and exponen- 
tlal curves (Schmelser and Babu, 1980). 

The best of these methods wlll be developed below. In partlcular, we wlll 
highlight Cheng’s unlformly fa s t  algorlthms. The algorlthm of Schmelser and 
Babu (1980), whlch 1s unlformly fast over a ,b 2 1 ,  1s dlscussed In sectlon 
VII.2.6. 
Forsythe’s method, as applled for example by Atklnson and Pearce (1976). 
Thls method requlres a lot of code and the set-up tlme 1s conslderable. In 
cornparlson wlth thls Investment, the speed obtalnable vla thls approach 1s 
dlsappolntlng. 
Johnk’s method (Johnk, 1964) and Its modlflcatlons. Thls too should be con- 
sldered as a method based upon speclal propertles of the beta denslty. The 
expected tlme 1s not unlformly bounded In the parameters. It should be 
used only when both parameters are less than one. See sectlon IX.3.5. 
Unlversal algorlthms. The beta denslty 1s unlmodal when both parameters 
are at least one, and I t  1s monotone when one parameter 1s less than one and 
one 1s at least equal to  one. Thus, the universal methods of sectlon VII.3.2 
are appllcable. At the very least, the lnequalltles derlved In that  sectlon can 
be used t o  deslgn good (albelt not superb) bounds for the beta denslty. In 
any case, the expected tlme 1s provably unlform over all parameters a , b  
wlth max(a ,b )>I.  
Strlp table methods, as  developed In sectlon VI11.2.2. We wlll study below 
how many strlps should he selected as a functlon of a and b In order to  
have unlformly bounded expected generatlon tlmes. 
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The bottom llne 1s that the cholce of a method depends upon the user: If he 1s 
not wllllng to lnvest a lot of tlme, he should use the ratlo of gamma varlates. If 
he does not mlnd podlng short programs, and a and/or b vary frequently, one of 
the reJectlon methods based upon analysls of the beta denslty or upon universal 
lnequalltles can be used, The method of Cheng 1s very robust. For speclal cases, 
such as symrnetrlc beta densltles, reJectlon from the normal denslty 1s very com- 
petltlve. If the user does not foresee frequent changes In a and b ,  a strlp table 
method or the algorlthm of Schmelser and Babu (1980) are recommended. 
Flnally, when both parameters are smaller than one, l t  1s posslble to use reJectlon 
from polynomlal densltles or to apply Johnk’s method. 

4.3. The symmetric beta density. 

the symrnetrlc beta denslty wlth parameter a : 
In thls sectlon, we wlll take a close look at one of the slmplest speclal cases, 

For large values of a ,  thls 

thls, conslder y =x--*, and 1 
2 

denslty 1s qulte close to the normal denslty. To see 

log(/ (X )) = lOg(C)+(U -l)lOg(1+21J )+(a -l)IOg(l-2y )-(a - l ) l O g 4  

= log( c )-(a -l)log4+( a -1)log( 1-4y 2) . 

The last term on the rlght hand slde 1s not greater than -4(a -1)y 2, and I t  1s at 
)) tends least equal to -4(a -$)y2-1f3(a -l)y4/(1-4y2). Thus, log(/ (-+ 

to -log(&)-- as a --too for all 2 ER . Here we used Stlrllng’s formula to prove 

that log(C)-(a-l)log4 tends to -log(&). Thus, If X 1s beta ( a  , a ) ,  then the 

X 1 
2 d i 7 Z i - j  

X 2  
2 

1 
2 

denslty of m ( x - - )  tends to the standard normal denslty as a - m .  The 
only hope for an asyrnptotlcally optlmal rejectlon constant In a reJectlon algo- 
rlthm 1s to use a domlnatlng denslty whlch 1s elther normal or tends polntwlse to 
the normal denslty as a --too. The questlon 1s whether we should use the normall- 
zatlon suggested by the llmlt theorem stated above. It turns out that the best 
reJectlon constant 1s obtalned not by taklng 8( a -1) In the formula for the normal 
denslty, but 8(a--). We state the algorlthm flrst, then announce Its propertles 

In a theorem: 

1 
2 
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Symmetric beta generator via rejection from the normal density 

1 1  
2 a - 2  2 

[NOTE: 6 =(a -l)log(l+-)--.] 

[GENERATOR] 
REPEAT 

REPEAT 
Generate a normal random variate N and an exponential random variate E .  

x t -  +&-,Z+N2 

UNTIL, Z < 2 a  -1 (now, x€[O,l]) 

Accept +-[E +-- ( a  + b  Lo] 2 2a-1 -2  

) + b  Lo1 IF NOT Accept THEN Accept -[E +?+(a z -l)log(l-- z 
2a -1 

UNTIL Accept 
RETURN x 

~ 

Theorem 4.2, 
Let f be the beta ( a )  density wlth parameter a 21. Then let a>O be a 

constant and let c be the smallest constant such that for all z , 

Then c 1s mlnlmal for a2= 

8( u -1) 
4e (8a -4) c u =  [ 

- , and the mlnlmal value 1s 
8a  4 

In the reJectlon algorlthm --iown above, the rejection constant is c u .  

tlon constant 1s unlformly bounded for a €[l,m): selected values are 

a =2, d% at a =3. We have 

llm c Q =  1 ,  
a +m 

I - +- 
and In fact, c (T 5 e 24a 2 a - 1  . 

I 
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Proof of Theorem 4.2. 
Let us wrlte g (a:) for the normal denslty wlth mean - 1 and varlance u2. We 

2 

flrst determlne the supremum of f /g  by settlng the derlvatlve of log(-) f equal 
to zero. Thls ylelds the equatlon 

9 

1 2( a -1) 
2 x(l-x) (5 --)(CY+- ) = O .  

One can easlly see from thls that f /g has a local mlnlmum at x=- and two 

local maxlma symmetrlcaliy located on elther slde of L at LkLd-. 
The value of f / g  at the maxlma 1s 

2 

2 2 2  

1 - 
Thls depends upon CY as follows: 02'-'e 8a2. Thls has a unlque mlnlmum at 
o = l / d G .  Resubstitution of thls value glves 

- 
e 2 .  a -1 d2n 

4U -2 m B a  ,a 

By well-known bounds on the gamma functlon (Whlttaker ans Watson, 1927, p. 
253), we have 

1 - 1  

as a - m .  Thus, 

a - 1  

1 1 -  
a e  / ( a  --)e 24a(1-- 

2 2 a  -1 
I 1  a -1 

1 

1+- 
2a  -1 
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The algorlthm shown above 1s appllcable for all a 21. For large values of a ,  
we need about one normal random varlate per beta random varlate, and the pro- 
bablllty that the long acceptance condltlon has to be verlfled at all tends to 0 as 
a 4 0 0  (exerclse 4.1). There 1s another school of thought, In wlilch normal random 
varlates are avolded altogether, and the algorlthms are phrased In terms of unl- 
form random varlates. After all, normal random varlates are also bullt from unl- 
form random varlates. In the search for a good domlnatlng curve, help can be 
obtalned from other symrnetrlc unlmodal long-talled dlstrlbutlons. There are two 
examples that have been expllcltly mentloned In the llterature, one by Best 
(1978), and one by Ulrlch (1984): 

Theorem 4.3. 
When Y 1s a t dlstrlbuted random varlable wlth parameter 2 a .  then 

1s beta ( a  ,a ) dlstrlbuted (Best, 1978). 
1 1  Y X+-+- 
2 2 d z - 3  
When U , V  are lndependent unlform [0,1] random varlables, then 

1s beta ( a  ,a ) dlstrlbuted (Ulrlch, 1984). 

Proof of Theorem 4.3. 
The proof 1s left as an exerclse on transformatlons of random varlables. 

If we follow Best, then we need a fast  t generator, and we refer to sectlon 
IX.5 for such algorlthms. Ulrlch's suggestlon 1s lntrlgulng because i t  1s remlnlscent 
of the polar method. Recall that when x , Y  1s unlformly dlstrlbuted In the unlt 
clrcle wlth s =x2+ Y2, then (- -) and s are lndependent, and S 1s unl- 

formly dlstrlbuted on [0,1]. Also, swltchlng to polar coordlnates (A ,e), we see 
that XY /s =cos(O)sln(O)=2sln(2~). Thus, slnce 2 0  1s unlformly dlstrlbuted on 
[0,47~], we see that the random varlable 

X Y  
d F ' 6  

-+- 1 X . Y J Z  
2 s  

has a beta ( a  ,a ) dlstrlbutlon. We summarlze: 
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Ulrich’s polar method for symmetric beta random variates 

REPEAT 
Generate U uniformly on [0,1] and V uniformly on [-1,1]. 

s + u2+ v2 
UNTIL 5 1  

It should be stressed that Ulrlcli’s method 1s valld for all a >0, provlded that for 
the case a =1/2, we obtaln x as 1/2 + U V / S ,  that  Is, x 1s dlstrlbuted as a 
llnearly transformed arc sln random varlable. Desplte the power and the square 
root needed In the algorlthm for general a ,  Its elegance and generallty make I t  a 
formldable candldate for lncluslon In computer llbrarles. 

4.4. Uniformly fast rejection algorithms. 
The beta ( a  ,b ) denslty has two shape parameters. If we are to construct a 

uniformly fast  rejectlon algorlthm, I t  seems unlikely that we can just conslder 
reJectlon from a denslty wlth no shape parameter such as the normal denslty. 
Thls 1s generally speaklng only feaslble when there 1s one shape parameter as In 
the case of the gamma or symrnetrlc beta famllles. The trlck wlli then be to And 
a flexlble famlly of easy domlnatlng densltles. In hls work, Cheng has repeatedly 
used the Burr XI1 denslty wlth one scale parameter and one shape parameter 
wlth a great deal of success. Thls denslty 1s constructed as follows. If U Is unl- 

rv u formly distributed on [0,1], then - has denslty ( 1 + ~ ) - ~  on [O,m). For p,x>O, 
1- u 

the denslty of 

1s 

Thls 1s an lnflnlte-talled denslty, of llttle dlrect use for the beta denslty. For- 
tunately, beta and b,, random varlables are closely related (see Theorem 4.1), so 
that we need only conslder the lnflnlte-talled denslty wlth parameters ( a  ,b ): 

,.. a -1 
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The values of p and h suggested by Cheng (1978) for good reJectlon constants are 

mln(u ,b ) (mln(a ,b )SI) 
(mln(a ,b )> I )  

Wlth these choices, I t  1s not dlfflcult t o  verlfy that f /g 1s maxlmal at 2 =a / b  , 
and that f s c g  where 

4 a a  b b  
c =  

ABa,* (a  +b ) a + b  

Note that cg (z )/f (2 ) can be slmpllfled qulte a blt. The unadorned algorlthm 1s: 

Cheng’s rejection algorithm BA for beta random variates (Cheng, 1978) 

[SET-UP] 
s + a + b  
IF min(a , b  )SI 

THEN X+min( a , b ) 

ELSE h+dE s -2 

u +a +X 
[GENERATOR] 
REPEAT 

Generate two iid uniform [0,1] random variates U,,U,. 
1 Ul 
x 1-4, V+--, Y t a e ’  

8 
UNTIL 8 log(-)+~V-l0g(4)~10g( U12U,) 

RETURN X t -  
b +Y 

Y 
b+Y 

The fundamental property of Cheng’s algorlthm 1s that 
4 

a . b  > O  a , b  21 e 
sup c = 4 ; sup c = - X 1.47 . 

For Axed a ,  c 1s mlnlmal when b =a and lncreases when b 10 or b too. The 
detalls of the proofs of the varlous statements about thls algorlthm are left as an 
exerclse. There exlsts an lmproved verslon of the algorlthm for the case that both 
parameters are greater than 1 whlch 1s based upon the squeeze method (Cheng’s 
algorlthm BB). Cheng’s algorlthm 1s slowest when mln(a ,b )<1. In that reglon of 
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the parameter space, I t  1s worthwhlle to deslgn speclal algorlthms that may or 
may not be unlformly, fas t  over the entlre parameter space. 

4.6. Generators when min(a,b)< - 1. 
Cheng's algorlthm BA Is robust and can be used for all values of a ,b . How- 

ever, when both a ,b are smaller than one, and a +b - <1.5, Johnk's method ls 
typically more efllclent. When mln(a ,b ) 1s very small, and max(a ,b ) 1s rather 
large, nelther Johnk's method nor algorlthm BA are partlcularly fast. To All thls 
gap, several algorlthms were proposed by Atklnson and Whlttaker (1976, 1979) 
and Atklnson (1979). In addltlon, Cheng (1977) developed an algorlthm of hls 
own, called algorlthm BC. 

Atklnson and Whlttaker (1976,1979) spllt [0,1] lnto [O,t] and [ t  ,1], and con- 
struct a domlnatlng curve for use In the rejectlon method based upon the lne- 
qualltles: 

The areas under the two pleces of the domlnatlng curve are, respectlvely, 

(l-t)'-'L and tu - '  (l-t)b . Thus, the followlng rejectlon algorlthm can be 
U 

U b 
used: 
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First algorithm of Atkinson and Whittaker (1976, 1979) 

[SET-UP] 
Choose t E[O,l]. 

b t  
b t  + a  (1-t ) 

[GENERATOR] 
REPEAT 

Generate a uniform [0,1] random variate U and an exponential random variate E .  
IF V < P  

THEN 
1 U -  

P 
X+t(-)"  

Accept + [ ( l - b  ) log(-)<E] 1-x 
1-t 

ELSE 

1-u 
1-P 

x el-( 1-t )( -) 

UNTL Accept 
RETURN X 

Accept -[( 1-a )log( - ) s E  X ] t 

Desplte Its slmpllclty, thls algorlthm performs remarkably well when both param- 
eters are less than one, although for a + b  <1, Johnk's algorlthm 1s still to  be pre- 
ferred. The expianation for thls 1s glven In the next theorem. At  the same tlme, 
the best cholce for t 1s derlved In the theorem. 
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Theorem 4.4. 

rlthm 1s 
Assume that a 5 1 , b  5 1 .  The expected number of lteratlons In Johnk's algo- 

r ( a  +b +I)  
r ( a  +i)r(b +I) 

c =  

The expected number of lteratlons ( E ( N ) )  In the flrst algorlthm of Atklnson and 
Whlttaker 1s 

b t  +a (I-t  ) 
C 

( a  +b ) P a  (1-t y - 6  
When a +b <1, - then for all values of t , E ( N ) L c .  In any case, E ( N )  1s mlnlm- 
lzed for the value 

1 
Wlth t= top t ,  we have E ( N ) < c  whenever a+b >l. For a + b  >1, t=-, I t  1s 1 2 
also true that E ( N ) < c  . 

1 
2 

Flnally, E ( N )  1s unlformly bounded over a , b  5 1  when t =- (and I t  1s 

therefore unlformly bounded when t =topt ). 

Proof of Theorem 4.4. 
We begln wlth the fundamental lnequallty: 

+ t (l-t . The area under the The area under the top curve 1s (l-t)'-'- 

bottom curve 1s of course r(a )r(b )/r(a + b  ). The ratlo glves us the expresslon 
for E ( N ) .  8 ( N )  1s mlnlmal for the solutlon t of 

b a 

( I - t ) ' ~  (a-1)-t2b ( 6  -1) = O , 

whlch glves us t=t,,, . For the performance of Johnk's algorlthm, we refer to 
Theorem 3.4. To compare performances for a + b  51, we have to  show that for 
all t , 

BY the arlthmetlc-geometrlc mean lnequallty, the left hand slde 1s In fact not 
greater than 
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1 b a  < --(--+T) - a + b  I-t 
because a + b  5 1 ,  and the argument of the power 1s a number at least equal to 1. 

When a + b  >1,  I t  1s easy to  check that E ( N ) < c  for t =-. The statement 

about the unlform boundedness of E ( N )  when t =- follows slmply from 

1 
2 

2 
E ( N )  = 2'-"-b C 

and the fact that c 1s unlformly bounded over a ,b 5 1 .  

Generally speaklng, the flrst algorlthm of Atklnson and Whlttaker should be 
used lnstead of Johnk's when a ,b 5 1  and a + b  2 1 .  The computatlon of t o p t ,  
which lnvolves one square root, 1s only Justlfled when many random varlates are 

1 needed for the same values of a and b . Otherwlse, one should choose t =- 
2' 

When a 5 1  and b 2 1 ,  the performance of the flrst algorlthm of Atklnson 
and Whlttaker deterlorates wlth lncreaslng values of b : for Axed a <1,  
llm E(N)=oo. The lnequalltles used to develop the algorlthm are altered 

sllghtly: 
b 400 

t u  The areas under the two pleces of the domlnatlng curve are, respectlvely, - 
and t 

U 

(lVt )* . The followlng reJectlon algorlthm can be used: 
b 

1 
I 

I 
1 

-- 



IX.4.THE BETA DENSITY 443 

Second algorithm' of Atkinson and Whittaker (1976, 1979) 

[SET-UP] 
Choose t E [ O , l ] .  

b t  
b t  + a  ( ~ - t ) ~  

[GENERATOR] 
REPEAT 

Generate a'uniform [0,1] random variate U and an exponential random variate E .  
U I P  

THEN 

U' X+-t(-)" 
P 

Accept - - [ (1-b ) log( l -X)<E]  

ELSE 

1-u .L 
X+1-(1--t)(-) 

1-P 
X 

Accept +[(l-a )log(-i-)<E] 

UNTIL Accept 
RETURN x 

Slmple calculatlons show that 

b t  a + a  (1- t  )" t a-1 

a +b 
E ( N )  = c 

where c 1s the expected number of lteratlons In Johnk's algorlthm (see Theorems 
3.4 and 4.4). The optlmum value of t 1s the solutlon of 

b t  + ( a  -1)(1-t  )" -bt ( I - t  )b-l = o . 
Although thls can be solved numerlcally, most of the tlme we can not afford a 
numerlcal solutlon Just to generate one random varlate. We have, however, the 
followlng reassurlng performance analysls for a choke for t suggested by Atkln- 
son and Whlttaker (1076):  
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Theorem 4.5. 
1-a For the second algorlthm of Atklnson and Whlttalcer wlth t = 

b +I-U ' 

I 

sup E ( N )  < 0 0 ,  
a < l , b  21 

llm E ( N )  = 00 
b -+co 

(all a >I )  . 

4.6. Exercises. 
1. 

2. 

3. 

4. 

5. 

0. 

For the syrnmetrlc beta algorlthm studled In Theorem 4.2, show that the 
qulck acceptance step 1s valld, and that with the qulck acceptance step ln 
place, the expected number of evaluatlons of the full acceptance step tends 
to  0 as a+m.  

Prove Ulrlch's part of Theorem 4.3. 

Let X be a P2(a ,b ) random variable. Show that 1 
1s P 2 ( b  ,a ), and that 

1 

( b  >2). U a ( a  +b -1) E (Y)=- ( b  >1), and Var ( Y ) =  
b -1 ( b  b -2) 

In the table below, some densltles are llsted wlth one parameter a >O or two 
parameters a ,b >O. Let c be the shorthand notatlon for 1/B (a ,b ). Show 
for each denslty how a random varlate can be generated by a sultable 
transformatlon of a beta random varlate. 

2es2"-'( l-z2)b -1 (0 < 5 < 1) 
2c sin2a-'(s )cos2'-1(z) (055 5;) 

Prove Theorem 4.5. 

Grassia's distribution. Grassla (1977) lntroduced a dlstrlbutlon whlch 1s 
close to the beta dlstrlbutlon, and can be consldered to  be as flexlble, If not 
more flexlble, than the beta dlstrlbutlon. When x' 1s gamma (a , b ) ,  then 
e-x 1s Grassla I, and l-e-X 1s Grassla 11. Prove that for every posslble 
comblnatlon of skewness and lturtosls achlevable by the beta denslty, there 
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exlsts a Grassla dlstrlbutlon wlth the same skewness and lcurtosls (Tadl- 
kamalla, 1081). 

7.  A contlnuatlon of exerclse 6. Use the Grassla dlstrlbutlon to obtaln an 
emclent algorlthm for the generatlon of random varlates wlth denslty 

1 
8~ a -'log( -) m 

.L f ( X I =  (o<x <1)  , 
n2( 1-x ) 

where a > O  1s a parameter. 

5. THE t DISTRIBUTION. 

5.1. Overview. 

symrnetrlc denslty wlth one shape parameter a >0: 
The t distribution plays a key role In statlstlcs. The dlstrlbutlon has a 

Thls 1s a bell-shaped denslty whlch can be dealt wlth In a number of ways. As 
speclal members, we note the Cauchy density ( a  =1), and the t, denslty 
( a = 3 ) .  When a 1s Integer-valued, I t  1s sometlmes referred to as the number of . 
degrees of freedom of the dlstrlbutlon. Random varlate generatlon methods for 
thls dlstrlbutlon Include: 
1. The lnverslon method. Expllclt forms of the dlstrlbutlon functlon are only 

avallable In speclal cases: for the Cauchy denslty ( a  =l ) ,  see sectlon 11.2.1. 
For the t ,  denslty ( a  =2), see Theorem IX.3.3 In sectlon IX.3.3. For the t ,  
denslty ( a  =3), see exerclse 11.2.4. In general, the lnverslon method 1s not 
competltlve because the dlstrlbutlon functlon 1s only avallable as an Integral, . 
and not as a slmple explicit functlon of Its argument. 
Transformatlon of gamma varlates. When N 1s a normal random varlate, 
and G,,, 1s a gamma (-) random varlate lndependent of N ,  

2.  
a 

2 

1s tu dlstrlbuted. Equlvalently, If G 
varlables, then 

G, /, are lndependent gamma random 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

1s tu dlstrlbuted where 1s a random slgn. See example 1.4.6 for the derlva- 
tlon of thls property. Somewhat less useful, but stlll noteworthy, 1s the pro- 
perty that If G, /2, G *, l 2  are lld gamma random varlates, then 

6 Ga /2-G *a /z - 
d-- 

1s t ,  dlstrlbuted (Cacoullos, 1965). 

Transformatlon of a symmetrlc beta random varlate. It 1s known that If X 
1s symmetrlc beta (-,-), then a a  

2 2  
1 X--  
2 &- 

Is tu dlstrlbuted. Symmetrlc beta random varlate generatlon was studled ln 
sectlon IX.4.3. The comblnatlon of a normal reJectlon method for symmetrlc 
random varlates, and the present transformatlon was proposed by Marsaglla 

Transformatlon of an F random varlate. When S 1s a random slgn and X 1s 
F (1,a )dlstrlbuted, then S fl Is tu dlstrlbuted (see exerclse 1.4.6). Also, 
when X 1s symmetrlc F wlth parameters a and a ,  then 

(1980). 

1s t ,  dlstrlbuted. 
The ratlo-of-unlforms method. See sectlon IV.7.2. 
The ordlnary reJectlon method. Slnce the t denslty cannot be dominated by 
densltles wlth exponentlally decreaslng talls, one needs to  And a polynoml- 
ally decreasing domlnatlng functlon. Typlcal candldates for the domlnating 
curve include the Cauchy denslty and the t ,  denslty. The correspondlng 
algorlthms are qulte short, and do not rely on fast  normal or exponentlal 
generators. See below for more detalls. 
The composltlon/reJectlon method, slmllar to the method used for normal 
random varlate generatlon. The algorlthms are generally speaking longer, 
more deslgn constants need to be computed for each cholce of a ,  and the 
speed 1s usually a blt better than for the ordlnary reJectlon method. See for 
example Klnderman, Monahan and Ramage (1977) for such methods. 
The acceptance-complement method (Stadlober, 1981). 

Table methods. 
One of the transformatlons of gamma or beta random varlates 1s recommended If 
one wants to save tlme wrltlng programs. I t  1s rare that addltlonal speed 1s 
requlred beyond these transformatlon methods. For dlrect methods, good speed 
can be obtalned wltb the ratlo-of-unlforms method and wlth the ordlnary reJec- 
tloii methods. Typlcally, the expected tlme per random varlate 1s unlformly 

I 
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bounded over a subset of the parameter range, such as [l,oo) or [3,oo). Not unex- 
pectedly, the small values of a are the troublemakers, because these densltles 
decrease as x-(' +I), so that no Axed exponent polynomlal domlnatlng denslty 
exlsts. The large values of a glve least problems because i t  1s easy t o  see that for 
every x , 

2 2  
1 -- llm f ( 5 )  = - 

a 4 c o  d G e  2 *  

The problem of small a 1s not lmportant enough to warrant a speclal sectlon. See 
however the exerclses. 

5.2. Ordinary rejection methods. 

example, when a 21, the followlng lnequallty 1s trlvlally true: 
Let us flrst start wlth the development of slmple upper bounds for f , For 

1 1 

The top bound ls proportlonal t o  the denslty of dzC where C 1s a Cau- 

chy random varlate. If we want to verlfy Just how good thls lnequallty is, we note 

that the area under the domlnatlng curve 1s T 2 a  . The area under the 

6 r(s) 
i5 curve on the left hand slde of the lnequallty 1s . By the convergence 

a +1 U y - 1  
to the normal denslty, we deduce wlthout computations that thls quantlty tends 
to 6. Thus, the ratlo of the areas, our rejectlon constant, tends t o  6 as 
a+oo. The A t  1s not very good, except perhaps for a close to 1: for a=1, the 
rejectlon constant 1s obvlously 1. The detalls of the rejectlon algorlthm are left to 
the reader. 

Conslder next rejectlon from the t ,  denslty 

Best (1978) has shown the followlng: 
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Theorem 5.1. 
Let f be the tu denslty wlth a 23, and let g be the t ,  denslty. Then 

f (5 I cg (x 
where 

then 
1 2 2  2 [ l+$) 9 --- 

16 
T ( x )  2 - - e 2  2 

Flnally, 

Proof of Theorem 5.1. 

X 2  
l+a 

l+; 

- 
1 

Verlfy that  f /g 1s maxlmal for x =fl. The lower bound for T (x ) follows 
from the lnequallty 

I 

Flnally, the statement about c follows from Stlrllng's formula and bounds 
related to Stlrllng's formula. For example, the upper bound 1s obtalned as 
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follows: 

449 

A slmllar lower bound 1s valld, whlch establlshes the asyrnptotlc result. 

The A t  with the t ,  domlnatlng denslty 1s much better than wlth the Cauchy 
density. Also, recalling the ratlo-of-unlforms method for generatlng t , random 
variates ln a, form convenlent to us (see sectlon N.7 .2 ) ,  

t3 generator based upon the ratio-of-uniforms method 

REPEAT 
1 
2 

Generate lid uniform (0,1] random variates U , V .  Set V+V--. 

UNTIL Ua+ vas  U 
V RETURN x+&- U 

We can summarlze Best’s algorlthm as follows: 

I 
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t generator based upon rejection from a t3 density (Best, 1978) 

REPEAT 
Generate a t ,  random variate x by the ratio-of-uniforms method (see above). 
Generate a uniform [0,1] random variate u. 

z z+-x2,  W+l+- 
3 

Y-2 log [ - +vw2] 

Accept -[YLl-z] 
IF NOT Accept THEN Accept --[ Y ?( a +l)log( -)] a fl 

u +z 
UNTIL Accept 
RETURN x 

The algorlthm glven above differs sllghtly from that glven In Best (1978). Best 
adds another squeeze step before the flrst logarlthm. 

5.3. The Cauchy density. 
The Cauchy density 

1 f ( X I =  
n(l+x2) 

plays another key role In statlstlcs. It has no shape parameters, and the mean 
does not exlst. Just as for the exponentlal dlstrlbutlon, I t  1s easlly seen that this 
denslty causes no problems whatsoever. To start  wlth, the lnverslon method 1s 
appllcable because the dlstrlbutlon functlon is 

1 1  
2 n  

F (x ) = -+-arc tan x . 

Thls leads to the generator tan(?rU) where U 1s a unlform random varlate. The 
tangent belng a relatlvely slow operatlon, there 1s hope for Improvement. The 
maln property of the Cauchy denslty 1s that whenever ( X ,  Y )  1s a radlally dlstrl- 
buted random vector In R 2  wlthout an atom at the orlgln, then - Is Cauchy 

dlstrlbuted. The proof uses the fact that If ( R  ,0) are the polar coordlnates for 
Y ( x , Y ) ,  then -=tan(Q), and 0 1s dtstrlbuted as 27rU where U 1s a unlform [0,1] 
X 

randoin varlate. Thls leads to two stralglitforward algorlthms for generatlng 

X 
Y 
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Cauchy random varlates: 

Polar method I for Cauchy random variates 

Generate iid normal random variates N , , N 2 .  
Nl 
N2 

RETURN x +- 

Polar method 11 for Cauchy random variates 

REPEAT 
Generate iid uniform [-1,1] random variates vl,v,. 

UNTIL VI2+ v/a2 5 1 
RETURN x 

451 

Even though the expected number of unlform random varlates needed In the 
8 second algorlthm 1s -, I t  seems unllkely that the expected. tlme of the second 

algorlthm wlll be smaller than the expected tlme of the algorlthm based upon the 
ratlo of two normal random varlates. Other algorlthms have been proposed In the 
literature, see for example the acceptance-complement method (sectlon 11.5.4 and 
exerclse II.5.1) and the artlcle by Kronmal and Peterson (1981). 

?r 

5.4. Exercises. 
1. Laha's density (Laha, 1958). The ratlo of two lndependent normal ran- 

dom varlates 1s Cauchy dlstrlbuted. Thls property 1s shared by other densl- 
ties as well, In the sense that the term "normal" can be replaced by the 
name of some other dlstrlbutlons. Show flrst that the ratlo of two lndepen- 
dent random varlables wlth Laha's denslty 

dz 
r(1+x4) 

f ( X I =  

1s Cauchy dlstrlbuted. Give a good algorlthm for generatlng random varlates 
wlth Laha's denslty. 
Let ( X ,  Y )  be unlformly distrlbuted on the clrcle wlth center ( a  ,6 ). Descrlbe 
the denslty of - Note that when ( a , b ) = ( O , O ) ,  you should obtaln the 

2. 
X 
Y '  
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3. 

4. 

5. 

6. 

7. 

8.  

Cauchy denslty. 

Conslder the class of generallzed Cauchy densltles 

71 a sln( -) 
a f ( X I =  

2T(1+ I x I " )  ? 

where a > 1  1s a parameter. The densltles In thls class are domlnated by the 
Cauchy denslty tlmes a constant when a z 2 .  Use thls fact to develop a gen- 
erator whlch 1s unlformly fast on [ 2 , ~ ) .  Can you also suggest an algorlthm 
whlch 1s unlformly fast  on ( 1 , ~ )  ? 

The denslty 
, 

possesses both a heavy tall and a sharp peak at 0. Suggest a good and short 
algorlthm for the generatlon of random varlates wlth thls denslty. 

Cacoullos's theorem (Cacoullos, 1965). Prove that  when G ,G* are lld 

gamma (-) random varlates, then U 

2 
6 G-G* X + -  
2 m  

1s tu dlstrlbuted. In partlcular, note that when N , , N 2  are lld normal ran- 
dom varlates, then (N  , - N 2 ) / ( 2 4 m - )  1s Cauchy dlstrlbuted. 

The followlng famlly of densltles has heavler talls than any member of the t 
famlly: 

a -1 I ( X I =  ( x > e ) .  
t (log(x )IU 

Here a >1 1s a parameter. Propose a slmple algorlthm for generatlng random 
varlates from thls famlly, and verify that l t  1s unlformly fast  over all values 
a >I. 
In thls exerclse, let c,,c,,c, be lld Cauchy random varlables, and let U be 
a unlform [0,1] randoin varlable. Prove the followlng dlstrlbutlonal proper- 
tles: 

A. 
B. C,C2C, has denslty (7~~+(log(s~))~)/(27r~(l+z~)) .  

C,C2 has denslty (log(x2))/(7r2(x2-1)) (Feller, 1971, p. 64). 

) / (2n) .  
1+x2 

X 2  
C. UC has denslty log( - 

2 Show that when X , Y  are lld random varlables wlth denslty 

then Xf Y has denslty 
n ( e  z +e-' ' 

2 - - 42 
S(X) = 

r 2 ( e  ' -e+ x 2  x 4  
n2(1+-+-+ . . ) 

3! 5! 
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whlch 1s proportlonal to the t denslty wlth parameter u 2 1 .  The lnequalltles 
have been used by Klnderinan, Monahan and Rainage (1977)  In the develop- 
ment of several rejectlon algorlthms wlth squeeze steps: 

A. f a  (5) - < m l n ( 1 , F )  . Uslng thls lnequallty In the reJectlon method 

corresponds to uslng the ratio-of-unlforms method. 

M. The trlangular lower bound 1s the largest such 

1 

5 

2 B- f a ( x )  2 1- 

lower bound not dependlng upon a that 1s valld for all a 2 1 .  
a +l -- 

If thls lnequallty Is 2 <- C 1 2  where c =2(1+-) 
a - Je' c. f a W  I - 

1 + x 2  
used& the reJectlon method, then the reJectlon constant tends to 

as a+w. The bound can also be used as a quick reJectlon e 
step. 

12. A unlformly fast rejection method for the t famlly can be obtalned by uslng 
a comblnatlon of a constant bound (f (0)) and a polynomlal tall bound: for 

where c , b  the functlon (l+-) 

are chosen to keep the area under the cornblned upper bound unlformly 
bounded over a >O. 

a +1 
-7 

C , flnd an upper bound of the form x 2  2 

X U 

6. THE STABLE DISTRIBUTION. 

6.1. Definition and properties. 
It 1s well known that the sum of lld random varlables wlth finlte varlance 

tends In dlstrlbutlon to the normal law. When the varlance 1s not flnlte, the sum 
tends In dlstrlbutlon to one of the stable laws, see e.g. Feller (1971). Stable laws 
have thicker talls than the normal dlstrlbutlon, and are well sulted for modellng 
economlc data, see e.g. Mandelbrot (1963), Press (1975). Unfortunately, stable 
laws are not easy to work wlth because wlth a few exceptions no slmple expres- 
slons are known for the denslty or dlstrlbutlon functlon of the stable dlstrlbu- 
tlons. The stable dlstrlbutlons are most easlly deflned in terms of thelr charac- 
terlstlc functlons. Wltliout translatlon and scale parameters, the characterlstlc 
functlon 4 1s usually deflned by 

- I t I " ( 1 - i~  sgn(t )tan(%)) 

- I t I (l+iP-sgn(t)log( I t I )) 

(a#l) 2 
2 9 

(a=l) i 7r 

log(4U 1) = 

where - 1 < p i l  and O<a<2 are the parameters of the dlstrlbutlon, and sgn(t)  
1s the slgn of t .  Thls wlll be called Levy's representatlon. There 1s another 
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parametrlzatlon and representatlon, whlch we wlll call the polar form (Zolotarev, 
1959; Feller, 1971): 

log(4(t )) = - I t I cue-r 7 sgn(t) , 

Here, O < a < 2  and 17 I 5 2 m l n ( a , 2 - a )  are the parameters. Note however that 

one should not equate the two forms to  deduce the relatlonshlp between the 
parameters because the representatlons have dlfferent scale factors. After throw- 
lng In a scale factor, one qulckly notlces that the a’s are ldentlcal, and that ,6’ and 
7 are related vla the equatlon p=tan(r)/tan(an/2). Because 7 has a range whlch 
depends upon a, l t  1s more convenlent to  replace 7 by -mln(a,2-a)6, where 6 Is 
now allowed to  vary in [-1,1]. Thus, we rewrlte the polar form as follows: 

2 

7r 

2 

-i-min(a,z-a)6 7r sgn(t ) 
2 log($(t)) = - I t I & e  

When we say that a random varlable 1s stable (1.3,0.4), we are referrlng to 
the last polar form wlth a=1.3 and 6=0.4. The parameters p, 7 and 6 are called 
the skewness parameters. For P=O (y=O, 6=0), we obtaln the symrnetrlc stable 
dlstrlbutlon, whlch 1s by far the most lmportant sub-class of stable dlstrlbutlons. 
For all forms, the symrnetrlc stable characterlstlc functlon 1s 

QW = e - I t  l a  

By uslng the product of characterlstlc functlons, i t  1s easy to see that If 
X,, . . . , X n  are lld symmetrlc stable (a), then 

1 -- n 
n “ E X i  

i =I 

Is agaln symrnetrlc stable (a). The followlng partlcular cases are lmportant: the 
symrnetrlc stable (1) law colncldes wlth the Cauchy law, and the symrnetrlc 
stable (2) dlstrlbutlon 1s normal wlth zero mean and varlance 2. These two 
representatlves are typlcal: all symrnetrlc stable densltles are unlmodal (Ibragl- 
mov and Chernln, 1959; Kanter, 1975) and In fact bell-shaped wlth two lnflnlte 
talls. All moments exlst when a=2. For a<2, all moments of order < a  exlst, 
and the a-th moment 1s 00. 

The asyrnmetrlc stable laws have a nonzero skewness parameter, but In all 
cases, a 1s lndlcatlve of the slze of the tall(s) of the denslty. Roughly speaklng, 
the tall or talk drop off as 12 I -(l+a) as 12 I --too. All densltles are unlmodal, 
and the exlstence or nonexlstence of moments 1s as for the symrnetrlc stable den- 
sltles wlth the same value of a. There are two lnflnlte talk when 16 I #l or 
when all, and there 1s one lnflnlte tall othenvlse. When O<a<l, the mode has 
the same slgn as 6. Thus, for acl, a stable (a.1) random varlable 1s posltive, and 
a Stable (a,-1) random varlable Is negatlve. Both are shaped as the gamma den- 
shy. 

There are a few relatlonshlps between stable random varlates that wlll be 
useful In the sequel. It 1s not necessary to treat negatlve-valued skewness 
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parameters slnce mlnus a stable (a,@ random varlable 1s stable (a,-6) dlstrlbuted. 
Next, we have the followlng baslc relatlonshlp: ’ 

Lemma 6.1. 
Let Y be a stable ( a ’ , l )  random varlable wlth a’<l, and let X be an 

lndependent stable (a,@ random varlable wlth a#l. Then X Y 1 / a  1s stable 

(aa‘,S ). Furthermore, the followlng 1s true: afm1n(a,2-a) 
mln( aa’ ,2-aa’) 

A. 

B. 

C. 

D. 

E. 

If N 1s a normal random varlable, and Y 1s an lndependent stable (&,I) 
random varlable wlth a‘ < 1, then N 1s stable (2a’,O). 

A stable (’,1) random varlable 1s dlstrlbuted as 1 / ( 2 N 2 )  where N Is a nor- 

mal random varlable. In other words, I t  1s Pearson V dlstrlbuted. 
If N l , N 2 ,  ... are lld normal random varlables, then for integer IC 21, 

2 

k - 1  1 

j =o (2Nj 2)2’ 
n 

1s stable (2-k ,1). 
For N l , N 2 ,  ... , lld normal random varlables, and lnteger k 21, 

1s stable (21-k ,O). 
For N 1 , N 2 ,  ... , ild normal random varlables , and lnteger k 20, 

1 
1s stable (- 90). 2k +1 

Proof of Lemma 6.1. 
The flrst statement 1s left as an exerclse. If In It, we take a=2, 6=0, we 

obtaln part A. It 1s also seen that a symrnetrlc stable (1) 1s dlstrlbuted as a sym- 
metrlc stable (2) random varlable tlmes f l  where X 1s stable ( - , l ) .  But by the 

property that stable (1) random varlables are nothlng but Cauchy random varl- 
ables, 1.e. ratlos of two lndependent normal random varlables, we conclude that 

1 
2 
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X must be dlstrlbuted as i / (2N2) where N 1s normally dlstrlbuted. Thls proves 
part B. Next, agaln by the maln property, If X 1s as above, and Y 1s stable 
(a',l),  then X Y 2  1s stable (-,1), at least when d< l .  If thls 1s applled succes- 

slvely for a'=-,-,-, ..., we obtaln statement C. Statement D follows from 

statements A and C. Finally, uslng the fact that  a symmetrlc stable (1/2k+') 1s 

see that a stable (1/2k"',0) 1s dlstrlbuted as a Cauchy random varlable tlmes 

a' 
2 

1 1 1  
2 4 8  

dlstrlbuted as a symmetrlc stable (1/2k)  tlmes X 2 * ,  where X 1s stable (-,l), 1 we 
2 

Thls concludes the proof of part E. 

Properties A-E In Lemma 6.1 are all corollarles of the maln property glven 
there. The maln property 1s due to  Feller (1971). Property A tells us that all sym- 
metric stable random varlables can be obtalned If we can obtaln all posltlve 
(6=1) stable random varlables wlth parameter a<l. Property B 1s due to  Levy 
(1940). Property C goes back to Brown and Tukey (1946). Property D 1s but a 
slmple corollary of property C, and finally, property E Is a representatlon of 
Mltra's (1981). For other slmllar representatlons, see Mltra (1982). 

There Is another property worthy of mentlon. It states that all stable (a,&) 
random varlables can be wrltten as welghted sums of two lld stable ( a , l )  random 
varlables. It was mentloned In chapter IV (Lemma 6.l), but we reproduce I t  here 
for the sake of completeness. 

Lemma 6.2. 

I If X and Y are lld stable(a,l), then 2 t p X - q Y  1s stable(a,&) where 

sln( 
p "  = 

q a  = 

sln(7r mln(a,2-a)) 9 

1 T mln(a,2-a)(1-6) 
2 

sln( 

s h ( n  mln(a,2-a)) 
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Proof of Lemma 6.2. 
The characterlstlc functlon of 2 1s 

d( t  = E ( e  i t ~ x  )E ( e  -itqY ) 

= ? l (P t  1 
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where $ Is the characterlstlc functlon of the stable ( a , l )  law: 
-Ilnln(u.2-a) S P ( f )  

- I t  I u e  

Note next that for u >0, 

?lW= e 

+ q a e  " 1s equal to  

cos(u ) ( p  *+q ")-isln(u ) ( p  *-q ") 

7r 7r 

2 2 
i sln(u )cos(-m~n(aI2-a))s~n((-6m~n(a,2-a))) ) . 

7r 

2 
After replaclng u by Its value, -mln(cr,2-a), we see that we have 

Resubstltutlon glves us our result. 

6.2. Overview of generators. 
The dlfflculty wlth most stable densltles and dlstrlbutlon functlons 1s that no 

slmple analytlcal expresslon for Its computatlon 1s avallable. The exceptions are 
spelled out In the prevlous sectlon. Baslcally, stable random varlates wlth param- 
eter a equal to 2-k for k 2 0  , and wlth arbltrary value for 6, can be generated 
qulte easlly by the methods outllned in Lemmas 0.1 and 6.2. One Just needs to 
comblne an approprlate number of lld normal random varlates. For general a,& 
methods requlrlng accurate values of the denslty or dlstrlbutlon functlon are thus 
doomed, because these cannot be obtalned ln Anlte tlme. Approxlmate lnverslons 
of the dlstrlbutlon functlon are reported In Fama and Roll (1968), Dumouchel 
(1971) and Paulson, Holcomb and Leltch (1975). Paulauskas (1982) suggests 
another approxlmate method In whlch enough lld random varlables are summed. 
Candldates for summlng lnclude the Pareto densltles. For symmetrlc stable densl- 
tles, Bartels (1978) also presents approxlmate methods. Bondesson (1982) pro- 
poses yet another approxlmate method In whlch a stable random variable 1s wrlt- 
ten as an lnflnlte sum of powers of the event tlmes In a homogeneous Polsson 
process on [Otoo). The sum 1s truncated, and the tall sum 1s replaced by an 
appropriately plcked normal random varlate. 

Fortunately, exact methods do exlst. First of all, the stable denslty can be 
wrltten as an lntegral whlch In turn leads to a slmple formula for generatlng 
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stable random varlates as a comblnatlon of one unlform and one exponentlal ran- 
dom varlate. These generators were developed In sectlon N . 6 . 6 ,  and are based 
upon lntegral representatlons of Ibraglmov and Chernln (1959) and Zolotarev 
(1966). The generators themselves were proposed by Kanter (1975) and 

Chambers, Mallows and Stuck (1976), and are all of the form g ( U ) E  cy where 
E 1s exponentlally dlstrlbuted, and g (U) Is a functlon of a unlform (0,1] random 
varlate U. The sheer slmpllclty of the representatlon makes thls method very 
attractlve, even though g Is a rather compllcated functlon of Its argument 
lnvolvlng several trlgonometrlc and exponentlal/logarlthmlc operatlons. Unless 
speed 1s absolutely at a premlum, thls method 1s hlghly recommended. 

For symmetrlc stable random varlates wlth a l l ,  there 1s another represen- 
tatlon: such random varlates are dlstrlbuted as 

l-a -- 

Y 

where Y has the FeJer-de la Vallee Poussln denslty, and ,!?,,E, are lld exponen- 
tlal random varlates. Thls representatlon 1s based upon propertles of Polya 
characterlstlc functlons, see sectlon rV.6.7, Theorems rV.6.8, rV.6.9, and Example 
N.6.7 .  Slnce the FeJer-de la Vallee Poussln denslty does not vary wlth a, ran- 
dom varlates wlth thls denslty can be generated qulte qufckly (remark rV.S.1). 
Thls can lead to speeds whlch are superlor to the speed of the method of Kanter 
and Chambers, Mallows and Stuck. 

In the rest of thls sectlon we outllne how the serles method (sectlon W.5) 
can be used to generate stable random varlates. Recall that the serles method 1s 
based upon reJectlon, and that I t  Is deslgned for densltles that are glven as a con- 
vergent serles. For stable densltles, such convergent serles were obtalned by 
Bergstrom (1952) and Feller (1971). In addltlon, we wlll need good domlnatlng 
curves for the stable densltles, and sharp estlmates for the tall sums of the con- 
vergent serles. In the next sectlon, the Bergstrom-Feller serles wlll be presented, 
together wlth estlmates of the tall sums due to Bartels (1981). Inequalltles for the 
stable dlstrlbutlon whlch lead to practlcal lmplementatlons of the serles method 
are obtalned In the last sectlon. At the same tlme, we wlll obtaln estlmates of the 
expected tlme performance as a functlon of the parameters of the dlstrlbutlon. 
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6.3. The Bergstrom-Feller series. 
The purpose of thls sectlon Is to get ready for the next section, where the 

serles method for stable random varlates Is developed. The form of the charac- 
terlstlc functlon most convenlent to us Is the first polar form, wlth parameters Q 

and 7. To obtaln serles expanslons for the stable denslty functlon, we conslder 
the Fourler Inverse of 4, whlch takes a slmple form slnce I q5 I 1s absolutely 
integrable: 

00 

-00 
Y I 1  

7r 7r provlded that I a$-? I sL and that I -+$ I 5- wlth at least one of these 
2 2 2 

belng a strlct lnequallty. We have used the fact that changlng the sign of 7 Is 
equlvalent t o  mlrrorlng the denslty about the orlgln, and we have consldered a 
contour In the complex plane. The last expresslon for f wlll be our startlng 
polnt. Recall that we need not only a convergent serles, but also good bounds for 
f and for the tall sums. Bergstrom (1952) replaces each of the exponents In the 
last expresslon In turn by lts Maclaurln serles, and lntegrates (see also Feller 
(1971)). Bartels (1981) uses Darboux’s formula (1876) for the remainder term In 
the serles expanslon to obtaln good truncatlon bounds. In Theorem 6.1 below, we 
present the two Bergstrom-Feller serles together wlth Bartels’s bounds. The proof 
follows Bartels (1981). 
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Theorem 6.1. 
The stable ( a ! , ~ )  denslty f can be expanded for values a: 2 0  as follows: 

n 

j=i  
f ( a : )  = a,(a:>+A*,+,(a:) 

where 

r(-)a: j .  ]-%In( j (T+-)) “ 7  
U j ( 2 )  = -(-1)i-1 1 a! a! 

a!R j -I! 9 

n!(cos(O)) * I 
where 
slty Is 
verges 
15 I )  

6=0 If 750 and B=? If ~ > 0 .  For a: C O ,  note that the value of the den- 
equal to f ( -a : )  provlded that ? 1s replaced by -?. The expanslon con- 
for 1 < a ! s 2 .  For O < a < l ,  we have a divergent asymptotic serles for small 
l.e., for flxed n , A, (a: )-to as I a: I --to. Note also that 

n 1  R 
2 a !  2 

wlth 8.-max(O,-+-(~--)). The expanslon 1s convergent for O < a ! < l ,  and Is a 

dlvergent asymptotic expanslon at 
B, (a:)+O as I a: I 400. Furthermore, for all a!, 

l a :  I --too when a>l ,  1.e. for flxed n ,  

r(a!+i) 
n(a: cos(6)>*+1 * 

f 
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Proof of Theorem 6.1. 

e' wlth complex x leads to  
n-1 ,j z n  

e' = T + y M n  , 

The proof 1s based upon a formula of Darboux (1876), whlch when applled to 

j = o  .7. 7 2 .  

where M, = l e  *', I 5 1, and 8 belng a real 
constant In the range O g < l .  In partlcular, for Re(z))>O, I Mn I < - I e' I . For 

Re(z)<O, I M, I 51. Apply thls result wlth z --txe - In the lnverslon for- 
mula for f , and note that Re(z)LO. Take the Integrals, and observe that the 
remainder term can be bounded as follows: 

belng a complex constant wlth I 

j(++q) 

n +1 r(-)a: 
1 cy =- 

n +1 an. __. 

n !(cos(a+q)) a 

The angle $ can be chosen wlthln the restrlctlons put on It, to make the upper 
bound as small as posslble. Thls leads to  the cholce - when 750, and 0 when 

y>O. It 1s easy to verlfy that for l<cy52,  the expanslon 1s convergent. Flnally, 
the upper bound 1s obtalned by notlng that f ( a : ) s A  

The second expanslon 1s obtalned by applylng Darboux's formula to  
and lntegratlng. Repeatlng the arguments used for the flrst expanslon, 

we obtaln the second expanslon. Uslng Stlrllng's formula, I t  1s easy to verlfy that 
for O<cy<l, the expanslon 1s convergent. Furthermore, for Axed n , B, ( x ) - + O  as 

7 
cy 

e -toe J (967) 

I 2 I +oo, and f (a: ) s B , ( s ) .  

The convergent serles expanslon for a> l  requlres an lncreaslng number of 
terms t o  reach a glven truncatlon error as I x I Increases. The asymptotlc serles 
lncreases In accuracy and needs fewer terms as I x I Increases. As polnted out by 
Bartels (1981), the convergent serles generally tends to  lncrease flrst, before con- 
verglng, and the lntermedlate values may become so large that the Anal answer 
no longer has sufflclent slgnlflcant dlglts. Thls drawback occurs malnly for values 
of cy near 1, and large values of I 7 I . 
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6.4. The series method for stable random variates. 

denslty when 720: 
From Theorem 6.1, we deduce the followlng useful bound for the stable (a,?) 

CY 
1 (x Lo) 

n 1  n n 1  n 
2 C Y  2 C Y  2 

where ~=maX(O,-+-(-y----)) and q=max(O,-+-(?--)). The bounds are 
valld for all values of CY. The domlnatlng curve wlll be used In the reJectlon algo- 
rlthm to be presented below. Taklng the mlnlmum of the bounds glves basically 
two constant pleces near the center and two polynomlally decreaslng talls. There 
1s no problem whatsoever wlth the generatlon of random varlates wlth denslty 
proportlonal to  the domlnatlng curve. Unfortunately, the bounds provlded by 
Theorem 6.1 are not very useful for asymmetrlc stable random varlates because 
t& mode 1s located away from the orlgln. For example, for the posltlve stable 
denslty, we even have f (O)=O. Thus, a constant/polynomlal domlnatlng curve 
does not cap the denslty very well In the reglon between the orlgln and the mode. 
For a good At, we would have needed an expanslon around the mode lnstead of 
two expanslons, one around the orlgln, and one around 00. The lnefflclency of the 
bound 1s easlly born out In the lntegral under the domlnatlng curve. We wlll con- 
slder four cases: 

?=O,a> 1 (symmetrlc stable). 
~ = O , C Y <  1 (symmetrlc stable). 
7=(2-a)-,a> 1 (posltlve stable). 7r 

2 
?r 
2 

r=cr-,a< 1 (posltlve stable). 

The upper bound glven to us 
symmetrlc stable denslty, the 
gln, whlle for the asymrnetrlc 
and x by -x . Recalllng that 

00 

Jmln(A ,BZ-( '+~)) dx 
0 

1s of the form mln(A ,Bx-( '+~))  for 2 >O. For the 
domlnatlng curve can be mlrrored around the orl- 
cases, we need to replace A ,B by values A * ,B*, 
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CASE I A 

I t  1s easy to  compute the areas under the varlous domlnatlng curves. We offer 
the followlng table for A ,B : 

B 

r(;) 
1 

3 
7r 0 an(sin( (a-l)-)) 

r($) 

an(cos( -)) 2 

1 
4 

an - 

r(a+l) 
7r(cOs(+)Q+l 

r(a+i) 
n(-cos( -))Q+l 

2a 

n 
2a 

For example, In case 1, we see that the area under the domlnatlng curve 1s 

where we used the followlng lnequalltles: (1) ( a + l ) / ~ " / ( ~ + " ) 5 2  (a> 1); (11) 

sln(7r/(2a))>i/a; (111) r ( u  1 5 2  ( 2 5 u  53); (iv) r ( u  )<r($)=fi ($521 51). 
Some of the lnequalltles are rather loose, so that the actua! A t  1s probably much 
better than what 1s predlcted by the upper bound. For a=2, the normal denslty, 
we obtaln 321/6f2/3. The lmportance of the good A t  1s clear: we can now use the 
domlnatlng curve qulte confidently In any rejectlon type algorlthm for symmetrlc 
stable random varlate generatlon when a>l. The story 1s not so rosy for the 
three other cases, because the lntegral of the domlnatlng curve 1s not unlformly 
bounded over the speclfied parameter ranges. The actual verlflcatlon of thls state- 
ment 1s left as an exerclse, but we conclude that I t  1s not worth to  use the 
Bergstrom-Feller serles for asymrnetrlc stable random varlates. For thls reason, 
we wlll Just concentrate on the symrnetrlc case. The notatlon a, , b , ,  A , ,  B, 1s 
taken from Theorem 6.1. Furthermore, we define a denslty g and a normallzatlon 
constant c by 
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where p=O for a<l,  and $==n/(2a) otherwlse. The algorlthm 1s of the following 
form: 

Series method for symmetric stable density; case of parameter > 1 

REPEAT 
Generate x with density g . 
Generate a uniform [0,1) random variate U. 
T +Ucg ( X )  
S t O ,  n -0 (Get ready for series method.) 
REPEAT 

n +n +1,s +s f a ,  ( X )  
UNTIL I S-T I >A,+I(X) 

UNTIL T <s 
RETURN x 

Because of the convergent nature of the serles Ea,, thls algorlthm stops wlth 
probability one. Note that the dlvergent asymptotic expanslon 1s only used In the 
deflnltlon of c g .  It could of course also be used for lntroduclng qulck acceptance 
and reJectfon steps. But because of the dlvergent nature of the expanslon I t  1s 
useless In the deflnltlon of a stopping rule. One posslble use 1s as lndlcated in the 
modlfled algorlthm shown below. 
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Series method for symmetric stable density; caae of parameter > 1 

REPEAT 
Generate x with density g . 
Generate a uniform [0,1] random variate U . 
T +Ucg ( X )  
s -0, n +O (Get ready for series method.) 

V+-B,(X), W+b ,(X) 
IF  T S W - V  

THEN RETURN x 
ELSE IF W-V < T 5 W + V 

THEN 
REPEAT 

n+n+1,S+-S+n,(X) 
UNTIL I S-T I L A , + , ( X )  

UNTIL T I S  A N D  T 5 W+V 
RETURN x 

Good speed 1s obtalnable If we can set up some constants for a Axed value of a. 
In partlcular, an array of the flrst m coefflclents of x j - l  In the serles expanslon 
can be computed beforehand. Note that for a<l, both algorlthms shown above 
can be used agaln, provlded that the roles of a, and b,  are Interchanged. For 
the modlfled verslon, we have: 



467 IX.6.STABLE DISTRIBUTION 

Series method for symmetric stable density; case of parameter less than or equal 
to one 

REPEAT 
Generate x with density g . 
Generate a uniform [O,l] random variate U. 

s +O, n -0 (Get ready for series method.) 
T tucg (X) 

V + A  a(X),  W+U l ( X )  
IF T S W - V  

THEN RETURN X 
ELSE IF' W-V < T 5 W + V 

T F N  
REPEAT 

n +-n +1,S +S +6, (X) 
UNTIL I S-T I >B,+I(X) 

UNTIL T < S  A N D  T < W + V  
RETURN x 

6.5. Exercises. 

1. 

2.  

3. 

1 
2 

Prove that a symmetrlc stable random varlate wlth parameter - can be 

obtalned as c (N1-2-N2-2) where N l , N ,  are lld normal random varlates, and 
c >O 1s a constant. Determlne c too. 
The expected number of lteratlons In the serles method for sy'mmetrlc stable 
random varlates wlth parameter cy ,based upon the lnequalltles glven In the 
text (based upon the Bergstrom-Feller serles), Is asymptotlc to 

2 

r e  a2 

as (240. 
Conslder the serles method for stable random varlates glven In the text, 
without qulck acceptance and reJectlon steps. For all values of cy, determlne 
E ( N ) ,  where N 1s the number of computatlons of some term a, or 6, (note 
that slnce a, or 6, are computed In the lnner loop of two nested loops, I t  1s 
an approprlate measure of the tlme needed to generate a random varlate). 
For whlch values, If any, 1s E ( N )  flnlte ? 
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4. 

5. 

6. 

7. 

8.  

7. 

Some approxlmate methods for stable random varlate generatlon are based 
upon the followlng llmlt law, whlch you are asked to prove. Assume that 
Xl, ... are lld random varlables wlth common dlstrlbutlon functlon F satlsfy- 

b 1-F (5 > - (->" (5 -00) , 
5 

cb*  F (-5 ) - (-)>" (a: +-m) , 
15 I 

for some constants O<a<2 ,  b ,b* L O ,  b +b* >O. Show that there exlst nor- 
mallzlng constants c, such that 

1 ,  
C Xj-Cn 

- 
1 - j = 1  

n "  

tends In dlstrlbutlon to  the stable (a$) dlstrlbutlon wlth parameter 
b "-b *a 

P =  b a + b * a  
(Feller, 1971). 

Thls 1s a contlnuatlon of the prevlous exerclse. Glve an example of a dlstrl- 
butlon wlth a denslty satlsf'ylng the tall condltlons mentloned In the exerclse, 
and show how you can generate a random varlate. Furthermore, suggest for 
your example how c, can be chosen. 
Prove the flrst statement of Lemma 6.1. 

Flnd a slmple domlnatlng curve with unlformly bounded lntegral for all posl- 
tlve stable densltles with parameter a>l. Mentlon how you would proceed 
wlth the generatlon of a random varlate wlth denslty proportlonal to  thls 
curve. 
In the splrlt of the prevlous exerclse, And a slmple domlnatlng curve wlth 
unlformly bounded lntegral for all symmetric stable densltles; Q can take all 
values In (0,2]. 

NONSTANDARD DISTRIBUTIONS. 

7.1. Bessel function distributions. 

sl ty 
The Polya-Aeppli dlstrlbutlon Is a three-parameter distrlbutlon wlth den- 
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where e>O, x>O, @ L O  are the parameters and la ( 2 )  1s the modlfled Bessel func- 
tlon of the Arst klnd, formally defined by 

The normallzatlon constant C Is glven by 

The name Polya-Aeppll Is used In many texts such as Ord (1972, p. 125-126). 
Others prefer the name ”type I Bessel functlon dlstrlbutlon” (Feller, 1971, p. 57). 
By uslng the expanslon of the Bessel functlon, I t  1s not dlmcult to see that  If 2 is 

Polsson (-) dlstrlbuted, and G Is gamma (x+Z) dlstrlbuted, then - has the 

Polya-Aeppll dlstrlbutlon. We summarlze: 

p” G 
49 e 

Polys-Aeppli random variate generator 

p” 
4e 

Generate a Poisson (-) random variate 2 ,  

Generate a gamma (X+Z) random variate G . 
G RETURN X+- e 

The Polya-Aeppll famlly contalns as a speclal case the gamma famlly ( set @=O, 
8 4  ). Other dlstrlbutlons can be derlved from I t  wlthout much trouble: for 
example, If X 1s Polya-Aeppll (P,x,->, then X 2  1s a type I1 Bessel functlon dlstrl- 

butlon wlth parameters (@,A,@, 1.e. X 2  has denslty 
22 -0- 

e 
2 

f ( 2 )  = DxXe IA-l(Pz> (z 20) , 
where D=9 P e -P2/(2e). Speclal cases here lnclude the folded normal dlstrlbu- 
tlon and the Raylelgh dlstrlbutlon. For more about the propertles of type I and I1 
Bessel functlon dlstrlbutlons, see for example Kotz and Srlnlvasan (lSSQ), Lukacs 
and Laha (1964) and Laha (1954). 

Bessel functlons of the second klnd appear In other contexts. For example, 
the product of two lld normal random varlables has denslty 

where ICo 1s the Bessel functlon of the second klnd wlth purely lmaglnary argu- 
ment of order 0 (Sprlnger, 1979, p. 160). 
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In the study of random walks, the followlng denslty appears naturally: 

I r < x >  ( x > O )  9 
{ ( x ) = - e  r -2 

X 

where r >O 1s a parameter (see Feller (1971, pp. 59-60,476)). For lnteger r , thls 1s 
the denslty of the tlme before level r 1s crossed for the flrst tlme In a symrnetrlc 
random walk, when the tlme between epochs 1s exponentlally dlstrlbuted: 

Xt0 ,L  t o  
REPEAT 

Generate a uniform [-1,1] random variate U . 
L t L  +sign( U )  
x t x - l o g (  I u I ) 

UNTIL L =r 

RETURN x 

Unfortunately, the expected number of lteratlons 1s 00, and the number of itera- 
tlons 1s bounded from below by r , so thls algorlthm 1s not unlformly fast  In any 
sense. We have however: 

Theorem 7.1. 
Let T >O be a real number. If G ,B are Independent gamma ( T  ) and beta 

1 1 
2 2 

( - ,T  +-) random varfables, then 

G 

has denslty 

Proof of Theorem 7.1. 

found for example In Magnus et  al. (lQ66, p. 84): 
We use an lntegral representatlon of the Bessel functlon I,. whlch can be 
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r(r+$-) * 

1 r 1 . x .  1 r 1  r -- 

The result follows dlrectly from thls. 

The algorithm suggested by Theorem 7.1 Is unlformly fast  over all T > O  if 
unlformly fast gamma and beta generators are used. Of course, we can also use 
dlrect rejectlon. Bounds for f can for example be obtalned startlng from the 
lntegral representatlon for f glven In the proof of Theorem 7.1. The acceptance 
or reJectlon has to be declded based upon the serles method In that case. 

7.2. The logistic and hyperbolic secant distributions. 

functfon 
A random varlable has the logistic distribution when I t  has dlstrlbutlon 

1 F ( x )  = 
1+e+ 

on the real Ilne. The corresponding denslty 1s 
1 

2 + e Z  +e-2 
f ( X I =  

For random varlate generatlon, we can obvlously proceed by lnverslon: when U 
1s unlformly dlstrlbuted on [0,1], then X t l o g ( -  U ) 1s loglstlc. To beat thls 

method, one needs either an extremely efflclent reJectlon or acceptance- 
complement algorlthm, or a table method. ReJectlon could be based upon one of 
the followlng lnequalltles: 
A. I : thls 1s reJectlon from the Laplace denslty. The reJectlon con- 

1- u 

f ( x  )s e-1 
stant 1s 2 .  

1 B. f (a:)s-* . thls 1s reJectlon from the denslty of 2 C  where c 1s a Cauchy 
4+x2 

random varlate. The reJectlon constant 1s L=1.57. 

A dlstrlbutlon related to the loglstlc dlstrlbutlon 1s the hyperbolic secant 
2 

dlstrlbutlon (Talacko, 1958). The denslty 1s glven by 

2 

?r(e + e - 2  ) 
f ( X I =  
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Both the loglstlc and hyperbollc secant dlstrlbutlons are members of the famlly of 
Perks dlstrlbutlons (Talacko, lQSS), wlth densltles of the form c / ( a  +e ' + e  -' ), 
where a >O - 1s a parameter and c 1s a normallzatlon constant. For thls famlly, 
rejection from the Cauchy denslty can always be used slnce the denslty IS 

bounded from above by c / ( a  +2+z2), and the resultlng reJectlon algorlthm has 
unlformly bounded rejectlon constant for a LO. For the hyperbollc secant dlstrl- 
butlon In partlcular, there are other posslbllltles. One can easlly see that I t  has 
dlstrlbutlon functlon 

2 F ( z )  = -arc tan(e ) . 
7r 

7r 

2 
Thus, X t log( tan( -  U)) 1s a hyperbollc secant random varlate whenever U 1s a 

unlform [0,1] random varlate. We can also use reJectlon from the Laplace denslty, 
based upon the lnequallty f ($)<Le-\ ' 1 . Thls ylelds a qulte acceptable reJec- 

tlon constant of -. The reJectlon condltlon can be conslderably slmpllfled: 
7r 

4 

7r 

Rejection algorithm for the hyperbolic secant distribution 

REPEAT 
Generate U uniformly on [OJ] and v uniformly on [-1,1]. 

X-ign(V)log( I V I ) 
UNTIL u( I v I +1)<1 
RETURN x 

Both the loglstlc and hyperbollc secant dlstrlbutlons are lntlmately related to  a 
host of other dlstrlbutlons. Most of the relatlons can be deduced from the lnver- 
slon method. For example, by the propertles of unlform spaclngs, we observe that 
U - 1s dlstrlbuted as E,/E, ,  the ratlo of two lndependent exponentlal random 

1- U 
varlates. Thus, log(E l)-log(E,) 1s loglstlc. Thls In turn lmplles that the dlfference 
between two lld extreme-value random varlables (l.e., random varlables wlth dls- 

trlbutlon functlon e - e " )  1s loglstlc. Also, t an( -u)  1s dlstrlbuted as the absolute 

value of a Cauchy random varlable. Thus, If C 1s a Cauchy random varlable, and 
Nl,N, are lld normal random varlables, then log( 1 C I ) and 
log( I N ,  I )-log( I N ,  I ) are both hyperbollc secant. 

Many propertles of the loglstlc dlstrlbutlon are reviewed In Olusegun George 
and Mudholkar (lQ81). 

7r 

2 
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7.3. The von Mises distribution. 
The von Mises distribution for polnts on a clrcle has become lmportant In 

the statlstlcal theory of dlrectlonal data. For Its propertles, see for example the 
survey paper by Mardla (1975). The dlstrlbutlon 1s completely determlned by the 
dlstrlbutlon of the random angle 0 on [-7r,7r]. There 1s one shape parameter, 
rc>O, and the denslty 1s glven by 

Here I ,  1s the modlfled Bessel functlon of the flrst klnd of order 0: 

O 0 l z  I o ( $ )  = - ( - )2j  
j = o  .7 *!2 2 

Unfortunately, the dlstrlbutlon functlon does not have a slmple closed form, and 
there 1s no slmple relatlonshlp between von Mlses ( I C )  random varlables and von 
Mlses (1) random varlables whlch would have allowed us to  ellmlnate In effect the 
shape parameter. Also, no useful characterlzatlons are as yet avallable. It seems 
that the only vlable method 1s the reJectlon method. Several reJectlon methods 
have been suggested In the llterature, e.g. the method of Selgerstetter (1974) (see 
also Rlpley (1983)), based upon the obvlous lnequallty 

f (8) I f (0) 
whlch leads to a rejectlon constant 27r f (O).whlch tends qulckly to 00 as IC+OO. 

We could use the unlversal boundlng methods of chapter 7 for bounded mono- 
tone densltles slnce f 1s bounded, U-shaped (wlth modes at 7r and -7r) and sym- 
metric about 0. Fortunately, there are much better alternatlves. The leadlng 
work on thls subject 1s by Best and Flsher (1979), who, after conslderlng a 
varlety of domlnatlng curves, suggest uslng the wrapped Cauchy denslty as a 
domlnatlng curve. We wlll Just content ourselves wlth a reproductlon of the 
Best-Flsher algorlthm. 

We begln wlth the wrapped Cauchy dlstrlbutlon functlon wlth parameter p:  

(1+p2)c0s(s )-2p 

2n 1 +p2-2pcos( 5 ) 
G ( x ) =  - arccos 

For later reference, the denslty g for G 1s: 

1 1-p2 

2n 1+p2-2pcos(z ) 
s ( a : > =  - ( 1 .  IL.->. 

A random varlate wlth thls dlstrlbutlon can easlly be generated via the lnverslon 
method: 
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Wrapped Cauchy generator; inversion method 

(SET-UP] 
1+p2 a e- 

2P 
[GENERATOR] 
Generate a uniform [-l,l] random variate u 
z +cOs(7rV) 
RETURN e t  sign( U 1 

1 l+SZ 
cos( - 

a +z 

If the wrapped Cauchy dlstrlbutlon 1s to be used for rejection, we need to flne 
tune the dlstrlbutlon, 1.e. choose p as a functlon of IC. 

Theorem 7.2. (Best and Fisher, 1979) 

wrapped Cauchy denslty wlth parameter p>O. Then 
Let f be the von Mlses denslty wlth parameter n>O, and let g be the 

f ( 4 5 c g ( z >  ( 1 .  I I n >  
where c 1s a constant dependlng upon tc and p only. The constant 1s mlnlmlzed 
wlth respect to p for the value 

r -G 
P =  

2tG 

where 

T =1+d1+4rc2. 

The expected number of lteratlons In the reJectlon algorlthm 1s 
1+P2 K-- 

2pe 2P 

Furthermore, llm c =oo and llm c = 
K.10 K 4 0 3  
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Proof of Theorem 7.2. 
Conslder the ratlo 

475 

The derlvatlve of h 1s zero for sln(z)=O and for cos(s)=(l+p2--)/(2p). 2P By 
IC 

verlfylng the second derlvatlve of h , we And a local maxlmum value 

M I  = (1-p)2e" 

at sln(a: )=0 when 

and a local maxlmum value 
l+P2 IC-- 

M , = X ,  2P 
IC 

at cos(z )=(l+p2--)/(2p) 2P when 
IC 

2P < I C < y .  2P 

(1+Pl2 (1-PI 

Let po and p,  be the roots In (0,l) of -- 2p -IC and 2p =IC respectlvely. The 

two lntervals for p deflned by the the two sets of lnequalltles are nonoverlapplng. 
The two lntervals are (O,po) and (po,mln(l,p,)) respectlvely. The maxlmum M 1s 
deflned as M ,  on (O,po)  and as M ,  on (po,mln(l,p,)). 

To  flnd the best value of p,  I t  sumces to And p for whlch M as a functlon of 
p 1s mlnlmal. Flrst, M ,  consldered a s  a functlon of p 1s mlnlmal for p=po. Next, 
M ,  consldered as a functlon of p 1s mlnlmal at the solutlon of 

(1-Pl2 (1+d2 

-ICp4+2p3+2ICp2+2p-IC=O , 

1.e. at p=p*=(r-&)/(2r)  where r = l + d S .  It can be verlfled that 
p * E(po,mln(l,p,)). But because M , ( p o ) = M 2 ( p O ) > M 2 ( p  * ), I t  1s clear that the 
overall mlnlmum 1s attained at p *. The remalnder of the statements of Theorem 
7.2 are left as an exerclse. I 

The reJectlon algorlthm based upon the lnequallty of Theorem 7.2 1s glven 
below: 
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vop Mise8 generator (Best and Fisher, 1979) 

[SET-UP] 

6 -- 
[GESEFMTOR] 
REPEAT 

1-p2 

2P 

Generate iid 
z tcos(7rU) 

l+SZ wt- 
5 +z 

uniform [-1,l] random variates U t  V .  

Y t K ( 6  - W )  
Accept --[ W(2-w)-v 201 (Quick acceptance step) 

IF NOT Accept THEN Accept +[ log(T)+l -W 201 
W 

Uh'TIL Accept 

Two Anal computatlonal remarks. The coslne In the deflnltlon of 2 can be 
avolded by uslng an appropriate Polar method. The coslne In the last statement 
of the algorlthm cannot be avolded. 

7.4. The Burr distribution. 
In a serles of papers, Burr (1942, 1968, 1973) has proposed a versatlle famlly 

of densltles. For the sake of completeness, hls orlglnal llst 1s reproduced here. The 
parameters T ,k: ,c  are posltlve real numbers. The fact that k could take non- 
lnteger values 1s bound to  be confuslng, but at thls polnt I t  1s undoubtedly better 
to stlck to the standard notatlon. Note that a llst of dlstrlbutlon functlons, not 
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densltles, 1s provlded In the table. 

Burr XI 

Burr XI1 

477 

1 
2n 

(x --sin(27rx ))r [OJI 

1-(1+sC )-k (0,m) 

Most of the densltles In the Burr famlly are unlmodal. In all cases, we can gen- 
erate random varlates dlrectly vla the lnverslon method. By far the most lmpor- 
tant of these dlstrlbutlons 1s the Burr XI1 dlstrlbutlon. The correspondlng den- 
SltY, 

wlth parameters c , k  >O can take a varlety of shapes. Thus, f 1s partlcularly 
useful a s  a flexlble domlnatlng curve In random varlate generatlon (see e.g. Cheng 
(1077)). As polnted out by Tadlkamalla (1080), the Burr III denslty 1s even more 
flexlble. It 1s called the reclprocal Burr dlstrlbutlon because the reciprocal of a 
Burr XI1 wlth parameters c ,k  has the Burr I11 dlstrlbutlon functlon 

The denslty 1s 
kcx ck -l 

( l f x  Ik +l 
f ( X I =  

I t  should be noted that a myrlad of relatlonshlps exlst between all the Burr dls- 
trlbutlons, because of the fact that  all are dlrectly related to the unlform dlstrl- 
butlon vla the probablllty lntegral transform. 
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7.5. The generalized inverse gaussian distribution. 

parameter dlstrlbutlon wlth denslty 
The generalized inverse gaussian, or GIG, dlstrlbutlon 1s a three- 

x 

Here XER , x > O ,  and $>O are the parameters of the dlstrlbutlon, and K ,  1s the 
modlfled Bessel functlon of the thlrd klnd, deflned by 

03 
1 

K x ( u )  = - cosh(Xu)e-ZCoSh(U) du . 
2 -w 

A random varlable wlth the denslty glven above wlll be called a GIG (X,$,x) ran- 
dom varlable. The GIG famlly was introduced by Barndorff-Nlelsen and Halgreen 
(1977), and Its propertles are revlewed by Blaeslld (1978) and Jorgensen (1982). 
The lndlvldual densltles are gamma-shaped, and the famlly has had qulte a bit of 
success recently because of Its appllcablllty In modellng. Furthermore, many 
well-known dlstrlbutlons are but speclal cases of GIG dlstrlbutlons. To clte a few: 
A. x = O :  the gamma denslty. 
B. $=O: the denslty of the lnverse of a gamma random varlable. 

1 

2 
c. 
Furthermore, the GIG dlstrlbutlon 1s closely related t o  the generallzed hyperbollc 
dlstrlbutlon (Barndorff-Nlelsen (1977, 1978), Blaeslld (1978), Barndorff-Nlelsen 
and Blaeslld ( lQSO)) ,  whlch 1s of lnterest In Itself. For the relatlonshlp, we refer to 
the exerclses. 

We begln wlth a partlal llst of propertles, whlch show that there are really 
only two shape parameters, and that  for random varlate generatlon purposes, we 
need only conslder the cases of x=$ and X>O. 

A=---. . the lnverse gausslan dlstrlbutlon (see sectlon W.4.3). 
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Lemma 7.4. 
Let GIG (.,.,.) and Gamma (.) denote GIG and gamma dlstrlbuted random 

varlables wlth the glven parameters, and let all random varlables be Independent. 
Then, we have the followlng dlstrlbutlonal equlvalences: 
A. GIG (h,+,x) = -GIG 1 (X,-,xc + ) for all c >O. In partlcular, 

C C 

B. 

 GIG(^,$,+) =  GIG(-^,$,+) + -Gamma(h) 2 . 
$ 

C. 

For random variate generatlon purposes, we wlll thus assume that x=$ and 
that h>O. All the other cases can be taken care of vla the equlvalences shown In 
Lemma 7.4. By conslderlng log(f ), I t  1s not hard to  verlfy that the dlstrlbutlon 1s 
unlmodal wlth a o d e  m at 

In addltion, the denslty 1s log concave for Xzl. In view of the analysis of section 
VII.2, we know that thls 1s good news. Log concave densltles can be dealt wlth 
qulte efflclently In a number of ways. Flrst of all, one could employ the unlversal 
algorlthm for log concave densltles glven In sectlon VII.2. Thls has two dlsadvan- 
tages: flrst, the value of f (m ) has to be computed at least once for every choke 
of the parameters (recall that  thls lnvolves computlng the modlfled Bessel func- 
tlon of the thlrd klnd); second, the expected number of lteratlons In the rejectlon 
algorlthm 1s large (but not more than 4). The advantages are that the user does 
not have to do any error-prone computations, and that he has the guarantee that 
the expected tlme 1s unlformly bounded over all $>O, 121. The expected 
number of lterarlons can further be reduced by uslng the non-unlversal rejectlon 
method of sectlon VII.2.6, whlch uses reJectlon from a denslty wlth a flat part 
around m , and two exponentlal talls. In Theorem 2.6, a slmple formula Is glven 
for the locatlon of the polnts where the exponentlal talls should touch f : place 
these polnts such that the value of f at the polnts 1s -f (m ). Note that $0 

solve thls equaflon, the normallzatlon constant In f cancels out convenlently. 

