Luc Devroye

Non-Uniform
 Random Variate Generation

Springer-Verlag New York Berlin Heidelberg Tokyo

Luc Devroye

School of Computer Science
McGill University
Montreal H3A 2K6
Canada

AMS Classifications: $62-\mathrm{H} 12,62-\mathrm{G} 05,68-\mathrm{K} 05,90-\mathrm{A} 99,90-\mathrm{B} 99$

Library of Congress Cataloging in Publication Data
Devroye, Luc.
Non-uniform random variate generation.
Bibliography: p.
Includes index.

1. Random variables. I. Title.

QA274.D48 $1986 \quad 519.2 \quad 86-3783$
© 1986 by Springer-Verlag New York Inc.
All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

Printed and bound by R.R. Donnelley \& Sons, Harrisonburg, Virginia. Printed in the United States of America.

987654321
ISBN 0-387-96305-7 Springer-Verlag New York Berlin Heidelberg Tokyo ISBN 3-540-96305-7 Springer-Verlag Berlin Heidelberg New York Tokyo

PREFACE

This text is about one small fleld on the crossroads of statlstics, operations research and computer sclence. Statlstlicians need random number generators to test and compare estimators before using them in real llfe. In operations research, random numbers are a key component in large scale slmulations. Computer sclentists need randomness in program testing, game playing and comparisons of algorithms.

The applications are wide and varled. Yet all depend upon the same computer generated random numbers. Usually, the randomness demanded by an application has some bullt-In structure: typlcally, one needs more than just a sequence of independent random bits or independent unlform $[0,1]$ random variables. Some users need random variables with unusual densitles, or random combinatorlal objects with specific propertles, or random geometric objects, or random processes with well deflned dependence structures. This is precisely the subject area of the book, the study of non-unlform random varlates.

The plot evolves around the expected complexity of random varlate generatlon algorlthms. We set up an ideallzed computational model (without overdoing lt), we introduce the notion of unlformly bounded expected complexity, and we study upper and lower bounds for computational complexity. In short, a touch of computer sclence is added to the field. To keep everything abstract, no timings or computer programs are included.

This was a labor of love. George Marsaglla created CS690, a course on random number generation at the School of Computer Sclence of McGill University. The text grew from course notes for CS690, which I have taught every fall since 1977. A few Ingenlous pre-1977 papers on the subject (by Ahrens, Dleter, Marsaglla, Chambers, Mallows, Stuck and others) provided the early stlmulus. Bruce Schmelser's superb survey talks at varlous ORSA/TIMS and Winter Simulation meetings convinced me that there was enough structure in the fleld to warrant a separate book. This bellef was relnforced when Ben Fox asked me to read a preprint of his book with Bratley and Schrage. During the preparation of the text, Ben's critical feedback was invaluable. There are many others whom I would like to thank for helping me in my understanding and suggesting interesting problems. I am particularly grateful to Richard Brent, Jo Ahrens, Ull Dleter, Brlan Ripley, and to my ex-students Wendy Tse, Colleen Yuen and Amir

Naderisamani. For stimull of another nature during the past few months, I thank my wife Bea, my chlldren Natasha and Birgit, my Burger King mates Jeanne Yuen and Kent Chow, my sukebe friends in Toronto and Montreal, and the supreme sukebe, Bashekku Shubataru. Without the financlal support of NSERC, the research leading to this work would have been impossible. The text was typed (with one finger) and edited on LISA's Offlce System before it was sent on to the School's VAX for troff-ing and laser typesetting.

TABLE OF CONTENTS

PREFACE

TABLE OF CONTENTS

I. INTRODUCTION
 1

1. General outllne. 1
2. About our notation. 5
2.1. Definitions. 5
2.2. A few Important univarlate densitles. 7
3. Assessment of random varlate generators. 8
3.1. Distributions with no varlable parameters. 9
3.2. Parametric familles. 9
4. Operations on random varlables. 11
4.1. Transformations. 11
4.2. Mixtures. 16
4.3. Order statlstics. 17
4.4. Convolutions. Sums of Independent random varlables. 19
4.5. Sums of independent uniform random variables. 21
4.8. Exercises. 23
II. GENERAL PRINCIPLES IN RANDOM VARLATE GENERATION 27
5. Introduction. 27
6. The Inversion method. 27
2.1. The Inversion principle. 27
2.2. Inversion by numerical solution of $F(X)=U$. 31
2.3. Explicit approximatlons. 35
2.4. Exerclses. 38
7. The rejection method. 40
3.1. Deflnition. 40
3.2. Development of good rejection algorithms. 43
3.3. Generallzations of the rejection method. 47
3.4. Wald's equation. 50
3.5. Letac's lower bound. 52
3.6. The squeeze princlple. 53
3.7. Recycling random variates. 58
3.8. Exerclses. 80
8. Decomposition as discrete mlxtures. 68
4.1. Deflnition. 86
4.2. Decomposition into simple components. 88
4.3. Partitlons into intervals. 67
4.4. The walting time method for asymmetric mixtures. 71
4.5. Polynomial densitles on $[0,1]$. 71
4.6. Mixtures with negative coefflclents. 74
9. The acceptance-complement method. 75
5.1. Definition. 75
5.2. Simple acceptance-complement methods. 77
5.3. Acceleration by avolding the ratlo computation. 78
5.4. An example : nearly flat densities on $[0,1]$. 78
5.5. Exerclses. 81
III. DISCRETE RANDOM VARLATES 83
10. Introduction. 83
11. The Inversion method. 85
2.1. Introduction. 85
2.2. Inversion by truncation of a continuous random variate. 87
2.3. Comparison-based Inversions. 88
2.4. The method of gulde tables. 98
2.5. Inversion by correction. 88
2.6. Exerclses. 101
12. Table look-up methods. 102
3.1. The table look-up principle. 102
3.2. Multiple table look-ups. 104
13. The allas method. 107
4.1. Deflnition. 107
4.2. The allas-urn method. 110
4.3. Geometrlcal puzzles. 111
4.4. Exerclses. 112
14. Other general principles. 113
5.1. The rejection method. 113
5.2. The composition and acceptance-complement methods. 118
5.3. Exercises. 116
IV. SPECLALIZED ALGORITHMS 118
15. Introduction. 118
1.1. Motivation for the chapter. 118
1.2. Exerclses. 118
16. The Forsythe-von Neumann method. 121
2.1. Descrlption of the method. 121
2.2. Von Neumann's exponentlal random varlate generator. 125
2.3. Monahan's generallzation. 127
2.4. An example : Vaduva's gamma generator. 130
2.5. Exercises. 132
17. Almost-exact Inversion. 133
3.1. Deflnition. 133
3.2. Monotone densitles on $[0, \infty)$. 134
3.3. Polya's approximation for the normal distribution. 135
3.4. Approximations by simple functions of normal random variates. 136
3.5. Exerclses. 143
18. Many-to-one transformations. 145
4.1. The princlple. 145
4.2. The absolute value transformation. 147
4.3. The inverse gaussian distribution. 148
4.4. Exercises. 150
19. The serles method. 151
5.1. Description. 151
5.2. Analysis of the alternating serles algorithm. 154
5.3. Analysis of the convergent serles algorlthm. 158
5.4. The exponential distribution. 157
5.5. The Raab-Green distribution. 158
5.6. The Kolmogorov-Smlrnov distribution. 161
5.7. Exerclses. 168
20. Representations of densitles as integrals. 171
6.1. Introduction. 171
6.2. Khinchine's and related theorems. 171
6.3. The inverse-of-f method for monotone densities. 178
8.4. Convex densittes. 178
6.5. Recursive methods based upon representations. 180
6.6. A representation for the stable distribution. 183
6.7. Densltles with Polya type characteristlc functions. 186
6.8. Exercises. 191
21. The ratio-of-unlforms method. 184
7.1. Introduction. 194
7.2. Several examples. 187
7.3. Exerclses. 203
V. UNIFORM AND EXPONENTIAL SPACINGS 206
22. Motlvation. 208
23. Unlform and exponential spacings. 207
2.1. Unlform spacings. 207
2.2. Exponential spacings. 211
2.3. Exerclses. 213
24. Generating ordered samples. 213
3.1. Generating uniform $[0,1]$ order statistics. 214
3.2. Bucket sorting. Bucket searching. 215
3.3. Generating exponentlal order statistics. 219
3.4. Generating order statistics with distribution function F. 220
3.5. Generating exponential random varlates in batches. 223
3.6. Exercises. 223
25. The polar method. 225
4.1. Radlally symmetric distributions. 225
4.2. Generating random vectors unlformly distributed on C_{d}. 230
4.3. Generating polnts uniformly in and on C_{2}. 233
4.4. Generating normal random varlates in batches. 235
4.5. Generatlng radlally symmetric random vectors. 236
4.8. The deconvolution method. 238
4.7. Exerclses. 240
VI. THE POISSON PROCESS 246
26. The Polsson process. 246
1.1. Introduction. 246
1.2. Simulation of homogeneous Polsson processes. 248
1.3. Nonhomogeneous Polsson processes. 250
1.4. Global methods for nonhomogeneous Polsson process simulation. 257
1.5. Exerclses. 258
27. Generation of random varlates with a given hazard rate. 260
2.1. Hazard rate. Connection with Polsson processes. 260
2.2. The Inversion method. 261
2.3. The composition method. 262
2.4. The thinning method. 284
2.5. DHR distributions. Dynamic thinning. 267
2.6. Analysis of the dynamic thinning algorithm. 268
2.7. Exerclses. 276
28. Generating random varlates with a glven discrete hazard rate. 278
3.1. Introduction. 278
3.2. The sequentlal test method. 279
3.3. Hazard rates bounded away from 1. 280
3.4. Discrete dynamic thinning. 283
3.5. Exerclses. 284
VII. UNIVERSAL METHODS 286
29. Black box philosophy. 286
30. Log-concave densitles. 287
2.1. Deflnition. 287
2.2. Inequallitles for log-concave densities. 288
2.3. A black box algorlthm. 290
2.4. The optimal rejection algorithm. 283
2.5. The mirror principle. 295
2.6. Non-unlversal rejection methods. 298
2.7. Exerclses. 308
31. Inequalltles for famlles of densitles. 310
3.1. Motlvation. 310
3.2. Bounds for unimodal densities. 310
3.3. Densitles satisfying a Lipschitz condition. 320
3.4. Normal scale mixtures. 325
3.5. Exerclses. 328
32. The inversion-rejection method. 331
4.1. The principle. 331
4.2. Bounded densitles. 332
4.3. Unimodal and monotone densitles. 334
4.4. Monotone densitles on [0,1]. 335
4.5. Bounded monotone densitles : Inversion-rejection based on Newton-Raphson Iterations. 341
4.6. Bounded monotone densitles : geometrically Increasing interval sizes. 344
4.7. Lipschitz densitles on $[0, \infty)$. 348
4.8. Exerclses. 355
VIII. TABLE METHODS FOR CONTINUOUS RANDOM VARIATES 358
33. Composition versus rejection. 358
34. Strip methods. 359
2.1. Definition. 359
2.2. Example 1 : monotone densitles on $[0,1]$. 362
2.3. Other examples. 366
2.4. Exercises. 387
35. Grid methods. 368
3.1. Introduction. 368
3.2. Generating a point uniformly in a compact set A. 388
3.3. Avoldance problems. 372
3.4. Fast random varlate generators. 375
IX. CONTINUOUS UNIVARIATE DENSITIES 379
36. The normal density. 379
1.1. Deflnition. 379
1.2. The tall of the normal density. 380
1.3. Composition/rejection methods. 382
1.4. Exerclses. 381
37. The exponential density. 392
2.1. Overvlew. 392
2.2. Marsaglla's exponential generator. 394
2.3. The rectangle-wedge-tall method. 397
2.4. Exerclses. 401
38. The gamma denslty. 401
3.1. The gamma family. 401
3.2. Gamma varlate generators. 404
3.3. Uniformly fast rejection algorlthms for $a \geq 1$. 407
3.4. The Welbull density. 414
3.5. Johnk's theorem and its Impllcations. 416
3.6. Gamma varlate generators when $a \leq 1$. 419
3.7. The tall of the gamma density. 420
3.8. Stacy's generallzed gamma distribution. 423
3.9. Exercises. 423
39. The beta density. 428
4.1. Properties of the beta density. 428
4.2. Overvlew of beta generators. 431
4.3. The symmetrlc beta denslty. 433
4.4. Uniformly fast rejection algorithms. 437
4.5. Generators when $\min (a, b) \leq 1$. 439
4.6. Exercises. 444
40. The t distribution. 445
5.1. Overvlew. 445
5.2. Ordinary rejection methods. 447
5.3. The Cauchy denslty. 450
5.4. Exercises. 451
41. The stable distribution. 454
6.1. Deflnition and propertles. 454
6.2. Overview of generators. 458
6.3. The Bergstrom-Feller serles. 480
6.4. The serles method for stable random varlates. 463
6.5. Exercises. 467
42. Nonstandard distributions. 468
7.1. Bessel function distributions. 488
7.2. The logistic and hyperbollc secant distributions. 471
7.3. The von Mises distribution. 473
7.4. The Burr distribution. 476
7.5. The generallzed inverse gaussian distribution. 478
7.6. Exerclses. 480
X. DISCRETE UNIVARIATE DISTRIBUTIONS 485
43. Introduction. 485
1.1. Goals of this chapter. 485
1.2. Generating functions. 486
1.3. Factorlals. 489
1.4. A unlversal rejection method. 493
1.5. Exerclses. 496
44. The geometric distribution. 498
2.1. Definition and genesis. 498
2.2. Generators. 499
2.3. Exerclses. 500
45. The Polsson distribution. 501
3.1. Baslc propertles. 501
3.2. Overvlew of generators. 502
3.3. Simple generators. 502
3.4. Rejection methods. 506
3.5. Exerclses. 518
46. The binomial distribution. 520
4.1. Propertles. 520
4.2. Overview of generators. 523
4.3. Stmple generators. 523
4.4. The rejectlon method. 526
4.5. Recurslve methods. 538
4.6. Symmetrlc blnomlal random varlates. 538
4.7. The negatlve binomial distribution. 543
4.8. Exerclses. 543
47. The logarithmic serles distribution. 545
5.1. Introductlon. 545
5.2. Generators. 546
5.3. Exerclses. 549
48. The Zipf distribution. 550
6.1. A slmple generator. 550
8.2. The Planck distributlon. 552
6.3. The Yule distribution. 553
6.4. Exercises. 553
XI. MULTIVARIATE DISTRIBUTIONS 554
49. General principles. 554
1.1. Introduction. 554
1.2. The conditional distribution method. 555
1.3. The rejectlon method. 557
1.4. The composition method. 557
1.5. Dlscrete distributlons. 559
1.6. Exerclses. 562
50. Linear transformations. The multinormal distribution. 563
2.1. Linear transformations. 563
2.2. Generators of random vectors with a glven covarlance matrix. 584
2.3. The multinormal distrlbution. 586
2.4. Polnts unlformly distributed in a hyperellipsold. 567
2.5. Uniform polygonal random vectors. 588
2.6. Time serles. 571
2.7. SIngular distributions. 571
2.8. Exerclses. 572
51. Dependence. Bivarlate distributions. 573
3.1. Creating and measuring dependence. 573
3.2. Blvarlate unlform distributions. 578
3.3. Bivarlate exponential distributions. 583
3.4. A case study: blvarlate gamma distributlons. 588
3.5. Exerclses. 588
52. The Dirichlet distribution. 593
4.1. Deflinitions and propertles. 593
4.2. Llouville distributions. 596
4.3. Exerclses. 598
53. Some useful multivarlate familles. 600
5.1. The Cook-Johnson famlly. 800
5.2. Multivariate Khinchine mixtures. 803
5.3. Exerclses. 804
54. Random matrlces. 805
6.1. Random correlation matrices. 605
6.2. Random orthogonal matrices. 607
6.3. Random $R \times C$ tables. 808
6.4. Exercises. 610
XII. RANDOM SAMPLING 611
55. Introduction. 611
56. Classical sampling. 612
2.1. The swapping method. 612
2.2. Classical sampling with membership checking 613
2.3. Exerclses. 619
57. Sequential sampling. 619
3.1. Standard sequential sampllng. 619
3.2. The spacings method for sequential sampling. 621
3.3. The inversion method for sequentlal sampling. 624
3.4. Inversion-with-correction. 625
3.5. The ghost point method. 826
3.6. The rejection method. 631
3.7. Exerclses. 635
58. Oversampling. 635
4.1. Deflnition. 635
4.2. Exerclses. 638
59. Reservolr sampling. 638
5.1. Definition. 638
5.2. The reservolr method with geometric jumps. 640
5.3. Exercises. 641
XIII. RANDOM COMBINATORIAL OBJECTS 642
60. General princlples. 642
1.1. Introduction. 642
1.2. The decoding method. 643
1.3. Generation based upon recurrences. 845
61. Random permutations. 648
2.1. Simple generators. 648
2.2. Random binary search trees. 648
2.3. Exerclses. 650
62. Random binary trees. 652
3.1. Representations of binary trees. 652
3.2. Generation by rejection. 655
3.3. Generation by sequentlal sampling. 656
3.4. The decoding method. 657
3.5. Exerclses. 657
63. Random partltions. 657
4.1. Recurrences and codewords. 657
4.2. Generation of random partitlons. 880
4.3. Exercises. 661
64. Random free trees. 882
5.1. Prufer's construction. 682
5.2. Klingsberg's algorithm. 864
5.3. Free trees with a glven number of leaves. 665
5.4. Exercises. 686
65. Random graphs. 667
6.1. Random graphs with simple propertles. 867
6.2. Connected graphs. 688
6.3. Tinhofer's graph generators. 869
6.4. Bipartite graphs. 671
6.5. Excerclses. 673
XIV. PROBABILISTIC SHORTCUTS AND ADDITIONAL TOPICS 674
66. The maximum of lld random varlables. 674
1.1. Overview of methods. 674
1.2. The quick elimination principle. 675
1.3. The record tlme method. 679
1.4. Exercises. 681
67. Random varlates with given moments. 682
2.1. The moment problem. 682
2.2. Discrete distrlbutions. 686
2.3. Unimodal densitles and scale mixtures. 887
2.4. Convex comblnations. 689
2.5. Exerclses. 693
68. Characterlstic functions. 695
3.1. Problem statement. 695
3.2. The rejection method for characterlstic functions. 696
3.3. A black box method. 700
3.4. Exercises. 715
69. The simulation of sums. 718
4.1. Problem statement. 716
4.2. A detour via characteristic functions. 718
4.3. Rejection based upon a local central limlt theorem. 718
4.4. A local limit theorem. 720
4.5. The mixture method for simulating sums. 731
4.6. Sums of independent uniform random varlables. 732
4.7. Exerclses. 734
70. Discrete event simulation. 735
5.1. Future event set algorithms. 735
5.2. Reeves's model. 738
5.3. Linear llsts. 740
5.4. Tree structures. 747
5.5. Exerclses. 748
71. Regenerative phenomena. 749
6.1. The principle. 749
6.2. Random walks. 748
6.3. Blrth and death processes. 755
6.4. Phase type distributions. 757
8.5. Exercises. 758
72. The generallzation of a sample. 759
7.1. Problem statement. 759
7.2. Sample independence. 760
7.3. Consistency of density estimates. 762
7.4. Sample indistingulshabllity. 763
7.5. Moment matchlng. 784
7.6. Generators for f_{n}. 765
7.7. Exercises. 788
XV. THE RANDOM BIT MODEL 768
73. The random blt model. 768
1.1. Introduction. 788
1.2. Some examples. 769
74. The Knuth-Yao lower bound. 771
2.1. DDG trees. 771
2.2. The lower bound, 771
2.3. Exerclses. 775
75. Optlmal and suboptimal DDG-tree algorithms. 775
3.1. Suboptimal DDG-tree algorithms. 775
3.2. Optimal DDG-tree algorithms. 777
3.3. Distribution-free inequalitles for the performance of optimal DDG-tree algorlthms. 780
3.4. Exercises. 782
REFERENCES 784
INDEX 817

Chapter One INTRODUCTION

1. GENERAL OUTLINE.

Random number generation has intrigued sclentists for a few decades, and a lot of effort has been spent on the creation of randomness on a deterministic (non-random) machine, that is, on the design of computer algorithms that are able to produce "random" sequences of integers. This is a difflcult task. Such algorithms are called generators, and all generators have flaws because all of them construct the n-th number in the sequence in function of the $n-1$ numbers preceding it, initialized with a nonrandom seed. Numerous quantitles have been Invented over the years that measure Just how "random" a sequence is, and most well-known generators have been subjected to rlgorous statlistical testlng. However, for every generator, it is always possible to find a statistical test of a (posslbly odd) property to make the generator flunk. The mathematical tools that are needed to design and analyze these generators are largely number theoretlc and comblnatorlal. These tools differ drastically from those needed when we want to generate sequences of integers with certaln non-uniform distrlbutions, given that a perfect unlform random number generator is avallable. The reader should be aware that we provide him with only half the story (the second half). The assumption that a perfect uniform random number generator is avallable is now quite unreallstlc, but, with time, it should become less so. Having made the assumption, we can build quite a powerful theory of non-unlform random varlate generation.

The existence of a perfect unlform random number generator is not all that is assumed. Statistlclans are usually more interested in continuous random varlables than in discrete random varlables. Since computers are finlte memory machines, they cannot store real numbers, let alone generate random variables with a given density. This led us to the following assumptions:
Assumption 1. Our computer can store and manipulate real numbers.
Assumption 2. There exists a perfect unlform $[0,1]$ random varlate generator, 1.e. a generator capable of producing a sequence U_{1}, U_{2}, \ldots of independent random variables with a uniform distribution on [0,1].

The generator of assumption 2 is our fundamental bullding block. The sequence of U_{i} 's can be intelligently manipulated to give us random variables with specified distributions in R^{d}, d-dimensional Euclidean space. Occasionally, we mention the effect that the finlte word-length of the computer has on the manlpulated sequence. With the two assumptions given above, we demand that the random varlables obtalned by combining the U_{i} 's have the exact distribution that was asked. Algorithms or generators with this property is called exact. Exact algorithms approach reality if we use extended precision arlthmetic (some languages allow users to work with integers of virtually unlimited length by linking words together in a linked list). Inexact algorithms, which are usually algorithms that are based upon a mathematical approximation of sorts, are forever excluded, because nelther extended precision arlthmetic nor improvements in the basic random number generator make them more exact.

A random varlate generation algorithm is a program that halts with probabllity one and exits with a real number X. Thls X is called a random variate. Because of our assumptlons, we can treat random varlates as if they were random varlables! Note also that if we can produce one random variate X, then we are able to produce a sequence X_{1}, X_{2}, \ldots of independent random varlates distributed as X (thls follows from assumption 2). This facllitates our task a lot: rather than having to concentrate on infinite sequences, we Just need to look at the propertles of single random variates.

Slmple, easy-to-understand algorlthms will survive longer, all other things belng roughly equal. Unfortunately, such algorlthms are usually slower than their more sophisticated counterparts. The notion of time itself is of course relative. For theoretical purposes, it is necessary to equate time with the number of "fundamental" operations performed before the algorithm halts. This leads to our third assumption:
Assumption 3. The fundamental operations in our computer include addition, multiplication, division, compare, truncate, move, generate a uniform random varlate, exp, log, square root, arc tan, \sin and cos. (Thls implles that each of these operations takes one unlt of time regardless of the slze of the operand(s). Also, the outcomes of the operatlons are real numbers.)
The complexity of an algorithm, denoted by C, is the time required by the algorithm to produce one random variate. In many cases, C itself is a random varlable slnce it is a function of U_{1}, U_{2}, \ldots. We note here that we are malnly interested in generating independent sequences of random varlables. The average complexity per random varlate in a sequence of length n is

$$
\frac{1}{n} \sum_{i=1}^{n} C_{i}
$$

where C_{i} is the complexity for the i-th random varlate. By the strong law of large numbers, we know that this average tends with probability one to the expected complexity, $E(C)$. There are examples of algorithms with infinlte expected complexity, but for which the probabllity that C exceeds a certaln small constant is extremely small. These should not be a priorl discarded.

We have now set the stage for the book. Our program is ambitlous. In the remalnder of this chapter, we introduce our notation, and deflne some distributlons. By carefully selecting sections and exercises from the book, teachers could use it to introduce thelr students to the fundamental propertles of distributions and random variables. Chapters II and III are cruclal to the rest of the book: here, the principles of inversion, rejection, and composition are explained in all thelr generallty. Less unlversal methods of random varlate generation are developed in chapter IV. All of these technlques are then applled to generate random varlates with speclfic unlvariate distributions. These include small familles of densitles (such as the normal, gamma or stable densitles), small familles of discrete distributions (such as the blnomlal and Polsson distributions), and famllies of distributions that are too large to be described by a finite number of parameters (such as all unimodal densities or all densities with decreasing hazard rate). The corresponding chapters are IX, X and VII. We devote chapter XI to multivariate random varlate generation, and chapter VI to random process generation. In these chapters, we want to create dependence in a very speclfic way. Thls effort is contlnued in chapters XII and XIII on the generation of random subsets and the generation of random combinatorlal objects such as random trees, random permutations and random partitions.

We do not touch upon the appllcations of random variate generation in Monte Carlo methods for solving varlous problems (see e.g. Rubinstein,1981): these problems include stochastic optimization, Monte Carlo integration, solving llnear equations, deciding whether a large number is prime, etcetera. We will spend an entire sectlon, however, on the important topic of discrete event simulatlon, driven by the beauty of some data structures used to make the simulation more efflcient. As usual, we will not describe what happens inside some simulatlon languages, but merely give timeless principles and some analysis. Some of this is done in chapter XIV.

There are a few other chapters with speclallzed toplcs: the usefulness of order statistics is pointed out in chapter V. Shortcuts in simulation are highllghted in chapter XVI, and the important table methods are given special treatment In a chapter of their own (VIII). The reader will note that not a single experlmental result is reported, and not one computer is explicitly named. The Issue of programming in assembler language versus a high level language is not even touched (even though we think that assembler language implementations of many algorithms are essential). All of this is done to insure the universallty of the text. Hopefully, the text will be as Interesting In 1995 as $\ln 1985$ by not dwelling upon the shortcomings of today's computers. In fact, the emphasls is plainly upon complexity, the number of operations (Instructions) needed to carry out certaln tasks. Thus, chapter XV could very well be the most important chapter in the book for the future of the subject: here computers are treated as bit manlpulating machines. This approach allows us to deduce lower bounds for the time needed to generate random variates with certaln distributions.

We have taught some of the material at McGill University's School of Computer Sclence. For a graduate course on the subject for computer sclentlsts, we recommend the materlal with a combinatorial and algorithmic flavor. One could
cover, not necessarlly in the order given, parts of chapters I and II, all of chapter III, sections V. 2 and V.3, selected examples from chapter X, all of chapters XII, XIII and XV, and section XIV.5. In addition, one could add chapter VIII. We usually cover I.1-3, II.1-2, II.3.1-2, II.3.6, II.4.1-2, III, V.1-3, V.4.1-4, VI.1, VIII.2-3, XII.1-2, XII.3.1, XII.4-5, XIII.1, XIII.2.1, XIII.3.3, XIII.4-5, and XIV.5.

In a statlstlcs department, the needs are very different. A good sequence would be chapters II, III, V, VI, VII.2.1-3, selected examples from chapters IX,X, and chapter XII. In fact, this book can be used to introduce some of these students to the famous distributions in statistics, because the generators demand that we understand the connections between many distributlons, that we know useful representations of distributions, and that we are well aware of the shape of densitles and distribution functions. Some designs require that we disassemble some distributions, break densitles up into parts, find tight inequallties for density functions.

The attentive reader notices very quickly that inequalitles are ublquitous. They are required to obtain efficlent algorlthms of all kinds. They are also useful In the analysis of the complexity. When we can make a point with inequalitles, we will do so. A subset of the book could be used as the basis of a fun reading course on the development and use of inequallites: use parts of chapter I as needed, cover sections II.2, II.3, II.4.1, II.5.1, brush through chapter III, cover sections IV.5-7, include nearly all of chapter VII, and move on to sections VIII.1-2, LX.1.1-2, DX.3.1-3, IX.4, IX.6, X.1-4, XIV.3-4.

This book is intended for students in operations research, statistics and computer sclence, and for researchers interested in random varlate generation. There is didactical material for the former group, and there are advanced technical sectlons for the latter group. The intended audience has to a large extent dictated the layout of the book. The introduction to probabllity theory in chapter I is not sufficlent for the book. It is malnly intended to make the reader famlliar with our notation, and to ald the students who will read the slmpler sections of the book. A first year graduate level course in probabllity theory and mathematical statistics should be ample preparation for the entire book. But pure statisticlans should be warned that we use quite a few ideas and "tricks" from the rich field of data structures and algorlthms in computer sclence. Our short PASCAL programs can be read with only passing famillarlty with the language.

Nonunlform random varlate generation has been covered in numerous books. See for example Jansson (1968), Knuth (1969), Newman and Odell (1971), Yakowitz (1977), Fishman (1978), Kennedy and Gentle (1980), Rubinstein (1981), Payne (1982), Law and Kelton (1982), Bratley, Fox and Schrage (1983), Morgan (1984) and Banks and Carson (1984). In addition, there are quite a few survey articles (Zelen and Severo (1872), McGrath and Irving (1973), Pat11, Boswell and Friday (1875), Marsaglia (1976), Schmelser (1980), Devroye (1981), Ripley (1983) and Deak (1984)) and blbllographles (Sowey (1972), Nance and Overstreet (1972), Sowey (1978), Deak and Bene (1979), Sahal (1879)).

I.2.NOTATION

2. ABOUT OUR NOTATION.

In this section, we will brlefly Introduce the reader to the different formats that are possible for speclfying a distribution, and to some of the most important densities in mathematical statlstics.

2.1. Definitions.

A random varlable X has a denslty f on the real line if for any Borel set A,

$$
P(X \in A)=\int_{A} f(x) d x
$$

In other words, the probabillty that X belongs to A is equal to the area under the graph of f. The distribution function F of X is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y, \quad(x \in R)
$$

We have $F^{\prime}(x)=f(x)$ for almost all x. The mean value of X is

$$
E(X)=\int x f(x) d x
$$

provided that this integral exists. The r-th moment of X is defined by $E\left(X^{r}\right)$. If the second moment of X is finite, then its varlance is deflned by

$$
\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-E^{2}(X)
$$

A mode of X, if it exists, is a point at which f attains its maximal value. If g Is an arbltrary Borel measurable function and X has density f, then $E(g(X))=\int g(x) f(x) d x$. A p th quantile of a distribution, for $p \in(0,1)$, is any polnt x for which $F(x)=p$. The 0.5 quantlle is also called the median. It is known that for nonnegative X,

$$
E(X)=\int_{0}^{\infty} P(X \geq x) d x
$$

A distribution is completely specifled when its distribution function is given. We recall that any nondecreasing function F, right-continuous, with limits 0 and 1 as $x \rightarrow-\infty$ and $x \rightarrow \infty$ respectively, is always the distribution function of some random varlable. The distribution of a random varlable is also completely known when the characteristic function

$$
\phi(t)=E\left(e^{i t X}\right), t \in R
$$

is glven. For more detalls on the propertles of distribution functions and characteristic functions, we refer to standard texts in probabillty such as Chow and Telcher (1978).

A random vector in R^{d} has a distribution function

$$
F\left(x_{1}, \ldots, x_{d}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{d} \leq x_{d}\right)
$$

The random vector $\left(X_{1}, \ldots, X_{d}\right)$ has a denslty $f\left(x_{1}, \ldots, x_{d}\right)$ if and only if for all Borel sets A of R^{d},

$$
P\left(\left(X_{1}, \ldots, X_{d}\right) \in A\right)=\int_{A} f\left(x_{1}, \ldots, x_{d}\right) d x_{1} \cdots d x_{d}
$$

The characteristic function of this random variable is

$$
\phi\left(t_{1}, \ldots, t_{d}\right)=E\left(e^{i t_{1} X_{1}+\cdots+i t_{d} X_{d}}\right) \quad\left(\left(t_{1}, \ldots, t_{d}\right) \in R^{d}\right)
$$

The X_{i} s are called marginal random variables. The marginal distribution function of X_{1} is

$$
F_{1}(x)=F(x, \infty, \ldots, \infty) \quad(x \in R)
$$

Its marginal characteristic function is

$$
\phi_{1}(t)=\phi(t, 0, \ldots, 0), \quad(t \in R)
$$

Another important notion is that of independence. Two random variables X_{1} and X_{2} are independent if and only if for all Borel sets A and B,

$$
P\left(X_{1} \in A, X_{2} \in B\right)=P\left(X_{1} \in A\right) P\left(X_{2} \in B\right)
$$

Thus, if F is the distribution function of $\left(X_{1}, X_{2}\right)$, then X_{1} and X_{2} are independent if and only if

$$
F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right), \text { all }\left(x_{1}, x_{2}\right) \in R^{2},
$$

for some functions F_{1} and F_{2}. Simllarly, if $\left(X_{1}, X_{2}\right)$ has a density f, then X_{1} and X_{2} are independent if and only if this density can be written as the product of two marginal densities. Finally, X_{1} and X_{2} are independent if and only if for all bounded Borel measurable functions g_{1} and g_{2} :

$$
E\left(g_{1}\left(X_{1}\right) g_{2}\left(X_{2}\right)\right)=E\left(g_{1}\left(X_{1}\right)\right) E\left(g_{2}\left(X_{2}\right)\right)
$$

In partlcular, the characteristic function of two independent random variables is the product of their characteristic functions:

$$
\phi\left(t_{1}, t_{2}\right)=E\left(e^{i t_{1} X_{1}} e^{i t_{2} X_{2}}\right)=E\left(e^{i t_{1} X_{1}}\right) E\left(e^{i t_{2} X_{2}}\right)=\phi_{1}\left(t_{1}\right) \phi_{2}\left(t_{2}\right)
$$

All the prevlous observatlons can be extended without trouble towards d random varlables X_{1}, \ldots, X_{d}.

2.2. A few important univariate densities.

In the table shown below, several important densitles are llsted., Most of them have one or two parameters. From a random varlate generation point of vlew, several of these parameters are unimportant. For example, if X is a random variable with a distribution having three parameters, a, b, c, and when $k X+l$ has a distribution with parameters $k a+l, k b, c$, then b is called a scale parameter, and a is called a translation parameter. The shape of the distributlon is only determined by the parameter c : since c is Invarlant to changes in scale and to translations, It is called a shape parameter. For example, the normal distribution has no shape parameter, and the gamma distribution has one shape parameter.

Some univariate densities.				
$f(x)$	$E(X)$	$\operatorname{Var}(X)$	Mode (X)	$F(x)$
$\begin{aligned} & \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\ & \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \end{aligned}$	μ	σ^{2}	μ	$\int_{-\infty}^{x} f(y) d y$
$\begin{aligned} & \operatorname{Gammax}(a, b) \\ & \frac{1}{\Gamma(a) b^{a}} x^{a-1} e^{-\frac{x}{b}} \\ & (x>0) \end{aligned}$	$a b$	$a b^{2}$	$(a-1) b$	$\int_{-\infty}^{x} f(y) d y$
Exponential (λ) $\lambda e^{-\lambda x} \quad(x>0)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	0	$1-e^{-\lambda x}$
$\begin{gathered} \text { Cauchy(} \sigma \text {) } \\ \frac{\sigma}{\pi\left(x^{2}+\sigma^{2}\right)} \end{gathered}$	does not exist	does not exist	0	$\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{\sigma}\right)$
$\begin{aligned} & \text { Pareto }(a, b) \\ & \frac{a b^{a}}{x^{a+1}}(x>b) \end{aligned}$	$\frac{a b}{a-1}(a>1)$	$\frac{a b^{2}}{(a-2)(a-1)^{2}}(a>2)$	b	$1-\frac{b^{a}}{}{ }^{\text {a }}$
$\begin{aligned} & \operatorname{Beta}(a, b) \\ & \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)}(x \in[0,1]) \end{aligned} x^{a-1}(1-x)^{b-1},$	$\frac{a}{a+b}$	$\frac{a b}{(a+b)^{2}(a+b+1)}$	$\frac{a-1}{a+b-2}(a, b>1)$	$\int_{-\infty}^{x} f(y) d y$

A varlety of shapes can be found in thls table. For example, the beta famlly of densitles on $[0,1]$ has two shape parameters, and the shapes vary from standard unimodal forms to J-shapes and U-shapes. For a comprehensive description of most parametric famlles of denstties, we refer to the two volumes by Johnson and Kotz (1970). When we refer to normal random variables, we mean normal random variables with parameters 0 and 1 . Simllarly, exponentlal random varlables are exponentlal (1) random varlables. The unlform $[0,1]$ density is the denslty which puts its mass unlformly over the interval $[0,1]:$

$$
f(x)=I_{[0,1]}(x) \quad(x \in R)
$$

Here I is the indicator function of a set. Finally, when we mention the gamma (a) denslty, we mean the gamma ($a, 1$) density.

The strategy in this book is to bulld from simple cases: simple random varlables and distributions are random varlables and distrlbutions that can easily be generated on a computer. The context usually dictates which random varlables are meant. For example, the unlform $[0,1]$ distribution is simple, and so are the exponentlal and normal distributions in most clrcumstances. At the other end of the scale we have the difficult random variables and distributions. Most of this book is about the generation of random varlates with difflcult distributions. To clarify the presentation, it is convenient to use the same capital letters for all simple random variables. We will use N, E and U for normal, exponentlal and unlform $[0,1]$ random varlables. The notations G and B are often used for gamma and beta random varlables. For random variables in general, we will reserve the symbols $\mathrm{X}, \mathrm{Y}, \mathrm{W}, \mathrm{Z}, \mathrm{V}$.

3. ASSESSMENT OF RANDOM VARIATE GENERATORS.

One of the most difflcult problems in random varlate generation is the cholce of an approprlate generator. Factors that play an important role in this cholce Include:

1. Speed.
2. Set-up (Initiallzation) time.
3. Length of the complled code.
4. Machine Independence, portabllity.
5. Range of the set of applications.
6. Simplicity and readability.

Of these factors, the last one is perhaps the most neglected in the literature. Users are more llkely to work with programs they can understand. Five line programs are easlly typed in, and the llkellhood of making errors is drastlcally reduced. Even packaged generators can have subtle bugs in their conception or implementation. It Is nearly Impossible to certify that programs with dozens, let alone hundreds, of llnes of code are correct. So, we will often spend more time on simple algorithms than on sophisticated ultra-fast ones.

Subprograms for random varlate generation can be divided into three groups: (1) subprograms with no varlable parameters, such as subprograms for the normal (0,1) denslty; (2) subprograms with a flnite number of variable parameters (these are typlcally for parametric classes of denslties such as the class of all beta densitles); (3) subprograms that accept names of other subprograms as arguments, and can be applled for a wide class of distributions (the description of this class is of course not dependent upon parameters).
set-up time.

An example.

The admissibllity of a method now depends upon the set-up time as well, as is seen from this example. Stadlober (1981) gave the following table of expected times per varlate (In microseconds) and size of the program (in words) for several algorlthms for the t distribution:

Algorithm:	TD	TROU	T3T
$\mathrm{t} a=3.5$	65	66	78
$\mathrm{t} a=5$	70	67	81
$\mathrm{t} a=10$	75	68	84
$\mathrm{t} a=50$	78	69	88
$\mathrm{t} a=1000$	79	70	89
s	255	100	83
u	12	190	0

Here t stands for the expected time, a for the parameter of the distribution, s for the slze of the complled code, and u for the set-up time. TD, TROU and T3T refer to three algorlthms in the literature. For any algorithm and any a, the expected time per random variate is $t+\lambda u$ where $\lambda \in[0,1]$ is the fraction of the varlates that required a set-up. The most important cases are $\lambda=0$ (one setup in a large sample for flxed a) and $\lambda=1$ (parameter changes at every call). Also, $1 / \lambda$ is about equal to the walting time between set-ups. Clearly, one algorithm dominates another timewise if $t+\lambda u$ considered as a function of λ never exceeds the corresponding function for the other algorithm. One can do this for each a, and this leads to quite a complicated sltuation. Usually, one should elther randomize the entrles of t over varlous values of a. Alternatively, one can compare on the basls of $t_{\max }=\max _{a} t$. In our example, the values would be 79, 70 and 88 respectively. It is easy to check that $t_{\max }+\lambda u$ is minimal for TROU when $0 \leq \lambda \leq 9 / 178$, for TD when $9 / 178 \leq \lambda \leq 5 / 8$, and for T3T when $5 / 8 \leq \lambda \leq 1$. Thus, there are no inadmissible methods if we want to include all values of λ. For flxed values of λ however, we have a given ranking of the $t_{\max }+\lambda u$ values and the discussion of the Inadmissibllity \ln terms of $t_{\max }+\lambda u$ and s is as for the distributlons without parameters. Thus, TD is inadmissible in this sense for $\lambda>5 / 6$ or $\lambda<9 / 178$, and TROU is inadmissible for $\lambda>1 / 10$.

3.1. Distributions with no variable parameters.

A frequently used subprogram for distributions with no varlable parameters should be chosen very carefully: usually, speed is very important, whlle the length of the complled code is less cruclal. Clearly, the initlallzation time is zero, and in some cases it is worthwhlle to write the programs in machine language. This is commonly done for distributions such as the normal distribution and the exponential distrlbution.

For infrequently used subprograms, it is probably not worth to spend a lot of time developing a fast algorithm. Rather, a slmple expedient method will often do. In many cases, the portabllity of a program is the determining factor: can we use the program in different installations under different circumstances? Portable programs have to be written in a machine-Independent language. Furthermore, they should only use standard library subprograms and be compllerIndependent. OptImizing compllers often lead to unsuspected problems. Programs should follow the universal conventlons for giving names to varlables, and be protected agalnst input error. The calling program should not be told to use speclal statements (such as the COMMON statement in FORTRAN). Finally, the subprogram itself is not assumed to perform unasked tasks (such as printing messages), and all conventions for subprogram linkage must be followed.

Assume now that we have narrowed the competition down to a few programs, all equally understandable and portable. The programs take expected time t_{i} per random varlate where i refers to the i-th program ($1 \leq i \leq K$). Also, they require s_{i} bytes of storage. Among these programs, the j-th program is sald to be inadmissible if there exists an i such that $t_{j} \geq t_{i}$ and $s_{j} \geq s_{i}$ (with at least one of these Inequalities strict). If no such i exlsts, then the j-th program is admissible. If we measure the cost of the i-th program by some function $\psi\left(t_{i}, s_{i}\right)$, Increasing in both its arguments, then it is obvious that the best program is an admissible program.

3.2. Parametric families.

The new ingredient for multi-parameter familles is the set-up time, that is, the time spent computing constants that depend only upon the parameters of the distribution. We are often in one of two situations:

Case 1. The subprogram is called very often for flxed values of the parameters. The set-up time is unimportant, and one can only galn by inltalizing as many constants as possible.
Case 2. The parameters of the distrlbution change often between calls of the subprogram. The total time per varlate is definltely Influenced by the

Speed versus size.

It is a general rule in computer sclence that speed can be reduced by using longer more sophistlcated programs. Fast programs are seldom short, and short programs are likely to be slow. But it is also true that long programs are often not elegant and more error-prone. Short smooth programs survive longer and are understood by a larger audlence. Thls blas towards short programs will be apparent in chapters IV, IX and X where we must make certain recommendations to the general readership.

4. OPERATIONS ON RANDOM VARIABLES.

In this section we brlefly indicate how densitles and distribution functions change when random varlables are combined or operated upon in certaln ways. Thls will allow us to generate new random varlables from old ones. We are speclally interested in operatlons on slmple random varlables (from a random varlate generation point of view) such as unlform $[0,1]$ random varlables. The actual appllcatlons of these operations in random varlate generation are not discussed in this introductory chapter. Most of this materlal is well-known to students in statistics, and the chapter could be skipped without loss of continulty by most readers. For a unifled and detalled treatment of operations on random variables, we refer to Springer(1979).

4.1. Transformations.

Transformations of random variables are easlly taken care of by the followIng device:

Theorem 4.1.

Let X have distribution function F, and let $h: R \rightarrow B$ be a strictly increasIng function where B is elther R or a proper subset of R. Then $h(X)$ is a random variable with distribution function $F\left(h^{-1}(x)\right)$.

If F has density f and h^{-1} is absolutely continuous, then $h(X)$ has density

$$
\left(h^{-1}\right)^{\prime}(x) f\left(h^{-1}(x)\right), \quad \text { for almost all } x
$$

Proof of Theorem 4.1.

Observe first that for arbltrary x,

$$
P(h(X) \leq x)=P\left(X \leq h^{-1}(x)\right)=F\left(h^{-1}(x)\right)
$$

This is thus the distribution function of $h(X)$. If this distribution function is absolutely continuous in x, then we know (Chow and Telcher (1978)) that $h(X)$ has a density that is almost everywhere equal to the derlvative of the distribution function. This is the case for example when both F and h^{-1} are absolutely continuous, and the formal derivative is the one shown in the statement of the Theorem.

Example 4.1. Linear transformations.

If F is the distribution function of a random varlable X, then $a X+b$ has distribution function $F((x-b) / a)$ when $a>0$. The corresponding densities, if they exist, are $f(x)$ and $\frac{1}{a} f\left(\frac{x-b}{a}\right)$. Verlfy that when X is gamma (a, b) distributed, then $c X$ is gamma ($a, c b$), all $c>0$.

Example 4.2. The exponential distribution.