1 
e 
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Because f (O)=O, the equatlon has two well-deflned solutlons, one on each slde of 
the mode. In some cases, the numerlcal solutlon of the equatlon 1s well worth the 
trouble. If one just cannot afford the tlme to solve the equatlon numerlcally, 
there 1s always the posslblllty of placlng the points symrnetrlcally at dlstance 
e / ( (e  -1)f ( m  ) from m (see sectlon VII.2.6), but thls would agaln lnvolve com- 
putlng f ( m ) .  Atklnson (1979,1982) also uses two exponentlal talls, both wlth 
and wlthout flat center parts, and to  optlmlze the domlnatlng curve, he suggests 
a crude step search. In any case, the generatlon process for f can be automated 
for the case X > l .  

When O < X < l ,  f 1s log concave for z <@/(l-X), and 1s log convex other- 
wlse. Note that thls cut-off polnt 1s always greater than the mode m , so that for 
the part of the denslty t o  the left of n ,  we can use the standard 
exponentlal/constant domlnatlng curve as descrlbed above for the case A l l .  The 
rlght tall of the GIG denslty can be bounded by the gamma denslty (by omlttlng 
the l/s term In the exponent). For most cholces of X<1 and $>O, thls 1s satls- 
factory. 

7.6. Exercises. 
1. The generalized logistic distribution. When X 1s beta ( a  , b ) ,  then 

v 
A log(-) 1s generallzed loglstlc wlth parameters ( a  , b  ) (Johnson and Kotz, 

1 - x  
1970; Olusegun George and OJo, 1980). Glve a unlformly fast reJectlon algo- 
rlthm for the generatlon of such random varlates when a =b 2 1 .  Do not use 
the transformatlon of a beta method glven above. 

03 L j  
2. Show that If L l , L  2,... are lid Laplace random varlates, then 7 1s logls- 

j = 1  3 
tlc. Hlnt: show flrst that the loglstlc dlstrlbutlon has characterlstlc functlon 

nit 
sin(nit ) 

=r(l-it )r(l+d ). Then use a key property of the gamma functlon. 

3. Complete the proof of Theorem 7.2 by rovlng that for the von Mlses gen- 

erator of Best and Flsher, llm c = &. 
IC-Nxl 

4. The Pearson system. In the beglnnlng of thls century, Karl Pearson 
developed hls well-known famlly of dlstrlbutlons. The Pearson system was, 
and stlll Is, very popular because the famlly encompasses nearly all well- 
known dlstrlbutlons, and because every allowable comblnatlon of skewness 
and kurtosls 1s covered by at least one member of the famlly. The famlly 
has 12 member dlstrlbutlons, and is descrlbed In great detall In Johnson and 
Kotz (1970). In 1973, McGrath and Irvlng polnted out that random varlates 
for 11 member dlstrlbutlons can be generated by slmple transformatlons of 
one or two beta or gamma random varlates. The exceptlon 1s the Pearson 
W dlstrlbutlon. Fortunately, the Pearson N denslty 1s log-concave, and can 
be dealt wlth qulte efflclently uslng the methods of sectlon VII.2 (see exerclse 
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-e aretan(+) c (I+($)')-' e 

5. 

1 
a >O;b  >- 

VII.2.1). The Pearson densltles are llsted in the table below. In the table, 
a ,b ,c ,d are shape parameters, and C 1s a normallzatlon constant. Verlfy 
the correctness of the generators, and In dolng so, determlne the normaliza- 
tion constants C .  

c(l+Z)-' 

'earson 

I 

o<b < l ; a  >O [-a ,o] 

I1 

I11 

rv 

V 

VI 

w 

VI11 

X 

XI 

XI1 

PEARSON DENSITIES 

f Is) I PARAMETERS I SUPPORT 

C(1+2)'"e-'' I ba > - l ; b  >o I [ -a ,co]  

c -- 
CX-' e * 1 c >b+1>0;a >o [ a  m) c (x -a  )' x - c  

I I 
I 

GENERATOR 

-a  ( a  + c  )X 
X+Y 

X gamma( b ) 
Y aammal d ) 

a ( X - Y )  
X + Y  

Xgamma( b +I) 
Yrramma(b +I) 

X 
b 

a -- 

X gamma( ba +I) 

1 
cx 

Xnamma(b -1) 
X + Y  

X 

- 

a- 

Xgamma(c -b -1) 
Yrramma(b +I) 

aN 
75% 

Xgamma( b --) 1 
N normal 

1 -_. 

a ( u ' -1 -1) 
U uniform[O,l] 

1 - 
a ( U b + ' - l )  

UuniformlO.11 
aE 

E exponential 
1 -- 

aU '-l 

Xbeta(  c +l,l-c ) I 
The arcsine distribution. A random varlable X on [-1,1] 1s said to have 
an arcslne dlstrlbutlon if Its density is of the form f (z )=(TI/=)-'. Show 
flrst that when U , V  are lid unlform [0,1] random varlables, then 
sln(nU),sln(2nU), -cos(2nU), sln(.rr( U +  V ) ) ,  and sin(r( U - V ) )  are all have 
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0. 

7. 

8. 

9. 

the arcslne dlstrlbutlon. Thls lmmedlately suggests several polar methods for 
generatlng such random varlates: prove, for example, that If (X,Y) is unl- 
formly dlstrlbuted In e,, then (x2-Y2)/(x2+ Y2) has the arcslne dlstrlbu- 
tlon. Uslng the polar method, show further the followlng propertles for lld 
arcslne random varlables x , Y : 

1 
(1) 

(11) 2 l+x 1s dlstrlbuted as x2 (Arnold and Groeneveld, 1980). 

(111) X 1s dlstrlbuted as 2 x f i  (Arnold and Groeneveld, 1980). 

(lv) X2-Y2 1s dlstrlbuted as XY (Arnold and Groeneveld, 1980). 

Ferreri’s system. Ferrerl (1964) suggests the followlng famlly of densltles: 

XY 1s dlstrlbuted as -(x+Y) (Norton, 1978). 
2 

6 
f ( X I =  c(c +ea+b(Z-pI2) ’ 

where a ,b ,c ,p are parameters, and 

Is a normallzatlon constant. The parameter c takes only. the values fl .  ks 
a +eo, the denslty approaches the normal denslty. Develop an efflclent unl- 
formly fast generator for thls famlly. 
The famlly of dlstrlbutlons of the form uX+bY where a ,b ER are parame- 
ters, and X,Y are Ild gamma random varlables was proposed by McKay 
(1932) and studled by Bhattacharyya (1942). Thls famlly has basically two 
shape parameters. Derlve Its denslty, and note that Its form 1s a product of a 
gamma denslty multlplled wlth a modlfled Bessel functlon of the second kind 
when a , b  >O. 

Toranzos’s system. Show how you can generate random varlates from 
Toranzos’s class (Toranzos, 1952) of bell-shaped densltles of the form 
Cx e e )* (x >0) ( C  1s a normallzatlon constant) In expected tlme unl- 
formly bounded over all allowable values of the parameters. Do not use C In 
the generator, and do not compute c for the proof of the unlform bounded- 
ness of the expected tlme. 
Tukey’s lambda distribution. In 1960, Tukey proposed a versatlle fam- 
lly of symrnetrlc densltles ln terms of the lnverse dlstrlbutlon functlon: 

1 
x P ( U )  = - ( U ~ - ( l - U ) ~ ) ,  

where XER 1s a shape parameter. Clearly, If u 1s a unlform [ O , l ]  random 
varlate, then F-l( U )  has the glven dlstrlbutlon. Note tha t  the denslty 1s not 
known In closed form. Tukey’s dlstrlbutlon was later generallzed in several 
dlrectlons, flrst by Ramberg and Schmelser (1972) who added a locatlon and 
a scale parameter. The most slgnlflcant generallzatlon was by Ramberg and 
Schmelser (1974), who deflned 
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10. 

11. 

F-l(  U )  = A,+-( 1 UXJ-(l-U) x ’) . 
A 2  

For yet another generallzatlon, see Ramberg (1975). In the Ramberg- 
Schmeiser form, A, 1s a locatlon parameter, and 1, 1s a scale parameter. The 
merlt of thls famlly of dlstrlbutlons 1s Its versatlllty wlth respect to Its use In 
modellng data. Furthermore, random varlate generatlon 1s trlvlal. It 1s there- 
fore lmportant to understand whlch shapes the denslty can take. Prove all 
the statements glven below. 
A. 

B. 
C. 

D. 
E. 

F. 
G. 

H. 

As &=A4*0, the denslty tends to  the loglstlc density. 
The denslty 1s J-shaped when A3=0. 

When A1=A3=0, and A2=A4-+0, the denslty tends to  the exponentlal 
de nsl ty . 
The denslty 1s U-shaped when l<A,,A,s2. 

Glve necessary and sumclent condltlons for the dlstrlbutlon to  be trun- 
cated on the left (rlght). 
No posltlve moments exlst when A 3 < - l  and A4>1, or vlce versa. 
The denslty f ( a : )  can be found by computlng l / F - ” ( u ) ,  where u 1s 
related to a: vla the equallty z=F- l (u) .  Thus, by lettlng u vary 
between 0 and 1, we can compute palrs (a : , !  ( a : ) ) ,  and thus plot the 
denslty. 
Show that for A1=O, A2=0.1975, A3=A,=0.1349, the dlstrlbutlon func- 
tlon thus obtalned dlffers from the normal dlstrlbutlon functlon by at 
most 0.002. 

For a general descrlptlon of the family, and a more complete blbllography, 
see Ramberg, Tadlkamalla, Dudewlcz and Mykytka (1979). 

The hyperbolic distribution. The hyperbollc dlstrlbutlon, lntroduced by 
Barndorff-Nlelsen (1977, 1978) has denslty 

‘ e  - c 7 w + p z  
= 2aK,(g) 

Here a> I ,8 I are the parameters, s,da2-$, and IC, 1s the modlfled Bessel 
functlon of the thlrd klnd. For p=O, the denslty 1s symrnetrlc. Show the fol- 
lowlng: 
A. The dlstrlbutlon 1s log-concave. 
B. If N 1s normally dlstrlbuted, and X 1s GIG (l,a2-$,1), then 

p x + N  d!? has the glven denslty. 
C. The parameters for the optlmal non-unlversal reJectlon algorlthm for 

log-concave densltles are expllcltly computable. ( Compute them, and 
obtaln an expresslon for the expected number of lteratlons. Hlnt: apply 
Theorem VII.2.0.) 

The hyperbola distribution. The hyperbola dlstrlbutlon, lntroduced by 
Barndorff-Nlelsen (1978) has denslty 
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1 - a m + p z  

2 K o ( g ) m  e 
f ( X I =  

Here a> I p I are the parameters, +=, and K O  1s the modlfled Bessel 
functlon of the thlrd klnd. For p=O, the denslty 1s symmetric. Show the fol- 
lowlng: 
A. 
B. If N 1s normally dlstrlbuted, and X 1s GIG (0,a2-p,1), then 

12. Johnson’s system. Every posslble comblnatlon of skewness and kurtosls 
corresponds to one and only one dlstrlbutlon In the Pearson system. Other 
systems have been deslgned to  have the same property too. For example, 
Johnson (1949) lntroduced a system deflned by the densltles of sultably 
transformed normal (p,a) random varlables N :  hls system conslsts of the 
S,, or lognormal, densltles (of e N ) ,  of the S, densltles (of e N / ( l + e N ) ) ,  
and the Su densltles (of slnh(N)=-(e/-eeN)). Thls system has the 

advantage that flttlng of parameters by the method of percentlles 1s slmple. 
Also, random varlate generatlon is slmple. In Johnson (1954), a slmllar sys- 
tem In whlch N 1s replaced by a Laplace random varlate with center at p 
and varlance a2 1s descrlbed. Give an algorlthm for the generatlon of a John- 
son system random varlable when the skewness and kurtosls are glven (recall 
that af%er normallzatlon to zero mean and unlt varlance, the skewness is the 
thlrd moment, and kurtosls 1s the fourth moment). Note that thls forces you 
In effect to determlne the dlfferent reglons In the skewness-kurtosls plane. 
You should be able to test very qulckly whlch reglon you are In. However, 
your maln problem 1s that the equatlons llnklng p and o t o  the skewness and 
kurtosls are not easlly solved. Provlde fast-convergent algorlthms for thelr 
numerlcal solutlon. 

The dlstrlbutlon 1s not log-concave. 

@X+N f i  has the glven denslty. 

1 
2 



Chapter Ten 
DISCRETE UNWARIATE DISTRIBUTIONS 

1. INTRODUCTION. 

1.1. Goals of this chapter, 
We wlll provide the reader wlth some generators for the most popular faml- 

lles of dlscrete dlstrlbutlons, such as the geornetrlc, blnomlal and Polsson dlstrl- 
butlons. These dlstrlbutloiis are the fundamental bulldlng blocks In dlscrete pro- 
bablllty. It 1s lmposslble to cover most dlstrlbutlons commonly used In practlce. 
Indeed, there Is a strong tendency to work more and more wlth so-called general- 
lzed distributions. These dlstrlbutlons are either deflned constructlvely by com- 
blnlng more elementary dlstrlbutlons, or analytlcally by provldlng a multl- 
parameter expresslon for the probablllty vector. In the latter case, random varl- 
ate generatlon can be problematlc slnce we cannot fall back on known dlstrlbu- 
tlons. Users are sometlines reluctant to deslgn thelr own algorlthms by mlmlcklng 
the deslgns for slmllar dlstrlbutlons. We therefore lnclude a short sectlon wlth 
universal algorlthins. These are in the splrlt of chapter VII: the algorlthms are 
very slmple albelt not extremely fast, and veiy linportantly, thelr expected tlme 
performance 1s known. Armed wlth the unlversal algorlthms, the worked out 
examples of thls chapter and the table methods of chapter VIII, the users should 
be able t o  handle most dlstrlbutlons to thelr satlsfactlon. 

We assume throughout thls chapter that the dlscrete randoin varlables are 
all Integer-valued. 
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1.2. Generating functions. 
Let be an integer-valued random varlable wlth probability vector 

p i  = P ( S = i )  (i Integer) . 

An lmportant tool In the study of dlscrete distrlbutlons 1s the moment generat- 
ing function 

m (s ) = E ( e S X )  = cpi e a ;  . 
1 

It 1s gosslble that n z  (s ) Is not finite for some or all values s >O. That of course is 
the inaln dlfference wlth the characteristic function of x'. If n2 (s ) is flnlte in 
some open Interval contalnlng the orlgln, then the coefflclent of s /n ! in the 
Taylor serles expaiislon of 172 (s ) is the n -th moment of X.  

A related tool 1s the factorial moment generating function, or slmply 
generatlng functlon, 

k ( s )  = E ( s  X ) = c p j s *  , 
1 

whlch 1s usually only employed for iioiinegatlve random varlables. Note that the 
serles In the deflnltlon of k ( s  ) 1s convergent for I s I 51 and that 
??a (s ) = k (e ). Note also that provlded that the n -th factorlal moment (l.e., 
E (X(X-1) ' (X-?t +1))) of X 1s flnlte, we have 

k('L)(l) = E (X(X--1) ' * ( X - n  +1)) . 

In partlcular E (X)=k'(l) and var (X)=k"(1)+k'(1)-kf2(1). The generatlng 
fuiictlon provldes us often wlth the simplest method for computlng moments. 

It 1s clear that if X,, . . . , x, are lndependent random varlables wlth 
moment generatlng functlons 9 n 1 ,  . . . , m, , then EX, has moment generating 
functlon nmi. The same property remalns valid for the generatlng functlon. 

Example 1.1. The binomial distribution. 
A Bernoulli ( p  ) random variable 1s a (0,l)-valued random varlable tak- 

lng the value 1 wlth probablllty p . Thus, I t  has generatlng function 1-p +ps . A 
binomial ( n  ,p  ) random variable 1s deflned as the sum of n lld Bernoulll (p ) 
random varlables. Thus, I t  has generatlng functlon (1-p +ps )" . 1 
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Example 1.2. The Poisson distribution. 
Often I t  Is easy to compute generating functlons by explicitly computing the 

convergent Iiifliilte serles Cs p i .  Thls wlll be lllustrated for the Polsson and 

geometrlc dlstrlbutlons. X Is Poisson (A)  when P(X=i)=-e-’ x i  
summlng s i  p i ,  we see that the generatlng functlon Is e-””. 2 !  x 1s geometric (i 20). By 

( p  ) when P (x=i)=(l-p ) i  p (i LO). The correspondlng generatlng functlon 1s 
P /(1-(1-P 1s 1- I 

If one 1s shown a generatlng functlon, then a careful analysls of Its form can 
provlde valuable clues as to how a random varlable wlth such generatlng functlon 
can be obtalned. For example, If the generatlng functlon 1s of the form 

g ( r l -  (s 1) 

where g ,IC are other geiieratlng functlons, then I t  sumces to take X,+ +XN 
where the Xi’s are lld random varlables wlth generatlng functlon IC , and N 1s an 
lndependent random varlable wlth generatlng functlon 9 . Tlils follows from 

00 

g ( I C  ( s  )) = P ( N  = n  )kn (s ) (deflnltlon of g ) 
n =O 

00 00 

n =O i =O 

= P ( N = n ) C P ( X , +  - * * +Xn=i)s’ 

co 03 

i =O n =o 
00 

= s ’P(X ,+  * * +Xp/=i).  
i =O 

Example 1.3. 

XI+ 
If x,, ... are Bernoulll ( p )  random varlables and N 1s Polsson (A), then 

* * +XN has generatlng functlon 
e -X+X(1-p +ps ) = e - x p  +Xpe 

1.e. the random sum 1s Polsson ( X p  ) dlstrlbuted (we already knew thls - see 
chapter VI). 

A compound Poisson distribution 1s a dlstrlbutlon wlth generatlng func- 
where IC 1s another generatlng functlon. By taklng tl0n of the form e 
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I; (s )=s , we see that the Polsson dlstrlbutlon Itself 1s a compoulid Polsson dlstrl- 
butlon. Another example 1s glven below. , 

Example 1.4. The negative binomial distribution. 
We defliie the negative binomial distribution wltb parameters ( n  , p  ) 

( n  > 1  1s Integer, p f(0,l)) as the dlstrlbutlon of the sum of n Ild geornetrlc ran- 
dom varlables. Thus, I t  lias generatlng functlon 

n 
-X+Xk ( 8  ) ) = e  P 

l--(l--p )s ( 

where A = nlog(-) 1 and 
P 
log( 1-( 1-21 )s ) 

W P  ) 
k ( S )  = 

The functlon k (s ) 1s the generatlng Punctlon of the logarithmic series distri- 
bution wlth parameter 1-p . Thus, we have just shown that the negatlve blno- 
mlal dlstrlbutlon 1s a compound Poisson dlstrlbutlon, and that a negatlve blno- 
mlal random varlable can be generated by summlng a Polsson (A)  number of lld 
logarlthmlc serles random varlables (Quenoullle, 1949). 

, 

Another common operatlon 1s the mlxture operatlon. Assume that glven Y ,  
x has generatlng functlon k y ( s  ) where Y 1s a parameter, and that Y ltself has 
some (not necessarlly discrete) dlstrlbutlon. Then the unconditlonal generatlng 
Punctlon of X is E (ky (s )) . Let us lllustrate thls once more on the negatlve blno- 
nilal dlstrlbutlon. 

Example 1.5. The negative binomial distribution. 
1-P 

P 
Let 1' be gainina (n ,-), and let k y  be the Polsson ( Y )  generatlng func- 

tlon. Then 
PY 

y n  e 1-P 
-- 

00 

e-Y +Y5 dy E ( k y ( s  1) = J 
0 r(?l 

P 
n 

1 '  
1-( 1-p )s = (  
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We have dlscovered yet another property of the negatlve blnomlal dlstrlbutlon 
wlth parameters ( n  ,p ), 1.e. l t  can be generated as a Polsson ( Y )  random varlable 
where Y in turn 1s a gamma ( n  ,-) 1-P random varlable. Thls property wlll be of 

great use to us for large values of n , because unlformly fast gamma and Polsson 
generators are In abundant supply. 

P 

1.3. Factorials. 
The evaluatlon of the probabllltles p i  frequently lnvolves the computatlon of 

one or more factorlals. Because our maln worry 1s wlth the complexlty of an algo- 
rlthm, I t  1s lmportant to know Just how we evaluate factorlals. Should we evalu- 

a te  them expllcltly, 1.e. should n ! be computed as n i ,  or  should we use a good 

approxlmatlon for n ! or log(n !)? In the former case, we are faced wlth tlme corn- 
plexlty proportlonal to n ,  and wlth accumulated round-off errors. In the latter 
case, the tlme complexlty 1s 0 (l), but the prlce can be steep. Stlrllng’s serles for 
example 1s a dlvergent asymptotlc expanslon. Thls means that  for Axed n , talclng 
more terms In the serles 1s bad, because the partlal sums In the serles actually 
dlverge. The only good news 1s that I t  1s an asyrnptotlc expanslon: for a Axed 
number of terms In the serles, the partlal sum thus obtalned 1s log(n ! )+o (1) as 
n +oo. An algorlthm based upon Stlrllng’s serles can only be used for n larger 
than some threshold no, whlch In turn depends upon the deslred error margln. 

Slnce our model does not allow lnaccurate computatlons, we should elther 
evaluate factorlals as products, or use squeeze steps based upon Stlrllng’s series to 
avold the product most of the tlme, or avold the product altogether by uslng a 
convergent sertes. We refer to sectlons X.3 and X.4 for worked out  examples. At 
lssue here 1s the tlghtness of the squeeze steps: the bounds should be so t lght  that  
the contrlbutlon of the evaluatlon of products In factorlals to the total expected 
complexlty 1s 0 (1) or o (1). It 1s therefore helpful to recall a few facts about 
approxlmatlons of factorlals (Whlttaker and Watson, 1927, chapter 12). We wlll 
state everythlng In terms of the gamma functlon slnce n !=r(n +I).  

n 

i=1 

i I 
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Lemma 1.1. (Stirling's series, Whittaker and Watson, 1927.) 

between the n - t h  and n +1-st partlal sums of the serles 

where Bi 1s the k-th Bernoulll number defined by 

t 2 n - 1  

ezat  -1 
B n  = 4 n J  dt . 

1 1 1 1 5 69 1 7 
6 30 42 30 66 2730 

In partlcular, B l=-,B 2=-,B3=-,B4=- ,B 5 = - , ~  6 = - , ~  ,= 
We have as speclal cases the  lnequalltles 

Stlrllng's serles wlth the Wblttaker-Watson lower and upper bounds of 
Lemma 1.1 1s often sufilclent in practlce. As we have polnted out earller, we wlll 
stlll have to evaluate the factorlal expllcltly no matter how many terms are con- 
sldered In the serles, and In fact, thlngs could even get worse If more terms are 
consldered. Lucklly, there 1s a convergent serles, attrlbuted by Whittaker and 
Watson to Blnet. 
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Lemma 1.2. (Binet's series for the log-gamma function.) 
For x >0, 

where 

c 3  

3(x + l ) (x  + 2 ) ( ~  +3) 
+ 1 c 1  c 2  

(' 
= ? -+ 2(x + l ) ( X  4-2) 

In w 111 c 
1 

c, = j ' (u  +I>(u + 2 )  . . . ( u  +n-i)(2u - i ) u  du 
0 

, and cq=- 227.  AII terms In R ( a : )  are In partlcular, c 1=- 

posltlve: thus, the value of log(I'(a: )) 1s approached rnonotonlcally from below as 
we conslder more terms In R ( a : ) .  If we conslder the flrst n terms of R (x), then 
the error Is at most 

59 , c3=- 
1 1 
6 '  "=- 3 60 60 

x + l  x + l  
C-( IZ 9 x x + n + 1  

5 
48 

where c=--&e ' I6 .  Another upper bound on the truncatlon error 1s provlded 

by 
x + l  1 +C-(-)Z. C ( l + a  +-)(-+-)>" +l  

1 a 1 
x + l  l + a  X + l  x l + a  

where a E(O,l] 1s arbitrary (when a: 1s large compared to n ,  then the value 
X 

) Is suggested). 
X 

Proof of Lemma 1.2. 
Blnet's convergent serles Is glven for example In Whlttaker and Watson 

(1927, p. 253). We need only establlsh upper bounds for the tall sum In R ( a : )  
beglnnlng wlth the n +l-st term. The lntegrand I n  ci 1s posltlve for u >-. 
Thus, the i - t h  term 1s at most 

1 
2 

1 

i ! J (2u -1)u du 
- 5( i -l)! - 1/2 

2 i ( x + l ) .  . * ( Z + i )  48(1+x) * * ( i + x )  
- 5r(i ) r ( x  + I )  

48r(i +a: +I) 
- 

1 1 
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(by Lemma 1.1 ) 

5 
48 

where c=- f ie  (use the facts that x >O,i 21). We obtaln a flrst bound 

for the sum of all tall terms startlng wltli z=n +1 as follows: 

x +1 ) " + I  
x + a  3-1 

03 x + 1  ) " + I  < - 
i=n+l  x + i  +1 i=n+l  

03 

1" . 
X + l  X + l  = c-( 

x x + n + 1  

Another bound Is obtalned by chooslng a constant a E(O,l), and spllttlng the tall 
sum lnto a sum from z'=n +1 to i=m = [ a  (x +1)1, and a rlght-lnflnlte sum 
startlng at i =m +1. The flrst sum does not exceed 

m )n+1  ( 
) i  < 5 C (  ) ' = C  x +m +I 

x + i + 1  - i=n+l x + m + 1  x + l  x + m + 1  5 C (  
i = n + 1  

1 a 1 
x + l  l + a  x + l  

5 C(l+a+- )(-+-)>"+l . 

Addlng the two sums glves us the  followlng upper bound for the remalnder of the 
serles startlng wltli the n +l-st term: 

1 U 1 x + 1  1 
x + l  l + U  x + l  x l + a  c ( l + U  +-)(-+-), +l  +C-(-y .. 

The error term glven In Lemma 1.2 can be made to tend to 0 merely by 
keeplng n Axed and lettlng x tend to 00. Thus, Blnet's serles is also an asymp- 
totlc expanslon, Just as Stlrllng's serles. It can be used to bypass the gamma 
functlon (or factorlals) altogether If one needs to declde whether log(r(x ))L t for 
some real number t .  By taklng n terms In Blnet's serles, we have an lnterval 
[un ,6n ] to whlch we know log(r(x )) must belong. Slnce 6, -a, +O as n +oo, we 
know that when t +log(F(x)), from a glven n onwards, t wlll fall outslde the 
lnterval, and the approprlate declslon can be made. The convergence of the serles 
Is thus essentlal to lasure that thls method halts. In our appllcatlons, t 1s usually 
a unlform or  exponentlal random varlable, so that equallty t =log(r(x )) occurs 
wlth probablllty 0. The complexity analysls typlcally bolls down to computlng 
the expected number of terms needed In Blnet's serles for Axed x .  A quantlty 
useful In thls respect Is 

03 

n (6, -a,$) . 
n =o 
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Based upon the error bounds of Lemma 1.2, I t  can be shown that thls sum 1s o (1) 
as z +m, and that the sum 1s unlformly bounded over all z 2 1 (see exerclse 1.2). 
As we wlll see later, thls lmplles that for inany reJectlon algorlthms, the expected 
tlme spent on the declslon 1s unlformly bounded In z .  Thus, I t  1s almost as If we 
can compute the gamma functlon In constant tlme, Just ac; the exponentlal and 
logarlthmlc functlons. In fact, there 1s nothlng that keeps ‘CIS from addlng the 
gamma functlon to our llst of constant tlme functlons, but unless expllcltly men- 
tloned, we wlll not do so. Another collectlon of lnequalltles useful In deallng wlth 
Pactorlals via Stlrllng’s serles 1s glven In Lemma 1.3: 

Lemma 1.3. (Knopp, 1964, pp. 543,548) 
For lnteger n , we have 

where B1,B2, . . . are the Bernoulll numbers and 
4(2k -l)! 

27r(27r?2 ) Z k  
I R k , n  I L 

1s a resldual factor. 

1.4. A universal rejection method. 
Even when the probabllltles p i  are expllcltly glven, I t  1s often hard to come 

up wlth an efflclent generator. Quantltles such as the mode, the mean and the 
varlance are known, but  a useful domlnatlng curve for use In a reJectlon algo- 
rlthm 1s generally not known. The purpose of thls sectlon Is to go through the 
rnechanlcs of derlvlng one acceptable reJectlon algorithm, whlch wlll be useful for 
a huge class of dlstrlbutlons, the class of all unlmodal dlstrlbutlons on the 
llltegers for whlch three quantltles are known: 
1. m , the location of the mode. If the mode 1s not unlque, 1.e. several adJacent 

lntegers are all modes, m 1s allowed to be any real number between the left- 
most and rlghtmost modes. 
Ad, an upper bound for the value of p i  at a mode z’ . If posslble, kf should 
be set equal to thls value. 
S 2 ,  an  upper bound for the second moment about ?n . Note that If the varl- 
ance o2 and mean p are known, then we can take .s 2=a2+(??2  EL)^. 

2. 

3. 

The unlversal algorlthm derlved below 1s based upon the followlng lnequalltles: 
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Theorem 1.1. 
For all unlmodal dlstrlbutlons on the Integers, 

1 1 
2 2 

In addltlon, for all liiteger i and all 5 E[i--,i +-I, 

I Furthermore, 

Proof of Theorem 1.1. 
Note that for i >m , 

00 

$ 2  = ( j - m  I 2 P j  2 c ( j - m  I2Pi  

> - p;J (u -m)2  du = p i  

j -  --00 i > j > m  
1 

( i - m  )3 

m 

Thls establlshes the flrst lnequallty. The boundlng argument for g uses a stan- 
dard tool for malclng the transltlon from dlscrete probabllltles to densltles: we 
conslder a hlstogram-shaped denslty on the real llne wlth helght p i  on 
[i--,i +-). Thls denslty 1s bounded by g ( z )  on the lnterval In questlon. Note 1 1 

2 2 
1 the adJustment by a translatlon term of - when compared wlth the flrst dlscrete 

bound. Thls adJustment 1s needed to lnsure that g domlnates p i  over the entlre 
lnte rval . 

Flnally, the area under g 1s easy t o  compute. Deflne ~ = ( 3 s ~ ) ' / ~ M ~ / ~ ,  and 

2 

observe that the A4 terin In g 1s the mlnlmum term on [m---- P ,m+-+-I. 1 P  
2 M  2 M  

The area under thls part 1s thus M+2p. Integratlng the two talls of g glves the 
value p. 

To understand our algorlthm, I t  helps to go back to the proof of Theorem 
1.1. We have turned the problem lnto a contlnuous one by replaclng the probabll- 
lty vector pi wlth a hlstogram-shaped denslty of helght p i  on [i--,i +-). Slnce 1 1 

2 2 
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thls hlstogram 1s domlnated by the functlon g glven in the algorlthm, i t  Is clear 
how to proceed. Note that If Y Is a random varlable wlth the sald hlstogram- 
shaped denslty, then round( Y )  1s dlscrete wlth probablllty vector p i .  

Universal rejection algorithm for unimodal distributions 

[ SET-UP) 
L Z  

Compute p t ( 3 8  2, M 3. 
(GENEFtATOR] 
REPEAT 

Generate u ,w  uniformly on [0,1] and v uniformly n [-1, 

IF u<- P 
3p+M 

THEN 

Y+-m +(-+ 1 r7f7 )sign( V )  

X tround( Y)  

T+WM 1 V I 
8 - 

ELSE 
Y t r n  +(-+-)V 1 P  

2 M  
X+round( Y )  
T-WM 

UNTIL T,<px 
RETURN x 

I. 

In the unlversal algorlthm, no care was taken to reuse unused portlons of 
unlform random varlates. Thls 1s done malnly to show where lndependent unl- 
form random varlates are preclsely needed. The expected number of Iteratlons In 
the algorlthm Is preclsely hf +3p. Thus, the algorlthm 1s unlformly f a s t  over a 
class Q of unlmodal dlstrlbutlons wlth unlforrnly bounded (l+s )M If pi can be 
evaluated In tlme lndependent of 2 and the dlstrlbutlon. 

Example 1.6. 
For the blnomlal dlstrlbutlon wlth parameters n ,p  , I t  Is known (see sectlon 

s-4) that the mean p 1s np , and that the varlance a2 1s np (1-p ). Also, for Axed 
P .  -\~-l/(&o), and for all n ,p  , Ad 52/(&o). A mode Is at m = [ (n  + l ) p  J. 
51~v.x I p-m I <mln(l ,np - ) (eserclse 1.41, we can talce .s'=o'+mln(i,np ). We 
l'3n verlfy that 
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1 
2 

and thls 1s unlformly bounded over ?a 2 1 , O S p  5-. Thls lmplles that we can 

generate blnomlal random varlates unlformly f a s t  provlded that the blnomlal pro- 
babllltles can be evaluated In constant tlme. In sectlon X.4, we wlll see that even 
thls 1s not necessary, as long as the factorlals are taken care of approprlately. We 
should note that when p renialns Axed and n+m, ~-(3/(27r))'/~. The expected 
number of lteratlons -3p, whlch 1s about 2.4. Even though thls 1s far from 
optlmal, we should recall that besldes the unlmodallty, vlrtually no propertles of 
the blnomlal dlstrlbutlon were used In derlvlng the bounds. 

There are lmportant sub-famllles of dlstrlbutlons for whlch the algorlthm 
glven here 1s unlformly fast. Conslder for example all dlstrlbutlons that are sums 
of lld lnteger-valued random varlables wlth maxlmal probablllty p and Anlte 
varlance a2. Then the sum of n such random varlables has varlance n o 2 .  Also, 

M <  (Rogozln (1961); see Petrov (1975, p. 56)). Thus, If the n-sum 1s --daiZi 
unlmodal; Theorem 1.1 1s appllcable. The rejectlon constant 1s 

unlformly over all n .  Thus, we can handle unlmodal sums of lld random varl- 
ables In expected tlnie bounded by a constant not dependlng upon n .  Thls 
assumes that the probabllltles can all be evaluated In constant tlme, an assump- 
tlon whlch except In the slmplest cases 1s dlmcult to support. Examples of such 
famllles are the blnomlal famlly for Axed p , and the Polsson famlly. 

Let us close thls sectlon by notlng that the rejectlon constant can be reduced 
In speclal cases, such as for monotone dlstrlbutlons, or symrnetrlc unlmodal dls- 
t rl butlons. 

1.5. Exercises. 
1. The dlscrete dlstrlbutlons consldered In the text are all lattlce dlstrlbutlons. 

In these dlstrlbutlons, the lntervals between the atoms of the dlstrlbutlon are 
all lptegral inultlples of one quantlty, typlcally 1. Non-lattlce dlstrlbutlons 
can be conslderably more dlmcult to handle. For example, there are dlscrete 
dlstrlbutlons whose atoms form a dense set on the posltlve real llne. One 
such dlstrlbutlon 1s defined by 

where i and j are relatively prlme posltlve lntegeys (Johnson and Kotz, 
1969, p. 31). The atoms In thls case are the ratlonals. Dlscuss how you could 



X.1.INTRODUCTION 497 

efflclently generate a random varlate wlth thls dlstrlbutlon. 
Uslng Lemma 1.2, show that If E, 1s a bound on the error comrnltted when 
uslng Blnet’s serl’es for log(r(a:)) wlth n 20 terms, then 

2. 

00 

3. 

and 
00 

Assume that all pi’s are at most equal to  Ad, and that the varlance 1s at 
most equal t o  u2. Derlve useful bounds for a unlversal rejectlon algorlthm 
whlch are slmllar to  those glven In Theorem 1.1. Show that there exlsts no 
domlnatlng curve for thls class whlch has area smaller than a constant tlmes 
bm, and show that your domlnatlng curve 1s therefore close to optlmal. 
Glve the detalls of the reJectlon algorlthm. When applled to  the blnomlal 
dlstrlbutlon wlth parameters n ,p varylng In such a way that np -+m, show 

that the expected number of lteratlons grows as a constant tlmes (np ) and 
conclude that for thls class the unlversal algorlthm 1s not unlformly fast. 

1 - 

4. 

5. 

Prove that for the blnomlal dlstrlbutlon wlth parameters n , p  , the mean p 
and the mode m = [(n +l)p]  dlffer by at most mln(1,np ). 
Replace the lnequalltles of Theorem 1.1 by new ones when Instead of s2,  we 
are glven the r-th absolute moment about the mean ( r  zl), and value of 
the mean. The unlmodallty 1s stlll understood, and values for m ,M are as In 
the Theorem. 
How can the rejectlon constant ( s g  ) In Theorem 1.1 be reduced for mono- 
tone dlstrlbutlons and symmetrlc unlmodal dlstrlbutlons ? 

6. 

7. The discrete Student’s t distribution. Ord (1968) lntroduced a dlscrete 
dlstrlbutlon wlth parameters m 20 ( m  1s Integer) and a E[O,l] ,b #O: 

m 

Here I< 1s a normallzatlon constant. Thls dlstrlbutlon on the lntegers has 
the remarkable property that all the odd moments are zero, yet I t  1s only 
symmetrlc for a=O,a =- and a = i .  Develop a unlformly fa s t  generator 

for the case m =O. 

deflned by 

1 
2 

8. Arfwedson’s distribution. Arfkedson (1951) Introduced the dlstrlbutlon 



498 X.l .INTRODUCTION 

where k , n  are posltlve Integers. See also Johnson and Kotz (1969, p. 251). 
Compute the mean and varlance, and derlve an lnequallty conslstlng of a flat 
center plece and two decreaslng polynomlal or exponentlal talls havlng the 
property that the sum of the upper bound expresslons over all z' 1s unlformly 
bounded over k ,n . 
Knopp (1964, p. 553) has shown that 9. 

1 00 

= 1 ,  c 2 2 t 2  n=1 c (472 T + ) 

1 1  1 1  
2 t  e t - 1  t 2 

where c =-(---+-) and t > O  1s a parameter. Glve a unlformly fa s t  

generator for the famlly of discrete probablllty vectors defined by thls sum. 

2. THE GEOMETRIC DISTRIBUTION. 

2.1. Definition and genesis. 
X IS geometrically distributed wlth parameter p E(0,l) when 

P ( X = i )  = p (1-p )'-l ( i L 1 ) .  

The geornetrlc dlstrlbutlon 1s lmportant In statlstlcs and probablllty because I t  1s 
the dlstrlbutlon of the waltlng tlme until success In a sequence of Bernoulll trlals. 
In other words, lf U1,U2,  ... are lld unlform [0,1] random varlables, and x 1s the 
lndex of the first Vi for whlch Vi < p ,  then X 1s geornetrlc wlth parameter p . 
Thls property can of course be used to generate X ,  but to  do so has some serlous 
drawbacks because the algorlthm 1s not unlformly fast over all values of p : Just 
conslder that the number of unlform random varlates needed 1s ltself geometrlc 
(p ), and the expected number of unlform random varlates requlred 1s 

1 

P 
E ( X )  = - . 
1 
3 

For p 3-, the method 1s probably dlfflcult t o  beat In any programmlng envlron- 

ment. 
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2.2. Generators. 

below: 
The experlmental method descrlbed In the prevlous sectlon 1s summarlzed 

Experimental method for geometric random variates 

x+-0 

REPEAT 
Generate a uniform [ O , l ]  random variate U .  
X t X + l  

UNTIL U s p  
RETURN x 

1 1 

P P 
Thls method requlres on the average - unlform random varlates and - corn- 

parlsons and addltlons. The number of unlform random varlates can be reduced 
to  1 If we use the liiverslon method (sequentlal verslon): 

Inversion by sequential search for geometric random variates 

Generate a uniform [O,l] random variate U . 
x+-1 

S u m t p  
Prod-p 
WHILE U >Sum DO 

Prod+Prod( 1-p ) 

SumtSum+Prod 
xtx+1 

RETURN x 

2 

P 
Unfortunately, the expected number of addltlons 1s now --2, the expected 

number of comparlsons remalns -, and the expected number of products 1s --1. 

Inverslon In constant tlme 1s posslble by truncatlon of an exponentlal random 
varlate. What we use here 1s the property that 

1 1 

P P 

F ( i ) = P ( X S i ) =  l -Ep( l -p ) -+1=1- (1 -p )*  . 
j > i  
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Thus, If U 1s unlforni [0,1] and E 1s exponentlal, I t  1s clear that 
r 

and 

are both geometrlc ( p  ). 
If many geometrlc random varlates are needed for one Axed value of p , extra 

speed can be found by ellmlnatlng the need for an exponentlal randoin varlate 
and for truncatlon. Thls can be done by spllttlng the dlstrlbutlon lnto two parts, 
a tall carrylng small probablllty, and a maln body. For the maln body, a fast  
table method 1s used. For the tall, we can use the memoryless property of the 
geometrlc dlstrlbutlon: glven that x > i , X-z' 1s agaln geometrlc ( p  ) dlstrlbuted. 
Thls property follows dlrectly from the genesls of the dlstrlbutlon. 

2.3. Exercises, 
1. The quantlty log(1-p ) 1s needed In the bounded tlme lnverslon method. For 

small values of p ,  there 1s an accuracy problem because 1-p 1s computed 
before the logarlthm. One can create one's own new functlon by baslng an 
approxlmatlon on the serles 

Show that the following more qulckly convergent serles can also be used: 

2 
P 

where r=1--. 

Compute the varlance of a geometrlc ( p  ) random varlable. 2. 
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3. THE POISSON DISTRIBUTION. 

3.1. Basic properties. 
X Is sald to be Poisson (A)  distributed when 

x i  e - X  
P ( X = i )  = - ( i  20) i !  

h>O 1s the parameter of the distribution. We do not have to convince the readers 
that the Polsson dlstrlbution plays a key role in probablllty and statlstlcs. I t  Is 
thus rather lmportant that a simple uniformly fast Poisson generator be avallable 
In any nontrlvlal statistical software package. Before we tackle the development 
of such generators, we wlll briefly review some properties of the Poisson dlstrlbu- 
tlon. The Polsson probabllltles are unlmodal wlth one mode or two adjacent 
modes. There Is always a inode at 1x1. The tall probabllltles drop off faster 
than the tall of the exponential denslty, but not as fast  as the tall of the normal 
density. In the deslgn of algorlthms, I t  Is also useful to know that as x-too, the 
random variable (X-x)/f i  tends to a normal random varlable. 

Lemma 3.1. 
When X Is Polsson (A), then x has characterlstlc functlon 

i t X )  - - e i ( e ’ f - l )  w 1 = E ( e  

It has moment generatlng functlon E ( e  tX)=exp(X(e -1)), and factorlal moment 
generatlng functlon E ( t X ) = e  i(t-l) .  Thus, 

E (X)  = Val. ( X )  = x . 

Also, If X , Y  are independent Polsson (A) and Poisson ( p )  random varlables, 
then X +  Y Is Polsson (x+p).  

Proof of Lemma 3.1. 
Note that 

The statements about the moment generatlng functlon and factorlal moment gen- 
eratlng functlon follow directly’ from thls. Also, If the factorlal moment generat- 
Ing function Is called k , then Ic’(l)=E (X)=x and k”(l)=E (x(x-1))=x2. 
From thls we deduce that V u r ( X ) = x .  The statement about the sum of two 
lndependent Polsson random varlables follows dlrectly from the form of the 
characterlstlc functlon. 
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3.2. Overview of generators. 
The generators proposed over the years can be classlfled lnto several groups: 
Generafors based upon the connectlon wlth homogeneous Polsson processes 
(Knuth, 1969). These generators are very slmple, but run In expected tlme 
proportlonal to A. 

2. Inverslon methods. Inverslon by sequentlal search started at 0 runs In 
expected tlme proportlonal to A (see below). If the sequentlal search 1s 
started at the mode, then the expected tlme 1s o ( 6 )  (Flshman, 1976). 
Inverslon can always be sped UP by storlng tables of constants (Atklnson, 

Generators based upon recurslve propertles of the dlstrlbutlon (Ahrens and 
Dleter, 1974). One such generator is known to take expected tlme propor- 
tional to log(X). 

4. ReJectlon methods. ReJectlon methods seem to lead to the slmplest unl- 
formly fast algorlthms (Atklnson, 1979; Ahrens and Dleter, 1Q80; Devroye, 
1981; Schmelser and Kachltvlchyanukul, 1981). 

The acceptance-complement method wlth the normal dlstrlbutlon as startlng 
dlstrlbutlon. See Ahrens and Dleter (1982). Thls approach leads to efllclent 
unlformly fast  algorlthms, but the computer programs are rather long. 

We are undoubtedly omlttlng a large fractlon of the llterature on Polsson random 
varlate generatlon. The early papers on the subJect often proposed some approxl- 
mate method for generatlng Polsson random varlates whlch was typlcally based 
upon the closeness of the Polsson dlstrlbutlon to the normal dlstrlbutlon for large 
values of A. It 1s pointless to glve an exhaustlve hlstorlcal survey. The algorlthms 
that really matter are those that are elther slmple or f a s t  or both. The deAnltlon 
of "fast" may or may not lnclude the set-up tlme. Also, slnce our comparlsons 
cannot be based upon actual lmplementatlons, I t  1s lmportant to dlstlngulsh 
between computatlonal models. In partlcular, the avallablllty of the factorlal In 
constant tlme 1s a cruclal factor. 

1. 

1979). 

3. 

5. 

3.3. Simple generators. 

arrlval tlmes In a homogeneous polnt process 1s the followlng. 
The connectlon between the Polsson dlstrlbutlon and exponentlal lnter- 
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Lemma 3.2. I 
If J ! ? ~ , J ! ? ~ , . . .  are lld exponential random varlables, and X 1s the smallest 

lnteger such that  
x+l 
CEj > A ,  

I =1 

then X Is Polsson (A). 

1 

Proof of Lemma 3.2. 
Let f k  be the gamma ( k  ) denslty. Then, 

Thus, by partlal Integration, 

00 k -1 

= j ( y - k ) -  e-Y dy x k !  

The algorltlim based upon thls property 1s: 
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Poisson generator based upon exponential inter-arrival times 

x+-0 

SumcO 
WHILE True DO 

Generate an exponential random variate E .  
S u m t S u m + E  
IF Sum<X 

THEN X+-X+1 
ELSE RETURN x 

Uslng the fact that a unlform random varlable 1s dlstrlbuted as e - E ,  I t  1s 
easy t o  see that Lemma 3.2 1s equlvalent to Lemma 3.3, and that the algorlthm 
shown above 1s equlvalent to  the algorlthm followlng Lemma 3.3: 

Lemma 3.3. 

lest lnteger such that 
Let U1,u2,  ... be lld unlform [0,1] random varlables, and let X be the smal- 

I x+l 
Ui<e- l  . 

I Then X 1s Poisson (A). 

Poisson generator based upon the multiplication of uniform random variates 

x t o  
P r o d e l  
WHILE True DO 

Generate a uniform [O,l] random variate U. 
ProdtProd u 
IF Prod>c-’ (the constant should be computed only once) 

THEN X+X+l 
ELSE RETURN x 
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3.4. Rejection methods. 
To see how easy I t  1s to lmprove over the algorlthms of the prevlous sectlon, 

I t  helps to get an ldea of how the probabllltles vary wlth A. Flrst of all, the peak 
at LA J varles as 1 / 6 :  

Lemma 3.4. 
The value of P (x = 1x1 ) does not exceed 

1 
J S J ’  

and - 1/m as x+m. 

Proof of Lemma 3.4. 
We apply the lnequallty e’ ! 2 i e -i & , valld for all lnteger e‘ 2 1. Thus, 

Furthermore, by Stlrllng’s approxlmatlon, I t  1s easy to establish the asymptotic 
result as well. 

We also have the followlng lnequallty by monotonlclty: 

Lemma 3.5. 

Proof of Lemma 3.5. 

by unlmodallty, 
We will argue for the posltlve slde only. Wrltlng pi for P (X=i  ), we have 

dX+l 2 E (  I x-x I )+1 
2E(IX-IXJ I ) ?  c I . A X J  I P J  

L P i +  1x1 c .i 
j >  1x1 

i 

j =O 
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The expected number of lteratlons 1s the same for both algorlthms. However, an 
addltlon and an exponentlal random varlate are replaced by a multlpllcatlon and 
a unlform random varlate. Thls replacement usually works In favor of the multl- 
pllcatlve method. The expected complexlty of both algorlthms grows llnearly wlth 
A. 

Another slmple algorlthm requlrlng only one unlform random varlate 1s the 
lnverslon algorlthm wlth sequentlal search. In vlew of the recurrence relatlon 

(i 20) 9 

x - -- P(X=i+l)  
P ( X = i )  2 +1 

thls glves 

Poisson generator based upon the inversion by sequential search 

x+-0 
Sum+-e-’,Prod+e-’ 
Generate a uniform [0,1] random variate u . 
WHILE U >Sum DO 

X+-X+l 
x Prod+--Prod X 

Sum+-Sum+Prod 
RETURN x 

Thls algorlthrn too requlres expected tlme proportlonal to h as h+m. For large 
A, round-off errors prollferate, whlch provldes us wlth another reason for avoldlng 
large values of A. Speed-ups of the lnverslon algorlthm are posslble If sequentlal 
search 1s started near the mode. For example, we could compare U flrst wlth 
b =P ( X  5 1x1 ), and then search sequentlally upwards or  downwards. If b 1s 
avallable In tlme 0 (l), then the algorlthm takes expected tlme 0 (6) because 
E ( I X -  11 J I )=0 (6). See Flshman (1976). If b has to be computed flrst, thls 
method 1s hardly competltlve. Atklnson (1979) descrlbes varlous ways In whlch 
the lnverslon can be helped by the Judlclous use of tables. For small values of h , 
there 1s no problem. He then custom bullds fast  table-based generators for all x’s 
that are powers of 2, startlng wlth 2 and endlng wlth 128. For a glven value of 1, 
a sum of lndependent Poisson random varlates 1s needed wlth parameters that 
are elther powers of 2 or very small. The speed-up comes at a tremendous cost In 
terms of space and prograinmlng effort. 
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If we take the mlnlmum of the constant upper bound of Lemma 3.4 and the 
quadratlcally decreaslng upper bound of Lemma 3.5, i t  1s not dlmcult t o  see that 
the cross-over polnt 1s near h f c  6 where c =(8r)'I4. The area under the bound- 
lng sequence of numbers 1s 0 (1) as h+m. It 1s unlformly bounded over all values 
h 2 l .  We do not lmply that  one should deslgn a generator based upon thls dom- 
lnatlng curve. The polnt 1s that I t  1s very easy to  construct good boundlng 
sequences. In fact, we already knew from Theorem 1.1 that the unlversal reJec- 
tlon algorlthm of sectlon 1.4 1s unlformly fast. The domlnatlng curves of Theorem 
1.1 and Lemmas 3.4 and 3.5 are slmllar, both havlng a flat center part. Atklnson 
(1979) proposes B loglstlc maJorlzlng curve, and Ahrens and Dleter (1980) propose 
a double exponentlal maJorlzlng curve. Schmelser and Kachltvlchyanukul (1981) 
have a reJectlon method wlth a trlangular hat and two exponentlal talls. We do 
not descrlbe these methods here. Rather, we wlll descrlbe an algorlthm of Dev- 
roye (1981) whlch 1s based upon a normal-exponentlal domlnatlng curve. Thls has 
the advantage that the reJectlon constant tends t o  1 as h-too. In addltlon, we 
wlll lllustrate how the factorlal can be avolded most of the tlme by the Judlclous 
use of squeeze steps. Even If factorlals are computed In llnear tlme, the overall 
expected tlme per random varlate remalns unlformly bounded over h. For large 
values of A, we wlll return a truncated normal random varlate wlth large proba- 
blllty. 

Some lnequalltles are needed for the development of tlght lnequalltles for the 
Polsson probabllltles. These are collected In the next Lemma: 
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Lemma 3.6. 

the  llst of lnequalltles shown below. We have: 
Assume that  u 2 0  and all the arguments of the logarlthms are posltlve In 

(1) 1 0 g ( l + u )  5 u 1 (11) log( l+u)  5 u--u2+-u3 1 1 
2 3 
1 
2 

(111) log( l+u)  2 u--u2 

2u 
2+u 

1 (lv) log(l+u)  3 - 
k 1  i (v) log(1-u) 5 - -u ( I C  21) 

. a  
1 E l  

. Most of these lnequalltles are well-known. The other ones can be obtalned 
wlthout dlmculty from Taylor’s theorem (Whlttaker and Watson, 1927, 1s a good 
source of Information). We assume that  xzl. Slnce we wlll use reJectlon algo- 
rlthms, I t  can’t harm to normallze the Polsson probabllltles. Instead of the proba- 
bllltles p i ,  we wlll use the normallzed log probabllltles 

q j  = log(P p+ j )+log(P!)-Plog(x)+X 

where p= 1x1. Thls can convenlently be rewrltten as follows: 

( j  =o> 
- j - 1  

-log( n (I--$ ( j  <o) 
i=o  I.L 

x 
P 

= jlog(-) + 
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- I Lemma 3.7. 

Let us use the notatlon j +  for m a x ( j  ,O). Then, for all lnteger j >-p, 

Proof of Lemma 3.7. 
Use (lv) and (v) of Lemma 3.6, together wlth the ldentlty 

The lnequallty of Lemma 3.7 can be used as the startlng polnt for the 
development of tlght domlnatlng curves. The last term on the rlght hand slde In 
the upper bound 1s not In a famlllar form. On the one hand, I t  suggests a normal 
boundlng curve when j 1s small compared t o  p.  On the other hand, for large 
values of I j 1 ,  an exponentlal boundlng curve seems more approprlate. Recall 
that  the Polsson probabllltles cannot be tucked under a normal curve because 
they drop off as e - ' j l o g ( j )  for some c as i 4 m .  In Lemma 3.8 we tuck the Pols- 
son probabllltles under a normal maln body and an exponentlal rlght .tall. 

Lemma 3.8. 
Assume that p z S  and that 6 1s an lnteger satlsfylng 

6 5 6 5 p .  

Then 

9 0  L 0 
1 < -  

" ' /..~(2p+1) - 78 
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Proof of Lemma 3.8. 

fourth lnequallty, we observe that for 2 < j  <6, 
The flrst three lnequalltles follow wlthout work from Lemma 3.7. For the 

- -  
j +- j 
P+Z j 2 ( P + Y )  j 

q j  L-- j ( j + l )  (slnce j S S S ~ )  

- 2 j - j 2  - 
2 ~ +  j 

The fourth lnequallty 1s also valld for j =O. For j =1, a qulck check shows that 
l / p ( 2 , ~ + 1 ) ~ 1 / ( 2 p + & )  because 6511. Thls leaves us wlth the Afth and last lne- 

quallty. We note that  &>S>*. - -  Thus, 
P-2 

+ j (--- I & I  6 - - -- 
2P+S P 2P+6 

r 

Based on these lnequalltles, we can now glve a flist Polsson algorlthm: 
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Rejection method for Poisson random variates 

(SET-UP] 

C'+ lx 1 

C p-!/67z 
c 2 t c  ,+\lr(p+6/2)/2e 2fi+6 

c 3 t c  2 + l  

c,+-c,+e 

c + e , + z ( z p + 6 ) e  2@+6 ('+y) 
6 

[NOTE] 

The function q$ is deflned as q j  -i log(-)=j log(p)-log((p+j ) ! / I & ! ) .  

[GENERATOR] 
REPEAT 

Choose 6 integer such that 6565~. 

1 - 

1 - 
6 6  -- 

x 
CL 

Generate a uniform [ o , c ]  random variate u and an exponential random variate E .  
Accept +- False. 
CASE 

use,: 
Generate a normal random variate N .  
Y-lN 14 
x- LYJ 

N 2  x 
E -xlOg(I1) wt--- 

2 
1~x2-p THEN W t m  

c u 4 e 2: 

Generate a normal random variate N .  

I F X S 6 T H E N  W + m  

x +o 
W +-E 

x-1 
W +-E -log( -) 

e 2< u 5 c 9: 

c 3 <  u 5 c ,: 

x 
P 

c , < U :  
Generate an exponential random variate I/. 
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2 
6 

Y 4 - t  V-(?p+6) 

A’- r y i  
w ---(I+,)-E 6 Y -Xlog(-) x 

?p+6 P 
A c c e p t  -[ w 5 4%) 

UNTIL A c c e p t  

RETURN X+p 

Observe the careful use of the floor and celllng functlons In the algorlthm to 
lnsure that the contlnuous domlnatlng curves exceed the Polsson stalrcase func- 
tlon at every polnt of the real llne, not Just the lntegers ! The monotonlclty of 
the domlnatlng curves 1s explolted of course. The functlon 

= 5 logo\)-log( ( P + X  >! ) 
p!  Qz 

1s evaluated In every lteratlon at some pOlnt 2. If the logarithm of the factorlal 1s 
avallable at unlt cost, then the algorlthm can run In unlformly bounded time pro- 
vlded that  6 1s carefully plcked. Thus, the flist lssue to be dealt wlth 1s that of 
the relatlonshlp between the expected number of lteratlons and 6. 

~- 

Lemma 3.9. 
If 6 depends upon 1 In such a way that 

then the expected number of lteratlons E ( N )  tends to  one as X- too .  In partlcu- 
Iar, the expected number of lteratlons remalns unlformly bounded over A>& - 

Furthermore, 

I where the lnflmum Is reached If we choose 
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Proof of Lemma 3.9. 
In a prellmlnary computatlon, we have to evaluate 

slnce thls 1s the total welght of the normallzed Polsson probabllltles. It 1s easy to 
see that thls glves 

j =O 

-dzp 
where we used the fact that log(X/p) = log(l+(h-p)/p) = (X-p)/p+o (p-’). 
Thus, the expected number of lteratlons 1s the total area under the domlnatlng 

curve ( wlth the atoms at 0 and 1 liavlng areas one and e 78 respectlvely ) 
dlvlded by ( l+o  ( 1 ) ) G .  The area under the domlnatlng curve Is, taklng the 
flve contrlbutors from left to rlght, 

1 - 

If 6 1s not o ( p ) ,  thls can not - 6. If 6 < - c 4 for some constant c , then 
the last term 1s at least - -e -‘*I4fi, whlle I t  should really be o (4). Thus, the 

condltlons lmposed on 6 are necessary for E(N)-+l. That they are also sumclent 
can be seen as follows. The fifth term In the area under the domlnatlng curves 1s 
o (G), and so are the constant second and third terms. The fourth term - m, whlch establlshes the result. 

To mlnlmlze E ( N ) - 1  In an asymptotlcally optlmal fashlon, we have to con- 
slder some sort of expanslon of the area In terms of decreaslng asymptotlc lmpor- 
tance. Uslng the Taylor serles expanslon for d G -  for u near 0, we can wrlte 
the flrst four terms as 

C 

The main term In excess of 6 1s 
m b .  

4 p  

We can also verify easily that t h e  contrlbutlon from the exponentlal tall 1s 
6? -- 

*(l+o (1))e 2 ( 2 ~ + 6 )  . 
6 
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To obtaln a A r s t  (but as we wlll see, good) guess for 6, we wlll 

Thls 1s equlvalent to solvlng 

@+%)e -- 4 p  = de 
If we Ignore the o (1) term n, 4P 

DISTRIBUTION 

mlnlmlze 

we can solve thls expllcltly and obtaln 

A plugback of thls value l a  the orlglnal expresslon for the area under the dom- 
lnatlng curve shows that I t  lncreases as 

4 

The constant terms are absorbed In o(1); the exponentlal tall contrlbutlon 1s 
0 (l/d-). If we replace 6 by 6 ( l + ~ )  where E 1s allowed to vary wlth p but 1s 
bounded from below by c >0, then the area 1s asymptotlcally larger because the 
d m  term should be multlplled by at least l + c .  If we replace 6 by 6(1-~),  
then the contrlbutlon from the exponentlal tall 1s at least Sl(pc l2/m). Thls 
concludes the proof of the Lemma. 

We have to lnsure that 6 falls wlthln the llmlts lmposed on I t  when the dom- 
lnatlng curves were derlved. Thus, the followlng cholce should prove fallsafe In 
practlce: 

6 = max(b,mln(p, J-1) 2p log(- * 

7r 

We have now In detall dealt wlth the optlmal design for our Polsson genera- 
tor. If the log-factorlal ls avallable at unlt cost, the reJectlon algorlthm ls unl- 
formly fast, and asyinptotlcally, t h e  reJectlon constant tends to one. 6 was plclced 
t o  lnsure that the convergence to one takes place at the best posslble rate. For 
the optlmal 6, the algorlthm baslcally returns a truncated normal random varlate 
most of the tlme. The exponentlal tall becomes asymptotlcally negllglble. 

We may ask what would happen to our algorlthm If we were to  compute all 
products of successlve lntegers expllcltly ? Dlsregardlng the horrlble accuracy 
problems lnhereiit In all repeated multlpllcatlons, we would also face a break- 
down In our complexlty. The coinputatlon of 

x (X+P)! !) qx = x log( -)+S log(p)-log( 
P P 
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can be done In tline proportlonal to 1+ I x 1 . Now, X 1s wlth hlgh probablllty 
normal wlth mean 0 and varlance approxlmately equal to 4. Slnce (I 1s com- 
puted only once wlth probablllty teiidlng to one, I t  1s clear that the expected tlme 
complexlty now grows as &. If we had perfect squeeze curves, 1.e. squeeze curves 
In whlch the top and bottom bounds are equal, then we would get our unlform 
speed back. The same 1s true for very tlght but lmperfect squeeze curves. A class 
of such squeeze curves 1s presented below. Note that we are no longer concerned 
wlth the domlnatlng curves. The squeeze curves glven below are also not derived 
from the lnequalltles for Stlrllng’s serles or Blnet’s serles for the log gamma func- 
tlon (see sectlon 1). We could have used those, but I t  1s lnstructlve to show yet 
another method of derlvlng good bounds. See however exerclse 3.9 for the appll- 
catlon of Stlrllng’s serles In squeeze curves for Polsson probabllltles. 

Lemma 3.10. 
Deflne 

j(j+l) t j  = ( I j  - j  log( -)+ 
/4 2/4 

Then for lnteger j LO, 

Furthermore, for lnteger -1-11 j’ 10, the converse 1s almost true: 

Proof of Lemma 3.10. 
The proof 1s based upon Lemma 3.6, the ldentltles 

k . k ( k + l )  , x i 2 =  k (k +1)(21c +1> , x i 3 =  k 2 ( k  + I ) ~  9 E2 = A n A -i 
1 = I  0 : =1 ;5 i = 1  

and the fact that q j  can be rewrltten as follows: 

qj-jlog(-) x = 

/4 
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The algorlthm requlres of course llttle modlflcatlon. Only the llne 

A c c e p t  -1 MI 5 q % ]  

needs replaclng. The replacement looks llke thls: 

x (A’ + 1) T -  

A c c e p t  -[ W <-T]n[X>o]  
IF NOT A c c e p t  TH%N 

, 2P 

1) &--T(-- aX+1 
611 

T2 P+&- 
3 ( p + ( x  +1)-) 

A c c e p t  --[ W 5 Q J 
IF NOT A c c e p t  AND I V s P ]  THEN A c c e p t  --[ W sq%] 

It  1s lnterestlng to go through the expected conplexlty proof ln thls one 
example because we are no longer countlng lteratlons but multlpllcatlons. 

Lemma 3.11. 
The expected tlme taken by the modlfled Polsson generator Is unlformly 

bounded over A 2 8  when 6 1s chosen as In Lemma 3.10, even when factorlals are 
expllcltly evaluated as products. 

i I 

Proof of Lemma 3.11. 
It sufllces to establlsh the unlform boundedness of 

Jv IX I I[Q<M’<P]) 

where we use the notatloii of the algorlthm. Note that  tlils stateinelit 1mpllcltlY 
uses Wald’s equatlon, and the fact that  the expected number of lteratlons 1s unl- 
formly bounded. The expresslon liivolvlng I X I Is arrlved at by loolclng at the 
tlme needed to evaluate 4%. The expected value wlll be spllt lnto flve parts 
accordlng to the flve components ln the dlstrlbutlon of X .  The atomlc parts 
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X=O,X=l are easy to take care of. The contrlbutlon from the normal portlons 
can be bounded from ,above by a constant tlmes 

Here we have used the fact that W conslsts of a sum of some random varlable 
and an exponentlal random varlable. When X LO, the last upper bound 1s In turn 
not greater than a constant tlmes E ( I X I 5 ) / p 3  = 0 (p- l I2) .  The case X <o 1s 
taken care of slmllarly, provlded that we flrst spllt off the case X<-- .  The 

spllt-off part 1s bounded from above by 

P 
2 

0 (p3)P ( X  <-5) 5 0 (/A3) E ( X 2 )  = 0 ( 1 )  
P2 

For the exponentlal tall part, we need a unlform bound for 
1 

E (, I  X 1 5p-3)(10g(p))-T 

where we have used a fact shown In the proof of Lemma 3.10, 1.e. the probablllty 
that X Is exponentlal decreases as a constant tlmes log-'I2(p). Verlfy next that 
glven that X 1s from our exponentlal tall, E ( I X I 5)=0 (S5). Comblnlng all of 
thls shows that our expresslon In questlon 1s 

Thls coiicludes the proof of Lemma 3.11. 

The computatloiis of the prevlous Lemma reveal other lnterestlng facets of 
the algorlthm. For example, the expected tlme contrlbutlon of the evaluatlons of 

log2(') ). In other words, I t  1s asyrnptotlcally negllglble. Even so, factorlals 1s 0 ( 

the maln contrlbutlon to thls o ( 1 )  expected tlme comes from the exponentlal tall. 
Thls suggests that I t  1s posslble to obtaln a new value for 6 whlch would mlnlmlze 
the expected tline spent on the evaluatlon of factorlals, and that thls value wlll 
dlffer from that obtained by mlnlmlzlng the expected number of lteratlons. 

4-J 
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3.5. Exercises. 
1. Atklnson (1979) has developed a Polsson ( A )  generator based upon rejectloll 

from the loglstlc density 

- e  ' ( l + e  ' , 

where a =X and 6 =m/7r. A random varlate wlth thls denslty can be gen- 

erated as S e n  +6 log(-) where U 1s unlform [o ,~ ] .  

A. Flnd the dlstrlbutlon of x+- . 

B. 

C. 

1- u 
u 

i :i 
Prove that S has the same mean and varlance as the Polsson dlstrlbu- 
tlon. 
Deternilne a rejectlon constant c for use wlth the dlstrlbutlon of part 
A. 

D. 
2. A recursive generator. Let n be an lnteger somewhat smaller than A, 

and let G be a gamma ( n  ) random varlable. Show that the random varlable 
X deflned below 1s Polsson (A): If G >A, X 1s blnomlal (n- l ,A/G ); If 
G <A, - then X 1s n plus a Polsson (A-G) random varlable. Then, taklng 
n = 10.8751 1, use thls recurslve property t o  develop a recursive Polsson 
generator. Note that one can leave the recurslve loop elther when at one 
polnt G > A  or when A falls below a Axed threshold (such as 10 or 15). By 
taklng n a Axed fractlon of A, the value of A falls at a geometrlc rate. Show 
that in vlew of thls, the expected tlme complexlty 1s 0 (i+log(h)) If a con- 
stant expected tlme gamma generator Is used (Ahrens and Dleter, 1974). 

Prove all the lnequalltles of Lemma 3.6. 
Prove that for any 1 and any c >0, llm pj /e-cil = 00. Thus, the Polsson 

curve cannot be tucked under any normal curve. 
5. Poisson variates in batches. Let X , ,  . . . , X ,  be a multlnomlal 

(Y ,p  1, . . . , pn ) random vector (l.e., the probablllty of attalnlng the value 
i,, . . . , in 1s 0 when Cij 1s not Y and 1s 

Prove that c 1s unlforinly bounded over all values of A. 

3. 

4. 
j 4 0 0  

Y !  . p l i l  . . . 'n ' 
P n  i,!. . . 2, ! 

otherwlse. Show that If Y 1s Polsson (A), then X, ,  . . . , X ,  are lndependent 
Polsson random varlables wlth parameters A p , ,  . . . , Ap, respectlvely. 
(Moran, 1951; Pat11 and Seshadrl, 1964; Bolshev, 1965; Tadlkamalla, 1979). 

Prove that as x-+oo, the dlstrlbutlon of (x-A)/fi tends t o  the normal dls- 
trlbutlon by provlng that the characterlstlc functlon tends to  the charac- 
terlstlc functlon 

0. 

of the normal dlstrlbutlon. 
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WHILE True DO 
Generate a Poisson (1) random variate X , and a uniform [0,1] random 
variate U .  
I F X < n  THEN 

k + - i , j t 0 , 6  t i  

W H I L E j s n - A ? A N D  u<6 DO 
1 j -j - t - l ,k  6 - j k  ,6 -6 +- 
k 

IF j 5 n - X  AND u<s 
THEN RETURN x 

1 ELSE j - j  +l,k +- j k  ,8 +6 +- 
k 

12. The Borel-Tanner distribution. A dlstrlbutlon lmportant In queulng 
theory, wlth parameters n 21 (n  Integer) and a€(0 ,1)  was dlscovered by 
Bore1 and Tanner (Tanner, 1951). The probabllltles p i  are deflned by 

(i Ln 1 n i i - n - 1  i-n a 
(i-n)! P i  = 

n n a  Show that the mean 1s - and that the varlance 1s - . The dlstrlbu- 

tlon has a very long posltlve tall. Develop a unlformly fast  generator. 
1-fl! ( 1 4 3  

4. THE BINOMIAL DISTRIBUTION. 

4.1. Properties. 
X 1s binomially distributed wlth parameters n > i  and p E [ o , i ]  If 

We wlll say that X Is blnomlal ( ? I  , p  ). 
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7. Show that for the reJectlon method developed In the text, the expected tlme 
complexlty 1s O ( 6 )  and n(6) as X-EO when no squeeze steps are used 
and the factorlal has to be evaluated expllcltly. 
Glve a detalled reJectlon algorlthm based upon the constant upper bound of 
Lemma 3.4 and the quadratlcaliy decreaslng talls of Lemma 3.5. 
Assume that factorlals are avoided by uslng the zero-term and one-term Stlr- 
llng approxlmatlons (Lemma 1.1) as lower and upper bounds ln squeeze steps 
(the dlfference between the zero-term and one-term approxlmatlons of 
log(r(n)) 1s the term 1/(12?2)). Show that thls sufflces for the followlng 
reJectlon algorltlims to be unlformly fast: 
A. The unlversal algorlthm of sectlon 1. 

B. The aigorlthm based upon Lemmas 3.4 and 3.5 (and developed In Exer- 
clse 8). 

C. The normal-exponentlal reJectlon algorlthm developed In the text. 
10. Repeat exerclse 9, but assume now that factorlals are avolded altogether by 

evaluatlng an lncreaslng number of terms In Blnet’s convergent serles for the 
log gamma function (Lemma 1.2) untll an acceptance or reJectlon declslon 
can be made. Read fli.st the text followlng Lemma 1.2. 

11. The matching distribution. Suppose that n cars are parked In front of 
Hanna’s rubber sliln sult shop, and that each of Hanna’s satlsfled customers 
leaves In a randomly plcked car. The number N of persons who leave In 
thelr own car has the matchlng dlstrlbutlon wlth parameter n : 

8. 

9. 

A. 

B. 

Show thls by lnvoklng the lncluslon excluslon prlnclple. 

Show that Ilm P ( N = i ) = -  , Le. that the Polsson (1) dlstrlbutlon 
n --*m e i !  

1s the llmlt (Barton, 1958). 
1 Show that P ( N = i ) I - ,  1.e. reJectlon from the Polsson (1) dlstrlbu- i !  

tlon can be used wlth rejection constant e not dependlng upon n . 

complexlty 1s unlformly bounded In n . 

C. 

D. Show that  the algorlthm glven below 1s valld, and that Its expected 
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. 

Lemma 4.1. (Genesis.) 

success probablllty p , 1.e. 
Let x be the number of successes In a sequence of n Bernoulll trials wlth 

If XI, . . , Xk are lndependent blnomlal ( n  ) ?...( (nk ,p  random varl- 
k k 

ables, then Xi 1s blnomlal ( ni , p  ). 
:=1 t 1 2 1  

i = l  

where u,, . . . , un are lld unlform [0,1] random varlables. Then X 1s blnomlal 
(n ,P 1. 

Lemma 4.2. 

(1-p  + p s  )” . The mean Is np , and the varlance 1s np (1-p ). 
The blnomlal dlstrlbutlon wlth parameters n ,p has generatlng functlon 

Proof of Lemma 4.2. 
The factorlal moment generatlng functlon of X (or slmply generatlng func- 

tlon) Is 

where we used the Lemma 4.1 and Its notatlon. Each factor In the product Is 
obvlously equal to 1 - p f p s  . Thls concludes the proof of the flrst statement. 
Next, E ( X )  = k’(1) = np,  and E(X(X-1)) = k ” ( 1 )  = n(n- l )p2 .  Hence, 
Vur ( X )  = E ( X 2 ) - E 2 ( X )  = E(X(X-i))+E(X)-E2(X) = np ( I - p )  . 

From Lemma 4.1, we can conclude wlthout further work  

Lemma 4.3. I 

I 
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[Lemma 4.4.(First waiting time property.) 
~~ -1 

Let G1,G2,  ... be lld geometrlc ( p )  random varlables, and let X be the smal- 
lest lnteger such that 

X+1 
C G i  > n .  

i=1 

Then X Is blnomlal ( n  , p  ). 

Proof of Lemma 4.4. 
G ,  1s the number of Bernoulll trlals up to  and lncludlng the Arst success. 

Thus, by the lndependence of the Gi's, Gl+ . . +Gx+, 1s the number of Ber- 
noulli trlals up to  and lncludlng the X+l-st success. Thls number 1s greater than 
n lf and only If among the flrst n Bernoulll trlals there are at most X successes. 
Thus, 

k +i 

i=l j =O 

P ( X < k )  = P( Gi > n )  = 6 [ 51 p j (1-p ),-j (Integer k ) .I 

Lemma 4.5. (Second waiting time property.) 

lnteger such that 
Let Bl,B2,... be lld exponentlal random varlables, and let x be the smallest 

X + l  Ei 
> -log(l-p ) . 

i=1 n - i + 1  

1 Then X 1s blnomlal (n  , p  ). I 
Proof of Lemma 4.5. 

<E(, )  be the order statlstlcs of an exponentlal dlstrl- 
butlon. Clearly, the number of )'s smaller than -log(l-p ) Is blnomlally dlstrl- 

the smallest lnteger such that E(x+l)>.-log(l-p ), then X 1s blnomlal (n , p  ). 
Lemma 4.5 now follows from the fact (sectlon V.2) that (E(ll, . . . , E,,)) 1s dls- 
trlbuted as 

Let E(1)<E(2)< 

buted wlth parameters n and P (E,<-log(l-p ))=1-e ' 'g('-p)=p . Thus, If x IS 

En + * * * +-) .a E l  E2 , . . . , -+- El E ,  E2 
(-,-+- 

1 n n n-1 n n-1 
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4.2. Overview of generators. 

A. 
The blnomlal generators can be partltloned lnto a number of classes: 
The slmple generators. These generators are based upon the dlrect appllca- 
tlon of one of the lemmas of the prevlous sectlon. Typlcally, the expected 
complexlty grows as n or as np , the computer programs are very short, and 
no addltlonal worlcspace 1s requlred. 
Unlformly fast  generators based upon the reJectlon method (Flshman (1979), 
Ahrens and Dleter (1980), Kachltvlchyanukul (1982), Devroye and Nader- 
lsamanl (1980)). We wlll not bother wlth older algorlthms whlch are not unl- 
formly fast. Flshman’s method 1s based upon reJectlon from the Polsson dls- 
trlbutlon, and 1s explored In exerclse 4.1. The unlversal rejectlon algorlthm 
derived from Theorem 1.1 1s also unlformly fast, but slnce I t  was not 
speclflcally deslgned for the blnomlal dlstrlbutlon, I t  1s not competltlve wlth 
tallor-made rejectlon algorithms. Td save space, only the algorlthm of Dev- 
roye and Naderlsainanl (1980) wlll be developed In detall. Although thls 
algorlthm may not be the fastest on all computers, I t  has two deslrable pro- 
pertles: the domlnatlng curve 1s asymptotlcally t lght because I t  explolts con- 
vergence to the normal dlstrlbutlon, and I t  does not requlre a subprogram 
for coniputlng the log factorlal in constant tlme. 
Table methods. The flnlte number of values make the blnomlal dlstrlbutlon 
a good candldate for the table methods. To obtaln unlformly fa s t  speed, the 
table slze has to grow In proportlon to  n ,  and a set-up tlme proportlonal to 
n 1s needed. It 1s generally accepted that  the marglnal executlon tlmes of the 
allas or allas-urn methods are dlfflcult to beat. See sectlons 111.3 and 111.4 for 
det alls. 
Generators based upon recurslon (Relles (1972), Ahrens and Dleter (1974)). 
The problem of generatlng a blnomlal ( n  , p )  random varlate 1s usually 
reduced In constant tline to that of generatlng another blnomlal random 
varlate wlth much smaller value for n .  Thls leads to 0 ( log(n))  or 
0 (loglog(n )) expected tlme algorlthms. In vlew of the superlor performance 
of the generators In classes B and C, the prlnclple of recurslon wlll be 
descrlbed very brlefly, and most detalls can be found In the exerclses. 

B. 

C. 

D. 