When X has distribution function F and $\lambda>0$ is a real number, then $-\frac{1}{\lambda} \log X$ has distribution function $1-F\left(e^{-\lambda x}\right)$, which can be verifled directly:

$$
P\left(-\frac{1}{\lambda} \log X \leq x\right)=P\left(X \geq e^{-\lambda x}\right)=1-F\left(e^{-\lambda x}\right) \quad(x>0) .
$$

In particular, if X is uniform $[0,1]$, then $-\frac{1}{\lambda} \log X$ is exponential (λ). Vice versa, when X is exponential (λ), then $e^{-\lambda X}$ is uniform $[0,1]$.

Example 4.3. Power transformations.

When X has distrlbution function F and density f, then $X^{p}(p>0$ is a real number, and the power is defined as a sign-preserving transformation) has distribution function $F\left(x^{\frac{1}{p}}\right)$ and density

$$
\frac{1}{p} x^{\frac{1}{p}-1} f\left(x^{\frac{1}{p}}\right)
$$

Example 4.4. Non-monotone transformations.

Non-monotone transformations are best handled by computing the distributlon function first from general princlples. To lllustrate this, let us consider a random variable X with distribution function F and density f. Then, the random variable X^{2} has distribution function

$$
P\left(X^{2} \leq x\right)=P(|X| \leq \sqrt{x})=F(\sqrt{x})-F(-\sqrt{x}) \quad(x>0)
$$

and density

$$
\frac{1}{\sqrt{x}} \frac{f(\sqrt{x})+f(-\sqrt{x})}{2} .
$$

In particular, when X is normal (0,1), then X^{2} is gamma distributed, as can be seen from the form of the denslty

$$
\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(e^{-\frac{x}{2}}+e^{-\frac{x}{2}}\right)=\frac{1}{\sqrt{2 \pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}} \quad(x \geq 0)
$$

The latter density is known as the chl-square density with one degree of freedom (In shorthand: $\chi_{1}{ }^{2}$).

Example 4.5. A parametric form for the density.

Let X have density f and let h be as in Theorem 4.1. Then, putting $x=h(u)$ and $y=f(u) / h^{\prime}(u)$, where y stands for the value of the density of $h(X)$ at x, and y and x are related through the parameter u, we verify by ellmination of u that

$$
y=f\left(h^{-1}(x)\right) / h^{\prime}\left(h^{-1}(x)\right)
$$

This is equal to $f\left(h^{-1}(x)\right) h^{-1 \prime}(x)$, which was to be shown. Thus, the parametric representation in terms of u glven above is correct, and will give us a plot of the density versus x. This is particularly useful when the inverse of h is difficult to obtain in closed analytical form. For example, when X is uniform [0,1], then for $a, b>0, a X+b X^{3}$ has a density with parametric representation

$$
x=a u+b u^{3}, y=\frac{1}{a+3 b u^{2}} \quad\left(0 \leq a u+b u^{3} \leq 1\right) .
$$

By ellmination of u, we obtain a simple formula of $x \ln$ terms of y :

$$
x=\sqrt{\frac{1}{y}-a} \sqrt{\frac{1}{3 b}}\left(\frac{2 a}{3}+\frac{1}{3 y}\right) .
$$

The plot of y versus x has the following general form: it vanlshes outside $[0,1]$, and decreases monotonically on this interval from $y=\frac{1}{a}$ at $x=0$ to a nonzero value at $x=1$. Furthermore, $\frac{\partial y}{\partial x}$ at $u=0$ (1.e. at $x=0$), is 0 , so that the shape of the denslty resembles that of a plece of the normal density near 0 .

Let us now look at functions of several random variables. We can obtain many distributions as relatively uncomplicated functions of slmple random variables. Many cases can be handled by the following d-dimensional generallzation of Theorem 4.1:

Theorem 4.2.

Let X have a continuous density f on R^{d} and let $h: R^{d} \rightarrow R^{d}$ be a one-to-one and onto mapping to T, the Image of S, the support set of f, under h. Thus, the inverse of the transformation $Y=h(X)$ exists: $X=h^{-1}(Y)=g(Y)$. If we write $y=\left(y_{1}, \ldots, y_{d}\right)$ and $g=\left(g_{1}, \ldots, g_{d}\right)$, then if the partial derivatives $g_{i j}=\frac{\partial g_{i}}{\partial y_{j}}$ exist and are continuous on T, Y has density

$$
f(g(y))|J| \quad(y \in T)
$$

where J is the Jacoblan of the transformation and is defined as the determinant of the matrix

$$
\left[\begin{array}{ccc}
g_{11} & \cdots & g_{1 d} \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
g_{d 1} & \cdots & g_{d d}
\end{array}\right]
$$

Example 4.6. The t distribution.

We will show here that when X is normal $(0,1)$ and Y is Independent of X and gamma $\left(\frac{a}{2}, 2\right)$ distributed (thls is called the chl-square distribution with a degrees of freedom), then

$$
Z=X / \sqrt{\frac{Y}{a}}
$$

is t distributed with a degrees of freedom, that is, Z has density

$$
\frac{\Gamma\left(\frac{a+1}{2}\right)}{\Gamma\left(\frac{a}{2}\right) \sqrt{\pi a}} \frac{1}{\left(1+\frac{z^{2}}{a}\right)^{\frac{a+1}{2}}} \quad(z \in R)
$$

What one does in a sltuation like this is "Invent" a 2 -dimensional vector random varlable (for example, (Z, W)) that is a function of (X, Y), one of whose component random variables is Z. The obvlous cholce in our example is

$$
\begin{aligned}
& Z=X / \sqrt{\frac{Y}{a}} \\
& W=Y
\end{aligned}
$$

The inverse transformation is determined by $X=Z \sqrt{\frac{W}{a}}, Y=W$. This Inverse transformation has a Jacobian $\sqrt{\frac{w}{a}}$ where we use x, y, z, w for the running values that correspond to the random varlables X, Y, Z, W. Thus, the density of (Z, W) is

$$
c e^{-\frac{w z^{2}}{2 a}} w^{\frac{a}{2}-1} e^{-\frac{w}{2}} \sqrt{\frac{w}{a}}
$$

where

$$
c=\frac{1}{\Gamma\left(\frac{a}{2}\right) 2^{\frac{a}{2}} \sqrt{2 \pi}} \quad(w>0, z \in R)
$$

Is a normalization constant. From a joint density, we obtaln a marginal density by taking the integral with respect to the non-Involved variables (In this case with respect to $d w$). In w, we have for fixed z a gamma $\left(\frac{a+1}{2}, \frac{2}{1+z^{2} / a}\right)$ denslty times $\frac{c}{\sqrt{a}}$. After integration with respect to $d w$, we obtaln

$$
\frac{c}{\sqrt{a}} \Gamma(\alpha) \beta^{\alpha}
$$

where α and β are the parameters of the gamma density given above. This is precisely what we needed to show.

4.2. Mixtures.

Discrete mixtures.

Let Y be a positlve integer valued random varlable, and, given that $Y=i$, let X have density f_{i}. Then the (unconditional) density of X is

$$
\sum_{i=1}^{\infty} P(Y=i) f_{i}(x)
$$

Thls device can be used to cut a glven density f up into simpler pleces f_{i} that can be handled quite easily. Often, the number of terms in the mixture is finite. For example, if f is a plecewise linear density with a finite number of breakpoints, then it can always be decomposed (rewritten) as a finlte mixture of unlform and triangular densitles.

Continuous mixtures.

Let Y have density g on R, and given that $Y=y$, let X have density f_{y} (thus, y can be considered as a parameter of the density of X), then the density f of X is given by

$$
f(x)=\int f_{y}(x) g(y) d y
$$

As an example, we consider a mixture of exponential densitles with parameter Y itself exponentlally distrlbuted with parameter 1 . Then X has density

$$
\begin{aligned}
& f(x)=\int y e^{-y x} e^{-y} d y \\
& =\int y e^{-\frac{y}{(x+1)^{-1}}} d y \\
& =\frac{1}{(x+1)^{2}} \quad(x>0)
\end{aligned}
$$

Since the parameter of the exponential distribution is the inverse of the scale parameter, we see without work that when E_{1}, E_{2} are independent exponential random varlables, then E_{1} / E_{2} has density $1 /(x+1)^{2}$ on $[0, \infty)$.

Mixtures of uniform densities.

If we conslder a mixture of unlform $[0, y]$ densities where y is the mixture parameter, then we obtain a density that is nonincreasing on $[0, \infty)$. The random varlables X thus obtained are distributed as the product $U Y$ of a unlform $[0,1]$ random varlable U and an arbltrary (mixture) random varlable Y. These distributions will be of great interest to us slnce U is the fundamental random
variable in random varlate generation.

4.3. Order statistics.

If U_{1}, \ldots, U_{n} are ind unfform $[0,1]$ random variables, then the order statistlcs for thls sample are $U_{(1)}, \ldots, U_{(n)}$, where

$$
U_{(1)} \leq U_{(2)} \leq \cdots \leq U_{(n)}
$$

and $U_{(1)}, \ldots, U_{(n)}$ is a permutation of U_{1}, \ldots, U_{n}. We know that $\left(U_{1}, \ldots, U_{n}\right)$ is uniformly distributed in the unit cube $[0,1]^{n}$. Thus, $\left(U_{(1)}, \ldots, U_{(n)}\right)$ is unformly distributed in the simplex S_{n} :

$$
S_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): 0<x_{1}<x_{2}<\cdots<x_{n}<1\right\}
$$

Theorem 4.3.

The joint density of $\left(U_{(1)}, \ldots, U_{(n)}\right)$ is

$$
n!I_{S_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

The i-th order statistic $U_{(i)}$ has the beta density with parameters i and $n-i+1$, 1.e. Its density is

$$
\frac{\Gamma(n+1)}{\Gamma(i) \Gamma(n-i+1)} x^{i-1}(1-x)^{n-i} \quad(x \in[0,1]) .
$$

Proof of Theorem 4.3.

The flrst part is shown by a projection argument: there are n ! points in $[0,1]^{n}$ that map to a given polnt in S_{n} when we order them. This can be formallzed as follows. Let A be an arbitrary Borel set contalned $\ln S_{n}$. Writing $x_{(1)}<\cdots<x_{(n)}$ for the ordered permutation of x_{1}, \ldots, x_{n}, we have

$$
\begin{aligned}
& \int_{A} d x_{1} \cdots d x_{n} \\
& =\sum_{\sigma A\left(x_{1}=x_{\sigma(1)}, \cdots, x_{n}=x_{\sigma(n)}\right)} d x_{1} \cdots d x_{n} \\
& (\sigma=\sigma(1), \cdots, \sigma(n) \text { is a permutation of } 1, \cdots, n) \\
& =\sum_{\sigma} \int_{A} d x_{(1)} \cdots d x_{(n)} \\
& =\int_{A} n!d x_{(1)} \cdots d x_{(n)}
\end{aligned}
$$

The first part of the Theorem follows by the arbltrariness of A. For the second part, we choose x in $[0,1]$, and compute the marginal density of $U_{(i)}$ at x by Integrating the density with respect to all varlables $x_{j}, j \neq i$. This ylelds

$$
n!\int_{0}^{x_{2}} \cdots \int_{0}^{x} \int_{x}^{1} \cdots \int_{x_{n-1}}^{1} d x_{n} \cdots d x_{i+1} d x_{i-1} \cdots d x_{1}
$$

Thls glves the beta density with parameters i and $n-i+1$.

Of particular importance will be the distribution of $\max \left(U_{1}, \ldots, U_{n}\right)$: the distribution function is easily obtalned by a direct argument because

$$
\begin{aligned}
& P\left(\max \left(U_{1}, \ldots, U_{n}\right) \leq x\right) \quad(x \in[0,1]) \\
& =P\left(U_{1} \leq x\right) \cdots P\left(U_{n} \leq x\right) \\
& =x^{n} \\
& =P\left(U_{1} \leq x^{n}\right) \\
& =P\left(U_{1}{ }^{\frac{1}{n}} \leq x\right)
\end{aligned}
$$

Thus, the distribution function is x^{n} on $[0,1]$, and the density is $n x^{n-1}$ on $[0,1]$. We have also shown that $\max \left(U_{1}, \ldots, U_{n}\right)$ is distributed as $U_{1}{ }^{1 / n}$.

Another important order statistic is the median. The median of $U_{1}, \ldots, U_{2 n+1}$ is $U_{(n)}$. We have seen in Theorem 4.3 that the density is

$$
\frac{(2 n+1)!}{n!^{2}}(x(1-x))^{n} \quad(x \in[0,1])
$$

Example 4.7.

If $U_{(1)}, U_{(2)}, U_{(3)}$ are the order statistics of three Independent unlform $[0,1]$ random varlables, then their densitles on $[0,1]$ are respectively,

$$
\begin{aligned}
& 3(1-x)^{2}, \\
& 8 x(1-x)
\end{aligned}
$$

and

$$
3 x^{2} .
$$

The generalizations of the previous results to other distributions are stralghtforward. If X_{1}, \ldots, X_{n} are ild random varlables with density f and distributlon function F, then the maximum has distribution function F^{n}. From Theorem 4.3, we can also conclude that the i-th order statistlc $X_{(i)}$ has density

$$
\frac{n!}{(i-1)!(n-i)!} F(x)^{i-1}(1-F(x))^{n-i} f(x)
$$

4.4. Convolutions. Sums of independent random variables.

The distrlbution of the sum S_{n} of n random varlables X_{1}, \ldots, X_{n} is usually derlved by one of two tools, convolution integrals or characteristic functions. In this section, we will write f_{i}, F_{i}, ϕ_{i} for the density, distrlbution function and characterlstlc function of X_{i}, and we will use the notation f, F, ϕ for the corresponding functions for the sum S_{n}. In the convolution method, we argue as follows:

$$
\begin{aligned}
& F(x)=P\left(X_{1}+\cdots+X_{n} \leq x\right) \\
& =\int \prod_{i<n} f_{i}\left(y_{i}\right) F_{n}\left(x-y_{1}-\cdots-y_{n-1}\right) \prod_{i<n} d y_{i}
\end{aligned}
$$

Also,

$$
f(x)=\int \prod_{i<n} f_{i}\left(y_{i}\right) f_{n}\left(x-y_{1}-\cdots-y_{n-1}\right) \prod_{i<n} d y_{i}
$$

Except in the simplest cases, these convolution Integrals are difficult to compute. In many instances, it is more convenlent to derive the distribution of S_{n} by finding its characteristic function. By the Independence of the X_{i} 's, we have

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t\left(X_{1}+\cdots+X_{n}\right)}\right) \\
& =\prod_{j=1}^{n} E\left(e^{i t X_{j}}\right) \\
& =\prod_{j=1}^{n} \phi_{j}(t)
\end{aligned}
$$

If the X_{i} 's are 11d, then $\phi=\phi_{1}{ }^{n}$.

Example 4.8. Sums of normal random variables.

First, we show that the characteristlc function of a normal (0,1) random varlable is $e^{-t^{2} / 2}$. To see this, note that it can be computed as follows for $t \in R$:

$$
\int \frac{1}{\sqrt{2 \pi}} e^{i t y-y^{2} / 2} d y
$$

$$
\begin{aligned}
& =e^{-t^{2} / 2} \int \frac{1}{\sqrt{2 \pi}} e^{-(y-i t)^{2} / 2} d y \\
& =e^{-t^{2} / 2}
\end{aligned}
$$

From the definition of the characterlstic function we see that if X has characteristlc function $\phi(t)$, then $a X+b$ has characterlstic function $e^{i b t} \phi(a t)$. Thus, a normal (μ, σ^{2}) random varlable has characteristlc function

$$
e^{i t \mu} \phi(\sigma t)
$$

If X_{i} is normal ($\mu_{i}, \sigma_{i}{ }^{2}$), then S_{n} has characteristlc function

$$
\begin{aligned}
& \prod_{j=1}^{n} e^{i t \mu_{j}} e^{-\sigma_{j}^{2} t^{2} / 2} \\
& =e^{i t \sum_{j=1}^{n} \mu_{j}} e^{-\sum_{j=1}^{n} \sigma_{j}^{2} t^{2} / 2}
\end{aligned}
$$

which is the characteristic function of a normal random varlable with parameters $\sum \mu_{j}$ and $\sum \sigma_{j}{ }^{2}$.

Example 4.9. Sums of gamma random variables.

In this example too, it is convenlent to first obtain the characteristic functlon of a gamma (a, b) random varlable. It can be computed as follows:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{y^{a-1} e^{-y / b}}{\Gamma(a) b^{a}} e^{i t y} d y \quad \text { (by definition) } \\
& =\int_{0}^{\infty} \frac{y^{a-1} e^{-y(1-i t b) / b}}{\Gamma(a) b^{a}} d y \\
& \left.=\int_{0}^{\infty} \frac{z^{a-1} e^{-z / b}}{(1-i t b)^{a} \Gamma(a) b^{a}} d z \quad \text { (use } z=y(1-i t b)\right) \\
& =\frac{1}{(1-i t b)^{a}} .
\end{aligned}
$$

Thus, if X_{1}, \ldots, X_{n} are independent gamma random varlables with parameters a_{i} and b, then the sum S_{n} is gamma with parameters $\sum a_{i}$ and b.

It is perhaps worth to mention that when the X_{i} 's are ind random variables, then S_{n}, properly normalized, is nearly normally distributed when n grows large.

If the distribution of X_{1} has mean μ and varlance $\sigma^{2}>0$, then $\left(S_{n}-n \mu\right) /(\sigma \sqrt{n})$ tends in distribution to a normal $(0,1)$ random variable, i.e,

$$
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \leq x\right)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { all } x
$$

This is called the central llmit theorem (Chow and Telcher, 1978). This wlll be explolted further on in the design of algorithms for familles of distributions that are closed under additions, such as the gamma or Polsson familles. If the varlance is not finite, then the limlt law is no longer normal. See for example exerclse 4.17, where an example is found of such non-normal attraction.

4.5. Sums of independent uniform random variables.

In this section we consider the distribution of

$$
\sum_{i=1}^{n} a_{i} U_{i}
$$

where the a_{i} 's are positive constants and the U_{i} 's are Independent uniform [0,1] random varlables. We start with the maln result of thls section.

Theorem 4.4.

The distribution function of $\sum_{i=1}^{n} a_{i} U_{i}$ (where $a_{i}>0$, all i, and the U_{i} 's are Independent unform $[0,1]$ random varlables) is given by

$$
F(x)=\frac{1}{a_{1} a_{2} \cdots a_{n} n!}\left(x_{+}^{n}-\sum_{i}\left(x-a_{i}\right)_{+}^{n}+\sum_{i \neq j}\left(x-a_{i}-a_{j}\right)_{+}^{n}-\cdots\right)
$$

Here (. $)_{+}$is the positive part of (.). The density is obtained by taking the derivatlve with respect to x.

Proof of Theorem 4.4.

Conslder the simplex S formed by the origin and the vertices on the n coordinate axes at distances $x / a_{1}, \ldots, x / a_{n}$, where $x>0$ is the polnt at which we want to calculate $F(x)$. Let us define the sets B_{i} as

$$
B_{i}=[0, \infty)^{i-1} \times(1, \infty) \times[0, \infty)^{n-i}
$$

where $1 \leq i \leq n$. Note now that the first quadrant minus the unit cube $[0,1]^{n}$ can be decomposed by the inclusion/exclusion principle as follows:

$$
\begin{aligned}
& {[0, \infty)^{n}-[0,1]^{n}} \\
& =\sum_{i} B_{i}-\sum_{i \neq j} B_{i} \cap B_{j}+\cdots
\end{aligned}
$$

Now, slnce $F(x)=$ area $\left(S \cap[0,1]^{n}\right)=$ area (S)-area $\left(S \cap\left([0, \infty)^{n}-[0,1]^{n}\right)\right)$, we obtain

$$
F(x)=\operatorname{area}(S)-\sum_{i} \operatorname{area}\left(S \cap B_{i}\right)+\sum_{i \neq j} \operatorname{area}\left(S \cap B_{i} \cap B_{j}\right)-\cdots
$$

Thls is all we need, because for any subset J of $1, \ldots, n$, we have

$$
\operatorname{area}\left(S \bigcap_{i \in J} B_{i}\right)=\frac{\left(x-\sum_{i \in J} a_{i}\right)_{+}^{n}}{a_{1} \cdots a_{n} n!}
$$

Thls concludes the proof of Theorem 4.4.

It is Instructive to do the proof of Theorem 4.4 for the special case $n=2$, and to draw the simplex and the varlous sets used in the geometric proof. For the important case $a_{1}=a_{2}=\cdots=a_{n}=1$, the distribution function is

$$
F(x)=\frac{1}{n!}\left(x_{+}^{n}-\binom{n}{1}(x-1)_{+}^{n}+\binom{n}{2}(x-2)_{+}^{n}-\cdots\right) .
$$

In particular, for $n=2$, obtaining the density by taking the derivative of the distribution function, we have

$$
\begin{aligned}
& f(x)=x_{+}-2(x-1)_{+}+(x-2)_{+} \\
& = \begin{cases}0 & \text { if } x<0 \\
x & \text { if } 0 \leq x \leq 1 \\
2-x & \text { if } 1 \leq x \leq 2 \\
0 & \text { if } 2<x\end{cases}
\end{aligned}
$$

In other words, the density has the shape of an isosceles triangle. In general, the density of $U_{1}+U_{2}+\cdots+U_{n}$ consists of pleces of polynomlals of degree $n-1$ with breakpoints at the integers. The form approaches that of the normal density as $n \rightarrow \infty$.

4.6. Exercises.

1. If h is strictly monotone, h^{\prime} exists and is continuous, g is a given density, and X is a random variable with density $h^{\prime}(x) g(h(x))$, then $h(X)$ has density g. (This is the inverse of Theorem 4.1.)
2. If X has density $1 /\left(x^{2} \sqrt{\pi \log x}\right)(x \geq 1)$, then $\sqrt{2 \log X}$ is distributed as the absolute value of a normal random varlable. (Use exercise 1.)
3. If X is a gamma $\left(\frac{1}{2}, 1\right)$ random variable, i.e. X has density $e^{-x} / \sqrt{\pi x} \quad(x>0)$, then $\sqrt{2 X}$ is distributed as the absolute value of a normal random variable. (Use exerclse 1.)
4. Let A be a $d \times d$ matrix with nonzero determinant. Let $Y=A X$ where both X and Y are R^{d}-valued random vectors. If X has density f, then Y has density

$$
f\left(A^{-1} y\right)\left|\operatorname{det} A^{-1}\right| \quad\left(y \in R^{d}\right) .
$$

Thus, if X has a unlform denslty on a set B of R^{d}, then Y is uniformly distributed on a set C of R^{d}. Also, determine C from B and A.
5. If Y is gamma $(a, 1)$ and X is exponential (Y), then the density of X is

$$
f(x)=\frac{a}{(x+1)^{a+1}} \quad(x \geq 0)
$$

8. A random variable is sald to have the F distribution with a and b degrees of freedom when its density is

$$
f(x)=\frac{c x^{\frac{a}{2}-1}}{\left(1+\frac{a x}{b}\right)^{\frac{a+b}{2}}}, \quad(x>0)
$$

Here, c is the constant $\Gamma\left(\frac{a+b}{2}\right)\left(\frac{a}{b}\right)^{\frac{a}{2}} / \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)$. Show that when X and Y are Independent chl-square random variables with parameters a and b respectively, then $\left(\frac{X}{a}\right) /\left(\frac{Y}{b}\right)$ is $F(a, b)$. Show also that when X is $F(a, b)$, then $\frac{1}{X}$ is $F(b, a)$. Show finally that when X is t-distributed with a degrees of freedom, X^{2} is $F(1, a)$. Draw the curves of the densitles of $F(2,2)$ and $F(3,1)$ random varlables.
7. When N_{1} and N_{2} are independent normal random varlables, the random variables $N_{1}{ }^{2}+N_{2}{ }^{2}$ and N_{1} / N_{2} are independent.
8. Let f be the trlangular denslty defned by

$$
f(x)= \begin{cases}1-\frac{x}{2} & \text { if } 0 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

When U_{1} and U_{2} are independent unlform $[0,1]$ random variables, then the following random varlables all have density f :

$$
\begin{aligned}
& 2 \mathrm{~min}\left(U_{1}, U_{2}\right) ; \\
& 2\left|U_{1}+U_{2}-1\right| ; \\
& 2\left(1-\sqrt{U_{1}}\right)
\end{aligned}
$$

9. Show that the density of the product $\prod_{i=1}^{n} U_{i}$ of n 11d unlform [0,1] random variables is

$$
f(x)= \begin{cases}\frac{1}{(n-1)!} \log \left(\frac{1}{x}\right)^{n-1} & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

10. When X is gamma ($a, 1$), then $1 / X$ has density

$$
f(x)=\left(\frac{1}{x}\right)^{a+1} \frac{e^{-\frac{1}{x}}}{\Gamma(a)} \quad(x \geq 0)
$$

11. Let $Y=\prod_{i=1}^{k} X_{i}$ where X_{1}, \ldots, X_{k} are ild random variables each distributed as the maximum of n ild unlform $[0,1]$ random varlables. Then Y has density

$$
f(x)=\frac{n^{k}}{\Gamma(k)} x^{n-1}(-\log (x))^{k-1} \quad(0 \leq x \leq 1)
$$

(Rider, 1955; Rahman, 1984).
12. Let X_{1}, \ldots, X_{n} be lld unlform $[-1,1]$ random variables, and let Y be equal to $\left(\min \left(X_{1}, \ldots, X_{n}\right)+\max \left(X_{1}, \ldots, X_{n}\right)\right) / 2$. Show that Y has density

$$
f(x)=\frac{n}{2}(1-|x|)^{n-1} \quad(|x| \leq 1)
$$

and varlance $\frac{2}{(n+1)(n+2)}$ (Neyman and Pearson, 1928; Carlton, 1946).
13. We say that the power distribution with parameter $a>-1$ is the distribution corresponding to the density

$$
f(x)=(a+1) x^{a} \quad(0<x<1) .
$$

If X_{1}, \ldots are ild random varlables having the power distribution with parameter a, then show that
A. X_{1} / X_{2} has density

$$
\begin{cases}\frac{a+1}{2} x^{a} & 0<x<1 \\ \frac{a+1}{2} x^{-(a+2)} & 1 \leq x\end{cases}
$$

B. $\prod_{i=1}^{n} X_{i}$ has denslty

$$
\frac{(a+1)^{n}}{\Gamma(n)} x^{a}\left(\log \frac{1}{x}\right)^{n-1} \quad(0<x<1)
$$

(Springer, 1979, p. 181).
14. The ratio G_{a} / G_{b} of two independent gamma random varlables with parameters $(a, 1)$ and $(b, 1)$ respectively has denslty

$$
\frac{1}{B(a, b)} \frac{x^{a-1}}{(1+x)^{a+b}} \quad(x>0)
$$

Here $B(a, b)$ is the standard abbreviation for the constant in the beta Integral, l.e. $B(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$. This is called the beta density op the second kind. Furthermore, $G_{a} /\left(G_{a}+G_{b}\right)$ has the beta density with parameters a and b.
15. Let U_{1}, \ldots, U_{4} be lid uniform $[0,1]$ random varlables. Show that $\left(U_{1}+U_{2}\right) /\left(U_{3}+U_{4}\right)$ has density

$$
\begin{cases}\frac{7 x}{6} & 0<x<\frac{1}{2} \\ \frac{8}{3}-\frac{3 x}{2}-\frac{2}{3 x^{2}}+\frac{1}{6 x^{3}} & \frac{1}{2} \leq x<1 \\ -\frac{2}{3}+\frac{x}{6}+\frac{8}{3 x^{2}}-\frac{3}{2 x^{3}} & 1 \leq x<2 \\ \frac{7}{6 x^{3}} & 2 \leq x\end{cases}
$$

18. Show that $N_{1} N_{2}+N_{3} N_{4}$ has the Laplace denslty (1.e., $\frac{1}{2} e^{-|x|}$), whenever the N_{i} 's are lld normal random varlables (Mantel, 1973).
19. Show that the characterlstic function of a Cauchy random variable is $e^{-|t|}$. Using thls, prove that when X_{1}, \ldots, X_{n} are IId Cauchy random varlables, then $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is again Cauchy distributed, l.e. the average is distributed as X_{1}.
20. Use the convolution method to obtain the denslties of $U_{1}+U_{2}$ and $U_{1}+U_{2}+U_{3}$ where the U_{i} 's are lld unlform $[-1,1]$ random varlables.
21. In the oldest FORTRAN subroutine llbrarles, normal random varlates were generated as

$$
X_{n}=\frac{1}{\sqrt{n / 3}} \sum_{j=1}^{n}\left(U_{j}-\frac{1}{2}\right)
$$

where the U_{j} 's are lld unlform [0,1] random varlates. Usually n was equal to 12. This generator is of course inaccurate. Verlfy however that the mean and variance of such random varlables are correct. Bolshev (1959) later
proposed the corrected random varlate

$$
Y=X_{5}-\frac{3 X_{5}-X_{5}^{3}}{100}
$$

Deflne a notion of closeness between densities, and verlfy that Y is closer to a normal random varlable than X_{5}.
20. Let $U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{m}$ be Ild unlform [0,1] random varlables. Define $X=\max \left(U_{1}, \ldots, U_{n}\right), Y=\max \left(V_{1}, \ldots, V_{m}\right)$. Then X / Y has density

$$
f(x)= \begin{cases}c x^{n-1} & , 0 \leq x \leq 1 \\ \frac{c}{x^{m+1}} & , x \geq 1\end{cases}
$$

where $c=\frac{n m}{n+m}$ (Murty, 1955).
21. Show that if $X \leq Y \leq Z$ are the order statistics for three lid normal random varlables, then

$$
\frac{\min (Z-Y, Y-X)}{Z-X}
$$

has density

$$
f(x)=\frac{3 \sqrt{3}}{\pi\left(1-x+x^{2}\right)}, \quad\left(0 \leq x \leq \frac{1}{2}\right)
$$

See e.g. Lleblein (1952).

Chapter Two
 GENERAL PRINCIPLES
 IN RANDOM VARIATE GENERATION

1. INTRODUCTION.

In this chapter we introduce the reader to the fundamental principles in non-unlform random varlate generation. This chapter is a must for the serlous reader. On its own it can be used as part of a course in slmulation.

These basic princlples apply often, but not always, to both contlnuous and discrete random variables. For a structured development it is perhaps best to develop the material according to the guiding principle rather than according to the type of random varlable involved. The reader is also cautloned that we do not make any recommendations at thls point about generators for varlous distributlons. All the examples found in thls chapter are of a didactical nature, and the most important familles of distributions will be studied in chapters LX,X,XI In more detall.

2. THE INVERSION METHOD.

2.1. The inversion principle.

The Inversion method is based upon the following property:

Theorem 2.1.

Let F be a continuous distribution function on R with inverse F^{-1} deflned by

$$
F^{-1}(u)=\operatorname{lnf}\{x: F(x)=u, 0<u<1\}
$$

If U is a uniform $[0,1]$ random varlable, then $F^{-1}(U)$ has distribution function F. Also, if X has distribution function F, then $F(X)$ is unlformly distributed on $[0,1]$.

Proof of Theorem 2.1.

The first statement follows after noting that for all $x \in R$,

$$
\begin{aligned}
& P\left(F^{-1}(U) \leq x\right)=P(\operatorname{lnf}\{y: F(y)=U\} \leq x) \\
& =P(U \leq F(x))=F(x)
\end{aligned}
$$

The second statement follows from the fact that for all $0<u<1$,

$$
\begin{aligned}
& P(F(X) \leq u)=P\left(X \leq F^{-1}(u)\right) \\
& =F\left(F^{-1}(u)\right)=u
\end{aligned}
$$

Theorem 2.1 can be used to generate random varlates with an arbitrary continuous distribution function F provided that F^{-1} is expllcitly known. The faster the Inverse can be computed, the faster we can compute X from a given unlform $[0,1]$ random varlate U. Formally, we have

The inversion method

Generate a uniform $[0,1]$ random variate U.
RETURN $X \leftarrow F^{-1}(U)$

In the next table, we glve a few Important examples. Often, the formulas for
$F^{-1}(U)$ can be simplifled, by noting for example that $1-U$ is distributed as U.

Density $f(x)$	$F(x)$	$X=F^{-1}(U)$	Simplifled form
Exponential (λ) $\lambda e^{-\lambda x}, x \geq 0$	$1-e^{-\lambda z}$	$-\frac{1}{\lambda} \log (1-U)$	$-\frac{1}{\lambda} \log (U)$
Cauchy (σ) $\frac{\sigma}{\pi\left(x^{2}+\sigma^{2}\right)}$	$\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{\sigma}\right)$	$\sigma \tan \left(\pi\left(U-\frac{1}{2}\right)\right)$	$\sigma \tan (\pi U)$
Rayleigh (σ) $\frac{x}{\sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}}, x \geq 0$	$1-e^{-\frac{x^{2}}{2 \sigma^{2}}}$	$\sigma \sqrt{-\log (1-U)}$	$\sigma \sqrt{-\log (U)}$
$\frac{2}{a}\left(1-\frac{x}{a}\right), 0 \leq x \leq a$	$\frac{2}{a}\left(x-\frac{x^{2}}{2 a}\right)$	$a(1-\sqrt{1-U})$	$a(1-\sqrt{U})$
Triangular on $(0, a)$ $x e^{\frac{a^{2}-x^{2}}{2}}, x \geq a>0$	$1-e^{\frac{a^{2}-x^{2}}{2}}$	$\sqrt{a^{2}-2 \log (1-U)}$	$\sqrt{a^{2}-2 \log U}$
Pareto (a, b) $\frac{a b^{a}}{x^{a+1}}, x \geq b>0$	$1-\left(\frac{b}{x}\right)^{a}$	$\frac{b}{(1-U)^{1 / a}}$	$\frac{b}{U^{1 / a}}$

There are many areas in random variate generation where the inversion method is of particular importance. We cite four examples:

Example 2.1. Generating correlated random variates.

When two random varlates X and Y are needed with distribution functions F and G respectively, then these can be obtalned as $F^{-1}(U)$ and $G^{-1}(V)$ where U and V are unlform $[0,1]$ random varlates. If U and V are dependent, then so are $F^{-1}(U)$ and $G^{-1}(V)$. Maximal correlation is achleved by using $V=U$, and maximal negative correlation is obtalned by setting $V=-U$. While other methods may be avallable for generating X and/or Y individually, few methods allow the flexibllity of controlling the correlation as described here. In varlance reduction, negatively correlated random varlates are very useful (see e.g. Hammersley and Handscomb, 1884, or Bratley, Fox and Schrage, 1984).

Example 2.2. Generating maxima.

To generate $X=\max \left(X_{1}, \ldots, X_{n}\right)$, where the X_{i} 's are Ild random varlates with distribution function F, we could:
(1) Generate X_{1}, \ldots, X_{n}, and take the maximum.
(i1) Generate a uniform $[0,1]$ random varlate U and find the solution X of $F^{n}(X)=U$.
(ili) Generate V, a random varlate distributed as the maximum of n ild unlform $[0,1]$ random varlates, and find the solution X of $F(X)=V$.
Thus, the elegant solutions (i1) and (iii) Involve inversion.

Example 2.3. Generating all order statistics.

A sample $X_{(1)}, \ldots, X_{(n)}$ of order statistics of a sequence X_{1}, \ldots, X_{n} of ild random varlables with distribution function F can be obtalned as $F^{-1}\left(U_{(1)}\right), \ldots, F^{-1}\left(U_{(n)}\right)$, where the $U_{(i)}$'s are the order statistics of a unlform sample. As we will see further on, this is often more efficlent than generating the X_{i} sample and sorting it.

Example 2.4. A general purpose generator.

The inverston method is the only truly universal method: if all we can do is compute $F(x)$ for all x, and we have enough (i.e., infinte) time on our hands, then we can generate random varlates with distribution function F. All the other methods described in this book require additional information in one form or another.

2.2. Inversion by numerical solution of $F(X)=U$.

The inversion method is exact when an explicit form of F^{-1} is known. In other cases, we must solve the equation $F(X)=U$ numerically, and this requires an inflite amount of time when F is continuous. Any stopping rule that we use with the numerical method leads necessarlly to an Inexact algorithm. In thls section we will brlefly describe a few numerical inversion algorithms and stopping rules. Despite the fact that the algorithms are Inexact, there are situatlons in which we are virtually forced to use numerical inversion, and it is important to compare different inversion algorithms from varlous polnts of vlew.

In what follows, X is the (unknown, but exact) solution of $F(X)=U$, and $X *$ is the value returned by the numerlcal inversion algorithm. A stopping rule which Insists that $|X *-X|<\delta$ for some small $\delta>0$ is not reallstic because for large values of X, this would probably imply that the number of significant diglts is greater than the bullt-in llmit dictated by the wordsize of the computer. A second choice for our stopping rule would by $|F(X *)-F(X)|<\epsilon$, where $\epsilon>0$ is a small number. Since all F values are in the range $[0,1]$, we do not face the above-mentloned problem any more, were it not for the fact that small varlations In X can lead to large varlations in $F(X)$-values. Thus, it is possible that even the smallest realizable increment in X yields a change in $F(X)$ that exceeds the given constant ϵ. A third possibllity for our stopping rule would be $|X *-X|<\delta|X|$ where the value of δ is determined by the wordsize of the computer. While this addresses the problem of relatlve accuracy correctly, it will lead to more accuracy than is orinarily required for values of X near 0. Thus, no stopping rule seems unlversally recommendable. If we know that X takes values in $[-1,1]$, then the rule $|X *-X|<\delta$ seems both practical and amenable to theoretical analysis. Let us first see what we could do when the support of F falls outside [-1,1].

Let $h: R \rightarrow(-1,1)$ be a strictly monotone continuous transformation. Assume now that we obtaln $X *$ by the following method:

Let Y^{*} be the numerical solution of $F\left(h^{-1}(y)\right)=U$, where U is a uniform [0,1] random variable and $Y *$ is such that it is within δ of the exact solution Y of the given equation.

$$
X^{*} \leftarrow h^{-1}\left(Y^{*}\right)
$$

Here we used the fact that Y has distribution function $F\left(h^{-1}(y)\right),|y| \leq 1$. Let us now look at what happens to the accuracy of the solution. A varlation of $d y$ on the value of y leads to variation of $h^{-1 /}(y) d x=h^{-1 /}(h(x)) d x$ on the corresponding value of x. The expected variation thus is about equal to $V \delta$ where

$$
V=E\left(h^{-1 \prime}(h(X))\right)=E\left(\frac{1}{h^{\prime}(X)}\right)
$$

Unfortunately, the best transformation h, l.e. the one that minimizes V, depends upon the distribution of X. We can glve the reader some insight in how to choose h by an example. Consider for example the class if transformations

$$
h(x)=\frac{x-m}{s+|x-m|}
$$

where $s>0$ and $m \in R$ are constants. Thus, we have $h^{-1}(y)=m+s y /(1-|y|)$, and

$$
V=E\left(\frac{1}{s}(s+|X-m|)^{2}\right)=s+2 E(|X-m|)+\frac{1}{s} E\left((X-m)^{2}\right)
$$

For symmetrlc random variables X, thls expression is minimlzed by setting $m=0$ and $s=\sqrt{\operatorname{Var}(X)}$. For asymmetric X, the minimization problem is very difficult. The next best thing we could do is minimize a good upper bound for V, such as the one provided by applying the Cauchy-Schwarz Inequallty,

$$
V \leq s+2 \sqrt{\left.E(X-m)^{2}\right)}+\frac{1}{s} E\left((X-m)^{2}\right)
$$

Thls upper bound is minimal when

$$
m=E(X), s=\sqrt{\operatorname{Var}(X)}
$$

The upper bound for V then becomes $4 \sqrt{\operatorname{Var}(X)}$. Thls approach requires elther exact values or good approximations for m and s. We refer to Exerclse 1 for a detalled comparison of the average accuracy of this method with that of the direct solution of $F(X)=U$ given that the same stopping rule is used.

We will discuss three popular numerical inversion algorithms for $F(X)=U$:

The bisection method

Find an initial interval $[a, b]$ to which the solution belongs.
REPEAT

$$
X \leftarrow(a+b) / 2
$$

IF $F(X) \leq U$

$$
\text { THEN } a-X
$$

$$
\text { ELSE } b \leftarrow X
$$

UNTLL $b-a \leq 2 \delta$
RETURN X

The secant method (regula falsi method)

Find an interval $[a, b]$ to which the solution belongs.

REPEAT

$$
\begin{gathered}
X \leftarrow a+(b-a) \frac{U-F(a)}{F(b)-F(a)} \\
\text { IF } F(X) \leq U \\
\text { THEN } a \leftarrow X \\
\text { ELSE } b \leftarrow X
\end{gathered}
$$

UNTIL $b-a \leq \delta$
RETURN X

The Newton-Raphson method

Choose an initial guess X.

REPEAT

$$
X-X-\frac{(F(X)-U)}{f(X)}
$$

UNTIL stopping rule is satisfled. (Note: f is the density corresponding to F.) RETURN X.

In the first two methods, we need an Initial Interval [a, b] known to contaln the solution. If the user knows functions G and H such that $G(x) \geq F(x) \geq H(x)$ for all x, then we could start with $[a, b]=\left[G^{-1}(U), H^{-1}(U)\right]$. In particular, if the support of F is known, then we can set [a, b] equal to It. Because it is Important to have reasonably small intervals, any a priorl Information should be used to select $[a, b]$. For example, if F has varlance σ^{2} and is symmetric about 0 , then by Cantelli's extension of Chebyshev's Inequallty,

$$
F(x) \geq \frac{x^{2}}{x^{2}+\sigma^{2}} \quad(x>0)
$$

This suggests that when $U>\frac{1}{2}$, we take

$$
[a, b]=\left[0, \sigma \sqrt{\frac{U}{1-U}}\right]
$$

When $U \leq \frac{1}{2}$, we argue by symmetry. Thus, Information about moments and quantlles of F can be valuable for Initial guesswork. For the Newton-Raphson method, we can often take an arbltrary polnt such as 0 as our inltial guess.

The actual choice of an algorithm depends upon many factors such as
(1) Guaranteed convergence.
(II) Speed of convergence.
(ili) A priorl Informatlon.
(iv) Knowledge of the density f.

If f is not explicitly known, then the Newton-Raphson method should be avolded because the approximation of $f(x)$ by $\frac{1}{\delta}(F(x+\delta)-F(x))$ is rather inaccurate because of cancelation errors.

Only the bisection method is guaranteed to converge in all cases. If $F(X)=U$ has a unlque solution, then the secant method converges too. By "convergence" we mean of course that the returned varlable $X *$ would approach the exact solution X if we would let the number of iterations tend to ∞. The Newton-Raphson method converges when F is convex or concave. Often, the density f is unlmodal with peak at m. Then, clearly, F is convex on ($-\infty, m$], and concave on (m, ∞), and the Newton-Raphson method started at m converges.

Let us consider the speed of convergence now. For the blsection method started at $[a, b]=\left[g_{1}(U), g_{2}(U)\right]$ (where $g_{1,} g_{2}$ are given functions), we need N iterations if and only if

$$
2^{N-1}<g_{2}(U)-g_{1}(U) \leq 2^{N}
$$

The solution of this is

$$
N=1+\left\{\log _{+}\left(\left(g_{2}(U)-g_{1}(U)\right) / \delta\right)\right\}
$$

where $\log _{+}$is the positive part of the logarithm with base 2 . From thls expresslon, we retaln that $E(N)$ can be infinite for some long-talled distributions. If the solution is known to belong to $[-1,1]$, then we have deterministically,

$$
N \leq 1+\log _{+}\left(\frac{1}{\delta}\right)
$$

And in all cases in which $E(N)<\infty$, we have as $\delta \downarrow 0, E(N) \sim \log \left(\frac{1}{\delta}\right)$. Essentlally, adding one blt of accuracy to the solution is equivalent to adding one iteration. As an example, let us take $\delta=10^{-7}$, which corresponds to the standard cholce for problems with solutlons in $[-1,1]$ when a 32 -blt computer is used. The value of N in that case is in the nelghborhood of 24, and this is often inacceptable.

The secant and Newton-Raphson methods are both faster, albelt less robust, than the bisectlon method. For a good discussion of the convergence and rate of convergence of the glven methods, we refer to Ostrowskl (1973). Let us merely
state one of the results for $E(N)$, the quantity of interest to us, where N is the number of iteratlons needed to get to within δ of the solution (note that this is impossible to verlfy when an algorithm is running !). Also, let F be the distribution function corresponding to a unlmodal density with absolutely bounded derlvative f^{\prime}. The Newton-Raphson method started at the mode converges, and for some number N_{0} depending only upon F (but possibly ∞) we have

$$
E(N) \leq N_{0}+\log \log \left(\frac{1}{\delta}\right)
$$

where all logarithms are base 2. For the secant method, a simllar statement can be made but the base should be replaced by the golden ratio, $\frac{1}{2}(1+\sqrt{5})$. In both cases, the influence of δ on the average number of iterations is practically nil, and the asymptotlc expression for $E(N)$ is smaller than in the blsection method (when $\delta \downarrow 0$). Obvlously, the secant and Newton-Raphson methods are not universally faster than the blsection method. For ways of accelerating these methods, see for example Ostrowski (1973, Appendix I, Appendix G).