4.3. Simple generators. 
Lemma 4.1 leads to the 

! 
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Coin flip method 

x-0 
FOR i :=1 TO n DO 

Generate a random bit B ( B  is 1 with probability p , and can be obtained by gen- 
erating a uniform [0,1) random variate u and setting B 
X+X+B 

RETURN x' 

Thls slmple method requires tlme proportlonal to n . One can use n unlforin ran- 
dom varlates, but l t  1s often preferable to generate Just one unlform'random varl- 
a te  and recycle the unused portlon. Thls can be done by notlng that a random 
blt and an lndependent unlform random varlate can be obtalned as 

u 1-u ( I [ U . . ~  I,mln(-,-)). The coln fllp method wlth recycllng of unlform random 
P 1-P 

varlates can be rewrltten as follows: 

[NOTE: We assume that p <1/2.] 

X t o  
Generate a uniform [ O , i ]  random variate u 
FOR i:=1 TO n DO 

B +IIU > I - p ,  

U t  u-il-p lB  (reuse the uniform random variate) 
pB+(l-p N1-B 

X-X+B 
RETURN X 

1 
2 

For the Important case p =-, I t  suffices to generate a random unlformly dlstrl- 

buted computer word of n blts, and to count the number of ones In the word. In 
machlne language, this can be lmplemented very emclently by the standard blt 
operatlons. 

Inverslon by sequentlal search takes as we know expected tlme proportlonal 
to E(X)+l = np $1. We can avold tables of probabllltles because of the 
recurrence relatlon 
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where p i  = P ( x = i ) .  The algorlthm wlll not be glven here. It sumces to men- 
tlon that for large n ,  the repeated use of the recurrence relatlon could also lead 
to accuracy problems. These problems can be avolded If one of the two waltlng 
tlme algorlthms (based upon Lemmas 4.4 and 4.5) 1s used: 

First waiting time algorithm 

x *-1 
Sum -0 

REPEAT 
Generate a geometric ( p  ) random variate G 
Sum + - S u m  +G 
x-x+1 

UNTIL, Sum >n 

RETURN x 

Second waiting time method 

[SET-UP] 
q +-log(1-p ) 
[GENERATOR] 
x-0 
Sum t-0 

REPEAT 
Generate an exponential random variate E .  
Sum + Sum +- (Note: Sum is allowed to be 00.) E 

n -X 
X+-X+l 

UNTIL, Sum > q  
RETURN X-X-1 

Both waltlng tlme methods have expected tlme complexltles that grow as np +1. 
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4.4. The rejection method. 
To develop good domlnatlng curves, i t  helps to  recall that by the central 

llmlt theorem, the blnomlal dlstrlbutlon tends to  the normal dlstrlbutlon 
n -00 and p remalns Axed. When p varles wlth n In such a way that np -c  , a 
posltlve constant, then the blnomlal dlstrlbutlon tends to  the Polsson ( c  ) dlstrl- 
butlon, whlch In turn 1s very close to  the normal dlstrlbutlon for large values of 
c .  It seems thus reasonable to conslder the normal denslty as our domlnatlng 
curve. Unfortunately, the blnomlal probabllltles do not decrease qulckly enough 
for one slngle normal denslty to  be useful as a domlnatlng curve. 
blnomlal talk wlth exponentlal curves and make use of Lemma 
thlngs slmple, we assume: 
1. X = np 1s a nonzero Integer. 
2. ps2. I 

So as not t o  confuse p wlth pi =P ( X = i ) ,  we use the notatlon 

bi = [ ; ] p i ( l - p ) n - i  (05; Ln) . 
The second assumptlon Is not restrlctlve because a blnomlal ( n  , p  ) 

We cover the 
3.6. To keep 

random varl- 
able 1s dlstrlbuted as n mlnus a blnomlal (n ,1-p)  random varlable. The A r s t  
assumptlon Is not llmltlng ln any sense because of the followlng property. 

Lemma 4.6. 
If Y 1s a blnomlal ( n  ,p’) random varlable wlth p ’ s p ,  and If condltlonal on 

Y ,  Z 1s a blnomlal (n-Y,--- ’-” ) random varlable, then X t Y + Z  1s blnomlal 
1-p‘ 

( n  ?P )* 

Proof of Lemma 4.6. 
The lemma 1s based upon the decomposltlon 

n n n 

i==l i=i i = I  
x = c q r J , < p 1  = c I[rJ,<p‘] + c I [ p / < c r , < p l  = y+z  ’ 

where U,, , . . , V, are lld unlforiii [0,1] random varlables. 

To recapltulate, we offer the followlng generator for general values of n ,p , 
but O<p SA: 

2 

I 
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Splitting algorithm for binomial random variates 

[NOTE: t is a fixed threshold. typically about 7. For np st, one of the waiting time algo- 
rithms is recommended. Assume thus that np > t .] 
PI+- LvJ n 
Generate a binomial (n , p ' )  random variate Y by the rejection method in uniformly bound- 
ed expected time. 

1 

Generate a binomial (n -Y,-) P -2)' random variate Z by one of the waiting time methods. 
1-P 

RETURN x+Y+z 

The expected tlme taken by thls generator when np >t  1s bounded from above 
by c l+c2n- 5 c ,+2c for some unlversal constants c l,c 2. Thus, I t  can't 

harm to lmpose assumptlon 1. 

P -P' 
1-P 

Lemma 4.7. 
For lnteger O S i  ,<n (1-p ) and lnteger X=np 21, we have 

and 

where 
2 (i +1)(2i +1) - (i -1)i (2i -1) 

12?2"2 12ny1-p )2 
s =  

and 
i2(i -1)2 + i2(i+1)2 t =  

1.272 2(1-p 12(n (1-p 1-i +I) 12n3p 

b A-i For all lnteger 05; F n p  , l o g ( b )  satlsfles the same lnequalltles provlded that 

p Is replaced throughout by 1-p In the varlous expresslons. 
x 

I 
I 

.....___ 
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Proof of Lemma 4.7. 

Assume thus that O<i sn (1-p ). We have 
For i = O ,  the statements are obvlously true because equallty 1s reached. 

i -1 a 

Thus, 

i (i-1) - i (i +1) < -  
- 2 n ( l - p )  2np+i  e 

Here we used Lemma 3.6. Thls proves 'the flrst statement of the lemma. Agaln 
by Lemma 3.6, we see that 

Furthermore, 

+ B - t  . i2+((1-p )-p )i 
2nP (1-P ) 

- -  

Thls concludes the proof of the flrst part of Lemma 4.7. For integer O<i Lnp , 
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we have 

Thls 1s formally the same as an expresslon used as startlng polnt above, provlded 
that p 1s replaced throughout by 1-p . 

Lemma 4.7 1s used In the constructlon of a useful functlon g ( a : )  wlth the 
property tha t  for all 5 F.[i , z  +1), and all allowable i ( - n p  5 i < n  ( 1 - p  ) ), 

The algorlthm Is of the form: 

REPEAT 
Generate a random variate Y with density proportional to c . 
Generate an exponential random variate E .  
X- LYJ (this is truncation to the left, even for negative values of Y ) 

)+E 1 UNTIL [-np _ < X < n ( l - p ) ]  AND [ g ( Y ) l l O g ( r  b x+x 
x 

RETURN X-h+X 

The normal-exponentlal dominatlng curve e suggested earller 1s defined In 
Lemma 4.8: 
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~~ 

Lemma 4.8. 
Let 6,L 1, 6,L 1 be glven lntegers. Deflne furthermore 

Then the functlon g can be chosen as follows: 

Proof of Lemma 4.8. 
For i =O we need to show that c >1/(2aI2). Thls follows from 

When O<i <6,, we have 

By Lemma 4.7, 

1 1 + >x - 
1 1 3 = -( 

L 4 

212 (1-p + 2np +s, 2 n  (1-p 2np +6, n (1-p 

2 n  (1-p + 2np +6, 
1 261 )x2+- 

np 
x 2  261 

20,2 7 v  
< - --+-. 
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The last  step follows by appllcatlon of the lnequallty 

u >0, In the followlng chaln of Inequalltles: 
< 1 + 2 ,  valld for 

2 

61 

- l+Zn - 1 + 
2 n  (1-p ) 2np +6, 

1 

4 
2np 

2np (1-P M+-) 
1 > - 4 

2np (1-P )(1+-) 
2np 

1 - 1 
2 - - *  

> - 
61 2a,2 (JW (1-P )(1+-)) 

4np 

When i >6,, we have 

By Lemma 4.7, 

When O>z >-6,, we have 

bnp +i  i ( 2  +1) - i (i -1) 

b,P 
-(-+ 1 1 )i 2-- i 

' 5 -  2np 2 n  ( I - p  )-i log( - 
i + 

2np 2 n  ( I - p  )+S2 2np 2 n  (1-p )+S, 

>x 
1 + 1 < -(- 

- 2np 2n(1-p)+S2 

Flnally, when i <-S,, we see that  

i ( i+ l )  6 2 s  - < - ;  
2np - 2np 
i ( i - 1 )  < 6,(i -1)  - 

212 (1-p )-i - 212 (1-p )+S, 
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Therefore, 

The domlnatlng curve e g  suggested by Lemma 4.8 conslsts of four pleces, 
one plece per lnterval. The lntegrals of e g  over these lntervals are needed by the 
generator. These are easy to compute for the exponentlal talls, but not for the 
normal center lntervals. Not much wlll be lost If we replace the two normal 
pleces by halfnormals on the posltlve and negatlve real llne respectlvely, and 
reject when the normal random varlates fall outslde [-6,,6,]. Thls at least allows 
us to work wlth the lntegrals of halfnormal curves. We wlll call the areas under 
the dlfferent components of e a; (1 5 i 5 4 ) .  Thus, 

1 
2 

' 2 2  

20,1 
00 c-- 

dx = - e C a , & ,  a ,  = J e  

a 2  = -a2&, 

0 

1 
2 

We can now summarlze the algorlthm: 
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A rejection algorithm for binomial random variates 

[SET-UP] 

8 +a,+a,+a,+a, 

[GENERATOR] 
REPEAT 

Generate a uniform [O,s ] random variate U . 
CASE 

ULiZ,: 
Generate a normal random variate N; Y-cl I N 1 
Reject +[Y >bl] 

IF NOT Reject THEN X+ LYJ,V+-E--+c N 2  where E is an ex- 
2 

ponential random variate. 

Generate a normal random variate N: Y-u, I N I 
Reject + - [ Y 2 6 , ]  

a 1 < u 5 a a 2: 

IF NOT Reject THEN X- L-YJ,V-Z-- :v2 where E is an ex- 
2 

ponential random variate. 

Generate two iid exponential random variz.+s E 1 , E 2 .  
Y +6,+2u12E Jb1 

Reject + False 

a 1 + a , < U _ < a 1 + a 2 + a , :  

x+ LYl ,V+-E,-6, Y/(2Ul2)+6l/(la (1-? 

a , + a , + a , <  u :  
Generate two iid exponential random vaii;:+s E l  .E2 .  
Y +62+2u22E JS2 

Reject - False 
x + 1- YJ , v +-E2-6, Y /(2u$) 

Reject - Reject OR [X < - n p  ] OR [X > n (1-p )] 

Reject + Reject OR [V>log(bnp+,~/bnp)]  
UNTIL NOT Reject 

RETURN S 
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We need only choose 6,,6, so that the expected number of lteratlons is 
approximately mlnlmal. Tlils 1s done In Lemma 4.9. 

- 
Lemma 4.9. 

1 Assume that p <- and that as h=np 400, we have unlformly In p , 
2 

Then the expected number of fil=o (h),6,=0 ( n  ), 6, / f i -m0,  b 2 / 6 $  400.  

lteratlons 1s unlformly bounded over n > l , O < p  <L, and tends to 1 unlformly In 

The condltlons on 6,,6,' are satlsfled for the followlng (nearly optlmal) 

- 2  
p asx--too. 

cholces: 
I 1 I 

))J . 128n (1-p ) 6, = max(1, I =p 

Proof of Lemma 4.9. 
We flrst observe that under the stated condltlons on 6,,b2, we have 

a ,  = J-(l+o ( 1 ) )  , a2 = J-(l+o ( 1 ) )  , 

a l + a 3  - a , ,  a2+a4 - a 2 ,  

a 1+a2+n3+~4  - J2.rrnp (1-p . 

The expected number of lteratlons In the algorlthm is 
( a , + a Z + a 3 + a 4 ) b n p  - d2nnp  (1-1) ) /d27fnp  (1-p ) = 1 . All o (.) and - symbols 
lnherlt the  unlformlty wlth respect to p , as long as 1400. The unlform bounded- 
ness of the expected number of lteratlons follows from this. 

The partlcular chokes for 6,,6, are easily seen to  satlsfy the convergence con- 
dltlons. That they are nearly optlmal (wlth respect to the mlnlmlzatlon of the 
expected number of lteratlons) 1s now shown. The mlnlmlzatlon of a , + a 3  would 
provlde us wlth a good value for 6,. In the asymptotlc expanslons for a 1 , a 3 ,  I t  1s 
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now necessary to conslder the flrst two terms, not Just the maln term. In partlcu- 
lar, we have 

- ( I S 0  (1))612 - 6,2 
2nP (1-P e O n p ( 1 - p )  * 2np (1-P e 2 n p  (I-p . a 3  = 
4 6, 

Settlng the derlvatlve of the sum of the two rlght-hand-slde expresslons equal to 
zero glves the equatlon 

6. 
Dlsregardlng the term "1" wlth respect to 

6, glves 

-1 and solvlng wlth respect to 
nP (1-P 

A sultable expresslon for 6, can be obtalned by a slmllar argument. Indeed, 

Dlsregard the o ( 1 )  term, and set the derlvatlve of the resultlng expresslon wlth 
respect to 6, equal to zero. Thls glves the equatlon 

6e2 

If - 1s replaced by equallty, then the solutlon wlth respect to 6, 1s 

Lemma 4.9 1s cruclal for us. For large values of np , the rejection constant 1s 
nearly 1. Also, slnce 6,  and 6, are large compared to the standard devlatlon 

of the dlstrlburlon, the exponentlal talls float to lnflnlty as np -00. 

In other words, we exlt most of the tlme wlth a properly scaled normal random 
varlate. At  thls polnt we leave the algorlthm. The lnterested readers can And 
more lnformatlon In the  eserclses. For example, the evaluatlon of b n p + i / b n p  
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takes tlme proportlonal to  1+ 1 2  I .  Thls lmplles that the expected complexlty 
grows as when np -00. It can be shown that the expected complexlty 
1s unlformly bounded If we do one of the followlng: 
A. Use squeeze steps suggested In Lemma 4.7, and evaluate b n p + i / b n p  expll- 

cltly when the squeeze steps fall, 

B. Use squeeze steps based upon Stlrllng's serles (Lemma 1.l), and evaluate 
b,, +i /6np expllcltly when the squeeze steps fall. 

C. Make all declslons lnvolvlng factorlals based upon sequentlally evaluatlng 
more and more terms In Blnet's convergent serles for factorlals (Lemma 1.2). 

D. Assume that the log gamma functlon 1s a unlt cost functlon. 

4.5. Recursive methods. 
The recurslve methods are all based upon the connectlon between the blno- 

mlal and beta dlstrlbutlons given In Lemma 4.6. Thls 1s best vlsuallzed by consld- 
erlng the order statlstlcs U(l)<  < U(n) of lld unlform [0,1] random varlables, 
and notlng that the nuinber of U(i ) ' s  In [ O , p ]  1s blnoinlal (n  , p  ). Let us call thls 
quantlty X .  Furthermore, U ( j )  ltself 1s beta ( 2  ,n +1-i) dlstrlbuted. Because U ( i )  
1s approxlmately - , we can begin wlth generatlng a beta (i ,n +1-i)  random 
varlate Y wlth i = L(n + l ) p ] .  Y should be close to p . In any case, we have 
gone a long way toward solvlng our problem. Indeed, If Y < p  , we note that X 1s 
equal to  i plus the number of U ( j ) ' s  In the lnterval ( Y , p ] ,  whlch we know 1s 

blnomlal ( n - i , e )  dlstrlbuted. By symmetry, If Y > p ,  X 1s equal to 2 mlnus 

a blnomlal (i -1,-) random varlate. Thus, the followlng recurslve program 

can be used: 

* 

i 
n +1 

' - T - p  
Y 
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Recursive binomial generator 

[NOTE: n and p will be destroyed by the algorithm.] 
X+O,St+l (S is a sign) 
REPEAT 

IF np < t ( t  is a design constant) 
THEN 

Generate a binomial (n , p  ) random variate B by a simple method such 
as the waiting time method. 
RETURN X-X+SB 

Generate a beta (i ,n +1-i) random variate Y with i =  [(n + l ) p J .  
ELSE 

x t x + s i  

IF Y l P  
. p-Y THEN n t n  -t .p +- 

1- Y 
y-P 
Y ELSE S +-5’ ,n t i  -1,p t- 

UNTIL False 

In  this slmple algorlthm, we use a unlformly f a s t  beta generator. The slmple 
blnomlal generator alluded to should be such that Its expected tlme 1s 0 (np ). 
Note however that I t  1s not cruclal: the algorlthm works Ane even If we set t =O 
and thus bypass the slmple blnomlal generator. The algorlthm halts when n=O, 
whlch happens wlth probablllty one. 

Let us glve an lnformal outilne of the proof of the clalm that the expected 
tlme taken by the algorlthm 1s bounded by a constant tlmes log(log(n)). By the 

propertles of the beta dlstrlbutlon, Y-p 1s of the order of 4 7 , I . e .  a ( n - z )  I t  1s 

approxlmately dp ( I - p  )/n . Slnce Y ltself 1s close to p , we see that the new 
values for (n ,p ) are elther about (n (1-p ) ,dp  / ( ( l - p  )n )) or about 
(np d ( 1 - p ) / ( p n ) ) .  The new product np Is thus of the order of magnltude of m. We see that np gets replaced at worst by about 6 f n  one Itera- 
tlon. In k lteratlons, we have about 

Slnce we stop when thls reaches t , our constant, the number of lteratlons should 
he of the order of magnltude of 
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Thls argument can be formallzed, and the mathernatlcally lncllned reader 1s 
urged to do so (exerclse 4.7). Slnce the loglog functlon lncreases very slowly, the 
recurslve method can be competltlve dependlng upon the beta generator. It was 
preclsely the latter polnt, poor speed of the pre-1975 beta generators, whlch 
prompted Relles (1972) and Ahrens and Dleter (1974) to propose sllghtly dlfferent 
recurslve generators In whlch t' 1s not chosen as L(n+l)pJ ,  but rather as 
(n  +1)/2 when n 1s odd. Thls linplles that  all beta random varlates needed are 
symrnetrlc beta random varlates, whlch can 'be generated qulte emclently. 
Because n gets halved at every lteratlon, thelr algorlthm runs In 0 (log(n )) tlme. 

4.6. Symmetric binomial random variates. 
1 
2 

The purpose of thls section 1s to polnt out tha t  In the case p =- a slngle 

normal domlnatlng curve sumces In the reJectlon algorlthm, and to present and 
analyze the followlng slmple reJectlon algorlthm: 
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Rejection method for symmetric binomial random variates 

[NOTE: This generator returns a binomial ( 2 n  ,--) 1 random variate.] 

[SET-UP] 

9 c1/~2(n-'-(211.2)-'),aes +--, 1 e +2/(1+88 ) 
4 

[GENERATOR] 
REPEAT 

Generate a normal random variate N and an exponential random variate E .  
Y +aN, X+round( Y )  
T +-E + C  1 - -N2+-X2 1 

2 n 
Reject --[ I X I > n ]  
IF NOT Reject THEN 

1 Accept +[T <- X' 
6n 3 ( 1 - - ( U y 1  

n 
IF NOT Accept THEN 

X2 
Reject --[ T > 

IF NOT Reject THEN 
2 n  

b,+x X 2  
Accept --[ T >log(-)+-] 

bn n 

UNTIL NOT Reject AND Accept 

RETURN X t n  +X 

530 

The algorithm has one qulck acceptance step and one qulck rejection step 
deslgned to reduce the probability of havlng to evaluate the Anal acceptance step 
which involves computing the logarithms of two blnomial probabilities. The vall: 
dlty of the algorithm follows from the following Lemma. 
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Lemma 4.10. I 
Let bo, . . . , 6 2n  be the probablllties of a blnomlal (2n ,p  ) dlstrlbutlon. 

Then, for any a > s  , 

I where c =l/(8(a2-s2)).  Also, for all n > i  >0, I 

Proof of Lemma 4.10. 
We wlll use repeatedly the following fact: for 1 > 5 >0, 

1-x 2 s  
3(1-x2) l + x  3 

< log(-) < -2x -- , 2 s  
-2x - 

1 
2 

--x2 < log(l+x)-z < 0 .  

The flrst lnequallty follows from the fact that  log( -) 1-x 

-2(x+--s3+-z5+ 1 1 . . ). Thus, for n > i  >0, 

has series expanslon 
l + x  

3 5 
3 1-- i - 1  1 

1 ) - log( n -- i bn (n  + i  ) ! (n  -i )! j = 1 1 + L  I+- 

n ! n !  bn +i log(-) = log( 

n n 
3 1-- 
n 2 j  i i i 2  

)+ - )-(log(1+ - I-; 1-T 
n n 

i 2  
n 

= c i  +di-- . 

We have 
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Thus, 

541 

where 
1 @+TI2 u 2  

c = sup -- 
U = - Q  2a2 2s2 

Assumlng tha t  a > s  , thls supremum 1s reached for 

, c  = .I S 2  u =  
2(a% 2 )  8(a2-s 2, 

The domlnatlng curve suggested by Lemma 4.11 1s a centered normal den- 
sity wlth variance 02. The best value for a 1s that for whlch the area &&ec 1s 
mlnlmal. Settlng the  derlvatlve wlth respect to a of the logarlthm of thls expres- 
slon equal to 0 glves the equatlon 

1 
4 4 

The solutlon 1s a = I + s  = -+s +o (1). It is for thls reason that 
1 the value a=s +- was taken In the algorlthm. The correspondlng value for c 1s 

2/(1+8s ). 
4 

I 

The expected number of lteratlons 1s 6, f i a e  - - 
2 

n -00. Assumlng that 6,+i /6,1 takes tlme 1+ I i I when evaluated expllcltly, I t  
Is clear that wlthout the squeeze steps, we would have obtalned an expected tlme 
Jvhlch would grow as &- (because the z' 1s dlstrlbuted as a tlmes a normal ran- 
dom varlate). The efflclency of the squeeze steps is blghllghted In the followlng 
Lemma. 

~ ~~ 

Lemma 4.11. 
The algorithm shown above 1s uniformly fast In n when the qulck accep- 

tance step 1s used. If In addltlon a qulck reJectlon step 1s used, then the expected 
tlme due t o  the expllclt evaluatlon of 6,+i / 6 ,  1s 0 ( 1 / 6  ). I 
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Proof of Lemma 4.11. 

1s not satlsfled for Axed X=x. We have P (  1 X 1 > i + n  m ) = O  
Let p (x ) be the probablllty that the lnequallty In the qulck acceptance step 

) for 
some T >1. For I x I <1+n m, we have In vlew of I Y2-x2 I I( I x I + T ) / 2 ,  1 

x 2  x 4  
202 n n 3  

(x 2 --- 1”1) 
4 2  

p ( x )  5 P(-E+c-  +->--) 

3 -- 1 -- 
= O (n )+ I x 1 O (n-’)+x20 (n ) + x 4 0  (n-3) . 

Thus, the probablllty that a couple ( X , E )  does not satlsfy the qulck acceptance 
coiidltlon Is E ( p  (x)). Slnce E ( I x I )=O (a)=O (fi ),E ( X 2 ) = o  (n ) and 
E (X4)=0 ( n  2), we conclude that E ( p  (X) )=O (1/& ). If every tlme we 
reJected, we were to start  afresh wlth a new couple ( X , E ) ,  the expected number 
of such couples needed before haltlng would be 1+0 (1/&-). Uslng thls, I t  Is 
also clear that In the algorlthm wlthout qulck reJectlon step, the expected tlme 1s 
bounded by a constant tlmes 1+E ( 1 X I p ( X ) ) .  But 

1 -- 
J w X  M X ) )  L E ( I X  IqlxI>I+nfl])+E(IX I)Ob 2 ,  

3 -- 
+E ( X 2 ) 0  (n-’)+E ( I X I 3)0 (n 2 ) + E  ( I X I ’10 

= O(1) . 

Thls concludes the proof of the flrst statement of the Lemma. If a qulck reJectlon 
step 1s added, and q (x ) 1s the probablllty that for X = x ,  both the qulck accep- 
tance and reJectlon steps are falled, then, argulng as before, we see that for 
I x I < l - t - n m ,  

x 4  x 2  
n n 2  

q ( x )  L 3+-. 

Thus, the probablllty that both lnequalltles are vlolated 1s 

The expected tlme spent on expllcltly evaluatlng factorlals Is bounded by a con- 
s tant  tlmes I+E ( / x I q (x))=o (I/& >. 
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4.7. The negative binomial distribution. 
In sectlon X.1, we lntroduced the negatlve blnomlal dlstrlbutlon wlth param- 

eters (n  , p  ), where n >1 1s an lnteger and p E(0,i) 1s a real number as the dlstrl- 
button of the sum of n lld geometrlc random varlables. It has generatlng functlon 

( 1-( 1-p )s 1 " .  

Uslng the blnomlal theorem, and equatlng the coemclents of s '  wlth the proba- 
bllltles p i  for all i shows that the probabllltles are 

When n = l ,  we obtaln the geometrlc ( p )  dlstrlbutlon. For n=1,  X 1s dlstrl- 
buted as the number of fallures In a sequence of lndependent experlments, each 
havlng success probablllty p , before the n -th success 1s encountered. From the 
propertles of the geometrlc dlstrlbutlon, we see that the negatlve blnomlal dlstrl- - 

butlpn has mean (l-' and varlance n (1-P 1 
P P 2  

Generatlon by summlng n lld geometrlc p random varlates ylelds at best an 
algorlthm taklng expected tlme proportlonal to n . The sltuatlon 1s even worse If 
we employ Example 1.4, In whlch we showed that I t  sufflces to sum N lld loga- 
rlthmlc serles (1-p) random varlates where N ltself 1s Polsson (A) and 
A = n log(-). Here, at best, the  expected tlme grows as E ( N )  = n log(-). 1 1 

P P 
The property that one can use to construct a unlformly f a s t  generator 1s 

obtalned In Example 1.5: a negatlve blnomlal random varlate can be generated as 
a Polsson ( Y )  random variate where Y In turn Is a gamma (n  ,-) random 

varlate. .The same can be achleved by deslgnlng a unlformly fast rejectlon algo- 
rlthm from scratch. 

1-P 
P 

4.8. Exercises. 
1. Binomial random variates from Poisson random variates. Thls exer- 

clse 1s motlvated by an ldea flrst proposed by Flshman (1979), namely to 
generate blnomlal random varlates by reJectlon from Polsson random varl- 
ates. Let 6i be the probablllty that a blnomlal (n  , p  ) random varlable takes 
the value if and let p i  be the probablllty that a Polsson ((n + l )p  ) random 
varlable takes the value i . 
A. Prove the cruclal lnequallty sup 6;  / p i  5 e 1'(12(n+1))/G, valld for 

all n and p .  Slnce we can wlthout loss of generallty assume tha t  
1 

p I-, thls lmplles that we have a unlformly fast blnomlal generator If 
2 

2 

I 
I 

-- 
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we have a unlforrnly fast Polsson generator, and If we can handle the 
evaluatlon of bi /pi In unlformly bounded tlme. To prove the Inequality, 
start  wlth lnequalltles for the factorlal glven In Lemma 1.1, wrlte i 
(n + l )p  +a: , note that x _<(n +l)(l-p ), and use the lnequality 
1+u > e  - '"'+'), valld for all u >-1. 

B. Glve the detalls of the rejection algorlthm, In whlch factorials are 
squeezed by uslng the zero-term and one-term bounds of Lemma 1.1, 
and are expllcltly evaluated as products when the squeezlng falls. 

C. Prove that the algorlthm glven In B 1s unlformly fas t  oves all 
12 - > l , p  <1/2 - If Polsson random varlates are generated In unlforrnly 
bounded expected tlme (not worst case tlme). 

Bounds for the mode of the binomial distribution. Conslder a blno- 
mlal (n , p  ) dlstrlbutlon In whlch np 1s Integer. Then the mode rn 1s at np , 
and 

2. 

~~ +- 
2 e 12(n 1-11 n2p (1-p )+n +1 < 

J2nnp (1-P 1 - J ~ ~ n p ( 1 - p )  
[;) P r n  (1-P 5 

Prove thls lnequallty by uslng the Stlrllng-Whlttaker-Watson lnequallty of 
Lemma 1.1, and the lnequalltles e ' '(isu)<l+u < e  I, valld for u 2 0  (Dev- 
roye and Naderlsamanl, 1980). 

Add the squeeze steps suggested In the text t o  the normal-exponentlal algo- 
rlthm, and prove that wlth thls addltlon the expected complexlty of the 

- - 

3. 

algorlthm 1s unlformly bounded oves all n 21, O < p  <', np integer (Dev- 

roye and Naderlsamanl, 1980). 
- 2  

4. A contlnuatlon of the prevlous exerclse. Show that for Axed p <A,  the 

expected tlme spent on the expllclt evaluatlon of b n p + i / b n p  1s 
0(1/-) as n 4 w .  (Thls lmplles that the squeeze steps of Lemma 
4.7 are very powerful indeed.) 

5. Repeat exerclse 3 but use squeeze steps based upon bounds for the log 
gamma functlon glven In Lemma 1.1. 

6. The. hypergeometric distribution. Suppose an urn contalns N balls, of 
whlch kf are whlte and N-M are black. If a sample of 72 balls 1s drawn at 
random wlthout replacement from the urn, then the number ( X )  of whlte 
balls drawn 1s hypergeometrlcally dlstrlbuted wlth parameters n ,M ,N. We 
have 

2 

P ( X = i )  = (max(0,n -N +M)<i  Lmin(n  ,M)) . 
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7. 

Note that the same dlstrlbutlon 1s obtalned when n and M are lnter- 
changed. Note also that If we had sampled wlth replacement, we would have 
obtalned the blnomlal ( n  ,-) dlstrlbutlon. 

A. 

M 
N 

Show that If a hypergeometrlc random varlate 1s generated by rejectlon 
from the blnomlal (n  ,-) dlstrlbutlon, then we can take (I--)-" as 
reJectlon constant. Note that thls tends to 1 as n2 /N-+o .  

that the varlance a2 1s 
N-n  M M - n-(1--), and that the dlstrlbutlon 1s unlmodal wlth a mode at 

r i : l ) N E l ,  glve the detalls for the unlversal rejectlon algorlthm of 

sectlon X.1. Comment on the expected tlme complexlty, 1.e. on the max- 
lmal value for  OB)^'^ where B 1s an upper bound for the value of the 
dlstrlbutlon at the mode. 
Flnd a functlon g (x ) conslstlng of a constant center plece and two 
exponentlal talk,  havlng the propertles that the area under the functlon 
1s uiilformly bounded, and that the functlon has the property that for 
every t' and all x E[i--,t'+-), g ( x ) Z P  ( X = i ) .  Glve the correspond- 

lng reJectlon algorlthm (hlnt: recall the unlversal reJectlon algorlthm of 
sectlon X.l) (Kachltvlchyanukul, 1982; Kachltvlchyanukul and 
Schmelser, 1985). 

Prove that for all constant t >0, there exlsts a constant c only dependlng 
upon t such that the expected tlme needed by the recurslve blnomlal algo- 
rlthm glven In the text 1s not larger than C log(log(n +lo)) for all n and p . 
The term "lo" 1s added to  make sure that the loglog functlon 1s always 
strlctly posltlve. Show also that for a Axed p E(0,l) and a Axed t >0, the 
expected tlme of the algorlthm grows as a constant tlmes c log(log(n)) as 
n ' 0 0 ,  where c depends upon p and t only. If tlme 1s equated 'wlth the 
number of beta random varlates needed before haltlng, determlne c . 

M n 
N N 

M B. Uslng the facts that the mean 1s n- " 

C. 

1 1 
2 2 

5. THE LOGARITHMIC SERIES DISTRIBUTION. 

5 .l. Introduction. 

Parameter p €((),I) If 
A random varlable X has the logarithmic series distribution wlth 

P ( X = i )  = p i  = - a p i  (i =1,2, ...) , 
2 
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where u =-l/log(l-p ) 1s a normallzatlon constant. In the tall, the probabllltles 
decrease exponentlally. Its generatlng functlon 1s 

From thls, one can easlly And the mean up / ( l -p)  and second moment 
ap 12. 

5.2. Generators. 
The rnaterlal In thls sectlon 1s based upon the fundamental work of Kemp 

(1981) on logarlthrnlc serles dlstrlbutlons. The problems wlth the logarlthmlc 
serles dlstrlbutlon are best hlghllghted by notlng that the obvlous lnverslon and 
rejection methods are not unlformly fast. 

If we were t o  use sequentlal search In the lnverslon method, uslng the 
recurrence relatlon 

1 
p i  = (1-k)ppi-l ( 2  22) 9 

the lnverslon method could be lmplemented as follows: 

Inversion by sequential search 

[SET-UP] 
Sum +-p llog(1-p ) 

[GENERATOR] 
Generate a uniform [O,l]  random variate U. 

X t l  
WHILE U > Sum DO 

U-U-  Sum 
X+-X+l 

RETURN x 

The expected number of cornparlsons requlred 1s equal t o  the mean of the 
dlstrlbutlon, up /(l-p ), and thls quantlty lncreases rnonotonlcally from 1 ( p  io)  to 
oo ( p  too). For p C0.95, I t  1s dlmcult to  beat thls slmple algorlthm In terms of 
expected tlme. Interestlngly, If reJectlon from the geometrlc dlstrlbutlon 
(1-p ) p  * (i 21) 1s used, the expected number of geometrlc random varlates 
requlred 1s again equal to  the same mean. But because the geometrlc random 
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varlates themselves are rather costly, the sequentlal search method 1s to be pre- 
ferred at thls stage. 

We can obtaln a one-llne generator based upon the following dlstrlbutlonal 
property: 

Theorem 5.1. (Kendall (1948), Kemp (1981)) 
Let U , V  be lld unlform [OJ] random varlables. Then 

has the logarlthmlc serles dlstrlbutlon wlth parameter p . 

Proof of Theorem 5.1. 
The logarlthmlc serles dlstrlbutlon 1s the dlstrlbutlon of a geometrlc (1-Y) 

random varlate X (1.e. P ( X = i  I Y)=Y(l-Y)'-' (i >l)),  provlded that Y has 
dlstrlbutlon functlon 

Thls can be seen from the lntegral 
P 

s (1-Y ) log(l-ps S (1-ys )( y -l)log(l-p ) dy = log( 1-p ) 
, 

and from the fact that the generatlng functlon of a geometrlc (1-Y) random 
varlate 1s '(l-'). A random varlable Y wlth dlstrlbutlon functlon $' can be 
obtalned by the lnverslon method as Y t l - (1-p )' where U 1s a unlform [0,1) 
random varlable. 

(1-Ys ) 

Kemp (1981) has suggested two clever trlcks for acceleratlng the algorlthm 
suggested by Theorem 5.1. Flrst, when V > p  , the value X t l  1s dellvered 
because 

v > p >l-(l-p)U . 
For small p , the savlngs thus obtalned are enormous. We summarlze: 
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Kemp's generator with acceleration 

[SET-UP] 
r +-log( 1-p ) 

[GENERATOR] 
X+l  
Generate a uniform [0,1] random variate V. 
IF V > P  

THEN RETURN X 
ELSE 

Generate a uniform [O,i] random variate U 

R E T U R N X ' ~  I+ log( V )  
log(i-e I 

Kemp's second trlck lnvolves taklng care of the values 1 and 2 separately. He 
notes that  X=1 If and only If V 2 1 - e  and tha t  XE{1,2} If and only If 
V z(1-e r u ) 2  where r 1s as In the algorlthm shown above. The algorlthm lncor- 
poratlng thls Is glven below. 

Kemp's second accelerated generator 

[SET-UP] 
r +log( 1-p ) 

[GENERATOR] 
X t l  
Generate a uniform [O,l] random variate v. 
IF V Y P  

THEN RETURN x 
ELSE 

Generate a uniform [0,1] random variate U . 
q t l - e  

CASE 
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5.3. Exercises. 
1. The followlng logarlthmlc serles generator Is based upon reJectlon from the 

geoinetrlc dlstrlbutlon: 

Logarithmic series generator based upon rejection 

REPEAT 
Generate a uniform [0,1] random variate u and an exponential random 
variate E .  

r .. 

UNTIL UX < 1 
RETURN x 

Show that the expected number of exponentlal random varlates needed Is 
equal to the mean of the logarlthmlc series dlstrlbutlon, 1.e. 
-p /((l-p )log(l-p )). Show furthermore that thls number lncreases monotonl- 
cally to 00 as p t i .  

2. The generalized logarithmic series distribution. Pate1 (1981) has pro- 
posed the followlng generallzatlon of the logarlthmlc serles dlstrlbutlon wlth 
parameter p : 

Here 6 21 1s a new parameter satlsfylng the lnequallty 
b -6p o<p6 (- ) < l .  6 -1 

Suggest one or more emclent generators for thls two-parameter family. 
Conslder the followlng dlscrete dlstrlbutlon: 3. 

where the integer k can be consldered as a parameter, and c 1s a normallza- 
tlon constant. Show that the followlng bounded workspace algorlthm gen- 
erates random varlates wlth thls dlstrlbutlon: 
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REPEAT 
Generate iid uniform [0,1] random variates U , v. 
Y '(k + 1 ) U  

X+ IYJ 
UNTIL 2 m < Y  
RETURN x 

Analyze the expected number of lteratlons as a function of IC. Suggest at 
least one effectlve Improvement. 

6. THE Z I P F  DISTRIBUTION. 

6.1. A simple generator. 
In llngulstlcs and soclal sclences, the Zipf distribution 1s frequently used to 

model certaln quantltles. TBls dlstrlbutlon has one parameter a >1, and 1s 
deflned by the probabllltles 

where 

1s the Rlemann zeta function. Slmple expresslons for the zeta functlon are known 
In speclal cases. For example, when a Is Integer, then 

2 2 a - l + a  

d 2 a )  = Ba ( 2 a  )! 

where Ba Is the a - t h  Bernoulll number (Tltchmarsh, 1951, p. 20).  Thus, for 
a =2,4,6 we obtaln the probablllty vectors {6/(7ri )2},{90/(nt '  )'} and {945/(7ri ) 6 }  

respectively. 
To generate a random Zlpf varlate in unlformly bounded expected tlme, we 

propose the reJectlon method. .Consider for example the dlstrlbutlon of the ran- 
dom varlable Y t  \U-l/(a-l)] where U 1s unlformly dlstrlbuted on [0,1]: 

1 
(i +1)@-l a 

((l+-)a-l-l) (i 21) . 1 P ( Y = i )  = 
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Thls dlstrlbutlon 1s a good candldate because the probabllltles vary as ( a  -l)z-a 
as i+m. For the sake of slmpllclty, let us deflne q i = P ( Y = z ) .  Flrst, we note 
that  the reJectlon constant c 1s 

Hence, the followlng reJectlon algorlthm can be used: 

A Zipf generator based upon rejection 

[SET-UP] I 

b 4-2'-' 
[GENERATOR] 
REPEAT 

Generate lid uniform [ O , l ]  random variates .ut v. 

0-1 

T +(l+y) 
T-1 T UNTIL VX-5- 
b - 1  b 

RETURN x 

Lemma 6.1. 

followlng properties: 
The rejectlon constant c In the reJectlon algorlthm shown above satlsfles the 

12 A. SUP c 5 - . 
a 2 2  n2 

B. SUP c 5 - 
1 < a  5 2  log(2) 

2 

C. llm c = 1 
a -co 
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Proof of Lemma 6.1. 
Part A follows from 

Part B follows from 
0 4  -1 
Y ( a  -1)2a -1 - 

00 24 -1-1 
c L  

(2a -l-i)J da: 
1 
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Part C follows by observlng that S(a)+1 as a too. Flnally, part D uses the fact 
as a 11 (In fact, S(a)---tr, Euler's constant (Whlttaker that  I(a ) - - 

and Watson, 1927, p. 271). 

1 1 
a -1 a -1 

6.2. The Planck distribution. 
The Planck dlstrlbutlon 1s a two-parameter dlstrlbutlon wlth denslty 

Here a > O  1s a shape parameter and 6 >O 1s a scale parameter (Johnson and 
Kotz, 1970). The denslty f can be wrltten as a mlxture: 

In vlew of thls, the followlng algorlthm can be used to generate a random varlate 
wlth the Planck dlstrlbutlon. 

Planck random variate generator 

Generate a gamma ( a  + 1) random variate G . 
Generate a Zipf ( a  4-1) random variate 2 .  

G RETURN X+- b Z '  
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6.3. The Yule distribution. 
Slmon (1954,1980) has suggested the Yule dlstrlbutlon as a better approxl- 

matlon of word frequencles than the Zlpf dlstrlbutlon. He denned the dlscrete dls- 
trlbutlon by the probabllltles 

1 

p i  = c ( a ) j ( l - u )  i -1  u a - i  du ( i > l ) ,  
0 

where c (a ) 1s a normallzatlon constant and a >1 1s a parameter. Uslng the fact 
that  thls 1s a mlxture of the geometrlc dlstrlbutlon wlth parameter e-‘/(‘‘-’) 
where Y 1s exponentlally dlstrlbuted, we conclude that a random varlate x wlth 
the Yule dlstrlbutlon can be generated as 

r 

where E ,E* are lld exponentlal random varlates. 

6.4. Exercises. 
1. The digamma and trigamma distributions. Slbuya (1979) lntroduced 

two dlstrlbutlons, termed the dlgamma and trlgamma dlstrlbutlons. The 
dlgamma dlstrlbutlon has two parameters, a ,c satlsmlng c >O,a >-1, 
a +c >O. I t  1s defined by 

(i 21). 
1 a ( a  +1) . . (a +i-1) 

+(a +c )-+(c ) i (a +c  ) (a  +c +1) . . (a +c +i-1) 
Pj = 

Here ?) 1s the derlvatlve of the log gamma functlon, 1.e. $=I”/??. When we 
let a 10, the trlgamma dlstrlbutlon wlth parameter c > O  1s obtalned: 

( i  2 1 ) .  
1 (i -l)! 

p i  = rn ic (c +1) . * . (c +i-1) 

For c =1 thls 1s a zeta dlstrlbutlon. Dlscuss random varlate generatlon for 
thls famlly of dlstrlbutlons, and provlde a uniformly fas t  reJectlon algorlthm. 



Chapter Eleven 
MULTIVARIATE DISTRIBUTIONS 

1. GENERAL PRINCIPLES. 

1.1. Introduction. 
In sectlon V.4, we have dlscussed In great detall how one can efflclently gen- 

erate random vectors ln fi wlth radlally symmetrlc dlstrlbutlons. Included In 
that sectlon were methods for generatlng random vectors unlformly dlstrlbuted In 
and on the unlt sphere Cd of R d .  For example, when N . . . , Nd are lid nor- 
mal random varlables, then 

where N =J NI2+ * . . +Nd2 ,  1s unlformly dlstrlbuted on the surface of Cd. 
Thls unlform dlstrlbutlon 1s the bulldlng block for all radlally symmetrlc dlstrlbu- 
tlons because these dlstrlbutlons are all scale mlxtures of the unlform dlstrlbutlon 
on the surface of cd. Thls sort of technlque 1s called a speclal property tech- 
nlque: I t  exploits certaln characterlstlcs of the dlstrlbutlon. What we would llke 
to do here 1s glve several methods of attacklng the generatlon problem for d -  
dlmenslonal random vectors, lncludlng many speclal property technlques. 

The materlal has llttle global structure. Most sectlons can in fact  be read 
lndependently of the other sectlons. In thls lntroductory sectlon several general 
prlnclples are descrlbed, lncludlng the condltlonal dlstrlbutlon method. There 1s 
no analog to the pnlvarlate lnverslon method. Later sectlons deal wlth speclflc 
subclasses of dlstrlbutlons, such as unlform dlstrlbutlons on compact sets, elllptl- 
cally symmetrlc dlstrlbutlons (lncludlng the multlvarlate normal dlstrlbutlon), 
blvarlate unlform dlstrlbutlons and dlstrlbutlons on llnes. 
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1.2. The conditional distribution method. 
The condltlonal dlstrlbutlon method allows us to reduce the multlvarlate 

generatlon problem to d univariate generatlon problems, but i t  can only be used 
when quite a bit of information Is known about the dlstrlbutlon. 

Assume that our random vector x has denslty 

f . * I zd)  f i (z i>f  2(%2 I * * ' f d ( z d  Izi ,  . * * I z d - i >  7 

where the f i 's are conditional densities. Generatlon can proceed as follows: 

Conditional distribution method 

FOR i:=1 TO d DO 
Generate x. with density f i ( .  I x,,  . . . , xi-,) . (For i=1, use f 

RETURN x=(x,, . . . , xd ) 

It 1s necessary to know all the condltlonal densities. This 1s equivalent to knowing 
all marglnal dlstrlbutlons, because 

ff("1, * f * I X i )  
f i ( X i  1 3 1 ,  . * . J zi-1) = f ~ - 1 ( ~ 1 ,  - * t zi-1) 

where f T  1s the marginal denslty of the flrst i components, 1.e. the denslty of 
(Xl, * * . 1 xi 1. 

Example 1.1. The multivariate Cauchy distribution. 
The multlvarlate Cauchy denslty f Is given by 

f ( X I =  7 d + i  ' 
c 

(1+I 15 I 1,) 
d +i where c =l?(-)/dd+1)'2. Here I 1 . I 1 1s the standard L ,  Euclldean norm. It  

Is known that XI  1s unlvarlate Cauchy, and that glven x,, . . . , Xi-l, the ran- 

dcm variable Xi 1s dlstrlbuted as T (1+ Xj )/$- z where T has the t dlstrlbu- 

tlon wlth z' degrees of freedom (Johnson and Kotz, 1970). 

2 

i -1 

j = 1  
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Example 1.2. The normal distribution. 

wlth varlance-covarlance matrlx A={ a i j  } where ai j  =E ( x i  X j  ): 
Assume tha t  f 1s the denslty of the zero mean normal dlstrlbutlon on R 2 ,  

In thls case, the condltlonal denslty method yields the followlng algorlthm: 

Conditional density method for normal random variates 

Generate N 1 ,  N2, iid normal random variates. 

XI-NlJ.7; 
a 22a 11-a 21 

a I1 

RETURN (x,,X,) 

Thls follows by notlng that X ,  1s zero mean normal wl h varlance a, , ,  and com- 
putlng the condltlonal denslty of X ,  glven x, as a ratlo of marglnal densltles. 

Example 1.3. 
Let f be the unlform denslty In the unlt clrcle C, of R 2 .  The condltlonal 

denslty method 1s easlly obtalned: 

Generate XI with density 

Generate X2 uniformly on [ -dm,dm].  
l ( x )  = z m  ( I x I 51). R 

RETL.JFtN (X19X2) 
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In all three examples, we could have used alternatlve methods. Examples 1.1 
and 1.2 deal wlth easily treated radlally symmetrlc dlstrlbutlons, and Example 
1.3 could have been handled vla the ordlnary reJectlon method. 

1.3. The rejection method. 
It should be clear that the reJectlon method Is not tled to a partlcular space. 

It can be used In multlvarlate random varlate generatlon problems, and Is prob- 
ably the most useful general purpose technlque here. A few traps to watch out  for 
are worth mentlonlng. Flrst of all, reJectlon from a unlform denslty on a rectan- 
gle of R d  often leads t o  a reJectlon constant whlch deterlorates qulckly as d 
Increases. A case In polnt Is the reJectlon method for generatlng polnts unlformly 
In the unlt sphere of R d  (see sectlon V.4.3). Secondly, unllke In R ' ,  upper 
bounds for certain densltles are not easily obtalnable. For example, the lnforma- 
tlon that f 1s unlmodal with a mode at the orlgln 1s of llttle use, whereas In R ', 
the same information allows us to conclude that f ( x ) < l /  I x I . Slmllarly, com- 
blnlng unlmodallty wlth moment conditlons 1s not enough. Even the fact that f 
1s log-concave Is not sumcient to derive unlversally appllcable upper bounds (see 
sectlon VII.2). 

In general, the design of an efflclent rejectlon method 1s more dlmcult than 
In the unlvarlate case. 

1.4. The composition method. 
The composltlon method 1s not tled to a partlcular space such as R' .  A 

popular technlque for obtainlng dependence from lndegendence Is the followlng: 
deflne a random vector X=(X,, . . . , & ) as (SY, ,  . . . , SYd ) where the Si's 
are lld random varlables, and S 1s a random scale. In such cases, we say that the 
dlstrlbutlon of X 1s a scale mixture. If Y, has denslty f , then X has a denslty 
glven by 

If Y ,  has distribution functlon F = l - G ,  then 

xi d 

i = 1  
P ( X , > X , ,  . . . , xd > X d )  = E (  n G(s)). 
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Example 1.4. The multivariate Burr distribution. 

gamma ( b  ), then (SY , ,  . . . , SYd ) has dlstrlbutlon functlon determlned by 
When Y l  1s Welbull wlth parameter a (1.e. G ( y ) = e - Y '  (y >O)) ,  and S IS 

i = l  
d 

1 

Thls deflnes the multlvarlate Burr dlstrlbutlon of Takahasl (1965). From thls 
relatlon I t  1s also easily seen that all unlvarlate or multlvarlate marglnals of a 
multlvarlate Burr dlstrlbutlon are unlvarlate or multlvarlate Burr dlstrlbutlons. 
For more examples of scale rnlxtures In whlch S 1s gamma, see Hutchlnson 
(1981). 

Example 1.5. The multinomial distribution. 
The condltlonal dlstrlbutlon method 1s not llmlted to contlnuous dlstrlbu- 

tions. For example, conslder the multinomial distribution wlth parameters 
n ,p l ,  . . . , pd where the p i ' s  form a probablllty vector and n 1s a posltlve 
Integer. A random vector ( X I ,  . . . , xd ) 1s multlnomlally dlstrlbuted wlth these 
parameters when 

n !  d . 
p((x1, . . , Xd)=(ii, . , id))  = d n p j f J  n ij! i = 1  

j=1 

d 

j = 1  

( Z j L o ,  j = 1 , ,  . . , d ; C i j = n ) .  

Thls 1s the dlstrlbutlon of the cardlnalltles of d urns lnto whlch n balls are 
thrown at random and lndependently of each other. Urn number j 1s selected 
wlth probablllty pi by every ball. The ball-ln-urn experlment can be mlmlcked, 
whlch leads us to an aigorlthm taklng tlme 0 (n  + d )  and O ( n  +d ). Note how- 
ever that 1, ls blnomlal ( n  ,p l ) ,  and that glven x,, the vector (I2,  . . . , xd ) ls 
multlnomlal (n-X,,q,, . . . , q d )  where q j = p j / ( l - p  l). Thls recurrence relatlon 
1s nothlng but another way of descrlblng the condltlonal dlstrlbutlon method for 
thls case. Wlth a unlformly fast blnomlal generator we can proceed In expected 
tlme 0 ( d  ) unlforinly bounded In n : 



, 
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Multinomial random vector generator 

[NOTE: the parameters n , p  
lative sum of probabilities.] 
Sum -0 
FOR i :=1 TO d DO 

. . . , p d  are destroyed by this algorithm. Sum holds a cumu- 

P i  Generate a binomial (n ,T) random vector X i .  

n +n -Xi 
Sum +- Sum - p i  

For small values of n ,  I t  1s unllkely that  thls algorlthm 1s very competltlve, 
malnly because the parameters of the blnornlal dlstrlbutlon change at every call. 
I 

1.5. Discrete distributions. 
Consider the problem of the generation of a random vector taklng only 

values on d-tuples of nonnegatlve Integers. One of the striking dlfferences wlth 
the contlnuous multlvarlate dlstrlbutlons Is that the d-tuples can be put into 
one-to-one correspondence wlth the nonnegatlve lntegers on the real llne. This 
one-to-one mapplng can be used to apply the lnverslon method (Kemp, 1981; 
Kemp and Loukas, 1978) or one of the table methods (Kemp and Loukas, 1981). 
We say that  the functlon whlch transforms d -tuples lnto nonnegatlve integers 1s 
a coding function. The lnverse functlon 1s called the decoding function. 

Coding functlons are easy to  construct. Conslder d =2. Then we can vlslt all 
2-tuples In the positive quadrant In cross-diagonal fashlon. Thus, flrst we vlslt 
(O,O), then (0,l) and ( l , O ) ,  then (0,2),(1,1) and (2,0), etcetera. Note that we vlslt 
all the integers (i , j )  wlth i +J’ = k  before vlsltlng those wlth i + j  = k  +l. Slnce 
we vlslt k(k-1)/2 %tuples wlth i+j ck, we see that we can take as codlng 
Tunc tlon 

Thls can be generallzed to d -tuples (exerclse 1.4), and a simple decoding function 
exists which allows us to recover (i,j) from the value of h ( i , j )  in time o(1) 
(exercise 1.4). There are other orders of traversal of the 2-tuples. For example, we 
could vlslt 2-tuples In order of lncreaslng values of max(i ,i). 



I 
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In general one cannot vlslt all 2-tuples In order of lncreaslng values of i ,  Its 
flrst component, as there could be an lnflnlte number of 2-tuples wlth the same 
value of i. It 1s lllce trylng t o  vlslt all shelves In a llbraiy, and gettlng stuck In 
the first shelf because I t  does not end. If the second component 1s bounded, as It 
often Is, then the llbrary traversal leads to  a slmple codlng functlon. Let M be 
the maximal value for j . Then we have 

h ( i , j )  = (M+l) i+ j .  

One should be aware of some pltfalls when the unlvarlate connectlon IS 

explolted. Even If the dlstrlbutlon of probablllty over the d-tuples 1s relatlvely 
smooth, the correspondlng unlvarlate probablllty vector 1s often very osclllatory, 
and thus unflt for use In the rejectlon method. ReJectlon should be applled 
almost excluslvely to the orlglnal space. 

The fast table methods requlre a flnlte dlstrlbutlon. Even though on paper 
they can be applled to all Anlte dlstrlbutlons, one should reallze that the number 
of posslble d -tuples In such dlstrlbutlons usually explodes exponentlally wlth d . 
For a dlstrlbutlon on the lntegers In the hypercube {1,2, . . . , n } d ,  the number 
of posslble values 1s n d .  For thls example, table methods seem useful only for 
moderate values of d . See also exerclse 1.5. 

Kemp and Loukas (1978) and Kemp (1981) are concerned wlth the lnvei-slon 
method and its emclency for varlous codlng functlons. Recall that in the unlvarl- 
ate case, lnverslon by sequentlal search for a nonnegatlve Integer-valued random 
varlate X takes expected tlme (as measured by the expected number of comparls- 
ons) E(X)+l. Thus, wlth the codlng functlon h for x,, . . , , xd, we see 
wlthout further work that the expected number of comparlsons Is 

E ( h  ( X I ,  . . . , x, )+l) . 

Example 1.6. 
Let us apply lnverslon for the generatlon of (xl,X2), and let us scan the 

space In cross dlagonal fashlon (the codlng functlon 1s 

h ( i  , j )  = +'-'I + i  ). Then the expected number of comparlsons before 
haltlng 1s 

(i +' 
2 

2 +X,+l) . 

Thls 1s at least proportlonal t o  elther one of the marglnal second moments, and 1s 
thus much worse than one would normally have expected. In fact, ln d dlmen- 
slons, a slmllar codlng functlon leads to  a flnlte expected tlme If and only If 
E (xi )<oo for all i =1, . . . , d (see exerclse 1.6). 
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Example 1.7. 
Let us apply lnverslon for the generatlon of (X,,X,), where O < x , L M ,  and 

let us perform a llbrary traversal (the coding function 1s h (i , j )  = ( M + i ) i  + j ) .  
Then the expected number of comparisons before halting 1s 

E (  (M+l)X,+X,+l) . 

Thls 1s flnlte when only the flrst moments are flnlte, but has the drawback that 
M flgures expllcltly in the complexlty. 

We have made our polnt. For large values of d ,  ordinary generatlon 
methods are often not feaslble because of tlme or space lnemclencles. One should 
nearly always t ry  to convert the problem lnto several unlvarlate problems. This 
can be done by applylng the condltlonal dlstrlbutlon method. For the generatlon 
of X,,X, ,  we flrst generate XI,  and then generate X ,  condltlonal on the glven 
value of XI. Effectlvely, thls forces us to know the marglnal dlstrlbutlon of X ,  
and the Jolnt two-dimenslonal dlstrlbution. The marginal distrlbutlon of X, 1s 
not needed. To see how thls improves the complexltles, conslder using the lnver- 
slon method In both stages of the algorlthm. The expected number of comparls- 
oqs In the generatlon of X ,  glven XI  Is E(X, I X,)+l. The number of comparls- 
ons Iff the generatlon of X ,  is X,+1. Summing and taklng expected values shows 
that the expected number of comparlsons is 

E (X,+X,+2) 
(Kemp and Loukas, 1978). Compare wlth Examples 1.0 and 1.7. 

In the  condltlonal dlstrlbutlon method, we can improve the complexity even 
further by employlng table methods In one, some or all of the stages. If d=2 and 
both components have lnflnlte support, we cannot use tables. If only the second 
component has lnflnlte support, then a table method can be used for XI. This 1s 
the ideal sltuatlon. If both components have flnlte support, then we are tempted 
to apply the table method In both stages. Thls would force us to set up many 
tables, one for each of the posslble values of XI. In that case, we could as well 
have set up one giant table for the entlre distrlbution. Finally, if the flrst com- 
ponent has lnflnlte support, and the second component has flnlte support, then 
the  lqcapablllty of storlng an lnflnlte number of flnlte tables forces us to set up 
the tables as we need them, but the tlme spent doing so 1s prohlbltlvely large. 

If a distrlbution is given in analytlc form, there usually 1s some speclal pro- 
perty whlch can be used In the deslgn of an emclent generator. Several examples 
can be found In sectlon 3. 
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1.6. Exercises. 

1. Conslder the denslty f (z1,z2) = 5z1e-Z122 deflned on the lnflnlte strlp 
0 .2<z ,50 .4  , Osz,. Show that  the flrst component x, 1s unlformly dlstrl- 
buted on [0.2,0.4], and that  glven x,, x, 1s dlstrlbuted as an exponentlal 
random varlable dlvlded by X ,  (Schmelser, 1980). 
Show how you would generate random varlates wlth denslty 2. 

6 
(a: 1 , ~ p z 3 L O )  . 

(l+z,+z2+z3)4 

Show also tha t  x,+x2+x3 has denslty 3z2/(l+z )4 (z Y O )  (Sprlnger, 1979, 
p.87). 
Prove that for any dlstrlbutlon functlon F on R d ,  there exlsts a measurable 
functlon g :[o,l]+R such that g (U) has dlstrlbutlon functlon F ,  where U 
1s unlformly dlstrlbuted on [0,1]. Thls can be consldered as a generallzatlon 
of the lnverslon method. Hlnt: from U we can construct d lld unlform [0,1] 
random varlables by sklpplng blts. Then argue vla condltlonlng. 

3. 

4. Conslder the codlng functlon for 2-tuples of nonnegatlve lntegers (i , j  ) glven 

by h ( i , j )  = (i +.i >(i +j-1> +; +l. 
2 

A. Generallze thls codlng functlon to d -tuples. The generallzatlon should 
be such tha t  all d-tuples wlth sum of the comwnents equal to some 
lnteger k are grouped together, and the groups are ordered accordlng to 
lncreaslng values for k. Wlthln a group, this rule should be applled 
recurslvely to groups of d-1-tuples wlth constant sum. 
Glve the decodlng functlon for the two-dlmenslonal h shown above, and 
lndlcate how I t  can be evaluated In tlme 0 (1) (Independent of the slze 
of the argument). 

5. Conslder the multlnomlal dlstrlbutlon wlth parameters n , p  ,, . . . , p d ,  

B. 

whlch asslgns probablllty 

d 

j = I  
to all d -tuples wlth ij  >O, - 

be N (n ,d ). For Axed n , And a slmple functlon $(d ) wlth the property that  

ij =n . Let the total number of posslble values 

Thls glves some ldea about how qulckly N (n  ,d ) grows wlth d . 
Show that  when a cross-dlagonal traversal 1s followed In d dlmenslons for 
lnverslon by sequentlal search of a dlscrete probablllty dlstrlbutlon on the 
nonnegatlve lntegers of R d ,  then the expected tlme .required by the lnver- 
slon 1s flnlte If and only If E ( X i  )<m for all ' ;=I, . . . , d where 
x , ,  . . . , xd 1s 

6. 

d-dlmenslonal random vector wlth the glven dlstrlbutlon. 
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7. Relationship between multinomial and Poisson distributions. Show 
that the algorlthm glven below In which the sample slze parameter 1s used as 
a mlxlng parameter dellvers a sequence of d Ild Polsson ( A )  random varl- 
ables. 

Generate a Poisson (d  A) random variate N . 
RETURN a multinomial ( N  9 ;I’ . . . , ?) random vector (Xl, . . . , X d ) .  1 1 

Hlnt: thls can be proved by expllcltly computlng the probabllltles, by work- 
lng wlth generatlng functlons, or by employlng properties of Polsson polnt 
processes. 

8. A bivariate extreme value distribution. Marshall and Olkln (1983) 
have studled multlvarlate extreme value dlstrlbutlons In detall. One of the 
dlstrlbutlons consldered by them Is deflned by 

--I -524e 5 -I2)-I1 

P ( X , > S , , X , > ~ , )  = e-(e (a:,3,a:,Lo> 

How would you generate a random varlate with thls dlstrlbutlon? 
Q. Let f be an arbltrary unlvarlate denslty on ( 0 , ~ ) .  Show that 

f (z ,+z2)/(s 1+z2) (z ,>O,z,>O) 1s a blvarlate denslty (Feller, 1971, 
p.100). Exploltlng the structure In the problem to the fullest, how would 
you generate a random vector wlth the glven blvarlate denslty? 

2. LINEAR, TRANSFORMATIONS. THE MULTINORMAL DISTRI- 
BUTION. 

2.1. Linear transformations. 

vector Y deflned as the solution of X=HY has denslty 
When an  R -valued random vector X has denslty f (x), then the random 

s ( y > =  I H I f ( H Y ) , Y E R d  9 

:or all nonslngular d X d  matrlces H. The notatlon 1 H 1 1s used for the absolute 
;’3lue of the determlnant of H. Thls property 1s reclprocal, 1.e. when Y has den- 
‘1tY 9 .  then X=HY has denslty f . 

The llnear transformatlon H deforms the coordinate system. Partlcularly 
::Xxmant Ilnear deformatlons are rotatlons: these correspond to orthonormal ’ r3nsformar:lon matrlces H. For random varlate generatlon, llnear transformatlons 
3re Important In a few specla1 cases: 
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A. The generatlon of polnts 
hyperelllpsolds. 

inlformly dlstrlbuted In d -dlmenslonal slmpllces or 

B. The generatlon of random vectors wlth a glven dependence structure, as 
measured by the covarlance matrlx. 
These two appllcatlon areas are now dealt wlth separately. 

2.2. Generators of random vectors with a given covariance matrix. 
The covarlance matrlx of an R d-valued random vector Y wlth mean 0 1s 

deflned as C=E (n‘) where Y Is consldered a s  a column vector, and Y‘ denotes 
the transpose of Y. Assume flrst that we wlsh to generate a random vector Y 
wlth zero mean and covarlance matrlx C and that we do not care for the tlme 
belng about the form of the dlstrlbutlon. Then, I t  Is always posslble to proceed as 
follows: generate a random vector x wlth d lld components x,, . . . , xd each 
havlng zero mean and unlt varlance. Then deflne Y by Y=HX where H Is a 
nonslngular d X d  matrlx. Note that 

E(Y) = HE(X) = 0 ,  

E(-’) = HE(XX’)H’ = HH’ = C . 

We need a few facts now from the theory of matrlces. Flrst of all, we recall the 
deAnltlon of posltlve deflnlteness. A matrlx A Is posltlve deflnlte (posltlve seml- 
deflnlte) when x’Ax > 0 ( L O )  for all nonzero R -valued vectors x. But we have 

X’CX = E(x’YY’x) = E (  I I X’Y I I ) 2 0 

for all nonzero x. Here I I . I I 1s the standard L norm In R d .  Equallty occurs 
only If the Yi ‘s are llnearly dependent wlth probablllty one, 1.e. x’Y=O wlth pro- 
bablllty one for some x#O. In that  case, Y Is sald to  have dlmenslon less than d .  
Otherwlse, Y 1s sald to have dlmenslon d .  Thus, all covarlance matrlces are posl- 
tlve semldeflnlte. They are posltlve deAnlte If and only If the random vector In 
questlon has dlmenslon d .  

For symmetrlc posltlve deflnlte matrlces E, we can always And a nonslngular 
matrlx H such that 

HH‘ = C . 
In fact, such matrlces can be characterlzed by the exlstence of a nonslngular H. 
We can do even better. One can always And a lower trlangular nonslngular €3 
such that 

HH’ = C . 

We have now turned our problem lnto one of decomposlng a symmetrlc posltlve 
deflnlte matrlx C lnto a product of two lower trlangular matrlces. The algorlthm 
can be summarlzed as follows: 
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Generator of a random vector with given covariance matrix 

[SET-UP] 
Find a matrix H such that HHt=C. 
[GENERATOR] 
Generate d independent zero mean unit variance random variates x,, . . . , x, . 
RETURN Y=HX 

The set-up step can be done In tlme 0 ( d 3 )  as we will see below. Slnce H can 
have up to n(d2) nonzero elements, there Is no hope of generatlng Y In less than 
n(d2). Note also tha t  the dlstrlbutlons of the Xi’s are to  be picked by the users. 
We could take them lld and blatomlc: P (Xl= l )=P  (X,=-l)=-. In tha t  case, 

Y is atomlc wlth up to  2 d  atoms. Such atomlc solutlons are rarely adequate. 
Most appllcatlons also demand some control over the marglnal dlstrlbutlons. But 
these demands restrlct our cholces for X , .  Indeed, If our method Is to be unlver- 
sal, we should choose I,, . . . , lyd In such a way that  all llnear comblnatlons of 
these lndependent random varlables have a given dlstrlbutlon. Thls can be 
assured In several ways, but the cholces are llmlted. To see thls, let us conslder 
lld random variables Xi  wlth common characterlstlc function 4, and assume tha t  
we wish all llnear comblnatlons t o  have the same dlstributlon up to  a scale fac- 
tor. The sum C a j  X j  has characterlstlc function 

1 
2 

d 

j=1 
I1 4 ( a j  t 1 ‘ 

Thls 1s equal to d ( a t )  for some constant a when 4 has certaln functlonal forms. 
Take for example 

d ( t )  = e - I t  l o  

for some cuE(O,2] as In the case of a symmetrlc stable dlstrlbutlon. Unfortunately, 
the only symmetrlc stable distrlbutlon wlth a flnlte varlance 1s the normal dlstrl- 
butlon (a=2). Thus, the property that  the normal distrlbutlon 1s closed under 
the  operatlon ”llnear comblnatlon” Is what makes I t  so attractlve to the user. If 
the user speclfles non-normal marglnals, the Covariance structure 1s much’ more 
dlmcult to enforce. See however some good solutlons for the bivariate case as 
cieveloped In sectlon X . 3 .  

A computatlonal remark about H Is In order here. There Is a simple algo- 
rlthm known as the square root method for flndlng a lower trlangular H with 
HH’ = C (Faddeeva, 1959; Moonan, 1957; Grayblll, 1969). We glve the relatlon- 
\l)!P between the matrlces here. The elements of C are called a i j ,  and those of 
rile lower trlangular solutlon matrix H are called h i j .  
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2.3. The multinormal distribution. 
The standard multinormal distribution on R has denslty 

d i  -- --x'x 
2 f (x) = (277-1 e 

= (2n) e 
d i  

2 
-- - - I  1x1 ( 2  

(xER d ,  . 
Thls 1s the denslty of d lld normal random varlables. When x has denslty f , 
Y=HX has denslty 

g (Y) = 1 H-l I f (H-~Y)  Y€R . 

I I €3-'y I I 2=y'C-1y, whlch glves us the denslty 
But we know that Z=HH', so that I H-' 1 = 1 C l - i ' 2 .  Also, 

-- d -l -lyJ-py 
g ( Y )  = (277-1 I I e (YER I . 

Thls Is the denslty of the multlnormal dlstrlbutlon wlth zero mean and nonslngu- 
lar covarlance matrlx E. We note wlthout work that the i - th  marglnal dlstrlbu- 
tlon 1s zero mean normal wlth varlance glven by the i - th  dlagonal element of C. 
In the most general form of the normal dlstrlbutlon, we need only add a transla- 
tlon parameter (mean) to  the dlstrlbutlon. 

Random varlate generatlon for the normal dlstrlbutlon can be done by the 
llnear transformatlon of d lld normal random varlables descrlbed In the prevlous 
sectlon. Thls lnvolves decomposltlon of C lnto a product of the form HH'. Thls 
method has been advocated by Scheuer and Stoller (1962) and Barr and Slezak 
(1972). Deak (1979) glves other methods for generatlng multlnorinal random vec- 
tors. For the condltlonal dlstrlbutlon method In the case d=2, we refer t o  Exam- 
ple 1.2. In the general case, see for example Scheuer and Stoller (1962). 

An lmportant speclal case 1s the blvarlate multlnormal dlstrlbutlon wlth zero 
mean, and covarlance matrlx 

i 
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where pE[-1,1] 1s the correlatlon between the two marglnal random varlables. It 
1s easy to see that If ( N , , N 2 )  are Ild normally dlstrlbuted random varlables, then 

has the sald dlstrlbutlon. The multlnormal dlstrlbutlon can be used as the start- 
lng polnt for creatlng other multlvarlate dlstrlbutlons, see sectlon XI.3. We wlll 
also exhlblt many multlvarlate dlstrlbutlons wlth normal marglnals whlch are not 
nlultlnormal. To keep the termlnology conslstent throughout thls book, we wlll 
refer to  all dlstrlbutlons havlng normal marglnals as multlvarlate normal dlstrlbu- 
tlons. Multlnormal dlstrlbutlons form only a tlny subclass of the multlvarlate 
normal dlstrl but lons. 

2.4. Points uniformly distributed in a hyperellipsoid. 

matrlx A: I t  1s the collectlon of all polnts yER 
A hyperelllpsold In R 1s deflned by a symmetrlc posltlve deflnlte d X d  

wlth the property that 

.\ random vector unlformly dlstrlbuted In thls hyperelllpsold can be generated by 
9 llnear transformatlon of a random vector X dlstrlbuted unlformly In the unlt 
h-persphere Cd of R d .  Such random vectors can be generated qUlte efflclently 
(see sectlon V.4). Recall that llnear transformatlons cannot destroy unlformlty. 
They can only alter the shape of the support of unlform dlstrlbutlons. The only 
Problem we face 1s that of the determlnatlon of the llnear transformatlon In func- 
t!sn of A. 

Let us deflne Y=HX where H 1s our d X d  transformatlon matrlx. The set 
2edned by 

I'.'rresponds t o  the set 

x'H'AHx 5 1 .  

3:: slnce thls has to colnclde wlth x'x 5 1 (the deflnltlon of Cd ), we note that 

H'AH = I 

"'Jw 1 is the unlt d X d  matrlx. Thus, we need to  take H such that 
-\-' = HH'. See also Rublnsteln (1982). 
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r 

Theorem 2.1. 

on [0,1]. (Thus, Si 2 0  for all z ' ,  and C S i  =1.) Then 
Let (SI, . . . , Sd+,) be the spaclngs generated by a unlform sample of slze d 

2.5. Uniform polygonal random vectors. 
wlth vertlces vl, . . . , v, 1s the collectlon of all 

polnts In R d  that are obtalnable as convex comblnatlons of vl,  . . . , v,. Every 
polnt x In thls convex polytope can be wrltten as 

A convex polytope of R 

n 
x = aivi 

. 1 = l  

n 

i=1 
for some a ai =l. The set vl ,  . . . , v, 1s mlnlmal for 

the convex polytope generated by I t  when all vi's are dlstlnct, and no vi can be 
wrltten as a strlct convex comblnatlon of the vj's. ( A strlct convex comblnatlon 
1s one whlch has at least one ai not equal to  0 or 1.) 

We say that a set of vertlces vl, . . . , v, 1s In general posltlon If no three 
polnts are on a llne, no four polnts are In a plane, etcetera. Thus, If the set of 
vertlces 1s mlnlmal for a convex polytope .P , then I t  1s In general posltlon. 

A simplex 1s a convex polytope wlth d +1 vertlces In general posltlon. Note 
that d polnts In general posltlon In R deflne a hyperplane of dlmenslon d-1. 
Thus, any convex polytope wlth fewer than d +1 vertlces must have zero d - 
dlmenslonal volume. In thls sense, the slmplex 1s the slmplest nontrlvlal obJect in 

We can deflne a baslc slmplex by the orlgln and d polnts on the posltlve 
coordlnate axes at dlstance one from the orlgln. 

There are two dlstlnct generation problems related to convex polytopes. We 
could be asked to  generate a random vector unlformly dlstrlbuted In a glven 
polytope (see below), or we could be asked to generate a random collectlon of ver- 
tices deflnlng a convex polytope. The latter problem 1s not dealt wlth here. See 
however Devroye (1982) and May and Smlth (1982). 

Random vectors dlstrlbuted unlformly ln an arbltrary slmplex can be 
obtalned by llnear transformatlons of random vectors dlstrlbuted unlformly In 
the baslc slmplex. Fortunately, we do not have to go through the agony of factor- 
lzlng a matrlx as In the case of a glven covarlance matrlx structure. Rather, there 
1s a surprlslngly slmple dlrect solutlon to the general problem. 

. . . , an wlth ai 20, 

R d .  

I 

I-. 
I I 
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Proof of Theorem 2.1. 
Let !3 be the column vector S 

dlstrlbuted In the baslc slmplex I? where 
. . . , Sd . We recall flrst that S 1s unlformly 

B { ( X I ,  . . . , ~ d )  : xi 20, C X ~  <I} - . 
: 

If all vi’s are consldered a s  column vectors, and A Is the matrlx 

[vl-vd+l v2-vd+1 ’ * ’ v d - v d + ~ ]  9 

then we can wrlte X as follows: 
d 

i=1  
x = Vd+l+ (Vi-Vd+l)Si = V d + l f S ’ A  . 

It Is clear that X 1s unlformly dlstrlbuted, slnce I t  can be obtalned by a llnear 
transformatlon of S. The support Supp (X) of the dlstrlbutlon of X 1s the collec- 
tlon of all polnts which can be wrltten as V d + l + a ’ A  where aEB 1s a column vec- 

d + i  
tor. Flrst, assume that xEP. Then, x= C-aivi for some probablllty vector 

a 1, . . . , ad +l .  Thls can be rewrltten as follows: 
: = 1  

d 
X Vd+l+ ai (Vi-Vd+l) = V d + l + a ’ A  

: =1  

where a 1s the vector formed by a 
xE Supp (X). Then, for some column vector aEB , 

. . . , ad. Thus, P & Supp (x). Next, assume 

d 

:=1 
x = V d + l + a ’ A  = Vd+l+ ai (Vi-Vd+l) 

d + i  

i = 1  

= aivi , 

whlch lmplles that x 1s a convex comblnatlon of the vi’s, and thus xEP. Hence 
Supp (X) C P ,  and hence Supp (X)=P, whlch concludes the proof of Theorem 
2.1. 

Example 2.1. Triangles. 

dlstrlbuted In the trlangle defined by vl,v2,v3 of R 2: 

The followlng algorlthm can be used to generate random vectors unlformly 
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Generator for uniform distribution in triangle 

Generate iid uniform [0,1] random variates u ,  v . 
IF U > V  then swap U and V. 
RETURN (UV,+( V-U)v,+(1-V)Vg) 

See also exerclse 2.1. 

Example 2.2. Convex polygons in the plane. 
Convex polygons on R wlth n >3 vertlces can be partltloned lnto n -2 dls- 

Jolnt trlangles. Thls can always be done by connectlng all vertlces wlth a deslg- 
nated root vertex. Trlangulatlon of a polygon 1s of course always posslble, even 
when the polygon 1s not convex. To generate a polnt unlformly In a trlangulated 
polygon, I t  sumces to generate a polnt unlformly In the i - t h  trlangle (see e.g. 
Example 2.1), where the i - th  trlangle 1s selected wlth probablllty proportional to 
Its area. It 1s worth recalllng that the area of a trlangle formed by 
(v 11,' 12),(v21,v22),(2'311032) Is 

We can deal wlth all slmpllces In all Euclldean spaces vla Theorem 2.1. 
Example 2.2 shows that  all polygons In the plane can be dealt wlth too, because 
all such polygons can be trlangulated. Unfortuqately, decomposltlon of d - 
dlmenslonal polytopes lnto d -dlmenslonal slmpllces 1s not always posslble, so that 
Example 2.2 cannot be extended to hlgher dlmenslons. ?'he decomposltlon 1s pos- 
sible for all convex polytopes however. A decomposltlon algorlthm 1s glven In 
Rubln (1984), who also provldes a good survey of the problem. Theorem 2.1 can 
also be found In Rublnsteln (1982). Example 2.2 descrlbes a method used by 
Hsuan (1982). The present methods whlch use decomposltlon and llnear transfor- 
matlons are valld for polytopes. For sets wlth unusual shapes, the grid methods 
of sectlon VIII.3.2 should be useful. 