2.3. Explicit approximations.

When F^{-1} is not explicttly known, it can sometlmes be well approximated by another explicitly known function $g(U)$. In iterative methods, the stopping rule usually takes care of the accuracy problem. Now, by resorting to a one-step procedure, we squarely put the burden of verifying the accuracy of the solution on the shoulders of the theoretlclan. Also, we should define once again what we mean by accuracy (see Devroye (1882) for a crltical dlscussion of varlous definitions). Iterative methods can be notoriously slow, but this is a small price to pay for their conclseness, slmpllcity, flexibllity and accuracy. The four maln limitatlons of the direct approximation method are:
(1) The approximation is valld for a given F : to use it when F changes frequently during the stmulation experiment would probably require extraordlnary set-up tlmes.
(11) The function g must be stored. For example, g is often a ratio of two polynomlals, In which case all the coefficlents must be put in a long table.
(1i1) The accuracy of the approximation is fixed. If a better accuracy is needed, the entlre function g must be replaced. This happens for example when one switches to a computer with a larger wordsize. In other words, future computer upgrades will be expensive.
(iv) Certain functions cannot be approximated very well by standard approximation technlques, except posslbly by inacceptably complicated functions. Also, approximations are difficult to develop for multiparameter famlles of functlons.

How one actually goes about designing approximations g will not be explalned here. For example, we could start from a very rough approximation of F^{-1}, and then explicitly compute the function that corresponds to one or two or a fixed number of Newton-Raphson iterations. This is not systematic enough in general. A spllne method was developed in Kohrt (1980) and Ahrens and Kohrt (1981). In the general llterature, one can find many examples of approximations by ratios of polynomials. For example, for the inverse of the normal distribution function, Odeh and Evans (1874) suggest

$$
g(u)=\sqrt{-2 \log (u)}+\frac{A(\sqrt{-2 \log (u)})}{B(\sqrt{-2 \log (u)})}, \frac{1}{2} \geq u \geq 10^{-20},
$$

where $A(x)=\sum_{i=0}^{4} a_{i} x^{i}$, and $B(x)=\sum_{i=0}^{4} b_{i} x^{i}$, and the coefflcients are as shown \ln the table below:

i	a_{i}	b_{i}
0	-0.322232431088	0.0993484626060
1	-1.0	0.588581570495
2	-0.342242088547	0.531103462366
3	-0.0204231210245	0.103537752850
4	-0.0000453642210148	0.0038560700634

For $u \ln$ the range $\left[\frac{1}{2}, 1-10^{-20}\right]$, we take $-g(1-u)$, and for u in the two tiny leftover intervals near 0 and 1 , the approximation should not be used. Rougher approximations can be found in Hastings (1955) and Balley (1981). Balley's approximation requires fewer constants and is very fast. The approximation of Beasley and Springer (1977) is also very fast, although not as accurate as the Odeh-Evans approximation given here. Similar methods exist for the Inversion of beta and gamma distribution functions.

2.4. Exercises.

1. Most stopping rules for the numerical lterative solution of $F(X)=U$ are of the type $b-a \leq \delta$ where $[a, b]$ is an interval contalning the solution X, and $\delta>0$ is a small number. These algorithms may never halt if for some u, there is an interval of solutions of $F(X)=u$ (this applles espectally to the secant method). Let A be the set of all u for which we have for some $x<y, F(x)=F(y)=u$. Show that $P(U \in A)=0$, i.e. the probabllity of ending up in an infinite loop is zero. Thus, we can safely lift the restriction imposed throughout thls section that $F(X)=u$ has one solution for all u.
2. Show that the secant method converges if $F(X)=U$ has one solution for the given value of U.
3. Show that if $F(0)=0$ and F is concave on $[0, \infty)$, then the Newton-Raphson method started at 0 converges.
4. Student's \mathbf{t} distribution with $\mathbf{3}$ degrees of freedom.

Consider the density

$$
f(x)=\frac{2}{\pi\left(1+x^{2}\right)^{2}}
$$

and the corresponding distribution function

$$
F(x)=\frac{1}{2}+\frac{1}{\pi}\left(\arctan x+\frac{x}{1+x^{2}}\right) .
$$

These functlons define the t distribution with 3 degrees of freedom. Elsewhere we will see very effcient methods for generating random varlates from this distribution. Nevertheless, because F^{-1} is not known expllcitly (except perhaps as an infinite serles), this distribution can be used to lllustrate many points made in the text. Note first that the distribution is symmetric about o. Prove first that

$$
\frac{1}{2}+\frac{1}{\pi} \arctan x \leq F(x) \leq \frac{1}{2}+\frac{2}{\pi} \arctan x \quad(x \geq 0) .
$$

Thus, for $U \geq \frac{1}{2}$, the solution of $F(X)=U$ lies in the interval

$$
\left[\tan \left(\frac{\pi}{2}\left(U-\frac{1}{2}\right)\right), \tan \left(\pi\left(U-\frac{1}{2}\right)\right)\right] .
$$

Using this Interval as a starting Interval, compare and time the bisection method, the secant method and the Newton-Raphson method (in the latter method, start at 0 and keep lterating untll X does not change in value any further). Finally, assume that we have an efficlent Cauchy random varlate generator at our disposal. Recalling that a Cauchy random varlable C is distributed as $\tan \left(\pi\left(U-\frac{1}{2}\right)\right)$, show that we can generate X by solving the equation

$$
\arctan X+\frac{X}{1+X^{2}}=\arctan C
$$

and by starting with initial interval

$$
\left[\sqrt{\frac{\sqrt{1+C^{2}}-1}{\sqrt{1+C^{2}}+1}}, C\right]
$$

when $C>0$ (use symmetry in the other case). Prove that this is a valld method.
5. Develop a general purpose random varlate generator which is based upon Inversion by the Newton-Raphson method, and assumes only that F and the corresponding density f can be computed at all points, and that f is unlmodal. Verlfy that your method is convergent. Allow the user to specify a mode if thls information is avallable.
6. Write general purpose generators for the bisection and secant methods in which the user specifles an initial interval $\left[g_{1}(U), g_{2}(U)\right]$.
7. Discuss how you would solve $F(X)=U$ for X by the bisection method if no initlal interval is avallable. In a first stage, you could look for an interval $[a, b]$ which contalns the solution X. In a second stage, you proceed by ordinary blsectlon untll the interval's length drops below δ. Show that regardless of how you organize the original search (this could be by looking at adjacent intervals of equal length, or adjacent intervals with geometrically increasing lengths, or adjacent intervals growing as $2,2^{2}, 2^{2^{2}}, \ldots$), the expected time taken by the entire algorithm is ∞ whenever $E\left(\log _{+}|X|\right)=\infty$. Show that for extrapolatory search, it is not a bad strategy to double the interval sizes. Finally, exhlbit a distribution for which the given expected search time is ∞. (Note that for such distributions, the expected number of bits needed to represent the integer portion is infintte.)
8. An exponential class of distributions. Conslder the distribution function $F(x)=1-e^{-A_{n}(x)}$ where $A_{n}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ for $x \geq 0$ and $A_{n}(x)=0$ for $x<0$. Assume that all coeffcients a_{i} are nonnegative and that $a_{1}>0$. If U is a unlform $[0,1]$ random variate, and E is an exponential random varlate, then it is easy to see that the solution of $1-e^{-A_{n}(X)}=U$ is distributed as the solution of $A_{n}(X)=E$. The baslc Newton-Raphson step for the solution of the second equatlon is

$$
X \leftarrow X-\frac{A_{n}(X)-E}{A_{n}^{\prime}(X)}
$$

Since $a_{1}>0$ and A_{n} is convex, any starting point $X \geq 0$ will yleld a convergent sequence of values. We can thus start at $X=0$ or at $X=E / a_{1}$ (which is the first value obtained in the Newton-Raphson sequence started at 0). Compare thls algorithm with the algorlthm in which X is generated as

$$
\min _{1 \leq i \leq n}\left(\frac{E_{i}}{a_{i}}\right)^{\frac{1}{i}}
$$

where E_{1}, \ldots, E_{n} are ild exponential random varlates.
9. Adaptive inversion. Consider the situation in which we need to generate a sequence of n lid random varlables with continuous distribution function F by the method of inversion. The generated couples (X_{1}, U_{1}) ,.. are stored ($X_{1}=F^{-1}\left(U_{1}\right)$ and U_{1} is unlform [0,1]). Deflne an algorlthm based upon a dynamic hash table for the U_{i} 's in which the table is used to find a good starting interval for inversion. Implement, and compare thls adaptive method with memoryless algorithms (Yuen, 1981).
10. Truncated distributions. Let X be a random varlable with distribution function F. Deflne the truncated random varlable Y by its distribution
function

$$
G(x)= \begin{cases}0 & x<a \\ \frac{F(x)-F(a)}{F(b)-F(a)} & a \leq x \leq b \\ 1 & x>b\end{cases}
$$

Here $-\infty \leq a<b \leq \infty$. Show that Y can be generated as $F^{-1}(F(a)+U(F(b)-F(a)))$ where U is a unlform $[0,1]$ random varlate.
11. Find a monotonically decreasing density f on $[0, \infty)$ such that the NewtonRaphson procedure started at $X=0$ needs N steps to get within δ of the solutlon of $F(X)=U$ where N is a random varlable with mean $E(N)=\infty$ for all $\delta>0$.
12. The logistic distribution. A random varlable X is sald to have the loglstlc distribution with parameters $a \in R$ and $b>0$ when

$$
F(x)=\frac{1}{1+e^{-\frac{x-a}{b}}}
$$

It is obvious that a is a translation parameter and that b is a scale parameter. The standardized logistic distribution has $a=0, b=1$. The density is

$$
f(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=F(x)(1-F(x))
$$

The logistic density is symmetric about 0 and resembles in several respects the normal density. Show the following:
A. When U is unlformly distributed on $[0,1]$, then $X=\log \left(\frac{U}{1-U}\right)$ has the standard \log istic distribution.
B. $\frac{U}{1-U}$ is distributed as the ratlo of two ild exponentlal random variables.
C. We say that a random variable Z has the extremal value distribution with parameter a when $F(x)=e^{-a e^{-s}}$. If X is distributed as Z with parameter Y where Y is exponentlally distrlbuted, then X has the standard logistic distribution.
D. $E\left(X^{2}\right)=\frac{\pi^{2}}{3}$, and $E\left(X^{4}\right)=\frac{7 \pi^{4}}{15}$.
E. If X_{1}, X_{2} are independent extremal value distributed random varlables with the same parameter a, then $X_{1}-X_{2}$ has a logistlc distribution.

3. THE REJECTION METHOD.

3.1. Definition.

The rejection method is based upon the following fundamental property of denstites:

Theorem 3.1.

Let X be a random vector with density f on R^{d}, and let U be an independent unlform $[0,1]$ random variable. Then ($X, c U f(X)$) is uniformly distributed on $A=\left\{(x, u): x \in R^{d}, 0 \leq u \leq c f(x)\right\}$, where $c>0$ is an arbltrary constant. Vice versa, if (X, U) is a random vector in R^{d+1} unlformly distributed on A, then X has density f on R^{d}.

Proof of Theorem 3.1.

For the first statement, take a Borel set $B \subseteq A$, and let B_{x} be the section of B at x, 1.e. $B_{x}=\{u:(x, u) \in B\}$. By Tonelll's theorem,

$$
P((X, c U f(X)) \in B)=\iint_{B_{x}} \frac{1}{c f(x)} d u f(x) d x=\frac{1}{c} \int_{B} d u d x
$$

Since the area of A is c, we have shown the flrst part of the Theorem. The second part follows if we can show that for all Borel sets B of R^{d}, $P(X \in B)=\int_{B} f(x) d x$ (recall the definition of a density). But

$$
\begin{aligned}
& P(X \in B)=P\left((X, U) \in B_{1}=\{(x, u): x \in B, 0 \leq u \leq c f(x)\}\right) \\
& =\frac{\iint_{B_{1}} d u d x}{\iint_{A} d u d x}=\frac{1}{c} \int_{B} c f(x) d x=\int_{B} f(x) d x
\end{aligned}
$$

whlch was to be shown.

Theorem 3.2.

Let X_{1}, X_{2}, \ldots be a sequence of lld random vectors taking values $\ln R^{d}$, and let $A \subseteq R^{d}$ be a Borel set such that $P\left(X_{1} \in A\right)=p>0$. Let Y be the flrst X_{i} taking values in A. Then Y has a distribution that is determined by

$$
P(Y \in B)=\frac{P\left(X_{1} \in A \cap B\right)}{p}, B \text { Borel set of } R^{d}
$$

In particular, if X_{1} is uniformly distributed in A_{0} where $A_{0} \supseteq A$, then Y is unlformly distrlbuted in A.

Proof of Theorem 3.2.

For arbltrary Borel sets B, we observe that

$$
\begin{aligned}
& P(Y \in B)=\sum_{i=1}^{\infty} P\left(X_{1} \notin A, \ldots, X_{i-1} \notin A, X_{i} \in B \cap A\right) \\
& =\sum_{i=1}^{\infty}(1-p)^{i-1} P\left(X_{1} \in A \cap B\right) \\
& =\frac{1}{1-(1-p)} P\left(X_{1} \in A \cap B\right)
\end{aligned}
$$

which was to be shown. If X_{1} is unlformly distributed in A_{0}, then

$$
P(Y \in B)=\frac{P\left(X_{1} \in A \cap B\right)}{P\left(X_{1} \in A\right)}=\frac{\int_{A_{0} A B} d x}{\int_{A_{0}} d x} \cdot \frac{\int_{A_{0}} d x}{\int_{A A_{0}} d x}=\frac{\int_{A B} d x}{\int_{A} d x}
$$

This concludes the proof of Theorem 3.2.

The basic version of the rejection algorithm assumes the existence of a density g and the knowledge of a constant $c \geq 1$ such that

$$
f(x) \leq c g(x) \quad(\text { all } x)
$$

Random varlates with density f on R^{d} can be obtalned as follows:

The rejection method

REPEAT

Generate two independent random variates X (with density g on R^{d}) and U (uniformly distributed on $[0,1]$).
Set $T \leftarrow c \frac{g(X)}{f(X)}$.
UNTIL $U T \leq 1$
RETURN X

By Theorem 3.1, $(X, c U g(X)$) (where X and U are as explained in the first line of the REPEAT loop) is unlformly distributed under the curve of cg in R^{d+1}. By Theorem 3.2, we conclude that the random variate ($X, c U g(X)$) generated by this algorithm (i.e. at time of exit) is uniformly distributed under the curve of f. By the second part of Theorem 3.1, we can then conclude that its d-dimensional projection X must have density f.

The three thlngs we need before we can apply the refection algorithm are (1) a dominating density g; (il) a slmple method for generating random varlates with density g; and (1i1) knowledge of c. Often, (1) and (iil) can be satisfled by a priorl inspection of the analytical form of f. Baslcally, g must have heavier talls and sharper Infinlte peaks than f. In some situations, we can determine $c g$ for entire classes of densities f. The dominating curves $c g$ should always be picked with care: not only do we need a slmple generator for g (requirement (II)), but we must make sure that the computation of $\frac{g(X)}{f(X)}$ is simple. Finally, $c g$ must be such that the algorithm is efficlent.

Let N be the number of iterations in the algorithm, i.e. the number of palrs (X, U) required before the algorithm halts. We have

$$
P(N=i)=(1-p)^{i-1} p ; P(N \geq i)=(1-p)^{i-1} \quad(i \geq 1)
$$

where

$$
\begin{aligned}
& p=P(f(X) \geq c U g(X))=\int P\left(U \leq \frac{f(x)}{c g(x)}\right) d x \\
& =\int \frac{f(x)}{c g(x)} g(x) d x=\frac{1}{c} \int f(x) d x=\frac{1}{c}
\end{aligned}
$$

Thus, $E(N)=\frac{1}{p}=c, E\left(N^{2}\right)=\frac{2}{p^{2}}-\frac{1}{p}$ and $\operatorname{Var}(N)=\frac{1-p}{p^{2}}=c^{2}-c$. In other words, $E(N)$ is one over the probabllity of accepting X. From this we conclude that we should keep c as small as possible. Note that the distribution of N is geometric with parameter $p=\frac{1}{c}$. This is good, because the probabilitles
$P(N=i)$ decrease monotonically, and at an exponentlal rate (note that $\left.P(N>i)=(1-p)^{i} \leq e^{-p i}\right)$.

The rejection method has an almost unllmited potentlal. We have given up the princlple that one unlform $[0,1]$ random varlate ylelds one variate X (as in the inversion method), but what we receive in return is a powerful, simple and exact algorlthm.

Example 3.1. Bounded densities of compact support.

Let $C_{M, a, b}$ be the class of all denslties on $[a, b]$ bounded by M. Any such density is clearly bounded by M. Thus, the rejection algorlthm can be used with uniform dominating denslty $g(x)=(b-a)^{-1}(a \leq x \leq b)$, and the constant c becomes $M(b-a)$. Formally, we have

The rejection method for $C_{M, a, b}$
REPEAT
Generate two independent uniform $[0,1]$ random variates U and V.
Set $X \leftarrow a+(b-a) V$.
UNTIL $U M \leq f(X)$
RETURN X

The reader should be warned here that thls algorithm can be horribly Inefficient, and that the cholce of a constant dominating curve should be avolded except in a few cases.

3.2. Development of good rejection algorithms.

Generally speaking, g is chosen from a class of easy densitles. This class Includes the uniform density, triangular densitles, and most densitles that can be generated quickly by the inversion method. The situation usually dictates which densitles are considered as "easy". There are two major techniques for determinIng c and g in the Inequallty $f \leq c g$: one could first study the form of f and apply one of many analytical devices for obtaining inequalities. Many of these are lllustrated throughout thls book (collecting them in a spectal chapter would have forced us to dupllcate too much materlal). Whlle this approach glves often
quick results (see Example 3.2 below), it is ad hoc, and depends a lot on the mathematical background and insight of the designer. In a second approach, which is also mlustrated in this section, one starts with a famlly of dominating densitles g and chooses the density within that class for which c is smallest. This approach is more structured but could sometlmes lead to difficult optimizatlon problems.

Example 3.2. A normal generator by rejection from the Laplace density.
Let f be the normal density. Obtaining an upper bound for f bolls down to obtaining a lower bound for $\frac{x^{2}}{2}$. But we have of course

$$
\frac{1}{2}(|x|-1)^{2}=\frac{x^{2}}{2}+\frac{1}{2}-|x| \geq 0
$$

Thus,

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \leq \frac{1}{\sqrt{2 \pi}} e^{\frac{1}{2}-|x|}=c g(x)
$$

where $g(x)=\frac{1}{2} e^{-|x|}$ is the Laplace density, and $c=\sqrt{\frac{2 e}{\pi}}$ is the rejection constant. This suggests the following algorlthm:

A normal generator by the rejection method
REPEAT
Generate an exponential random variate X and two independent uniform $[0,1]$ random variates U and V. If $U<\frac{1}{2}$, set $X \longleftarrow X$ (X is now distributed as a Laplace random variate).
UNTIL $V \frac{1}{\sqrt{2 \pi}} e^{\frac{1}{2}-|X|} \leq \frac{1}{\sqrt{2 \pi}} e^{-\frac{X^{2}}{2}}$.
RETURN X

The condition in the UNTIL statement can be cleaned up. The constant $\frac{1}{\sqrt{2 \pi}}$ cancels out on left and right hand sides. It is also better to take logarithms on both sides. Finally, we can move the sign change to the RETURN statement because there is no need for a sign change of a random variate that will be rejected. The random varlate U can also be avolded by the trick implemented in the algorlthm glven below.

A normal generator by rejection from the Laplace density

REPEAT

Generate an exponential random variate X and an independent uniform $[-1,1]$ random variate V.
UNTH $(X-1)^{2} \leq-2 \log (|V|)$
RETURN $X \leftarrow X \operatorname{sign}(V)$

For given densitles f and g, the rejection constant c should be at least equal to

$$
\sup _{x} \frac{f(x)}{g(x)}
$$

We cannot loose anything by setting c equal to this supremum, because this Insures us that the curves of f and $c g$ touch each other somewhere. Instead of letting g be determined by some inequallty which we happen to come across as In Example 3.2, It is often wiser to take the best g_{θ} in a family of densities parametrized by θ. Here θ should be thought of as a subset of R^{k} (ln which case we say that there are k parameters). Deflne the optimal rejection constant by

$$
c_{\theta}=\sup _{x} \frac{f(x)}{g_{\theta}(x)}
$$

The optimal θ is that for which c_{θ} is minimal, l.e. for which c_{θ} is closest to 1.
We will now lllustrate thls optlmization process by an example. For the sake of argument, we take once again the normal denslty f. The family of dominatIng densitles is the Cauchy famlly with scale parameter θ :

$$
g_{\theta}(x)=\frac{\theta}{\pi} \frac{1}{\theta^{2}+x^{2}}
$$

There is no need to conslder a translation parameter as well because both f and the Cauchy densitles are unlmodal with peak at 0 . Let us first compute the optlmal rejection constant c_{θ}. We will prove that

$$
c_{\theta}=\left\{\begin{array}{ll}
\frac{\sqrt{2 \pi}}{e \theta} e^{\frac{\theta^{2}}{2}} & , \theta<\sqrt{2} \\
\theta \sqrt{\frac{\pi}{2}} & , \theta \geq \sqrt{2}
\end{array} .\right.
$$

We argue as follows: f / g_{θ} is maximal when $\log \left(f / g_{\theta}\right)$ is maximal. Setting the derivatlve with respect to x of $\log \left(f / g_{\theta}\right)$ equal to 0 ylelds the equation

$$
-x+\frac{2 x}{\theta^{2}+x^{2}}=0
$$

This glves the values $x=0$ and $x= \pm \sqrt{2-\theta^{2}}$ (the latter case can only happen when $\theta^{2} \leq 2$). At $x=0, f / g_{\theta}$ takes the value $\theta \sqrt{\frac{\pi}{2}}$. At $x= \pm \sqrt{2-\theta^{2}}, f / g_{\theta}$ takes the value $\frac{\sqrt{2 \pi}}{e \theta} e^{\frac{\theta^{2}}{2}}$. It is easy to see that for $\theta<\sqrt{2}$, the maximum of f / g_{θ} is attalned at $x= \pm \sqrt{2-\theta^{2}}$ and the minimum at $x=0$. For $\theta \geq \sqrt{2}$, the maximum is attalned at $x=0$. This concludes the verification of the expression for c_{θ}.

The remainder of the optimization is simple. The function c_{θ} has only one minimum, at $\theta=1$. The minimal value is $c_{1}=\sqrt{\frac{2 \pi}{e}}$. With this value, the condition of acceptance $U c_{\theta} g_{\theta}(X) \leq f(X)$ can be rewrltten as

$$
U \sqrt{\frac{2 \pi}{e}} \frac{1}{\pi} \frac{1}{1+X^{2}} \leq \frac{1}{\sqrt{2 \pi}} e^{-\frac{X^{2}}{2}},
$$

or as

$$
U \leq\left(1+X^{2}\right) \frac{\sqrt{e}}{2} e^{-\frac{X^{2}}{2}}
$$

A normal generator by rejection from the Cauchy density

[SET-UP]
$\alpha \leftharpoondown \frac{\sqrt{e}}{2}$
[GENERATOR]

REPEAT

Generate two independent uniform $[0,1]$ random variates U and V.
Set $X \leftarrow \tan (\pi V), S \leftarrow X^{2}$ (X is now Cauchy distributed).
UNTIL $U \leq \alpha(1+S) e^{-\frac{S}{2}}$
RETURN X

The algorithm derived here, though it has a rejection constant near 1.4 is no match for most normal generators developed further on. The reason for this is that we need falrly expensive Cauchy random varlates, plus the evaluation of exp In the acceptance step.

3.3. Generalizations of the rejection method.

Some generallzations of the rejection method are important enough to warrant special treatment in this key chapter. The flrst generallzation concerns the following case:

$$
f(x)=c g(x) \psi(x)
$$

where the function ψ is [0,1]-valued, g is an easy density and c is a normalizatlon constant at least equal to 1 . The rejection algorithm for thls case can be rewritten as follows:

The rejection method

REPEAT
Generate independent random variates X, U where X has density g and U is uniformly distributed on $[0,1]$.
UNTIL $U \leq \psi(x)$
RETURN X

Vaduva (1977) observed that for speclal forms of ψ, there is another way of proceeding. Thls occurs when $\psi=1-\Psi$ where Ψ is a distribution function of an easy denslty.

Vaduva's generalization of the rejection method

REPEAT

Generate two independent random variates X, Y, where X has density g and Y has distribution function Ψ.
UNTIL $X \leq Y$
RETURN X

For $\psi=\Psi$, we need to replace $X \leq Y$ in the acceptance step by $X \geq Y$.

Theorem 3.3.

Vaduva's rejection method produces a random varlate X with denslty $f=c g(1-\Psi)$, and the rejection constant (the expected number of iterations) is c.

Proof of Theorem 3.3.

We prove this by showing that Vaduva's algorithm is entirely equivalent to the orlginal rejection algorithm. Note that the condition of acceptance, $X \leq Y$ is with probabllity one satisfled if and only if $1-\Psi(X) \geq 1-\Psi(Y)$. But by the probabillty integral transform, we know that $1-\Psi(Y)$ is distrlbuted as U, a unlform [0,1] random varlable. Thus, we need only verlfy whether $U \leq 1-\Psi(X)$, which yields the orlginal acceptance condition given at the beginning of this section.

The cholce between generating U and computing $1-\Psi(X)$ on the one hand (the original rejection algorithm) and generating Y with distribution function Ψ on the other hand (Vaduva's method) depends malnly upon the relative speeds of computing a distribution function and generating a random varlate with that distrlbutlon.

Example 3.3.

Consider the density

$$
f(x)=c\left(a x^{a-1}\right) e^{-x}, 0<x \leq 1
$$

where $a>0$ is a parameter and c is a normalization constant. This density is part of the gamma (a) density, written here in a form convenient to us. The dominating density is $g(x)=a x^{a-1}$, and the function ψ is e^{-x}. Random variates with density g can be obtained quite easily by inversion (take $V^{\frac{1}{a}}$ where V is a uniform $[0,1]$ random variate). In thls case, the ordinary rejection algorithm would be

REPEAT

Generate two iid uniform $[0,1]$ random variates U, V, and set $X \leftarrow V^{\frac{1}{a}}$.
UNTIL $U \leq e^{-X}$
RETURN X

Vaduva's modification essentially consists in generating X and an exponential random varlate E untll $E \geq X$. It is faster if we can generate E faster than we can compute e^{-X} (this is sometimes the case). Of course, In thls simple example, we could have deduced Vaduva's modification by taking the logarithm of the acceptance condition and noting that E is distributed as $-\log (U)$.

We now proceed with another generallzation found In Devroye (1984):

Theorem 3.4.

Assume that a density f on R^{d} can be decomposed as follows:

$$
f(x)=\int g(y, x) h(y, x) d y
$$

where $\int d y$ is an integral $\ln R^{k}, g(y, x)$ is a density $\ln y$ for all x, and there exists a function $H(x)$ such that $0 \leq h(y, x) \leq H(x)$ for all y, and $H / \int H$ is an easy density. Then the following algorlthm produces a random varlate with density f, and takes N iterations where N is geometrically distributed with parameter $\frac{1}{\int H}$ (and thus $\left.E(N)=\int H\right)$.

Generalized rejection method

REPEAT

Generate X with density $H / \int H$ (on R^{d}).
Generate Y with density $g(y, X), y \in R^{k}$ (X is fixed).
Generate a uniform $[0,1]$ random variate U.
UNTIL $U H(X) \leq h(Y, X)$
RETURN X

Proof of Theorem 3.4.

We will prove that this Theorem follows directly from Theorem 3.2. Let us define the new random vector $W_{1}=(X, Y, U)$ where W_{1} refers to the triple generated in the REPEAT loop. Then, if A is the set of values $w_{1}=(x, y, u)$ for which $u H(x) \leq h(y, x)$, we have for all Borel sets $B \ln$ the space of w_{1},

$$
P(W \in B)=\frac{P\left(W_{1} \in A \cap B\right)}{p}
$$

where $p=P\left(W_{1} \in A\right)$ and W refers to the value of W_{1} upon extt. Take $B=(-\infty, x] \times R^{k} \times[0,1]$, and conclude that

$$
\begin{aligned}
& P(X \text { (returned }) \leq x)=\frac{1}{p} P(X \leq x, U H(X) \leq h(Y, X)) . \\
& =\iint_{-\infty}^{x} g(y, z) \frac{h(y, z)}{H(z)} \frac{H(z)}{\int H} d z d y
\end{aligned}
$$

$$
=\frac{1}{p \int H} \int_{-\infty}^{x} f(z) d z
$$

We note first that by setting $x=\infty, p=\frac{1}{\int H}$. But then, clearly, the varlate produced by the algorithm has density f as required.

3.4. Wald's equation.

We will rather often be asked to evaluate the expected value of

$$
\sum_{i=1}^{N} \psi\left(W_{i}\right)
$$

where W_{i} is the collection of all random varlables used in the i-th iteration of the rejection algorithm, ψ is some function, and N is the number of iterations of the rejection method. The random varlable N is known as a stopping rule because the probabllitles $P(N=n)$ are equal to the probabllities that W_{1}, \ldots, W_{n} belong to some set B_{n}. The interesting fact is that, regardless of which stopping rule is used (i.e., whether we use the one suggested in the rejecthon method or not), as long as the W_{i} 's are lid random varlables, the following remalns true:

Theorem 3.5. (Wald's equation.)

Assume that W_{1}, \ldots are lid R^{d}-valued random variables, and that ψ is an arbltrary nonnegative Borel measurable function on R^{d}. Then, for all stopping rules N,

$$
E\left(\sum_{i=1}^{N} \psi\left(W_{i}\right)\right)=E(N) E\left(\psi\left(W_{1}\right)\right)
$$

Proof of Theorem 3.5.

To simplify the notation we write $Z_{i}=\psi\left(W_{i}\right)$ and note that the Z_{i} 's are nd nonnegative random variables. The proof glven here is standard (see e.g. Chow and Telcher (1978, pp. 137-138)), but will be given In its entirety. We start by noting that Z_{i} and $I_{[N<i]}$ are Independent for all i. Thus, so are Z_{i} and $I_{[N \geq i]}$. We will assume that $E\left(Z_{1}\right)<\infty$ and $E(N)<\infty$. It is easy to verlfy that the chain of equalltles given below remalns valld when one or both of these expectatlons is ∞.

$$
E\left(\sum_{i=1}^{N} Z_{i}\right)=E\left(\sum_{i=1}^{\infty} Z_{i} I_{[N \geq i]}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} E\left(Z_{i} I_{\langle N \geq i|}\right) \\
& =\sum_{i=1}^{\infty} E\left(Z_{i}\right) P(N \geq i) \\
& =E\left(Z_{1}\right) \sum_{i=1}^{\infty} P(N \geq i) \\
& =E\left(Z_{1}\right) E(N)
\end{aligned}
$$

The exchange of the expectation and inflite sum is allowed by the monotone convergence theorem: just note that for any sequence of nonnegative random varlables $Y_{1}, \ldots, \sum_{i=1}^{n} E\left(Y_{i}\right)=E\left(\sum_{i=1}^{n} Y_{i}\right) \rightarrow E\left(\sum_{i=1}^{\infty} Y_{i}\right)$.

It should be noted that for the rejection method, we have a spectal case for which a shorter proof can be given because our stopping rule N is an instantaneous stopping rule: we deflne a number of decisions D_{i}, all 0 or 1 valued and dependent upon W_{i} only: $D_{1}=0$ indicates that we "reject" based upon W_{1}, etcetera. A 1 denotes acceptance. Thus, N is equal to n if and only if $D_{n}=1$ and $D_{i}=0$ for all $i<n$. Now,

$$
\begin{aligned}
& E\left(\sum_{i=1}^{N} \psi\left(W_{i}\right)\right) \\
& =E\left(\sum_{i<N} \psi\left(W_{i}\right)\right)+E\left(\psi\left(W_{N}\right)\right) \\
& =E(N-1) E\left(\psi\left(W_{1}\right) \mid D_{1}=0\right)+E\left(\psi\left(W_{1}\right) \mid D_{1}=1\right) \\
& =\left(\frac{1}{P\left(D_{1}=1\right)}-1\right) \frac{E\left(\psi\left(W_{1}\right) I_{D_{1}=0}\right)}{P\left(D_{1}=0\right)}+\frac{E\left(\psi\left(W_{1}\right) I_{D_{1}=1}\right)}{P\left(D_{1}=1\right)} \\
& =\frac{E\left(\psi\left(W_{1}\right)\right)}{P\left(D_{1}=1\right)},
\end{aligned}
$$

which proves this spectal case of Theorem 3.5.

3.5. Letac's lower bound.

In a profound but little publicized paper, Letac (1975) asks which distributlons can be obtalned for $X=U_{N}$ where N is a stopping time and U_{1}, U_{2}, \ldots is an ind sequence of unlform $[0,1]$ random variables. He shows among other things that all densitles on $[0,1]$ can be obtalned in this manner. In exercise 3.14 , one universal stopping time will be described. It does not colnclde with Letac's universal stopping rule, but will do for didactical purposes.

More Importantly, Letac has obtained lower bounds on the performance of any algorithm of thls type. His maln result is:

Theorem 3.6. (Letac's lower bound)

Assume that $X=U_{N}$ has density f on $[0,1]$, where N and the U_{i} 's are as defined above. For any such stopping rule N (i.e., for any algorithm), we have

$$
E(N) \geq||f||_{\infty}
$$

where $||\cdot||_{\infty}$ is the essential supremum of f.

Proof of Theorem 3.6.

By the independence of the events $[N \geq n]$ and $\left[U_{n} \in B\right]$ (which was also used in the proof of Wald's equation), we have

$$
P\left(N \geq n, U_{n} \in B\right)=P(N \geq n) P\left(U_{1} \in B\right)
$$

But,

$$
\begin{aligned}
& P(X \in B)=\sum_{n=1}^{\infty} P\left(N=n, U_{n} \in B\right) \\
& \leq \sum_{n=1}^{\infty} P\left(N \geq n, U_{n} \in B\right) \\
& =\sum_{n=1}^{\infty} P(N \geq n) P\left(U_{1} \in B\right) \\
& =E(N) P\left(U_{1} \in B\right) .
\end{aligned}
$$

Thus, for all Borel sets B,

$$
E(N) \geq \frac{P(X \in B)}{P\left(U_{1} \in B\right)}
$$

If we take the supremum of the rlght-hand-side over all B, then we obtaln $||f||_{\infty}$.

There are quite a few algorlthms that fall into thls category. In particular, if we use rejection with a constant dominating curve on $[0,1]$, then we use N unlform random varlates where for continuous f,

$$
E(N) \geq \sup _{x} f(x)
$$

We have seen that in the rejection algorithm, we come within a factor of 2 of thls lower bound. If the U_{i} 's have density g on the real llne, then we can construct stopping times for all densitles f that are absolutely continuous with respect to g, and the lower bound reads

$$
E(N) \geq\left|\left|\frac{f}{g}\right|\right|_{\infty}
$$

For continuous $\frac{f}{g}$, the lower bound is equal to $\sup \frac{f}{g}$ of course. Again, with the rejection method with g as dominating density, we come within a factor of 2 of the lower bound.

There is another class of algorithms that fits the description given here, notably the Forsythe-von Neumann algorithms, which wlll be presented in section IV.2.

3.6. The squeeze principle.

In the rejection method based on the Inequally $f \leq c g$, we need to compute the ratio $\frac{f}{g} N$ times where N is the number of iterations. In most cases, this is a slow operation because f is presumably not a slmple function of its argument (for otherwise, we would know how to generate random varlates from f by other means). In fact, sometimes f is not known explicitly: in this book, we will encounter cases in which it is the Integral of another function or the solution of a nonllnear equation. In all these sltuations, we should try to avold the computation of $\frac{f}{g}$ elther entirely, or at least most of the time. For princlples leading to the total avoldance of the computation, we refer to the more advanced chapter IV. Here we will brlefly discuss the squeeze principle (a term introduced by George Marsaglia (1977)) designed to avold the computation of the ratlo with high probabillty. One should in fact try to find functions h_{1} and h_{2} that are easy to evaluate and have the property that

$$
h_{1}(x) \leq f(x) \leq h_{2}(x)
$$

Then, we have:

The squeeze method

REPEAT

Generate a uniform $[0,1]$ random variate U.
Generate a random variate X with density g.
Set $W \leftarrow U \operatorname{leg}(X)$.
Accept $\leftarrow\left[W \leq h_{1}(X)\right]$.
IF NOT Accept
THEN IF $W \leq h_{2}(X)$ THEN Accept $\leftarrow[W \leq f(X)]$.
UNTIL Accept
RETURN X

In thls algorithm, we introduced the boolean varlable "Accept" to streamline the exit from the REPEAT loop. Such boolean varlables come in handy whenever a program must remain structured and readable. In the algorithm, we count on the fact that "Accept" gets its value most of the time from the comparison between W and $h_{1}(X)$, which from now on will be called a quick acceptance step. In the remaining cases, we use a quick rejection step ($W>h_{2}(X)$), and in the rare cases that W is sandwlched between $h_{1}(X)$ and $h_{2}(X)$, we resort to the expensive comparison of W with $f(X)$ to set the value of "Accept".

The valldity of the algorithm is not jeopardized by dropping the quick acceptance and quick rejection steps. In that case, we simply have the statement Accept $\leftarrow[W \leq f(X)]$, and obtaln the standard rejection algorithm. In many cases, the quick rejection step is omitted slnce it has the smallest effect on the efflclency. Note also that it is not necessary that $h_{1} \geq 0$ or $h_{2} \leq c g$, although nothing will be galned by considering violations of these boundary conditions.

We note that N is as in the rejection algorithm, and thus, $E(N)=c$. T galn will be in the number of computations N_{f} of f, the dominating fac* the time complexity. The computation of $E\left(N_{f}\right)$ demonstrates the usefulne. Wald's equation once agaln. Indeed, we have

$$
N_{f}=\sum_{i=1}^{N} I_{\left\lfloor h_{1}\left(X_{i}\right)<W_{i}<h_{2}\left(X_{i}\right)\right]}
$$

where W_{i} is the W obtalned in the i-th iteration, and X_{i} is the X used in the i-th Iteration. To this sum, we can apply Wald's equation, and thus,

$$
\begin{aligned}
& E\left(N_{f}\right)=E(N) P\left(h_{1}\left(X_{1}\right)<W_{1}<h_{2}\left(X_{1}\right)\right) \\
& =c \int g(x) \frac{h_{2}(x)-h_{1}(x)}{c g(x)} d x \\
& =\int\left(h_{2}(x)-h_{1}(x)\right) d x
\end{aligned}
$$

Here we used the fact that we have proper sandwiching, i.e. $0 \leq h_{1} \leq f \leq h_{2} \leq c g$. If $h_{1} \equiv 0$ and $h_{2} \equiv c g$ (1.e., we have no squeezing), then we obtaln the result $E\left(N_{f}\right)=c$ for the rejection method. With only a quick acceptance step (i.e. $h_{2}=c g$), we have $E\left(N_{f}\right)=c-\int h_{1}$. When $h_{1} \geq 0$ and/or $h_{2} \leq c g$ are vlolated, equallty in the expression for $E\left(N_{f}\right)$ should be replaced by inequality (exerclse 3.13).

Inequalities via Taylor's series expansion.

A good source of inequalities for functions f in terms of simpler functions is provided by Taylor's serles expansion. If f has n continuous derivatives (denoted by $f^{(1)}, \ldots, f^{(n)}$), then it is known that

$$
f(x)=f(0)+\frac{x}{1!} f^{(1)}(0)+\cdots+\frac{x^{n-1}}{n-1!} f^{(n-1)}(0)+\frac{x^{n}}{n!} f^{(n)}(\xi)
$$

where ξ is a number in the interval $[0, x]$ (or $[x, 0]$, depending upon the sign of x). From this, by Inspection of the last term, one can obtain Inequalitles whlch are polynomials, and thus prime candidates for h_{1} and h_{2}. For example, we have

$$
e^{-x}=1-x+\frac{x^{2}}{2!}-\cdots+(-1)^{n-1} \frac{x^{n-1}}{n-1!}+(-1)^{n} \frac{x^{n}}{n!} e^{-\xi} .
$$

From this, we see that for $x \geq 0, e^{-x}$ is sandwiched between consecutive terms of the well-known expansion

$$
e^{-x}=\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{i}}{i!}
$$

In particular,

$$
1-x \leq e^{-x} \leq 1-x+\frac{x^{2}}{2} \quad(x \geq 0)
$$

Example 3.4. The normal density.

For the normal density f, we have developed an algorithm based upon rejection from the Cauchy density in Example 3.2. We used the Inequallty $f \leq c g$ where $c=\sqrt{\frac{2 \pi}{e}}$ and $g(x)=\frac{1}{\pi\left(1+x^{2}\right)}$. For h_{1} and h_{2} we should look for slmple functions of x. Applying the Taylor serles technlque described above, we see that

$$
1-\frac{x^{2}}{2} \leq \sqrt{2 \pi} f(x) \leq 1-\frac{x^{2}}{2}+\frac{x^{4}}{8}
$$

Using the lower bound for h_{1}, we can now accelerate our normal random varlate generator somewhat:

Normal variate generator by rejection and squeezing

REPEAT

Generate a uniform $[0,1]$ random variate U.
Generate a Cauchy random variate X.
Set $W-\frac{2 U}{\sqrt{e}\left(1+X^{2}\right)}$. (Note: $W \leftarrow c U g(X) \sqrt{2 \pi}$.)
Accept $\leftarrow\left[W \leq 1-\frac{X^{2}}{2}\right]$.
IF NOT Accept THEN Accept $\leftarrow\left[W \leq e^{-\frac{X^{2}}{2}}\right]$.
UNTIL Accept
RETURN X

This algorithm can be improved in many directions. We have already got rid of the annoying normallzation constant $\sqrt{2 \pi}$. For $|X|>\sqrt{2}$, the quick acceptance step is useless in vlew of $h_{1}(X)<0$. Some further savings in computer time result If we work with $Y \leftarrow \frac{1}{2} X^{2}$ throughout. The expected number of computations of f is

$$
c-\int h_{1}=\sqrt{\frac{2 \pi}{e}}-\frac{1}{\sqrt{2 \pi}} \int_{|x| \leq \sqrt{2}}\left(1-\frac{x^{2}}{2}\right) d x=\sqrt{\frac{2 \pi}{e}}-\frac{4}{3 \sqrt{\pi}} . \square
$$

Example 3.5. Proportional squeezing.

It is sometimes advantageous to sandwich f between two functions of the same form as in

$$
b g \leq f \leq c g
$$

where g is an easy density (as in the rejection method), and b is a positive constant. When b and c are close to 1 , such a proportional squeeze can be very useful. For example, random varlates can be generated as follows:

The proportional squeeze method

REPEAT

Generate a uniform $[0,1]$ random variate U.
Generate a random variate X with density g.
Accept $\leftarrow\left[U \leq \frac{b}{c}\right]$.
IF NOT Accept THEN Accept $\leftarrow\left[U \leq \frac{f(X)}{c g(X)}\right]$.
UNTIL Accept
RETURN X

Here the expected number of computations of f is quite slmply $c-b$. The main area of application of this method is in the development of unlversally applicable algorithms in which the real line is first partitioned into many intervals. On each Interval, we have a nearly constant or nearly llnear plece of density. For this plece, proportlonal squeezing with dominating density of the form $g(x)=a_{0}+a_{1} x$ can usually be applled (see exerclses 3.10 and 3.11 below).

Example 3.6. Squeezing based upon an absolute deviation inequality.
Assume that a density f is close to another denslty h in the following sense:

$$
|f-h| \leq g
$$

Here g is another function, typically with small Integral. Here we could Implement the rejection method with as dominating curve $g+h$, and apply a sueeze step based upon $f \geq h-g$. After some simpliffations, this leads to the following algorlthm:

REPEAT

Generate a random variate X with density proportional to $h+g$, and a uniform $[0,1]$ random variate U.
Accept $\leftarrow\left[\frac{g(X)}{h(X)} \leq \frac{1-U}{1+U}\right]$
IF NOT Accept THEN Accept $\leftarrow[U(g(X)+h(X)) \leq f(X)]$
UNTIL Accept
RETURN X

This algorlthm has rejection constant $1+\int g$, and the expected number of evaluations of f is at most $2 \int g$. Algorithms of this type are mainly used when g has very small integral. One instance is when the starting absolute deviation inequallty is known from the study of llmit theorems in mathematical statistics. For example, when f is the gamma (n) density normalized to have zero mean and unit variance, it is known that f tends to the normal density as $n \rightarrow \infty$. This convergence is studled in more detall in local central llmit theorems (see e.g. Petrov (1975)). One of the by-products of this theory is an Inequallty of the form needed by us, where g is a function depending upon n, with integral decreasing at the rate $1 / \sqrt{n}$ as $n \rightarrow \infty$. The rejection algorithm would thus have improved performance as $n \rightarrow \infty$. What is lntrigulng here is that this sort of inequality is not llmited to the gamma density, but applles to densitles of sums of lld random varlables satisfylng certaln regularlty conditions. In one sweep, one could thus deslgn general algorlthms for this class of densitles. See also sectlons XIV.3.3 and XIV. 4.

3.7. Recycling random variates.

In thls section we have emphasized the expected number of iterations in our algorlthms. Sometimes we have looked at the number of function evaluations. But by and large we have steered clear of making statements about the expected number of unlform random varlates needed before an algorlthm halts. One of the reasons is that we can always recycle unused parts of the unlform random varlate. The recycling principle is harmless for our infinite precision model, but should be used with extreme care in standard single precision arlthmetic on computers.