We conclude thls sectlon wlth the slmple mentlon of how one can attack the 
decomposltlon of a convex polytope wlth n vertlces lnto slmpllces for general 
Euclldean spaces. If we are glven an ordered polytope, Le. a polytope wlth all Its 
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faces clearly ldentlfled, and with polnters to nelghboring faces, then the partltion 
1s trivial: choose one vertex, and construct all simplices conslstlng of a face (each 
face has d vertlces) .and the picked vertex. For selection of a simplex, we also 
need the area of a simplex with vertlces vi , t'=1,2, . . . , d f l .  Thls Is given by 

IAl 
d !  

where A 1s the d X d  matrlx wlth as columns Vl-Vd+I, . . . , ~ d - v d + ~ .  The com- 
plexity of the preprocessing step (decomposltlon, computatlon of areas) depends 
upon m , the  number of faces. It is known that m = O  ( n  L d / 2 J )  (McMullen, 
1970). Since each area can be computed in constant time ( d  1s kept Axed, n 
varles), the set-up time is 0 ( m  ). The expected generatlon time 1s 0 (1) if a con- 
stant tlme selection algorithm Is used. 

The aforementloned ordered polytopes can be obtained from an unordered 
collection of n vertlces in worst-case time 0 (n log(n)+n L(d+1)/21) (Seldel, lQSl),  
and this is worst-case optlmal for even dimensions under some computatlonal 
models. 

2.6. Time series. 
The generation of random tlme series wlth certain speclflc propertles (margi- 

nal distrlbutlons, autocorrelatlon matrlx, etcetera) is discussed by Schmelser 
(1980), Franklln (1965), Prlce (1976), Hoffman (1979), L1 and Hammond (1975), 
Lakhan (1981), Polge, Holllday and Bhagavan (1973), Mikhallov (1974), Fraker 
and Rippy (1974), Bade1 (1979), Lawrance and Lewls (1977, 1980, lQSl) ,  and 
Jacobs and Lewls (1977). 

2.7. Singular distributions. 
Slngular distrlbutlons In R are commonplace. Dlstrlbutlons that put all 

thelr mass on a llne or curve in the plane are slngular. So are dlstrlbutlons that 
Put  all their mass on the surface of a hypersphere of R d .  Computer generation 
of random vectors on such hyperspheres 1s discussed by Ulrlch (1984), who in par- 
tlcular derives an efflclent generator for the Flsher-von Mlses dlstributlon In R d .  

can be given ln many forms. Perhaps the most popular form 1s 
the parametric one, where x=h(z ) and z ER 1s a parameter. An example 1s the 
clrcle In R2, determlned by 

A llne In R 

2 1  = cos(27rz) , 

x 2  = sln(2nz ) . 
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Now, If 2 Is a random varlable and h 1s a Bore1 measurable functlon, then 
X = h ( Z )  1s a random vector whlch puts all Its mass on the llne defined by 
x=h(z) .  In other words, X has a llne dlstrlbutlon. For a one-to-one mapplng 
h:R -+R d ,  which Is also continuous, we can deflne a llne denslty f ( z  ) at the 
polnt x=h(z  ) vla the relatlonshlps 

b 
P(X=h(z) forsome z E [ a , b ] )  = J f  ( z ) $ ( z )  dz (all [ a , b ] ) ,  

a 

h’; 2(z  ) 1s the norm of the tangent of h at z , and hi 1s the 
b 

where $(z)=  

z-th component of h. But slnce thls must equal P ( a  52 5 b )=sg ( z  ) dz where 

g Is the denslty of 2 ,  we see that 
a 

For a unlform llne denslty, we need to  take g proportlonal t o  $. 
As a flrst example, conslder a functlon In the plane determlned by the equa- 

tlon y =x(s ) (0511: 5 l). A polnt wlth unlform llne denslty can be obtained by 
conslderlng the II: -coordinate as our parameter z . This yields the algorlthm 

Generate a random variate x with density e m. 
RETURN (X ,x (X 1) 

Thls could be called the proJectlon method for obtalnlng random varlates 
wlth certaln llne densltles. The converse, proJectlon from a line to the z-axls 1s 
much less useful, slnce we already have many technlques for generatlng real-llne- 
valued random varlates. 

2.8. Exercises. 
1. Conslder a trlangle wlth vertlces v1,v2,v3, and let U , V  be lld unlform [0,1] 

random varlables. 
A. Show that If we set Y+v2+(v,-v2)U, and Xtv,+(Y-v,)V,  then X 1s 

not unlformly dlstrlbuted In the glven trlangle. Thls method 1s mlslead- 
lng, as Y 1s unlforinly dlstrlbuted on the edge (v , ,~ , ) ,  and X 1s unl- 
formly dlstrlbutecl on the llne Jolnlng v1 and Y .  

i I 
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B. Show that  X In part A is unlformly distributed In the sald trlangle If we 
replace V In the algorithm by max(V,V*) where V,V* are lld unlform 
[0,1] random varlables. 

Deflne a simple boolean function which returns the value true if and only If 
x belongs to the a triangle In R 2  wlth three glven vertlces. 
Conslder a trlangle ABC where AB has length one, BC has length 6 ,  and the 
angle ABC 1s 8. Let X be unlformly dlstrlbuted In the triangle, and let Y be 
the lntersectlon of the llnes AX and BC. Let Z be the dlstance between Y 
and B. Show that  z has denslty 

2. 

3. 

1 
( O < z < 6 ) .  

Compare the geometric algorlthm for generating Z given above wlth the 
lnverslon method. 

1/22-22 cos(e)+1 

3. DEPENDENCE. BIVARIATE DISTRIBUTIONS. 

3.1. Creating and measuring dependence. 
In many experlments, a controlled degree of dependence Is required. Some- 

times, users want dlstrlbutlons wlth given marglnals and a glven dependence 
structure as measured wlth some crlterlon. Sometlmes, users know precisely what 
they want by completely speclfylng a multlvarlate dlstrlbutlon. In this section, 
we wlll mainly look at problems In which certaln marglnal dlstrlbutlons are 
needed together wlth a glven degree of dependence. Usually, there are very many 
multlvarlate dlstrlbutlons whlch satisfy the given requlrements, and sometlmes 
there are none. In the former case, we should design generators which are emcient 
and lead to dlstrlbutlons whlch are not unrealistlc. 

For a clear treatment of the subJect, it Is best to  emphasize blvarlate dlstrl- 
butlons. A number of different measures of assoclatlon are commonly used by 
practicing statisticlans. First and foremost Is the correlation coefficient p (also 
called Pearson product moment correlatlon coefflclent) deflned by 

where p1,p2 are the means of X , , X 2 ,  and 01,02 are the correspondlng standard 
devlations. The key properties of p are well-known. When X1,X2 are lndepen- 
dent, p=O. Furthermore, by the Cauchy-Schwarz lnequallty, I t  1s easy to see that 

I p I 51. When LYl=X2, we have p = l ,  and when 1y,=-1Y2, we have p=-1. 
Unfortunately, there are a few enormous drawbacks related to the correlatlon 
coemclent. Flrst, I t  Is only deflned for dlstrlbutlons havlng marglnals wlth flnlte 
variances. Furthermore, i t  is not Invarlant under monotone transformations of 
the coordlnate axes. For example, If we deflne a blvarlate unlform dlstrlbutlon 

1 I 
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wlth a glven value for p and then apply a transformatlon t o  get certaln speclflc 
marglnals, then the value of p could (and usually does) change. And most Impor- 
tantly, the value of p may not be a solld lndlcator of the dependence. For one 
thing, p=O does not lmply Independence. 

Measures of assoclatlon whlch are lnvarlant under monotone transformations 
are in great abundance. For example, there 1s Kendall’s tau deflned by 

7 = 2P ((x,-x,)(x,-x2)>0)-1 
where (X1,X2) and (A‘?,,-X’,) are lld. The lnvarlance under strlctly monotone 
transformatlons of the coordlnate axes 1s obvlous. Also, for all dlstrlbutlons, T 
exlsts and takes values ln [-1,1], and -0 when the components are lndependent 
and nonatornlc. The grade correlation (also called Spearman’s rho or the 
rank correlation) pg 1s deflned as p(Fl(xl),F2(X2)) where p 1s the standard 
correlatlon coefflclent, and F are the marglnal dlstrlbutlon functlons of 
X,,X, (see for example Glbbons (1971)). pg always exlsts, and 1s lnvarlant under 
monotone transformatlons. T and pg are also called ordlnal measures of assocla- 
tlon slnce they depend upon rank lnformatlon only (Kruslcal, 1958). Unfor- 
tunately, 7=0 or pg=O do not lmply lndependence (exerclse 3.4). It would be 
deslrable for a good measure of assoclatlon or dependence that I t  be zero only 
when the components are lndependent. 

The two measures glven below satisfy all our requirements (unlversal 
existence, lnvarlance under monotone transformatlons, and the zero value lmply- 
lng Independence): 
A. The sup correlation (or maxlmal correlatlon) p *  defined by Gebeleln 

(1941) and studled by Sarmanov (1962,1963) and Renyl (1959): 

;ii(x 19x2)  = SUP P ( S  AX l>tS Z(X2N 
where the supremum 1s talcen over all Borel-measurable functlons g l,g , such 
that g l(xl),g2(.X2) have flnlte posltlve varlance, and p 1s the ordlnary corre- 
latlon coemclent. 

B. The monotone correlation p *  lntroduced by Klmeldorf and Sampson 
(1978), whlch 1s defined as 7 except that the supremum 1s talcen over mono- 
tone functlons g l,g only. 
Let us outllne why these measures satisfy our requirements. If p * = O ,  and 

X,,X, are nondegenerate, then X, 1s lndependent of X, (Klmeldorf and Samp- 
son, 1978). Thls 1s best seen as follows. We flrst note that for all s ,t , 

p ( ~ ~ - ~ , ~ ] ( ~ l ) , ~ ( - ~ , ~ ] ( X , ) )  = 0 

P (X, 5 s ,x,5 t ) = P ( X ,  5 s )P (X,5 t ) 9 

because the lndlcator functlons are monotone and p * = O .  But thls lmplles 

whlch In turn lmplles Independence. For 7, we refer t o  exerclse 3.6 and Renyl 
(1959). Good general dlscusslons can be found In Renyl (1959), Kruslral (1958), 
Klmeldorf and Sampson (1978) and Whltt (1976). The measures of dependence 
are obvlously Interrelated. We have dlrectly from the definltlons, 
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There are examples I n  whlch we have equallty between all correlatlon coefflclents 
(multlvarlate nOrmal dlstrlbutlon, exerclse 3.5), and there are other examples In 
whlch there 1s strlct Inequality. It 1s perhaps lnterestlng to note when p *  equals 
one. Thls 1s for example the case when X ,  1s monotone dependent upon x,, 1.e. 
there exlsts a monotone functlon g such that P (X,=g (x,))=l, and xl,x, are 
nonatomlc (Klmeldorf and Sampson (1978)). Thls follows directly from the fact 
that  p *  1s lnvarlant under monotone transformatlons, so that  we can assume 
wlthout loss of generallty that the dlstrlbutlon is blvarlate unlform. But then g 
must be the ldentlty functlon, and the statement is proved, 1.e. p * -  -1. Unfor- 
tunately, p * =1 does not imply monotone dependence. 

For contlnuous marglnals, there 1s yet another good measure of dependence, 
based upon the dlstance between probablllty measures. It 1s deflned as follows: 

L SUP I P ((X19X2)EA >-P ((X,,X,)EA ) I A 

where A 1s a Bore1 set of R 2 ,  -Y2 1s dlstrlbuted as X,, but 1s lndependent of XI, 
/ 1s the  density of and f ,,f are the marglnal densltles. The 
supremum In the deflnltlon of L measures the dlstance between the  glven blvarl- 
ate probablllty measure and the artlflclal blvarlate probablllty measure con- 
structed by taklng the product of the two partlclpatlng marginal probablllty 
measures. The lnvarlance under strlctly monotone transformatlons 1s clear. The 
lntegral form for L 1s Scheffe's theorem In dlsgulse (see exerclse 3.9). It 1s only 
valld when all the glven densltles eslst. 

Example 3.1. 
It 1s clearly posslble to have unlform marglnals and a slngular blvarlate dls- 

trlbutlon (conslder X,=X,). It Is even posslble to And such a slngular dlstrlbu- 
tlon wlth p=pg =O (conslder a carefully selected dlstrlbutlon on the surface of 
#he unlt clrcle; or  conslder -Y2=S-Yl where S takes the values +1 and -1 wlth 
equal probablllty). However, when we take A equal to the support of the slngular 
dlstrlbutlon, then A has zero Lehesgue measure, and therefore zero measure for 
:my absolutely contlnuous probsblllry measure. Hence, L =1. In partlcular, when 
'y2 1s monotone dependent on S,. then the blvarlate dlstrlbutlon 1s slngular, and 
therefore L =I. 
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Example 3.2. 
X , , X ,  are lndependent If and only If L =O. The If part follows from the 

fact  that for all A ,  the product measure of A 1s equal to the glven blvarlate pro- 
bablllty measure of A .  Thus, both probablllty measures are equal. The only if 
part IS trlvlally true. 

In the search for good measures of assoclatlon, there 1s no clear wlnner. Pro- 
bablllty theoretlcal conslderatlons lead us to  favor L over pg ,p* and p. On the 
other hand, as we have seen, approxlmatlng the blvarlate dlstrlbutlon by a slngu- 
lar dlstrlbutlon, always glves L =l. Thus, L 1s extremely sensltlve to even small 
local devlatlons. The correlatlon coemclents are much more robust In that 
respect . 

We wlll assume that what the user wants 1s a dlstrlbutlon wlth glven abso- 
lutely contlnuous marglnal dlstrlbutlon functlons, and a glven value for one of 
the transformatlon-Invariant measures of dependence. We can then construct a 
blvarlate unlform dlstrlbutlon wlth the glven measure of dependence, and then 
transform the coordlnate axes as In the unlvarlate lnverslon method to  achleve 
glven marglnal dlstrlbutlons (Nataf, 1962; Klmeldorf and Sampson, 1975; Mardla, 
1970). If we can choose between a famlly of blvarlate unlform dlstrlbutlons, then 
I t  1s perhaps posslble to  plck out the unlque dlstrlbutlon, if I t  exlsts, wlth the 
glven measure of dependence. In the next sectlon, we wlll deal wlth blvarlate unl- 
form dlstrlbutlons In general. 

3.2. Bivariate uniform distributions. 
We say that a dlstrlbutlon 1s blvarlate unlform (exponentlal, gamma, nor- 

mal, Cauchy, etcetera) when the unlvarlate marglnal dlstrlbutlons are all unlform 
(exponentlal, gamma, normal, Cauchy, etcetera). Dlstrlbutlons of thls form are 
extremely lmportant In mathernatlcal statistics In the context of testlng for 
dependence between components. Flrst of all, If the marglnal dlstrlbutlons are 
contlnuous, I t  1s always posslble by a transformatlon of both axes to lnsure that 
the marglnal dlstrlbutlons have any prespeclfled denslty such as the unlform [O,l] 
denslty. If after the transformatlon to  unlformlty the Jolnt denslty 1s unlform on 
[0,112, then the two component random varlables are lndependent. In fact, the 
Jolnt denslty after transformatlon provldes a tremendous amount of lnformatlon 
about the sort of dependence. 

There are varlous ways of obtalnlng blvarlate dlstrlbutlons wlth speclfled 
margfnals from blvarlate unlform dlstrlbutlons, whlch make these unlform dlstrl- 
butlons even more lmportant. Good surveys are provlded by Johnson (1976), 
Johnson and Tenenbeln (1979) and Marshall and Olkln (1983). The followlng 
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theorem comes closest to generallzlng the unlvarlate propertles whlch lead to the 
lnverslon method. 

Theorem 3.1. 
Let ( x , ,X , )  be blvarlate unlform wlth Jolnt denslty g . Let f ,,f , be flxed 

unlvarlate densltles wlth correspondlng dlstrlbutlon functlons F ,,F ,. Then the 
denslty of ( Y 1 , Y 2 )  = (F-11(.X1),F-12(X2)) IS 

f (Y 1 , Y  2) = f 1(Y l)f ,(Y 2)g (F 1 ( Y  ,),F,(Y 2)) . 

Conversely, If (Yl ,Y2)  has denslty f glven by the formula shown above, then 
Y ,  has marglnal denslty f , and Y ,  has marglnal denslty f ,. Furthermore, 
(x,,x,) = (F 1( Y,),F 2( Y,)) 1s blvarlate unlform wlth Jolnt denslty 

Proof of Theorem 3.1. 
Stralghtforward. 

There are many reclpes for cooklng up blvarlate dlstrlbutlons wlth speclfled 
mnrglnal dlstrlbutlon functlons F,,F,. We wlll llst a few In Theorem 3.2. It 
should be noted that If we replace F,(a:,) by z1 and F,(z,) by z 2  In these 
reclpes, then we obtaln blvarlate unlform dlstrlbutlon functlons. Recall also that 
the blvarlate denslty, If I t  exists, can be obtalned from the blvarlate dlstrlbutlon 
functlon by taklng the partlal derlvatlve wlth respect to dz,dz,. 

I I 
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Theorem 3.2. 

following Is a list of bivariate dlstrlbutlon functlons F =F (3: 

ginal dlstrlbutlon functlons F ,  and F,: 

Let F ,=F 1(3: l),F2=F,(3:2) be unlvarlate dlstrlbutlon functlons. Then the 
havlng as mar- 

A. 

B. 

C. 

D. 

E. 

f’ = F1F2(l+a (1--Fl)(1--F2)). Here a €[-1,1] 1s a parameter (Farlle (i960), 
Gumbel (1958), Morgenstern (1956)). Thls wlll be called Morgenstern’s fam- 
ily. 

F =  F 1 F 2  

I-u (1-F ,)(1-F ,) ’ 

Haq (1978)). 

F 1s the solutlon of F (  

Here a E[-1,1] 1s a parameter (All, Mlkhall and 

-F,-F,+F) = a ( F l - F ) ( F , - F )  where a 20 is a 
parameter (Plackett, 1965). 

F =a max(0,F ,+F ,-1)+(l-a )mln(F ,,F ,) where 05 a 5 1 1s a parameter 
(Frechet, 1951). 

(-log(F ))” = (-log(F +(-log(F2))” where rn > - 1 Is a parameter (Gum- 
bel, 1960). 

Proof of Theorem 3.2. 
To verify that F is indeed a dlstrlbutlon functlon, we must verlfy that F 1s 

nondecreaslng In both arguments, and that the limits as x1,x2+--00 and --+m are 
0 and 1 respectively. To verify that  the marginal dlstrlbutlon functlons are 
correct, we need to check that 

and 

1lm F(3:,,3:,) = F,(s,)  . 
2 ,-*m 

The latter relations are easily verlfied. 

It helps to  vlsuallze these reclpes. We begin with Frechet’s lnequalltles 
(Frechet, 1951), which follow by simple geometrlc arguments In the plane: 

i 
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For any two unlvarlate dlstrlbutlon functlons F , , F 2 ,  and any blvarlate dls- 

Theorem 3.3. Frechet's inequalities. 

trlbutlon functlon F havlng these two marglnal dlstrlbutlon functlons, 

max(o,F 1(2 )+F,(Y 1-1) I F (5 9Y 1 5 mln(F,(a: V 2 ( Y  1) . 

Proof of Theorem 3.3. 
For Axed (z , ,z2) In the plane, let us denote by & s ~  ,&NE ,QSW ,QNW the 

four quadrants centered at 2 ,y where equallty 1s resolved by lncludlng boun- 
darles wlth the south and west halfplanes. Thus, ( x , , ~ , )  belongs to QSW whlle 
the vertlcal llne at z belongs to &SW U&NW . It 1s easy to see that at z ,,2 ,, 

Fi(zi)  = P ( & S W U & N W )  9 

F 2 ( ~ 2 )  = ~ ( Q s w U Q S E )  9 

F(z17z2) = ~ ( Q s w ) .  
Clearly, F <mln(F ,,F,) and 1-F < 1-F ,+l-F,. 

These lnequalltles are valld for all blvarlate dlstrlbutlon functlons F wlth 
marglnal dlstrlbutlon functlons F , and F 2 .  Interestlngly, both extremes are also 
valld dlstrlbutlon functlons. In fact, we have the following property whlch can be 
used for the generatlon of random vectors wlth these dlstrlbutlon functlons. 

~ ~~ ~ ~~ ~ ~- ~~ ~ ~- 

Theorem 3.4. 

unlvarlat e dlstrlbut lon funct lons. Then 
Let u be a unlform [0,1] random varlable, and let F , ,  F ,  be contlnuous 

( F - W  )tF-l,(U 

(F--l,(U ),F-l,(l-u 1) 
has dlstrlbutlon functlon mln(F ,,F ,). Furthermore, 

has dlstrlbutlon functlon max(0,F l+F2-l). 
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Frechet’s extremal dlstrlbutlon functlons are those for whlch maxlmal posl- 
tlve and negatlve dependence are obtained respectively. This 1s best seen by con- 
slderlng the blvarlate unlform case. The upper dlstrlbutlon functlon mln(s ,,$ ,) 
puts Its mass unlformly on the 45 degree dlagonal of the flrst quadrant. The bot- 
tom dlstrlbutlon functlon max(O,sl+s,-l) puts Its mass unlformly on the -45 
degree dlagonal of [0,112. Hoeffdlng (1940) and Whltt (1976) have shown that 
maximal posltlve and negatlve correlatlon are obtalned for Frechet’s extremal dls- 
trlbutlon functlons (see exerclse 3.1). Note also that maxlmally correlated random 
varlable are very important In varlance reduction technlques In Monte Carlo 
slmulatlon. Theorem 3.4 shows us how to generate such random vectors. We have 
thus ldentlfled a large class of appllcatlons In whlch the lnverslon method seems 
essential (Fox, 1980). For Frechet’s blvarlate famlly (case D In Theorem 3.2), we 
note without work that I t  sufflces t o  conslder a mlxture of Frechet’s extremal dls- 
trlbutlons. This 1s often a poor way of creatlng lntermedlate correlatlon. For 
example, In the blvarlate unlform case, all the probablllty mass 1s concentrated 
on the two dlagonals of [O,1I2. 

The llst of examples In Theorem 3.2 Is necessarlly Incomplete. Other exam- 
ples can be found In exerclses 3.2 and 3.3. Random varlate generatlon Is usually 
taken care of vla the conditional dlstrlbutlon method. The followlng example 
should sufflce. 

Example 3.3. Morgenstern’s family. 
Consider the unlform verslon of Morgenstern’s blvariate famlly wlth parame- 

ter I a I 51 glven by part A of Theorem 3.2. It 1s easy to  see that for thls fam- 
ily, there exlsts a denslty given by 

f (X‘,a:,)  = l + a  (2z1-1)(2s2-1) . 

Here we can generate X ,  uniformly on [0,1]. Glven X , ,  X, has a trapezoidal den- 
slty whlch Is zero outslde [0,1] and varles from 1-a (2X,-1) at 2,=0 to 
l+a  (2X1-1) at s2=1 .  If u ,  V are lld unlform [0,1] random variables, then x, 
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can be generated as 

V 
max( U ,I- a (2X1-1) ) xl+ 

There are other Important conslderatlons when shopplng around for a good 
blvariate unlform famlly. For example, I t  1s useful to have a famlly which con- 
talns as members, or  at least as llmlts of members, Frechet’s extrema1 dlstrlbu- 
tlons, plus the product of the marglnals (the independent case). We wlll call such 
famllles comprehensive. Examples of comprehenslve blvarlate famllles are glven 
In the table below. Note that the comprehenslveness of a famlly Is lnvarlant 
under strlctly monotone transformatlons of the coordinate axes (exercise 3.11), so 
that the marglnals do not really matter. 

Distribution function 

F( l -F i -F ,+F)  = u (Fl-F)(Fz-F) 
where a 30 is a parameter 

a2(1-a ) F- max(o,F 1+F2-1) 

+ min(Fl,F2)+(l-a2)F1F2 
2 

2 1 where I a I 51 is a parameter 

2,*+222-2r212* 

2(1-r9 where 

I r I < I  is a measure of associ- 

1 

2 7 r m  e 

ation 

Reference 

Plackett (1965) 

Frechet (1958) 

Bivariate normal (see e.g. Mardia, 1970) 

From thls table, one can create other comprehenslve famllles elther by monotone 
transformatlons, or by talclng mlxtures. Note that most famllles, lncludlng 
Morgenstern’s famlly, are not comprehenslve. 

Another Issue 1s that of the range spanned by the famlly in terms of the 
values of a given measure of dependence. For example, for Morgenstern’s blvarl- 
ate unlform famlly of Example 3.3, the correlatlon coefflclent is -a /3. Therefore, 
It can take all the values In [--,-I, but no values outside thls lnterval. Needless 1 1  

3 3  
to say, full ranges for certaln measures of assoclatlon are an asset. Typlcally, thls 
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goes hand in hand with comprehensiveness. 
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Example 3.4. Full correlation range families. 

marglnal dlstrlbutlon functlons has correlatlon coemclent 
Plackett's blvariate family wlth parameter a > O  and arbltrary continuous 

-(1-a2)-2alog(u ) 

(1-a )2 
P =  7 

which can be shown to take the values l,O,-1 when a + w ,  a=1 and a=O 
respectlvely (see e.g. Barnett, 1980). Slnce p is a continuous functlon of a ,  all 
values of p can be achleved. 

The blvarlate normal famlly can also achleve all posslble values of correla- 
tion. Since for thls famlly, p=p*=T, we also achleve the full range for the sup 
correlatlon and the monotone correlatlon. 

Example 3.5. The Johnson- Tenenbein families. 
Johnson and Tenenbeln (1981) proposed a general method of constructlng 

blvarlate familles for whlch T and pg can attaln all possible values In (-1,l). The 
method conslsts slmply of taklng (X,,X,)=( U , H  (cU+(l-c ) V ) ) ,  where U ,  V 
are lld random varlables wlth common dlstrlbutlon functlon F ,  c E[O,l] 1s a 
welght parameter, and H 1s a monotone functlon chosen in such a way that 
H (cU+(l-c ) V )  also has distrlbutlon functlon F . To take a slmple example, let 
U , V  be lld normal random variables. Then we should take 
H (u  )=u / d m .  The resultlng two-dimensional random vector 1s easily 
seen to  be blvarlate normal, as I t  is a linear comblnatlon of lld normal random 
varlables. Its correlatlon coemclent is 

which can take all values in [0,1]. Moreover, 
6 C 

7r 
pg = -arcsin( 

2 C 
T = -arcsin( 

7r d m )  - 
It is easy to  see that these measures of assoclation can also take all values In [O,l] 
when we vary c . Negative correlatlons can be achieved by conslderlng 
(-U,H (cU+(1-c ) V ) ) .  Recall next that T and pg are lnvariant under strlctly 
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monotone transformatlons of the coordlnate axes. Thus, we can now construct 
blvarlate famllles wlth speclfled marglnals and glven values for p ,  or T. 

3.3. Bivariate exponential distributions. 
We wlll take the blvarlate exponentlal dlstrlbutlon as our prototype dlstrlbu- 

tlon for lllustratlng Just how we can construct such dlstrlbutlons dlrectly. At the 
same tlme, we wlll dlscuss random varlate generators. There are two very 
dlffere nt approaches: 
A. The analytlc method: one deflnes expllcltly a blvarlate denslty or dlstrlbu- 

tlon functlon, and worrles about generators later. An example Is Gumbel’s 
blvarlate exponentlal famlly (1960) descrlbed below. Another example Is the 
dlstrlbutlon of Nagao and Kadoya (1971) dealt wlth In exercise 3.10. 

B. The emplrlc method: one constructs a pair of random variables known to 
have the correct marglnals, and worrles about the form of the dlstrlbutlon 
function later. Here, random varlate generatlon Is typlcally a trlvlal problem. 
Examples lnclude dlstrlbutlons proposed by Johnson and Tenenbeln (1981), 
Moran (1967), Marshall and Olkln (1967), Arnold (1967) and Lawrance and 
Lewls (1983). 

The dlstlnctlon between A and B Is often not clear-cut. Famllles can also be 
partltloned based upon the range for glven measures of assoclatlon, or upon the 
notion of comprehenslveness. Let us start  wlth Gumbel’s famlly of blvarlate 
exponentlal dlstrlbutlon functlons: 

Here a E [ O , l ]  1s the parameter. The Jolnt denslty 1s 

((1+az l)(l+as,)-a) . e - ~ 1 - ~ ~ a ~ l ~ 2  

Notlce that the condltlonal denslty of X, glven X,=z 1s 

( ( l + a s  , ) ( l + U a :  ,)-a) 
- ( l f a z  1)z2 e 

where k l + a s , .  In thls decomposition, we recognize a mlxture of a gamma (2) 
and a gamma (1) denslty. Random varlates can easlly be generated vla the condl- 
tlonal dlstrlbutlon method, where the condltlonal dlstrlbutlon of X, glven x, can 
be handled by composltlon (see below). Unfortunately, the famlly contalns only 
none of Frechet’s extrema1 dlstributlons, whlch suggests that extreme correlatlons 
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cannot be obtalned. 

Gumbel's bivariate exponential distribution with parameter a 

Generate lld exponentlal random varlates X,,X,. 
Generate a unlform [OJ] random varlate U .  

a LF us- l+aX, 
THEN 

Generate an exponentlal random varlate E .  
X,+X,+E 

Generallzatlons of Gumbel's dlstrlbutlon have been suggested by varlous 
authors. In general, one can start from a blvarlate unlform dlstrlbutlon functlon 
F , and deflne a blvarlate exponentlal dlstrlbutlon functlon by 

. F (l-e-Z1,1-e-22) . 

For a generator, we need only conslder (-log( u),-log( v)) where U ,  V 1s blvarlate 
unlform wlth dlstrlbutlon functlon F .  For example, If we do thls for 
Morgenstern's famlly wlth parameter I a I 51, then we obtaln the blvarlate 
exponentlal dlstrlbutlon functlon 

(1-e -2 1)(l-e-2z)(i+ue-21-22) (s1,z2>0). 

This dlstrlbutlon has also been studled by Gumbel (1960). Both Gumbel's 
exponentlal dlstrlbutlons and other posslble transformatlons of blvarlate uniform 
dlstrlbutlons are often artlflclal. 

In the emplrlc (or constructlve) method, one argues the other way around, 
by flrst denning the random vector. In the table shown below, a sampllng of such 
blvarlate random vectors Is glven. We have taken what we conslder are good 
dldactlcal examples showlng a varlety of approaches. All of them explolt speclal 
properties of the exponentlal dlstrlbutlon, such as the fact that the sum of 
squares of lld normal random variables 1s exponentlally dlstrlbuted, or the fact 
that the mlnlmum of lndependent exponentlal random varlables 1s agaln exponen- 
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t lally dlstrl buted. 

585 

( P'E 1 + s 1E 21P2E I +  s ZE 1 ) ' 
P (Si =1)=1-P (Si =O)=l-P, ( i  =1,2) 

:ZV1,N3),(N2,NJ iid multinor- 
mal with correlation p 

Reference 

Marshall and Olkin (1967) 

Lawrance and Lewis (1983) 

Johnson and Tenenbein (1981) 

Moran (1967) 

In this table, E,,E2,E3 are lid exponentlal random variates, and X1,X2,X320 are 
parameters wlth X1X2+X3>0. The Ni 's are normal random variables, and c ,p1,P2 
are [O,l]-valued constants. A speclal property of the marginal dlstributlon, closure 
under the operatlon min, 1s exploited In the deflnltlon. To see thls, note that for 
2 >o, 

Thus, X ,  1s exponentlal wlth parameter A,+&. The Jolnt dlstrlbutlon functlon 1s 
unlquely determlned by the functlon G (z ,,z2) deflned by 

-Xlz ,-X2zrA3max(z ' , z2)  G(z1,z2)  = J ? ( X , > z 1 , X 2 > z 2 )  = e 

The dlstrlbutlon 1s a mlxture of a slngular dlstributlon carrylng weight 
1,/(X,+X,+X3), and an absolutely contlnuous part (exerclse 3.6). Also, I t  1s unfor- 
tunate that when ( X , , X 2 )  has the glven blvarlate exponentlal dlstrlbutlon, then 
(a ,X , ,a&, )  Is blvarlate exponentlal In the case u 1 = a 2  only. On the posltlve 
slde, we should note that the famlly lncludes the independent case (x3=O), and 
one of Frechet's extrema1 cases (X,=X,=O>. In the latter case, note that 

The Lawrance-Lewls blvarlate exponentlal Is Just one of a long llst of blvarl- 
ate exponentlals constructed by them. The one glven In the table Is partlcularly 
flexlble. We can qulckly verify that the  marglnals are exponentlal vla charac- 
terlstlc functions. The characterlstlc functlon of X, 1s 

4(t ) = E ( e  itx') = E ( e  Pi itE 1 >(p,+(1-p,>~ ( e  itE2)) 

- 1 (1-PJ 1 (O,+-) = - , - 
1-it p, 1-zt 1-it 
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The correlatlon p=2p1(1-p2)+/?2(1-p1), valld for 0</?,5/?2< 1, can take all 
values between 0 and 1. To create negative correlatlon, one can replace E,,E,  In 
the formulas for X2 by two other exponentlal random varlables, h (E,) ,h ( E 2 )  
where h (5 )=-log(1-e -' ) (Lawrance and Lewls, 1983). 

The Johnson and Tenenbeln constructlon 1s almost as slmple as the 
Lawrance-Lewls constructlon. Interestlngly, by varylng the parameter c , all pos- 
slble nonnegatlve values for pg , 7 and p are achlevable. 

Flnally, In Moran's blvarlate dlstrlbutlon, good use 1s made of yet another 
property of exponentlal random varlables. Hls dlstrlbutlon has correlatlon p2 
where p 1s the correlatlon of the underlying blvarlate normal dlstrlbutlon. Agaln, 
random varlate generatlon 1s extremely slmple, and the correlatlon spans the full 
nonnegatlve range. Dlfflcultles arlse only when one needs to compute the exact 
value of the density at some polnts, but then agaln, these same dlmcultles are 
shared by most emplrlc methods. 

3.4. A case study: bivariate gamma distributions. 
We have seen how blvarlate dlstrlbutlons wlth any glven marglnals can be 

constructed from blvarlate unlform dlstrlbutlons or blvarlate dlstrlbutlons wlth 
other contlnuous marglnals, via transformatlons of the coordlnate axes. These 
transformatlons leave p, ,T and other ordinal measures of assoclatlon lnvarlant, 
but generally speaklng not p.  Furthermore, the lnverslon of the marglnal dlstrlbu- 
tlon functlons ( F  ,,F 2) required to apply these transformatlons 1s often unfeaslble. 
Such 1s the case for the gamma dlstrlbutlon. In thls sectlon we wlll look at these 
new problems, and provlde new solutlons. 

To clarli'y the problems wlth lnverslon, we note that If X1,X2 1s blvarlate 
gamma ( a  , ,a2),  where a; 1s the parameter for xi, then maxlmum and mlnlmum 
correlatlon are obtalned for the Frechet bounds, Le. 

x2 = F2-1(~l(xlN 9 

x, = F 2-1(1-F ,(XI)) 

respectlvely (Moran (1967), Whltt (1976)). Dlrect use of Frechet's bounds 1s possl- 
ble but not recommended If generator emclency 1s Important. In fact, I t  is not 
recommended to start  from any blvarlate unlform dlstrlbutlon. Also, the method 
of Johnson and Tenenbeln (1981) lllustrated on the blvarlate unlform, normal 
and exponentlal dlstrlbutlons In the prevlous sectlons requlres an lnverslon of a 
gamma dlstrlbutlon functlon If I t  were to be applled here. 

We can also obtaln help from the composltlon method, notlng that the ran- 
dom vector (Xl,X,) defined by 

( Y , ,  Y 2 )  ,wlth probablllty p 

,with probablllty 1-p 
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has the rlght marginal dlstributlons If both random vectors on the rlght hand 
slde have the same marglnals. Also, (x,,x,) has correlatlon coefllclent 
p ~ ~ f ( 1 - p  )pz where p r , p z  are the correlatlon coemclents of the two given ran- 
dom vectors. One typlcally chooses ,or and pz  at the extremes, so that the 
entlre range of p values Is covered by adJustlng p .  For example, one could take 
p y = O  by considering Ild random varlables Y,,Y,. Then p z  can be talcen maxl- 
mal by uslng the Frechet maxlmal dependence as In 
(Z,,Z,) = (21,172-1(1-~1(21)) where 2 ,  Is gamma (a1) .  Doing so leads to a mix- 
ture of a contlnuous distrlbutlon (the product measure) and a slngular dlstylbu- 
tlon, whlch is not deslrable. 

The gamma dlstrlbutlon shares wlth many dlstrlbutlons the property that I t  
Is closed under addltlons of lndependent random varlables. This has led to 
lnverslon-free methods for generatlng blvariate gamma random vectors, now 
known as trivariate reduction methods (Cherlan, 1941; Davld and Flx, 1961; 
Mardla, 1970; Johnson and Ramberg, 1977; Schmeiser and Lal, 1982). The name 
Is borrowed from the prlnclple that  two dependent random varlables are con- 
structed from three lndependent random varlables. The appllcatlon of the princl- 
ple Is certalnly not limited to the gamma dlstributlon, but Is perhaps best lllus- 
trated here. Conslder lndependent gamma random variables G G 2, G wlth 
parameters a 1 9 ~ 2 9 ~ 3 .  Then the random vector 

(X1X2) = (G,+G,,G,+G,) 

Is bivariate gamma. The marglnal gamma dlstrlbutlons have parameters a ,+a 
and a ,+a , respectlvely. Furthermore, the correlatlon Is glven by 

a3 
P =  & 1+a,)(a,+a,) 

If p and the marglnal gamma parameters are specifled beforehand, we have one of 
two situations: either there Is no posslble solution for a ,,a ,, or  there Is exactly 
one solution. The llmltatlon of thls technlque, which goes back to Cherlan (1941) 
(see Schmelser and La1 (1980) for a survey), Is that 

mln( a1 ,a,) 

dGG 0 9 5  

where al,a2 are the marglnal gamma parameters, Wlthln thls range, trlvarlate 
reduction leads to  one of the fastest algorithms known to date for blvsrlate 
gamma dlstrlbutlons. 
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[NOTE: p is a given correlation, a1,a2 are given Parameters for the marginal gamma distri- 
min(a,,au,) 

butions. It is assumed that 0 5 p 5 .I G 
[GENERATOR] 
Generate a gamma ( a l - p G )  random variate G ,. 
Generate a gamma (a2-p&) random variate G 2. 

Generate a gamma ( p a )  random variate G,. 
RETURN ( G  G3,G2+ G,) 

Ronnlng (1977) generallzed thls prlnciple to hlgher dlmenslons, and suggested 
several posslble llnear comblnatlons to achleve deslred correlatlons. Schmelser and 
La1 (1982) (exerclse 3.19) All the vold by extendlng the trlvarlate reductlon 
method In two dlmenslons, so that all theoretlcally posslble correlatlons can be 
achleved In blvarlate gamma dlstrlbutlons. But we do not get somethlng for noth- 
lng: the algorlthm requlres the lnverslon of the gamma dlstrlbutlon functlon, and 
the numerical solutlon of a set of nonllnear equatlons In the set-up stage. 

3.5. Exercises. 
1. Prove tha t  over all blvarlate dlstrlbutlon functlons wlth glven marglnal 

unlvarlate dlstrlbutlon functlons F ,,F 2, the correlatlon coefflclent p 1s 
mlnlmlzed for the dlstrlbutlon functlon max(0,F 1(2 )+F 2(y )-1). It is maxlm- 
lzed for the dlstrlbutlon functlon mln(F 1(2 ),I7,($ )) (Whltt, 1976; Hoeffdlng, 

2. Plackett's bivariate uniform family (Plackett (1965). Conslder the 
blvarlate uniform famlly defined by part C of Theorem 3.2, wlth parameter 
a L O .  Show that  on [0,112, thls dlstrlbutlon has a denslty glven by 

1940). 

a ( a  -l)(z I+$ 1-22 1"2)+" 

f ( 2 1 9 2 2 )  = 312 ' 

( ( ( a  -l)(21+22)+1)2-4a (a-1)2122) 

For thls dlstrlbutlon, Mardla (1970) has proposed the following generator: 

I 
-. 
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Mardia's generator for Plackett's bivariate uniform family 

Generate two iid uniform [0,1] random variables U , V ,  
xl-u 
2 t V ( 1 - V )  

x2- 
2 ~ ( a 2 ~ , + 1 - ~ , ) + a  (1-22 )-(1-2 v)\/a ( a  + ~ z x , ( I - x , ) ( ~ - ~  12) 

a +Z(1-a )2 

RETURN (xl,x2) 

Show that thls algorlthm 1s valld. 
Suggest generators for the followlng blvarlate unlforrn famllles of dlstrlbu- 
tlons: 

3. 

Density 

l + a  ((m +1)slm -l)((n +1)s2"-i) 
' 

2a-1 - 
a (s11-6 +s21-a-1) l-a 

where 
n( 1+ 0 l + v  2, 

2+u2+v2 
u =l/tan2(m 1) ,v =l/tan2(ns2) 

1-i-a (2s ,-i)(2z2-i)+6 (3s 12-1)(35$-1) 

~~ 

Parameter(s) 

a > I  

Reference 

Farlie (1960) 

(derived from multivari- 
ate Pareto) 

Mardia (1970) (derived 
from multivariate Cau- 
chy) 

Kimeldorf and Ssmpson 
(1975) 

4. Thls 1s about varlous measures of assoclatlon. Construct a blvarlate unlforrn 
dlstrlbutlon for whlch p=pg =T=O, and X , = g  (XI) for some functlon g 
(1.e. x2 Is completely dependent on X , ,  see e.g. Lancaster, 1963). 

Show that for the normal dlstrlbutlon In R 2, 1 p I =p * =p. 

Prove that jj=O lmplles independence of components (Renyl, 1959). 

Recall the deAnltlon of complete dependence of exerclse 3.4. Construct a 
sequence of blvarlate unlform dlstrlbutlons In whlch for every n , the second 
coordlnate 1s completely dependent on the flrst coordlnate. The sequence 
should also tend In dlstrlbutlon to the lndependent blvarlate unlform dlstrl- 
butlon (I-Clmeldorf and Sampson, 1978). Conclude tha t  the notlon of com- 
plete dependence I s  pecullar. 
The phenomenon descrlbed In exerclse 7 cannot happen for monotone depen- 
dent sequences. If a sequence of random blvarlate unlform random vectors I n  

- 5 .  

8. 

7. 
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whlch the second component 1s monotone dependent on the Arst component 
for all n ,  tends In dlstrlbutlon t o  a random vector, then thls new random 
vector 1s blvarlate unlform, and the second component 1s monotone depen- 
dent on the A r s t  component (Klmeldorf and Sampson, 1978). 
One measure of assoclatlon for blvarlate dlstrlbutlons 1s 9. 

L = SUP I p ((X,,X,)EA 1-p ((X,,-Y,)EA 1 I 
A 

where A 1s a Bore1 set of R ,, X', 1s dlstrlbuted as X,, but 1s lndependent of 
X , ,  f 1s the denslty of (X1,X2) and f , are the marglnal densltles. The 
second equallty 1s valld only If the densltles lnvolved in the rlght-hand-slde 
exlst. Prove the second equallty (Scheffe, 1947). 

lo. Nagao and Kadoya (1971) studled the followlng blvarlate exponentlal den- 
slty: 

where r€[O,l) 1s a measure of dependence, 0,,a2>0 are constants (parame- 
ters), and Io 1s a modlfled Bessel functlon of the flrst klnd. Obtaln the 
parameters of the marglnal exponentlal dlstrlbutlons. Compute the correla- 
tlon coemclent p. Flnally lndlcate how you would generate random vectors 
In unlformly bounded expected tlme. 

11. Show that the property of comprehensiveness of a blvarlate famlly 1s lnvarl- 
ant under strlctly monotone transformatlons of the coordlnate axes (Klmel- 
dorf and Sampson, 1975). 

12. Show that Plackett's blvarlate famlly wlth parameter a 2 0  1s comprehen- 
slve. Show In partlcular that Frechet's extrema1 dlstrlbutlons are attalned 
for a =O and a +oo, and that the product of the marglnals 1s obtalned for 
a =l. 

13. Show that the standard blvarlate normal famlly (Le., the normal dlstrlbutlon 
in the plane) wlth varlable correlatlon 1s comprehenslve. 

14. Show that Morgenstern's blvarlate famlly 1s not comprehenslve. 
15. Conslder the Johnson-Tenenbeln famlly of Example 3.4, wlth parameter 

Flnd H such that the dlstrlbutlon 1s blvarlate unlform. Hlnt: H 1s par- 
abollc on [O,b] and [l-b ,l], and llnear In between, where 
b = m h (  c ,I-c ). 

c E[O,l]. Let U and v have unlform [O,i]  densltles. 
A. 

B. Flnd p,r and pB as a functlon of c . In partlcular, prove that 

4c -5c 1 o<c <- 
6( 1-c )2 2 

llC2-6C+1 1 
9 

- < c  < 1  
6c 2 

L 
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16. 

17. 

18. 

19. 

I 

1OC -13C 1 o < c  <- 
10( l-c )2 2 

3c 3+16c 2 - l l C  +2 1 P g  = 
- < c  < 1  

1oc 2 
I 

Conclude that all nonnegatlve values for p ,  T and pg are achlevable by 
adJustlng c (Johnson and Tenenbeln, 1QSl). 

Show that for Gumbel’s blvarlate exponentlal famlly wlth parameter 
a E[O,l], the correlatlon reaches a mlnlmum for a =1, and thls mlnlmum is 
-0.40365.... Show that  the correlatlon 1s a decreaslng functlon of a ,  talclng 
the maxlmal value 0 at a =o. 
Conslder the following palr of random varlables: PIE ,+S 1E2,P2E2+S2E , 
where P (si =l)=l-P (si =O)=l-@i (i =1,2) and E, ,E ,  are lld exponentlal 
random varlables (Lawrance and Lewls (1983)). Does thls famlly contaln one 
of Frechet’s extremal dlstrlbutlons? 
Compute p,pg and T for the blvarlate exponentlal dlstrlbutlon of Johnson 
and Tenenbeln (1981), deflned as the dlstrlbutlon of 

E,,-log((1-c )e l-c+ce )+log(l-Zc ) where c E[O,l] and E1,E2 are lld 
exponentlal random varlables. 
Schmelser and La1 (1982) proposed the foilowlng method for generatlng a 
blvarlate gamma random vector: let G , ,G2,G,  be lndependent gamma ran- 
dom varlables wlth respectlve parameters a ,,a g , ~  3, let u, V be an lndepen- 
dent blvarlate unlform random vector wlth V = U  or V = l - U ,  let Fb 
denote the gamma dlstrlbutlon functlon wlth parameter 6 ,  and let 6 ,,b be 
two nonnegatlve numbers. Deflne 

E2 -- E2 -- 

(X19X2) = (f’b,-‘(u)+G 1+GpFb2-l(V)+G2+GJ . 

A. Show that  thls random vector Is blvarlate gamma. 
B. Show constructlvely that the flve-parameter famlly 1s comprehenslve, 

1.e. for every posslble comblnatlon of speclAed marglnal gamma dlstrlbu- 
tlons, glve the values of the parameters needed t o  obtaln the Frechet 
extremal dlstrlbutlons and the product dlstrlbutlon. Indlcate also 
whether V=U or V=l -U 1s needed each tlme. 
Show that by varylng the flve parameters, we can cover all theoretlcally 
posslble comblnatlons for the correlatlon coemclent and the marglnal 
gamma parameters . 
Conslder the slmpllfled three parameter model 

C. 

D. 

(x,,x2) = ( F b  ,-I( u )+ l y F  a*-’( >) 

for generatlng a blvarlate gamma random vector wlth marglnal parame- 
ters (a,,a2) and correlatlon p.  Show that thls famlly 1s stlll comprehen- 
slve. There are two equatlons for the two free parameters ( b  and a l). 
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Suggest a good nurnerlcal algorlthm for flndlng these parameters. 
20. A bivariate Poisson distribution. (X1,X2) 1s sald to be blvarlate Poisson 

wlth parameters A1,A,,A,, when I t  has characterlstlc functlon 

A. 

B. 

C. 

Show that thls 1s lndeed a blvarlate Polsson dlstrlbutlon. 
Apply the trlvarlate reductlon prlnclple t o  generate a random vector 
wlth the given dlstrlbutlon. 
(Kemp and Loukas, 1978). Show that we can generate the random vec- 
tor as ( z + w , x 2 )  where x, 1s Polsson (Al+X3), and glven X 2 ,  Z , W  
are lndependent Polsson (A,) and blnomlal (X2,A3/(Al+A,)> random 
varlables. Hlnt: prove thls vla generatlng functlons. 

21. The Johnson-Ramberg bivariate uniform family. Let U 1 , U 2 ,  U ,  be 
lld unlform [ O , l ]  random varlables, and let b 20 be a parameter of a famlly 
of blvarlate unlform random vectors deflned by 

1 - 1 - 
U1U3b -bUl U3 U 2 U 3 b  -bU2 U, 

9 

1- b 1-b 
(X,,X,) = ( 

22. 

23. 

Thls constructlon can be consldered as trlvarlate reductlon. Show that the 
full range of nonnegatlve correlatlons is posslble, by flrst showing that the 
correlatlon 1s 

b 2(2 b 2 + ~  6 +6) 

( i + b  ),(1+2b )(2+b ) 

Show also that one of the Frechet extrema1 dlstrlbutlons can be approxl- 
mated arbltrarlly closely from wlthln the famlly. For b =1, the deflnlng for- 
mula 1s lnvalld. By what should i t  be replaced? (Johnson and Ramberg, 
1977) 

Conslder a family of unlvarlate dlstrlbutlon functlons {l-(l-F)' , a >O}, 
where F 1s a dlstrlbutlon functlon. Famllles of thls form are closed under 
the operatlon mln(X,,X,) where X1,X2 are lndependent random varlables 
wlth parameters a 2: the parameter of the mlnlmum 1s a l+a 2. Use thls to 
construct a blvarlate famlly vla trlvarlate reductlon, and compute the corre- 
latlons obtalnable for blvarlate exponentlal, geornetrlc and Welbull dlstrlbu- 
tlons obtalned In thls manner (Arnold, 1967). 

The bivariate Hermite distribution. A unlvarlate Hermlte dlstrlbutlon 
{ p i  , i 20) wlth parameters a , b  >O Is a dlstrlbutlon on the nonnegatlve 
lntegers whlch has generatlng functlon (deflned as Cpi s ' ) 

1 

e a(s-1)+b(s2-i) 

The blvarlate Hermlte dlstrlbutlon wlth parameters 'ai >O , z =1,2, . . . , 5, 
1s deflned on all palrs of nonnegatlve lntegers and has blvarlate generatlllg 
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functlon (deflned as E (s ,x’s 2x2) where (X, ,X,)  1s a blvarlate Hermlte ran- 
dom vector) , 

a ds I-I)+ a 2( s ?-I)+ a a( s rl)+ a ,(s 1*-1)+ a tj( s e 

(Kemp and Kemp (1965,1966); Kemp and Papageorglou (1976)). 

A. 

B. 

How can you generate a unlvarlate Hermlte ( a  ,b ) random varlate uslng 
only Polsson random varlates In unlformly bounded expected tlme? 
Glve an algorlthm for the efflclent generatlon of blvarlate Hermlte ran- 
dom varlates. Hlnt: derlve Arst the generstlng functlon of 
(x,+x3,X2+x3) where X,,X,,X, are lndependent random varlables 
wlth generatlng functlons g ,,g 2,g 3- 

Thls exerclse 1s adapted from Kemp and Loukas (1978). 

24. Wrlte an algorlthm for computlng the probabllltles of a blvarlate dlscrete 
dlstrlbutlon on {l,Z, . . . , K } 2  wlth speclfled marglnal dlstrlbutlons, and 
achlevlng Frechet’s lnequallty. Repeat for both of Frechet’s extrema1 dlstri- 
b u tlons. 

4. THE DIRICHLET DISTRIBUTION, 

4.1. Definitions and properties. 
Let a,, . . . , ah+, be posltlve numbers. Then ( X , ,  . . . , xk) has a Diri- 

chlet distribution wlth parameters ( a  . . . , ak +J,  denoted 
(xl, . . . , xh ) - D ( a  . . . , ak +1),  If the Jolnt dlstrlbutlon has density 

a 1-1 . . . Zk ak -1 (pJ.,- . . . - x k ) Q + l - l  f (21, - J x k )  = c Z 1  

over the k-dlmenslonal slmplex sk deflned by the lnequalltles 

zi > O  ( i  =1,2, . . . , k ) ,  xi  <l. Here c 1s a normallzatlon constant. Basl- 

cally, the Xi ’s can be thought of as ai -spacings In a unlform sample of slze Eai 
I f  the ai’s are all posltlve Integers. The only novelty 1s that the ai‘s  are now 
allowed to  take non-lnteger values. The lnterested reader may want to refer back 
to sectlon V.2 for the propertles of spaclngs and to  sectlon V.3 for generators. 
The present sectlon Is only a refinement of sorts. 

k 

i = l  
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Theorem 4.1. 
Let Y,, . . . , Yk+1 be lndependent gamma random varlables wlth parame- 

ters ai > O  respectlvely. Deflne Y = C Y i  and X i = Y i / Y  (z‘=1,2, . . . , k). 
Then (Xl, . . . , xk) - D ( a l ,  . . . , and ( X l ,  . . . , xk) IS lndependent of 
Y .  

Conversely, If Y 1s gamma (Ea;), and Y 1s lndependent of 
( X i  , . . . , X k ) N D ( a i ~ . . . , a k + l ) ,  then the random varlables 
Y X , ,  . . . , Yxk , Y ( 1 -  E xi ) are lndependent gamma random varlables wlth 

parameters a 
I =1 

. . . , ak +l. 

Proof of Theorem 4.1. 
The Jolnt denslty of the Yi ’s 1s 

t fl 

where c 1s a normallzatlon constant. Conslder the transformatlon 
= X , x i  = y i  / y  (2’ 5 k ), whlch has a~ reverse transformatlon 

k 

i = 1  

Y l  

y i  = y x i  (z’ 5 k ) , Y k  +l=y ( 1 -  

Thus, the Jolnt denslty of Y , x l ,  . . . , Xk ) 1s 

xi ). The Jacoblan of the transformatlon 1s y . 

k +1 
k k at+l-i C a,-1 

g ( y , x 1 ,  . . . , xk) c r l [ ” i U ’ - l  ( l - x x i )  Y e-y . 
i = I  i = 1  

Thls proves the flrst part of the Theorem. The proof of the second part 1s omlt- 
ted. 

Theorem 4.1 suggests a generator for the Dlrlchlet dlstrlbutlon vla gamma 
generators. There are lmportant relatlonshlps wlth the beta dlstrlbutlon as well, 
which are revlewed by Wlllcs (1962) ,  Altchlson (1963)  and Basu and Tlwarl 
(1982). Here we wlll Just mentlon the most useful of these relatlonshlps. 
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Theorem 4.2. 
Let Y , ,  . . . , Yk be lndependent beta random varlables where Y;: Is beta 

(a; ,ai+,+ * ' +I). Then (XI ,  . . . , xk ) - D ( a  1, , . . , U k  +I) where the x; 'S 
are deflned by 

i -1 

j = 1  
xi = Y; Yj . 

Conversely, when ( X  . . . , xk ) - D ( a  ,, . . . , ak+I) ,  then the random 
varlables Y , ,  . . . , Yk deflned by 

xi 
1-x,- . -1; -1 

Yi = 

are independent beta random varlables wlth parameters glven In the flrst state- 
ment of the Theorem. 

Theorem 4.3. 
Let Y , ,  . . . , Yh be independent random varlables, where Y j  is bet 

( a  ,+ +ak 1. Then the fol 
lowing random varlables are independent gamma random variables wlth parame 

. +a; ,a i+ , )  for i < k  and 'Yk 1s gamma ( a , +  . 

ters u ,, . . . , ak : 
k 

j - i  
xi = (l-Y;-,)J-J Yj ( i = 1 , 2 ,  . . . , k )  . 

To avoid trlvlalltles, set Y,=O. 

wlth parameters a ,, . . . , ak , then the Yi's deflned by 
Conversely, when XI, . . . , xk are independent gamm 

x,+ * . . +xi 
( i = 1 , 2 ,  . . . , k - 1 )  

. * . +xi+, Yi = X I +  

random v rl ble 

are independent. Here Yi 1s beta ( a  ,+ . . . +ai ,a i+ , )  for i < k  and Yk Is gamm 
(a,+ . ' ' +ak). 

~ 

The proofs of Theorems 4.2  and 4.3 do not dlffer substantially from the 
Proof of Theorem 4 . 1 ,  and are omltted. See however the exerclses. Theorem 4.2 
tells us how to generate a Dlrlchlet random vector by transforming a sequence of 
beta random varlables. Typlcally, thls 1s more expenslve than generatlng a Dlrl- 
chlet random vector by transforming a sequence of gamma random varlables, as 
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1s suggested by Theorem 4.1. 

trlbutlon are all beta. In partlcular, when (Xl, . . . , xk ) - D ( a  
then xi 1s beta ( a i ,  

Theorem 4.2 also tells us that the marglnal dlstrlbutlons of the  Dlrlchlet dls- 
. , . , ak +1) ,  

a j  ). 
j # i  

Theorem 4.1 tells us how to  relate lndependent gammas to  a Dlrlchlet ran- 
dom vector. Theorem 4.2 tells us how to  relate lndependent betas t o  a Dlrlchlet 
dlstrlbutlon. These two connectlons are put together In Theorem 4.3, where 
lndependent gammas and betas are related to  each other. Thls offers the excltlng 
posslblllty of uslng simple transformatlons to  transform long sequences of gamma 
random varlables lnto equally long sequences of beta random varlables. Unfor- 
tunately, the beta random varlables do not have equal parameters. For example, 
conslder k lld gamma ( a  ) random varlables x,, . . . , xk . Then the second part 
of Theorem 4.3 tells us how t o  obtaln lndependent random varlables dlstrlbuted 
as beta ( a  ,a ), beta (2a ,a ), . . . , beta ((k -1)a ,a ) and gamma (ka  ) random varl- 
ables respectlvely. When a =1, thls reduces to  a well-known property of spaclngs 
glven In sectlon V.2. 

We also deduce that BG , ( l-B)G are lndependent gamma ( a  ), gamma ( 6  ) 
random varlables when G 1s gamma ( a  +b ) and B 1s beta ( a  ,b ) and lndepen- 
dent of G . In partlcular, we obtain Stuart's theorem (Stuart, 1962), whlch glves 
us a very fa s t  method for generatlng gamma ( a  ) random varlates when a <1: a 
gamma ( a  ) random varlate can be generated as the product of a gamma ( a  +1) 
random varlate and an lndependent beta ( a  ,1) random varlate (the latter can be 
obtalned as e - E / a  where E 1s exponentlally dlstrlbuted). 

4.2. Liouville distributions. 

erallzes the Dlrlchlet dlstrlbutlons. These dlstrlbutlons have a denslty on R 
glven by 

Slvazllan (1981) lntroduced the class of Llouvllle dlstrlbutlons, whlch gen- 

k k 
c $ ( p r j ) p i u c - l  (xi >O - , i=1,2, . . . , I C )  , 

t = l  t = l  

where $ Is a Lebesgue measurable nonnegatlve functlon, a 1, . . . , ak are posltlve 
constants (parameters), and c 1s a normallzatlon constant. The functlonal form 
of ?,b 1s not Axed. Note however that not all nonnegatlve functlons II, can be sub- 
stltuted In the formula for the denslty because the integral of the unnormallzed 
denslty has to  be flnlte. A random vector with the denslty glven above 1s sald to  
be Llouvllle Lk ($,a 1, . . . , ak ). Slvazllan (1981) Calls thls dlstrlbutlon a Liou- 
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ville distribution of the first kind. 

597 

Example 4.1. Independent gamma random variables. 

ters a 
When x,, . . . , & are lndependent gamma random varlables with parame- 

. . . , ak , then ( X , ,  . . . , xk ) is Lk (e-' ,a 1, . . . , ak ). 

Example 4.2. 

family of dlstrlbutlons contalns all densities on the positive halfline. 
A random varlable x wlth denslty c $ ( ~ ) a : ' - ~  on I0,oo) 1s L l($,a ). This 

We are malnly interested In generating random variates from multlvarlate 
Llouville dlstrlbutlons. It turns out that  two key lngredlents are needed here: a 
Dirichlet generator, and a generator for unlvarlate Llouvllle dlstrlbutlons of the 
form given In Example 4.2. The key property Is given in Theorem 4.4. 
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Theorem 4.4. (Sivazlian, 1981) 

glven by 
The normallzatlon constant c for the Llouvllle Lk ($ ,a  . . . , ak ) density ls 

k 
r( ai 1 

1 =1 

03 k 
n r ( a i ) J ~ ( z ) ~ u - - '  cia: 
i = 1  0 

k 
where a = 2 a i .  

i = l  

Let ( X l ,  . . . , xk ) be Lk ($,a 1, . . . , ak ), and let ( Y  1, . . . , Yk ) be deflned 
by 

(15; < I C ) ,  X i  
yi = xl+. . . +Xk 

Yk = xi+ ' ' ' +xk . 

Then ( Y l ,  . . . , Yk-1) is Dlrlchlet ( u l ,  . . . , a k ) ,  and Yk 1s lndependent of thls 

Dlrlchlet random vector and L 
k 

i = 1  
2 ai ). 

Conversely, If ( Y l ,  . . . , Yk-1) 1s Dlrlchlet (a l ,  . . , ak ), and Yk IS 

ai ), then the random 
k 

lndependent of thls Dlrlchlet random vector and L 1($, 

vector ( X l ,  . . . , xk) deflned by 
i = 1  

xi = Yi Yk ( 1 s i < k )  

xk = (1-Yl- ' ' ' -yk -1) yk 

1s Lk ($,a 1, * , ak ) a  

Proof of Theorem 4.4. 

The constant c 1s glven by 

k 
] I T r ( a i )  03 

i =1  
J$(z)xa-1 dz , - - 

k 

i = 1  
. r ( C a i )  O 

where a property of Llouvllle multlple lntegrals 1s used (Slvazllan, 1981) .  Thls 
proves the flrst'part of the Theorem. 
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Assume next that ( X I ,  . . . , & )  Is Lk ($,al, . . . , a,), and that 
( Y l ,  . . . , Yk)  1s obtalned V l a  the transformatlon glven ln the statement of the 
Theorem. Thls transformatlon has Jacoblan Yk The Joint denslty of 
( y l ,  . . J y k )  Is 

Y k  k- l$(yk  n ( Y i  Y k  
k -1 k -I 

Y i  ) Y k  
i = 1  i - 1  

In thls we recognlze the product of an L l($,a ) denslty (for Y ,  ), and a Dlrlchlet 
(a l ,  . . . , a k )  denslty (for (Yl ,  . . . , Yk-1)). Thfs proves the second part of the 
Theorem. 

For the thlrd part, we argue slmllarly, startlng from the last denslty shown 
above. After the transformatlon to ( X I ,  . . . , xk ), whlch has Jacoblan 

( xi >"l, we obtaln the Lk (+,a 
k 

i = 1  
. . . , ak denslty agaln. 

Dlrlchlet generators are descrlbed In sectlon 4.1, whlle L l($,a ) generators 
can be handled lndlvldually based upon the partlcular form for $. Slnce thls Is a 
unlvarlate generatlon problem, we won't be concerned wlth the assoclated prob- 
lems here. 

4.3. Exercises. 
1. Prove Theorems 4.2 and 4.3. 

2. Prove the followlng fact: when ( X I ,  . . . , xk ) - D ( a  1 ,  . . . , ak+1),  then 

(XI, . . . , X i )  - D ( a , ,  . . . , a i ,  
k +I 

ai), i < k .  
j = i  +I 

3. The generalized Liouville distribution. A random vector (Xl, . . . , xk ) 
Is generallzed Llouvllle (Slvazllan, 1981) when I t  has a denslty whlch can be 
wrltten as 

Here a; ,b i  , c i  >O are parameters, $ Is a nonnegatlve Lebesgue measurable 
functlon, and c 1s a normallzatlon constant. Generallze Theorem 4.4 to thls 
dlstrlbutlon. In partlcular, show how you can generate random vectors wlth 
thls dlstrlbutlon when you have a Dlrlchlet generator and an L l(?+!+a ) gen- 
erator at your dlsposal. 
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4. In the proof of Theorem 4.4, prove the two statements made about the Jaco- 
blan of the transformatlon. 

5. SOME USEFUL MULTIVARIATE FAMILIES. 

5.1. The Cook-Johnson family. 

defined as the dlstrlbutlon of 
Cook and Johnson (1981) conslder the multlvarlate unlform dlstrlbutlon 

where E,,  , . . , Ed are lld exponential random varlables, S 1s an lndependent 
gamma ( a  ) random varlable, and a > O  1s a parameter. Thls family 1s lnterestlng 
from a varlety of polnts of vlew: 
A. 

B. 
Random varlate generatlon 1s easy. 
Many multlvarlate dlstrlbutlons can be obtalned by approprlate monotone 
transformations of the components, such as the multlvarlate loglstlc dlstrlbu- 
tlon (Satterthwalte and Hutchlnson, 1978; Johnson and Kotz, 1972, p. 291), 
the multlvarlate Burr dlstrlbutlon (Takahasl, 1965; Johnson and Kotz, 1972, 
p. 289), and the multlvarlate Pareto dlstrlbutlon (Johnson and Kotz, 1972, 
p. 286). 
For d=2, the full range of nonnegatlve correlatlons can be achleved. The 
lndependent blvarlate unlform dlstrlbutlon and one of Frechet’s extrema1 
dlstrlbutlons (correspondlng to  the case x,=x,) are obtalnable as llmlts. 

C. 
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Theorem 5.1. 
The Cook-Johnson dlstrlbutlon has dlstrlbutlon functlon 

and denslty 

( O < q  51, i=1,2, . . . , d )  . 

The distributlon Is lnvarlant under permutations of the coordlnates, and 1s mul- 
tlvarlate unlform. Furthermore, as a +oo, the dlstrlbutlon functlon converges to 

d n xi (the independent case), and as a 10, it  converges to  mln(s,, . . . , xd ) (the 
i =I 
totally dependent case). 

Proof of Theorem 5.1. 
The dlstrlbutlon functlon 1s derlved without dlmculty. The density 1s 

obtalned by dlfferentlatlon. The permutation lnvarlance follows by inspectlon. 
The marginal dlstrlbutlon functlon of the Arst component is F (x 1,1, . , . , l)=x 
for O < x 1 5 1 .  Thus, the dlstrlbutlon 1s multlvarlate unlform. The llmlt of the dis- 
trlbutlon functlon as a 10 is mln(z,, . . . , xd ). Slmllarly, for 
O<mln(z,, . . . , x d ) s m a x ( s l ,  . . . , zd)<1,  as a-+oo, 

I -a  
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Parameters 

c i , d i  >O 

ai B O  

None. Q is the nor- 
mal distribution 
function. 

Let us now turn to a collectlon of other dlstrlbutlons obtalnable from the 
Cook-Johnson famlly wlth parameter a by slmple transformatlons of the Xi 's. 
Some transformatlons to be applled to  each Xi are shown In the next table. 

Resulting distribution Reference 

Gumbel's bivariate Satterthwaite and 
logistic ( d  -2) and Hutchinson (1978), 
the  multivariate Johnson and Kotz 
logistic ( a  =I) (1972, p. 291) 

multivariate Burr Takahasi (1965), 
Johnson and Kotz 
(1972, p. 286) 

multivariate Pareto Johnson and Kotz 

multivariate normal Cook and Johnson 
without elliptical (1981) 
contours 

(1972, p. 286) 

Transformation for 

O-'(X* ) r 
Example 5.1. The multivariate logistic distribution. 

the generallzed multlvarlate loglstlc dlstrlbutlon wlth dlstrlbutlon functlon 
In 1961, Gumbel proposed the blvarlate loglstlc dlstrlbutlon, a speclal case of 

-a  

(1+ 6 e-'.) ( X i  >o , i =1,2, . . . , d )  . 
i ==I 

For a = 1  thls reduces to the multlvarlate loglstlc dlstrlbutlon given by Johnson 
and Kotz (1972, p. 293). Note that from the form of the dlstrlbutlon functlon, we 
can deduce lmmedlately that all unlvarlate and multlvarlate marglnals are agaln 
multlvarlate loglstlc. Transformatlon of a Cook- Johnson random varlate leads to 
the followlng slmple recipe for generatlng multlvarlate loglstlc random varlates: 

Multivariate logistic generator 

Generate iid exponential random variates E , ,  . . . , E d + l .  

RETURN (log(-), . . . , log(-)) 
E ,  Ed 

Ed +I  Ed + I  

I 
I 

_. 



XI.5.MULTIVARIATE FAMILIES 603 

Example 5.2. 
The multivariate normal distribution in the table has nonelllptfcal contours. 

Kowalskl (1973) provides other examples of multivariate normal distributions 
wlth nonnormal densities. 

5.2. Multivariate Khinchine mixtures. 

structively as the distrlbutlons of random vectors in R 
Bryson and Johnson (1982) proposed the family of distributions deflned con- 

which can be written as 

(ZlU, ,  * * , i d  ud) 
where the z,, , , . , zd is independent of the multivariate uniform random vector 
U , ,  . . . , ud, and has a dlstributlon whlch is such that certain given marginal 
dlstributions are obtalned. Recalllng Khlnchine’s theorem (section rV.S.2), we 
note that all marglnal distrlbutlons have unlmodal densities, 

Controlled dependence can be introduced in many ways. We could lntroduce 
dependence in u,, . . . , ud by picking a multivariate unlform distribution based 
upon the multivariate normal density or the Cook-Johnson distribution. Two 
models for the Zi ’s seem natural: 
A. The ldentlcal model: Z,= . . =zd. 
B. The independent model: z,, . . . , Zd are lid. 

These models can be mixed by choosing the ldentlcal model with probability 
p and the lndependent model wlth probabillty 1-p . 

Example 5.3. 

ldentlcal bivarlate model, the joint bivarlate density is 
To achieve exponential marglnals, we can take all Zi’s gamma (2). In the 

r n a ~ ( 2 ~ . 2 2 )  ‘ 
In the independent bivarlate model, the jolnt density 1s 

1 
2 

Unfortunately, the correlation In the flrst model 1s -, and that of the second 

model 1s -. By probablllty mlxing, we can only cover correlations in the small 1 
3 

1 -1 range [-,-I. Therefore, i t  is useful to replace the lndependent model by the 
3 2  
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totally lndependent model (wlth denslty e -(z1+z2)), thereby enlarging the range to 

Example 5.4. Nonnormal bivariate normal distributions. 
For symmetrlc marglnals, I t  1s convenlent to take the Vi 's  unlform on [-1,1]. 

It 1s easy to see that In order to obtain normal marglnals, the 2;'s have to be dls- 
trlbuted as the square roots of chi-square random varlables wlth 3 degrees of free- 
dom. If (ul;u,) has blvarlate denslty h on [-1,112, then (Z ,U , ,Z ,U , )  has Joint 
denslty 

3 -- -- 1 Y 1  1 Y 2  T1(-)2 2 e  h(-+-,-+-) dt  . 
2 2 2 t  2 2 t  I 

ma( I z 1  I I I 2 2 1  1 

Thls provldes us wlth a rlch source of examples of blvarlate dlstrlbutlons wlth 
normal marglnals, zero correlatlons and non-normal densltles. At the same time, 
random varlate generatlon for these examples 1s trlvlal (Bryson and Johnson, 
1982). 

5.3. Exercises. 
1. The multivariate Pareto distribution. The unlvarlate Pareto denslty 

wlth parameter a >O 1s deflned by a /a:  '+' (a: 2 1 ) .  Johnson and Kotz 
(1972, p. 286) deflne a multlvarlate Pareto denslty on R wlth parameter a 
by 

A. Show that the marglnals are all unlvarlate Pareto wlth parameter a .  
1 
a 

B. In the blvarlate case, show that the correlatlon 1s -. Slnce the marglnal 

varlance 1s flnlte if and only if a >2, we see that all correlatlons 
between 0 and - can be achleved. 1 

2 
1 A -- _- 

C. Prove that a random vector can be generated as (x, ', . . . , xd '1 
where (Xl, . . . , xd) has the Cook-Johnson dlstrlbutlon wlth parame- 

ter a .  Equlvalently, I t  can be generated as (l+- s , .  . * ,  1 + 7  1, El Ed 
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where E , ,  ._ . . , Ed are ild exponentlal random varlables, and S 1s an 
Independent gamma ( a  ) random variable. 

6. RANDOM MATRICES. 

6.1. Random correlation matrices. 
To test certain statlstlcal methods, one should be able to create random test 

problems. In several appllcatlons, one needs a random correlatlon matrlx. Thls 
problem 1s equivalent to that of the generatlon of a random covariance matrlx if 
one asks that all variances be one. Unfortunately, posed as such, there are 
lnflnltely many answers. Usually, one adds structural requirements to the correla- 
tlon matrlx In terms of expected value of elements, eigenvalues, and distrlbutlons 
of elements. It would lead us too far to dlscuss all the posslblllties In detall. 
Instead, we Just kick around a few ideas to help us to better understand the 
problem. For a recent survey, consult Marsaglla and Olkln (1984). 

A correlatlon matrlx 1s a symmetrlc posltlve seml-deflnlte matrlx wlth ones 
on the dlagonal. It Is well known that If H Is a d X n  matrlx wlth n L d ,  then 
HH' Is a symmetrlc posltlve seml-deflnite matrix. To make I t  a correlatlon 
matrlx, I t  1s necessary to make the rows of H of length one (thls forces the dlago- 
nal elements to be one). Thus, we have the followlng property, due to Marsaglla 
and Olkin (1984): 

Theorem 6.1. 

vectors on the unlt sphere of R ' . 
HH' Is a random correlatlon matrix If and only If the rows of H are random 

Theorem 6.1 leads to a varlety of algorithms. One stlll has the freedom to 
choose the random rows of H according t o  any reclpe. It seems loglcal to take the 
rows as Independent uniformly dlstrlbuted random vectors on the surface of C, , 
the unit sphere of R ', where n > d  is chosen by the user. For thls case, one can 
actually compute the expllclt form of the marginal dlstrlbutlons of HH'. Mar- 
saglla and Ollcln suggest starting from any d X n  matrix of lid random varlables, 
and to normallze the rows. They also suggest In the case n = d  startlng from 
lower trlangular H, thus savlng about 50% of the variates. 

The problem of the generation of a random correlatlon matrix with a glven 
set of eigenvalues 1s more dlfflcult. The dlagonal matrlx D deflned by 

1 0 . .  

0 A, . ' .  0 

. . . .  . . . . . . . .  

A d  
0 . . .  0 

I 
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has elgenvalues A,, . . . , A d .  Also, elgenvalues do not change when D 1s pre and 
post multlplled wlth an orthogonal matrlx. Thus, we need to make sure that 
there exlst many orthogonal matrlces H such that HDH’ 1s a correlatlon matrlx. 
Slnce the trace of our correlatlon matrlx must be d ,  we have to  start  wlth a 
matrlx D wlth trace d .  For the construction of random orthogonal H that satisfy 
the glven collectlon of equatlons, see Chalmers (1975), Bendel and Mlckey (1978) 
and Marsaglla and Olkln (1984). See also Johnson and Welch (1980), Bendel and 
Aflfl (1977) and Ryan (1980). 

In a thlrd approach, deslgned to  obtaln random correlatlon matrlces wlth 
glven mean A, Marsaglla and Olkln (1984) suggest formlng A+H where H 1s a 
perturbatlon matrlx. We have 

~ ~- 

Theorem 6.2. 
Let A be a glven d X d  correlatlon matrlx, and let H be a random sym- 

metric d X d  matrlx whose elements are zero o n  the dlagonal, and have zero 
mean off the dlagonal. Then A+H 1s a random correlatlon matrlx with expected 
value A If and only If the elgenvalues of A+H are nonnegatlve. 

Proof of Theorem 6.2. 
The expected value 1s obvlously correct. Also, A+H 1s symmetrlc. Further- 

more, the dlagonal elements are all one. Flnally, A+H 1s posltlve seml-deflnlte 
when Its elgenvalues are nonnegatlve. 

We should also note that the elgenvalues of A t H  and those of A dlffer by 
at most 

A = m a x ( d F  9 m a x ~  I hij I 9 

‘ j  

where hij 1s an element of 33. Thus, If A 1s less than the smallest elgenvalue of 
A, then A+H 1s a correlatlon matrlx. Marshall and Olkln (1984) use thls fact to 
suggest two methods for generatlng H: 
A. Generate all hij for i < j  wlth zero mean and support on [-bij , b i j ]  where 

the bij’s form a zero dlagonal symrnetrlc matrlx wlth A smaller than the 
smallest elgenvalue of A. Then for i > J’ , define hij =hji . Flnally, hi; =o. 

B. Generate hlz ,h13,  . . . , hd-l,d wlth a radlally symmetrlc dlstrlbutlon In or 
on the d (d-1)/2 sphere of radlus A / f i  where A 1s the smallest elgenvalue of 
A. Deflne the other elements of H by symmetry. 

I 

I 
-_ 



XI.6 .RANDOM MATRICES 607 

6.2. Random orthogonal matrices. 
An orthonormal d X d  matrlx can be consldered as a rotatlon of the coordl- 

nate axes In R d .  In such a rotatlon, there are d (d-1)/2 degrees of freedom. To 
see thls, we look at where the polnts (1,0,0, . . . , 0), . . . , (O,O, . . . , 0,l) are 
mapped to by the orthonormal transformatlon. These polnts are mapped to other 
polnts on the unlt sphere. In turn, the mapped polnts deflne the rotatlon. We 
can choose the flrst polnt ( d  coordlnates). Glven the flrst polnt, the  second polnt 
should be In a hyperplane perpendlcular to the llne Jolnlng the orlgln and the 
flrst polnt. Here we have only d-1 degrees of freedom. Contlnulng In thls 
fashlon, we see that there are d ( d  -1)/2 degrees of freedom ln all. 

Helberger (1978) (correctlon by Tanner and Thlsted (1982)) glves an algo- 
rlthm for generatlng an orthonormal matrlx whlcb 1s unlformly dlstrlbuted. Thls 
means that the flrst polnt 1s unlformly dlstrlbuted on the unlt sphere of R d ,  that 
the second polnt 1s unlformly dlstrlbuted on the unlt sphere of R d  lntersected 
wlth the hyperplane whlch 1s perpendlcular to the llne from the orlgln to the flrst 
polnt, and so forth. 

Hls algorlthm requires d ( d  +1)/2 lndependent normal random varlables, 
whlle the total tlme 1s O(d3) .  It 1s perhaps worth noting that no heavy matrlx 
computatlons are necessary at all If one is wllllng to spend a bit more tlme. To 

lllustrate thls, conslder performlng [t) random rotatlons of two axes, each rota- 

tlon keeplng the d-2 other axes Axed. A random rotatlon of two axes 1s easy to 

carry out, as we wlll see below. The global random rotatlon bolls down to 

matrlx multlpllcatlons. Lucklly, each matrlx 1s nearly dlagonal: there are four 
random elements on the lntersectlons of two glven rows and columns. The 
remalnder of each matrlx 1s purely dlagonal wlth ones on the dlagonal. Thls 
structure lmplles that the tlme needed to compute the global (product) rotatlon 
matrix IS O ( d 3 ) .  

I :I 

A random uniform rotation of R can be generated as 

where ( X , Y )  1s a polnt unlformly dlstrlbuted on C,, and S 1s a random slgn. A 
random rotatlon In R 3  In whlch the z-axis remains Axed 1s 

x Y o  
-SY sx 0 

0 0 1  

Thus, by the threefold comblnatlon (l.e., product) of matrices of thls type, we can 
obtaln a random rotatlon in R 3 .  If A12,A23,A13 are three random rotatlons of 
two axes wlth the thlrd one Axed, then the product 

A12&23A13 
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1s a random rotatlon of R 3 .  
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6.3. Random R X C tables. 
A two-way contingency table wlth r rows and c columlris 1s a matrlx of non- 

negatlve Integer-valued numbers. I t  1s also called an X C table. Typlcally, the 
lntegers represent the frequencles wlth whlch a glven palr of lntegers 1s observed 
In a sample of slze n . The purpose of thls sectlon 1s to explofe the generatlon of a 
random R X c table wlth glven sample s h e  (sum of elements) n . Agaln, thls is 
an 111-posed problem unless we lmpose more structure on I t .  The standard restrlc- 
tlons are: 
A. Generate a random table for sample slze n ,  such that all tables are equally 

llkely. 
B. Generate a random table for sample slze n ,  wlth glven row and column 

totals. The row totals are called ri ,152 <r . The column totals are 

Let us Just conslder problem B. In a flrst approach, we take a ball-ln-urn stra- 
tegy. Conslder balls numbered 1,2, . , . , n. Of these, the flrst c 1  are class one 
balls, the next c 2  are class two balls, and so forth. Thlnk of classes as dlfferent 
colors. Generate a random permutatlon of the balls, and put the first r balls In 
row 1, the next r 2  balls In row 2, and so forth. Wlthln a glven row, class i balls 
should all be put In column i . Thls ball-ln-urn method, flrst suggested by Boyett 
(1979), takes tlme proportlonal to n ,  and 1s not recommended when n Is much 
larger than rc , the slze of the matrlx. 

ci  , l< iLc .  
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Ball-in-urn niethod 

609 

[NOTE: N is an r X c array to be returned. B [l], . . . , B [n ] is an auxiliary array.] 
Sum e 0  

FOR j : = 1  TO c DO 
FOR i := Sum+l TO Sum+cj DO B [i]+j 
Sum + Sum + c j  

Randomly permute the array B . 
Set N to all zeroes. 
Sum t o  
FOR j:=1 TO r DO 

FOR i :=  Sum+l TO Sum+rj DO N[j,B[i]]-N[j,B[iI]+l 
Sum + Sum + r j  

RETURN N 

Patefleld (1980) uses the condltlonal dlstrlbutlon method to reduce the 
dependence of the performance upon n . The condltlonal dlstrlbutlon of an entry 
Nij glven the entrles In the prevlous rows, and the prevlous entrles In the same 
row i 1s glven by 

where 

1 
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The range for k 1s such that all factorlal terms are nonnegative. Although the 
expresslon for the condltlonal probabllltles appears compllcated, we note that 
qulte a blt of regularlty 1s present, whlch makes I t  posslble t o  adJust the partlal 
sums "on the fly". As we go along, we can qulckly adJust all terms. More pre- 
clsely, the constants needed for the computatlon of the probabllltles of the next 
entry In the same row can be computed from the prevlous one and the value of 
the current element Nij In constant tlme. Also, there 1s a slmple recurrence rela- 
tlon for the probablllty dlstrlbutlon as a functlon of I C ,  whlch makes the dlstrlbu- 
tlon tractable by the sequentlal lnverslon method (as  suggested by PateAeld, 
1980). However, the expected tlme of thls procedure 1s not bounded unlformly In 
n for flxed values of P ,c . 

6.4. Exercises. 
1. Let A be a d X d  correlation matrlx, and let H be a symmetrlc matrlx. Show 

that the elgenvalues of A+H dlffer by at most A from the elgenvalues of A, 
where 

A = max( C h i j  , m a x z  I hij I ) . d7 ' j  

2. Generate h I 2 , h l 3 ,  . . . , h d - l , d  wlth a radlally symmetrlc dlstrlbutlon In or 
on the d ( d - 1 ) / 2  sphere of radlus h / f i  where 1s the smallest elgenvalue of 
A. Deflne the other elements of H by symmetry. P u t  zeroes on the dlagonal 
of H. Then A+H 1s a correlatlon matrlx when A 1s. Show thls. 

Conslder Patefleld's condltlonal dlstrlbutlon method for generatlng a random 
R X C table. Show the followlng: 
A. 
B. 

3. 

The condltlonal dlstrlbutlon as glven in the text 1s correct. 
(Dlmcult.) Deslgn a constant expected tlme algorlthm for generatlng one 
element in the P Xc matrlx. The expected tlme should be unlformly 
bounded over all condltlons, but wlth r and c flxed. 



Chapter Twelve 
RANDOM SAMPLING 

1. INTRODUCTION. 
In thls.chapter we conslder the problem of the selectlon of a random sample 

of slze k from a set of n objects. Thls 1s also called sampllng wlthout replace- 
ment slnce dupllcates are not allowed. There are several lssues here whlch should 
be clarlfled ln thls, the lntroductory sectlon. 
1. 

2. 

3. 

4. 

Some users may wlsh to generate an ordered random sample. Not unexpect- 
edly, I t  1s easler to generate unordered random samples. Thus, algorlthms 
that produce ordered random samples should not be compared on an equal 
basls wlth other algorlthms. 
Sometlmes, n Is not known, and we are asked to grab each obJect In turn 
and make an lnstantaneous declslon whether to lnclude I t  In our random 
sample or not. Thls can best be vlsuallzed by conslderlng the obJects as 
belng glven In a llnked llst and not an array. 
In nearly all cases, we worry about the expected tlme complexity as a func- 
tlon of IC and n .  In typlcal sltuatlons, n 1s much larger than k ,  and we 
would llke to have expected tlme complexltles whlch are bounded by a con- 
stant tlmes k ,  unlformly over n . 
The space requlred by an algorltlim 1s deflned as the space requlred outslde 
the orlglnal array of n records or objects and outslde the array of k records 
to be returned. Some of the algorlthms in thls chapter are bounded 
workspace algorlthms, 1.e. the space requlrements are 0 (1). 

The strategles for sampllng can be partltloned as follows: (1) classlcal sampllng: 
generate random objects and lnclude them In the sample If they have not already 
been plcked; (11) sequential sampllng: generate the sample by traversing the col- 
lectlon of objects once and malclng lnstantaneous declslons durlng that one pass: 
(111) oversampllng: by means of a slmple technlque, obtaln a random sample (usu- 
ally of lncorrect slze), and In a second phase, adJust the sample so that I t  has the 
rlght slze. Each of these strategles has some very competltlve algorlthms, so that 
no strategy should a prlorl be excluded from contentlon. 
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We assume that the set of obJects 1s {1,2, . . . , n } .  If the obJects are 
dlfferent, then these lntegers should be consldered as polnters (lndlces) to the 
obJects In an array. 

2. CLASSICAL SAMPLING. 

2.1. The swapping method. 
Assume that the objects are glven In array form: A [l], . . . , A [n 1. Then, If 

we are allowed to permute the obJects, random sampllng 1s extremely slinple. We 
can choose an obJect unlformly and at random, and swap I t  wlth the last obJect. 
If we need another object, we choose one unlformly from among the flrst n-1 
obJects, and swap wlth the 72-1st obJect, and so forth. Thls algorlthm takes tlme 
proportlonal to k , and 0 (1) extra space 1s needed. The dlsadvantage 1s that the 
sample 1s not ordered. Also, record swapplng 1s sometlmes not allowed. We are 
allowed to swap polnters though, but thls would then requlre @ ( n )  extra space 
for polnters. If there are no records to begln wlth, then the space requlrement 1s 
O ( n  ). Formally we have: 

Swapping method 

FOR i :=n DOWNTO n -k +l DO 

Generate a uniform (0,1] random variate U 

Swap ( A  [XJA [ill 
x+- riui 

RETURN A [n-k +1], . . . , A [n J 

The swapplng method 1s very convenlent. If we set k=n ,  then the returned 
array 1s a random permutatlon. Thus, the swapping method Is based upon the 
prlnclple that generatlng a random subset of slze k 1s equivalent to  generatlng 
the first k entrles In a random permutatlon. 
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2.2. Classical sampling with membership checking. 
If we are not allowed to swap lnformatlon, then we are forced to check 

whether a certaln element 1s not already plcked. The checklng can be achleved In 
a number of ways vla dlfferent data structures. Regardless of the data structure, 
we can formulate the algorlthm: 

Classical sampling with membership checking 

s+0 (s will be the set of random integers to be returned) 
FOR i :=1 TO k DO 

REPEAT 
Generate a random integer z in (1, . . . , n }. 

UNTDL NOT Member (2) (Member returns true if an integer is already picked, and 
false otherwise.) 
S+Su{Z}  

RETURN s 

The data structure used for S should support the followlng operations: lnltlallze 
empty set, Insert, member. Among the tens of posslbie data structures, the fol- 
lowlng are perhaps most representatlve: 
A. The blt-vector lmplementatlon. Deflne an array of n blts, whlch are lnltlally 

set t o  false, and whlch are swltched to true upon lnsertlon of an element. 
B. An unordered array of chosen elements. Elements are added at the end of 

the array. 
C. A blnary search tree of chosen elements. The expected depth of the k - th  ele- 

ment added to  the tree 1s -2log(k). The worst-case depth can be as large as 
k. 
A helght-balanced blnary tree or 2-3 tree of chosen elements. The worst-case 
depth of the tree wlth k elements 1s 0 (log(k )). 
A bucket structure (open hashlng wlth chalnlng). Partltlon (1, . . . , n } lnto 
k about equal Intervals, and keep for each lnterval (or: bucket) a llnked llst 
of all elements chosen untll now. 
Closed hashlng lnto a table of slze a blt larger than k. 

D. 

E. 

F. 
I t  1s perhaps useful to glve a llst of expected complexltles of the varlous opera- 
tlons needed on these data structures. We also lnclude the space requlrements, 
wlth the conventlon that the array of k lntegers to  be returned 1s In any case 
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lncluded In the space requlrements. 

Tlmewlse, none of the suggested data structures 1s better than the blt-vector data 
structure. The problem wlth the blt-vector lmplementatlon 1s not so much the 
extra storage proportlonal t o  n ,  because we can often use the already exlstlng 
records and use common programming trlcks (such as changlng slgns etcetera) to 
store the extra blts. The problem 1s the re-lnltlallzatlon necessary after a sample 
has been generated. At the very least, thls wlll force us to conslder the selected 
set S ,  and turn the k blts off agaln for all elements In S. Of course, at the very 
beglnnlng, we need to set all n blts to false. 

The flrst lmportant quantlty 1s the expected number of lteratlons In the sam- 
pling algorlthm. 

The expected number of lteratlons In classlcal sampllng wlth membershlp 
checklng 1s 

k n  
t .' =1 n-i+1 * 

For k =n , thls 1s n 5 4 - n  log(n ). When k 5 [:I, thls number 1s 5 2k. 
i = 1  

Proof of Thecirem 2.1. 
Observe that t o  generate the i - th  random Integer, we carry out a serles of 

. Thls lndependent experlments, each havlng probablllty of success n -i +I 

ylelds the glven expected value. The asymptotlc result when k = n  1s trlvlally 
true. The general upper bound 1s obtalned by a standard lntegral argument: 
bound the sum from above by 

n 
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- < 2+2(k-1) = 2k .I 

What matters here 1s that the expected tlme lncreases no faster than 0 (k ) 
when k 1s at most half of the sample. Of course, when k 1s larger than -, one 

should really sample the complement set. In partlcular, the expected tlme for the 
blt-vector lmplementatlon 1s 0 (k ). For the tree methods, we obtaln 0 (k log(k )). 
If we work wlth ordered or unordered Ilsts, then the generatlon procedure takes 
expected tlme O ( k 2 ) .  Flnally, wlth the hash structure we have expected tlme 
0 ( k )  provided that we can show that the expected tlme of an lnsert or a delete 
1s 0 (1) (apply Wald's equatlon). Assume that we have a bucket structure wlth 
mk equal-shed Intervals, where m 2 1  1s a deslgn lnteger usually equal to 1. The 
lnterval number 1s 

hashed to lnterval 

n 
2 

er between 1 and mk, and lnteger zE(1,  . . . , n }  1s 

. Thus, If the hash table has k elements, then every 

lnterval has about A elements. The expected number of cornparlsons needed to 
m 

check the membershlp of a random lnteger in a hash table contalnlng %' elements 
1s bounded from above by E (l+nZ ) where nZ 1s equal to the number of elements 
In the lnterval 2 ,  and 2 1s a random lnterval Index, chosen wlth probablllty pro- 
portlonal to the cardlnallty of the lnterval. The "1" accounts for the comparlson 
spent checklng the endmarker In the chaln. Thus, the expected number of com- 
parlsons 1s not greater than 

i i  
mk n 

= 1+-+- . 

i k  1 
m n  m 

In the worst case ( i = k ) ,  thls upper bound 1s l + - + - ~ Z + - .  The upper 

bound 1s very loose. Nevertheless, we have an upper bound whlch 1s clearly 0 (1). 
Also, If we can afford the space, I t  pays to take m as large as posslble. One 
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posslble hashlng algorlthm 1s given below: 
I 

Classical sampling with membership checking based on a hash table 

This algorithm uses three arrays of integers of size k .  An array of headers Head 
[i], . . . Head [ k ]  is initially set to 0.  An array pointers to successor elements 
Next[l], . . . , Next[k] is also set to 0.  The array A [I], . . . A ( k ]  will be returned. 
FOR i:=i TO k DO 

Accept - False 

REPEAT 
Generate a random integer 

k (2-1) 
Bucket +l+ 1 2 uniformly distributed on (1, . . . , n }. 

Top +- Head [ Bucket ] 
IF Top=O 

THEN 
Head [ Bucket 1 +-i 
A [k]+-Z 
Accept + True 

WHILE A [Top]#Z AND Top#o DO 
ELSE 

(Top, Top* ) +- (Next [Top], Top) 

F Top=O THEN 
A [i]-Z 
Next [ Top* ] +-i 
Accept True 

UNTIL Accept 
RETURN A [I], . . . , A [ k ]  

The hashlng algorlthm requires 2k extra storage space. The array returned 1s not 
sorted, but sortlng can be done In llnear expected tlme. We glve a short formal 
proof of thls fact. It 1s only necessary to travel from bucket to bucket and sort 
the elements wlthln the buckets (because an order-preservlng hash functlon was 
used). If thls 1s done by a slmple quadratlc method such as bubble sort or selec- 
tion sort, then the overall expected tlme cornplexlty 1s 0 (k ) (for the overhead 
costs) plus a constant tlmes 

1 ==l 

But ni 1s hypergeometrlc wlth parameters n ,1 ,k where , I  1s the number of 
lntegers In the i- th bucket (thls 1s about -), 1.e. for each j , n 

mk 
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kl 1 
n m 

We know that E (ni )=-, and thls tends to - as k ,n  4 0 0 ,  and I t  does not 
1 k  
m n  

exceed -+- In any case. Simple computatlons show that 

n-k n-1 kl Vur(n i )  = --- 
n-1  n n 

1 i k  
m m n  

whlch In turn tends to - as k ,n ' 0 0 ,  wlthout exceedlng -+- for any value 

of k ,m ,n .  Combining thls, we see that the the expected tlme complexlty Is a 
constant tlmes 

1 
m 

- k(1+-) .  

It 1s not greater than a constant tlmes 

These expresslons show that  I t  Is lmportant to take m large. One should not fall 
lnto the trap of lettlng m lncrease wlth k , n  because the set-up tlme Is propor- 
tlonal to m k ,  the number of buckets. The hashlng method wlth chalnlng, as 
glven here, was lmpllcltly glven by Muller (1958) and studled by Ernvall and 
Nevalalnen (1982). Its space lnefflclency Is probably Its greatest drawback. 
Closed hashlng wlth a table of slze k has been suggested by NlJenhuls and Wllf 
(1975). Ahrens and Dleter (1985) conslder closed hashlng tables of slze mk where 
now m 1s a number, not necessarily Integer, greater than 1. See also Teuhola and 
Nevalalnen (1982). It  1s perhaps lnstructlve to glve a brlef descrlptlon of the algo- 
rlthm of NlJenhuls and Wllf (1975). An unordered sample A [l], . . . , A [ k ]  wlll 
be generated, and an auxlllaiy vector Next[l], . . . , Next[k] of llnlcs Is needed In 
the process. A polnter p points to the largest lndex i for whlch A [;I 1s not yet 
speclfled. 
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Algorithm of Nijenhuis and Wilf 

[SET-UP] 
p +k +I 
FOR i:=1 TO k DO A [;)to 
[GENERATOR] 
REPEAT 

Generate a random integer x uniformly distributed on 1, . . . , n .  Set 
Bucket+-Xmod k +I. 
LF A [Bucket]=O 

THEN A [Bucket]+X ,Next [Bucket)tO 
ELSE 

WHILE A [Bucket]#X DO 
IF Next[Bucket]=O 

THEN 
REPEAT p +p -1 UNTIL p =O OR A [p ]=O 

Next[Bucket] +p 
Buckettp 

ELSE Bucketc-Next[Bucket] 

UNTIL p =O 

RETURN A [I], . . . , A  [ k ]  

The algorlthm of NlJenhuls and Wllf dlffers sllghtly from standard closed hashlng 
schemes because of the vector of llnks. The llnks actually create small llnked llsts 
wlthln the table of s h e  k. When we look at the cost assoclated with the algo- 
rlthm, we note A r s t  that the expected number of unlform random varlates needed 
Is at the same as for all other classical sampllng schemes (see Theorem 2.1). The 
search for an empty space ( p  +-p -1) takes tlme 0 (k ). The search for the end of 
the llnked llst (Inner WHILE loop) takes on the average fewer than 2.5 llnk 
accesses per random varlate x, lndependent of when X 1s generated and how 
large k and n are (Knuth, 1969, pp. 513-518). Thus, both expected tlme and 
space are 0 (k). 
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2.3. Exercises. 
1. The number of elements n ,  that  end up In a bucket of capaclty 1 In the 

bucket method )s hypergeometrlcally dlstrlbuted wlth parameters n , k  ,Z . 
That  Is, 

In the text, we needed the expected value and varlance of n l .  Derlve these 
quantltles. 

2. Prove that  the expected tlme in the algorithm of NlJenhuls and Wllf Is 

3. Weighted sampling without replacement. Assume tha t  we wlsh to gen- 
erate a random sample of slze k from (1, . . . , n } ,  where the lntegers 
1, . . . , n have weights wi. Drawing an  Integer from a set of Integers Is to 
be done wlth probabllity proportional to the weight of the Integer. Uslng 
classical sampling, this Involves dynamlcally updatlng a selectlon probablllty 
vector. Wong and Easton (1980) suggest setting up a binary tree of helght 
0 (log(n )) in tlme 0 ( n  ) In a preprocesslng step, and using thls tree In the 
lnverslon method. Generating a random integer takes tlme 0 (log(n )), whlle 
updatlng the tree has a similar cost. Thls leads to  a method wlth worst-case 
tlme O(klog(n)+n) .  The space requirement 1s proportional to n (space 1s 
less crltlcal because the vector of weights must be stored anyway). Develop 
a dynamlc structure based upon the alias method or the method of guide 
tables, whlch has a better expected tlme performance for all vectors of 
w elghts. 

0 ( k  1. 

3. SEQUENTIAL SAMPLING. 

3.1. Standard sequential sampling. 
In sequentlal sampllng, we want an ordered sample of slze k drawn from 

1, . . . , n .  An unordered sample can always be obtained by one of the methods 
descrlbed In the previous section, and In many cases (e.g. the hashlng methods), 
sortlng can be done extremely efflclently In expected tlme 0 ( k  ). What we wlll do 
In thls chapter 1s different. The methods descrlbed here are fundamentally one 
Pass methods In which the random sample Is constructed In order. There are two 
Possible strategles: flrst, we could grab each integer In 1, . . . , n In turn, atid 
declde whether to take It or leave I t .  It turns out,  a s  we wlll see below, that for 
each declslon, we need only compare a new uniform random varlate wlth a cer- 
t a h  threshold. Unfortunately, this standard sequentlal sampling algorithm takes 
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tlme proportlonal to n :  I t  becomes partlcularly lnemclent when k 1s much 
smaller than n . The second strategy clrcumvents thls problem by generatlng the 
spaclngs between successlve lntegers. Assume for a moment that each spaclng can 
be generated In expected tlme 0 (1) unlformly over all parameter values. Then 
the spaclngs method takes expected tlme 0 (k ). The problem here 1s that the dls- 
trlbutlon of the spaclngs 1s rather cornpllcated; I t  also depends upon the partlally 
generated sample. 

In the standard sequentlal sampling algorlthm of Jones (1962) and Fan, 
Muller and Rezucha (1962), the probablllty of selectlon of an lnteger depends 
upon only two quantltles: the number of lntegers remalnlng to be selected, and 
the number of lntegers not yet processed. Inltlally, these quantltles are k and n .  
To keep the notatlon slniple, we wlll let k decrease durlng executlon of the algo- 
rlthm. 

Standard sequential sampling 

FOR i :=1 TO n DO 
Generate a uniform [0,1] random variate U .  

IF us- THEN select i ,  k t k - 1  
n- i+1  

k 
n Integer 1 1s selected wlth probablllty - as can easlly be seen from the followlng 

argument: there are 

ways of chooslng a subset of slze k from 1, . . . , n . Furthermore, of these, 

lnclude lnteger 1. The probablllty of lncluslon of 1 should therefore be the ratlo 
of these two numbers, or k / n  . Note that thls argument uses only k , the number 
of remalnlng lntegers to be selected, and n ,  the number of lntegers not yet pro- 
cessed. It can be used lnductlvely to prove that  the algorlthm 1s correct. Note for 
example that If at any tlme In the algorlthm k =n , then each of the remalnlng n 
lntegers In the Ale 1s selected wlth probablllty one. If at some point k=O, no 
more lntegers are selected. The tlme taken by the algorlthm 1s proportlonal to n , 
but no extra space 1s needed. For small values of n , the standard sequentlal algo- 
rithm has llttle competltlon. 
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3.2. The spacings method for sequential sampling. 
We say that a random varlable X has the dlstributlon D (k ,n ) when X Is 

distributed as the mlnlmal lnteger In a random subset of size k drawn from 
(1, . . . , n } .  The spaclngs method for sequentlal sampllng is deflned as follows: 

The spacings method for sequential sampling 

Y-0 ( Y  is a running pointer) 
REPEAT 

Generate a random integer X with distribution D (k ,n ). 
k +lc -1, n +n -X (update parameters). 
Select Y+X, set Y-Y+X 

UNTIL k = O  

In the algorlthm, the orlglnal values of k and n are destroyed - thls saves us the 
trouble of havlng to introduce two new symbols. If we can generate D (k ,n ) ran- 
dom varlates In expected tlme 0 (1) unlformly over k and n , then the spaclngs 
method takes expected tlme 0 (k). The space requirements depend of course on 
what 1s needed for the generatlon of D (k ,n ). There are many possible algorlthms 
for generatlng a D (k ,n ) random varlable. We dlscuss the following approaches: 
1. 

2. 

3. 

The three methodologles wlll be dlscussed In dlfferent subsectlons. All technlques 
require a conslderable programming effort when Implemented. In cases 1 and 3, 
most of the energy 1s spent on numerlcal problems such as the evaluation of 
ratios of factorlals. Case 2 avoids the numerical problems at the expense of some 
addltlonal storage (not exceeding 0 (k )). We wlll flrst state some propertles of 
D (k ,n 1. 

The Inverslon method (Devroye and Yuen, 1981; Vltter, 1984). 

The ghost sample method (Devroye and Yuen, 1981). 

The rejection method (Vltter, 1983, 1984). 
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Theorem 3.1. 
Let x have dlstrlbutlon D ( k  ,n ). Then 

P ( X > i )  = ,O<i<n-k ,  

n-i\ 

Proof of Theorem 3.1. 

sets of k out  of n -;, and the number of subsets of k -1 out of n -i . 
Argue by countlng the number of subsets of k out of n , the number of sub- 

Theorem 3.2. 
The random varlable X=mln(x , ,  . . . , xk ) 1s D ( k  ,n ) dlstrlbuted when- 

ever XI, . . . , xk are lndependent random varlables and each xi 1s unlformly 
dlstrlbuted on ( 1 ,  . . . , n -k + i  }. 

~~ ~ 

Proof of Theorem 3.2. 
For O<i<n-k,  

P ( Y > i )  = 

whlch was to be shown. 

From Theorem 3.2, we deduce wlthout further work: 



I- 

Theorem 3.3. 
Let X be D (k ,n ) dlstrlbuted, and let Y be the mlnlmum of k lld unlform 

(1, . . . , n-k+1} random varlables. Then X 1s stochastlcally greater than Y ,  
that  Is, 

P ( X > i )  2 P ( Y > i )  ,all i . 

Furthermore, related to the closeness of X and Y 1s the followlng collectlon 
of lnequalltles. 

Theorem 3.4. 
Let x and Y be as In Theorem 3.3. Then 

In partlcular, 

0 5 E ( X ) - E ( Y )  5 1 .  

Proof of Theofem 3.4. 

that  
In the proof, we let u,, . . . , uk be Ild unlform (0,1] random varlables. Note 

Also, 

n -k +I E ( Y )  2 (n-k+l )E(mln(U, ,  . . . , uk)) = 
k + i  

Clearly, 

.. 
k E ( X ) - E ( Y )  5 - 

k +I 
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3.3. The inversion method for sequential sampling. 
The dlstrlbutlon functlon F for a D (k ,n ) random varlable X 1s 

Thus, If U 1s a uniform [0,1] random varlable, the unlque lnteger X wlth the 
property that 

F(X-1) < u 5 F ( X )  

has dlstrlbutlon functlon F , and 1s thus D ( k  ,n ) dlstrlbuted. The solutlon can be 
obtained sequentlally by coinputlng F(l), F ( 2 ) ,  ... untll for the flrst tlme U Is 
exceeded. The expected number of lteratlons 1s E ( X )  = - . The expected 

tlme complexlty depends upon how F 1s computed. If F (i ) 1s computed from 
scratch (Fan, Muller and Rezucha, 1962), then tlme proportlonal to  k + 1  1s 
needed, and x 1s generated in expected tlme proportlonal to n. Thls 1s unac- 
ceptable as I t  would lead to an 0 ( n k )  sampllng algorlthm. Lucklly, we can com- 
pute F recursively by notlng that 

k +I 

Uslng thls, plus the fact that l - F ( O ) = l ,  we see that X can be generated In 
expected tlme proportlonal to - , and that a random sample can thus be gen- 
erated In expected tlme proportlonal to n .  Thls 1s stlll rather lneftlclent, More- 
over, the recurslve computatlon of F leads to  unacceptable round-off errors for 
even moderate values of k and n . If F 1s recomputed from scratch, one must be 
careful In the handllng of ratlos of factorlals so as not t o  lntroduce large cancela- 
tion errors in the computatlons. Thus, help can only come If we take care of the 
two key stumbllng blocks: 
1. 
2. The reductlon of the number of lteratlons In the solutlon of 

These lssues are dealt wlth In the next sectlon, where an algorlthm of Devroye 
and Yuen (1981) 1s glven. 

k +i 

The efflclent computatlon of F . 

F (X-1)< U L F  ( X ) .  
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3.4. Inversion-with-correction. 
A reductlon In the number of lteratlons for solving the lnverslon lnequalltles 

is only posslble If we can guess the solutlon pretty accurately. Thls 1s posslble 
thanks to the closeness of x to Y as deflned In Theorems 3.3 and 3.4. The ran- 
dom varlable Y lntroduced there has dlstrlbutlon functlon G where 

, 0 5 i S n - I C .  n -IC +I-i I n-k+1 
G (i)  = P ( Y  si ) = I- 

Recall that F S G  and that O<E (X-Y)<_ l .  By inverslon of G ,  Y can be gen- 
erated qulte slmply as 

where U 1s the same unlform [0,1] random varlate that wlll be used In the lnver- 
slon lnequalltles for x. Because x 1s at least equal t o  Y ,  i t  sufIlces to  start  look- 
lng for a solutlon by trylng Y ,Y +1, Y +2,.... Thls, of course, 1s the prlnclple of 
lnverslon-wlth-correctlon explalned In more detall In section 111.2.5. The algo- 
rlthm can be summarlzed as follows: 

Inversion-with-correction (Devroye and Yuen, 1981) 

LF n=k 
THEN RETURN x +-I 

ELSE 
Generate a uniform [0,1] random variate u .  
X- I (l-(l-U)')(n -k +1)+1 

1 

T -l-F(X) 
WHILE 1-U 5 T DO 

n -k -X 
f l  -X T-T 

x-x+l 
RETURN x 

The polnt here 1s $bat the expected number of lteratlons In the WHILE loop 1s 
E ( X - Y ) ,  whlch 1s less than or equal t o  1. Therefore, the expected tlme taken by 
the algorlthm 1s a constant plus the expected tlme needed to  compute F at one 
polnt. In the worst posslble scenarlo, F 1s computed as a ratlo of products of 
Integers slnce 
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Thls takes tlme proportlonal to k .  The random sampllng algorlthm would there- 
fore take expected tlme proportlonal to k 2 .  Interestlngly, If F can be computed 
In tlme 0 ( l ) ,  then X can be generated In expected tlme 0 ( l ) ,  and the random 
sampllng algorlthm takes expected tlme 0 ( I C  ). Furthermore, the algorlthm 
requlres bounded workspace. 

If we accept the logarlthm of the gamma functlon as a functlon that can be 
computed In constant tlme, then F can be computed In tlme 0 (1) vla: 

iog(1-F (i 1) = iog(r(n -i +i))+iog(r(n -IC +I)) 

-iog(r(n -i -k +q)+iog(r(n +I)) . 

Of course, here too we are faced wlth some cancelatlon error. In practlce, If one 
wants a certaln Axed number of slgnlficant dlglts, there 1s no problem computlng 
log(l?) In constant tlme. From Lemma X.1.3, one can easlly check that for n 2 8 ,  
the series truncated at k = 3  glves 7 slgnlflcant dlglts. For n <8 ,  the logarlthm of 
n can be computed dlrectly. There are other ways for obtalnlng a certaln accu- 
racy. See for example Hart et  al. (1968) for the computatlon of log(F) as a ratlo 
of two polynomlals. See also sectlon X.1.3 on the computatlon of factorials In 
general. 

A Anal polnt about cancelatlon errors In the computatlon of l-(l-U)l/k 
when k 1s large. When E 1s an exponentlal random varlable, the followlng two 
random varlables are both dlstrlbuted as 1-( 1- u )'Ik : 

E 
k 

-- 
1-e 

E 
2k 

tanh(-) 

l+tanh(  -) 
2k 
E '  

The second random varlable 1s to be preferred because I t  1s less susceptlble to 
cancelatlon error. 

3.5. The ghost point method. 

exploltlng speclal propertles such as Theorem 3.2. Recall that X Is dlstrlbuted as 
Random varlables wlth dlstrlbutlon D ( k  ,n ) can also be generated by 

I+ mln((n-k+1)Ul , (n-k+2)U2,  . . . , ( n - k + k ) U k ) J  I 
where u,, . . . , uk are lndependent unlform [0,1] random varlables. Direct use of 
thls property leads of course to an algorlthm talclng tlme O ( k ) .  Therefore, the 
random sampllng algorlthm correspondlng t o  I t  would tz$e tlme proportlonal to 
k '. What dlstlngulshes the algorlthm from the lnverslon algorlthms 1s that  no 
heavy computatlons are Involved. In the ghost polnt (or ghost sample) method, 
developed In Devroye and Yuen (1981), the fact  that X 1s almost dlstrlbuted as 
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the minlmum of k Ild random varlables Is exploited. The expected tlme per ran- 
dom varlate 1s bounded from above uniformly over all k: <pn for some constant 
pE(0,l). Unfortunately, extra storage proportlonal to k Is needed. 

We colned the term "ghost polnt" because of the following embeddlng argu- 
ment, In whlch X 1s written as the mlnlmum of k lndependent random varlables, 
whlch are llnked to k lid random varlables provlded that we treat some of the lid 
random varlables as non-existent. The lld random varlables are xi, . . . , x k ,  
each unlformly dlstrlbuted on ( 1 ,  . . . , n-k  +l}. If we were to deflne X as the 
mlnlmum of the Xi 's, we would obtaln an Incorrect result. We can correct how- 
ever by treating some of the Xi's as ghost polnts: deflne lndependent Bernoulll 

random varlables Z,, . . . , zk where P (2; =I)= 
i -1 

n -k + i  . The & 's  for whlch 

Z j = l  are to be deleted. Thus, we can deflne an updated collection of random 
varlables, Xi, . . . , xk', where 

xi if zi =o 
n -k +I If Zi =I 

xi, = 

Theorem 3.5. 
For the constructlon glven above, 

X = min(Xi,  . . . , x k ' )  

1s D (k ,n ) dlstrlbuted. 

Proof of Theorem 3.5. 
Flx 05 t' 5 n -k . Then, 

k 
P ( X > i )  = r I P ( X j ' > i )  

j = I  
k 

j = i  

j= i  n ( n - k + i  n - k + j  n - k + i  

j= i  n - k + j  

rl[ (P  (Zi =1)+P (Zi =o)P (Xi > k )) 

1 j - 1  n - k + i  n -k+l - i  + 
n - k + j - i  
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Every Xi has an equal probablllty of belng the smallest. Thus, we can keep 
generatlng unlformly random lntegers from 1, . . . , I C ,  wlthout replacement of 
course, untll we And one for whlch z i = O ,  Le. untll we And an lndex for whlch 
the Xi Is not a ghost polnt. Assume that we have slrlpped over m ghost polnts In 
the process. Then the xi In question 1s dlstrlbuted as the m +1-st smallest of the 
orlglnal sequence X,, . . . , Xk. The polnt 1s that such a random varlable can be 
generated In expected tlme o(1) because beta random varlates can be generated 
In O(1) expected tlme. Before proceeding wlth the expected tlme analysls, we 
glve the  algorlthm: 

The ghost point method 

[ SET-UP J 
A n  auxiliary linked list L is needed, which is initially empty. The maximum list size is k . 
The stack size is Size. 
Size t o .  
[GENERATION] 
REPEAT 

REPEAT 
Generate an integer W uniformly distributed on (1, . . . , k}. 

UNTIL W is not in L 
Add w to L , Size + Size +1. 

Generate a uniform [0,1] random variate u . 
w-1 

UNTIL ' 3  n - k + W  

Generate a beta (Size,k-Size+l) random variable B (note that 
"Size" smallest of k iid uniform [0,1] random variables.) 
RETURN xt L1+B (n -k +l)J 

is distributed as the 

We refer to the sectlon on beta random varlate generatlon for unlformly fa s t  
generators. If a beta varlate generator Is not locally avallable, one can always 

where G ,G' are lndependent gamma ( W )  and gamma G generate B as 
G +GI 

( I C  - W +1) random varlables respectlvely. 
For the analysls, we assume that k s p n  where pE(0,i)  Is a constant. Let N 

denote the number of W random varlates generated In the lnner REPEAT loop. 
It  wlll approprlately measure the complexlty of the algorlthm provlded that we 
can check membershlp In llst L In constant tlme. 
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Theorem 3.6. 
For the ghost polnt algorlthm, we have 

i + p  E ( N )  5 c- 
(1-PI2 

where c > O  1s a unlversal constant and k Lpn where pE(0 , l ) .  Furthermore, the 
expected length of the list L ,  1.e. the expected value of Slze, does not exceed 

I 1  

Proof of Theorem 3.6. 
If T 1s the eventual value of Slze, then 

Therefore, for constant a E(O,l), 

(by a change of s) 

whlch 1s approxlmately mlnlmal when 

6 
n + h  ' 

a=--- 

The upper bound Is thus not greater than a constant tlmes E ( T 2 ) .  But T 1s s t b  
chastlcally smaller than a geometrlc random varlable with probablllty of success -' +' 2 1-p. Thus, E ( ?? ) 5 1/( 1-p) and 

n 

P .a 1 E ( T 2 )  5 (-)2+- = - 
1-P (1-p)2 (1-d2 
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The value of the constant c can be deduced from the proof. However, no 
attempt was made to obtaln the best posslble constant there. The assumption 

that membershlp checklng in L can be done In constant tlme requlres that a bit 
vector of k flags be used, lndlcatlng for each lnteger whether I t  1s included 111 L 
or not. Settlng up the bit vector takes tlme proportional to I C .  However, thls cost 
1s to be born Just once, for after one varlate x 1s generated, the flags can be reset 
by emptylng the llst L . The expected tlme taken by the reset operatlon is thus  
equal to a constant plus the expected length of the llst, whlch, as we have shown 
In Theorem 0, 1s bounded by l / ( l - p ) .  For the global random sampllng algorlthm, 
the total expected cost of settlng and resetting the blt vector does not exceed a 
constant tlmes k .  

Fortunately, we can avold the blt vector of flags altogether. Membershlp 
checklng In llst L can always be done In tlme not exceedlng the length of the Ilst. 
Even wlth thls grotesquely lnemclent lmplementatlon, one can show (see exer- 
clses) that the expected tlme for generatlng x 1s bounded unlformly over all 
k s p n .  

The lssue of membershlp checklng can be sldestepped If we generate lntegers 
wlthout replacement by the swapplng method. Thls would requlre an addltlonal 
vector lnltlally set to 1 ,  . . . , I C .  After X 1s generated, thls vector 1s slightly per- 
muted - Its flrst "Size" members for example constltute our llst L . Thls does not 
matter, as long as we keep track of where lnteger k Is. To get ready for generat- 
lng a D ( k - 1 , n )  random varlate, we need only swap k wlth the last element of 
the vector, so that the flrst k - 1  components form a permutatlon of 1, . . . , k - 1 .  
Thus, flxlng the vector between random varlates takes a constant tlme. Note also 
that to generate X ,  the expected tlme 1s now bounded by a constant tlmes the 
expected length of the llst, whlch we know 1s not greater than l / ( l - p ) .  Thls 1s 
due to the fact that the lnner loop of the algorlthm 1s now replaced by one loop- 
less sectlon of code. 

When k > p n  , one should use another algorlthm, such as the followlng plece 
taken from the standard sequentlal sampllng algorlthm: 

x+-0 
REPEAT 

Generate a uniform random variate u ,  
X+-X+l 

k 
n -X+1 UNTIL u< 

RETURN X 

The expected number of unlform [0 ,1 ]  random varlates needed by thls algorlthm 
1s E (x)=- < - < -. The comblnatlon of the two algorlthms dependlllg n + 1  n 1 

k + l - k - p  
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upon the relatlve shes  of k and n ylelds an O(1) expected tlme algorlthm for 
generatlng x. The optlmal value of the threshold p wlll vary from lmplementa- 
tlon to lmplementatlon. Note that If a membershlp swap vector 1s used, I t  1s best 
to  reset the vector after each X 1s generated by traverslng the llst In LIFO order. 

3.6. The rejection method. 
The generatlon of D ( k  ,n ) random varlates by the reJectlon method creates 

speclal problems, because the probabllltles p i  contaln ratlos of factorlals. When- 
ever we evaluate p i ,  we can use one of two approaches: p i  1s evaluated In con- 
stant tlme (thls, in fact, assumes that the logarlthm of the I' functlon 1s available 
In constant tlme, and that we do give up our lnflnlte accuracy because a Stlrllng 
serles approxlmatlon 1s used), and pi  1s computed In tlme proportlonal to  k+1 
(1.e. the factorlals are evaluated expllcltly). Wlth the latter model, called the 
expllclt factorlal model, I t  does not sufflce to  And a domlnatlng probablllty vector 
qi whlch satlsfles 

for some constant c lndependent of k ,n . We could lndeed stlll end up wlth an 
expected tlme complexlty that is not unlformly bounded over k ,n . Thus, In the 
expllclt factorlal model, we have to And good domlnatlng and squeeze curves 

1 
whlch wlll allow us to effectlvely avold computing p i  except perhaps about 0 (-) 

percent of the tlme. Because D ( k  ,n ) 1s a two-parameter famlly, the deslgn 1s 
qulte a challenge. We wlll not be concerned wlth all the details here, Just wlth 
the flavor of the problem. The detalled development can be found In Vltter 
(1984). Nearly all of thls sectlon 1s an adaptatlon of Vltter's results. Gehrke 
(1984) and Kawarasakl and Slbuya (1982) have also developed reJectlon algo- 
rithms, slmllar to the ones dlscussed In thls sectlon. 

At the very heart of the deslgn 1s once agaln a collectlon of lnequalltles. 
Recall that for a D (k ,n ) random varlable X ,  

k 
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where 

Also, 

where 

n c 1  = 
n - k + i  ' 

Note that g 1s a density in 3 ,  and that g Is a probablllty vector In i . 

Proof of Theorem 3.7. 
Note that 

k -I 
n --2 k < 

- n - k + 1  [ 41 

Furthermore, 

n n - k + 1  h , ( i )  = - (1-  

k k'-2 n 4 - i  +2+ j 
Tj!., n - k + l + j  
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= p j  . 

Thls concludes the first half of the proof. For the second half, we argue slmllarly. 
Indeed, for i 21, 

, 

= c 2 g , ( i )  * 

Furthermore, 

Random varlate generators based upon both groups of lnequalltles are now 
easy to And, because g 1  1s baslcally a transformed beta denslty, and g 2  1s a 
geometrlc probablllty vector. In the case of gl, we need to use rejection from a 
contlnuous density of course. The expected number of lteratlons In case 1 1s 
c l=n / ( n  -k +1) (whlch 1s unlformly bounded over all k ,n with k s p n  , where 

pE(0,l) 1s a constant). In case 2,  we have c 2 = - -  , and thls 1s unlformly 
bounded over all k 2 2  and all n 2 1. 

k n-1 
k-1 n 
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f l  
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1- 
12 -k + I  

Y -1 1-- 

First rejection algorithm 

UNTIL Accept 
RETURN x 

Second rejection algorithm 

k -1 

1 

REPEAT 
Generate an exponential random variate E and a uniform [ O , l ]  random variate V . 
X -  - E / l o g ( l - - )  ( X  has probability vector g2) 

n -1 k - l  1 
THEN 

I 
I F X 5 f l - k + 1  

x-1 k - 1  \ 

I 
1-- 

n -1 

Accept +-[V< 

IF NOT Accept THEN 

I Px Accept -[v 5 
c 29 2 w  1 

UNTIL Accept 
RETURN x 
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3.7. Exercises. 

635 

1. 

2. 

3. 

4. 

5 .  

Assume that  In the standard sequentlal sampling algorlthm, each element is 
chosen wlth equal probablllty -. k The sample slze 1s a blnomlal ( n  ,-) k ran- 

dom varlable N .  Show tha t  as k +m,n +m,n -k -+m, we have 
n n 

n 
P ( N = k )  - d 2 7 r k ( n - k )  

Assume that k <pn for some Axed p E ( 0 , l ) .  Show that If the ghost polnt 
algorlthm 1s used to generate a random sample of slze k out of n ,  the 
expected tlme 1s bounded by a functlon of p only. Assume that  a vector of 
membershlp flags 1s used In the algorlthm, but do not swltch to the standard 
sequentlal method when durlng the generation process, the current value of 
k temporarlly exceeds p tlmes the current value of n (as 1s suggested In the 
text). 
Assume that  In the ghost polnt algorlthm, membershlp checklng 1s done by 
traverslng the llst L . Show that  to generate a random varlate X wlth dlstrl- 
butlon D (k ,n ), the  algorlthrn takes expected tlme bounded by a functlon of 
k: - only. 
n 

If X Is D ( k  ,n ) dlstrlbuted, then 
( n  + l ) ( n - k ) k  
( k  + 2 ) ( k  + I ) ~  

vur ( X )  = 

Conslder the expllclt factorlal model In the reJectlon algorlthm. Notlng that  
the value of px can be computed ln tlme mln(k ,X+l) ,  And good upper 
bounds for the expected tlme complexlty of the two reJectlon algorlthms 
glven In the text. In partlcular, prove that  for the flrst algorlthm, the 
expected tlme complexlty 1s unlformly bounded over k s p n  where p € ( O , l )  1s 
a constant (Vltter, 1984). 

4. OVERSAMPLING. 

4.1. Definition. 
If we are glven a random sequence of k unlform order statlstlcs, and 

transform I t  vla truncatlon lnto a random sequence of ordered Integers In 
(1 ,  . . . , n }, then we are almost done. Unfortunately, some Integers could appear 
more than once, and I t  1s necessary to generate a few more observatlons. If we 
had started wlth k ,>IC unlform order statlstlcs, then wlth some luck we could 
have ended up wlth at least IC dlfferent Integers. The probablllty of thls lncreases 
Wld ly  wlth k , .  On the other hand, we do not want to take k, too large, because 
then we wlll be left wlth qulte a blt of work trylng to ellmlnate some values to 
obtain a sample of preclsely slze I C .  Thls method 1s called oversampllng. The 
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main issue at stake is the cholce of k ,  as a function of k and n so that not only 
the total expected tlme Is 0 ( k ) ,  but the total expected time 1s approximately 
minlmal. One additional feature that makes oversampling attractlve 1s that we 
wlll obtaln an ordered random sample. Because the method is baslcally a two 
step method (uniform sample generator, followed by excess ellmlnator), I t  1s not 
included in the’ section on sequential methods. 

The oversampling algorithm 

REPEAT 
Generate U(,)< . . 

Determine xi+- l + n U ( i )  
the ordered array X(,), . . . , X ( X , ) .  

< U,,  the order statistics of a uniform sample of size k , on 

for all i ,  and construct, after elimination of duplicates, 

[0,11. 

I I  
UNTIL K,?k 
Mark a random sample of size K,-k of the sequence x(,), . . . , X ( K ~ )  by the standard 
sequential sampling algorithm. 
RETURN the sequence of k unmarked xi ‘s. 

The amount of extra storage needed 1s K , - k .  Note that thls 1s always bounded 
by Ic l - k .  For the expected time analysls of the algorithm, we observe that the 
unlform sample generation takes expected time c ,  k,, and that the elimlnation 
step takes expected time c, IC,. Here c, and c, are posltlve constants. If the 
standard sequential sampllng algorithm is replaced by classlcal sampling for elim- 
lnatlon (l.e., to mark one Integer, generate random integers on (1, . . . , IC1} 
until a nonmarked integer 1s found), then the expected time taken by the ellml- 
natlon algorlthm Is 

K1-k IC, 
I .E =1 K,-i+i 

What we should also count in the expected tlme complexity is the probability of 
acceptlng a sequence. The results are comblned in the following theorem: 
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Theorem 4.1. 
Let c ,  , C e  be as deflned above. Assume that n > k and that 

for some constant a >O. Then the expected tlme spent on the unlform sample 1s 

E", k l  

where E ( N )  1s the expected number of lteratlons. We have the followlng lnequal- 
lty: 

The expected tlme spent marklng does not exceed ce  k , ,  whlch, when 
a =O (k ) , - -+O,  1s asymptotlc to c ,  k . If classlcal sampllng 1s used for marklng, 

then I t  is not greater than 

k 
n 

k + a  

Proof of Theorem 4.1. 
The expresslon for the expected tlme spent generating order statlstlcs 1s 

based upon Wald's equatlon. Furthermore, E (N)=l/P ( K ,  2 k ). But 

The only other statement In the theorem requlrlng some explanation 1s the state- 
ment about the marlclng scheme wlth classical sampllng. The expected tlme spent 
dolng so does not exceed c ,  times 

I I G L k )  E ((IC ,-k )- 
K l  

k +I 
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Once agaln, we see that unlformly over k s p n ,  the expected tlme 1s 
bounded by a constant tlmes k ,  for all Axed pE(0,l) and for all cholces of a that 
are elther Axed or vary wlth k In such a manner that a =O (k ). We recommend 
that a be taken large but Axed, say a=10. Note that In the speclal case that 
n -+m, a =O (k ), k , - IC.  Thus, the expected tlme of the marklng sectlon based 
k 

upon classlcal sampllng 1s o (k ), 1.e. I t  1s asymptotlcally negllglble. Also, If a -00, 

E (N)-+i for all cholces of n ,k . In those cases, the maln contrlbutlons to the 
expected tlme complexlty come from the generatlon of the k, unlform order 
statlstlcs, and the ellmlnatlon of the marked values (not the marklng Itself). 

4.2. Exercises. 
1. Show that for the cholce of k glven In Theorem 4.1, we have E (N)+l as 

n ,k -00 , -+pE(O,l). Do thls by provlng the exlstence of a unlversal con- 

stant A dependlng upon p only such that E (N)<l+-. 

k 
n 

A 
&- 

5. RESERVOIR SAMPLING 

5.1. Definition. 
There is one partlcular sequentlal sampllng problem deservlng speclal atten- 

tlon, namely the problem of sampllng records from large (presumably external) 
Ales wlth an unknown total populatlon. Whlle k 1s known, n 1s not. Knuth 
(1969) glves a partlcularly elegant solutlon for drawlng such a random sample 
called the reservoir method. See also Vltter (1985). Imagine that we assoclate 
wlth each of the records an Independent unlform [0,1] random varlable V i .  If the 
obJect 1s slmply to draw a random set of slze k , I t  sumces to  plck those k records 
that correspond to  the k largest values of the Ui’s. Thls can be done sequen- 
tially: 
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Reservoir sampling 

[NOTE: S is a set of pairs ( i  , V;. ).I 
FOR i:=1 TO k DO 

Generate a uniform [OJ] random variate Vi, and add (c' ,Vi ) to S. Keep track of the 
pair (rn ,Urn ) with the smallest value for the uniform random variate. 

i +k +1 ( i  is a record counter) 
WHILE NOT end of flle DO 

Generate a uniform [0,1] random variate V;:. 
IF &>Urn 

THEN 
Delete (rn ,urn ) from s . 
Insert ( i , U i )  in S. 
Find a new smallest pair ( rn  , Urn ). 

i t i  +I 
RETURN all integers i for which (t' , &.)E,!?. 

The general algorlthm of reservoir sampllng glven above returns integers 
(lndlces); I t  1s trlvlal to modlfy the algorlthm so that actual records are returned. 
It 1s clear that n unlform random varlates are needed. In addltlon, there 1s a cost 
for updatlng 5. The expected number of deletlons In 5' (whlch 1s equal to  the 
number of lnsertlons mlnus k ) Is 

n 

i = k + 1  
f' ( ( i t  Vi ) 1s lnserted In S ) 

as k+m. Here we used the fact that the flrst n terms of the harmonlc serles are 
log(n )+?+o ( l / n  ) where 7 1s Euler's constant. There are several posslble lmple- 
mentatlons for the set S . Because we are malnly lnterested In ordlnary lnsertlons 
and deletlons of the mlnlmum, the obvlous cholce should be a heap. Both the 
expected and worst-case tlmes for a delete operation In a heap of slze k are pro- 
portlonal to log(k) as k+m. The overall expected tlme complexlty for deletlons 
IS proportlonal to 

as k + m .  Thls may or may not be larger than the 6 ( n )  contrlbutlon from the 
unlform random varlate generator. Wlth ordered or unordered llnked llsts, the 
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tlme complexlty 1s worse. In the exerclse sectlon, a hash structure exploltlng the 
fact that the lnserted elements are unlformly dlstrlbuted 1s explored. 

5.2. The reservoir method with geometric jumps. 
In some appilcatlons, such a s  when records are stored on a sequentlal access 

devlce (e.g., a magnetlc tape), there 1s no way that we can avold traverslng the 
entlre flle. When the records are In RA;M or on a random access devlce, I t  1s pos- 
slble t o  sklp over any number of records In constant tlme: In those cases, i t  
should be possible t o  get rld of the 8 ( n )  term In the tlme cornplexlty. Given 
(m ,Urn ), we know that the waltlng tlme untll the occurrence of a unlform value 
greater than Urn 1s geornetrlcally dlstrlbuted wlth success probablllty l-Urn. It 
can be generated as [-E/log(um)l where E 1s an exponentlal random varlate. 

The corresponding record-breaklng value Is unlformly dlstrlbuted on [Urn ,1]. 
Thus, the reservolr method wlth geometrlc Jumps can be summarlzed as follows: 

Reservoir sampling with geometric jumps 

[NOTE: S is a set of pairs ( i  ,vi ).] 
FOR i:=l TO k DO 

Generate a uniform [0,1] random variate ui, and add (i ,vi ) to S . Keep track of the 
pair (m ,urn ) with the smallest value for the uniform random variate. 

i t k  ( i  is a record counter) 
WHILE True DO 

Generate an exponential random variate E .  
i t i  + [-E /log( Urn )1. 
IF i not outside flle 

THEN 
Generate a uniform [Urn ,1] random variate U,. . 
Delete (m , urn ) from S . 
Insert ( i  , U,. ) in S . 
Find a new smallest pair (m ,Urn ). 

ELSE RETURN all integers t' for which (i ,Vi )ES . 

The analysls of the prevlous sectlon about the expected tlme spent updatlng s 
remalns valld here. The difference 1s that the 8(n ) has dlsappeared from the plc- 
ture, because we only generate unlform random varlates when lnsertlons ln S are 
needed. 
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5.3. Exercises. 
1. Deslgn a bucket-based dynamlc data structure for the set S ,  whlch ylelds a 

total expected tlme complexlty for N lnsertlons and deletlons that 1s 
o ( N  log(k )) when N ,k -m. Note that lnserted elements are unlformly dls- 
trlbuted on [Urn ,1] where Urn 1s the mlnlmal value present In the set. Inl- 
tlally, S contalns k lld unlform [0,1] random varlates. For the heap lmple- 
mentatlon of S , the expected tlme complexlty would be O(N log(k )). 



Chap fer Thirteen 
RANDOM COMBINATORIAL OBJECTS 

1. GENERAL PRINCIPLES. 

1.1. Introduction. 
Some appllcatlons demand that random comblnatorlal obJects be generated: 

by deflnltlon, a comblnatorlal obJect 1s an object that can be put into one-to-one 
correspondence wlth a flnlte set of Integers. The maln dlfference wlth discrete 
random varlate generatlon 1s that the one-to-one mapplng 1s usually compllcated, 
so that I t  may not be very emclent to  generate a random lnteger and then deter- 
mlne the object by uslng the one-to-one mapplng. Another characterlstlc 1s the 
slze of the problem: typlcally, the number of dlfferent objects 1s phenomenally 
large. A final dlstlngulshlng feature 1s that most users are interested In the unl- 
form dlstrlbutlon over the set of obJects. 

In thls chapter, we wlll dlscuss general strategies for generatlng random com- 
blnatorlal obJects, wlth the understandlng that only uniform dlstrlbutlons are 
consldered. Then, In dlfferent subsectlons, partlcular comblnatorlal obJects are 
studled. These lnclude random graphs, random free trees, random blnary trees, 
random search trees, random partltlons, random subsets and random permuta- 
tlons. Thls 1s a representatlve sample of the slmplest and most frequently used 
comblnatorlal objects. It 1s hoped that for more compllcated objects, the readers 
wlll be able t o  extrapolate from our examples. A good reference text 1s NlJenhuls 
and Wllf( 1978). 
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1.2. The decoding method. 
Slnce we want to generate only one of a flnlte number of obJects, it is possl- 

ble to And a functlon f such that  for every palr of objects (6,~) In the collectlon 
of obJects 9, we have 

f (Off  (C))E{L . * . > n } 9 

where n 1s an  lnteger, whlch 1s usually equal to I 8 I , the number of elements In 
8. Such a functlon wlll be called a codlng functlon. By f -'(i ), we deflne the 
obJect E In 8 for whlch f (c)=z' (1f thls object exlsts). When I B I = n ,  the fol- 
lowlng decodlng algorlthm 1s valld. 

The decoding method 

[NOTE: f is a coding function.] 
Generate a uniform random integer XE(1, . . . , n }. 
RETURN f - ' ( X )  

The expected tlme taken by thls algorlthm 1s the average tlme needed for decod- 
1ng f : 

l n  - TIME(f -'(z')) . 
n j - 1  

The advantage of the method 1s that only one unlform random varlate 1s needed 
per random comblnatorlal obJect. The decodlng method 1s optlmal from a storage 
polnt of vlew, slnce each comblnatorlal object corresponds unlquely to an lnteger 
In 1, . . . , n .  Thus, about log,n blts are needed to store each comblnatorlal 
obJect, and thls cannot be improved upon. Thus, the codlng functlons can be 
used to store data in compact form. The dlsadvantages usually outwelgh the 
advantages: 
1. 

2. 

3. 

Except In the slmplest cases, I 8 I 1s too large to  be practlcal. For example, 
If thls method 1s t o  be used to generate a random permutatlon of 1, . . . , 40, 
we have I B 1 =40!, so that multlple preclslon arlthmetlc 1s necessary. Recall 
tha t  12! <235< 13!. 

The expected tlme taken by the decodlng algorlthm 1s often unacceptable. 
Note that  the tlme taken by the unlform random varlate generator 1s negll- 
glble compared to the tlme needed for decodlng. 
The method can only be used when for the glven value of n , we are able to 
count the number of objects. Thls 1s not always the case. However, If we use 
rejectlon (see below), the countlng problem can be avolded. 
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Example 1.1. Random permutations. 
Assume that 8={ all permutatlons of 1, . . . , n }. There are a number of 

posslble codlng functlons. For example, we could use the factorlal representatlon 
of Lehmer (1964), where a permutatlon o,, . . . , 0, 1s unlquely descrlbed by a 
sequence of n -1 lntegers a ,, . . . , a, -1 (where 05 ai 5 n -i ) accordlng to  the fol- 
lowlng rule: start  wlth 1, . . . , n . Let 6, be the a ,+l-st lnteger from thls list, 
and delete thls number. Let o2 be the a2+1-st number of the remalnlng numbers, 
and so forth. Then, deflne 

f (ul, . . . , u , , - ~ )  = a,(n-l)!+a2(n-2)!+ - . +~,-~1!+1 

It 1s easy to see that f 1s a proper codlng functlon glvlng all values between 1 
and n !. Just observe that 

n !  = (n-l)!n = (n-i)!(n-i)+(n-i)! 

= (n-l>!(n-i)+(n-2)!(n-2)+ . +1!i+i . 
The algorlthm conslsts of lgeneratlng a random lnteger x between 1 and n!, 
determlnlng a ,, . . . , a,,, from x, and determlnlng the random permutation 
ol, . , . , on from the ai sequence. Flrst, the ai’s are obtalned by repeated dlvl- 
slons by (n-l)!,(n-2)!, etcetera. The ai's can be obtalned by an exchange algo- 
rlthm. Formally, we have: 

Random permutation generator 

Generate a random integer X uniformly distributed on {I,  . . . , n !}. XeX-1. 
FOR i :=1 TO n -1 DO 

(a i  ,X)+( ,Xmod(n - i ) ! )  (This determines all the ai ’s.) 
n --I )! 

Set o1, . . . , o, + 1, . . . , n . 
FOR i;=1 TO n-1  DO 

Exchange (swap) u , , + ~  and o , i + ,  

RETURN ol, . . . , b, . 

In the exchange step of the algorlthm, we exchange a randomly picked element 
wlth the last element In every lteratlon. The tlme taken by the algorlthm 1s 
o w .  

Sometlmes slmple codlng functlons can be found w1t.h the property that 
n > I E I , that Is, some of the lntegers In 1, . . . , n do not correspond to any 
comblnatorlal obJect In E. When n 1s not much larger than I E I , thls 1s not a 
blg problem, because we can apply the reJectlon prlnclple: 
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Decoding with rejection 

REPEAT 
Generate a random integer X with a uniform distribution on { 1, , . . , n }. 
Accept -[f (E)=x for some <€E] 

UNTIL Accept 

RETURN f-'(X) 

Just how one determlnes quickly whether (c)=x for some c € R  depends upon 
the clrcumstances. Usually, because of the size of 19 I , I t  is lmposslble or not 
practical to store a vector of flags, flagglng the bad values of X .  If I B I 1s 
moderately small, then one could consider dolng thls In a preprocesslng step. 
Most of the tlme, I t  is necessary to  start  decodlng x, untll in the process of 
decodlng one dlscovers that there 1s no comblnatorlal obJect for the glven value 
of X .  In any case, the expected number of iteratlons is 7 . What we have 
bought here 1s (1) slmpllcity (the decodlng functlon can be slmpler If we allow 
gaps in our enumeratlon) and (11) convenlence ( I t  is not necessary to count I B I ; 
ln fact, this value need not be known at all !). 

n 
I4 

1.3. Generation based upon recurrences. 
Most comblnatorlal objects can be counted lndirectly vla recurrence rela- 

tlons. Dlrect countlng, as in the case of random permutatlons, addresses itself to 
the decodlng method. Countlng vla recurrences can be used to obtaln alternatlve 
generators. The idea has been around for some tlme. It was flrst developed 
thoroughly by Wllf (1Q77) (see also NlJenhuls and Wllf (1978)). 

We need to have two thliigs: 
A formula for the number of comblnatorlal obJects wlth a certaln parameter 
(or parameters) k In terms of the number of combinatorlal obJects wlth 
smaller parameter(s). This wlll be called our recurrence relatlon. 
A good understanding of the recurrence relatlon, so that the relatlon itself 
can be llnked In a constructlve way to a combinatorlal object. 

1. 

2. 

For example, consider E , ,  the collectlon of permutatlons of 1, . . . , n . We have 

I S ,  I = n / E ~ - ~  I . 

The meanlng of this relation 1s clear: we can obtaln f€E,  by conslderlng all per- 
mutations E,-,, padding them wlth the slngle element n (In the last position), 
and then swapplng the n - t h  element wlth one of the n elements. The swapplng 
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operatlon glves us the factor n In the recurrence relatlon. We wlll rewrlte the 
recurrence relatlon as follows: 

where S,-l(l,2, . . . , i -1,i +1, . . . , n ) 1s the collectlon of all permutatlons of 
the glven n-1 elements, and . 1s the concatenatlon operator. T o  generate a ran- 
dom element from a,, I t  suf€lces to choose a random term In the unlon (wlth pro- 
bablllty proportional to the cardlnallty of the chosen term), and to  construct the  
part of the comblnatorlal obJect that corresponds t o  thls cholce. In the case of 
the random permutatlons, each of the n terms In the unlon shown In the 
recurrence relatlon has equal cardlnallty, and should thus be chosen wlth equal 
probablllty. But chooslng the t - th  term corresponds t o  puttlng the i - th  element 
of the n-vector at the end of the permutation, and generatlng a random permu- 
tation for the n-1 remalnlng elements. Thls leads qulte naturally to  the swap- 
ping method for random permutatlons: 

The swapping method for random permutations 

Set ul, . . . , u, + 1, . . . , n .  

FOR i :=n DOWNTO 2 DO 
Generate x uniformly in 1, . . . , i . 
Swap ux and u;, 

RETURN cl, . . . ,u, . 

There are obviously more compllcated sltuatlons: see for example the subsec- 
tlons on random partitions and random blnary trees in the correspondlng subsec- 
tlons. For now, we wlll merely apply the technlque to the generation of random 
subsets of slze k out of n elements, and see that I t  reduces to  the sequentlal 
method In random sampllng. 

There are 

n -1 n -1 ll = 1 k l + l k - l l  

sets of slze k 2 1 conslstlng of dlfferent lntegers plcked from (1, . . . , n }, where 
n 2 IC. Clearly, a s  boundary condltlons, we have 

[;] = l ;  1:) = l .  

The recurrence can be lnterpreted as follows: k lntegers can be drawn from 
2, . , . , n (thus, lgnorlng l),  or by chooslng 1 and chooslng a random subset of 
slze k-1 from 2, . . . , n (thus, lncludlng 1). The probablllty of lncluslon of 1 1s 
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therefore 

Thls leads dlrectly to the followlng algorlthm: 

Random subset of size k from 1, ..., n 

S+-0 (set to be returned is empty) 
FOR i:=1 TO n DO 

Generate a uniform [0,1] random variate U . 

RETURN S 

We can also look at the method of recurrences as some sort of composltlon 
method. Typlcally, E n  1s spllt lnto a number of subsets of obJects, each havlng a 
speclal property. Let us write 

k 

where the sets 8, ( i )  
blllty 

1 8 n ( i ) l  

18, I 

are non-overlapplng. If an lnteger t' 1s plcked wlth proba- 

(1LiLk:) 9 

and lf we generate a unlformly dlstrlbuted obJect in E,(;), then the random 
obJect 1s unlformly dlstrlbuted over E,. Of course, we are allowed to apply the 
same decomposltlon prlnclple to the lndlvldual subsets In turn. The subsets have 
generally speaklng some property whlch allows us to construct part of the solu- 
tlon, as was lllustrated wlth random permutatlons and random subsets. 

I 

i 
-- 
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2. RANDOM PERMUTATIONS. 

2.1. Simple generators. 
The decodlng method of sectlon XIII.1.2 requlres only one unlform random 

varlate per random permutatlon of 1, . . . , n .  It was suggested In a number of 
papers (see e.g. Roblnson (1907), Jansson (1966), de Balblne (1967)’ and the sur- 
vey paper by Plackett (1968)). Glven an arbltrary array of length n , and one unl- 
formly dlstrlbuted random lnteger on 1, . . . , n !, the  decodlng method constructs 
In tlme 0 ( n )  one random permutatlon of 1, . . . , n . The algorlthm of sectlon 
XIII.1.2 1s a two-pass algorlthm. Robson (1909) has polnted out  that there 1s a 
slmple one-pass algorlthm based upon decodlng: 

Robson’s decoding algorithm 

[NOTE: This algorithm assumes that some permutation ul, . . . , u, of 1, . . . , n is given. 
Usually, this permutation is a previously generated random permutation.] 
Generate a random integer x uniformly on 1, . . . , n !. 
FOR i :=n DOWNTO 2 DO 

Swap ui and uz 
RETURN u,, . . . ,6, 

Desplte the obvlous Improvement over the algorlthm of sectlon XIII.1.2, the 
decodlng method remalns of llmlted value because n ! lncreases too qulckly wlth 
n .  

The exchange method of sectlon XIII.1.3 on the other hand does not have 
this drawback. It 1s usually attrlbuted to Moses and Oakford (1963) and to 
Durstenfeld (1964). The method requlres n -1 Independent unlform random varl- 
ates per random permutatlon, but I t  1s extremely slmple In conceptlon, requlrlng 
only one pass and no multlpllcatlons, dlvlslons or truncatlons. 

2.2. Random binary search trees. 
Random permutatlons are useful In a number of appllcatlons. As we have 

polnted out  earller, the swapplng method can be stopped after a glven number of 
lteratlons to yleld a method for generatlng a random subset of 1, . . . , n of slze 
k <n . Thls was dealt wlth In chapter XI1 on random sampllng. Another appllca- 
tlon deals wlth the generatlon of a random blnary search tree. 
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A random blnary search tree wlth n nodes 1s deflned as a blnary search tree 
constructed from a random permutatlon, where each permutatlon 1s equally 
llkely. It 1s easy to see that dlfferent permutatlons can yleld a tree of the same 
shape, so all trees are not equally llkely (but the permutatlons are !). It 1s clear 
that if we proceed by lnsertlng the elements of a random permutatlon In turn, 
startlng from an empty tree, then the expected tlme of the algorlthm can be 
measured by 

+ ( D i )  
i =I 

where Di 1s the depth (path length from root to node) of the i - t h  node when 
lnserted lnto a blnary search tree of slze i-1 (the depth of the root 1s 0). The fol- 
lowlng result 1s well-known, but 1s lncluded here because of Its short unorthodox 
proof, based upon the theory of records (see Gllck (1978) for a recent survey): 

Lemma 2.1. In a random blnary search tree, 

(D, 1 5 2(log(n )+I) . 

In fact E(D,)-2 log(n). Based upon Lemma 2.1, I t  1s not dlfflcult to see that 
the expected tlme for the generator 1s 0 ( n  log(n )). Slnce E (Dn )-2 log(n ) , the 
expected tlme 1s also Cl(n log(n )). 
Proof of Lemma 2.1. 

D, 1s equal to the number of left turns plus the number of rlght turns on 
the path from the root to the node correspondlng to the n - t h  element. By sym- 
metry, E (D, ) Is twlce the expected number of rlght turns. These rlght turns can 
convenlently be counted as follows. Conslder the random permutatlon of 
1, , . . , n ,  and extract the subsequence of all elements smaller than the last ele- 
ment. In thls subsequence (of length at most n-1), flag the records, 1.e. the larg- 
est values seen thus far. Note that the flrst element always represents a record. 
The second element Is a record wlth probablllty one half, and the i - th  element 1s 
a record wlth probablllty l / i .  Each record corresponds to a rlght turn and vlce 
versa. Thls can be seen by notlng that elements followlng a record whlch are not 
records themselves are In a left subtree of a node on the path to the record, 
whereas the n - t h  orlglnal element 1s In the rlght subtree. Thus, these elements 
cannot have any lnfluence on the level of the n - t h  element. The subsequence has 
length between 0 and n-1, and to  bound the expected number of records from 
above, I t  sufflces to conslder subsequences of length equal to n -1. Therefore, the 
expected depth of the last node 1s not more than 

n 
1 n -1 

2 1 < 2(l+J- dx) = 2(l+log(n)) .I 
l X  

. i -  
1 =1 

I 
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But Just as wlth the problem of the generatlon of an ordered random Sam- 
ple, there Is an lmportant short-cut, whlch allows us to  generate the random 
blnary search tree In llnear expected tlme. The lmportant fact here Is that lf the 
root 1s Axed (say, Its lnteger value 1s t ' ) ,  then the left subtree has cardlnallty i-1, 
and the rlght subtree has cardlnallty n -t' . Furthermore, the value of the root 
ltself 1s unlformly dlstrlbuted on 1, . . . , n. These propertles allow us t o  use 
recurslon In the generatlon of the random blnary search tree. Slnce there are n 
nodes, we need no more than n uniform random varlates, so that the total 
expected tlme 1s 0 (n ). A rough outllne follows: 

Linear expected time algorithm for generating a random binary search tree with 
n nodes 

[NOTE: The binary search tree consists of cells, having a data fleld "Data", and two 
pointer flelds, "Left" and "Right". The algorithm needs a stack s for temporary storage,] 

h4AKENULL (S) (stack S is initially empty). 
Grab an unused cell pointed to by pointer p.. 
PUSH [p , l , n  ] onto S. 
WHILE NOT EMPTY (s) DO 

POP S ,  yielding the triple [p ,l , r  1. 
Generate a random integer x uniformly distributed on 1 ,  . . . , r . 
p f . D a t a c X ,  p f .Lef t tNIL,  p f.Right+NIL 
W x < r  THEN 

Grab an unused cell pointed to  by q* . 
p f.Right+q* (make link with right subtree) 
PUSH [q* , X + l , r  ] onto stack s (remember for later) 

Grab an unused cell pointed to  by q . 
p t.Left-q (make link with left subtree) 
PUSH [ q  , I  ,x-1] onto stack s (remember for later) 

F X > I  THEN 

2.3. Exercises. 
1. Conslder the followlng putatlve swapplng method for generatlng a random 

permut atlon: 
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Start with an arbitrary permutation ul, . . . , u, of 1, . . . , n . 
FOR ;:=I TO n DO 

Generate a random integer x on 1, . . . , n (note that  the range does not 
depend upon ;). 

Swap ui and ux 
RETURN ul, . . . , 6, 

Show that thls algorlthm does not yleld a valld random permutatlon (all per- 
mutatlons are not equally likely). Hlnt: there 1s a three line comblnatorlal 
proof(de Balblne, 1967). 

The dlstrlbutlon of the height H, of a random blnary search tree 1s very 
cornpllcated. To slmulate H,, , we can always generate a random blnary 
search tree and And H,, . Thls can be done In expected tlme 0 (n  ) as we 
have seen. Flnd an algorlthm for the generatlon of H, In subllnear expected 
tlme. The closer to constant expected tlme, the better. 
Show why Robson’s decodlng algorlthm 1s valld. 
Show that for a random blnary search tree, E (D, )-2 log(n ) by employlng 
the analogy wlth records explalned ln the proof of Lemma 2.1. 
Glve a linear expected tlme algorlthm for constructlng a random trle wlth n 
elements. Recall that a trle Is a blnary tree In whlch left edges correspond to 
zeroes and right edges correspond to ones. The n elements can be consldered 
a s  n Independent lnflnlte sequences of zeroes and ones, where all zeroes and 
ones are obtalned by perfect coln tosses. Thls yields an lnflnlte tree In whlch 
there are preclsely n paths, one for each element. The trle denned by these 
elements 1s obtalned by truncatlng all these paths to the polnt that any 
further truncatlon would lead to two ldentlcal paths. Thus, all lnternal 
nodes whlch are fathers of leaves have two chlldren. 
Random heap. Glve a llnear expected tlme algorlthm for generatlng a ran- 
dom heap wlth elements 1, . . . , n so that each heap is equally llkely. Hlnt: 
assoclate wlth lnteger 2’ the i - t h  order statistlc of a unlform sample of slze 
n , and argue In terms of order statlstlcs. 

2 .  

3. 
4. 

5. 

6. 
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3. RANDOM BINARY TREES. 

3.1. Representations of binary trees. 

XIII.3.RANDOM BINARY TREES 

A binary tree consists of a root, or a root anG a left and/or a right subtree, 
and each of the subtrees In turn is a binary tree. Two blnary trees are similar if 
they have the same shape. They are equivalent If they are slmllar, and If the 
corresponding nodes contain the same information. The distlnctlon between siml- 
larlty and equivalence Is thus based upon the absence or presence of labels for the 
nodes. If there are n nodes, then every permutatlon of the labels of the nodes 
ylelds another labeled blnary tree, and all such trees are similar. 

A random binary tree with ?a nodes is a random unlabeled blnary tree whlch 
1s uniformly distributed over all nonslmilar blnary trees wlth n nodes. The uni- 
form distrlbutlon on the n nodes causes some problems, as we can see from the 
following simple example: there are 5 different binary trees with 3 nodes. Yet, if 
we generate such a tree either by generatlng a random permutation of 1,2,3 and 
constructlng a blnary search tree from thls permutatlon, or by growlng the tree 
via uniform replacements of NIL polnters by new nodes, then the resultlng trees 
are not equally llkely. For example, the complete blnary tree wlth 3 nodes has 

1 1 
.3 5 

probabillty - in both schemes, lnstead of - as is requlred. The unlformlty con- 
dltlon will roughly speaklng stretch the binary trees out, make them appear more 
unbalanced, because less likely shapes (under standard models) become equally 
llkely. 

In this section, we look at some handy representatlons of binary trees whlch 
can be useful further on. 

Theorem 3.1. 
Let p , , p , ,  . . . , p a n  be a balanced sequence of parentheses, Le. each p i  

belongs to {(,)}, for every partial sequence p l,p 2,  . . . , p i ,  the number of open- 
lng parentheses is at least equal to  the number of closlng parentheses, and in the 
entlre sequence, there are an equal number of opening and closing parentheses. 

Then there exlsts a one-to-one correspondence between all such balanced 
sequences of 2n parentheses and all binary trees wlth n nodes. 