For the rejection method, based upon the Inequallty $f \leq c g$ where g is the dominating density, and c is a constant, we note that given a random variate X
with denslty g and an Independent uniform $[0,1]$ random varlate U, the halting rule is $\operatorname{Ucg}(X) / f(X) \leq 1$. Given that we halt, then $\operatorname{Ucg}(X) / f(X)$ is again unlform on $[0,1]$. If we reject, then

$$
\frac{\frac{U c g(X)}{f(X)}-1}{\frac{g(X)}{f(X)}-1}
$$

is agaln unlformly distributed on $[0,1]$. These recycled unlforms can be used elther in the generation of the next random varlate (if more than one random varlate is needed), or in the next iteration of the rejection algorithm. Thus, in theory, the cost of uniform $[0,1]$ random variates becomes negliglble: it is one if only one random varlate must be generated, and it remalns one even if n random varlates are needed. The following algorlthm incorporates these ideas:

Rejection algorithm with recycling of one uniform random variate

Generate a uniform $[0,1]$ random variate U.
REPEAT
REPEAT
Generate a random variate X with density g.
$T \leftarrow \frac{c g(X)}{f(X)}, V \leftarrow U T$
$U \leftarrow \frac{V-1}{T-1}$ (prepare for recycling)
UNTIL $U \leq 0$ (equivalent to $V \leq 1$)
RETURN X (X has density f)
$U \leftarrow V$ (recycle)
UNTL False (this is an inflnite loop; add stopping rule)

In this example, we merely want to make a point about our idealized model. Recycling can be (and usually is) dangerous on finite-precision computers. When f is close to $c g$, as in most good rejection algorlthms, the upper portion of U (1.e. $(V-1) /(T-1)$ in the notation of the algorithm) should not be recycled since $T-1$ is close to 0 . The bottom part is more useful, but this is at the expense of less readable algorlthms. All programs should be set up as follows: a unlform random varlate should be provided upon input, and the output consists of the returned random varlate and another unlform random varlate. The input and output random varlates are dependent, but it should be stressed that the returned random varlate X and the recycled uniform random varlate are independent! Another argument agalnst recycling is that it requires a few multiplicatlons and/or divisions. Typlcally, the time taken by these operations is longer than the time needed to generate one good unlform $[0,1]$ random varlate. For all these reasons, we do not pursue the recycling princlple any further.

3.8. Exercises.

1. Let f and g be easy densitles for which we have subprograms for computing $f(x)$ and $g(x)$ at all $x \in R^{d}$. These densities can be combined into other densities \ln several manners, e.g.

$$
\begin{aligned}
& h=c \max (f, g) \\
& h=c \min (f, g) \\
& h=c \sqrt{f g}, \\
& h=c f^{\alpha} g^{1-\alpha}
\end{aligned}
$$

where c is a normalization constant (different in each case) and $\alpha \in[0,1]$ is a constant. How would you generate random varlates with density h ? Glve the expected time complexity (expected number of iterations, comparisons, etc.).
2. Decompose the density $h(x)=\frac{2}{\pi} \sqrt{1-x^{2}}$ on $[-1,1]$ as follows:

$$
h(x)=c \sqrt{f(x) g(x)}
$$

where $c=\frac{2}{\pi} \sqrt{\frac{8}{3}}, f(x)=\frac{3}{4}\left(1-x^{2}\right)$ and $g(x)=\frac{1}{2}$, and $|x| \leq 1$. Thus, h Is in one of the forms specifled in exercise 3.1. Give a complete algorithm and analysis for generating random varlates with density h by the general method of exerclse 3.1.
3. The algorithm

REPEAT

Generate X with density g.
Generate an exponential random variate E.
UNTIL $h(X) \leq E$
RETURN X
when used with a nonnegative function h produces a random varlate X with density

$$
c g(x) e^{-h(x)},
$$

where c is a normalization constant. Show this.
4. How does c, the rejection constant, change with n (i.e., what is its rate of increase as $n \rightarrow \infty$) when the rejection method is used on the beta (n, n) density and the dominating density g is the uniform density on $[0,1]$?
5. Lux (1979) has generalized the rejection method as follows. Let g be a given density, and let F be a glven distribution function. Furthermore, assume
that r is a fixed positive-valued monotonically decreasing function on $[0, \infty)$. Then a random varlate X with density

$$
f(x)=g(x) \int_{-\infty}^{r(x)}\left(\frac{1}{\int_{0}^{r^{-1}(y \cdot)} g(z) d z}\right) d F(y) \quad(x>0):
$$

Lux's algorithm

REPEAT

Generate a random variate X with density g.
Generate a random variate Y with distribution function F.
UNTM $Y \leq r(X)$
RETURN X

Also, the probabillty of acceptance of a random couple (X, Y) in Lux's algorithm is $\int_{0}^{\infty} F(r(x)) g(x) d x$.
8. The following density on $[0, \infty)$ has both an infinite peak at 0 and a heavy tall:

$$
f(x)=\frac{2}{(1+x) \sqrt{x^{2}+2 x}} \quad(x>0)
$$

Consider as a possible candidate for a dominating curve $c_{\theta} g_{\theta}$ where

$$
c_{\theta} g_{\theta}(x)=\left\{\begin{array}{ll}
\frac{2}{\pi \sqrt{2 x}} & , 0 \leq x \leq \theta \\
\frac{2}{\pi x^{2}} & , x>\theta
\end{array},\right.
$$

where c_{θ} Is a constant depending upon θ only and $\theta>0$ is a design parameter. Prove first that indeed $f \leq c_{\theta} g_{\theta}$. Then show that c_{θ} is minimal for $\theta=2^{1 / 3}$ and takes the value $\frac{6}{\frac{1}{3}}$. Give also a description of the entire rejec$\pi 2^{\frac{1}{3}}$
tlon algorithm together with the values for the expected number of iteratlons, comparisons, square root operations, multiplications/divisions, and assignment statements. Repeat the same exercise when the dominating density is the density of the random variable $\theta U^{2} / V$ where $\theta>0$ is a parameter and U and V are two lid uniform $[0,1]$ random varlates. Prove that in thls case too we obtain the same rejection constant $\frac{6}{\pi 2^{\frac{1}{3}}}$.
7. Optimal rejection algorithms for the normal density. Assume that normal random varlates are generated by rejection from a density g_{θ} where θ is a design parameter. Depending upon the class of g_{θ} 's that is consldered, we may obtaln different optlmal rejection constants. Complete the following table:

$g_{\theta}(x)$	Optimal θ	Optimal rejection constant c
Cauchy $(\theta): \frac{\theta}{\pi\left(\theta^{2}+x^{2}\right)}$	1	$\sqrt{\frac{2 \pi}{e}}$
Laplace $(\theta): \frac{\theta}{2} e^{-\theta\|z\|}$	1	$\sqrt{\frac{2 e}{\pi}}$
Logistic $(\theta): \frac{\theta e^{-\theta x}}{\left(1+e^{-\theta x}\right)^{2}}$	$?$	$?$
$\min \left(\frac{1}{4 \theta}, \frac{\theta}{4 x^{2}}\right)$	$?$	$?$

8. Sibuya's modified rejection method. Slbuya (1982) noted that the number of unlform random varlates in the rejection algorlthm can be reduced to one by repeated use of the same uniform random varlate. His algorithm for generating a random varlate with density f (known not to exceed $c g$ for an easy denslty g) Is:

Generate a uniform $[0,1]$ random variate U.
REPEAT
Generate a random variate X with density g.
UNTL $\operatorname{cg}(X) U \leq f(X)$
RETURN X

Show the following:
(1) The algorithm is valld if and only if $c=\operatorname{ess} \sup (f(X) / g(X))$.
(11) If N is the number of X 's needed in Sibuya's algorlthm, and $N *$ is the number of X 's needed in the original rejection algorithm, then

$$
E(N) \geq E\left(N^{*}\right)
$$

and

$$
P(N \geq i) \geq P(N * \geq i) \quad(\text { all } i)
$$

(Hint: use Jensen's inequallty.) We conclude from (11) that Sibuya's method is worse than the rejection method in terms of number of required iterations.
(iii) We can have $P(N=\infty)>0$ (Just take $g=f, c>1$). We can also have $P(N=\infty)=0, E(N)=\infty$ (Just take $f(x)=2(1-x)$ on $[0,1], c=2$
and $g(x)=1$ on $[0,1])$. Glve a necessary and sufficient condition for $P(N=\infty)=0$, and show that this requires that c is chosen optimally.
See alsó Greenwood (1978).
9. There exlsts a second moment analog of Wald's equation which you should try to prove. Let W_{1}, \ldots, and $\psi \geq 0$ be as in Theorem 3.5. Assume further that $\psi\left(W_{1}\right)$ has mean μ and varlance $\sigma^{2}<\infty$. Then, for any stopping rule N with $E(N)<\infty$,

$$
E\left(\left(\sum_{i=1}^{N}\left(W_{i}-\mu\right)\right)^{2}\right)=\sigma^{2} E(N) .
$$

See for example Chow and Telcher (1978, pp. 139).
10. Assume that we use proportlonal squeezing for a density f on $[0,1]$ which is known to be between $2 b(1-x)$ and $2 c(1-x)$ where $0 \leq b \leq 1 \leq c<\infty$. Then, we need in every iteration a unlform random varlate U and a trlangular random varlate X (which in turn can be obtaliné as $\min \left(U_{1}, U_{2}\right)$ where U_{1}, U_{2} are also uniform [0,1] random variates). Prove that if $U_{(1)} \leq U_{(2)}$ are the order statistics of U_{1}, U_{2}, then

$$
\left(U_{(1)}, \frac{U_{(2)}-U_{(1)}}{1-U_{(1)}}\right)
$$

is distributed as (X, U). Thus, using thls device, we can "save" one unlform random varlate per iteration. Write out the detalls of the corresponding proportlonal squeeze algorlthm.
11. Assume that the density f has support on $[0,1]$ and that we know that it is Lipschitz with constant C, i.e.

$$
|f(y)-f(x)| \leq C|x-y| \quad(x, y \in R)
$$

Clearly, we have $f(0)=f(1)=0$. Glve an efficlent algorithm for generating a random varlate with density f which is based upon an n-part equi-spaced partition of $[0,1]$ and the use of the proportlonal squeeze method for nearly linear densitles (see previous exerclse) for generating random varlates from the n individual pleces. Your algorithm should be asymptotically efficient, 1.e. It should have $E\left(N_{f}\right)=o(1)$ as $n \rightarrow \infty$ where N_{f} is the number of computations of f.
12. Random variates with density $f(x)=c\left(1-x^{2}\right)^{a}(|x| \leq 1)$. The famlly of densitles treated in this exercise colncldes with the family of symmetric beta densitles properly translated and rescaled. For example, when the parameter a is integer, f is the density of the median of $2 a+1$ ild uniform [$-1,1]$ random variates. It is also the density of the marginal distribution of a random vector unlformly distributed on the surface of the unlt sphere $\ln R^{d}$ where d and a are related by $a=\frac{d-3}{2}$. For the latter reason, we will use it later as an important tool in the generation of random vectors that are unfformly distributed on such spheres. The parameter a must be greater than -1 . We have

$$
c=\frac{\Gamma\left(a+\frac{3}{2}\right)}{\sqrt{\pi} \Gamma(a+1)},
$$

and the inequalitles

$$
c e^{-\frac{a x^{2}}{1-x^{2}}} \leq f(x) \leq c e^{-a x^{2}} \quad(|x| \leq 1)
$$

The following rejection algorithm with squeezing can be used:

Translated symmetric beta generator by rejection and squeezing REPEAT

REPEAT
Generate a normal random variate X. Generate an exponential random variate E.
UNTIL $Y \leq 1$
$X \leftarrow \frac{X}{\sqrt{2 a}}, Y \leftarrow X^{2}$
Accept $\leftarrow\left[1-Y\left(1+\frac{a}{E} Y\right) \geq 0\right]$.
IF NOT Accept THEN Accept $\leftarrow[a Y+E+a \log (1-Y) \geq 0]$.
UNTIL Accept
RETURN X
A. Verlify that the algorithm is valld.
B. The expected number of normal/exponentlal palrs needed is $\frac{\Gamma\left(a+\frac{3}{2}\right)}{\sqrt{a} \Gamma(a+1)}$. Selected values are

$$
\begin{array}{|lll|}
\hline a=1 & \frac{3}{4} \sqrt{\pi} & 1.329340 \ldots \\
a=2 & \frac{15}{16} \sqrt{\frac{\pi}{2}} & 1.174982 \ldots \\
a=3 & \frac{105}{96} \sqrt{\frac{\pi}{3}} & 1.119263 \ldots \\
\hline
\end{array}
$$

Show that this number tends to 1 as $a \rightarrow \infty$ and to ∞ as $a \downarrow 0$.
C. From part B we conclude that it is better to take care of the case $0 \leq a \leq 1$ separately, by bounding as follows: $c\left(1-x^{2}\right) \leq f(x) \leq c$. The expected number of iterations becomes $2 c$, which takes the values $\frac{3}{2}$ at $a=1$ and 1 at $a=0$. Does this number vary monotonically with a ? How does $E\left(N_{f}\right)$ vary with a ?
D. Write a generator which works for all $a>-1$. (This requires yet another solution for a in the range ($-1,0$).)
E. Random variates from f can also obtalned in other ways. Show that all of the following reclpes are valld:
(1) $S \sqrt{B}$ where B is $\operatorname{beta}\left(\frac{1}{2}, a+1\right)$ and S is a random sign.
(i1) $S \sqrt{\frac{Y}{Y+Z}}$ where Y, Z are independent $\operatorname{gamma}\left(\frac{1}{2}, 1\right)$ and gamma $(a+1,1)$ random variates, and S is a random slgn.
(III) $2 B-1$ where B is a $\operatorname{beta}(a+1, a+1)$ random varlate.
13. Conslder the squeeze algorithm of section 3.8 which uses the Inequallty $f \leq c g$ for the rejection-based generator, and the Inequallties $h_{1} \leq f \leq h_{2}$ for the quick acceptance and rejectlon steps. Even if h_{1} is not necessarlly positive, and h_{2} is not necessarily smaller than $c g$, show that we always have

$$
E\left(N_{f}\right)=\int\left(\min \left(h_{2}, c g\right)-\max \left(h_{1}, 0\right)\right) \leq \int\left(h_{2}-h_{1}\right),
$$

where N_{f} is the number of evaluations of f.
14. A universal generator a la Letac. Let f be any density on $[0,1]$, and assume that the cumulative mass function $M(t)=\int_{f \geq t} f(x) d x$ is known. Consider the following algorithm:

Generate a random integer Z where $P(Z=i)=M(i)-M(i+1)$. REPEAT

Generate (X, V) uniformly in $[0,1]^{2}$
UNTLL $Z+V \leq f(X)$
RETURN X

Show that the algorithm is valld (relate it to the rejection method). Relate the expected number of X 's generated before halting to $||f|| \infty$, the essential supremum of f. Among other things, conclude that the expected time is ∞ for every unbounded density. Compare the expected number of X 's with Letac's lower bound. Show also that if inversion by sequential search is used for generating Z, then the expected number of iterations in the search before halting is finite if and only if $\int f^{2}<\infty$. A final note: usually, one does not have a cumulative mass function for an arbltrary density f.

4. DECOMPOSITION AS DISCRETE MIXTURES.

4.1. Definition.

If our target density f can be decomposed into a discrete mixture

$$
f(x)=\sum_{i=1}^{\infty} p_{i} f_{i}(x)
$$

where the f_{i} 's are glven denslties and the p_{i} 's form a probabllity vector (1.e., $p_{i} \geq 0$ for all i and $\sum_{i} p_{i}=1$), then random varlates can be obtalned as follows:

The composition method.

Generate a random integer Z with probability vector $p_{1}, \ldots, p_{i}, \ldots\left(\right.$ i.e. $\left.P(Z=i)=p_{i}\right)$. Generate a random variate X with density f_{Z}. RETURN X

This algorithm is incomplete, because it does not specify just how Z and X are generated. Every time we use the general form of the algorithm, we will say that the composition method is used.

We will show in this section how the decomposition method can be applled In the design of good generators, but we will not at this stage address the problem of the generation of the discrete random varlate Z. Rather, we are interested in the decomposition itself. It should be noted however that in many, if not most, practical situations, we have a finite mixture with K components.

4.2. Decomposition into simple components.

Very often, we will decompose the graph of f into a bunch of very simple structures such as rectangles and triangles, mainly because random variates with rectangular-shaped or trlangular-shaped densitles are so easy to generate (by llnear comblnations of one or two unlform [0,1] random varlates). This decomposition is flnite if f is plecewise linear with a finite number of pleces (this forces f to have compact support). In general, one will decompose f as follows:

$$
f(x)=\sum_{i=1}^{K-2} p_{i} f_{i}(x)+p_{K-1} f_{K-1}(x)+p_{K} f_{K}(x)
$$

where f_{K} is a tall density (it is zero on a central interval $[a, b]$), p_{K} is usually very small, and all other f_{i} 's vanish outside the centrai interval $[a, b]$. The structure of f_{1}, \ldots, f_{K-2} is simple, e.g. rectangular. After having plcked the rectangles in such a way that the corresponding p_{i} 's add up to nearly 1 , we
collect the leftover plece in $p_{K-1} f_{K-1}$. This last plece is often strangely shaped, and random varlates from it are generated by the rejection method. The polnt is that p_{K-1} and p_{K} are so small that we do not have to generate random varlates with this density very often. Most of the time, l.e. with probability $p_{1}+\cdots+p_{K-2}$, It suffices to generate one or two unlform $[0,1]$ random varlates and to shift or rescale them. This technique will be called the jigsaw puzzle method, a term colned by Marsaglla. The careful decomposition requires some refined analysis, and is usually only worth the trouble for frequently used flxed densitles such as the normal density. We refer to the section on normal varlate generation for several applications of this sort of decomposition. Occasionally, it can be applled to familles of distributions (such as the beta and gamma familles), but the problem is that the decomposition itself is a function of the parameter(s) of the famlly. This will be lllustrated for the beta family (see section LX.4).

To give the readers a flavor of the sort of work that is Involved, we will try to decompose the normal density into a rectangle and one residual plece: the rectangle will be called $p_{1} f_{1}(x)$, and the residual plece $p_{2} f_{2}(x)$. It is clear that p_{1} should be as large as possible. But since $p_{1} f_{1}(x) \leq f(x)$, the largest p_{1} must satisfy

$$
p_{1} \leq \operatorname{lnf}_{x} \frac{f(x)}{f_{1}(x)}
$$

Thus, with $f_{1}(x)=\frac{1}{2} \theta,|x| \leq \theta$ where θ is the width of the centered rectangle, we see that at best we can set

$$
p_{1}=\operatorname{lnf}_{|x| \leq \theta} \frac{2 \theta e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}}=2 \frac{\theta}{\sqrt{2 \pi}} e^{-\frac{\theta^{2}}{2}}
$$

The function p_{1} is maximal (as a function of θ) when $\theta=1$, and the correspondIng value is $\sqrt{\frac{2}{\pi e}}$. Of course, this weight is not close to 1 , and the present decomposition seems hardly useful. The work involved when. we decompose in terms of several rectangles and trlangles is basically not different from the short analysls done here.

4.3. Partitions into intervals.

Many algorithms are based on the following principle: partition the real line into intervals A_{1}, \ldots, A_{K}, and decompose f as

$$
f(x)=\sum_{i=1}^{K} f(x) I_{A_{i}}(x)
$$

If we can generate random varlates from the restricted densitles $f I_{A_{1}} / p_{i}$ (where $p_{i}=\int_{A_{i}} f$), then the decomposition method is applicable. The advantages offered
by partitions into intervals cannot be denied: the decomposition is so simple that it can be mechanized and used for huge classes of densities (in that case, there are usually very many intervals); troublespots on the real line such as infinite talls or unbounded peaks can be convenlently isolated; and most importantly, the decomposition is easily understood by the general user.

In some cases, random variates from the component densitles are generated by the rejection method based on the Inequallities

$$
f(x) \leq h_{i}(x), x \in A_{i}, 1 \leq i \leq K .
$$

Here the h_{i} 's are glven dominating curves. There are two subtly different methods for generating random varlates with density f, given below. One of these needs the constants $p_{i}=\int_{A_{i}} f$, and the other one requlres the constants $q_{i}=\int_{A_{i}} h_{i}$. Note that the q_{i} 's are nearly always known because the h_{i} 's are chosen by the user. The p_{i} 's are usually known when the distribution function for F is easy to compute at arbltrary points.

The composition method.

Generate a discrete random variate Z with probability vector p_{1}, \ldots, p_{K} on $\{1, \ldots, K\}$.

REPEAT

Generate a random variate X with density h_{i} / q_{i} on A_{i}.
Generate an independent uniform $[0,1]$ random variate U.
UNTIL $U h_{i}(X) \leq f(X)$
RETURN X

The modified composition method.

REPEAT

Generate a discrete random variate Z with probability vector proportional to q_{1}, \ldots, q_{K} on $\{1, \ldots, K\}$.
Generate a random variate X with density h_{i} / q_{i} on A_{i}.
Generate a uniform $[0,1]$ random variate U.
UNTIL $U h_{i}(X) \leq f(X)$
RETURN X

In the second algorithm we use the rejection method with as dominating curve $h_{1} I_{A_{1}}+\cdots+h_{K} I_{A_{K}}$, and use the composition method for random varlates from the dominating density. In contrast, the first algorithm uses true decomposition. After having selected a component with the correct probability we then use the rejection method. A brief comparison of both algorithms is in order here. This can be done in terms of four quantitles: N_{Z}, N_{U}, N_{h} and $N_{h_{i}}$, where N is the number of random varlates required of the type speclfled by the Index with the understanding that N_{h} refers to $\sum_{i=1}^{K} h_{i}$, i.e. It is the total number of random varlates needed from any one of the K dominating densitles.

Theorem 4.1.

Let $q=\sum_{i=1}^{K} q_{i}$, and let N be the number of iterations in the second algorithm. For the second algorithm we have $N_{U}=N_{Z}=N_{h}=N$, and N is geometrlcally distributed with parameter $\frac{1}{q}$. In particular,

$$
E(N)=q ; E\left(N^{2}\right)=2 q^{2}-q
$$

For the flrst algorithm, we have $N_{Z}=1$. Also, $N_{U}=N_{h}$ satisfy

$$
E\left(N_{U}\right)=q ; E\left(N_{U}^{2}\right)=\sum_{i=1}^{K} \frac{2 q_{i}^{2}}{p_{i}}-q \geq 2 q^{2}-q
$$

Finally, for both algorithms, $E\left(N_{h_{i}}\right)=q_{i}$.

Proof of Theorem 4.1.