Proof of Theorem 3.1. 
We will prove this constructively. Consider an inorder traversal of a binary 

tree, 1.e. a traversal whereby each node 1s vlslted after Its left subtree has been 
vlsited, but before Its rlght subtree is visited. In the traversal, a stack S is used. 
Inltlally the root 1s pushed onto the stack. Then, a move to  the left down the tree 
corresponds to another push. If there is no left subtree, we pop the stack and go 
the the right subtree If there Is one (thls requlres yet another push). If there is no 
right subtree elther, then we pop agaln, and so forth untll we try to pop an 
empty stack. The algorithm is as follows: 



XIII.3.RANDOM BINARY TREES 653 

Inorder stack traversal of a binary tree 

[NOTE: The binary tree consists of n cells, each having a left and a right pointer fleld. S 
Is a stack, and p l ,  . . . , p n n  is the sequence of pushes (opening parentheses) and pops 
(closing parentheses) to be returned.] 
p +- root of tree ( p  is a pointer) 
i -2 ( i  is a counter) 
MAKENULL (S ) 
PUSH p onto S ; p lt( 
REPEAT 

XF p t.Left#NIL 
THEN PUSH p !.Left onto S ;  p +-p  t.Left; pi+(;  i+- i+ l  
ELSE 

REPEAT 
P O P  S , yielding p : p i  +); i +i +1 

UNTIL i > 2 n  OR p t.Right#NIL 
P i 5 2 7 2  

THEN PUSH p t.Right onto S ; p - p  1.Right; p i  +(; i + i  +1 

UNTIL i > 2 n  

RETURN PI, - * > ~ 2 n  

Dlfferent sequences of pushes and pops correspond to  dlfferent blnary trees. Also, 
every partial sequence of pushes and pops 1s such that the number of pushes 1s at 
least equal to the number of pops. Upon exlt from the algorithm, both numbers 
are of course equal. Thus, if a push 1s ldentifled wlth an openlng parenthesls, and 
a pop with a closlng parenthesls, then the equlvalence clalmed In the theorem 1s 
obvlous. 

For example, the sequence ()()()()() 0 . + () corresponds to  a blnary tree In 
whlch all nodes have only rlght subtrees. And the sequence ((((( . . ))))) 
corresponds to a blnary tree In whlch all nodes have only left subtrees. The 
representatlon of a blnary tree In terms of a balanced sequence of parentheses 
comes In very handy. There are other representations that can be derived from 
Theorem 3.1. 
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Theorem 3.2. 
There 1s a one-to-one correspondence between a balanced sequence of 2n 

parentheses and a random walk of length 2n whlch starts at the orlgln and 
returns to the orlgln wlthout ever crosslng the zero axls. 

Proof of Theorem 3.2. 
Let every openlng parenthesls correspond to a step of slze "+l" In the ran- 

dom walk, and let every closlng parenthesls correspond to a step of slze "-1" In 
the random walk. Obvlously, such a random walk returns to the orlgln If the 
strlng of parentheses 1s balanced. Also, I t  does not take any negatlve values. 

Theorem 3.2 can be used to obtaln a short proof for countlng the number of 
dlfferent (l.e., nonslmllar) blnary trees wlth n nodes. 

Theorem 3.3 
There are 

1 - 
n +I " 1  n 

dlflerent blnary trees wlth n nodes. 

Proof of Theorem 3.3. 
The proof uses the celebrated mlrror prlnclple (Feller, 1965). Conslder a 

random walk startlng at (2k ,O) (2k 20 1s the lnltlal value; 0 1s the lnltlal tlme): 
In one tlme unlt, the value of the random walk elther lncreases by 1 or decreases 
by 1. The number of paths endlng up at ( 0 , 2 n )  whlch take at least one negatlve 
value 1s equal to the number of unrestrlcted paths from (2k ,O) to (-2,2n ). This 
can most easlly be seen by the followlng argument: there 1s a one-to-one 
correspondence between the glven restrlcted and unrestrlcted paths. Note that 
each restrlcted path must take the value -1 at some polnt In tlme. Let t be the 
flrst tlme that thls happens. From the restrlcted path to ( 0 , 2 n ) ,  construct an 
unrestrlcted path to (-2,2n ) as follows: keep the lnltlal segment up to tlme t , 
and fllp the tall segment between tlme t and tlme 2n around, so that the path 
ends up at (-2,2n ). Each dlfferent restrlcted path ylelds a dlfferent unrestrlcted 
path. Vlce versa, slnce the unrestrlcted paths must all cross the horlzontal llne at 
-1, tlme t 1s well deflned, and each unrestrlcted path corresponds to a restrlcted 
path. 

The number of paths from ( 2 k  ,O) to (0,2n ) whlch do not cross the zero axls 
equals the total number of unrestrlcted paths mlnus the number of paths that do 
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n 

1 

655 

Number of binary trees with n 
nodes 

1 

cross the zero axls, 1.e. 

2 

3 

whlch 1s easlly seen by uslng a small argument lnvolvlng numbers of posslble sub- 
sets. In partlcular, If we set k=O, we see that the total number of blnary trees 
(or the total number of nonnegatlve paths from (0,O) to (0,2n )) 1s 

2 

5 

The number of blnary trees wlth n nodes grows very qulcltly wlth n (see 
table below). 

11 
429 

3430 

One can show (see exerclses) that thls number ~4~ / ( d % ~ ~ / ~ ) .  Because of thls, 
the decodlng method seems once agaln lmpractlcal except perhaps for n smaller 
than 15, because of the wordslze of the lntegers lnvolved In the computatlons. 

3.2. Generation by rejection. 
Random blnary trees or random strlngs of balanced parentheses can be gen- 

erated by the rejectlon method. Thls could be done for example by generatlng a 
random permutatlon of n openlng parentheses and n closlng parentheses, and 
acceptlng only If the resultlng strlng satlsfles the property that all partlal sub- 
strlngs have at least as many openlng parentheses as closlng parentheses. There 
are 

lnltlal strlngs, all 

a strlng 1s thus 
equally llkely. By Theorem 3.3, the probablllty of 

- . Furthermore, to declde whether a strlng 
n +I 

acceptance of 

has the sald 

I 
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property takes expected tlme propqrtlonal to n .  Thus, the expected tlme taken 
by the algorlthm varles as n2. For thls reason, the reJectlon method 1s not recom- 
men de d. 

3.3. Generation by sequential sampling. 
It 1s posslble to  generate a random blnary tree wlth n nodes In time 0 (n ) 

by flrst generatlng a random strlng of balanced paren3heses of length 2n In tlme 
0 ( n  ) and then reconstructlng the tree by mlmlcklng the lnorder traversal glven 
In the proof of Theorem 3.1. The strlng can be generated In one pass, from left to  
rlght, slmllar to the sequentlal sampllng method for generatlng a random subset, 
It 1s perhaps best t o  conslder the analogy wlth random walks once agaln. We 
star t  at (O,O), and have to  end up at (0,2n ). At each point, say ( k  , t  ), we declde 
to generate a ( wlth probablllty equal t o  the ratlo of the number of nonnegatlve 
paths from ( k  + l , t  +1) t o  (0,2n ) t o  the number of nonnegatlve paths from ( k  , t  ) 
to ( 0 , 2 n ) .  We generate a ) otherwlse. It 1s clear that thls method uses a 
recurrence relatlon for blnary trees, but the explanatlon glven here In terms of 
random walks 1s perhaps more lnslghtful. The number of nonnegatlve paths from 
( k  , t  ) to (0,2n ) 1s (see the proof of Theorem 3.3 ): 

2n - t  2n -t  2n -t  2k +2 1 k + r - t  1-1 k+2;2n-t  = 1 k + r - t ]  2 n - t + k + 2  ' 

The probablllty of a ( at ( k  , t  ) 1s thus 

2k +4 

k + 2  2n- t -k  =- 

The resultlng algorlthm for generatlng a random strlng of balanced parentheses 1s 
due to Arnold and Sleep (1980): 
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Sequential method for generating a random string of balanced parentheses 

[NOTE: The string generated by us is returned in p l , . . . ,p  an .] 
XtO (X holds the current "value" of the corresponding random walk.) 

FOR t :=0 TO 2n -1 DO 
Generate a uniform [0,1] random variate U. 

x + 2  2 n  4 - X  
x+l 2 ( 2 n - t )  

IF us- 

It Is relatlvely straightforward to check that the random walk cannot take nega- 
tlve values because when X=O, the probablllty of generatlng ( in the algorlthm 
1s 1. It 1s also not posslble to overshoot the origin at tlme 2n because whenever 
X=2n -t , the probabillty that a ( 1s generated Is 0. 

The reconstructlon in llnear tlme of a blnary tree from a strlng of balanced 
parentheses 1s left as an exerclse to the reader. Baslcally, one should mlmlc the 
algorlthm of Theorem 3.1 where such a strlng 1s constructed glven a blnary tree. 

3.4. The decoding method. 
There are a number of sophlstlcated codlng functlons for blnary trees, whlch 

can be decoded In llnear tlme, but all of them requlre extra storage space for aux- 
lllary constants. See e.g. Knott  (1977), Ruskey (1978), Ruskey and Hu (1977) and 
Trojanowskl (1978). See also Tlnhofer and Schreck (1984). 

3.5. Exercises. 

1. 
4n 

&n 
Consider an arbltrary (unrestrlcted) random walk from (0,O) to (0,271 ) (thls 
can be generated by generatlng a random permutation of n 1's and n -1's). 
DeAne another random walk by taklng the absolute value of the unrestrlcted 
random walk. Thls random walk does not take negative values, and 
corresponds therefore to a strlng of balanced parentheses of length 2 n .  Show 
that the random strlngs obtalned In thls manner are not unlformly 

Show that the Dumber of blnary trees wlth n nodes - 
3 - 

2. 
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dlstrlbuted. 
Glve a llnear tlme algorlthm for reconstructlng a blnary tree from a strlng or 
balanced parentheses of length 2n uslng the correspondence establlshed In 
Theorem 3.1. 

4. Random rooted trees. A rooted tree wlth n vertlces consists of a root 
and an ordered collectlon of nonempty rooted subtrees when n >1. When 
n =1, I t  conslsts of just a root. The vertlces are unlabeled. Thus, there are 5 
dlfferent rooted trees when n=4. There are a number of representatlons of' 
rooted trees, such as: 
A. A vector of degrees: wrlte down for each node the number of children 

(nonempty subtrees) when the tree 1s traversed In preorder or level 
order. 

B. A vector of levels: traverse the tree In preorder or postorder and wrlte 
down the level number of each node when i t  Is vlslted. 

We can call these vectors of length n codewords. There are other more 
storage-efflclent codewords: And a codeword of length 2n conslstlng of blts 
only, whlch unlquely represents a rooted tree. Show tha t  all codewords for 
representlng rooted trees or blnary trees must take at least (2+0(l))n blts 
of storage. Generatlng a codeword 1s equlvalent to generatlng a rooted tree. 
Plck any codeword you llke, and glve a llnear tlme algorlthm for generatlng 
a valld random codeword such that all codewords are equally llkely to be 
generated. Hlnt: notlce the connectlon between rooted trees and blnary 
trees. 
Let us grow a tree by replaclng on a sequentlal basls all NIL polnters by new 
nodes, where the cholce of a NIL polnter 1s unlform over the set of such 
polnters (see sectlon 3.1). Note that there are n +1 NIL polnters If the tree 
has n nodes. Let us generate another tree by generatlng a random permuta- 
tlon and constructlng a blnary search tree. Are the two trees slmllar In dls- 
trlbutlon, 1.e. 1s I t  true that  for each shape of a tree wlth n nodes, and for 
all n ,  the probablllty of a tree wlth that  shape 1s the same under both 
schemes ? Prove or dlsprove. 
Flnd a codlng functlon for blnary trees whlch can be decoded In p]me 0 ( n  ). 

3. 

5.  

6. 

4. RANDOM PARTITIONS. 

4.1. Recurrences and codewords. 
Many problems can be related to  the generatlon of random partltlons Of 

(1, . . . , n }  lnto k nonempty subsets. We know that  there are { i }  such part]- 

tlons, where {.} denotes the Stlrllng number of the second klnd. Rather than give 
a formula for the Stlrllng numbers In terms of a serles, we wlll employ the 
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k =  

2 
3 
4 
5 
6 

659 

n = 1 2 3 4  5 6 

1 1 1 1 1  1 1  
1 3 7 15 31 

1 6 25 90 
1 10 65 

1 15 
1 

recurslve deflnltlon: 

Uslng thls, we can form a table of Stlrllng numbers, Just as we can form a table 
(Pascal's trlangle) from the well-known recurslon for blnomlal numbers. We have: 

The recurslon has a physlcal meanlng: we can form a partltlon lnto k nonempty 
subsets by conslderlng a partltlon of (1, . . . , n -1} and addlng one number, n . 
That number n can be consldered as a new slngleton set In the partltlon (thls 
explalns the contrlbutlon 

In the recurslon). It can also be added to one of the sets In the partltlon of 
(1, . . . , n -1). In thls case, we can add I t  to one of the k sets In the latter partl- 
tlon. To have a unlque way of addresslng these sets, we order the sets accordlng 
to the value of thelr smallest elements, and label the sets 1,2,3, . . . , k. The 
addltlon of n to set i lmplles that we must lnclude 

In the recurslon. 
Before we proceed wlth the generatlon of a random partltlon based upon thls 

recurslon, I t  1s perhaps useful to descrlbe one klnd of codeword for random partl- 
tlons. Conslder the case n =5 and k =3. Then, the partltlon (1,2,5),(3),(4) can be 
represented by the n-tuple 11231 where each lnteger In the n-tuple represents 
the set to whlch each element belongs. By conventlon, the sets are ordered 
accordlng to the values of thelr smallest elements. So I t  1s easy to see that 
dlfferent codewords yleld dlfferent partltlons, and vlce versa, that all n -tuples of 
Integers from (1, . . . , k }  (such that each lnteger 1s used at least once) havlng 
thls orderlng property correspond to some partltlon lnto k nonempty subsets. 
Thus, generatlng random codewords or random partltlons 1s equlvalent. Also, one 
can be constructed from the other In tlme 0 (n ). 
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4.2. Generation of random partitions. 
The generator descrlbed below produces a random codeword, unlformly dis- 

trlbuted over the collectlon of all posslble codewords. It 1s based upon the recur- 
slon explalned above. To add n to  a partltlon of (1, . . . , n -1}, we should define 
a slngleton set {n } (In which case I t  must have set number k ) wlth probablllty 

and add I t  to a randomly plcked set from among 1, . . . , k wlth probablllty 

each. Obvlously, we have to generate the random codeword backwards. 

Random partition generator based upon 
numbers 

[NOTE: n and k are given and will be destroyed.] 
REPEAT 

Generate a uniform [0,1] random variate U. 

THENX,+k, k t k - 1  

ELSE Generate xn uniformly on 1, . . 
n t n - 1  

UNTIL n=O 

RETURN the codeword x,,x,, . . . , x,, 

recurrence relation for Stirling 

, k  

If the Stlrllng numbers can be computed In tlme 0 (1) (for example, If they are 
stored In a two-dlmenslonal table), then the algorithm takes tlme 0 ( n  ) per code- 
word. The storage requlrements are proportlonal to nk . The preprocesslng time 
needed to set up the table of slze 12 by k Is also proportlonal to nk If we use the 
fundamental recurslon. 
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We conclude this sectlon by notlng that the algorithm given above 1s a 
slightly modlfled verslon of an algorlthm given in Wllf (1977) and Nijenhuls and 
Wllf (1978). 

4.3. Exercises. 
1. 

2. 

Deflne a coding function for random partitions, and And an 0 ( n  ) decoding 
algor1 t hm. 
Random partitions of integers. Let p ( n  ,k) be the number of partltlons 
of an integer n such that the largest part 1s k. The followlng recurrence 
holds: 

p(n,IC) = p ( n - l , k - l ) + p ( n - k , k ) .  

The flrst term on the rlght-hand slde represents those partltlons of n whose 
largest part is k and whose second largest part 1s less than k (because such 
partitlons can be obtained from one of n - 1  whose large% part is k-1  by 
addlng 1 to the largest part). The partitions of n whose largest two parts 
are both IC come from partltlons of n-k  of largest part k by replicating the 
largest part. Argulng as In Wilf (1977), a partition 1s a series of declslons 
"add 1 to the largest part" or "adjoin another copy of the largest part". 
A. Glve an algorlthm for the generation of such a random partltion (all 

partitions should be equally likely of course), based upon the glven 
recurrence relation. 

B. 

C. 

Flnd a codlng functlon for these partltlons. Hlnt: base your functlon on 
the parts of the partltion given In descending order. 
How would you generate an unrestricted partitlon of n ? Here, unres- 
tricted means that no bound 1s glven for the largest part in the partl- 
tlon. 

D. Flnd a recurrence relatlon similar to the one given above for the 
number of partltions of n with parts less than or equal to k. 

E. For the combinatorial obJects of part D, And a coding function and a 
decoding algorithm for generating a random object. See also McKay 
(1965). 
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5. RANDOM FREE TREES. 

5.1. Prufer’s construction. 
A free tree 1s a connected graph wlth no cycles. If there are n nodes, then 

there are n-1 edges. The distlnctlon between labeled and unlabeled free trees 1s 
Important. Note however that unlike other trees, free trees do not have a given 
root, All nodes are treated equally. We wlll however keep uslng the term leaf for 
nodes wlth degree one. 

The generatlon of a random free tree can be based upon the followlng 
theorem: 

Theorem 5.1. 
Cayley’s theorem. There are exactly n n - 2  labeled free trees wlth n nodes. 
Prufer’s construction. There exlsts a one-to-one correspondence between all 
(n  -2)-tuples (”codewords”) of lntegers a ,, . . . , a,-,, each taklng values in 
{I, . . . , n ), and all labeled free trees wlth n nodes. The relatlonshlp 1s glven In 
the proof below. 

Proof of Theorem 5.1. 
Cayley’s theorem follows from Prufer’s constructlon. Let the nodes of the 

labeled free tree have labels 1, . . . , n .  From a labeled free tree a codeword can 
be constructed as follows. Let a ,  be the label of the neighbor of the leaf wlth the 
smallest label. Delete the correspondlng edge. Slnce one of the endpoints of the 
edge is a leaf, removal of the edge wlll leave us wlth a labeled free tree of slze 
n-1. Repeat thls process untll n-2 components of the codeword have been calcu- 
lated. At the end, we have a labeled free tree wlth Just 2 nodes, whlch can be dls- 
carded. For example, for the labeled free tree wlth 6 nodes and edges (1,2), (2,3), 
(4,3), (5,3), (6,3), the codeword (2,3,3,3) is obtalned. 

Conversely, from each codeword, we can construct a free tree havlng the 
property tha t  if we use the constructlon given above, the lnltial codeword 1s 
obtalned agaln. Thls 1s all that 1s needed to establlsh the one-to-one correspon- 
dence. For the constructlon of the tree from a glven codeword, we begln wlth 
three llsts: 
A. 
B. 

The codeword: a,, . . . , a,-,. 

A list of n flags: f ,, . . . , f , where f i  =1 lndlcates that node t’ 1s avall- 
able. Initlally, all flags are 1. Flag i 1s set to 0 only when i 1s a leaf, and the 
edge connected to i is suddenly removed from the tree. 
A llst of n flags lndlcatlng whether a node 1s a leaf or not: 1 ,, . . . , 1, . li =1 
lndlcates that node 2’ 1s a leaf. Note that thls llst 1s redundant, slnce a node 
1s a leaf If and only If Its label can be found In the codeword. The inltlallza- 
tion of thls llst of flags 1s slmple. 

C. 
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The constructlon proceeds by flrst recreatlng the n -2 edges that correspond to 
the n -2 components of the codeword. Thls 1s done slmply as follows: choose node 
a (thls 1s not a leaf, slnce I t  1s In the codeword), and choose the smallest leaf v 
(flag 1, =1 and avallablllty flag f , =1 ). Return the edge ( a  ,,v ), and set the flag 
of w to 0, which effectlvely ellmlnates v . If a cannot be found In the remalnder 
of the codeword, then a ,  becomes a leaf In the new free tree, and the flag la1 
must be set to 1. Thls process can be repeated untll a ,, . . . , a, -2 1s exhausted. 
The last (n-1-st) edge at the end 1s slmply found by taklng the only two nodes 
whose avallablllty flags are stlll 1. Thls concludes the constructlon. It 1s easy to 
verlfy that  If the tree 1s used to construct a codeword, the lnltlal codeword 1s 
obtalned. 

The degree of a node 1s one plus the number of occurrences of the node In 
the codeword, at least If codewords are translated lnto free trees vla Prufer’s con- 
structlon. To generate a random labeled free tree wlth n nodes (such that all 
such trees are equally llkely), one can proceed as follows: 

Random labeled free tree generator 

FOR i:=1 TO n -2 DO 

Generate a; uniformly on (1, . . . , n }. 
Translate the codeword into a labeled free tree via Prufer’s construction. 

A careless translatlon of the codeword could be lnefflclent. For example, the 
verlflcatlon of whether an lnternal node becomes a leaf durlng constructlon, when 
done by traverslng the leftover part of the codeword, yields an n ( n 2 )  contrlbu- 
tlon to the total tlme. Uslng llnear search to And the smallest avallable leaf 
would glve a contrlbutlon of S2(n2) to the total tlme. Even If a heap were used 
for thls, we would stlll be faclng a contrlbutlon of n(n log(n )) to the total tlme. 
In the next sectlon, a llnear tlme translatlon algorlthm due to Kllngsberg (1977) 
1s presented. 
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5.2. Klingsberg's algorithm. 
The purpose of this section 1s to  explaln Kllngsberg's 0 ( n  ) algorlthm for 

translatlng a codeword a , ,  . . . , anP2 lnto a labeled free tree. Hls solution 
requlres one addltlonal array T (11, . . . , T [n  1, whlch Is used to return the edges 
and t o  keep lnformatlon about the avallablllty flags and about the leaf flags (see 
proof of Theorem 1). The edges returned are 

(l,T[l]),(2,T[21), . * , (n-1,T[n-11) 

The other uses of thls array are: 
A. 7'[i]=avallable-not-leaf means that node i 1s stlll avallable and is not a 

leaf. The constant 1s set to  -1 In Klngsberg's work. 
B. T[z]=avallable-leaf means that node i 1s an avallable leaf. The constant is 

set t o  0 in Kllngsberg's work. 
C. T [i]=j >O lndlcates that node i 1s no longer avallable, and In fact that 

(i , j  ) 1s an edge of the labeled free tree. 
In the example of codeword (2,3,3,3) glven In sectlon 5.1, the array T would lnl- 
tlally be set to  (avallable-leaf , avallable-not-leaf , avallable-not-leaf , 
avallable-leaf , avallable-leaf , avallable-leaf ) slnce only nodes 2 and 3 are lnter- 
nal nodes. 

To speed up the determlnatlon of when an lnternal node becomes a leaf, we 
merely flag the last occurrence of every node In the codeword. Thls can con- 
venlently be done by changlng the slgns of these entrles. In our example, the 
codeword would lnltlally be replaced by (-2,3,3,-3). 

Flnally, to  And the smallest avallable leaf qulckly, we note that In the con- 
structlon, these leaf labels lncrease except when a new leaf 1s added, and Its label 
1s smaller than the current smallest leaf label. Thls can be managed wlth the ald 
of two movlng polnters: there 1s a masterpolnter whlch moves up monotonlcally 
from 1 to n ; In addltlon, there 1s a temporary polnter, whlch usually moves wlth 
the masterpolnter, except ln the sltuatlon descrlbed above, when I t  1s temporarlly 
set to a value smaller than that of the masterpolnter. The temporary polnter 
always polnts at the smallest avallable leaf. I t  Is thls lngenlous devlce whlch per- 
mltted Kllngsberg to  obtaln an 0 (n ) algorlthm. We can now summarlze hls 
algorlthm. 
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Klingsberg’s algorithm for constructing a labeled free tree from a codeword 

[PREPARATION.] 
FOR i :=1 T O  n DO T [i]+ availableleaf 

IF T [ai ] =available-leaf THEN 
FOR i :=n -2 DOWNTO 1 DO 

T [a i  ]=available-not-leaf; a i  --ai 

Master +-1 
a,-,+n (for convenience in deflning last edge) 
Master -min( J’ : T [J’ ]= availableleaf ) 

Temp +- Master 
[TRANSLATION.] 
FOR i:=1 T O  n-1 DO 

Select + I ai I 
T [Temp]+ Select (return edge) 

(select internal node) 

IF i < n - l  THEN 
IF ai >o 

THEN 
Master t m i n (  j : T [i]= available-leaf ) 
Temp + Master 

ELSE 
T [Select]+ available-leaf 
IF Select 5 Master THEN Temp +- Select (temporary step 
UP)  

RETURN (1 ,T [I]), . . . , ( n - I , T [ n - l ] )  

The llnearlty of the algorlthm follows from the fact that the masterpolnter can 
only Increase, and that all the operatlons In every lteratlon that do not lnvolve 
the masterpolnter are constan4 tlme operatlons. 

5.3. Free trees with a given number of leaves. 
Assume next that we wlsh to generate a labeled free tree wlth n nodes and 1 

leaves where 2 5 1  s n - 1 .  For the solutlon of thls problem, we recall Prufer’s 
codeword. The codeword contalns the labels of all lnternal nodes. Thus, I t  1s 
necessary to generate only codewords in whlch preclsely n-1 labels are present. 
The actual labels can be put In by selectlng n-1 labels from n labels by one Of 
the random sampllng algorlthms. Thus, we have: 
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Generator of a labeled free tree with n nodes and 1 leaves 

Generate a random subset of n -1 labels from 1, . . . , n . 
Perform a random permutation on these labels (this may not be necessary, depending upon 
the random subset algorithm.) 
Generate a random partition of n -2 elements into n -1 non-empty subsets, and assign the 
flrst label to the first subset, etcetera. This yields a codeword of length n -2 with precisely 
n-1 different labels. 
Translate the codeword into a labeled free tree (preferably using Klingsberg's algorithm). 

In thls algorlthm, we need algorlthms for random subsets, random partltlons and 
random permutatlons. It goes wlthout saylng that some of these algorlthms can 
be comblned. Another by-product of the decomposltlon of the problem lnto 
manageable sub-problems 1s that I t  1s easy to count the number of comblnatorla! 
obJects. W e  obtaln, In thls example: 

n -2 n -2 

5.4. Exercises. 
1. Let d,, . . . , dn be the degrees of the nodes 1, . . . , n In a free tree. (Note 

that the sum of the degrees 1s 2n-2.) How would you generate such a free 
tree ? Hlnt: generate a random Prufer codeword wlth the correct number of 
occurrences of all labels. The answer 1s extremely slmple. Derlve also a slm- 
ple formula for the number of such labeled free trees. 
Glve an  algorlthm for computlng the Prufer codeword for a labeled free tree 
wlth n nodes In tlme 0 ( n  ). 
Prove that the number of free trees that can be bullt wlth n labeled edges 
(but unlabeled nodes) 1s ( n  +1)"-2. Hlnt: count the number of free trees wlth 
n labeled nodes and n - 1  labeled edges flrst. 
Glve an 0 ( n  ) algorlthm for the generatlon of a random free tree wlth n 
labeled edges and n+l unlabeled nodes. Hlnt: try to use Kllngsberg's algo- 
rlthm by reduclng the problem t o  one of generatlng a labeled free tree. 

5. Random unlabeled free trees with n vertices. Flnd the connectlon 
between unlabeled free trees wlth n vertlces and rooted trees wlth n ver- 
tlces. Explolt the connectlon to generate random unlabeled free trees such 
that all trees are equally lllcely (Wllf, 1981). 

2. 

3. 

4. 
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6. RANDOM GRAPHS. 

6.1. Random graphs with simple properties. 
Graphs are the most general comblnatorlal objects dealt wlth In thls 

chapter. They have appllcatlons In nearly all flelds of sclence and englneerlng. I t  
1s qulte lmposslble to glve a thorough overvlew of the dlfferent subclasses of 
graphs, and how objects In these subclasses can be generated unlformly and at 
random. Instead, we wlll just glve a superflclal treatment, and refer the reader to 
general prlnclples or speclflc artlcles In the llterature whenever necessary. 

We wlll use the notatlon n for the number of nodes In a graph, and e for 
the number of edges In a graph. A random graph wlth a certaln property P 1s 
such that all graphs wlth thls property are equally llkely to occur. Perhaps the 
slmplest property 1s the property: "Graph G has n nodes". We know that there 
are 

objects wlth thls property. Thls can easlly be seen by conslderlng that each of the 

[i] posslble edges can either be present or absent. Thus, we should lnclude each 

edge ln a random graph wlth this property wlth probablllty 1/2. 
The number of edges chosen 1s blnomlally dlstrlbuted wlth parameters n 

and 1/2. It 1s often necessary to  generate sparser graphs, where roughly speaklng 
e 1s O ( n )  (or at least not 0(n2)). Thls can be done In two ways. If we do not 
requlre a speclflc number of edges, then the slmplest solutlon 1s to select all edges 
lndependently and wlth probablllty p . Note that the expected number of edges 1s 

p [ l] b Thls 1s most easlly lmplemented, especlally for small p , by uslng the fact 

that the waltlng tlme between two selected edges 1s geometrlcally dlstrlbuted 
wlth parameter p , where by "waltlng tlme" we mean the number of edges we 
must manlpulate before we see another selected edge. Thls requlres a llnear order- 
lng on the edges, whlch can be done by the codlng functlon glven below. 

If the property 1s "Graph G has n nodes and e edges", then we should flrst 

select a random subset of e edges for the set of [ posslble edges. Thls pro- 

perty 1s slmple to deal wlth. The only sllght problem 1s that of establlshlng a slm- 
ple codlng functlon for the edges, whlch 1s easy to decode. Thls 1s needed slnce 
we have to access the endpolnts of the edges some of the tlme (e.g., when return- 
h g  edges), and the coded edges most of the tlme (e.g., when random sampllng 
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n -1 n , 

based upon hashlng). One posslblllty 1s shown below: 

( n  -1)+(n -2)+ . . . +2+1 

Node u Node v 
1 2 
1 3 

. . .  . . .  

. . .  . . .  
1 n 
2 3 

. . .  . . .  

. . .  . . .  
2 n 

. . .  . . .  

. . .  . . .  

Coded version of edge (u , v ) 
1 
2 

. . .  

. . .  
n -1 

(n -I)+ 1 
. . .  
. . .  

( n  -I)+( n -2 )  
* . .  
. . .  

The codlng functlon for thls scheme 1s 
u (u -1) f ( u  ,v ) = (u -1)n - +(v-u)  . 

2 

Interestlngly, thls functlon can be decoded .A tlme 0 ( 1 )  (see exerclse 6.1). 
Whether random sampllng should be done on coded lntegers wlth decodlng only 
at the very end, or on sets of edges (u , v )  wlthout any decodlng, depends upon 
the sampllng scheme. In classlcal sampllng schemes for example, I t  1s necessary to  
verlfy whether a certaln edge has already been selected. The verlflcatlon can be 
based upon a vector of flags (whlch can be done here by uslng a lower triangular 
n by n matrlx of flags). When a heap or a tree structure 1s used, there 1s no need 
ever for codlng. When hashlng 1s used, codlng seems approprlate. In sequentlal 
sarnpllng, no codlng 1s needed, as long as we can easlly lmplement the functlon 
NEXT(u , v )  (IF v = n  THEN NEXT(u ,v )+(u + l , u  +2) ELSE 
NEXT(u ,v )+(u ,v +l)). However, If sequentlal sampllng 1s accelerated by taklng 
glant steps, then codlng the edges seems the wise thlng to do. 

6.2. Connected graphs. 
Most random graphs that people want to generate should be of the con- 

nected type. From the work of Erdos and Renyl (1959, lQSO), we know that If e 
then the 1s much larger than -n log(n ) (or If p 1s much larger than 

probablllty that a random graph wlth e (or blnomlal (n  ,p  )) edges 1s connected 
tends to 1 as n --too. In those sltuatlons, I t  1s clear that we could use the rejectlon 
algorlt hm: 

1 
2 n 
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Rejection method for generating a connected random graph with n nodes and e 
edges 

REPEAT 
Generate a random graph G with e edges and n nodes. 

UNTIL G is connected 
RETURN G 

To verlf’y that a graph 1s connected 1s a standard operatlon: If we use depth flrst 
search, thls can be done In tlme 0 (max(n , e  )) (Aho, Hopcroft and Ullman, 1983). 
Thus, the expected tlme needed by the algorlthm 1s 0 (max(n , e  )) when 

e 1 Ilm lnf > - .  
~ - C O  nlog(n)  2 

In fact, slnce In those cases the probablllty of acceptance tends to 1 as n--+oo , 
the expected tlme taken by the algorlthm Is ( l + o ( l ) )  tlmes the expected tlme 
needed to check for connectedness and to generate a random graph wlth e edges. 
Unfortunately, the condltlon glven above 1s asymptotlc, and I t  1s dlfflcult to ver- 
lfy whether for glven values of e and n ,we have a good reJectlon constant. Also, 
there 1s a gap for preclsely the most lnterestlng sorts of graphs, the very sparse 
graphs when e 1s of the order of n . Thls can be done via a general graph genera- 
tlon technlque of Tlnhofer’s (1978,1980), whlch ls explalned In the next sectlon. In 
I t ,  we recognlze lngredlents of Wllf‘s recurrence based method. 

6.3. Tinhofer’s graph generators. 
In two publlcatlons, Tlnhofer (1978,1980) has proposed useful random graph 

generators, wlth appllcatlons to connected graphs (wlth or wlthout a speclflc 
number of edges), dlgraphs, blchromatlc graphs, and acycllc connected graphs. 
Hls algorlthms requlre In all cases that  we can count certaln subclasses of graphs, 
and they run fastest If tables of these counts can be set up beforehand. We wlll 
merely glve the general outllne, and refer to Tlnhofer’s work for the detalls. 

Let us represent a graph by a sequence of adJacency llsts, wlth the property 
tha t  each edge should appear In only one adjacency Ilst. The adJacency llst for 
node t’ wlll be denoted by Ai. Thus, the graph Is completely determlned by the 
sequence 

LVe wlll generate the adJacency llsts In some (usually random ) order, 
. . . , where v l , v v ,  . . . , v, 1s a permutatlon of 1, . . . , n .  To avoid 
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the dupllcatlon of nodes, we requlre that all nodes In adJacency list A,, fall out- 
j 

slde U {vi}. The followlng sets of nodes wlll be needed: 
i = 1  

j 
1. The set Uj of all nodes In U A,, wlth label not In v l ,  . . . , v j .  Thls set 

contalns all nelghbors of the flrst j nodes outslde vl, . . . , v j  . 
The set vj whlch conslsts of all nodes wlth label outslde v l ,  . . . , vj that 
are not In U j .  

The speclal sets U,={l}, v0={2,3, . . . , n }. 

i =1 

2. 

3. 

When the adJacency llsts are belng generated, I t  1s also necessary to do some 
countlng: deflne the quantlty N, as the total number of graphs wlth the deslred 
property, havlng Axed adJacency llsts A , ,  . . . , A",. Sometlmes we wlll wrlte 
Nj (Aul ,  . . . , A, ) to make the dependence expllclt. Glven A , ,  . . . , A,J-l, we 
should of course generate Aut accordlng to the followlng dlstrlbutlon: 

N j  * * 7 AvJ-IJ 1 
P (A,, =A ) = 

Nj-l(AVlt * * , A,,-1) . 

It 1s easy to see that thls 1s lndeed a probablllty vector in A .  We are now ready 
to glve Tlnhofer's general algorlthm. 

Tinhofer's random graph generator 

V,+{l}; V0-{2, . . 1 , n } 
FOR j:=1 TO n DO 

IF EMPTY (Uj-1) 
THEN wj +min(i:i€Vj-l)  
ELSE wj +min(i :i  

Generate a random subset AvJ on uj-lUv'-l-{wj} according to the probability dis- 
tribution given above. 
Vj + Uj -1UA j - { v j } 
Vj +Vj- l -Aj - {~ j }  

RETURN Av1,Av2, . . . , 

The mafor problem In thls algorlthm 1s to compute (onlllne) the  probablllty dls- 
trlbutlon for A,>. In many examples, the probabllltles depend only upon the car- 
dlnalltles of Uj-l and Vj-l and posslbly some other sets, and not upon the actual 
structure of these sets. Thls 1s the case for the class of all connected graphs wlth 
n nodes, or  all connected graphs wlth n nodes and e edges (see Tlnhofer, 1980). 
Nevertheless, we stlll have to count, and run lnto nurnerlcal problems when n or 
e are large. 
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6.4. Bipartite graphs. 
A bipartite graph 1s a graph In whlch we can color all vertlces wlth two 

colors (baby plnk and mustard yellow) such that no two vertlces wlth the same 
color are aaacent .  There exlsts a useful connectlon wlth matrlces whlch makes 
blpartlte graphs a manageable class of graphs. If there are b baby vertlces and 
m mustard vertlces, then a blpartlte graph 1s completely deflned by a b X m  
Incidence matrlx of 0's and 1's. At thls polnt we may recall the algorlthms of sec- 
tlon XI.6.3 for generatlng a random R X C  table wlth glven row and column 
totals. Thls leads dlrectly to a reJectlon algorlthm for generatlng a random blpar- 
tlte graph wlth glven degrees for all vertlces: 

Bipartite graph generator 

[NOTE: This algorithm returns a b X m  incidence matrix deflning a random bipartite 
graph with b baby vertices and m mustard vertices. The row totals are ri , 15 i 5 b , and 
the column totals are c i  , 15 i 5 rn .] 
REPEAT 

Generate a random R X c matrix of dimension b X m with the given row and 
column totals. 

UNTIL all elements in the matrix are 0 or 1 

RETURN the matrix 

The reductlon to a random R X C  matrlx was suggested by Wormaid 
(1984). By Wald's equatlon, we know that the expected tlme taken by the algo- 
rlthm Is equal to the product of the expected tlme needed to generate one ran- 
dom l? X C matrlx and the expected number of lteratlons. For example, If we use 
the ball-ln-urn method of sectlon XI.6.3, then a random R X C  matrlx can be 
obtalned In tlme proportlonal to e ,  the total number of edges (whlch Is also equal 
to Cri and to Ccj). The analysls of the expected number of lteratlons 1s also 
due to Wormald (1984): 

Theorem 6.1. 

of ltera't'lons In the rejectlon algorlthm 1s 
Assume that all r i ' s  and c j  's are at most equal to k . The expected number 

I 
1 Tvhere e 1s the total number of edges, and o (1) denotes a functlon tendlng to 0 
I 1 35 e -00 whlch depends only upon k and not on the ri 's and b j  3. 
I 
I 
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As a corollary of thls Theorem, we see that the expected number of ltera- 
tlons 1s unlformly bounded over all blpartlte graphs whose degrees are unlformly 
bounded by some number k . 

Blpartlte graphs play a cruclal role In graph theory partly because of the fol- 
lowlng connection. Conslder a b X m  lncldence matrlx for a blpartlte graph In 
whlch all baby vertlces have degree 2, Le. all r i ’ s  are equal to 2. This deflnes a 
graph on m nodes In the followlng manner: each palr of edges connected to a 
baby vertex deflnes an edge In the graph on m nodes. Thus, the new graph has 
b edges. We can now generate a random graph wlth glven collection of degrees 
as follows: 

Random graph generator 

[NOTE: This algorithm returns an array of b edges deflned on a graph with vertices 
(1, . . . , m }.. The degree sequence is e 1, . . . , c, .] 
REPEAT 

Generate a random b Xm bipartite graph with degrees all equal to  two for the baby 
vertices (ri =2), and degrees equal to e . . . , e, for the mustard vertices. 

UNTIL no two baby vertices share the same two neighbors 

RETURN ( k I J l ) ,  . . . , (k, ,I, ) where ki and li are the columns of the two 1’s found in 
the i - th  row of the incidence matrix of the bipartite graph. 

A aln we use the reJec lon prlnclple, In the hope that for many graphs the 
reJectlon constant 1s not unreasonable. Note that we need to check that there are 
no dupllcate edges In the graph. Thls 1s done by checklng that no two rows In the 
blpartlte graph’s lncldence matrlx are ldentlcal. It can be verlfled that the pro- 
cedure takes expected tlme 0 ( 6  +m ) where b 1s the number of edges In the 
graph, provlded that all degrees of the vertlces In the graph are bounded by a 
constant k (Wormald, 1984). In partlcular, the method seems to be ldeally sulted 
for generatlng random r-regular graphs, 1.e. graphs In whlch all degrees are 
equal to r . It can be shown that the expected number of R X C matrlces needed 
before haltlng 1s roughly speaklng e(r2-1)/4. Thls lncreases rapldly wlth r . Wor- 
mald also glves a partlcular algorlthm for generatlng 3-regular, or cublc, graphs. 
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6.5. Exercises. 

673 

1. 

2. 
3. 

4. 

5.  

Flnd a slmple 0 (1) decodlng rule for the codlng functlon for edges In a 
graph glven In the text. 
Prove Theorem 6.1. 

Prove that If random graphs wlth 6 edges and m vertlces are generated by 
Wormald's method, then, provlded that all degrees are bounded by I C ,  the 
expected tlme 1s 0 ( 6  +m ). Glve the detalls of all the data structures 
lnvolved In the solutlon. 
Event simulators. We are glven n events wlth the followlng dependence 
structure. Each lndlvldual event has probablllty p of occurrlng, and each 
palr of events has probablllty q of occurrlng. All trlples carry probablllty 
zero. Determlne the allowable values for p ,q . Also indlcate how you would 
handle one slmulatlon. Note that In one slmulatlon, we have to report all the 
lndlces of events that are supposed to occur. Your procedure should have 
constant expected tlme. 
Random strings in a context-free language. Let S be the set of all 
strlngs of length n generated by a glven context-free grammar. Assume that 
the grammar 1s unambiguous. Uslng at most 0 (n '+') space where r 1s the 
number of nontermlnals In the grammar, and uslng any amount of prepro- 
cesslng tlme, And a method for generatlng a unlformly dlstrlbuted random 
strlng of length n In S In llnear expected tlme. See also Hlckey and Cohen 
(1983). 

. .  1 



Chap fer Four teen 
PROBABILISTIC SHORTCUTS 
AND ADDITIONAL TOPICS 

A probablllstlc shortcut In random varlate generatlon is a method for reduc- 
lng the expected tlme In a slmulatlon by recognlzlng a certaln structure In the 
problem. Thls prlnclple can be lllustrated In hundreds of ways. Indeed, there Is 
not a single example that could be called "typical". It should be stressed that the 
emclency 1s derlved from the problem itself, and Is probablllstlc In nature. Thls 
dlstlngulshes these shortcuts from certaln technlques that are based upon clever 
data structures or fast algorlthms for certaln sub-tasks. We will draw our exam- 
ples from three sources: the slmulatlon of maxima and sums of lid random varl- 
ables, and the slmulatlon of regeneratlve processes. 

Other toplcs brlefly touched upon lnclude the problem of the generatlon of 
random variates under lncomplete information (e.g. one Just wants to  generate 
random variates wlth a unlmodal density havlng certaln given moments) and the 
generatlon of random varlates when the dlstrlbutlon 1s lndlrectly specifled (e.g. 
the characteristic functlon Is given). Finally, we wlll brlefly deal wlth the problem 
of the design of efflclent algorlthms for large slmulatlons. 

1. THE MAXIMUM OF IID RANDOM VARIABLES. 

1.1. Overview of methods. 
In this sectlon, we wlll look at methods for generating 

X=max(X,,  . . . , X, ), where the xi's are lid random varlables wlth common 
density f (the correspondlng dlstrlbutlon functlon wlll be called F ) .  We wlll 
malnly be interested In the expected tlme as a functlon of n .  For example, the 
nalve method takes tlme proportlonal to n , and should be avoided whenever pos- 
slble. Because X has dlstrlbution function Fn , I t  1s easy to  see that the following 
algorlthm Is valld: 
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Inversion method 

Generate a uniform [0,1] random variate u .  

RETURN X-F-'( U'). 
1 

675 

The problem wlth thls approach 1s that for large n , U'In 1s close to 1, so that In 
regular wordslze arlthmetlc, there could be an accuracy problem (see e.g. Dev- 
roye, 1980). Thls problem can be allevlated 1f we use G =1-F lnstead of F and 
proceed as follows: 

Inversion method with more accuracy 

Generate an exponential random variate E and a gamma (n ) random variate G, . 
E 

E +G, RETURN X+G-I(- 1. 

Unless the dlstrlbutlon functlon 1s expllcltly lnvertlble, both lnverslon-based algo- 
rlthms are vlrtually useless. In the remalnlng sectlons, we present two probabllls- 
t lc  shortcuts, one based upon the qulck ellmlnatlon prlnclple, and one on the use 
of records. The expected tlmes of these methods usually lncrease as log(n ). Thls 
1s not as good as the constant tlme lnverslon method, but a lot better than the 
nalve method. The advantages over the lnverslon method are measured In terms 
of accuracy and flexlblllty (fewer thlngs are needed In order to be able t o  apply 
the shortcuts). 

1.2. The quick elimination principle. 
In the qulck ellmlnatlon prlnclple, we generate the maximum of a sequence 

of lld random varlables after havlng ellmlnated all but a few of the xi's wlthout 
ever generatlng them. We need a threshold polnt t and the tall probablllty 
P =1-F ( t  ). These are plcked before application of the algorithm. Typlcally, p 1s 
Of the order of (log(n ) ) / n  . The number of Xi ' s  that exceed t 1s blnomlal (n  , p  ). 
Thus. the following algorlthm 1s guaranteed to work: 
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The quick elimination algorithm (Devrq-e, 1980) 

Generate a binomial ( n  , p  ) random variaze z .  
IF z=o 

THEN 
RETURN X t m a x ( X , ,  . . . . -:' --  where the xi 's are iid random variates with 
density f /(l-p ) on (-co,t :. 

RETURN X t m a x ( X , ,  . . . . 
density / p  on [ t  so). 

ELSE 
where the xi 's are iid random variates with 

To analyze the expected tlme complexltv. -5serve that the blnomlal ( n  , p  ) ran- 
dom varlate can be generated In expecteC : h e  proportlonal to  np as np -00 by 
the waltlng tlme method. Obvlously, we c c L d  use 0 (1) expected tlme algorlthms 
too, but there 1s no need for thls here. &s-=e furthermore that every Xi In the 
algorlthm Is generated In one unlt of expez fd  tlme, unlformly over all values of 
p . It 1s easy to  see that the expected t I n 5  of the algorlthm Is T+o (np ) where 
we deflne T =UP (2 =O)n +6 (1-P (2 =O))np  +cnp for some constants 
a ,b ,c >o. 

I 1 Lemma 1.1. 

lnf T - ( 6  +c )log(n ) (n --x) . 
o c p  < 1  

log(n >+s, 
P' 9 n 

then T - ( 6  +c )log(n ) provlded that the sequence of real numbers 6, Is chosen 
so that 
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Proof of Lemma 1.1. 
Note that 

T = nu (1-p )" + b n p  ( I - (  1-p )" )+cnp 

5 ( b  +c )np +une+'p . 

The upper bound Is convex In p wlth one mlnlmum. Settlng the derlvatlve wlth 
respect to p equal to zero and solvlng for p glves the solutlon 

Resubstltutlon In the upper bound for T shows that 

T 5 ( b  + c ) l o g ( C )  
b +c 

When p =(log(n )+6, ) / n  , then the upper bound for T Is 

ue -" +( b +c )(log(n )+6, ) . 

Thls - ( b  +c )log(n) If 6, = o  (log(n )) and e-'"=o (log(n )). The latter condltlon 
Is satlsfled when 6, +log(log(n ))-)eo. 

Flnally, I t  sufflces to work on a lower bound for T. We have for every E > O  
and all n large enough, since the optlmal p tends to  zero: 

" P  -- 
T 2 (nu -bnp ) e  '-P+(b +c )np 

> - nu (1-c)e l-' +(b +c )np. 
nP -- 

. We have already .mlnlmlzed such an expresslon wlth respect to  p above. It 
sufflces to formally replace n by n / ( l - ~ ) ,  a by u ( l - ~ ) ~ ,  and ( b  +c ) by 
( b  + C  ) ( I -€ ) .  Thus; 

ane 
o < p  <1 b +c 

1nf T 2 (1--E)(b +c )log(-) 

for all n large enough. Thls concludes the proof of Lemma 1.1. 

U 
A good choke for 6, In Lemma 1.1 1s 6, = log(- ). When Z = O  In the 

algorlthm, lld random variates from the denslty f / ( l - p  ) restrlcted to (-oo,t] 
can be generated by generatlng random variates from f untll n values less than 
or equal to t are observed. Thls would force us to  replace the term uP(Z=O)n 
In the deflnltlon of T by u P ( Z = O ) n / ( l - p ) .  However, all the statements of 
Lemma 1.1 remain valld. 

b + c  
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The maln problem 1s that of the computatlon of a palr ( p  ,t ). For If we start  
wlth a value for p , such as the value suggested by Lemma 1.1, then the value for 
t 1s glven by F - ’ ( l - p )  (or G-’(p) where G = l - F ,  if numerical accuracy is of 
concern). Thls is unfortunately posslble only when the lnverse of the distrlbutlon 
functlon is known. But if the lnverse of the distrlbutlon were known, we would 
have been able t o  generate the maxlmum qulte efflclently by the inverslon 
method. There is a subtle difference though: for here, we need one lnversion, even 
if we would need to  generate a mlllion lid random varlables all distrlbuted as the 
maximum X .  With the lnverslon method, a mllllon inverslons would be requlred. 
If on the other hand we were to start wlth a value for t , then p would have to 

be set  equal to f = G ( t  ) = 1-F ( t  ). Thls requlres knowledge of the dlstrlbu- 

tlon function but not of its Inverse. The value of t we start  wlth should be such 
that p satisfies the condltlons of Lemma 1.1. Typlcally, t 1s plcked on theoretlcal 
grounds as 1s now lllustrated for the normal denslty. 

53 

t 

Example 1.1. 
For the normal density i t  1s known that G (z)-f (z ) /a :  as x --too. A flrst 

approximate solution of f ( t ) / t  = p 1s t=d2log(l /p) ,  but even if we substl- 
tute the value p =(log(n ) ) / n  in thls formula, the value of G ( t  ) would be such 
that the expected tlme taken by the algorlthm far exceeds log(n). A second 
approximatlon 1s 

wlth p =(log(n ) ) / n  . I t  can be verlfled that wlth this cholce, T = O  (log(n )). 

For other densities, one can use simllar arguments. For the gamma ( a  ) den- 
sity for example, we have G(z)-f ( z )  as 5400 ,  and 
f (z )I G (x )I f (z )/(l-(a /z )) for a > 1,a: > a  -1. This helps In the construction 
of a useful value for t . 

The computation of G ( t  ) 1s relatlvely stralghtforward for most dlstrlbu- 
tlons. For the normal denslty, see the series of papers publlshed after the book of 
Kendall and Stuart (1977) (Cooper (1968), Hlll (1969), Hltchin (1973)), the paper 
by Adams (1969), and an lmproved version of Adams’s method, called algorithm 
AS66 (H111 (1973)). For the gamma denslty, algorlthm AS32 (BhattacharJee 
(1970)) 1s recommended: I t  is based upon a contlnued fraction expanslon glven In 
Abramowitz and Stegun (1965). 
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1.3. The record time method. 
In some process slmulatlons one needs a sequence (Zn1, . . . , Z,,) of maxlma 

In other words, for all i , we have Zi =max(X,, . . . , xi ) where the Xi 's are lld 
random varlables wlth common denslty f . The lnverslon method requlres IC 
lnverslons, and can be lmplemented as follows: 

that correspond to  one reallzatlon of the experlment, where n , < n , <  . . <nk. 

Inversion method 

n oco,Z t - - 0 0  

FOR i:=1 TO k DO 
Generate z, the maximum of n; -ni-l iid random variables with common density f . 
zn, +max(z,,-l,z 1 

The record tlme method lntroduced In thls sectlon requlres on the average 
about log(nk ) exponentlal random varlates and evaluatlons of the dlstrlbutlon 
functlon. In addltlon, we need to report the values Z,,. When log(nk) 1s small 
compared to k : ,  the record tlme method can be competltlve. It explolts the fact 
that In a sequence of n lld random varlables wlth common denslty f , there are 
about log(n ) records, where we call the n -th observatlon a record If I t  1s the larg- 
est observatlon seen thus far. If the n- th  observatlon 1s a record, then the lndex 
n ltself 1s called a record tlme. It 1s noteworthy -that glven the value Vi of the 
i- th record, and glven the record tlme Ti of the i- th record, Ti+,-Ti and Vi+l  
are Independent: Ti+,-Ti 1s geometrlcally dlstrlbuted wlth parameter G (Vi ): 

P(T,+, -T;=~ I q,vi)  = G ( V ~ ) ( I - G ( V ~ ) ) ~ - ~ -  ( j 2 1 ) .  

Also, Vi+, has condltlonal denslty f / G  ( V i )  restrlcted to [Vi ,oo). An lnflnlte 
sequence of records and record tlmes {(Vi ,Ti ) , i 31) can be generated as fol- 
lows: 
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The record time method (Devroye, 1980) 

T , t l , i  t l  

P+-G(Vl) 

Generate a random variate v, with density f . 

WHILE True DO 

i & + l  
Generate an exponential random variate E. 
ri + - T ~ - ~ +  r-E / l og ( l -p  1 
Generate v. from the tail density - f ( x )  

112 2 V,-,I* 1-P 
P+-G(l/i)  

It 1s a stralghtforward exerclse to  report the Zn, values glven the sequence of 
records and record times. We should exlt from the loop when Ti > n k .  The 
expected number of loops before haltlng 1s thus equal to  the expected number of 
records In a sequence of length nk , 1.e. I t  1s 

nt 1 7 = log(nk )+r+o (1) 
i = i  

where r=0.5772 ... 1s Euler's constant. We note that the most tlme consuming 
operatlon In every lteratlon 1s the evaluatlon of G .  If the lnverse of G 1s avall- 
able, the llnes 

4 2  2 V,-,l. 
Generate K. from the tail density - f ( X I  

1-P 
P+-G(K) 

can be replaced by 
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Generate a uniform [O,l] random variate u . 
P CPU 
V ; . t G - ' ( p  ) 

A Anal remark 1s In order here. If we assume that G can be computed In one 
unlt of tlme for all dlstrlbutlons, then the (random) tlme taken by the algorlthm 
1s an lnvarlant, because the dlstrlbutlon of record tlmes 1s dlstrlbutlon-free. 

1.4. Exercises. 
1. Tail of the normal densky. Let f be the normal denslty, let t > O  and 

deflne p = G  ( t  ) where G =1-F and F is the normal dlstrlbutlon function. 
Prove the followlng statements: 
A. Gordon's inequality. (Gordon (1941), Mltrlnovlc (1970)). 

B. As t+m, G ( t ) - f  ( t ) / t .  

C. If t =d2log(n /log(n )), then for the qulck ellmlnatlon algorlthm, 

D. 

T = n(n l-') for every E>O as n +cx. 

If t=s--(log(4.rr)+log(log(-(n)))), where s 1s as In polnt C, then 

for the qulck ellminatlon algorlthm, T = 0 (log(n )). Does 
T-(b f c  )log(n ) 1P b ,c  are the constants In the deflnltlon of T (see 
Lemma 1.1) ? 

Let T I , T 2 , . . .  be the record tlmes In fi sequence of lld unlform [0,1] random 
varlables. Prove that E (T,)=m. Show furthermore that log( T,  )--n In pro- 
bablllty as n +m. 

1 n 
2s log 

2. 
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2. RANDOM VARIATES WITH GIVEN MOMENTS 

2.1. The moment problem. 
The classlcal moment problem can be formulated a s  follows. Let { p i  lrz} 

be a collectlon of moments. Determlne whether there 1s at least one dlstributlon 
whlch glves rlse to these moments; If so, construct such a dlstrlbutlon and deter- 
mlne whether I t  1s unlque. Solld detalled treatments of thls problem can be found 
In Shohat and Tamarkln (1943) and Wldder (1941). The maln result Is the follow- 
lng. 

XrV.2.RANDOM VARIATES WITH GIVEN MOMENTS 

~~ 

Theorem 2.1. 
If there exlsts a dlstrlbutlon wlth moments pi  , 15 i , then 

P2s u s  . . . .  

for all lntegers s wlth s 21. The lnequalltles hold strlctly If the dlstrlbutlon 1s 
nonatomlc. Conversely, If the matrlx lnequallty holds strictly for all lntegers s 
wlth s 21, then there exlsts a nonatomic dlstrlbutlon matchlng the glven 
moments. 

Proof of Theorem 2.1. 

fact that 
We wlll only outllne why the matrlx lnequallty 1s necessary. Considering the 

E((c,+c,X+ * * * +csxs)2) 2 0 
for all values of c ,, . . . , c,  , we have by a standard result from llnear algebra 
(Mlrsky (1955, p. 400)) that 

1 P l . . .  P, 

Pl P2 Ps +l  

1-129 ps . . . .  
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Theorem 2.2. 
If there exists a distrlbutlon on [O,m 

1-11 1-12 * * * 1-1,+1 

1-12 1-13 1-1s +2 

with moments pi , ls;, then 

683 

for all lntegers s 20. The lnequalltles hold strlctly If the dlstrlbutlon 1s nona- 
tomlc. Conversely, If the matrix inequality holds strictly for all lntegers s LO, 
then there exlsts a nonatomlc dlstrlbutlon matching the given moments. 

The determinants In Theorems 2.1, 2.2 are called Hankel determinants. 
What happens when one or more of them are zero 1s more cornpllcated (see e.g. 
Wldder (1941)). The problem of the unlqueness of a dlstrlbutlon Is covered by 
Theorem 2.3. 
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Theorem 2.3. 

dlstrlbutlon 1s unlque If Carleman's condltlon holds, 1.e. 
Let pl ,p2 ,  ... be the moment sequence of at least one dlstrlbutlon. Then this 

1 -- 03 

I p2i I 2r 0 0 .  
i =o 

If we have a dlstrlbutlon on the posltlve halfllne, then a sufflclent condltlon for 
unlqueness 1s 

i =o 

When the dlstrlbutlon has a density f , then a necessary and sufficient condltlon 
for unlqueness 1s 

(Kreln's condltlon). 

For example, normal dlstrlbutlons or dlstrlbutlons on compact sets satlsfy 
Carleman's condltlon and are thus unlquely determlned by thelr moment 
sequence. In exerclses 2.2 and 2.3, examples are developed of dlstrlbutlons havlng 
ldentlcal lnflnlte. moment sequences, but wldely varylng densltles. In exerclse 2.2, 
a unlmodal dlscrete dlstrlbutlon 1s glven whlch has the same moments as the log- 
normal dlstrlbutlon. 

The problem that we refer to as the moment problem 1s that of the genera- 
tion of a random varlate wlth a glven collectlon of moments p1,p2, . . . , p,, ,  
where n can be 00. Note that If we expand the characterlstlc functlon 4 of a ran- 
dom varlable In Its Taylor serles about 0, then 

where the remalnder term satlsfles 

Thls uses the fact that If I f l k  I <00, the k- th  derlvatlve of 4 exlsts, and 1s a 
contlnuous functlon glven by .?? ( ( ;X)k  e itx). In partlcular, the k- th  derlvatlve 1s 
In absolute value not greater than E (  I X I ). See for example Feller (1971, pp. 
512-514). The remalnder term Rk tends to 0 In a nelghborhood of the orlgln 
when 

<m.  
I pk I ' I k  

IC 
llm sup 
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Thus, the Taylor series converges In those cases. It follows that q5 1s analytlc In a 
neighborhood of the origin, and hence completely determined by Its power series 
&bout the origin. The condition given above Is thus sumcient for the moment 
sequence to uniquely determine the distribution. One can verify that the condl- 
tlon Is weaker, but not much weaker, than Carleman’s condition. The point of all 
this Is that If we are given an lnflnlte moment sequence which uniquely deter- 
mines the distributlon, we are In fact given the characteristic function In a special 
form. The problem of the generatlon of a random variate with a given charac- 
terlstlc function will be dealt with in section 3. Here we will mainly be concerned 
with the flnlte moment case. Thls 1s by far the most lmportant case in practlce, 
because researchers usually worry about matching the flrst few moments, and 
because the majority of distributions have only a flnlte number of flnlte 
moments. Unfortunately, there are typically an lnflnlte number of dlstrlbutlons 
sharing the same flrst n moments. These include discrete dlstrlbutlons and dis- 
tributions with densities. If some additional constraints are satisfled by the 
moments, I t  may be possible to pick a distribution from relatively small classes of 
dlstrlbutlons. These Include: 
A. 

B. 
C. 
D. 
E. 
F. 

The 

The class of all unimodal densities, 1.e. uniform scale mixtures. 
The class of normal scale mlxtures. 
Pearson’s system of densities. 
Johnson’s system of densities. 
The class of all hlstograms. 
The class of all dlstrlbutions of random variables of the form 
a +bN +cN2+dN3 where N Is normally distributed. 
list is Incomplete, but representative of the attempts made In practlce by 

some statlstlclans. For example, In cases C,D and F, we can match the Arst four 
moments with those of exactly one member In the class except In case F, where 
some combinations of the flrst four moments have no match In the class. The fact 
that a match always occurs In the Pearson system has contributed a lot to the 
early popularity of the system. For a descrlptlon and details of the Pearson sys- 
tem, see exerclse IX.7.4. Johnson’s system (exercise JX.7.12) Is better for quantlle 
matchlng than moment mstchlng. We also refer the reader to the Burr family 
(sectlon IX.7.4) and other famllles given In sectlon IX.7.5. These famllles of dlstrl- 
butlons are usually designed for matching up to four moments. Thls of course 1s 
their main limitation. What Is needed 1s a general algorlthm that can be used for 
arbitrary n >4. In this respect, I t  may flrst be worthwhile to verlfy whether there 
exlsts a uniform or normal scale mixture havlng the given set of moments. If this 
1s the case, then one could proceed with the construction of one such distribution. 
If thls attempt falls, I t  may be necessary to construct a matchlng histogram or 
dlscrete dlstributlon (note that discrete distributions are limits of histograms). 
Good references about the moment problem include Wldder (1941), Shohat and 
Tamarkln (1943), Godwln (1964), von Mlses (1964), Hlll (1969) and Sprlnger 
(1Q79). 
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2.2. Discrete distributions. 
Assume that we want t o  match the flrst 2n-1  moments wlth those of a 

dlscrete dlstrlbutlon havlng n atoms located at xl, . . . , xn , wlth respectlve 
welghts p . . . , pn . We know that we should have 

n 
z p i ( x i ) j  = p j  ( 0 5 j 5 2 n - 1 ) .  

1 =l 

Thls 1s a system of 2 n  equalltles wlth 2 n  unknowns. It has preclsely one solutlon 
If at least one dlstrlbutlon exlsts wlth the glven moments (von Mlses, 1904). In 
partlcular, If the locatlons xi are known, then the p i ' s  can be determlned from 
the flrst n llnear equatlons. The locatlons can flrst be obtalned as the n roots of 
the equation 

x"+Cn-lxn-l+ * * +clx+cO = 0 ,  

where the ci 's are the solutlons of 

To  do thls could take some valuable tlme, but at least we have a mlnlmal solu- 
tlon, In the sense that the dlstrlbutlon 1s as concentrated as posslble In as few 
atoms as posslble. One could argue that this ylelds some savlngs In space, but n 
1s rarely large enough t o  make thls the decldlng factor. On the other hand, I t  1s 
lmposslble to start wlth 2 n  locatlons of atoms and solve the 2 n  equatlons for the 
welghts p i ,  because there 1s no guarantee that all p i  's are nonnegatlve. 

If an  even number of moments 1s glven, say 2 n ,  then we have 2 n  +1 equa- 
tlons. If we conslder n + l  atom locatlons wlth n + l  welghts, then there ls an 
excess of one varlable. We can thus choose one Item, such as the locatlon of one 
atom. Call thls locatlon a .  Shohat and Tamarkln (1943) (see also Royden, 1953) 
have shown that If there exlsts at least one dlstrlbutlon wlth the glven moments, 
then there exlsts at least one dlstrlbutlon wlth at most n +1 atoms, one of them 
located at a ,  sharlng the same moments. The locatlons zo, . . . , xn of the atoms 
are the zeros of 

1 1 Po ' Pn-i 

X U Pi * Pn 

x n + l  a n + l  Pn+1 . I.l2n 

= o .  

The welghts p o , p  , . . , pn are llnear comblnatlons of the moments: 
n 

P i  - - Cj iP j  * 

j =O 
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The coefflclents c j ;  In turn are deflned by the ldentlty 
n x - x j  

j =o j # i X i . - X j  
C j i X j  E J-J- (osi L n )  . 

When the dlstrlbutlon puts all Its mass on the nonnegatlve real Ilne, a sllght 
modlflcatlon is necessary (Royden, 1953). Closely related to discrete dlstrlbutlons 
are the hlstograms: these can be consldered as speclal cases of dlstrlbutlons wlth 
denslt les 

where K 1s a Axed form denslty (such as the unlform [-1,1] denslty In the case of 
a histogram), xi 1s the center of the i - th  component, p i  1s the welght of the i - th  
cbmponent, and hi 1s the ”wldth” of the i - th  component. Densltles of thls form 
are well-known ln the nonparametrlc denslty estlmatlon llterature: they are the 
kernel estlmates. Archer (1980) proposes to  solve the moment equatlons numerl- 
cally for the unknown parameters In the hlstogram. We should polnt out that the 
denslty f shown above Is the denslty of x z + h z  Y where Y has denslty K ,  and 
Z has probablllty vector p . . . , pn on (1, . . . , n }. This greatly facllltates the 
cornputatlons and the vlsuallzatlon process. 

2.3. Unimodal densities and scale mixtures. 
A random varlable X has a unlmodal dlstrlbutlon If and only If there exlsts 

a random varlable Y such that X 1s dlstrlbuted as YU where U 1s a unlform 
[0,1] random varlable independent of Y(Khlnch1ne’s theorem). If U 1s not unl- 
form and Y 1s arbitrary then the dlstrlbutlon of x 1s called a scale mlxture for 
u .  O f  partlcular lmportance are the normal scale mlxtures, whlch correspond to 
the case when U 1s normally dlstrlbuted. For us I t  helps to  be able to verlfy 
whether for a glven collectlon of n moments, there exlsts a unlmodal dlstrlbutlon 
or a scale mlxture whlch matches these moments. Usually, we have a partlcular 
scale mlxture In mlnd. Assume for example that U has moments v1,v2, .... Then, 
because E ( X i  )=E (Yi)E (U’ ), we see that Y has i - th  moment p i  /vi. Thus, 
the exlstence problem Is solved If we can And at least one dlstrlbutlon havlng 
moments pi /vi. 

Applylng Theorem 2.1, then we observe that a sumclent condltlon for the 
moment sequence p i  t o  correspond to  a U scale mlxture 1s that the determlnants 
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1 0  1 

0 1 pa 

1 Pa P4 

are all posltlve for 2s < n  , n odd. Thls was flrst observed by Johnson and Rogers 
(1951). For unlform mlxtures, 1.e. unlmodal dlstrlbutlons, we should replace v i  by 
i / ( i  +I) In the determlnants. Havlng established the exlstence of a scale mixture 
wlth the glven moments, I t  1s then up to  us to  determlne at least one Y with 
moment sequence p ; / u i .  Thls can be done by the methods of the prevlous see- 
tlon. 

By lnslstlng that a partlcular scale mlxture be matched, we are narrowlng 
down the posslbllltles. By thls 1s meant that fewer moment sequences lead to 
solutlons. The advantage 1s that If a solutlon exlsts, i t  1s typlcally "nlcer" than In 
the dlscrete case. For example, If Y 1s dlscrete wlth no atom at 0, and U 1s unl- 
form, then X has a unlmodal stalrcase-shaped denslty with mode at the orlgln 
and breakpolnts at the atoms of Y. If U 1s normal, then x 1s a superposltlon of 
a few normal densltles centered at 0 wlth dlfferent varlances. Let us lllustrate 
brlefly how restrlctlve some scale mlxtures are. We wlll take as example the case 
of four moments, wlth normallzed mean and varlance, p1=Q,p2=1. Then, the 
condltlons of Theorem 2,.1 lmply that we must always have 

L o .  

Thus, p4z(p3)2+l. It turns out that for all p3,pq satlsfylng the lnequallty, we can 
And at least one dlstrlbutlon wlth these moments. Incldentally, equallty occurs 
for the Bernoulll dlstrlbutlon. When the lnequallty 1s strlct, a denslty exlsts. Con- 
slder next the case of a unlmodal dlstrlbutlon wlth zero mean and unlt varlance. 

' The exlstence of at least one dlstrlbutlon wlth the glven moments 1s guaranteed If 

9 16 
5 15 

In other words, ~ ~ > - + - ( p ~ ) ~ .  It 1s easy t o  check that In the (p3,p4) plane, a 

smaller area gets selected by thls condltlon. It 1s preclsely the (p3,p4) plane whlch 
can help us In the fast  constructlon of moment rnatchlng dlstrlbutlons. Thls 1s 
done In the next sectlon. 
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2.4. Convex combinations. 
are random varlables wlth moment sequences pi and vi respec- 

tlvely, then the random varlable X whlch equals Y wlth probablllty p and 2 
wlth probablllty 1-p has moment sequence p pi +(1-p )vi, ln other words, i t  1s 
the convex comblnatlon of the orlglnal moment sequences. Assume that we want 
to match four normallzed moments. Recall that  the allowable area In the (p3,p4) 
plane 1s the area above the parabola , ~ ~ L ( p ~ ) ~ + 1 .  Every polnt (p3,p4) In thls area 
lles on a horlzontal line at helght g4 whlch lntersects the parabola at the polnts 
( - a , p 4 ) ,  ( a , p 4 ) .  In other words, we can match the moments by a slmple 
convex comblnatlon of two dlstrlbutlons wlth thlrd and fourth moments (-43,~~) and ( m , p 4 )  respectively. 

The welght In the convex comblnatlon 1s determlned qulte easlly slnce we 
must have, attachlng welght p t o  the dlstrlbution wlth posltlve thlrd moment, 

If Y and 

Thus, I t  sufflces to take 

It 1s also easy to verlfy that for a Bernoulll ( q  ) random varlable, we have normal- 
lzed fourth moment 

3q 2-3q +1 

9 (1-q 1 
and normallzed thlrd moment 

1-2 q 

&-Fa* 
Notlce that thls dlstrlbutlon always falls on the llmltlng parabola. Furthermore, 
by lettlng q vary from 0 to 1, all polnts on the parabola are obtalned. Glven the 
fourth moment p4, we can determlne q vla the equatlon 

where the plus slgn 1s chosen If p3>0, and the mlnus slgn 1s chosen otherwlse. 
Let us call the solutlon wlth the plus slgn q . The mlnus slgn solutlon 1s 1-q .  If 
B 1s a Bernoulll ( q )  random varlable, then ( B - q ) / m  and 
- ( B - q ) / d m  are the two random varlables correspondlng to the two lnter- 
sectlon polnts on the parabola. Thus, the followlng algorlthm can be used to gen- 
erate a general random varlate wlth four moments p l ,  . . . , p4: 



690 XIV.2 .RANDOM VARIATES WITH G N E N  MOMENTS 

Generator matching first four moments 

Normalize the moments: u t d a ,  

q - -(l+ 2 &l 

P3 
1+ - 

2 
m 

P' 
Generate a uniform [0,1] random variate u 

The algorlthm shown above can be shortened by a varlety of trlcks. As I t  stands, 
one unlform random varlate 1s needed per returned random varlate. The polnt of 
thls example 1s that I t  1s very slmple to  generate random varlates that match four 
moments If one 1s not plcky. Indeed, few users wlll be pleased wlth the convex 
comblnatlon of two Bernoulll dlstrlbutlons used In the example. But lnterestlngly, 
the example can also be used In the constructlon of the dlstrlbutlon of Y ln scale 
mlxtures of the form YU dlscussed In the prevlous sectlon. In that respect, the 
algorlthm becomes more useful, because the returned dlstrlbutlons are " nlcer". 
The algorlthm for unlmodal dlstrlbutlons wlth mode at 0 1s glven below. 
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Simple unimodal distribution generator matching four momenta 

Readjustment of moments: p1c2pl ,  p2-3jJ2, p3+4p3, pr4-5pU6. 
Generate a random variate Y having the readjusted moments (e.g. by the algorithm given 
above). 
Generate a uniform [OJ] random variate U . 
RETURN x +- Yu . 

The algorlthms for other scale mlxtures are slmllar. 
One Anal remark about moment matchlng 1s In order here. Even wlth a unl- 

modality constralnt, there are many dlstrlbutlons wlth wldely varylng densltles 
but ldentlcal moments up to the n - th  moment. One should therefore always ask 
the questlon whether I t  1s a good thlng at all to bllndly go ahead and generate 
random varlates wlth a certaln collection of moments. Let us make thls polnt 
wlth two examples. 

Example fL.l.(Godwin, 1964) 
The followlng two densltles have ldentlcal lnflnlte moment sequences: 

(Kendall and Stuart (1977), see exerclse 2.3). Thus, notlng that 

sf = 0.4658.. . ; s g  = 0.7328 ... , 
A A 

where A =[-7r22/4,7r2/4], we observe that 

I I f -9 1 2 0.5344... . 
Conslderlng that the L ,  dlstance between two densltles 1s at most 2, the dlstance 
0.5344... 1s phenomenally large. 
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Example 2.2. 
The prevlous example lnvolves a unlmodal and an osclllatlng denslty. But 

even If we enforce unlmodallty on our counterexamples, not much changes. See 
for example Lelpnlk’s example descrlbed In exerclse 2.2. Another way of lllustrat- 
lng thls Is as follows: for any symrnetrlc unlmodal denslty f wlth moments p2,  
p4, I t  Is true that 

where the supremum Is taken over all symrnetrlc unlmodal g wlth the same 
second and fourth moments, and w = d m .  It should be noted that 
05~51 In all cases (thls follows from the nonnegatlvlty of the Hankel deter- 
mlnants applled to unlmodal dlstrlbutlons). When f Is normal, w = m  and the 

lower bound is -(1- &), whlch 1s stlll quite large. For some comblnatlons of 

moments, the lower bound can be as large as -. There are two dlfferences wlth 
Example 2.1: we are only matchlng the flrst four moments, not all moments, and 
the counterexample applies to any symrnetrlc unlmodal f , not Just one denslty 
plcked beforehand for convenience. Example 2.2 thus relnforces the bellef that 
the moments contaln surprlslngly llttle lnformatlon about the dlstrlbutlon. To 
prove the lnequallty of thls example, we wlll argue as follows: let f ,g ,h be three 
densltles In the glven class of densltles. Clearly, 

5 
4 

27 

Thus I t  sumces to prove twlce the lower bound for J I h-g I for two partlcular 
densltles h ,g . Conslder densltles of random varlables Yu where U Is unlformly 
dlstrlbuted on [O,l] and Y is lndependent of u and has a symrnetrlc discrete dls- 
trlbutlon wlth atoms at f b  , f c  , where O < b  < c  <w. The atom at c has welght 
p /2, and the atom at b has welght ( l -p ) /2 .  For h and g we will conslder 
dlfferent chokes of b ,c , p  . Flrst, any cholce must be conslstent wlth the moment 
restrlctlons: 

( 1 - p ) b 2 + p c 2  = ~ P u ,  , 
(I-p ) b  4 + p ~  5p4 . 

Solvlng for p glves 

5P4-3p2c 
1-p = 

6 4-b 2c  

Forclng p E[O,l] glves us the constralnts O<3p2c 2-5p45 b 2 ( c  2-b 2) .  It 1s to our 
advantage to take the extreme values for c .  In partlcular, for g we wlll take 
c =d-, b =0, p =w2. It should be noted that thls not yield a densltY 
g slnce there wlll be an atom at the orlgln. Thus, we use an approxlmatlng 
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argument wlth a sequence g, approachlng g In the sense that the atom at 0 Is 
approached by an atom at E ,  +O. Next, for h , we take the llmlt of the sequence 
h, where as n 400,  b 46, p +O, and c --too. Thls 1s the case In whlch the 
rlghtmost atom escapes to lnflnlty but has lncreaslngly negllglble welght p . Slnce 
p 4 0 ,  the contrlbutlon of the rlghtmost atom to the L dlstance Is also o (1). 
Thus, h can be consldered as havlng one atom at &of welght 1/2. We obtaln 
by slmple geometrlcal conslderatlons, 

= 2u2(1-w) . 

Slnce the sequences h, ,gn are entlrely In our class, we see that the lower bound 
for sup J I f -9 1 IS at least ~ ~ ( 1 - w ) .  

9 

2.5. Exercises. 
1. Show that for the normal denslty, the 2i-th moment Is 

/J,; = (2i-1)(2i-3) * * * (3)(1) (i 2 2 )  . 
Show furthermore that Carleman’s condltlon holds. 
The lognormal density. In thls exerclse, we conslder the lognormal den- 
slty 

2 .  

(log(z )I2 -- 
(x >o) . 1 e 202  

&OX 
f ( a : ) =  

Show flrst that thls denslty falls both Carleman’s condltlon and Kreln’s con- 
dltlon. Hlnt: show flrst that  the r - t h  moment 1s pT = Thus, there 
exlst other dlstrlbutlons wlth the same moments. We wlll construct a famlly 
of such dlstrlbutlons, referred to hereafter as Heyde’s famlly (Heyde (1g63), 
Feller (1971, p. 227)): let -1 5 a 5 1 be a parameter, and deflne the denslty 

f a  ( a : )  = f (x)( i+a sfn(2~log(x 1)) (x >o) . 

To show that f a  Is a denslty, and that all the moments are equal to  the 
moments of f o=f , I t  sufflces to show that 

J x  / (a: )sln(2n1og(x >> dx = o 
00 

0 
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3. 

4. 

5. 

6. 

for all lnteger k 20. Show thls. Show also the followlng result due to Lelpnlk 
(1981): there exlsts a famlly of dlscrete unlmodal random varlables X havlng 
the same moments as a lognormal randop2varlable. It sufflces to let X take 
the value aeai wlth probablllty C U - ~  e 4  ’ I2 for i =O,fl,f2,. .., where a > O  
Is a parameter, and c 1s a normallzatlon constant. 
The Kendall-Stuart density. Kendall and Stuart (1977) lntroduced the 
denslty 

Followlng Kendall and Stuart, show that for all real a wlth I a I < I ,  

are densltles wlth moments equal to  those of f . 
Yet another famlly of densltles sharlng the same moment sequence Is glven 
by 

1 - 

where a E(0, l )  1s a parameter. Show that f vlolates Kreln’s condltlon and 
that all moments are equal to  those of f o. Thls example 1s due to StleltJes 
(see e.g. Wldder (1941, pp. 125-126)). 

Let p E(0,-) be a parameter, and let c = ( p  cos(p T ) ) ’ / ~  / r ( l / p  ) be a con- 

stant. Show that the followlng two densltles on ( 0 , ~ )  have the same 
moments: 

1 
2 

f (z)  = c e - z P c o S ( p ~ l  

g (z ) = I (z ) (l+sln(z sln(p n))) 

(Lukacs (1970, p. 20)). 

Fleishman’s family of distributions. Conslder all random varlables of 
the form a+bN+cN2+dN3 where N 1s a normal random varlable, and 
a , b  ,c ,d are constants. Many dlstrlbutlons are known to be approxlmately 
normal, and can probably be modeled by dlstrlbutlons of random varlables 
of the form glven above. Thls famlly of dlstrlbutlons, studied by Flelshman 
(1978), has the advantage that random varlate generatlon Is easy once the 
constants are determlned. To compute the constants, the flrst four moments 
can be matched wlth Axed values /~1,/~2,/~3,pUq. For the sake of slmpllclty, let 
us normallze as follows: p,=0,p2=l. Show that b ,d can be found by solv- 
1ng 

1 = b2+6bd +i5d2+2c2 , 
P4-3 = 24(bd + C  2 ( l + b  2+28bd)+d2(12+48bd +141C 2+255d2)) , 
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7. 

8. 

3. 

where 

l-43 c =  
2(b2+24bd +iosd2+2) ' 

Furthermore, a =-c . Show that not all comblnatlons of normallzed 
moments of dlstrlbutlons (1.e. all palrs (p3,p4) wlth ,uu,2(p3)2+1 ) lead to a 
solutlon. Determlne the reglon In the (pa,p4) plane of allowable palrs. 
Flnally, prove that there exlst comblnatlons of constants for whlch the den- 
slty 1s not unlmodal, and determine the form of the dlstrlbutlon In these 
cases. 
Assume that we wlsh to match the flrst slx moments of a symmetrlc dlstrl- 
butlon (all odd moments are zero). We normallze by forclng p2 to be 1. Show 
flrst that  the allowable reglon In the (p4,pus) plane 1s deflned by the lnequall- 
tles p4>1, psL(p4>2. Flnd slmple famllles of dlstrlbutlons whlch cover the 
borders of thls reglon. Rewrlte each polnt ln the plane as the convex combl- 
natlon of two of these slmple dlstrlbutlons, and glve the correspondlng gen- 
erator, Le. the generator for the dlstrlbutlon that corresponds to thls polnt. 
Let the a -th and b -th absolute moments of a unlmodal symrnetrlc dlstrlbu- 
tlon wlth a denslty be glven. Flnd a useful lower bound for 

where the lnflmum and supremum 1s over all symrnetrlc unlmodal densltles 
havlng the glven absolute moments. The lower bound should colnclde wlth 
that of Example 2.2 In the case a =2,b =4. 

CHARACTERISTIC FUNCTIONS. 

3.1. Problem statement.' 
In many appllcatlons, a dlstrlbutlon 1s best descrlbed by Its characterlstlc 

functlon 4. Sometimes, I t  1s outrlght dlfflcult to invert the characterlstlc functlon 
to obtaln a value for the denslty or dlstrlbutlon functlon. One mlght ask whether 
In those cases, I t  1s stlll posslble to generate a random varlate X wlth the glven 
dlstrlbutlon. An example of such a dlstrlbutlon 1s the stable dlstrlbutlon. In par- 
tlcular, the symmetrlc stable dlstrlbutlon wlth parameter af(0,2] has the slmple 
characterlstlc functlon e - 1  I O. Yet, except for a€{-,1,2}, no convenlent analytlc 

expresslon 1s known for the correspondlng denslty f ; the denslty 1s best com- 
puted wlth the help of a convergent serles or a dlvergent asyrnptotlc expanslon 
(sectlon M.6.3). For random varlate generation In thls slmple case, we refer to 
sectlon M.6. For a130,l] the characterlstlc functlon can be wrltten as a mlxture 
Of trlangular characterlstlc functions. Thls property 1s shared by all real (thus, 
symrnetrlc) convex characterlstlc functlons, also called Polya characterlstlc 

1 
2 

' I  
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functlons. The mlxture property can be used to  obtaln generators (Devroye, 
1984; see also sectlon W.6.7) .  In a black box method one only assumes that 4 
belongs to  a certaln class of characterlstlc functlons, and that 4 ( t )  can be corn- 
puted ln flnlte tlme for every t .  Thus, maklng use of the mlxture property of 
Polya characterlstlc functlons cannot lead to a black box method because 4 h a  
t o  be glven expllcltly In analytlc form. 

Under certaln regularlty condltlons, upper bounds for the denslty can be 
obtalned ln terms of quantltles (functlonals, suprema, and so forth) deflned In 
terms of the characterlstlc functlon (Devroye, 1981). These upper bounds can In 
turn be used in a reJectlon algorlthm. Thls slmple approach 1s developed In sec- 
tlon 3.2. Unfortunately, one now needs to compute f In every lteratlon of the 
reJectlon algorlthm. Thls requlres once agaln an lnverslon of 4, and may not be 
feaslble. One should note however that thls can be avoided If we are able t o  use 
the serles method based upon a convergent serles for f . Thls serles could be 
based upon the lnverslon formula. 

A genuine black box method for a large subclass of Polya characterlstlc func- 
tlons was developed In Devroye (1985). Another black box method based upon 
the sertes method wlll be studled In sectlon 3.3. 

3.2. The rejection method for characteristic functions. 
General reJectlon algorlthms can be based upon the following lnequallty: 

Theorem 3.1. 

characterlstlc functlon 
a denslty f bounded as follows: 

Assume that a glven dlstrlbutlon has two Anlte moments, and that the 
has two absolutely Integrable. Then the dlstrlbutlon has 

The 

I 

’SI4 27r 

1 1  -s Id” I 2nx * 

area under the mlnlmum of the two boundlng curves 2 1s - 
7r m. 
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Proof of Theorem 3.1. 
Slnce 4 1s absolutely lntegrable, f can be computed as follows from 4: 

f 1x1 = -J$(t  1 )e- i tz d t  . 
27r 

Furthermore, because the flrst absolute moment 1s flnlte, 4’ exlsts and 

Because the second moment 1s flnlte, 4’’ exlsts and 

(Loeve, 1963, p. 199). From thls, all the lnequalltles follow trlvlally. 

The lntegrablllty condltlon on 4 lmplles that f 1s bounded and contlnuous. 
The lntegrablllty condltlon on 4‘’ translates lnto a strong tall condltlon: the tall 
of f can be tucked under a qulckly decreaslng curve. Thls explalns why f can 
globally be tucked under a bounded lntegrable curve. Based upon Theorem 3.1, 
we can now formulate a flrst general rejectlon algorlthm for characterlstlc func- 
tlons satlsf’ylng the condltlons of the Theorem. 

General rejection algorithm for characteristic functions 

[SET-UP] 

[GENERATOR] 
REPEAT 

Generate two iid uniform [-1,1] random variates U.V. 
IF U C O  

(Note that this is I u I av’.) 
UNTIL 2’ < f  (x) 
RETURN x 
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Various slmpllficatlons are possible In this rudimentary algorithm. What matters 
1s that f is still required in the acceptance step. 

Remark 3.1. 

The expected number of lteratlons is ”dJ-. This 1s a scale 

lnvariant quantity: Indeed, let X have characteristic functlon $. Then, under the 
condltlons of Theorem 3.1, $(t  )=E (e i tx ) ,  $”(t )=E (-X2e i tx) .  For the scaled 
random varlable ax, we obtain respectively $ ( a t )  and a2$” (u t ) .  The product of 
the lntegrals of the last two functions does not depend upon a .  Unfortunately, 
the product 1s not translation lnvariant. Noting that X +c has characterlstlc 
functlon $( t  ) e  

7r 

, we see that J I $ I 1s translatlon lnvarlant. However, 

1s not. From the quadratic form of the Integrand, one deduces quickly that the 
lntegral is approxlmately mlnlmal when c =E ( X ) ,  1.e. when the dlstributlon 1s 
centered at the mean. Thls 1s a common sense observatlon, relnforced by the 
symmetrlc form of the domlnatlng curve. Let us Anally note that in Theorem 3.1 
we have implicitly proved the lnequallty 

which is of Independent interest In mathematical statlstlcs. 

If the evaluation of f 1s to  be avolded, then we must And at the very least a 
converglng serles for f . Assume Arst that $ is absolutely Integrable, symmetrlc 
and nonnegatlve. Then ( x )  is sandwlched between consecutlve partial sums in 
the series 

X 2  
1 0  +-f x 4  f ( 0 ) - 2 ! 1  ( 1 4! 

”(0)- * . * , 

Thls can be seen as follows: slnce cos(ts ) Is sandwlched between consecutlve par- 
tlal sums In Its Taylor series expanslon, and since 

f (5)  = -J$(t)cos(tx) 1 dt  , 
27r 

we see that by our assumptlons on $, f ( x )  Is sandwlched between consecutlve 
partlal sums in 

x 2  x 4  vo--v2+-v4- . . * , 
2! 4! 
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where 

V2n =--Jt2n 1 4 ( t )  dt . ’ 
2T 

If J t 2 ”  $ ( t )  dt Is flnlte, then f ( 2 n )  exlsts, and Its value at 0 1s equal to  I t .  Thls 
glves the desired collectlon of lnequalltles. Note thus that for an inequality 
lnvolvlng f ( 2 n  t o  be valld, we need to  ask that 

J t 2 ” 4 ( t )  dt  < 00 . 

Thls moment condltlon on 4 Is a smoothness condition on f . F o r  extremely 
smooth f , all moments can be flnlte. Examples lnclude the normal density, the 
Cauchy denslty and all symmetric stable densltles with parameter at least equal 
to one. Also, all characterlstlc functlons wlth compact support are Included, such 
as the trlangular characterlstlc functlon. If furthermore the serles x 2n u2,, /(2n )! 
1s summable for all x >0, we see that f Is determlned by all Its derivatives at 0. 
A sufflclent condltlon 1s 

1 

Thls class of densltles 1s enormously smooth. In addltlon, these densltles are unl- 
modal wlth a unlque mode at 0 (see exerclses). Random varlate generatlon can 
thus be based upon the alternatlng series method. As domlnatlng curve, we can 
use any curve available to us. If Theorem 3.1 Is used, note that 
J 14 I =J4=f (0). 
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Series method for very smooth densities 

[NOTE: This algorithm is valid for densities with a symmetric real nonnegative characteris- 
tic function for which the value of f is uniquely determined by the Taylor series expansion 
of f about 0.1 
[SET-UP] 

[GENERATOR] 
REPEAT 

Generate a uniform [0,1] random variate u ,  and a random variate x with density 
proportional to  g (z )=min( a , b /z 2). 

S+f (0) , n +-0 , Q 
WHILE T < S  DO 

T+-Ug (X) 
(prepare for series method) 

n +n +I , Q 4--QX2/(2n ( 2 n  -1)) 
S +-S +Qf  (")(o) 
IF T <s THEN RETURN x 
n t n  +I , Q +-QX2/(2n ( 2 %  -1)) , S +S + Q f  (*)(0) 

UNTIL False 

Thls algorithm could have been presented in the sectlon on the series method, or 
in the sectlon on unlversal algorithms. I t  has a place in thls section because i t  
shows how one can avold inverting the characterlstlc functlon In a genera1 rejec- 
tion method for characteristic functions. 

3.3. A black box method. 

puted by the lnverslon formula 
When 4 1s absolutely Integrable, the value of the denslty f can be com- 

Thls integral can be approximated in a number of ways, by using well-known 
technlques from numerlcal integratlon. If such approximatlons are to be useful, I t  
is essential that we have good explicit estimates of the error. The approxlmatlons 
include the rectangular rule 
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where [ a  ,b ] Is a flnlte Interval. Other popular rules are the trapezoidal rule 

and Simpson’.s rule 

These are the flrst few rules in an lnAnlte sequence of rules called the Newton- 
Cotes integration formulas. The simple trapezoldal rule lntegrates linear func- 
tions on [ a  ,b ] exactly, and Slmpson’s rule lntegrates cubics exactly. The next few 
rules, llsted for example In Davls and Rablnowltz (1975, p. 83-84), lntegrate 
higher degree polynomials exactly. For example, Boole’s rule 1s 

The error committed by these rules 1s very important to us. In general $ Is a 
complex-valued function; and so are the estimates r ,  , t, , etcetera. A llttle care 
should be taken when we use only the real parts of these estimates. The main 
tools are collected In Theorem 3.2: 



Theorem 3.2. 

and 
E,, = 

Then: 

Let [-a ,a ] be a flnlte lnterval on the real Ilne, let n be an arbltrary Integer, 
and let the denslty f ( z )  be approximated by f ,, (a:) where f , (a:) 1s Re(r, (z)), 
Re(t, (5 )), Re(s, (z )), or Re( b, (a: )). Let X be a random varlable wlth denslty f 

j -th absolute moment p ;. Deflne the absolute dlfference 
f (z )- f , (z ) I , and the tall Integral 

-a 00 

A. If t, 1s used and pl<oo, then 

B. If t, 1s used and ,u2<00, then 

C. If s, 1s used and p4<oo, then 
4 

3. If b ,  IS used and &<00, then 
6 

Before provlng Theorem 3.2, i t  1s helpful to polnt out the followlng lnequalf- 
tles: 
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Lemma 3.1. 
Let q5 be a characterlstlc functlon, and let ?+b be deflned by 

q( t )  = b(t )e- i tz . 
Assume that the absolute moments for the dlstrlbutlon correspondlng to 4 are 
denoted by p j .  Then, If the j - t h  absolute moment 1s flnlte, 

where j=O,1,2 ,... . 

Proof of Lemma 3.1. 

tlon that 
Note that $ j ) = g j  e-itz for some functlon g j  . It can be verlfled by lnduc- 

When p j  <oo, b ( j )  1s a bounded contlnuous functlon glven by 

s ( i z ) j  e f (x) dx. In partlcular, I I L p j .  If we also use the lnequalltles 
k - 

hk 5 h j  j ( k S . i ) ,  
then we obtaln 

Proof of Theorem 3.2. 
1 

2n 
Let us deflne ?+b(t)=-4(t)e-it‘. Then by Lemma 3.1, 
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where p j  1s the flnlte j - t h  absolute moment of the dlstrlbutlon. Next, we need 
some estlmates from numerlcal analysis. In partlcular, 

-a  

To the last term, whlch 1s an error term in the estlmatlon of the lntegral of Re(+) 
over a flnlte lnterval, we can apply estlmates such as those glven In Davls and 
Rablnowltz (1975, pp. 40-64). To apply these estlmates, we recall that, when 
p j  <00, $ 1s a bounded contlnuous functlon on the real line. If r ,  1s used and 
p1 < 00, then the last term does not exceed 

If t, 1s used and p2<00, then the last term does not exceed 

If s, 1s used and p4<00, then the last term does not exceed 

If 6,  1s used and &<O0, then the last term does not exceed 

The bounds of Theorem 3.2 allow us to apply the serles method. There are 

The cholce of a as a functlon of n . 
The selectlon of a domlnatlng curve g for rejection. 

two key problems left t o  solve: 
A. 

B. 
It 1s wasteful t o  compute t, , t ,+1 , tn+2, . . .  when trylng to  make an acceptance or 
reJectlon declslon. Because the error decreases at a polynomlal rate wlth n ,  I t  
seems better t o  evaluate t , t  for some c > 1  and k=1,2, ... . Addltlonally, I t  1s 
advantageous to  use the standard dyadlc ”trlck” of computlng only t,, t,, t,, 
etcetera. When computlng t,, , the computatlons made for t, can be reused pro- 
vlded that we allgn the cutpolnts. In other words, If a, 1s the constant a wlth 
the dependence upon n made expllclt, I t  1s necessary to  demand that 

a2‘ 

2k 
- 

, 
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be equal to  

or to  

Thus, a,k+l 1s equal to a,t or to  twlce that value. Note that for the estimates f ,  
In Theorem 3.2 to tend to f (a:), I t  1s necessary that a, +co (unless the charac- 

terlstlc functlon has compact support), and that a, = o  (n j + ' )  where j is 1,2,4 
or 6 depending upon the estimator used. Thus, i t  does not hurt to choose a, 
monotone and of the form 

i - 

where C k  IS a posltlve Integer sequence satisfylng ck +1-ck  E{o,I}, and a IS a con- 
stant. 

The problem of the selectlon of a domlnatlng curve has a slmple solutlon In 
many cases. To be able to  use Theorem 3.2, we need upper bounds for p j  and 

s I d I . Lucklly, thls 1s also sufflclent for the deslgn of good upper bounds. TQ 

make thls polnt, we conslder several examples, after an auxiliary lemma. 

00 

a 

Lemma 3.2. 

derlvatlve $(, where n 1s a nonnegatlve Integer. Then 4 has a denslty f where 
Let 4 be a characterlstlc functlon wlth continuous absolutely lntegrable n -th 

If s I t I I 4 ( t )  I dt  <m, then d has a Llpschltz denslty f wlth Llpschltz con- 
stant not exceedlng 

2 n  
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Proof of Lemma 3.2. 

denslty f exlsts, and the followlng lnverslon formula 1s valld: 
When 6 has a contlnuous absolutely lntegrable n -th derlvatlve 6(fl ), then a 

The flrst lnequallty follows dlrectly from thls. Next, assume that 
J I t 1 I ( f ( t )  I dt (00 .  Once agaln, a denslty exlsts, and because f can be 
computed by the standard lnverslon formula, we have 

1 d ( t )  d t  I ( x 1 - j  ( y )  I = - I J(e- i tz-e- i ty  
1 

2n I 

Example 3.1. Characteristic functions with compact support. 
Assume that 4 1s known to vanlsh outslde [-A ,A ] for some flnlte value A . 

It should be stressed that thls 1s a very strong condltlon of smoothness for the 
denslty f of thls dlstrlbutlon. From Lemma 3.2, we know that f 1s a bounded 
dens1 ty: 

Furthermore, f 1s Llpschltz wlth Llpschltz constant C not exceedlng A 2 / ( 2 ~ ) .  
The densltles In thls class can have arbltrarlly large talls, and can not be unl- 
formly bounded wlthout lmposlng some sort of tall condltlon. For a detailed dls- 
cusslon of thls, we refer to sectlon VII.3.3, and In partlcular t o  Example VII.3.4, 
where a domlnatlng curve for a Llpschltz ( c )  denslty on the posltlve real llne 
wlth absolute moment p ,  ( j  >2) 1s glven. The area under that domlnatlng 
curve 1s 

Here the factor 2 allows for the extenslon of the bound to  the entlre real llne. 
Note tha t  wlth C =A 2 / (2n) ,  the rejectlon constant becomes 
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whlch 1s scale lnvarlant. 
We suggest that a be plcked constant and equal to A ,  slnce T, -0 - In 

Theorem 3.2 when a > A .  1 

Example 3.2. Unimodal densities. 
For unlmodal densltles wlth mode at 0, a varlety of good domlnatlng curves 

were glven In sectlon VII.3.2. These requlred a bound on the value of f (0) and 
one addltlonal plece of lnformatlon, such as an upper bound for p j .  For the 
bound at the mode, we can use 

It 1s dlfflcult to verlfy the unlmodallty of a denslty from a characterlstlc functlon, 
so thls example 1s not as strong as Example 3.1. Also, the cholce of a causes a 
few extra problems. See Example 3.3 below. 

Example 3.3. Optimization of parameter a. 
Uslng a Chebyshev type lnequallty applled to characterlstlc functlons, 

co 
0 

a' 
SI41 L 9 

a 

we can obtaln upper bounds of the form ca +da-' for the error E,, In Theorem 
3.2, where c ,d ,k ,r are posltlve constants, and c depends upon n . Consldered as 
a functlon of a ,  thls has one mlnlmum at 

1 

The mlnlmal value 1s 
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What matters here 1s that the only factor depending upon n 1s the flrst one, and 
that  i t  tends to 0 at the rate c r / ( k + r ) .  Slnce c varies typically as n - ( k - l )  for the 
estlmators given In Theorem 3.2, we obtain the rate 

r ( k - I )  
k + r  

-- 

This rate 1s necessarlly subllnear when r=1,  regardless of how large k 1s. Note 
that I t  decreases quickly when r 2 2  for all usual values of k . For example, wlth 
r =2 and Slmpson's rule (k =5), our rate 1s n-8/7.  With r =3 and the trapezoidal 
rule ( k = 3 ) ,  our rate IS n-3/2.  

Example 3.4. Sums of iid uniform random variables. 

The sum of m ild uniform [-ill] random varlables has characteristic functlon 
The unlform denslty on [-1,1] has characteristic function d( t  ) = sln(t ) / t  . 

The corresponding denslty is unimodal, which should be of help in the derlvatlon 
of bounds for the denslty. By taking consecutlve derlvatlves of d m ,  i t  1s easily 
establlshed that the second moment p2 is -, m and that the fourth moment p4 is 

A 3 
m' 2m --- . Furthermore, the mode, which occurs at zero, has value 
3 15 

1 t 2  t 4  < -Jmin((i--+-)m , I t I -m ) dt 
- 2n 6 120 

m t 2  
--t2(1--) 

2o , I t  I - " ) d t  
1 < -Jmln(e - 2n 

where we split the integral over the lntervals [-1,1] and its complement. We now 
refer to Theorem VII.3.2 for symrnetrlc unlmodal densltles bounded by M and 
havlng r - th  absolute moment p r .  Such densltles are bounded by 
mln(M,(r +l)pr / I 5 I r + l ) ,  and the domlnating curve has lntegral 

1 r - -  r+1 
-((T +I)pr ) r + l  M . 

T 
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For example, for T =4, we obtain In our example 
1 4 .  1 2 

5 5 - 6 0 -  
4 3  19 

- -  5 
~ ( 5 ~ 4 )  M - -(-) (-) 

as m - w .  In other words, as m+w,  the rejection constant tends to a Axed 
value. One can verlfy that this same property holds true for all values of T >o. 
This example is continued In Example 3.6. 

This leaves us with the black box algorithm and Its analysis. We assume 
that a dominatlng curve cg  Is known, where g 1s a density, that another func- 
tion h is known havlng the property that 

00 

a 

and that integrals will be evaluated only for the subsequence a,2k ,k L O ,  where 
a ,  Is a given Integer. Let f, denote a numerlcal Integra1,estlmating $J such as 
T ,  , s, , t, or b ,  . This estlmate uses as lnterval of integratlon [-I ( n  ,z ) , l  (n  ,x )] 
for some functlon 2 which normally diverges as n tends to 00. 

Series method based upon numerical integration 

REPEAT 
Generate a random variate X with density g . 
Generate a uniform [0,1] random variate U. 
Compute T t U c g  (X) (recall that  f S c g ) .  
n t u &  ,a t l ( n  ,XI (prepare for integration) 

REPEAT 
W t f ,  (X) (f, is an integral estimate of f =[$ with parameter n on inter- 
val [-a ,a ]: the number of evaluations of q5 required is proportional to n ) 
Compute an upper bound on the error, E. (Use the bounds of Theorem 3.2 

n +2n 

plus h ( a  ).) 

UNTIL IT-WI>E 
UNTIL T < W 
RETURN x 

The flrst lssue Is that of correctness of the algorlthm. Thls bolls down to verlfylng 
Jvhether the algorlthm halts with probablllty one. We have: 

1 

I 
I 
1 

.-- 
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Theorem 3.3. 

wlth probablllty one, when 

llm Z ( n , x )  = oc) 

llm h ( a  ) = 00 

The algorlthm based upon the serles method glven above 1s correct, 1.e. halts 

(all x )  , 
n +03 

a -+oo 

(thls forces 4 to  be absolutely Integrable), and one of the following condltlons 
holds: 
A. 

B. 
C. 
D. 
Here p j  1s the j - t h  absolute moment for f . 

r ,  1s used, pl<0o, and I ( n , x ) = ~ ( n ’ / ~ )  for all x. 
t ,  1s used, p 2 < m ,  and I(n , x ) = o  (7~~’~) for all x. 
s, 1s used, p,<00, and l ( n , x ) = o  (n4/‘) for all x. 
b,  1s used, p6<oo, and 1 (n  ,a:)=o (n6/7) for all x. 

Proof of Theorem 3.3. 
We need only verlfy that the error bound used In the algorlthm tends to 0 as 

n +oo for all x . Theorem 3.3 1s a dlrect corollary of Theorem 3.2. 1 

Theorem 3.3 1s reassurlng. Under very mlld condltlons on the denslty, a 
valld algorlthm indeed exlsts. We have to know ,uj for some j and we need also 
an expllclt expresslon for the tall bound h ( a  ). The theorem Just states that 
glven thls lnformatlon, we can choose a functlon I ( n , x )  and an estlmator f, 
whlch guarantee the valldlty. Unfortunately, there is a snake In the grass. The 
functlon l(n ,s) has a profound lmpact on the tlme before haltlng. In many 
examples, the expected tlme 1s 00. Thus, let us conslder the expected number of 
evaluatlons of $ (or 9) before haltlng. This can’t posslbly be glven wlthout dls- 
cusslng how large h ( . )  Is, and whlch functlon I( . , . )  1s plcked. Perhaps the best 
thlng to  do at thls stage 1s to  offer a helpful lemma, and then to lllustrate I t  on a 
few examples. 

-- I 
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Lemma 3.3. 

tlons h and 2 ,  we have an inequallty of the type 
Conslder the serles method glven above, and assume that for the glven func- 

I f (z)-f , (z)  I 5 C(a:)n-" (n 21 9 all a : )  9 

where C 1s a posltlve function and a>l  1s a constant. If u o = l  and f, requlres 
pn +1 evaluations of $J for some constant P (for t ,  ,P=1, and for s, , p=2), then 
the expected number of evaluatlons of $J before haltlng does not exceed 

where y 1s a number satlsfylng 

ay > 1 9 7  5 1 .  

Proof of Lemma 3.3. 
By Wald's equatlon, our expected number 1s equal to c tlmes the expected 

number of evaluatlons In the flrst lteratlon (regardless of acceptance or reJectlon). 
Let us flrst condltion on X=z wlth denslty g .  For f we use up p+1 evalua- 
tlons In all cases. The probablllty of havlng to  evaluate f does not exceed 
2C(z)l-"/cg (5). Contlnuing In thls fashlon, i t  is easlly seen that the expected 
number of evaluations of $J 1s not greater than 

Taklng expectatlons wlth respect to g (5) dx and multiplylng wlth c glves the 
uncondltlonal upper bound 

c (P+l) + 5 ( (Pzk +'+I.)! mln(2C (z )(zk )-",cg (z )) dz) 

5 c (P+I) + 
- < c (p+i) + J (2c (a: ))7(cg (Z ))'-r da: 

k =o 
03 

( (~2 '+ '+1)J  m l n ( 2 ~ ( z  >(2k )-a,cg (z 1) dz) 
k =O 

00 
2-k 7" (P2k +'+1) 

k =O 

= c (P+1) + 27c1-f CYgl-7 2p + 
1-21-7" 1-27" 

( 
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where 7 1s a number satlsfylng 

C r y > 1 , 7 5 1 .  

By Holder’s lnequallty, the integral In the last expresslon does not exceed 

Lemma 3.3 reveals the extent to whlch the efflclency of the algorlthm 1s 
affected by c ,C (5 ),g (a: ) and p j .  

Example 3.5. Characteristic functions with compact support. 
Assume that the characterlstlc functlon vanlshes outslde [-A ,A 1. If we take 

I (n ,a: )=A , then h EO ln the algorlthm. Note that thls cholce vlolates the con- 
slstency condltlons of Theorem 3.3, but leads nevertheless to  a conslstent pro- 
cedure. Wlth t ,  , we have p=l,cr=2 and an error 

E, 5 C(Z)7P 

where 

Wlth s, , we have p=2, a=4 and 

’Wlth both error bounds, Jc=oo, so we can’t take 7=1 In Lemma 3.3. Also, 
1 2-- Jc  r < m  

1 1 
7 a 

when ->2+-. Thus, for the bound of Lemma 3.3 to  be useful, we need to 

choose 
1 CY 
- < 7 < - .  a 2a+1 

1 2  1 4  
2 5  4 9  

Thls yields the lntervals (-,-) and (-,-) respectlvely. Of course, the former 

lnterval 1s empty. Thls 1s due to the fact that the last lnequallty In Lemma 3.3 
(comblned with Theorem 3.2) never leads to a flnlte upper bound for the tra- 
pezoldal rule. Let us further concentrate therefore on s, . Note that 
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where ,u$ 1s the fourth absolute moment for g . Typlcally, when g 1s close to f , 
the fourth moment 1s close to that of f . We won't proceed here wlth the expll- 
clt computatlon of the full bound of Lemma 3.3. It sufflces to note that the 
bound 1s large when elther A or p4 Is large. In other words, I t  1s large when the 
support of 4 1s large. (the denslty 1s less smooth) and/or the tall of the denslty 1s 
large. Let us conclude thls sectlon by repeatlng the algorithm: 

Series method based upon numerical integration 

[NOTE: The characteristic function 4 vanishes off [-A , A ] ,  and the fourth absolute mo- 
ment does not exceed p,.] 

REPEAT 
Generate a random variate x with density g . 
Generate a uniform [0,1] random variate u.  
Compute T t U c g  (X) (recall that f s c g  ). 
n +a (prepare for integration) 
REPEAT 

w+-Re(s,(X)) ( 8 ,  is Simpson's integral estimate of f =S$J with parameter 
n on interval [-A ,A 1; the number of evaluations of I$ required is 2n +1) 

n t 2 n  
UNTIL I T-W \ > E  

UNTIL T < W 
RETURN x 

For domlnatlng curves cg ,. there are numerous posslbllltles. See for example 
Lemma 3.2. In Example 3.1, a domlnatlng curve based upon an lnequallty for 
Llpschltz densltles (sectlon VII.3.4) was developed. The rejectlon constant c for 
that example 1s 

.-- I 
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Example 3.6. Sums of iid uniform random variables. 
This is a contlnuatlon of Example 3.4, where a good domlnatlng denslty was 

found for use In the reJectlon algorlthm. What 1s left here 1s malnly the choice of 
h and 1 for use In the algorithm. Let us start wlth the declslon to estlmate by 
Simpson's rule s, . Thls 1s based upon a qulck prellmlnary analysls whlch shows 
that the trapezoidal rule for example Just Isn't good enough to  obtaln flnlte 
expected tlme. 

The functlon h (a ) can be chosen as 
1 h ( a ) =  

nu m-l(m -1) 

where m 1s the number of unlform [-1,1] random varlables that are summed. To 
see thls, note that 

Glven X = s  In the algorlthrn, we see that wlth s,, the error E,  Is  not greater 
than 

1/4 4 
(2a IS( I 5  I +P4 1 

E, I h ( 4 +  
360 m4 

7 

where a determlnes the lntegratlon interval (Theorem 3.2). Optlmizatlon of the 
upper bound wlth respect to a 1s slmple and leads t o  the value 

1 

a = [  9 n 4  

4( I 2 I +/-441'4) 

Wlth this value for a (or 1 (n ,x )), we obtaln 

E, _< C(z)n-" 

for a=4(m -l)/(m +4) and 
m -1 

This 1s all the users need to  Implement the algorlthm. We can now apply Lemma 
3.3 t o  obtaln an idea of the expected complexity of the algorithm. We will show 
that the expected tlme 1s better than O(m(5+')/8) for all E > O .  A brlef outllne of 
the proof should sumce at thls polnt. In Lemma 3.3, we need to pick a constant 

7. The condltlons a7> 1 and 
1 2-- c 

cy<-. 

< 00 force us t o  lmpose the condltlons 
4m -4 m +4 

4m -4 9m -4 
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Both lnequalltles can be satlsfled slmultaneously for all m Bo. N t e r  flxlng 7, 
compute all quantltles In the upper bound of Lemma 3.3. Slnce 
C (x)=(co+o (1))( I x I +P, ' /~ ) *  wlth C0=4/(9T), I t  1s easy to see that 

- 

1 

where X 1s a random varlable wlth denslty g , and a=4(m -l) /(m +4). We can 
choose g such that E ( I X I *) 1s close to p4"l4 (e.g., In Example 3.4, take r =6 
or larger In the bound for unlmodal densltles; taklng r = 4  Isn't good enough 
because for r =4, E (  I X I 4)=00). Notlng next that p4'j4 - 6 /3ll4 as 

m 400, we note that SCg lncreases as a constant tlmes ma/2. Next, I C  
lncreases as a constant tlmes 

1 2-- 

1 
7 

l+*(2--) 

4 
P4 

9 2  --- 
which In turn lncreases as m 

57 
2 

7 .  The upper bound In Lemma 3.3 lncreases as 
- 2-27+ --2 97 

m = m  . 

The smallest allowable value for 7 1s l/cr-1/4. Thus, the upper bound on the 
expected complexlty 1s of the order of magnltude of m5/'. 

3.4. Exercises. 
1. Show that when a characterlstlc functlon I$ 1s absolutely Integrable, then the 

dlstrlbutlon has a bounded contlnuous denslty f . Is the denslty also unl- 
formly contlnuous? 

2. Construct a symmetrlc real characterlstlc functlon for a dlstrlbutlon wlth a 
denslty, havlng the property that 4 takes negatlve and posltlve values. 

3. Conslder symmetrlc nonnegatlve characterlstlc functlons 4, and deflne 
vPn = J t P n  4(t ) dt . 
A. Show that vzn )=o ( n  ) lmplles that (x2n u2n ) / ( 2 n  )! 1s summable 

for all x >O. 

B. Show that f 1s unlmodal and has a unlque mode at 0 (Feller, 1971, p. 
528).  

C. In the alternatlng serles algorlthm for thls class of densltles glven In the 
text, why can we take b =pl or b =o In the formula for the doinlnatlng 
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curve where p 1  1s the flrst absolute moment for f and a 1s the standard 
devlatlon for f ? 
A contlnuatlon of part C. If all operatlons in the algorlthm take one 
unlt of tlme, glve a useful sufflclent condltlon on for the expected 
tlme of the algorlthm to be flnlte. 

4. The followlng 1s an lmportant symmetrlc nonnegatlve characterlstlc func- 

D. 

tlon: 

1 - - d 2  t 

u + 2 u + .  . . 
'(' 

= d s l n h ( a  ) 
1+2 3! 5! 

(see e.g. Anderson and Darllng, 1952). Near t =0, 4 varles as 1- I t I / 6 .  
Thls lmplles that the flrst absolute moment 1s lnfinlte. Flnd a domlnatlng 
curve for thls partlcular characterlstlc functlon, verlfy that the denslty f 1s 
determlned by Its Taylor serles about 0, and glve all the detalls of the alter- 
natlng serles method for thls dlstrlbutlon. 
The followlng characterlstlc functlon appears as the llmlt of a sequence of 
characterlstlc functlons In mathematical statlstlcs (Anderson and Darllng, 
1952): 

5 .  

-2nit ji. 
Glve a finlte tlme random varlate generator for thls dlstrlbutlon. Ignore 
efflclency lssues (e.g., the expected tlme 1s allowed t o  be lnfinlte). 
Glve the full detalls of the proof that the expected number of evaluatlons of 
4 In the serles method for generating the sum of m lld unlform [-l,l] ran- 
dom varlables (Example 3.6) 1s 0 (m(5$-')/8) for all E > O .  

How can you lmprove on the expected cornplexlty In Example 3.6? 

6. 

7. 

4. THE SIMULATION OF SUMS. 

4.1. Problem statement. 
Let x be a random varlable wlth denslty f on the real llne. In thls sectlon 

we conslder the problem of the slmulatlon of Sn=X,+ . +Xn where 
X,, . . . , X ,  are lld random varlables dlstrlbuted as X. The nalve method 
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I 

7 17 

Naive method 

s t o  
FOR i:=l 'TO DO 

Generate X with density f . 
s +-s +x 

RETURN s 

takes worst-case or expected tlme proportional to n depending upon whether X 
can be generated In constant worst-case or constant expected tlme. We say that a 
generator Is unlformly fast when the expected time E ( Tn ) needed to generate S, 
sat lsfles 

SUP E ( T , )  < 0 0 .  
n 21 

Thls supremum Is allowed to  depend upon f . Note that the unlformity 1s wlth 
respect to n and not t o  f . Thls dlffers from our standard notlon of unlformlty 
over a class of dlstrlbutlons. 

In trylng to develop unlformly fast generators, we should get a lot of help 
from the central llmlt theorem, which states that under some condltlons on the 
distrlbutlon of X ,  the sum S,, , properly normallzed, tends In dlstrlbution to one 
of the stable laws. Ideally, a unlformly fa s t  generator should return such a stable 
random varlate most of the time. What complicates matters Is that the dlstrlbu- 
tlon of s,, 1s not easy to describe. For example, In a reJectlon based method, the 
computation of the value of the density of S,, at one polnt usually requires time 
lncreaslng wlth n .  Needless to say, I t  1s thls hurdle whlch makes the problem 
both challenging and Interestlng. 

In a flrst approach, we wlll cheat a blt: recall that If 4 1s the characterlstlc 
functlon of X ,  then S,, has characterlstlc function 9".  If we have a unlformly 
fast generator for the famlly {$,d2, . . . , (6" ,... }, then we are done. In other 
words, we reduce the problem to that of the generation of random variates wlth a 
glven characterlstlc function, dlscussed In section 3. The reason why we call thls 
cheatlng Is that 9 Is usually not available, only f . 

In the second approach, the problem Is tackled head on. We wlll flrst derlve 
lnequalltles which relate the denslty of S,, to the normal density. In proving the 
Inequalltles, we have to rederlve a so-called local central llmlt theorem. The ine- 
qualltles allow us to design unlformly fas t  rejection algorithms which return a 
stable random varlate wlth high probablllty. The tlghtness of the bounds allows 
us to obtaln thls result desplte the fact  that  the density of s,, can't usually be 
computed In constant time. When the density can be computed In constant tlme, 
the algorlthm 1s extremely emclent. Thls 1s the case when the density of s, has 
a relatlvely simple analytlc form, as In the case of the exponential density when 
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s,, is gamma (n 1. 
Other solutlons are suggested In the exerclses and In later sectlons, but the 

m m t  promlslng generally appllcable strategles are deflnltely the two mentloned 
above. 

4.2. A detour via characteristic functions. 
S, has characterlstlc functlon 4n when x has characterlstlc functlon 4. 

Thls fact can be used to generate sn emclently provlded that al l  the b,, 's belong 
to a famlly of characterlstlc functlons for whlch a good emclent generator 1s 
avallable. 

One such famlly 1s the famlly of Polya characterlstlc functlons dealt wlth In 
sectlon W.6.7.  In partlcular, If 4 1s Polya, so 1s 4" .  Based upon Theorems N.6.8 
and W.6.9, we can conclude the followlng: 

Theorem 4.1. 
Y 
2 

If 4 1s a Polya characterlstlc functlon, then X+- has characterlstlc func- 

tlon 4" when Y,z  are lndependent random varlables, Y has the FVP denslty 
(defined In Theorem rV.6.9), and 2' has dlstrlbutlon functlon 

Here 4' 1s the rlght-hand derlvatlve of 4. When F 1s absolutely contlnuous, then 
I t  has denslty 

6 2n (n  - I ) ~ ' ~ ( s  )c$" -~ (s  )+s 2n $"(s )$n-'(s ) (s >o) . 

When $ 1s expllcltly glven, and I t  often is, thls method should prove to  be a 
Iormldable competitor. For one thlng, we have reduced the problem to  one of 
generatlng a random varlate wlth an expllcltly glven dlstrlbutlon functlon or den- 
sity, 1.e. we have taken the problem out of the domaln of characterlstlc functlons. 

The prlnclple outllned here can be extended to  a few other classes of charac- 
terlstlc functlons, but we are stlll far away from a generally appllcable technlque, 
let alone a universal black box method. The approach outllned ln the next sectlon 
1s better sulted for thls purpose. 
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4.3. Rejection based upon a local central limit theorem. 
We assume that f is a zero mean denslty wlth flnlte variance u2. Summlng 

n ild random varlables wlth this denslty 1s known to glve a random varlable wlth 
approximately normal (0,n a2) distributlon. The study of the closeness of this 
approxlmatlon is the subJect of the classlcal central llmlt theory. The only thlngs 
that can be of use to us are preclse (Le., not asymptotic) lnequalltles whlch clarlfy 
Just how close the density of s, 1s to the normal (0,na2) denslty. For a smooth 
treatment, we put two further restrlctlons on f : 
A. The denslty has an absolutely lntegrable characterlstlc functlon 4. Recall 

that thls lmplles among other thlngs that f 1s bounded and contlnuous. 
B. The random variable X has flnlte thlrd absolute moment not exceedlng p: 

Conditlon A allows us to use the simple lnverslon formula for characterlstlc func- 
tions, whlle condltlon B guarantees us that the error term 1s 0 (1/& ). Densltles 
f satlsfying all the condltlons outlined above are called regular. Clearly, most 
zero mean densltles occurrlng In practice are regular. There 1s only one large class 
of exceptlons, the dlstrlbutlons In the domaln of attractlon of stable laws. By 
forclng the varlance to be flnlte, we can only have convergence to the normal dls- 
trlbution. In exerclse 4.1, which 1s more a research project than an exerclse, the 
reader 1s challenged to repeat thls section for dlstrlbutlons whose sums converge 
to symmetric stable laws wlth parameter a<2.  For once we wlll do thlngs back- 
wards, by glvlng the results and thelr lmpllcatlons before the proofs, whlch are 
deferred to next sectlon. 

The fundamental result upon whlch thls entire sectlon rests 1s the following 
form of a local central llmlt theorem: 

E ( I x I ~ ) L ~ < ~ .  

Let f be a regular density, and let f, be the denslty of S, /(06). Let g 
be the standard normal denslty. There exlst sequences an and b,  only depend- 

Theorem 4.2. 

lng upon f such that 

For a proof and references, see sectlon 4.4. Expllclt values for a, and 6, 
follow. It is lmportant to  note that 

g - h n  L f n  L g + h n  9 
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where J h ,  = 0 ( 1 / 6 )  . In other words, the lnequallty 1s emlnently sulted for 
use In a reJectlon algorlthm wlth squeezlng. Both g and h, can be considered as 
very easy densltles from a random varlate generatlon polnt of vlew. Furthermore, 
the obvlous rejectlon algorlthm, descrlbed In Example 11.3.6, has rejectlon con- 
stant l+Jh, tendlng to  1 as n -+m. There Is even more good news: If the lower 
bound 1s used for squeezlng, then the expected number of evaluatlons of f 1s at 
most 2Jh, =O ( 1 / 6 ) = 0  (1). The cumbersome part 1s the evaluation of f , . 

There are essentlally two posslbllltles when I t  comes to  evaluatlng f , : first, 
f, Is expllcltly known. Thls 1s for example the case when f 1s an exponentlal 
denslty centered around Its mean, and f , 1s the density of a llnearly transformed 
gamma ( n  ) denslty. In the case of the gamma denslty, we can easlly compute the 
dlfferent constants In the bound of Theorem 4.2. as 1s done In exerclse 4.2. 

' Another example for the sums of unlform random varlables follows In a separate 
sectlon. 

T o  compute f , vla convolutlons 1s all but lmposslble. The oqly other alter- 
natlve 1s to wrlte f , as a serles based upon the lnverslon formula for I$", and to  
apply the serles method. Here too the hurdles are formldable. 

4.4. A local limit theorem. 
It 1s the purpose of thls sectlon to prove Theorem 4.2. The proof 1s qulte 

long, and 1s glven In full because we requlre expllclt knowledge of the boundlng 
sequence, and a careful derlvatlon of the bounds to  keep the constants as small as 
posslble. Local llmlt theorems of the type needed by us have been derlved In a 
number of papers, see e.g. Inzevltov (1977), Survlla (1964) and MaeJlma (1980). 
An excellent general reference 1s Petrov (1975). For example, Survlla (1964) has 
obtalned the existence of a constant C dependlng upon f only such that for reg- 
ular f , 

C Ibraglmov and Llnnlk (1971) have obtalned an upper bound of the type -. 
Note that Survlla's bound does not tend to  zero wlth n .  The Ibraglmov-Llnnlk 
upper bound 1s called a unlform estlmate In the local central llmlt theorem. Such 
unlform estlmates are useless t o  us because the upper bound when Integrated 
wlth respect t o  a: 1s not flnite. The bound whlch we derlve here uses well-known 
trlcks of the trade, documented for example In Petrov (1975) and MaeJlma 

6 

(1980). 
Let us s tar t  slowly wlth a few key lemmas. 
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Lemma 4.1. 
For any real t , 

Proof of Lemma 4.2. 

Lemma 4.2. 
Let q5 be the characteristic function for a regular denslty f . Then the fol- 

lowlng lnequalities are valld: 

Slnce three absolute moments exlst, we notlce that  the flrst three derlvatlves 
of q5 exlst and are continuous functions glven by the formulas (Feller, 1971, p. 
512) 

q5( j ) ( t )  = J e i t z ( i z ) i f  (x) dx (j=0,1,2,3) . 
Observe that 

t 2 U 2  
-1-itu f- 1 f (u  ) du 

a2t2 I $(t  > - 1 + y  I 5 J 1 e 
2 

Next, 
a2 t 

qY(t )+T = J(e  itti -1-itu )iuf (u ) du . 

Thus, 

Flnally, 
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Lemma 4.3. 
Consider the absolute dlfferences 

t 2  -- 
A, ( t  ) = I (l--)m-e t 2  2 I ( m  =n-z ,n- l ,n )  . 2n 

For t 2 < n ,  we have 

1 t 2  

2 t 2  

2 e n - 2 ,  2 
- -- 

4 - 2 U  1 L - n -2 

If all lntegrals shown below are over { I t I 5 6 }, then we have 

Proof of Lemma 4.3. 
Flrst, 

r 2  r 2  

t 2  
t 2  -- 

< e -(I--)~ 
2n - 
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- < e  1-e 
t 2  

< e  2 - .  
-- t 4  

4n - 

Here we used the Inequality log(1-u )>-u -u 2/(2(1-u ))>-u -u valld for 
0 5 u  <1/2. Slnce 

t 2  12 -- c -  o 5 e -(I--)% , 
2n 

the bound for A ,  Is proved. For the other bounds, conslder A ,  In general. 
Clearly, 

-$ [ e t 2 ( $ - z ) - t  gni-l , 

', 1 t 2  -- t 2  ( ~ - - ) ~ - e  5 e 
2n 

For m =n -i , the exponent 1s at most t 2 i  /(2n ) - t 4 ( n  -i ) / ( 8 n  2). Thls function 1s 
at most i2/ (2(n 4)). By the Inequality e ' - 1 s u e  ' valld for u 20, we finally 
conclude that the expression on the right hand side of the last lnequallty 1s at 
most 

t*  i2 

i 2  e 2 ( n - i )  
-- 

e 2  
2(n -i ) 

Thls proves all the polntwlse lnequalltles for A , .  The lntegral lnequalltles are 
obtained by lntegratlng the pointwise lnequalltles over the whole real Ilne (thls 
can only make the upper bounds larger). One needs the facts that for a normal 
random variable N ,  E (N2)=1,E (N4)=3, and E (N6)=15. 
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I Lemma 4.4. 

, we have 3 0 3 6  For regular I , and I t I < 
- 4P 

t' 

w e - :  + / A & )  I 
-- t 2 

3 0 3 G  
I dY-&-e I 5 

I Integrated over the glven lnterval for t , we have 

Proof of Lemma 4.4. 
Note that 

The last term 1s taken care of by applylng Lemma 4.3 .  Here we need the fact 
that the glven lnterval for t 1s always lncluded In [-6 ,GI, so that the 
bounds of Lemma 4.3 are Indeed appllcable. By Lemma 4.2,  the flrst term can be 
written as 

where 1 6  I 51. Uslng the fact that ( l + ~ ) ~ - l S n  I u I e n  1 '  I for all n >0, and 
all u ER , thls can be bounded from above by 

To obtaln the lntegral lnequallty, use Lemma 4.3 agaln, and note that s I t I 3 e - t a / 4  dt = I S .  
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f, 1s the density of S, /(o&) and g 1s the normal density. Also, 

S P  

3na3Jn 
an - 

asn--tm. 

Proof of Lemma 4.5. 

we see that 
By the lnverslon formula for absolutely integrable characteristic functlons, 

t 2  -- 
2x1 f n  W - 9 ( 4  I L J I V(->-e t I a&- 

, and D c  1s the 3 a 3 6  where D 1s the lnterval deflned by the condltlon I t 1 5 
complement of D . The lntegral over 1s bounded in Lemma 4P 4.4 by 

ISP 3 
+-I&. 

3 0 3 6  4 n  

The lntegral over D does not exceed 

where we used a well-known lnequallty for the tall of the normal dlstrlbutlon, 1.e. 

s g  5 g ( u  )/u . This concludes the proof of Lemma 4.5. I 
00 

U 
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- t 2  
6 a 3 n  (1--) 

2 n  , 

2 n  

Lemma 4.6. 
For regular f , and 

-1 I 

we have 

3 a 3 6  

4P 
t l  I 9 

Integrated over the glven lnterval for t , we have 
t 2  

2 +-QG 
3 a 3 G  4 n  

Proof of Lemma 4.6. 
Note that 

The last term 1s taken care of by applylng Lemma 4.3 .  Here we need the fact 
that the glven lnterval for t 1s always lncluded In [-A,&], so that the 
bounds of Lemma 4.3 are lndeed appllcable. By Lemma 4 .2 ,  the first term can be 
wrltten as 

where I 8 I <l. Uslng the fact that ( l+u  )"-'-1<n 1 u I e 
and all u EA!! thls can be bounded from above by 

1 ' I for all n >0, 

To obtaln the lntegral lnequallty, use Lemma 4.3 agaln, and note that 
J 1 t I dt  = i 6 .  



r 

Lemma 4.7. 
Let g be the normal density and let f, be the density of the normallzed 

sum sn / (a&)  for lld random variables wlth a regular denslty f . Let 4 be the 
characteristic function for f . Then 

I where 

3 

Proof of Lemma 4.7. 
As In Lemma 4.5, we define the lnterval D by the condltlon 

be the complement of D . Let I be the Interval 3u3Jn,  and let D 
4 8  I t 1  L 

3a2 
4 a  

defined by I t I 5 -, and let 1' be the complement of 1. By Lemma 4.2, I t  Is 

easy to  see that for t €1, I o ( t )  1 <1-a2t2/4. Thus, 
1 --s I (Pn 

2n D 

J t - 
0 6 -  
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Similarly, 
1 t ) - $ n - 2 ( - )  t 1 dt 

< - J t 2  1 I 1-d2(-) t I I $(-) t I n - 2  dt  
a&- 

- J t 2  I 4n (- 
2n D a&- 

a&- a 6  
- 

2n D 
( n  -2)t2 

1 t 4 - -  G.iT e 4 n  dt 

- 1 2 n  
2 n n  n -2 

- - 6 3 -  

3 - - 
( n  - 2 1 6  ’ 

So far for the prellmlnary computations. We begln with the observation that 

where 4, is the characteristic function corresponding to f . Obviously, 
t 2  -- 

x 2  I f n ( x ) - g ( x )  I L -J 1 I ( t2- l>e 2 - Q l n r r ( t )  I dt  * 
2 n  

The second derivative of the n -th power of $(t /(a6 )) 1s 

n -1 4 1 2 4 n  -2 1 $11 4 n  -1 

a2 a2 

where all the omitted arguments are t / ( a G ) .  By the triangle inequallty, we 
obtaln 

= J,+ J,+ J,+ J4 I 
From Lemma 4.2, we recall 
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Uslng the fact that  I @(t  /(a&- )) I <E ( I X I )/(a&- )<1/&, we have 

Uslng the fact that  ! I t 1 
i =0,1,2,3 respectlvely, we see that  

dt takes the values 6 , 2 , &  and 4 for 

t 2  

1 P +  2P 
-- 

J 3 + J 4  5 I I u-2&2e 

< 

I dt+- 

1 
d Z  2 0 5 6  n 8 , 6  

+- P (  +2) * 

1 
- no2& 8 6  a2& 

Thls leaves us wlth J, and J,. Here we wlll spllt the lntegrals over D and D ' .  
Flrst of all, 

I t 2  -- 
dt + I t 2  I e 

D 
-d"-2(t/(a&-)) I dt 

+ J t 2  I dn-,(t /(a& ))-d" ( t  /(a& )) I dt 
D 

The last two terms were bounded from above earller on In the proof by 

1 3 
d4nn(n-1)  + ( n - 2 ) 6  ' 

By Lemma 4.4, we have for t ED,  

Thus, by Lemma 4.3, and the following Integrals: 
t 2  

! I t  I 3 e  dt = 1 6 ,  
-- 
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t 2  -- 
! I t  Is! d t  = 1 9 2 ,  

! I t  I 4 e  d t  = 3 & ,  

J l t  I 6 e  d t  =is&, 

t 2  -- 

t 2  -- 

we have 

4n t 4  4 1 dt 
p1-t 13 -: 

< ‘ J ( 1 t - P )  j e + - e  - 27r 3 0 3 G  

4n  

Flnally, we have to evaluate the lntegrals In J , + J 2  taken over D ‘. These are 
estlmated from above by 

where p=sup 14 I . The reglon D c  1s deflned by the condltlon I t I > c  for 

some constant c . The flrst term In the last expresslon can thus be rewrltten as 
IC 

1 - 1 ( (2u ) ’+G)e - ’  du 

7r u > c 2 / 2  
C 2  C *  

- < -  e +-e 7r 4 
1 -1 &j -- 

C 7 r  

Collectlng bounds glves the deslred result. 

For the bound of Lemma 4.7 t o  be useful, I t  1s necessary that f not only be 
regular, but also that Its characterlstlc functlon satlsfy 

! t 2 1 $ ( t ) l  d t  < 0 0 .  

Thls lmplles that f has two bounded contlnuous derlvatlves tendlng to 0 as 
12 I +00, and In fact 
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(see e.g. Kawata, 1972, pp. 438-439). Thls smoothness condltlon 1s rather restrlc- 
tlve and can be conslderably weakened. The asymptotlc bound b / ( z 2 6 )  
remalns valld If S t 2  I $ ( t )  I <oo for some positive lnteger IC (exerclse 4.4). Lem- 
mas 4.5 and 4.7 together are but speclal cases of more general local llmlt 
theorems, such as those found In Maejlma (1980) and Inzevltov (1977), except 
that here we expllcltly compute the unlversal constants In the bounds. 

4.5. The mixture method for simulating sums. 
When a denslty f can be wrltten as a mlxture 

co 
f ( a : > =  x P i f i ( Z )  

i =1 

where the f i ’s are slmple densltles, then simulation of the sum S, of n lld ran- 
dom varlables wlth denslty f can be carrled out as follows. 

The mixture method for simulating sums 

Generate a multinomial (n , p  l,p2,...) random sequence N1,N2,... (note that the Ni ’S sum to 
n). Let K be the index of the largest nonzero Ni . 
x+o 
FOR i:=1 TO K DO 

Generate S , the sum of Ni iid random variables with common density f i  . 
x+x+s 

RETURN x 

The valldlty of the algorithm is obvlous. The algorlthm 1s put In Its most general 
form, allowlng for lnflnlte mlxtures. A multlnomlal random sequence 1s of course 
deflned In the standard way: lmaglne that we have an lnflnlte number of urns, 
and that n balls are lndependently thrown In the urns. Each ball lands wlth pro- 
bablllty p i  In the i - th  urn. The sequence of cardlnalltles of the urns 1s a multlno- 
mlal (n  , p  , , p  2,...) random sequence. To slmulate such a sequence, note that N ,  1s 
blnomlal ( n  , p  ,), and that glven N , ,  N ,  1s blnomlal ( n  -N,,p,/( l-p ,)), etcetera. 
If I< 1s the lndex of the last occupled urn, then I t  1s easy to see that the multlno- 
mlal sequence can be generated In expected tlme 0 ( E  ( K  )). 

The mlxture method 1s emclent If sums of lld random varlables wlth densl- 
tles f i  are easy to generate. Thls would for example be the case If f were a 
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flnlte mlxture of stable, gamma, exponentlal or normal random varlables. Perhaps 
the most lntrigulng decomposition 1s that of a unimodal denslty: every unlmodal 
denslty can be wrltten as a countable mlxture of uniform densltles. Thls state- 
ment Is lntultlvely clear, because subtractlng a functlon of the form c I ~ , , ~ ~ ( ~ )  
from f leaves a unlmodal plece on [a  ,b  ] and two unlmodal talls. Thls can be 
repeated for all pieces indlvldually, and at the same time the lntegral of the left- 
over function can be made to tend to zero by the Judlclous choice of rectangular 
functlons (see exerclse 4.5). If we can generate sums of ffd uniform random varl- 
ables unlformly f a s t  (wlth respect to n ) ,  then the expected tlme taken by the 
mlxture method 1s 0 ( E  ( K ) ) .  A few remarks about generatlng unlform sums are 
glven in the next section. 

4.6. Sums of independent uniform random variables. 
In thls section we conslder the dlstributlon of 

n 

i = 1  
Sn 9 

where U,,  . . . , Vn are lld unlform [-1,1] random varlables. The dlstribution can 
be descrlbed In a varlety of ways: 

Theorem 4.3. 
The characterlstlc functlon of sn 1s 

I For all n 2 2 ,  the density f, can be obtained by the lnverslon formula 
n 

f, (5) = 'J [ -1 cos(t5) dt . 
27r 

I This ylelds 

where 2i-2-n < x  <2i-n ; i=1,2, . . . , n 
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Proof of Theorem 4.3. 
The characterlstlc functlon Is obtained by using the deflnltlon. Since the 

characterlstlc function of s, for all n 2 2  1s absolutely Integrable, /, can be 
obtalned by the glven lnverslon Integral. There Is also a direct way of computing 
the dlstrlbutlon functlon F ,  and denslty of S,; Its derivation goes back to the 
nlneteenth century (see e.g. Cramer (1951, p. 245)). Dlfferent proofs include the 
geometrlc approach followed by us In Theorem 1.4.4 (see also Hall (1927) and 
Roach (1903)), an induction argument (Olds, 1952), and an application of the 
resldue theorem (Lusk and Wrlght, 1982). Taklng the derlvatlve of F ,  glven in 
Theorem 1.4.4 gives the formula 

for the denslty of the sum of n ild unlform [O,l) random varlables. The the den- 
slty of sums of symmetric uniform random varlables Is easlly obtained by the 
transformatlon formula for densities. 

It 1s easy t o  see that the local llmlt theorems developed in Lemmas 4.5 and 
4.7 are applicable to this case. There 1s one small technlcal hurdle since the 
characterlstlc function of a unlform random variable Is not absolutely Integrable. 
Thls Is easily overcome by noting that the square of the characterlstlc function is 
absolutely Integrable. If we recall the rejection algorithm of section 4.3, we note 
that the expected number of iteratlons 1s 0 (l/&-) and that the expected 
number of evaluatlons of f, 1s 0(1/&) . Unfortunately, thls Is not good 
enough, since the evaluation of f, (5) by the last formula of Theorem 4.3 takes 
tlme roughly proportlonal to n for nearly all x of Interest. Thls would yleld a 
global expected tlme roughly increasing as 6. The formula for f , Is thus of 
llmited value. There are two solutions: elther one uses the series method based 
upon a series expansion for f, whlch 1s tallored around the normal denslty, or 
one uses a local limit theorem wlth 0 ( l / n  ) error by using as maln component 
the normal denslty plus the flrst term In the asymptotic expanslon which Is a nor- 
mal denslty multlplled wlth a Hermlte polynomial (see e.g. Petrov, 1975). The 
latter approach seems the most promising at  this point (see exerclse 4.0). 
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4.7. Exercises. 
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1. 

2. 

3. 

4. 

5. 

Let f be a denslty, whose normallzed sums tend In dlstrlbutlon to the sym- 
metric stable (a) denslty. Assume that the stable denslty can be evaluated 
exactly In one unlt of tlme at every polnt. Derlve first some lnequalltles for 
the dlfference between the denslty of the normallzed sum and the stable den- 
slty. These non-unlform lnequalltles should be such that the lntegral of the 
error bound wlth respect to x tends to  0 as n-+m. Hlnt: look for error 
terms of the form mln(a, ,b ,  1 x 1 -' ) where c 1s a posltlve constant, and 
a, ,b, are posltlve number sequences tendlng to 0 wlth n . Mlmlc the derlva- 
tlon of the local llmlt theorem In the case of attractlon to  the normal law. 
The gamma density. The zero mean exponentlal denslty has characterls- 
t lc functlon q5 = e-it / ( l -d) .  In the notatlon of thls chapter, derlve for thls 
dlstrlbutlon the followlng quantltles: 

2 .  A. 0 = 1 , p = - -  12 
e 

B. S I 4 1  = m , [ 1 4 I 2 = ~ .  
c. sup I q5( t ) l  = l/d? (c >o) .  

I t I 2 c  
Note that the bounds In the local llmlt theorems are not dlrectly appllcable 
slnce J I q5 I =m. However, thls can be overcome by boundlng by 

s [ I 4 I where s 1s the supremum of I 4 I over the domain of lntegratlon, 
to  the power n-2. Uslng thls device, derlve the reJectlon constant from the 
thus modlfled local llmlt theorem as a function of n . 
A contlnuatlon of exerclse 2. Let f, be the normallzed (zero mean, unlt 
varlance) gamma ( a  ) denslty, and let g be the normal denslty. By dlrect 
means, find sequences a, ,b, such that for all a 21, 

14 I 

and compare your constants wlth those obtalned In exerclse 2. (They should 
be dramatlcally smaller.) 

J t 2  I 4 ( t )  I dt <m 1s relaxed t o  

J t 2  I $ ( t )  I dt  <m 

where 
Conslder a monotone denslty f 
automatlc rule for decomposlng 

> O  1s a fixed Integer. 

Prove the clalm that In Lemma 4.7, b,  4 b / ( x 2 G )  when the condltlon 

on [O,m). Glve a constructive completely 
thls denslty as a countable mlxture of unl- 

form densltles, 1.e. the decomposltlon should be obtalnable even If f 1s only 
glven In black box format, and the countable mlxture should glve us the 
monotone denslty agaln In the sense that the L ,  dlstance between the two 
densltles 1s zero (thls allows the functlons to be .different on posslbly 
uncountable sets of zero measure). Can you make a statement about the rate 
of decrease of p i  for the followlng subclasses of monotone densltles: the log- 
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concave densltles, the concave densltles, the convex densltles? Prove that 
when p i  for some b ,c > O  and all i ,  then E ( K ) = O  (log(n)), where 
I< 1s the largest lnteger In a sample of slze n drawn from probablllty vector 
p l,p 2,.... Conclude that for lmportant classes of densltles, we can generate 
sums of n lld random variates In expected tlme 0 (log(n )). 
Gram-Charlier series. The standard approxlmatlon for the denslty f, of 
S, /(a& ) where S, 1s the sum of n lid zero mean random varlables wlth 
second moment a2 1s g where g 1s the normal denslty. The closeness 1s 
covered by local central llmlt theorems, and the errors are of the order of 
1/&. To obtaln errors of the order of l / n  I t  1s necessary to user a flner 
approxlmatlon. For example, one could use an extra term In the Gram- 
Charller serles (see e.g. Ord (1972, p. 26)). Thls leads to the approxlmatlon 
by 

6. 

where p 3  1s the thlrd moment for f . For symmetrlc dlstrlbutlons, the extra 
correctlon term 1s zero. Thls suggests that the local llmlt theorems of sectlon 
4.3 can be Improved. For the symmetrlc unlform denslty, And constants a ,b 

1 such that I f a - g  I s -mln(a  , b ~ - ~ ) .  Use thls to deslgn a unlformly f a s t  
n 

generator for sums of symmetrlc uniform random varlables. 
A contlnuatlon of the prevlous exerclse. Let a ER be a constant. Glve a ran- 
dom varlate generator for the followlng class of densltles related to the 
Gram-Charller serles approxlmatlon of the prevlous exerclse: 

7. 

where c 1s a normallzatlon constant. 

5. DISCRETE EVENT SIMULATION. 

5.1. Future event set algorithms. 
Several complex systems evolvlng In tlme fall lnto the followlng category: 

they can be characterlzed by a state, and the state changes only at dlscrete 
tlmes. Systems falllng lnto this category lnclude most queuelng systems such as 
those appearlng In banks, elevators, computer networks, computer operatlng sys- 
tems and telephone networks. Systems not lncluded In thls category are those 
which change state continuously, such as systems drlven by dlfferentlal equatlons 
(physlcal or chemical processes, trafflc control systems). In dlscrete event slmula- 
tlon of such systems, one keeps a subset of all the future events In a future event 
set, where an event 1s deflned as a change of state, e.g. the arrlval or departure Of 
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a person In a bank. By taklng the next event from the future event set, we can 
make tlme advance wlth blg Jumps. After havlng grabbed thls event, I t  1s neces- 
sary to update the state and If necessary schedule new future events. In other 
words, the future event set can shrlnk and grow In Its llfetlme. What matters Is 
that no event is mlssed. All future event set algorlthms can be summarlzed as fol- 
lows: 

Future event set algorithm 

Time t o .  
Initialize State (the state of the system). 
Initialize FES (future event set) by scheduling at least one event. 
WHILE NOT EMPTY (FES) DO 

Select the minimal time event in FES, and remove it  from FES. 
Time - time of the selected event, Le. make time progress. 
Analyze the selected event, and update State and FES accordingly. 

For worked out examples, we refer the readers to  more speclallzed texts such as 
Bratley, Fox and Schrage (1983), Banks and Carson (1984) or Law and Kelton 
(1982). Our maln concern 1s wlth the complexlty aspect of future event set algo- 
rlthms. I t  1s dlmcult to  get a good general handle on the tlme complexlty due to 
the state updates. On the other hand, the contrlbutlon to  the tlme complexlty of 
all operatlons lnvolvlng FES, the future event set, 1s amenable to  analysls. These 
operatlons lnclude 
A. 
B. 
C. 
There are two klnds of INSERT: INSERT based upon the tlme of the event, and 
INSERT based upon other lnformatlon related to the event. The latter INSERT 
is requlred when a slmulatlon demands lnformatlon retrleval from the FES other 
than selectlon of the mlnlmal tlme event. Thls 1s the case when cancelatlons can 
occur, 1.e. deletlons of events other than the mlnlmal tlme event. It can always be 
avolded by leavlng the event to be canceled In FES but marklng I t  "canceled", so 
that when I t  1s selected at some polnt as the mlnlmal tlme event, I t  can lmmedl- 
ately be dlscarded. In most cases we have to  use a dual data structure whlcb 
allows us to lmpiement the operatlons INSERT, DELETE and elther CANCEL or 
W K  emclently. Typlcally, one part of the data structure conslsts of a dlctlon- 
ary (ordered accordlng to keys used for cancellng or marklng), and another part 
1s a prlorlty queue (see Aho, Hopcroft and Ullman (1983) for our termlnolgy). 
Slnce the number of elements In FES grows and shrlnks wlth tlme, I t  1s dlfflcult 
t o  unlformlze the analysls. For thls reason, sometlmes the followlng assumptlons 
are made: 

INSERT a new event In FES. 

DELETE the mlnlmal tlme event from FES. 
CANCEL a partlcular event (remove I t  from FES). 



XIV.5 .DIS CRETE EVENT SIMULATION 737 

A. The future event set has n events at  all tlmes. Thls lmplles that when the 
mlnlmum tlme event 1s deleted, the empty slot 1s lmmedlately filled by a 
new event, 1.e. the DELETE and INSERT operatlons always go together. 

B. Inltlally, the future event set has n events, wlth random tlmes, all lld wlth 
common dlstrlbutlon functlon F on [O,oo). 

C. When an event wlth event tlme t 1s deleted from FES, the new event replac- 
lng I t  In FES has tlme t + T I  where T also has dlstrlbutlon functlon F . 

These three assumptlons taken together form the bash of the so-called hold 
model, colned after the SIMULA HOLD operatlon, which comblnes our DELETE 
and INSERT operatlons. Assumptlons B and C are of a stochastlc nature to facll- 
ltate the expected tlme analysls. They are motlvated by the fact that In homo- 
geneous Polsson processes, the Inter-event tlmes are lndependent exponentlally 
dlstrlbuted. Therefore, the dlstrlbutlon functlon F 1s typlcally the exponentlal 
dlstrlbutlon. The quantlty of lnterest to us 1s the expected tlme needed to execute 
a HOLD operatlon. Unfortunately, thls quantlty depends not only upon n , but 
also on F and the tlme lnstant at  whlch the expected tlme analysls 1s needed. 
Thls is due to the fact that the tlmes of the events In the FES have dlstrlbutlons 
that vary. It 1s true that relatlve to the mlnlmum tlme In the FES, the dlstrlbu- 
tlon of the n-1 non-mlnlmal tlmes approaches a llmlt dlstrlbutlon, whlch 
depends upon F and n ,  Analysls based upon thls llmlt dlstrlbutlon 1s at tlmes 
risky because I t  1s dlfflcult to plnpolnt In complex systems when the steady state 
1s almost reached. What compllcates matters even more 1s the dependence of the 
llmlt dlstrlbutlon upon n . The llmlt of the llmlt dlstrlbutlon wlth respect to n , a 
double llmlt of sorts, has denslty (1-F ( z ) ) / p  (a: >0) where p 1s the mean for F 
(Vaucher, 1977). The analyses are greatly facllltated If thls llmlt dlstrlbutlon 1s 
used as the dlstrlbutlon of the relatlve event tlmes In FES. The results of these 
analyses should be handled wlth great care. Two extenslve reports based upon 
thls model were carrled out by Klngston (1985) and McCormack and Sargent 
(1981). An alternatlve model was proposed by Reeves (1Q84). He also works wlth 
thls llmltlng dlstrlbutlon, but departs from the HOLD model, In that events are 
inserted, or scheduled, In the FES accordlng to a homogeneous Polsson process. 
Thls lmplles that  the slze of the FES 1s no longer Axed at a glven level n ,  but 
hovers around a mean value n . It  seems thus safer to perform a worst-case tlme 
analysls, and to lnclude an expected tlme analysls only where exact calculatlons 
can be carrled out. Lucklly, for the important exponentlal dlstrlbutlon, thls can 
be done. 

Theorem 5.1. 
If assumptlons A-C hold, and F Is the exponentlal (1) dlstrlbutlon, If k 

HOLD operatlons have been carrled out for any lnteger k ,  If X* 1s the mlnlmal 
event time in the FES, and X,,X, ,  . . . , xn-, are the n-1 non-mlnlmal event 
tlmes In the FES (unordered, but In order of thelr lnsertlon In the FES), then 
X, -X* ,  . . . , X ,  -,-X* are lld exponentlal (1) random varlables. 
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Proof of Theorem 5.1. 
This is best proved lnductlvely. Inltlally, we have n exponentlally dlstrl- 

buted tlmes. The assertion 1s CertalnlY true, by the memoryless property of the 
exponentlal dlstrlbutlon. Now, take the mlnlmum tlme, say M ,  remove I t ,  and 
Insert the time M+E in the FES, where E 1s exponentlal (A). Clearly, all n 
times In the FES are now lld wlth an exponential (A) dlstrlbutlon on [M,oo). We 
are thus back where we started from, and can apply the memoryless property 
agaln. 

Reeves's model allows for a slmple dlrect analysls for all dlstrlbutlon func- 
tlons F . Because of Its Importance, we wlll brlefly study hls model In a separate 
section, before movlng on to  the descrlptlon of a few posslble data structures for 
the FES. 

5.2. Reeves's model. 
In Reeves's model, the FES 1s lnltlally empty. Insertlons occur at random 

tlmes, whlch correspond t o  a homogeneous Polsson process with rate A. The tlme 
of an lnserted event 1s the lnsertlon tlme Plus a delay tlme whlch has dlstrlbutlon 
functlon F . A few propertles wlll be needed further on, and these are collected In 
Theorem 5.2: 

Theorem 5.2. 
Let 0< T I <  T 2 <  . . 1 be a homogeneous Polsson process with rate A > O  

(the Ti's are the lnsertlon tlmes), and let x1,x2, ... be lld random varlables wlth 
common dlstrlbutlon functlon F on [O,oo). Then 
A. The random varlables Ti +xi ,I si, form a nonhomogeneous Polsson pro- 

cess wlth rate functlon XF ( t  ). 
B. If Nt Is the number of events In FES at tlme t ,  then Nt 1s Polsson 

(XJ(1-F)). Nt 1s thus stochastlcally smaller than a Polsson ( x p )  random 

varlable where I.L = J(1-F ) 1s the mean for F . 
Let Vi ,i L N t ,  be the event tlmes for the events In FES at tlme t . Then the 
random varlables vi -t form a nonhomogeneous Polsson process wlth rate 
functlon X(F ( t  +u )-F (u  )) , u 20. 

t 

0 
03 

0 

c. 
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Proof of Theorem 5.2. 
Most of the theorem Is left as an exercise on Poisson processes. The maln 

task Is to verify the Polsson nature of the defined processes by checklng the 
lndependence property for nonoverlapplng Intervals. We wlll malnly polnt out 
how the various rate functions are obtained. 

For part A, let L be the number of Insertlons up to tlme t , a Polsson ( A t  ) 
random varlable, and let M be the number of Ti +Xi’s not exceedlng t . Clearly, 
by the unlform dlstrlbutlon property of homogeneous Polsson processes, M 1s dls- 
trlbuted as 

L 

where the Vi’s are Ild unlform [0,1] random varlables. Note that thls 1s a Polsson 
sum of lid Bernoulli random varlables. As we have seen elsewhere, such sums are 
agaln Poisson dlstrlbuted. The parameter 1s X t p  where p =P ( tU,+X,S t ). The 
parameter can be rewritten as 

1 

AtF (XI< t u , )  = A t J F  ( tu  ) du 
0 

t 

= X J F ( u )  du . 
0 

For part B, the rate functlon can be obtained slmllarly by wrltlng Nt as a Pols- 
son ( A t )  sum of Ild Bernoulli random varlables wlth success probablllty 

p =P (tUl+X,> t ). Thls 1s easlly seen to be Poisson (AJ(1-F)). For the second 

statement of part B, recall that the mean for dlstrlbutlon function F is J(1-F ). 

Flnally, conslder part C. Here agaln, we argue analogously. Let M be the 
number of events In FES at tlme t wlth event tlmes not exceedlng t +u . Then 
M 1s a Polsson ( A t  ) sum of lld Bernoulll random varlables wlth success parame- 
ter p glven by 

t 

0 
00 

0 

1 

P ( t  ~ t U 1 + X 1 < t + u )  = J ( F ( t a + u ) - F ( t z ) )  dz 
0 

t 
1 = - J ( F  ( Z  +U )-F (2)) dz . 
t 0  

The statement about the rate function follows dlrectly from thls. 

The asymptotlcs In Reeves’s model should not be wlth respect to N, ,  the 
slze of the FES, because thls osclllates randomly. Rather, I t  should be wlth 
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respect t o  t ,  the time. The flrst important observatlon is that the expected slze 

of the FES at time t 1s XI(1-F ) --.f Xp as t 300, where p Is the mean for F .  If p 

IS small, the  FES 1s small because events spend only a short tlme In FES. On t h e  
other hand, If p=m, then the expected slze of the FES tends to 00 as t+w, 1.e. 
we would need lnAnlte space in order to be able to  carry out an unllmlted tlme 
slmulatlon. The sltuation is also bad when p < w ,  although not as bad as in the 
case p=m: I t  can be shown (see exercises) that llm sup ATt = 00 almost surely, 

Thus, in all cases, an unlimlted memory would be required. Thls should be 
vlewed as a serious drawback of Reeves’s model. But the inslght we gain from hls 
model 1s Invaluable, as we wlll And out In the next section on llnear lists. 

t 

0 

t-00 

5.3. Linear lists. 
The oldest and simplest structure for an FES 1s a llnear llst In whlch the ele- 

ments are kept accordlng to  lncreaslng event times. For what follows, i t  1s all but 
lrrelevant whether a llnked llst lmplementatlon or an array lmplementatlon 1s 
chosen. Deletion 1s obvlously a constant tlme operation. Insertlon of an element 
in the i - th  posltlon takes tlme proportlonal t o  z‘ if we start  searchlng from the 
front (small event times) of the list, and to  n- i  +1 if we s tar t  from the back and 
n 1s the cardlnallty of the FES. We can’t say that the time 1s mln ( i , n - i+ l )  
because the value of i 1s unknown beforehand. Thus, one of the questlons to  be 
studled is whether we should start  the search from the front or the back. 

By Theorem 5.2, part C, we observe that at tlme t o ,  the expected value of 
the number of events exceedlng the currently lnserted element (called Adto) 1s 

0303 

E (MtJ = XJJ(F (to+u )-F (u )) du dF ( t  ) 
O t  

00 11 

= XJ(F (tO+u )-F ( U  )) J d F  ( t  ) du 
0 0 
00 

XJF ( U  ) ( F    to+^ )-F (U )) du . 
0 

Here we used a standard lnterchange of Integrals. Slnce the expected number of 

elements In the FES 1s X J ( F ( t , + u ) - F ( u ) )  d u ,  the expected value of the 

number of event times at most equal t o  the event tlme of the currently lnserted 
element (called Lto) 1s 

03 

0 

03 

E (L t0 )  = XJ(1-F (21 ) ) (F  ( t o + %  )-F ( U  )) du . 
0 
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We should search from the back when E (hfto)<E (Lto) ,  and from the front other- 
wise. In an array Implementation, the search can always be done by blnary search 
In logarlthmlc tlme, but the updating of the array calls for the shift by one posi- 
tlon of the entlre lower or upper portion of the array. If one imagines a circular 
array implementation with free wrap-around, of the sort used to implement 
queues (Standish, ISSO), then I t  is always possible to move only the smaller por- 
tion. The same Is true for a llnlced llst implementation If we keep pointers to the 
front, rear and middle elements In the linked list and use double linking to allow 
for the two types of search. The middle element Is flrst compared with the 
inserted element. The outcome determines In whlch half we should Insert, where 
the search should start  from, and how the middle element should be updated. 
The last operation would also require us to keep a count of the number of ele- 
ments In the linked list. We can thus conclude that  for a linear list Insertion, we 
can And an implementation taklng tlme bounded by mln(Mto,Lto). By Jensen’s 
Inequality, the expected tlme for lnsertlon does not exceed 

min(E (Mto),E (Lto))  . 

The fact that all the formulas for expected values encountered so far depend 
upon the current tlme t o  could deprlve us from some badly needed Inslght. Luck- 
ily, as tO+co, a steady state Is reached. In fact, this Is the only case studied by 
Reeves (1984). We summarize: 

1 Theorem 5.3. 
In Reeves’s model, we have 

03 

E (Mt0) t XJF (1-F) as t0-+00 9 

E @ t o )  t X J ( l - F ) 2  as tO+m . 

0 
0 

0 

Proof of Theorem 5.3. 
We will only consider the flrst statement. Note that E(hf to)  1s monotone In 

t o ,  and that for every t o ,  the value does not exceed XJF(1-F). Also, by Fatou’s 

lemma, 

03 

0 

03 03 
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Remark 5.1. Front or back search. 
From Theorem 5.3, we deduce that a front search 1s lndlcated when 

J(1-F )2 < J F  (1-F ). It 1s perhaps lnterestlng to  note that equallty Is reached 
for the exponentlal dlstrlbutlon. Barlow and Proschan (1975) deflne the NBUE 
(NWUE) dlstrlbutlons as those dlstrlbutlgns for whlch for all t BO, 

03 

J(1-F 1 L ( L 1 /-to-F ( t  1) 9 

t 

where p is the mean for F . Examples of NBUE (new better than used In expecta- 
tlon) dlstrlbutlons lnclude the unlform, normal and gamma dlstrlbutlons for 
parameter at least one. NWUE dlstrlbutlons lnclude mlxtures of exponentlals and 
gamma dlstrlbutlons wlth parameter at most one. By our orlglnal change of 
integral we note that for NBUE dlstrlbutlons, 

-I: 0 I 00 

X J F ( 1 - F )  = X J  J ( 1 - F )  d F ( t )  
0 

03 5 XpJ(1-F ( t  )) dF ( t  ) = - XP . 
2 0 

Slnce the asymptotlc expected slze of the FES 1s Xp, we observe that for NBUE 
dlstrlbutlons, a back search 1s to  be preferred. For NWUf3 dlstrlbutlons, a front 
search 1s better. In all cases, the trlck wlth the medlan polnter (for llnked llsts) or 
the medlan cornparlson (for clrcular arrays) automatlcally selects the best search 
mode. 

Remark 5.2. The HOLD model. 
In the HOLD model, the worst-case lnsertlon tlme can be as poor as n .  For 

the expected lnsertlon tlme, the computatlons are slmple for the exponentlal dls- 
trlbutlon functlon. In vlew of The0re.m 5.1, I t  1s easy t o  see that  the expected 
number of comparlsons in a forward scan 1s n+2 1 n n -+-. --- = 

2 n+1 2 n+1 
The 

expected number of backward scans Is equal t o  thls, by symmetry. For all dlstrl- 
butlons F havlng a denslty, the expected lnsertlon tlme grows llnearly wlth n 
(see exercises). 

A brlef hlstorlcal remark Is In order. Llnear llsts have 'been used extensively 
In the past. They are slmple to  Implement, easy to  analyze and' use mlnlmal 

I 
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storage. Among the possible physlcal lmplementatlons, the doubly llnlced llst Is 
perhaps the most popular (Knuth, 1969). The asymptotlc expected lnsertlon tlme 
for front and back search under the HOLD model was obtained by Vaucher 
(1977) and Englebrecht-Wlggans and Maxwell (1978). Reeves (1984) discusses the 
same thlng for hls model. Interestlngly, if the size n In the HOLD model is 
replaced by the asymptotic value of the expected slze of the FES, xp, the two 
results coincide. In particular, Remark 5.1 applles to  both models. The polnt 
about NBUE dlstrlbutlons In that  remark Is due t o  McCormack and Sargent 
(1981). The ldea of uslng a medlan polnter or a medlan comparlson goes back to 
Prltsker (1976) and Davey and Vaucher (1980). For more analysls Involving 
llnear llsts, see e.g. Jonassen and Dah1 (1975). 

The slmple linear llst has been generallzed and lmproved upon In many 
ways. For example, a number of algorithms have been proposed whlch keep an 
addltlonal set of pointers to selected events In the FES. These are known as mul- 
tlple polnter methods, and the lmplementatlons are sometlmes called Indexed 
llnear llst lmplementatlons. The pointers partltlon the FES into smaller sets con- 
talnlng a few events each. Thls greatly facllltates lnsertlon. For example, Vaucher 
and Duval (1975) space polnter events (events pointed to by these polnters) equal 
amounts of tlme (A) apart. In view of thls, we can locate a particular subset of 
the FES very qulckly by maklng use of the truncatlon operatlon. The subset 1s 
then searched in the standard sequentlal manner. Ideally, one would llke to have 
a constant number of events per Interval, but thls 1s dlfflcult to enforce. In 
Reeves’s model, the analysis of the Vaucher-Duval bucket structure 1s easy. We 
need only concern ourselves wlth lnsertlons. Furthermore, the tlme needed to 
locate the subset (or bucket) In whlch we should lnsert is constant. The buckets 
should be thought of as small llnked llsts. They actually need not be globally 
concatenated, but wlthln each Ilst, the events are ordered. The global tlme lnter- 
V a l  1s dlvlded Into intervals [O,A),[A,aA), .... Let A j  be the j - t h  interval, and let 
F ( A j )  denote the probablllty of the j - t h  Interval. For the sake of slmpllcity, let 
us assume that the tlme spent on an lnsertlon Is equal to the number of events 
already present In the Interval Into whlch we need to insert. In any case, lgnorlng 
a constant access tlme, thls wlll be an upper bound on the actual lnsertlon tlme. 
The expected number of events In bucket A j  = [ ( j - l ) A , j  A) under Reeves model 
at tlme t is glven by 

J x ( F  ( t  +u )-F (u  )) du 
A ,  -t 

where Ai-t means the obvlous thlng. Let J be the collectlon of all lndlces for 
whlch Ai overlaps wlth [ t  ,m), and let B j  be A U[t ,a). Then the expected time 
Is 

J X ( F ( t + u ) - F ( u ) )  du F ( B j - t ) .  
j E J  B, - t  

In Theorem 5.4, we derlve useful upper bounds for the expected tlme. 
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Theorem 5.4. 
Conslder the bucket based llnear llst structure of Vaucher and Duval wlth 

bucket width A. Then the expected tlme for lnsertlng (schedullng) an event at 
tlme t In the FES under Reeves’s model 1s bounded from above by 

A. Xp. 

B. XA. 
C. XCpA, where C is an upper bound for the denslty f for F (thls polnt 1s 

only applicable when a denslty exlsts). 
C In particular, for any t and F ,  taking A S -  for some constant c guarantees 

that the expected tlme spent on lnsertlons 1s bounded by c . x 

~ ~~ 

Proof of Theorem 5.4. 

equal to  1, and that F ( t  +u )SI. Bound B 1s obtained by boundlng 
Bound A is obtalned by notlng that each F (Bj-t ) In the sum 1s at most 

J 1 ( F ( t + u ) - F ( u ) )  du 
B, -t 

by XA, and observlng that the terms F (Bj -t ) summed over j EJ yield the value 
1. Finally lnequallty C uses the fact that F (Bj -t )s  c A for all j . 

Theorem 5.4 1s extremely Important. We see that I t  1s possible to have con- 
s tant  expected time deletlons and lnsertlons, unlformly over all F ,  t and A, pro- 
vided that A is taken small enough. The bound on A depends upon A. If 1s 
known, there is no problem. Unfortunately, has to be estlmated most of the 
tlme. Recall also that we are In Reeves’s idealized model. The present analysis 
does not extend beyond this model. As a rule of thumb, one can take A equal to 
l/X where 1s the expected number of polnts lnserted per unit of tlme. Thls 
should insure that every bucket has at most one point on the average. Taklng A 
too small is harmful from a space polnt of vlew because the number of lntervals 
into whlch the FES 1s cut up 1s 

[(maxc ri 1-t >/A 1 
where the Yi’s are the scheduled event tlmes at time t . Taking the expected 
value, we see that thls is bounded from above by 

where N 1s Poisson (xp).  Recall that for an upper bound the Yi’s can be con- 
sldered as lld random variables with density (1-F )/p on [O,co). This allows us to 
get a good idea of the expected number of buckets needed as a function of the 
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expected FES slze, or 1. We offer two quantltatlve results. 

745 

Theorem 5.5. 
The expected number of buckets needed In Reeves’s model does not exceed 

C where X has dlstrlbutlon functlon F .  If A-- as h-tm for some constant c , 
then thls upper bound - x 

L d E ( ( X X ) 3 )  . 
C &  

Furthermore, If E ( e U X ) < m  for some u >0, and A 1s as shown above, then the 
expected number of buckets 1s 0 (Xlog(X)). 

Proof of Theorem 5.5. 

that  x has flnlte thlrd moment. We argue as follows: 
For the flrst part of the Theorem, we can assume wlthout loss of generallty 

E(max(Y1, * * . 1 YN)) 5 E(dm) 
i < N  

- < d E  ( N ) E  ( Y  12) (Jensen’ s lnequallty) 

= dXpE (X3)/(3p) = d X E  (X3)/3. 

The last step follows from the slmple observatlon that 

c o t  
1 = J-Jx”x d F ( t )  

o p u o  
1 = - E ( X 3 ) .  

31.1 

The second statement of the Theorem follows In three Ilnes. Let u be a Axed con- 
s tant  for whlch E ( e  UX)=a  <m. Then, uslng X,, . . . , x, to denote an lld sam- 
ple wlth dlstrlbutlon functlon F ,  

E (max( Y,, . . . , Y, )) 5 E (max(X,, . . . , X ,  )) 
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Thls concludes the proof of Theorem 5.5. 

Except when F has compact support, the expected number of buckets 
needed grows superlinearly wlth A, when A 1s plcked as a constant over X. The 
situation 1s worse when A is picked even smaller. This 1s a good example of the 
time-space trade-off, because taking A larger than l / X  effectlvely decreases the 
space requlrements but slows down the algorlthm. However, large A's are unln- 
terestlng slnce we wlll see that there are nonllnear data structures whlch wlll run 
In expected or even worst-case tlme O(log(1)). Thus, there 1s no need to study 
cases In whlch the Vaucher-Duval structure performs worse than this. Vaucher 
and Duval (1975) and Davey and Vaucher (1980) circumvent the superllnear (In 
X) storage need by collapslng many buckets in one blg bucket, called an overflow 
bucket, or  overflow llst. Denardo and Fox (1979) conslder a hlerarchy of bucket 
structures where bucket wldth decreases with the level. 

Varlous other multiple polnter structures have been proposed, such as the 
structures of Franta  and Maly (1977, 1978) and Wyman (1976). They are largely 
slmllar to  the Vaucher-Duval bucket structure. One nlce new idea surfaclng In 
these methods 1s the followlng. Assume that one wants to keep the cardlnallty of 
all subllsts about equal and close t o  a number m ,  and assume that the FES has 
about n elements. Therefore, about n / m  pointers are needed, whlch In turn 
can be kept In a llnear llst, t o  be scanned sequentlally from left to rlght or rlght 
to left. The tlme needed for an lnsertlon cannot exceed a constant tlmes -+m 

where the last term accounts for the sequential search into the selected subllst. 
The optimal cholce for m 1s thus about 6, and the resultlng complexlty of an 
lnsertion grows also as &. The dlmculty wlth theses structures 1s the dynamlc 
balanclng of the subllst cardlnalitles so that all sublists have about m elements. 
Henriksen (1977) proposes to keep about m events per subllst, but the polnter 
records are now kept In a balanced blnary search tree, whlch 1s dynarnlcally 
adJusted. The complexlty of an lnsertlon 1s not lmmedlately clear since the 
updatlng of the polnter tree requlres some complicated work. Without the 
updatlng, we would need time about equal to log(-)+m Just to locate the polnt 

of lnsertlon of one event. Thls expresslon is minlmal for constant m (rn =4 1s the 
usual recommendation for Henrlksen's algorlthm (Klngston, 1984)). The complex- 
lty of lnsertion wlthout updating 1s O(log(n )). For a more detalled expected tlme 
analysls, see Klngston (1984). In the next sectlon, we dlscuss O(log(n)) worst- 
case structures whlch are much slmpler to lmplement than Henrlksen's structure, 
and perform about equally well In practlce. 

n 
m 

n 
m 
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5.4. Tree structures. 
If the event times are kept in a blnary search tree, then one would suspect 

that  after a whlle the tree would be skewed to the right, because elements are 
deleted from the left and added mostly to the rlght. Interestingly, thls Is not 
always the case, and the explanation parallels that for the forward and backward 
scannlng methods In linear llsts. Consider for example an  exponential F in the 
HOLD model. As we have seen in Theorem 5.1, all the relative event times in the 
FES are lld exponentlally dlstrlbuted. Thus, the blnary search tree at every polnt 
in tlme 1s distrlbuted as for any binary search tree constructed from a random 
permutation of 1, . . . , n .  The properties of these trees are well-known. For 
example, the expected number of comparlsons needed for an lnsertlon of a new 
element, dlstrlbuted as the n other elements, and lndependent of It, 1s -2log(n ) 
(see e.g. Knuth (1973) or Standlsh (1980)). The expected tlme needed to delete 
the smallest element 1s 0 (log(n )). Flrst, we need to locate the element at the 
bottom left, and then we need to restore the blnary tree in case the deleted ele- 
ment had rlght descendants, by puttlng the bottom left descendant of these rlght 
descendants in its place. Unfortunately, one cannot count on F belng exponen- 
tlal, and some distributions could lead to dangerous unbalancing, elther to the 
left or the rlght. Thls was for example polnted out  by Klngston (1985). 

For robust performance, i t  1s necessary to look at worst-case lnsertlon and 
deletlon tlmes. They are 0 (log(n )) for such structures as the 2-3 tree, the AVL 
tree and the heap. Of these, the heap 1s the easlest to lmplement and understand. 
The overhead with the other trees is excesslve. Suggested for the FES by Floyd In 
a letter to Fox In the late sixties, and formalized by Gonnet (1976), the heap 
compares favorably in the extenslve timlng studies of McCormack and Sargent 
(1981), Ulrich (1978) and Reeves (1984). However, in lsolated appllcatlons, I t  Is 
clearly lnferior to the bucket structures (Franta and Maly, 1978). Thls should 
come as no surprise since properly designed bucket structures have constant 
expected tlme lnsertions and deletions. If robustness 1s needed such as in a gen- 
eral purpose software package, the heap structure 1s warmly recommended (see 
also Ulrlch (1978) and Klngston (1985)). 

It  1s possible to streamllne the heap for use In discrete event slmulation. The 
flrst modlflcation (Franta and Maly, 1978) consists of comblnlng the DELETE 
and INSERT operatlons into one operatlon, the HOLD operation. Since a deletlon 
calls for a replacement of the root of the heap, I t  would be a waste of effort to 
replace I t  by the last element In the heap, flx the heap, then insert a new element 
In the last position, and flnally Ax the heap agaln. In the HOLD operatlon, the 
root posltlon can be fllled by the new element directly. After this, the heap needs 
only be Axed once. Thls lmprovement Is most marked when the number of HOLD 
operations is relatively large compared to the number of bare DELETE or 
INSERT operatlons. A second lmprovement, suggested by Klngston (1985), con- 
slsts of using an m-ary heap lnstead of a binary heap. Good experlmental results 
were obtained by him for the ternary heap. Thls improvement 1s based on the 
fact that insertlons are more efflcient for large values of m ,  while deletions 
become only sllghtly more tlme-consuming. 
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5.5. Exercises. 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8.  

9. 
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Prove Theorem 5.2. 

Conslder Reeves's model. Show that when p<00, llm sup Nt = 00 almost 

surely. 
Show that the gamma ( a  ) ( a 21 ) and uniform [0,1] dlstrlbutlons are 
"E. Show that the gamma ( a  ) ( a 51 ) dlstrlbutlon Is NWUE. 
Generallze Theorem 5.5 as follows. For r 21, the expected number of buck- 
ets needed In Reeves's model does not exceed 

t+co 

A 
1+ 9 

C 
where X has dlstrlbutlon functlon F .  If A-- as x+00 for some constant 
c , then thls upper bound - x 

Assume that F Is the 

1 
r 
- 

absolute normal dlstrlbutlon functlon. Prove that If A 
1s l / x  In the Vaucher-Duval bucket structure, then the expected number of 
buckets needed 1s 0 ( x d m )  and C l ( h d m )  as A-00. 

In the HOLD model, show that whenever F has a density, the expected tlme 
needed for lnsertlon of a new element In an ordered doubly llnked llst Is 
O ( n  ) and 0 (n ). 
Conslder the blnary heap under the HOLD model wlth an exponentlal dlstrl- 
butlon F .  Show that the expected tlme needed for lnsertlng an element at  
tlme t In the FES 1s 0 (1). 
Glve a heap-based data structure for lmplementlng the operations DELETE, 
INSERT and CANCEL In 0 (log(n )) worst-case tlme. 
Conslder the HOLD model wlth an ordlnary blnary search tree lmplementa- 
tlon. Flnd a dlstrlbutlon F for whlch the expected lnsertlon tlme of a new 
element at tlme t >O 1s O($(n )) for some functlon ?,b lncreaslng faster than a 
logarlthm: llm $(n )/log(n ) = 00. 

n '03 
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6. REGENERATIVE PHENOMENA. 

6.1. The principle. 
Many processes In slmulatlon are repetltlve, Le. one can ldentlfy a null state, 

or orlgln, to whlch a system evolvlng In tlme returns, and glven that the system 
Is In the null state at a certaln time, the future evolutlon does not depend upon 
what has happened up to that  polnt. Conslder for example a slmple random walk 
In whlch at each tlme unlt, one step to the rlght or left 1s taken wlth equal pro- 
bablllty 1/2. When the random walk returns to the origin, we start  from scratch, 
The future of the random walk 1s lndependent of the hlstory up to the polnt of 
return to the origln. In some slmulatlons of such processes, we can efflclently sklp 
ahead In tlme by generatlng the waltlng tlme untll a return occurs, at  least when 
this waltlng tlme is a proper random varlable. Systems In whlch the probabllity 
of a return Is less than one should be treated dlfferently. 

The galn In efflclency Is due to the fact that the waltlng time untll the flrst 
return to the orlgln 1s sometlmes easy to generate. We wlll work through the 
example of the slmple random walk ln the next sectlon. Regeneratlve phenomena 
are ublqultous: they occur In queuelng systems (see section 6.3), In Markov 
chalns, and renewal processes In general. Heyman and Sobel (1982) provlde a 
solid study of many stochastlc processes of practlcal lmportance and pay partlcu- 
lar attentlon to regenerative phenomena. 

6.2. Random walks. 
The one-dlmenslonal random walk Is deflned as follows. Let U1,U2,  ... be lld 

{-1,l)-valued random varlables where P ( U , = l ) = P  ( ul=-l)=-. Form the 

partlal sums 

1 
2 

n 

i = 1  

sn = vi . 

Here S, can be consldered a s  a gambler's galn of coln tosslng after n tosses pro- 
vlded that the stake Is one dollar; n 1s the tlme. Let be the tlme untll a flrst 
return to the orlgln. If we need to generate s,, then I t  1s not necessary to gen- 
erate the lndlvldual Vi 's. Rather, I t  sufflces to proceed as follows: 
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x-0 
W H I L E X S n  DO 

Generate a random variate T (distributed as the waiting time for the flrst return to 
the origin). 
X-X+T 

V-X-T , Yc-O 
WHILE V t n  DO 

Generate a random (1,-1)-valued step u . 

IF Y = O  THEN vtX-2' (reset V by rejecting partial random walk) 
Y + Y + U ,  v-v+l 

RETURN Y 

The prlnclple 1s clear: we generate all returns t o  the orlgln up to tlme n ,  and 
slmulate the random walk expllcltly from the last return onwards, keeplng In 
mlnd that from the last return onwards, the random walk 1s condltlonal: no 
further returns to the orlgln are allowed. If another return occurs, the partlal ran- 
dom walk 1s reJected. The example of the slmple random walk 1s rather unfor- 

1 tunate In two respects: Arst, we know that S, 1s blnomlal ( n  ,-). Thus, there 1s 

no need for an algorlthm such as the one descrlbed above, whlch cannot posslbly 
run In unlformly bounded tlme. But more Importantly, the method descrlbed 
above 1s lntrlnslcally lnefflclent because random walks spend most of thelr tlme 
on one of the two sldes of the orlgln. Thus, the last return to the orlgln 1s llkely 
to be st(n ) away from n , so that the probablllty of acceptance of the expllcltly 
generated random walk, whlch 1s equal t o  the probablllty of not returnlng to the 

2 

orlgln, 1s 0 (L). Even 1f we could generate T In zero tlme, we would be looklng 

at an overall expected tlme complexlty of d(n2) .  Nevertheless, the example has 
great dldactlcal value. 

The dlstrlbutlon of the tlme of the flrst return to the orlgln 1s glven In the 
followlng Theorem. 

n 
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Theorem 6.1. 

satlsfles 
In a symmetric random walk, the time T of the flrst return to the origin 

1 2n -2 
P (T=2n)"=  p a n  = 22n-1 [ n -1 1 ( n  21) 9 

P(T=2n+1)=0 ( n z o ) .  

If q 2 n  Is the probability that the random walk returns to the origin at time 2 n ,  

1 
n (l+-). 

Proof of Theorem 6.1. 
This proof will be given in full, because I t  Is a beautiful lllustratlon of how 

one can compute certain renewal time dlstrlbutlons via generating functions. We 
begin with the generating function G (s ) for the probabilltles q 2i =P (S2i =0) 
where SZi  Is the value of the random walk at time 2 i .  We have 

co 
G ( s )  = cq2i~i = c2-2i [ : ! ) s i  

i t =1 

Let us now relate p 2n to q 2i . It is clear that 
n -1 

i=1 
q 2 n  = ~ 2 n  + ~ 2 n - 2 i  ~ 2 i  . 

If H (s ) is the generating function for p 2 n ,  then we have 
03 

H ( s ) =  ~ 2 n s "  
n = 1  
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Therefore, 

Equatlng the coemclent of s i  wlth p 2i glves the dlstrlbutlon of T . Statement A 
1s easlly verlfled. Statement B follows by uslng Stlrllng's formula. Statement C 
follows dlrectly from B. Flnally, D and E are obtalned by slmple computatlons. 

Even though T has a unlmodal dlstrlbutlon on the even lntegers wlth peak 
at 2, generatlon by sequentlal lnverslon started at 2 1s not recommended because 
E (T )=m. We can proceed by reJectlon based upon the followlng lnequalltles: 

Lemma 6.1. 
The probablllties p 2n satlsfy for n > - 1,  

3 

Proof of Lemma 6.1. 
We rewrite p z n  as follows: 

2n 22n -2e -2n 2n - 2n 
n 

e 
1 )2n -1 e 12(2n -1)  e (I-- 

2n - - 
n d-- 

for some 0<6'<1. An upper bound 1s provlded by 
1 

e 12(2n-1) - - 
3 
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A lower bound 1s provlded by 

1 
2n 

e (I---)~" 
- - 

3 
1 -  

(n --) 2 6 
(1+-)2" 1 (1--)2" 1 

2n 2n > 

1 -  
(n --) 2 2 J43; 

1 -  
(n --) 2 6 

Generatlon can now be dealt wlth by truncatlon of a contlnuous random 
varlate. Note that p 2n 5 cg (a: ) where 

I 

1 
2 
- ( n = i ,  n - l < x < n )  

1 - c g  (x 1 = 

(n > I ,  n - l < x < n )  
e l2 

3 
6 ( X  --) 1 2  

2 

where 

Random varlates wlth denslty g can qulte easlly be generated by lnverslon. The 
algorlthm can be summarized as follows: 
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Generator for first return to origin in simple random walk 

[SET-UP] 
1 - 

1 2 e  l2 

- z + 7  
[GENERATOR] 
REPEAT 

Generate a uniform [O,c ] random variate U 

IF us' 
2 

THEN RETURN X t 2  
ELSE 

Generate a uniform [0,1] random variate V .  
1 1 
2 _- Yt-+ (Y has density g restricted to [ i , ~ ) ) .  

2-( ~ - f )  v G e  12 

w +I/(G(X-L)~/~) (prepare for squeeze steps) 

IF T /  W <I-- (quick acceptance) 

2 
1 

2 x  
THEN RETURN 2 x  

1 

ELSE IF T / W 5 e 12(2x-1) (quick rejection) 
THEN IF T < p  2 x  TKEN RETURN 2 X  

UNTIL False 

The reJection constant c is a good lndlcator of the expected time spent before 
haltlng provlded that p 2 x  can be evaluated In constant tlme unlformly over all 
X .  However, If p 2~ 1s computed dlrectly from Its deflnltlon, 1.e. as a ratlo of fac- 
torials, then the computatlon takes time roughly proportlonal t o  X .  Assume that 
I t  1s exactly X .  Wlthout squeeze steps, the expected tlme spent computlng p 2~ 

would be c times E ( X )  where X has denslty g . Thls 1s 00 (exerclse 6.1). How- 
ever, with the squeeze steps, the probablllty of evaluatlng p 2 x  expllcltly for Axed 
value of X decreases as - as x+00. Thls lmplles that the overall expected tlme 

of the algorithm 1s flnlte (exerclse 6.2). 

1 
X 

I 
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6.3. Birth and death processes. 
A birth and death process Is a process with states 0,1,2,3, ..., In which the 

time spent In state i Is distributed as an exponential random variate dlvlded by 
hi  + p i ,  at whlch time the system Jumps to state i +1 (a birth) with probabllity 
h i  /(hi  + p i ) ,  and to state i -1 (a death) otherwlse. Slmple examples include 
A. The Poisson process: h;=h>O , p i s o .  Blrths correspond essentlally to 

events such as arrlvals in a bank. 
B. The Yule process: hi  = h i  >O , pi  EO. Here we also require that at time 0, 

the state be 1. This is a particular case of a pure birth process. The state 
can be identifled with the size of a given populatlon In which no deaths can 
occur. 
The M/M/l queue: x i = X > O  , pi=p>O , po=O. Here the state can be 
identifled with the size of a queue, a birth with an arrival, and a death with 
a departure. The condition po=O Is natural slnce nobody can leave the 
queue when the queue 1s empty. 
In all these examples, simulation can often be accelerated by maklng use of 

flrst-passage-time random varlables. Formally, we deflne the first passage tlme 
from z' to j ( j  > z ' )  , T i j ,  by 

C. 

Tij  = \nf { t : X t = j  IX,=i} . 

Here X, is the state of the system (an Integer) at  time t ,  and X, Is the Initial 
state. Let us conslder the M/M/l queue. The busy period of such a queue Is Tl0. 
If the system starts In state 0 (empty queue), and we define a system cycle as the 
minimal time until for the flrst tlme another empty queue state 1s reached after 
some busy perlod, 1.e. after at least one person has been In the queue, then the 
system cycle Is dlstributed as ,?3 /h+T,,, where ,?3 is an exponential random varl- 
ate, independent of Tlo. The only M/M/1 queues of interest to  us are those 
which have wlth probabllity one a flnlte value for Tlo, 1.e. those for whlch p z h  
(Heyman and Sobel, 1982, p. 91). The actual derivation of the dlstrlbutlon of T,, 
would lead us astray. What matters is that we can generate random variates dls- 
trlbuted as T,,, quite easily. This should of course not be done by generating all 
the arrivals and departures until an empty queue is reached, because the expected 
time of this method 1s not uniformly bounded over all values of h < p .  This 1s 
best seen by noting that E ( Tlo)=l/(p-h). 

The M/M/1 queue provides one of the few lnstances In whlch the dlstrlbu- 
tion of the flrst passage times 1s analytically manageable. For example, 2 f i T 1 0  
has density 

1 -q [+ -1 e I , ( x ) L  (a: >o) , 
X f ( a : > = e  

where E= - and I ,  Is the Bessel functlon of the Arst kind wlth imaginary 

argument (see section IX.7.1 for a deflnltlon). Dlrect generatlon can be carried out 
based upon the following result. 

I/?- 

i 
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Theorem 6.2. 
When E Is exponentlally dlstrlbuted, Y Is a random variable with density 

A (E+ 'a 1-1 +2Y 
2 

where c =- " and E=&, and E , Y  are Independent, then 

E /( L(E+L)+2 Y-1) has denslty f , and E / ( p + x + 2 m ( 2  Y-1)) Is distributed 
7T 

2 E  
as TIO. 

Proof of Theorem 6.2. 

densltles. By an integral representatlon of 1, (Magnus et al, 1966, p. 84), 
Thls theorem illustrates once agaln the power of integral representations for 

1 -Z(E+-) 
f ( X I =  e E I 1 ( x ) I  2 

2 1  1 - -4 2 E+-) E b ~ S e - z z ~ d ~  
- e  

2 7T-1 

--z ($€+T)+2Y- l )  1 1  
= E ((-$E+7)+2Y--l)e 1 1 

1 1 where Y has denslty g . Glven Y ,  thls is the density of E /(-(E+-)+2Y-l). 
2 E  

Generatlon of Y can be taken care of very slmply by reJectlon. Note that 

1 3  
7T 2 2  

3 3  
2 2  

where c =- 4E. The top upper bound, proportional to a beta (-,-) density 

integrates to E.  The bottom upper bound, proportional to a beta (-,-) density, 

lntegrates to (E/((-1))2. One should always pick the bound which has the 
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smallest Integral. The cross-over point Is at [=-(3+&)~%2.0. 1 
2 

Generator for g 

CASE 

REPEAT 
Generate a uniform [0,1] random variate U .  

Generate a beta (L 3) random variate Y .  
2 ' 2  

UNTIL 

-* 
3+& 

2 

U -< 1-u - 

REPEAT 

Generate a uniform [OJ] random variate U. 
Generate a beta (- -) random variate Y, 3 3  

2 ' 2  
1 1  
-(t+-)-1 

UNTIL -< u 2 t  1-u- 2 Y  
RETURN Y 

The expected number of lteratlons 1s mln([,(-)2). s Thls 1s a unlmodal Punctlon 
in f ,  taking the value 1 as ti1 and ctoo. The E-1 peak Is at {=(3+6) /2 .  The algo- 

rlthm Is unlformly fast  wlth respect to [Ll. In the case [=1 the  acceptance con- 
dltlon 1s automatlcally satlsfled, and the comblnatlon of the g generator wlth the 
property of Theorem 6.2 1s reduced to a generator already dealt wlth In Theorem 
IX.7.1. 

6.4. Phase type distributions. 
Phase type distributions (or simply PH-distributions) are the dlstrlbu- 

tlons of absorptlon tlmes In absorblng Markov chalns, which are useful In study- 
lng queues and rellablllty problems. We conslder only dlscrete (or: dlscrete-tlme) 
Markov chalns wlth a flnlte number of states. An absorptlon state Is one whlch, 
when reached, does not allow escape. Even If there Is at least one absorptlon 
state, I t  1s not at all certaln that I t  wlll ever be reached. Thus, phase type dlstrl- 
butlons can be degenerate. 
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Any state can also be "promoted t o  absorptlon state to study the tlme 
needed untll thls state 1s reached. If we promote the startlng state to absorption 
state lmmedlately after we leave It, then thls promotlon mechanlsm can be used 
t o  slmulate Markov chalns by the shortcuts discussed In thls sectlon, at least If 
we can get a good handle on the tlmes untll absorption. 

Dlscrete Markov chalns can always be slmulated by uslng a slmple dlscrete 
random varlate generator for every state transltlon (Neuts and Pagano, 1981). 
Thls generator 1s not unlformly fa s t  over all Markov chalns wlth m states and 
nondegenerate phase type dlstrlbutlon. In the search for unlformly fa s t  genera- 
tors, slmple shortcuts are of llttle help. 

For example, when we are In state i ,  we could generate the (geometrlcally 
dlstrlbuted) tlme untll we flrst leave i In constant expected tlme. The 
correspondlng state can also be generated unlformly fa s t  by a method such as 
Walker's, because we have a slmple condltlonal dlscrete dlstrlbutlon wlth m -1 
outcomes. Thls method can be used to ellmlnate the tlmes spent ldllng In lndlvl- 
dual states. It cannot ellmlnate the tlmes spent in cycles, such as in a Markov 
chaln In whlch wlth hlgh probablllty we stay In a cycle vlsltlng states 
z 1,22, . . . , & ln turn. Thus, I t  cannot posslbly be unlformly fast  over all Markov 
chalns wlth m states. 

It seems that In thls problem, unlform speed does not come cheaply. Some 
preprocesslng lnvolvlng the transltlon matrlx seems necessary. 

. .  

6.5. Exercises. 
1. Conslder the rejectlon algorlthm for the tlme 2X untll the  flrst return to the 

orlgln In a syrnmetrlc random walk glven In the text. Show that when the 
tlme needed to compute p2x 1s equal to x, then the expected tlme taken by 
the algorlthm wlthout squeeze steps 1s 00. 

2. A contlnuatlon of exerclse 1. Show that when squeeze steps are added as In 
the text, then the algorlthm halts In flnlte expected time. 

3. Discrete Markov chains. Conslder a dlscrete Markov chaln wlth m 
states and lnltlal state 1. You are allowed to preprocess at any cost, but just 
once. What sort of preprocesslng would you do on the transltlon matrlx so 
that you can deslgn an algorlthm for generatlng the state S,, at tlme n In 
expected tlme unlformly bounded over n .  The expected tlme 1s however 
allowed to lncrease wlth m . Hlnc: can you decompose the transltlon matrlx 
uslng a spectral representatlon so that the n -th power of I t  can be computed 
unlformly qulckly over all n ? 

The lost-games distribution. Let X be the number of games lost before 
a player 1s rulned In the classlcal gambler's ruin problem, 1.e. a gambler adds 
one to hls fortune wlth probablllty p and loses one unlt wlth probablllty 
1-p . He starts out wlth r unlts (dollars). The purpose of thls exerclse 1s to 
deslgn an algorlthm for generatlng X In expected tlme unlformly bounded In 

4. 
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T when p <1-p Is Axed. Unlform speed In both T and p would be even 
better. Notlce flrst that the restrlctlon p e l - p  1s needed to lnsure that X Is 
a proper random variable, 1.e. to lnsure that the player Is ruined wlth proba- 
blllty one. 
A. Show that  when p <1-p , the player will eventually be rulned wlth pro- 

bablllty one. 
B. Show that X has dlscrete dlstrlbutlon given by 

(Kemp and Kemp, 1968). 

Suppose that customers arrlve at a queue according to a homogeneous 
Polsson process wlth parameter 1, that the service tlme Is exponentlal 
with parameter p e l ,  and that the queue has lnltlally r customers. 
Show that the number of customers served untll the queue flrst vanlshes 
has the lost-games dlstrlbutlon wlth parameters T and p = x / ( x + p ) .  

D. Uslng Stlrllng’s approxlmatlon, determine the general dependence of 
P (X=n  ) upon n , and use I t  to design a unlformly fast reJectlon algo- 
rlthm. 

For a survey of these and other waitlng tlme mechanlsms, see e.g. Pat11 and 
Boswell (1975). 

C. 

7. THE GENERALIZATION OF A SAMPLE. 

7.1. Problem statement. 
As In sectlon XIV.2, we will dlscuss an lncompletely speclfled random variate 

generation problem. Assume that we are glven a sample X , ,  . . . , X ,  of lld 
R -valued random vectors with common unknown denslty f , and that we are 
asked to generate a new independent sample Y,, . . . , Y, of independent ran- 
dom vectors wlth the same denslty f . Stated In thls manner, the problem is 
obvlously unsolvable, unless we are lncredlbly lucky. 

What one can do is construct a density estimate 
f, (%)=I, (a: ,xl, . . . , x, ) of f ( E  ), and then generate a sample of size m 
from f , .  Thls procedure has several drawbacks: flrst of all, f, Is typlcally not 
equal to f . Also, the new sample depends upon the orlglnal sample. Yet, we 
have very few optlons avallable to us. Ideally, we would llke the new sample to  
appear to  be dlstrlbuted as the orlglnal sample. Thls wlll be called sample lndls- 
tlngulshablllty. Thls and other lssues wlll be dlscussed In thls sectlon. The 
materlal appeared orlglnally In Devroye and Gyorfl (1985, chapter 8). 
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7.2. Sample independence. 
There 1s llttle that can be done about the dependence between X , ,  . . , , X ,  

and Y , ,  . . . , Y,,, except to  hope that for n large enough, some sort of asymp- 
totlc lndependence 1s obtalned. In some appllcatlons, sample lndependence 1s not 
an lssue at all. 

Slnce the Yi 's are condltlonally lndependent glven XI, . . . , X ,  , we need 
only conslder the dependence between Y ,  and x,, . . . , xn . A measure of the 
dependence 1s 

D, = SUP I P ( Y E A  , X E B ) - P ( Y E A ) P ( X E B )  1 , 
A ,B 

where the supremum 1s wlth respect t o  all Borel sets A of R and all Borel sets 
B of R n d ,  and where Y = Y ,  and x 1s our shorthand notatlon for 
( X I ,  . . . , X ,  ). We say that the samples are asymptotlcally lndependent when 

llm D, = 0 .  
n -03 

In sltuatlons In whlch x,,  . . . , X ,  1s used to  deslgn or bulld a system, and 
Y , ,  . . . , Y,,, 1s used to  test I t ,  the sample dependence often causes optlmlstlc 
evaluatlons. Wlthout the asymptotlc lndependence, we can't even hope to  dlmln- 
Ish thls optlmlstlc blas by lncreaslng n . 

The lnequallty In Theorem 7.1 below provldes us wlth a sufflclent condltlon 
for asymptotlc lndependence. Flrst, we need the followlng Lemma. 

Lemma 7.1. (Scheffe, 1947). 
For all densltles f and g on R d ,  

s I f - 9  I = 2 s u p / J f - J g  I , 
B B B  1 where the supremum 1s wlth respect to  all Borel sets B of R d .  

Proof of Lemma 7.1. 

s(f -g )=O, we see that 
Let us take B = { f  >g} ,  and let A be another Borel set 

J I f -9 I = 2J(f -9) f 
B 

of R d .  Because 

Thus, we have shown that I f -g I Is at most twlce the supremum over all 
Borel sets of I s(f -g ) I . T o  show the other half of the Lemma, note that if B' 

B 
denotes the complement of B ,  then 
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Scheffe’s lemma tells us that If we asslgn probabllltles to sets (events) using 
two dlfferent densities, then the maximal difference between the probabllltles over 
all sets 1s equal to one half of the L ,  dlstance between the densitles. From 
Lemma 7.1, we obtain 

Let f, be a density estlmate, which itself 1s density. Then -1 Theorem 7.1. 

761 

We see that  for the sake of asymptotlc sample Independence, I t  sufflces that 
the expected L dlstance between 1, and f tends to zero wlth n . Thls 1s also 
called consistency. Consistency does not imply asymptotlc Independence: Just 
let f, be the uniform denslty In all cases, and observe that D, =O, yet 
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s I f, -f I Is a posltlve constant for all n and all nonuniform f . 

7.3. Consistency of density estimates. 
A density estlmate f n  Is consistent If for all densltles f , 

1lm E ( J  1 f ,-f  I 1 = 0 . 
n d c o  

Consistency guarantees that the expected value of the maxlmal error committed 
by replacing probabllltles deflned wlth f with probabllltles deflned wlth f 
tends to 0. Many estlmates are conslstent, see e.g. Devroye and Gyorfl (1985). 
Parametric estlmates, 1.e. estlmates In which the form of f, Is Axed up to a 
flnlte number of parameters, which are estimated from the sample, cannot be 
consistent because f , 1s required to converge to f for all f , not a small sub- 
class. Perhaps the best known and most widely used consistent density estlmate 
Is the kernel estimate 

where K Is a given density (or kernel), chosen by the user, and h >O is a 
smoothlng parameter, which typically depends upon n or the data (Rosenblatt, 
1956; Parzen, 1902). For conslstency I t  Is necessary and sumcient that h +O and 
nh --too In probability as n --too (Devroye and Gyorfl, 1985). How one should 
choose h as a function of n or the data 1s the subJect of a lot of controversy. 
Usually, the cholce 1s made based upon the approxlmate minimization of an error 
crlterion. Sample lndependence (Theorem 7.1) and sample lndistingulshablllty 
(next section) suggest that we try to  minimize 

But even after narrowlng down the error crlterlon, there are several strategles. 
One could mlnlmlze the supremum of the crlterlon where the supremum Is taken 
over a class of densitles. Thls 1s called a minimax strategy. If f has compact 
support on the real llne and a bounded continuous second derivative, then the 
best choices for lndlvldual f (Le., not In the mlnlmax sense) are 

1 
5 

-- 
h = C n  , 

3 
4 

K (5 ) = -(I-x 2, 

where C Is a constant dependlng upon f only: 
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The optlmal kernel colncldes with the optimal kernel for L criteria (Bartlett, 
1903). The optimal formula for h , which depends upon the unknown denslty f , 
can be estlmated from the data. Alternatlvely, one could compute the formula 
for a glven parametric denslty, a rough guess of sorts, and then estimate the 
parameters from the data. For example, If thls 1s done with the normal density as 
initial guess, we obtain the recommendation to  take 

1 

where b Is a robust estlmate of the standard deviation of the normal density 
(Devroye and Gyorfl, 1985). A typlcal robust estlmate is the so-called qulck-and- 
dirty estlmate 

P xp -x 

where zp ,xp are the p -th and q -th quantlles of the standard normal denslty, and 
X ( , p  and X,,, are the p -th and q -th quantlles in the data, Le. the (np )-th and 
(nq )-th order statistics. 

The constructlon glven here with the kernel estlmate is simple, and ylelds 
fast  generators. Other constructions have been suggested In the literature with 
random varlate generatlon In mlnd. Often, the expllclt form of f, Is not glven or 
needed. Constructions often start  from an empirical distrlbution functlon based 
upon X , ,  . . . , X, ,  and a smooth approximatlon of thls distribution function 
(obtalned by Interpolation), which, Is dlrectly useful in the inversion method. 
Guerra, Tapia and Thompson (1978) use Akima’s (Akima, 1970) quasi-Hermite 
plecewlse cublc lnterpolatlon to  obtaln a smooth monotone functlon colncldlng 
with the empirical distribution functlon at the points X i .  Recall that the empirl- 
cal dlstrlbutlon 1s the dlstrlbutlon whlch puts mass - at polnt xi. Hora (1983) 

glves another method for the same problem. Butler (1970) on the other hand uses 
Lagrange’s quadratlc Interpolation on the lnverse emplrlcal dlstributlon functlon 
to speed random variate generatlon up even further. 

1 
n 

7.4. Sample indistinguishability . 
In simulations, one lmportant qualitative measure of the goodness of a 

method Is the indlstlngulshablllty of X , ,  . . . , X,,, and Y, ,  . . . , Y,  for the 
glven sample size m .  Note that we have forced both sample slzes to  be the 
same, although for the constructlon of f, we keep on using n polnts. The IndIs- 
tlngulshablllty could be measured quantitatlvely by 

s,,m = S U P  JWN(A)) -E(M(A)IX, ,  . . . , X , )  

= m SUP I J r  - J f n  I 
A 

A A A  
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Here, A 1s a Bore1 set of R , N ( A  ) 1s the cardlnallty of A for the orlglnal sam- 
ple (the data, artiflclally Inflated to size m ), and M ( A  ) 1s the cardlnallty of A 
for the artlflclal Yi sample. By cardlnallty of a set, we mean the number of data 
polnts falllng In the set. 

When Sn,,, Is smaller than one, then the expected cardlnallty of a set A 
with a perfect sample of slze m differs by at most one from the condltlonal 
expected cardlnallty of the generated sample of slze m . We say that  f ,  Is k - 
excellent for samples of slze m when 

Thls 1s equlvalent to asklng that  the expected L dlstance between f and f, 1s 
at most 2k / m  . The notlon of 1-excellence 1s very strong. For example, for most 
nonparametric estlmates such as the kernel estlmate 1-excellence forces us to use 
phenomenally large values of n for even moderate values of m .  Devroye and 
Gyorfl (1985) have shown that for all kernel estlmates (regardless of cholce of I( 
and h ), and for all densltles f , 1-excellence 1s not achlevable for samples of size 
ni =lo00 unless n 24,000,000. For m =10,000, we need n ~1,300,000,000. For 
the hlstogram estlmate, the sltuatlon 1s even worse. 

But  even 1-excellence may not be good enough for one's appllcatlon. For one 
thlng, no assurances are glven as to  the discrepancy In moments between the gen- 
erated sample and the origlnal sample. 

7.5. Moment matching. 

densltles f ,  and f . For d =1, the i - t h  moment mismatch is deflned as 
Some statlstlclans attach a great deal of lmportance to the moments of the 

Mn .i = J x i  f , - S x ' f  (i =1,2,3 ,...) . 

Clearly, Ad,,i 1s a random varlable. 
wlth a zero mean flnlte varlance (a2) 

. n  

1 -  M, ,2 - (Xi 2-E (Xi 2)) 
ni=1 

Thls follows from the fact that f, 

Assume that  we employ the kernel estimate 
kernel IC. Then, we have 

+ h2a2 . 

1s an equlprobable mlxture of densltles I( 
shlfted t o  the Xi 's  , each havlng varlance h2a2 and zero mean. It is lnterestlng 
to note that  the dlstrlbution of M, 1s not lnfluenced by h or I C .  By the weak 
law of large numbers, tends to 0 In probability as 12 --.too when f has a 
Anlte flrst moment. The story 1s dlfferent for the second moment mismatch. 



XIV.7. GENERALIZING SAMPLES 765 

Whereas E (M, ,1)=0, we now have E (M, , 2 )=h  202, a posltlve blas. Fortunately, 
h 1s usually small enough so that  thls 1s not too blg a blas. Note further that  the 
varlances of M, , M, ,2 are equal to 

Var ( X  Var (X 12) 

n n 
t 

respectlvely. Thus, h and I< only affect the blas of the second order mlsmatch. 
Maklng the blas very small 1s not recommended as I t  lncreases the expected L ,  
error, and thus the sample dependence and dlstlngulshablllty. 

7.6. Generators for f, . 
For the kernel estlmate, generators can be based upon the property that  a 

random variate 1s dlstrlbuted as an equlprobable mlxture, as Is seen from the fol- 
lowlng trlvlal algorlthm. 

Mixture method for kernel estimate 

Generate 2 ,  a random integer uniformly distributed on { l , Z ,  . . . , n }. 
Generate a random variate w with density K . 
RETURN x z  +hW 

3 
4 

For Bartlett’s kernel I< (a: )=-(1-x2)+, we suggest elther reJectlon or a 

method based upon properties of order statlstlcs: 

Generator based upon rejection for Bartlett’s kernel 

REPEAT 
Generate a uniform [-1,1] random variate x and an independent uniform [0,1] ran- 
dom variate u.  

UNTIL U 51-Xa 
RETURN x 



766 XIV.7 .GENERALIZING SAMPLES 

The order statistics method for Bartlett’s kernel 

Generate three iid uniform [-1,1] random variates V,, V,, V,. 

IF I V , I > m ~ ( I V l I ~ I v [ / , / )  
THEN RETURN X + V, 
ELSE RETURN X + V, 

In th rejectlon method, X 1s accepted wlt,, probablllty 2/3, so that the algo- 
rlthm requlres on average three lndependent unlform random varlates. However, 
we also need some multlpllcatlons. The order statlstlcs method always uses pre- 
clsely three lndependent unlform random varlables, but the multlpllcatlons are 
replaced by a few absolute value operatlons. 

7.7. Exercises. 
1. Monte Carlo integration. To estlmate [ H ( z ) f  ( z )  dz , where H 1s a 

glven functlon, and f 1s a denslty, the Monte Carlo method uses a sample 
of slze n drawn from f (say, x,, . . . , X,).  The nalve estlmate 1s 

When n 1s small, this estlmate has a lot of bullt-ln varlance. Compute the 
varlance and assume that I t  1s flnlte. Then construct the bootstrap esti- 
mate 

where the Yi’s are lld random varlables wlth denslty f , , the kernel estl- 
mate of f based upon X , ,  . . . , X,.  The sample slze m can be taken as 
large as the user can afford. Thus, In the Ilmlt, one can expect the bootstrap 
estlmate t o  provlde a good estlmate of J H  (z )f , (z ) dz . 
A. Show that I S H f  -SHfn I 5 2  (sup H )  J I f -f, I (Devroye and 

Gyorfl, 1985). 

B. Compare the mean square errors of the nalve Monte Carlo estlmate and 
the estlmate (the latter 1s a llmlt as m +oo of the bootstrap estl- 
mate). 
Compute the mean square error of the bootstrap estlmate as a functlon 
of n and m ,  and compare wlth the nalve Monte Carlo estlmate. Also 

C. 
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2. 

3. 

4. 

consider what happens when you let m - m  In the expresslon for the 
mean square error. 

The generators for the kernel estimate based upon Bartlett’s kernel In the 
text use the mlxture method. Still for Bartlett’s kernel, derive the inversion 
method with all the details. Hint: note that the dlstrlbutlon function can be 
wrltten as the sum of polynomlals of degree three wlth compact support, and 
can therefore be considered as a cublc spline with at most 2 n  breakpoints 
when there are n data polnts (Devroye and Gyorfl, 1985). 

Bratley, Fox and Schrage (1983) conslder a density estlmate f, which pro- 
vldes fast  generation by lnverslon. The Xi ’s are ordered, and f , is constant 
on the lntervals determlned by the order statlstlcs. In addltlon, in the Inter- 
vals to the left of the mlnlmum and to the right of the maximum exponen- 
tlal tails are added. The constant pleces and exponentall tails lntegrate to 
l / ( n  +1) over thelr supports, 1.e. all pleces are equally likely to be picked. 
Rederive thelr fast  lnverslon algorlthm for f, . Is thelr estimate asymptotl- 
cally Independent? Show that I t  Is not consistent for any denslty f . To cure 
the latter problem, Bratley, Fox and Schrage suggest coalesclng breakpoints. 
Consider coalesclng breakpoints by lettlng f be constant on the lntervals 
determlned by the k- th ,  2k-th,  3k-th,  order statistics. How should one 
deflne the heights of f, on these Intervals, and how should k vary with n 
for conslstency? 
For the kernel estimate, show that for any denslty K ,  any f , and any 
sequence of numbers h > O  with h 4 0  ,nh +oo, we have E (s I f -f , I )-+O 
as n+m. Proceed as follows: flrst prove the statement for contlnuous f 
with compact support. Then, using the fact that any measurable function In 
L can be approximated arbitrarily closely by contlnuous functlons with 
compact support, wrap up the proof. In the flrst half of the proof, I t  1s useful 
to split the integral by consldering I f -8 (f , ) I separately. In the second 
half of the proof, you will need an embeddlng argument, In which you create 
a sample whlch wlth a few deletions can be consldered as a sample drawn 
from f , and wlth a few dlfferent deletlons can be consldered as a sample 
drawn from the L approximation of f . 

* 



Chap fer Fifteen 
THE RANDOM BIT MODEL 

1. THE RANDOM BIT MODEL. 

1.1. Introduction. 
Chapters I-XTV are based on the premlses that a perfect unlform [0,1] ran- 

dom varlate generator 1s avallable and that real numbers can be manlpulated and 
stored. Now we drop the flrst of these premlses and lnstead assume a perfect blt 
generator (l.e., a source capable of generatlng lld (0,l) random varlates 
B 1,B2,...),whlle stlll assumlng that real numbers can be manlpulated and stored, 
as before: thls 1s for example necessary when someone glves us the probabllltles 
p ,  for dlscrete random varlate generatlon. The cost of an algorlthm can be 
measured In terms of the number of blts requlred to  generate a random varlate. 
Thls model 1s due to Knuth and Yao (1Q76) who lntroduced a complexlty theory 
for nonunlform random varlate generatlon. We wlll report the maln ldeas of 
Knuth and Yao In thls chapter. 

If random blts are used to construct random varlates from scratch, then 
there 1s no hope of constructlng random varlates wlth a denslty In a flnlte 
amount of tlme. If on the other hand we are to generate a discrete random varl- 
ate, then I t  1s posslble to  And Anlte-tlme algorlthms. Thus, we wlll malnly be con- 
cerned wlth dlscrete random varlate generatlon. For contlnuous random varlate 
generatlon, I t  1s posslble to  study the relatlonshlp between the number of lnput 
blts needed per n blts of output, and t o  develop a complexlty theory based upon 
thls relatlonshlp. Thls wlll not be done here. See however Knuth and Yao (1976). 
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1.2. Some examples. 
Assume flrst that we wlsh to generate a blnomlal random varlate W i t h  

1 parameters n = l  and p #-. Thls can be consldered as the slmulatlon of a 

blased coln fllp, or the slmulatlon of the occurrence of an event havlng probabll- 
lty p . If p were -, we could Just exlt wlth B,. When p has blnary expanslon 

2 

1 
2 

P = O.P,P,P, * * 

I t  sufflces to generate random blts untll for the flrst tlme Bi #pi, and to return 1 
If Bi <pi and 0 otherwlse: 

Binomial (1,p) generator 

i t o  
REPEAT 

i C i + l  
Generate a random bit B . 

UNTL B # p i  

RETURN X +I, < p, 

If we deflne the unlform [O, l ]  random varlate 

U = 0.B,B2B3 * * , 

then I t  1s easy to see that thls slmple algorlthm returns 

Interestlngly, the probablllty of exltlng after i blts 1s 2-*, so that the expected 
number of blts needed 1s preclsely 2, lndependent of p .  We recognlze In thls 
example the lnverslon method. 

The rejectlon method too has a nlce analog. Suppose that we want to gen- 
erate a random lnteger X where P ( X = i ) = p i  , lsz'sn, and that all probablll- 
tles pi are multlples of -, where Zk- l<M 52k for some lnteger k .  Then we can 

conslder consecutlve k-tuples In the sequence B1,B2,  ... and set up a table wlth 
Z k  entrles: M entrles are used for storlng Integers between 1 and M ,  and the 
remalnlng entrles are 0. If pi =l; /M, then the lnteger z' should appear li tlmes In 
the table. An lnteger 0 lndlcates a rejectlon. Now use 

1 
M 
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Rejection algorithm 

REPEAT 
Generate k random bits, forming the number Z€{O,i, . , . , z k - i } .  

U N T E  Z < M  
RETURN X + A  (z] (where A is the table of M integers) 

In this algorithm, the expected number of blts requlred 1s k dlvlded by the pro- 
bability of lmmedlate acceptance, !.e. 

In both examples provided here, we can conslder the complete unbounded 
binary tree In whlch we travel down by turnlng left when Bi=O and rlght when 
Bi =l. In the rejection method, we have deslgnated M nodes at the k -th level as 
terminal nodes. The remalnlng nodes at the k-th level are "rejectlon nodes", and 
are In turn roots of slmllar subtrees. Slnce these reJectlon nodes are ldentlfled 
wlth the overall root, we can superlmpose them on the root, and form a pseudo- 
tree wlth some loopbacks from the k- th  level to  the root. But then, we have a 
flnlte dlrected graph, or a flnlte state machine. 

In the lnverslon method, the expansion of p determines an unbounded path 
down the tree, and so does the expansion of u .  Since we need only determine 
whether one path 1s to the left or the rlght of the other path, I t  sufflces t o  travel 
down until the paths separate. With probablllty -, they separate rlght away. 

Otherwise, they separate with probability - at the next level, and so forth. 

1 
2 

1 
2 

What we wlll do In the sections that follow 1s 
(1) Develop a lower bound for the expected number of blts In terms of 

p I,p 2, . . . , the probability vector of the dlscrete random varlate. 
(11) Develop black box methods and study their expected complexlty. 
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2. THE KNUTH-YAO LOWER BOUND. 

2.1. DDG trees. 
Suppose that we wish to generate a discrete random variate X with proba- 

bility vector p I , p 2 ,  ... . The probability vector can be flnite or inflnite dimen- 
slonal. Every algorithm based upon random blts can be represented as a binary 
tree (which Is usually inflnite), contalnlng nodes of two types: 
(I) Branch nodes (or internal nodes), having two children. We can travel to the 

left child when a 0 bit is encountered, and to the right child otherwise. 
(11) Terminal nodes without chlldren. These nodes are marked with an integer to 

be returned. 
It is instructive to  verify that this structure 1s present for the examples of the 
previous section. For example, for the binomial (1,p ) generator, consider the path 
for p ,  and assign terminal nodes marked 1 to all left children of nodes on the 
path that do not belong to  the path themselves, and terminal nodes marked 0 to 
all right chlldren of nodes on the path that do not belong to the path themselves. 

Let us introduce the notation t i ( / ? )  for the number of termlnal nodes on 
level IC (the root is on level 0) whlch are marked i . Then we must have 

When these condltlons are satlsfled, we say that we have a DDG-tree (dlscrete 
distributlon generating tree, terminology introduced by Knuth and Yao, 1976). 
The corresponding algorithms are called DDG-tree algorithms. DDG-tree algo- 
rithms halt with probability one because the sum of the probablllties of reaching 
the terminal nodes is 

2.2. The lower bound. 

of z . Deflne furthermore 
Let us introduce the function x(z  ) = z mod 1 = z - 1x1 , the fractional part 

and the entropy functlon 

H ( z )  = z l o g 2 i  (z >O) 
5 
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Theorem 2.1 1 

Then: 
Let N be the number of random blts taken by a DDG-tree algorlthm. 

A. E ( W  2 C4Pi) * 
I 

B. Let H ( p  l , p  2,...) = C H ( p i )  be the entropy of the probablllty dlstrlbutlon 

( p  l,p2,...). Then 
I 

H ( P  I , P 2 , . . . )  5 p ( P i  1 * 

i 

Proof of Theorem 2.1. 
We begln wlth an expresslon for E ( N ) :  

E ( N )  = P ( N > k )  
k 20 

where 6 (k ) 1s the number of lnternal (or: branch) nodes at level k . We obtaln 
the lower bound by Andlng a lower bound for 6 (k ). Let us use the notatlon t (k ) 
for the number of termlnal nodes at level k . Thus, 

6 ( O ) + t ( O )  = 1 , 
6 (k)+t(k) = 26 (IC-1) 

Uslng these relatlons, we can show that 

(k 21) . 

(Note that thls 1s true for k =0, and use lnductlon from there on.) But 

Thls 1s true because the left-hand-sum 1s nonnegatlve, and the rlght-hand-sum 1s 
an lnteger multlple of 2-k . Comblnlng all of thls ylelds 

Thls proves part A. Par t  B follows If we can show the followlng: 

H ( z )  _< Y(X) 5 H ( z ) + 2 ~  (all 5 ) .  
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Note that thls 1s more than needed, but the second part of the lnequallty wlll be 
useful elsewhere. For a number z E [ O , l ) ,  we wlll use the notatlon z =O.Z 1 ~ 2  * - - 
for the blnary expanslon. By deflnltlon of u(x ), 

Now, Y(O)=H(O)=O. Also, If SZ <21-k  , 

Also, because xk = 1 ,  

= 0 .I 

The lower bound of Theorem 2.1 1s related to the entropy of the probablllty 
vector. Let us briefly look at the entropy of some probablllty vectors: If 

1 
p i = ;  , 1 5 ;  s n ,  then 

a p , ,  . . . > P n  1 = m , n  ’ 

In fact, because H 1s lnvarlant under permutatlons of Its arguments, and 1s a 
concave functlon, I t  1s true that for probablllty vectors 
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( P  1, * . * > Pn ),(Qi> * . > Qn 1, 
H ( P ~ ,  * * .  1 P n )  L H(Q1, ' .  * Q n )  9 

when the pn vector 1s stochastlcally smaller than the qn vector, 1.e. If the pi 's 
and qi 's are In lncreaslng order, then 

P 1 L  Q 1 ;  

Pl+P2 L Q l + Q 2 ;  

Thls follows from the theory of Schur-convexity (Marshall and Olkln, 1979). In 
partlcular, for all probablllty vectors (p 11 . . . , p, ), we conclude that 

Both bounds are attalnable. In a sense, entropy lncreases when the probablllty 
vector becomes smoother, more unlform. It 1s smallest when there 1s no random- 
ness, 1.e. all the probablllty mass 1s concentrated In one polnt. Accordlng to 
Theorem 2.1, we are tempted to  conclude that unlform random varlates are the 
costllest to produce. Thls 1s lndeed the case If we compare optlmal algorlthms for 
dlstrlbutlons, and 1f the lower bounds can be attalned for all dlstrlbutlons (thls 
wlll be dealt wlth in the next sub-sectlon). If we conslder dlscrete dlstrlbutlons 
wlth n lnflnlte, then I t  1s posslble to have H (p l ,p 2,...)=00. To construct coun- 
terexamples very easlly, we note that If the p ,  's are 1, then 

where X 1s a random varlate wlth the glven probablllty vector. To see thls, note 
that pn 5 -, and thus that -p, log(p, ) 2 pn log(n ). Thus, whenever 1 

n 

Pn - C 

n logl+'(n ' 
a s  n 4 m ,  for some €E(O,l], we have lnflnlte entropy. The constant c may be 
dlmcult to calculate except In speclal cases. The followlng example 1s due to 
Knuth and Yao (1976): 

-I log2(n)1-2~0g2(10p~n)) l - i  
P 1 = O ; P n  "2 ( n  2 2 )  * 

Note that thls corresponds t o  the case ~ = l .  Thus, we note that for any DDG-tree 
algorlthm, E (log(X))=m lmplles E (N)=oo, regardless of whether the probabll- 
lty vector 1s monotone or not. The explanatlon 1s very slmple: E(log2(X)) 1s the 
expected number of blts needed to store, or descrlbe, X .  If thls 1s 03, there 1s ll t-  
tle hope of generatlng x requlrlng only E (N)<oo provlded that the dlstrlbutlon 
of X 1s sumclently spread out so that no blts are "redundant" (see exerclses). 
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2.3. Exercises. 
1. The entropy. Thls 1s about the entropy H of a probablllty vector 

( p  , , p  ,,...). Show 'the followlng: 
A. 

B. 

C. 

D. 

E. 

There exlsts a probablllty vector such that E (log,(X))=Od, yet 
E(N)<oo .  Here X 1s a dlscrete random varlate wlth the glven proba- 
blllty vector. Hlnt: clearly, the counterexample 1s not monotone. 
Is I t  true that  when the probablllty vector 1s monotone, then 
E (log,(X))<oo Implies H ( p  ,,...) <oo ? 

Show that the p f l  's deflned by 

form a probablllty vector, and that Its entropy 1s 03. 

Show that If one flnlte probablllty vector 1s stochastlcally larger than 
another probablllty vector, then Its entropy Is at most equal to the 
entropy of the second probablllty vector. 
Prove that when zE[O,l] 1s a power of 2, we have v ( z ) = H ( z ) ,  and 
that for any z E[O,l], v(z )=2 ,  v(-)-nz. 

2 

2fl 

3. OPTIMAL AND SUBOPTIMAL DDG-TREE ALGORITHMS. 

3.1. Suboptimal DDG-tree algorithms. 
We know now what we can expect at  best from any DDG-tree algorlthm In 

terms of the expected number of random blts. I t  1s another matter altogether to 
construct feaslble DDG-tree algorlthms. Some algorlthms requlre unwleldy set-up 
tlmes and/or calculatlons whlch would overshadow the contrlbutlon to the total 
complexlty from the random blt generator. In fact, most practlcal DDG-tree algo- 
rlthms correspond to algorlthms descrlbed In chapter 111. Let us qulckly check 
what klnd of DDG-tree algorlthms are hldden In that chapter. 

In sectlon 111.2, we lntroduced lnverslon of a unlform [0,1] random varlate 
U .  In sequentlal lnverslon, we compared U wlth successlve partlal sums of p ,  's. 
Thls corresponds to the followlng lnflnlte DDG-tree: conslder all the paths for the 
partlal sums, 1.e. the path for p ,, for p l + p  ,, etcetera. In case of a flnlte vector, 
we deflne the last cumulatlve sum by the blnary expanslon 0.111111111 .... Then 
generate random blts until the path traveled by the random blts devlates for the 
flrst tlme from any of the p ,  paths., If that path In question 1s for p , ,  then 
return n If the last random blt was 0 (the correspondlng blt on the path 1s l) ,  
and return n +1 otherwlse. Thls method has two problems: flrst, the set-up Is 
lmposslble except In the followlng speclal case: all p ,  's have a flnlte blnary 
expanslon, and the probablllty vector 1s flnlte. In all other cases, the DDG-tree 
must be constructed as we go along. 
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The analysls for thls DDG-tree algorlthm 1s not very difficult. Construct 
(Just for the analysls) the trle In whlch termlnal nodes are put at the polnts 
where the paths for the p n  's dlverge for the Arst tlme. For example, for the prG 
bablllty vector 

p 1 = 0.00101 
p.2 = 0.001001 I p ,  = 0.101101 

we have the cumulatlve probabllltles 0.00101,0.010011,0.111111111 l . . . .  Thus, we 
can put termlnal nodes at the posltlons 00, 01, and 1. It Is easy to see that  once 
the termlnal nodes are reached, then on the average 2 more random blts are 
needed. Thus, E ( N ) = 2 +  expected depth of the termlnal nodes In the trle 
deflned above. In our example, thls would yleld E (N)=2+-1+-2=-.  In 

another example, If all the p n  's are equal to , 1 5  n 52k , for some lnteger I C ,  
then E ( N ) = 2 + k ,  whlch grows as log2n . In general, we have 

1 1  7 
2 2 2  

n 
E (N) L 2+ pi log2(-) 5 3+H(pl, . * . t ~n 1 

i = 1  1 p 1 ]  
Thls follows from a slmple argument. Conslder the unlform [0,1] random varlate 
U formed by the random blts of the random bit generator. Also mark the partlal 
sums of p i ' s  on [ O , l ] ,  so that [0,1] 1s partltloned lnto n Intervals. The expected 
depth of a termlnal node In the trle 1s 

1 

J D ( x )  dx 
0 

where D (x ) 1s the smallest nonnegatlve Integer k such that the 2k dyadlc partl- 
tlon of [0,1] 1s such that  only one of the partlal sums (0 1s also consldered as a 
partlal sum) falls In the same lqterval. The i - th  partlal sum "controls" an lnter- 

val ln whlch D (5)s [ log2($) 1 ,  and the s h e  of the lnterval ltself 1s a power of 

2. Thus, 

from whlch we derlve the result shown above. We conclude that  sequentlal search 
type DDG-tree algorlthms are nearly optlmal for all probablllty vectors (compare 
wlth Theorem 2.1). 

The method of gulde tables, and the Huffman-tree based methods are slml- 
lar, wlth the sole exceptlon that the probablllty vector 1s permuted In the 
Huffman tree case. All these methods can be translated lnto a DDG-tree algo- 
rithm of the type descrlbed for the sequentlal search method, and the perfor- 
mance bounds glven above remaln valid. In vlew of the lower bound of Knuth 
and Yao, we don't galn by uslng speclal truncation-based trlcks, because trunca- 
tlon corresponds to search lnto a trle formed wlth equally-spaced polnts, and 
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takes tlme proportlonal to log, of the number of lntervals. 
Thus, I t  comes as no surprlse that  the allas method (section 111.4) has an 

unlmpresslve DDG-tree analog. We can conslder the followlng DDG-tree algo- 
rlthm: Arst, generate a uniform (1, . . . , n } -valued random lnteger (this requlres 
on the average >log,n and Sl+log,n random blts, as we remarked above). 
Then, havlng plcked a slab, we need to make one more comparlson between a 
unlform random varlate and a threshold, whlch takes on the average 2 comparls- 
ons by the blnomlal (1,p ) algorlthm descrlbed In sectlon XV.1. Thus, 

2+1og,n 5 E ( N )  5 3+log,n . 

Thls performance grows wlth n ,  while for the optlmal DDG-tree algorlthms we 
wlll see that  there are sequences of probablllty vectors for whlch E ( N )  remaln 
bounded as n + m .  In many cases, the allas algorlthm does not even come close 
to the lower bound of Theorem 2.1. 

The reJectlon method corresponds to the followlng DDG-tree: construct a 
DDG-tree In the obvlous fashlon wlth two types of termlnal nodes, termlnal 
nodes correspondlng to a successful return (acceptance), and reJectlon nodes. 
Make the reJectlon nodes roots of lsomorphlc trees agaln, and contlnue at  
lnflnltum. 

3.2. Optimal DDG-tree algorithms. 
The notation of sectlon XV.2 Is lnherlted. We start  wlth the followlng 

Theorem, due to Knuth and Yao (1976). It states that optlmal algorlthms achlev- 
lng the lower bound do lndeed exlst. 
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Theorem 3.1. 
Let ( p , , p 2 ,  . . . , p , )  be a dlscrete probabillty vector (where n may be 

v ( p i  )<m. Then there exists a DDG-tree algorlthrn 
n 

i = 1  

lnflnlte). Assume flrst that  

for whlch 

In fact, the followlng statements are equlvalent for any DDG-tree algorlthm: 

(I )  P (N > k  ) 1s mlnlmlzed for all k 20 over all DDG-tree algorithms for the 
glven dlstrlbutlon. 

(11) For all k 20 and all 1 S i  sn , there are exactly P j k  termlnal nodes marked 
i on level k where p j k  denotes the coefflclent of 2-k in the blnary expanslon 
of p j .  

(111) E (N) = 
n 

4 P j  1 . 
1 =1 

n 
Assume next that v(pi )=m. Then, statements (1) and (11) are equlvalent. 

: -1 

Proof of Theorem 3.1. 
We lnherit the notatlon of the proof of Theorem 2 . 1 .  By lnspectlng that 

proof, we note that a DDC-tree algorlthm attalns the lower bound (if I t  1s flnlte) 
If and only if for all i and k ,  we have equallty In 

Thls means that 
k 

j =O 
t i ( j ) 2 k - j  = [ 2 k p j  1 . 

But thls says slmply that ti (k ) is P j k  for all k . The number of termlnal nodes at 
level k for integer 2 1s 0 or 1 dependlng upon the value of the k- th  blt in the 
blnary expanslon of p i .  To prove that such DDG-trees actually exist, deflne ti (k ) 
and t ( k )  by 

( I c  = P j k  

t ( k )  = p , ( k ) + .  * + p , ( k )  I 

Thus, we certalnly have 
2-k t j ( k )  = p j  

2 4  t ( k )  = 1 . 
k 20 

k 20 

I 
I 

i 
1 

i 
- 
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A DDG-tree with these condltlons exists If and only If the integers 6 ( k )  deflned 
by 

6 (O)+ t (O)  = 1 , 
6 ( k ) + t  ( k )  = 26 (IC-1) ( k  > I )  

are nonnegative. But the 6 ( k  )'s thus deflned have a solution 

Hence 6 ( I C ) > O ,  and such trees exist. This proves all the statements involving 
(ill). For the equivalence of (1) and (11) in all cases, we note that In Theorem 2.1, 
we have obtalned a lower bound for 6 ( I C  ) for all k , and that the construction of 
the present theorem gives us a tree for which the lower bound Is attained for all 

k . B u t  P(N>k)=- (' ) , and we are done. 
2k 

Let us give an example of the optimal construction. 

Example 3.1. (Knuth and Yao, 1976) 
Consider the transcendental probabilities 

~ ~~ 

=0.010100010111110.. . 1 
P l =  ; I 

1 P 2 = 7  =0.010111100010110 ... 
p 3 = 1-p ,-p 2 =0.010100000101010 ... 

The optimal tree Is inherently Inflnlte and cannot be obtained by a flnlte state 
machine (this is possible If and only If all probabilities are rational). The optimal 
tree has at each level between 0 and 3 termlnal nodes, and can be constructed 
without too much trouble. Baslcally, all internal nodes have two children, and at 
each level, we put the terminal nodes to the right on that level. This usually 
gives an asymmetric left-heavy tree. Uslng the notatlon I for internal node, and 
1,2,3 for terminal nodes for the integers 1,2,3 respectively, we can specify the 
optimal DDG-tree by specifying the nature of all the nodes on each level, from 
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left to rlght. In the present example, thls glves 

3.3. Distribution-free inequalities for the performance of optimal 
DD G-t ree algorithms. 

We have seen that an optlmal DDG-tree algorlthm requlres on the average 
n 

i = 1  
E ( N )  = C4Pi) 

random blts. By an lnequallty shown In Theorem 2.1, 
H ( z ) s v ( z  )<H(z)+2z ,z E[O,l], we see that for optlmal algorlthms, 

n 

i =I  
C H W  = H(P1, * * .  > P,) 

F E ( W  I W P , ,  * .  . > P,)+2 f 

Thus, the performance 1s roughly speaklng proportlonal to the entropy of the dls- 
trlbutlon. In general, thls quantlty is not known beforehand. Often one wants a 
prlorl guarantees about the performance of the algorlthm. Thus, dlstrlbutlon-free 
bounds on E ( N )  for the optlmal algorlthm can be very useful. We offer: 
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Theorem 3.2. (Knuth and Yao, 1976) 
Let p 1, . . . , p n  ' be a finlte probablllty vector. Then, 

Proof of Theorem 3.2. 
By deflnltlon of x and v, 

for all k 20. The n-1 upper bound follows by notlng that the left hand side 1s 
less than n , and that I t  Is lnteger valued because I t  can be wrltten as 

Thus, 

The upper bound follows when we note that iog2(n-1) 1 = [log,(n 11-1. Let us 
now turn to the lower bound. Uslng the notatlon of the proof of Theorem 2.1, an 
optlmal DDG-tree always has 

Slnce 6 ( k ) Z n - l  (there are > n  termlnal nodes, and thus z n  -1 lnternal 
k 20 

nodes), and slnce condltlonal on the latter sum belng equal to s , the mlnlmum of 

k 2 o  2 
1s reached for 6 (O)= * = 6  (s-l)=l, we see that 

n 

i - 1  
Y(&) > - 2-2- 2 2-22-n *I 

- I '  
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1. 

2. 

3. 

4. 

The bounds of Theorem 3.2 are best possible. By lnspectlon of the proof, 
construct for each n a probability vector p l ,  . . . , pn for whlch the lower 
bound 1s attained. (Conclude that for this family of dlstrlbutions, the 
expected performance of optlmal DDG-tree algorlthms 1s unlformly bounded 
In n .) Show that the upper bound of the theorem 1s attained for 

2 n  4 - 4 4  
)+2-q ,l<i 529 +l-n , 

2n -1 

where q = log,(n ) (Knuth and Yao, 1976). 

Describe an optlmal DDG-tree algorithm of the shape descrlbed In Example 
3.1, whlch requlreg storage of the probability vector only. In other words, the 
tree is constructed dynamically. You can assume of course that the pn 's can 
be manipulated in your computer. 
Finite state machines. Show that there exists a flnite state machlne 
(edges correspond to random blts, nodes to  lnternal nodes or termlnal nodes) 
for generatlng a dlscrete random varlate X taking values In (1, . . . , n } if 
and only If all probabilitles involved are ratlonal. Give a general procedure 
for constructing such flnlte state machines from (not necessarlly optimal) 
DDG-trees by lntroduclng reJectlon nodes and feedbacks to lnternal nodes. 
For simulating one die, And a Anite state machine requiring on the average 
11 - random bits. Is this optlmal ? For simulatlng the sum of two dice, And a 
3 

random bits. For 79 flnite s ta te  machlne whlch requires on the average - 
18 

slmulatlng two dlce (NOT the sum), And a flnlte state machlne whlch 
requires on the average - random bits. Show that all of these numbers are 

optimal. Note that in the last case, we do better than Just simulating one dle 
22 random twice wlth the flrst algorlthm slnce thls would have eaten up - 
3 

bits on the average (Knuth and Yao, 1976). 

Consider the following 5-state automaton: there is a START state, two ter- 
mlnal states, A and B, and two other states, S1 and S2. Transltions between 
states occur when blts are observed. In particular, we have: 

1 1  

20 
3 

START + 0 3 S1 
START + 1 3 S2 
S l + O + A  
s1 + 1 -+ s2 
S 2 + O - - t B  
S2 + 1 -+ START 

I 
- 
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If we start at START, and observe a perfect sequence of random blts, then 
what Is P ( A  ),P ( B  ) ? Compute the expected number of blts before haltlng. 
Flnally, construct the optimal DDG-tree algorlthm for thls problem and And 
a flnite-state equlvalent form requlrlng the same expected number of blts. 
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