The statement for the second algorithm is obvious when we note that the rejection constant is equal to the area q under the dominating curve (the sum of the h_{i} 's in this case). For the first algorithm, we observe that given the value of Z, N_{U} is geometrically distributed with parameter p_{Z} / q_{Z}. From the propertles of the geometric distribution, we then conclude the following:

$$
\begin{aligned}
& E\left(N_{U}\right)=\sum_{i=1}^{K} p_{i}\left(\frac{q_{i}}{p_{i}}\right)=\sum_{i=1}^{K} q_{i}=q \\
& E\left(N_{U}^{2}\right)=\sum_{i=1}^{K} p_{i}\left(\frac{2}{\left(\frac{p_{i}}{q_{i}}\right)^{2}}-\frac{1}{\frac{p_{i}}{q_{i}}}\right)=\sum_{i=1}^{K} 2 p_{i}\left(\frac{q_{i}}{p_{i}}\right)^{2}-q
\end{aligned}
$$

To show that the last expression is always greater or equal to $2 q^{2}-q$ we use the Cauchy-Schwarz Inequallty:

$$
\sum_{i=1}^{K} 2 p_{i}\left(\frac{q_{i}}{p_{i}}\right)^{2}-q \geq 2\left(\sum_{i=1}^{K} p_{i} \frac{q_{i}}{p_{i}}\right)^{2}\left(\sum_{i=1}^{K} p_{i} \times 1\right)^{2}-q=2 q^{2}-q
$$

Finally, we consider $E\left(N_{h_{i}}\right)$. For the first algorlthm, its expected value is $p_{i}\left(\frac{q_{i}}{p_{i}}\right)=q_{i}$. For the second algorithm, we employ Wald's equality after noting that $N_{h_{i}}=\sum_{j=1}^{N} I_{\text {[piece } h_{i} \text { is used in the } j \text {-th iteration] }}$. Thus, the expected value is $E(N) P$ (plece h_{i} is used in the first iteration), which is equal to $q\left(\frac{q_{i}}{q}\right)=q_{i}$.

In standard circumstances, q is close to 1 , and discrete random varlate generators are ultra efficient. Thus, N_{Z} is not a great factor. For all the other quantitles involved in the comparison, the expected values are equal. But when we examine the higher moments of the distributions, we notice a striking difference, because the second method has in all cases a smaller second moment. In fact, the difference can be substantial when for some i, the ratio q_{i} / p_{i} is large. If we take $q_{i}=p_{i}$ for $i \geq 2$ and $q_{1}=q-\left(1-p_{1}\right)$, then for the first method,

$$
E\left(N_{U}^{2}\right)=\frac{2\left(q-1+p_{1}\right)^{2}}{p_{1}}+2\left(1-p_{1}\right)-q=\left(2 q^{2}-q\right)+2(q-1)^{2}\left(\frac{1}{p_{1}}-1\right)
$$

The difference between the two second moments in this example is $2(q-1)^{2}\left(\frac{1}{p_{1}}-1\right)$. Thus, Isolating a small probability plece in the decomposition method and using a poor rejection rate for that particular plece is dangerous. In such situations, one is better off using a global rejection method as suggested in the second algorlthm.

4.4. The waiting time method for asymmetric mixtures.

In large simulations, one needs ild random varlates $X_{1}, \ldots, X_{n}, \ldots$. If these random varlates are generated by the composition method, then for every random varlate generated we need one dlscrete random varlate Z for selecting a component. When f is decomposed into a main component $p_{1} f_{1}$ (p_{1} is close to 1) and a small component $p_{2} f_{2}$, then most of these selectlons will choose the first component. In those cases, it is useful to generate the times of occurrence of selection of the second component instead. If the second component is selected at times T_{1}, T_{2}, \ldots, then it is not difficult to see that $T_{1}, T_{2}-T_{1}, \ldots$ are lid geometric random varlables with parameter p_{2}, i.e.

$$
P\left(T_{1}=i\right)=\left(1-p_{2}\right)^{i-1} p_{2} \quad(i \geq 1) .
$$

A random varlate T_{1} can be generated as $\left[-\frac{E}{\log \left(p_{2}\right)}\right]$ where E is an exponentlal random varlate. Of course, we need to keep track of these tlmes as we go along, occaslonally generating a new time. These times need to be stored locally in subprograms for otherwise we need to pass them as parameters. In some cases, the overhead assoclated with passing an extra parameter is comparable to the time needed to generate a uniform random varlate. Thus, one should carefully look at how the large simulation can be organized before using the geometric waltlng times.

4.5. Polynomial densities on $[0,1]$.

In this section, we consider densitles of the form

$$
f(x)=\sum_{i=0}^{K} c_{i} x^{i} \quad(0 \leq x \leq 1)
$$

where the c_{i} 's are constants and K is a positive integer. Densities with polynomlal forms are important further on as bullding blocks for constructing plecewlse polynomial approximatlons of more general densities. If K is 0 or 1 , we have the uniform and trlangular densitles, and random varlate generation is no problem. There is also no problem when the c_{i} 's are all nonnegative. To see this, we observe that the distribution function F is a mixture of the form

$$
F(x)=\sum_{i=1}^{K+1}\left(\frac{c_{i-1}}{i}\right) x^{i}
$$

where of course $\sum_{i=1}^{K+1} \frac{c_{i-1}}{i}=1$. Since x^{i} is the distribution function of the maxlmum of i lld unlform $[0,1]$ random varlables, we can proceed as follows:

Generate a discrete random variate Z where $P(Z=i)=\frac{c_{i-1}}{i}, 1 \leq i \leq K+1$.
RETURN X where X is generated as $\max \left(U_{1}, \ldots, U_{Z}\right)$ and the U_{i} 's are iid uniform [0,1] random variates.

We have a nontrivial problem on our hands when one or more of the c_{i} 's are negative. The solution given here is due to Ahrens and Dieter (1974), and can be applled whenever $c_{0}+\sum_{i: c_{i}<0} c_{i} \geq 0$. They decompose f as follows: let A be the collection of integers in $\{0, \ldots, K\}$ for which $c_{i} \geq 0$, and let B the collection of indices in $\{0, \ldots, K\}$ for which $c_{i}<0$. Then, we have

$$
\begin{aligned}
& f(x)=\sum_{i=0}^{K} c_{i} x^{i} \\
& =p_{0}+\sum_{i \in A} \frac{c_{i}}{i+1}\left((i+1) x^{i}\right)+\sum_{i \in B}\left(-\frac{i c_{i}}{i+1}\right)\left(\frac{i+1}{i}\left(1-x^{i}\right)\right) \quad(0 \leq x \leq 1)
\end{aligned}
$$

where $p_{0}=c_{0}+\sum_{i \in B} c_{i}$ (which is ≥ 0 by assumption). If we set p_{i} equal to $c_{i} /(i+1)$ for $i \in A, i \geq 1$, and to $-i c_{i} /(i+1)$ for $i \in B$, then $p_{0}, p_{1}, \ldots, p_{K}$ is a probabllity vector, and we have thus decomposed f as a finlte mixture. Let us brlefly mention how random varlate generation for the component densities can be done.

Lemma 4.1.

Let U_{1}, U_{2}, \ldots be lld uniform $[0,1]$ random variables.
A. For $a>1, U_{1}{ }^{\frac{1}{a}} U_{2}$ has density

$$
\frac{a}{a-1}\left(1-x^{a-1}\right) \quad(0 \leq x \leq 1) .
$$

B. Let L be the Index of the first U_{i} not equal to $\max \left(U_{1}, \ldots, U_{n}\right)$ for $n \geq 2$. Then U_{L} has density

$$
\frac{n}{n-1}\left(1-x^{n-1}\right) \quad(0 \leq x \leq 1) .
$$

C. The density of $\max \left(U_{1}, \ldots, U_{n}\right)$ is $n x^{n-1}(0 \leq x \leq 1)$.

Proof of Lemma 4.1.

Part C is trlvially true. Part A is a good exerclse on transformations of random variables. Part B has a particularly elegant short proof. The density of a randomly chosen U_{i} is 1 (all densitles are understood to be on [0,1]). Thus, when f is the density of U_{L}, we must have

$$
\frac{n-1}{n} f(x)+\frac{1}{n} n x^{n-1}=1 .
$$

This uses the fact that with probablity $\frac{1}{n}$, the randomly chosen U_{i} is the maximal U_{i}, and that with the complimentary probabllity, the randomly chosen U_{i} is distrlbuted as U_{L}.

We are now in a position to glve more detalls of the polynomial density algorlthm of Ahrens and Dleter.

Polynomial density algorithm of Ahrens and Dieter

[SET-UP]
Compute the probability vector $p_{0}, p_{1}, \ldots, p_{K}$ from c_{0}, \ldots, c_{K} according to the formulas given above. For each $i \in\{0,1, \ldots, K\}$, store the membership of $i\left(i \in A\right.$ if $c_{i} \geq 0$ and $i \in B$ otherwise).
[GENERATOR]
Generate a discrete random variate Z with probability vector $p_{0}, p_{1}, \ldots, p_{K}$.
IF $\mathcal{Z} \in A$
THEN RETURN $X \leftarrow U^{\frac{1}{Z+1}}$ (or $X \leftarrow \max \left(U_{1}, \ldots, U_{Z+1}\right)$ where U, U_{1}, \ldots are iid uniform $[0,1]$ random variates).
ELSE RETURN $X \leftarrow U_{1}{ }^{\frac{1}{Z+1}} U_{2}$ (or $X \leftarrow U_{L}$ where L is the U_{i} with the lowest index not equal to $\max \left(U_{1}, \ldots, U_{Z+1}\right)$).

4.6. Mixtures with negative coefficients.

Assume that the density $f(x)$ can be written as

$$
f(x)=\sum_{i=1}^{\infty} p_{i} f_{i}(x)
$$

where the f_{i} 's are densitles, but the p_{i} 's are real numbers summing to one. A general algorithm for these densitles was glven by Blgnaml and de Mattels (1971). It uses the fact that if p_{i} is decomposed into its positive and negative parts, $p_{i}=p_{i+} p_{i-}$, then

$$
f(x) \leq g(x)=\sum_{i=1}^{\infty} p_{i+} f_{i}(x)
$$

Then, the following refection algorithm can be used:

Negative mixture algorithm of Bignami and de Matteis

REPEAT

Generate a random variate X with density $\sum_{i=1}^{\infty} p_{i+} f_{i} / \sum_{i=1}^{\infty} p_{i+}$.
Generate a uniform $[0,1]$ random variate U.
UNTIL $U \sum_{i=1}^{\infty} p_{i}+f_{i}(X) \leq \sum_{i=1}^{\infty} p_{i} f_{i}(X)$
RETURN X

The rejection constant here is $\int g=\sum_{i=1}^{\infty} p_{i+}$. The algorithm is thus not valld when thls constant is ∞. One should observe that for thls algorithm, the rejection constant is probably not a good measure of the expected time taken by lt. Thls is due to the fact that the time needed to verlfy the acceptance condition can be very large. For finite mixtures, or mixtures that are such that for every x, only a finite number of $f_{i}(x)$'s are nonzero, we are in gooll shape. In all cases, it is often possible to accept or reject after having computed just a few terms in the serles, provided that we have good analytical estimates of the tall sums of the serles. Since thls is the main idea of the serles method of section IV.5, it will not be pursued here any further.

Example 4.1.

The denslty $f(x)=\frac{3}{4}\left(1-x^{2}\right),|x| \leq 1$, can be written as $f(x)=\frac{6}{4}\left(\frac{1}{2} I_{[-1,1]}(x)\right)-\frac{2}{4}\left(\frac{x^{2}}{6} I_{\mid-1,1]}(x)\right)$. The algorithm given above is then
entirely equivalent to ordinary rejection from a uniform density, which in this case has a rejection constant of $\frac{3}{2}$:

REPEAT

Generate a uniform $[-1,1]$ random variate X.
Generate a uniform $[0,1]$ random variate U.
UNTIL $U \leq 1-X^{2}$
RETURN X -

5. THE ACCEPTANCE-COMPLEMENT METHOD.

5.1. Definition.

Let f be a given density on R^{d} which can be decomposed into a sum of two nonnegative functlons:

$$
f(x)=f_{1}(x)+f_{2}(x)
$$

Assume furthermore that there exists an easy density g such that $f_{1} \leq g$. Then the following algorithm can be used to generate a random variate X with density f :

The acceptance-complement method

Generate a random variate X with density g.
Generate a uniform $[0,1]$ random variate U.
IF $U>\frac{f_{2}(X)}{g(X)}$
THEN Generate a random variate X with density $\frac{f_{2}}{p}$ where $p=\int f_{2}$.
RETURN X

This, the acceptance-complement method, was first proposed by Kronmal and Peterson (1981,1984). It generallzes the composition method as can be seen if we take $f_{1}=f I_{A}, g=f_{1} / \int f_{1}$ and $f_{2}=f I_{A}$ c where A is an arbitrary set of R^{d}
and A^{c} is its complement. It is competitive if three conditions are met:
(i) g is an easy density.
(11) f_{2} / p is an easy density when p is not small (when p is small, this does not matter much).
(iii) f_{1} / g is not difficult to evaluate.

As with the composition method, the algorithm given above is more a principle than a detalled reclpe. When we compare it with the rejection method, we notice that instead of one design varlable (a dominating density) we find two design varlables, f_{2} and g. Moreover, there is no rejection involved at all, although very often, it turns out that a random variate from $\frac{f_{2}}{p}$ is generated by the rejection method.

Let us first show that this method is valld. For this purpose, we need only show that for all Borel sets $B \subseteq R^{d}$, the random varlate generated by the algorithm (which will be denoted here by X) satisfles $P(X \in B)=\int_{B} F(x) d x$. To avold confusion with too many X 's, we will use Y for the random varlate with density g. Thus,

$$
\begin{aligned}
& P(X \in B)=P\left(Y \in B, U \leq \frac{f_{1}(Y)}{g(Y)}\right)+P\left(U>\frac{f_{1}(Y)}{g(Y)}\right) \frac{\int_{B} f_{2}(x) d x}{p} \\
& =\int_{B} g(x) \frac{f_{1}(x)}{g(x)} d x+\left(1-\int g(x) \frac{f_{1}(x)}{g(x)} d x\right) \frac{\int_{B} f_{2}(x) d x}{p} \\
& =\int_{B} f_{1}(x) d x+\int_{B} f_{2}(x) d x \\
& =\int_{B} f(x) d x .
\end{aligned}
$$

In general, we galn if we can RETURN the first X generated in the algorithm. Thus, it seems that we should try to maximize its probabllity of acceptance,

$$
P\left(U \leq \frac{f_{1}(Y)}{g(Y)}\right)=\int f_{1}=1-p
$$

subject of course to the constraint $f_{1} \leq g$ where g is an easy density. Thus, good algorithms have g "almost" equal to f.

There is a visual explanation of the method related to that of the rejection method. What is Important here is that the areas under the graphs of $g-f_{1}$ and f_{2} are equal. In the next section, we will give a simpllfled version of the acceptance-complement algorithm developed independently by Ahrens and Dieter (1981,1983). Examples and detalls are given in the remalning sections and in some of the exercises.

5.2. Simple acceptance-complement methods.

Ahrens and Dieter $(1981,1983)$ and Deak (1981) considered the speclal case defined by an arbitrary density g on R^{d} and the following decomposition:

$$
\begin{aligned}
& f(x)=f_{1}(x)+f_{2}(x) ; \\
& \left.f_{1}(x)=\min (f(x), g(x)) \quad \text { (note }: f_{1} \leq g\right) ; \\
& f_{2}(x)=(f(x)-g(x))_{+}
\end{aligned}
$$

We can now rewrite the acceptance-complement algorithm quite simply as follows:

Simple acceptance-complement method of Ahrens and Dieter

Generate a random variate X with density g.
Generate a uniform $[0,1]$ random variate U.
IF $U>\frac{f(X)}{g(X)}$
THEN Generate a random variate X with density $(f-g)_{+} / p$ where $p=\int_{f>g}(f-g)$.
RETURN X

Deak (1981) calls thls the economical method. Usually, g is an easy density close to f. It should be obvious that generation from the leftover density ($f-g)_{+} / p$ can be problematlc. If there is some freedom in the design (i.e. In the cholce of g), we should try to minimize p. This simple acceptance-complement method has been used for generating gamma and t varlates (see Ahrens and Dleter (1981,1883) and Stadlober (1981) respectively). One of the maln technical obstacles encountered (and overcome) by these authors was the determination of the set on which $f(x)>g(x)$. If we have two densities that are very close, we must first verlfy where they cross. Often this leads to compllcated equations whose solutlons can only be determined numerically. These problems can be sldestepped by exploiting the added flexibillty of the general acceptancecomplement method.

5.3. Acceleration by avoiding the ratio computation.

The time-consuming ratio evaluation $\frac{f_{1}}{g}$ in the acceptance condition can be avolded some of the time if we know two easy-to-compute functions h and $h *$ with the property that

$$
h(x) \leq \frac{f_{1}(x)}{g(x)} \leq h *(x) .
$$

The IF step in the acceptance-complement algorithm can be replaced in those cases by

Squeeze step in acceptance-complement method
IF $U>h(X)$
THEN IF $U \geq h *(X)$
THEN Generate a random variate X with density $\frac{f_{2}}{p}$ where $p=\int f_{2}$. ELSE IF $U>\frac{f_{1}(X)}{g(X)}$

THEN Generate a random variate X with density $\frac{f_{2}}{p}$ where $p=\int f_{2}$.

RETURN X

A simllar but more spectacular acceleration is possible for the Ahrens-Dleter algorithm if one can quickly determine whether a point belongs to A, where A is a subset of $f>g$. In particular, one will find that the set on which $f>g$ often is an interval, in which case this acceleration is easy to apply.

```
Accelerated version of the Ahrens-Dieter algorithm
Generate a random variate X with density g.
IF X\not\inA
        THEN
        Generate a uniform [0,1] random variate U.
        FF U> 位X)
        THEN Generate a random variate X with density (f-g)+/p.
RETURN }
```

With probability $P(X \in A)$, no unlform random varlate is generated. Thus, what one should try to do is to choose g such that $P(X \in A)$ is maximal. This in turn
suggests choosing g such that

$$
\int_{f \geq g} g
$$

is large.

5.4. An example: nearly flat densities on $[0,1]$.

We wlll develop a universal generator for all densitles f on $[-1,1]$ which satlsfy the following property: $\sup _{x} f(x)-\operatorname{lnf}_{x} f(x) \leq \frac{1}{2}$. Because we always have $0 \leq \operatorname{lnf} f(x) \leq \frac{1}{2} \leq \sup _{x} f(x)$, we see that $\sup _{x} f(x) \leq 1$. We will apply the acceptance-complement method here with as simple a decomposition as possible, for example

$$
\begin{aligned}
& g(x)=\frac{1}{2} \quad(|x| \leq 1) \\
& f_{1}(x)=f(x)-\left(f_{\max }-\frac{1}{2}\right) \quad\left(f_{\max }=\sup _{x} f(x)\right) ; \\
& f_{2}(x)=f_{\max }-\frac{1}{2} \quad(|x| \leq 1) .
\end{aligned}
$$

The condition imposed on the class of densities follows from the fact that we must ask that f_{1} be nonnegative. The algorithm now becomes:

Acceptance-complement method for nearly flat densities

Generate a uniform $[-1,1]$ random variate X.
Generate a uniform $[0,1]$ random variate U.
IF $U>2\left(f(X)-f_{\max }+\frac{1}{2}\right)$
THEN Generate a uniform $[-1,1]$ random variate X.
RETURN X

To thls, we could add a squeeze step, because we can exlt whenever $U \leq 2\left(\ln _{x} f(x)-f \max +\frac{1}{2}\right)$, and the probabllity of thls fast exit increases with the "flatness" of f. It is 1 when f is the uniform density.

A comparison with the rejection method is \ln order here. First we observe that because we plcked g and f_{2} both uniform, we need only unform random varlates. The number N of such unlform random varlates used up in the algorithm is elther 2 or 3 . We have

$$
E(N)=2+1 \times P\left(U>2\left(f(X)-f_{\max }+\frac{1}{2}\right)\right.
$$

where X stands for a unlform $[-1,1]$ random varlate. Thus,

$$
\begin{aligned}
& E(N)=2+\int_{-1}^{1} \frac{1}{2} 2\left(f_{\max }-f(x)\right) d x \\
& =2+2 f_{\max }-1=1+2 f_{\max }
\end{aligned}
$$

In addition, if no squeeze step is used, we require exactly one computation of f per variate. The obvious rejection algorithm for this example is

Rejection algorithm for nearly flat densities

REPEAT

Generate a uniform $[-1,1]$ random variate X.
Generate a uniform $[0,1]$ random variate U.
UNTLL $U f_{\text {max }} \leq f(X)$
RETURN X

Here too we could insert a squeeze step ($U f \max _{\max } \leq \operatorname{lnf}_{x} f(x)$). Without it, the expected number of uniform random varlates needed is 2 times the expected number of iterations, i.e. $4 f$ max. In addition, the expected number of computatlons of f is $2 f$ max . On both counts, this is strictly worse than the acceptancecomplement method.

We have thus established that for some falrly general classes of densities, we have a strict improvement over the rejection algorithm. The unlversallty of the algorithms depends upon the knowledge of the infimum and supremum of f. This is satisfled for example if we know that f is symmetric unimodal in which case the inflmum is $f(1)$ and the supremum is $f(0)$.

The algorithm glven above can be applled to the maln body of most symmetric unimodal densitles such as the normal and Cauchy densities. For the truncated Cauchy density

$$
f(x)=\frac{2}{\pi\left(1+x^{2}\right)} \quad(|x| \leq 1)
$$

our conditions are satlsfied because $f_{\max }=\frac{2}{\pi}$ and the inflmum of f is $\frac{1}{\pi}$, the difference being smaller than $\frac{1}{2}$. In this case, the expected number of unfform random varlates needed is $1+\frac{4}{\pi}$. Next, note that if we can generate a random varlate X with density f, then a standard Cauchy random varlate can be obtained by exploiting the property that the random variate Y deflned by

$$
Y= \begin{cases}X & \text { with probablllty } \frac{1}{2} \\ \frac{1}{X} & \text { with probablllty } \frac{1}{2}\end{cases}
$$

is Cauchy distributed. For thls, we need an extra coln flip. Usually, extra coln flips are generated by borrowing a random blt from U. For example, in the unlversal algorithm shown above, we could have started from a unlform $[-1,1]$ random variate U, and used $|U| \ln$ the acceptance condition. Since $\operatorname{sign}(U)$ is Independent of $|U|, \operatorname{sign}(U)$ can be used to replace X by $\frac{1}{X}$, so that the returned random varlate has the standard Cauchy density. The Cauchy generator thus obtained was first developed by Kronmal and Peterson (1981).

We were forced by technical considerations to limit the densitles somewhat. The rejection method can be used on all bounded densities with compact support. Thls typiffes the situation in general. In the acceptance-complement method, once we choose the general form of g and f_{2}, we loose in terms of universallty. For example, if both f_{2} and g are constant on [-1,1], then $f=f_{1}+f_{2} \leq g+f_{2} \leq 1$. Thus, no density f with a peak hlgher than 1 can be treated by the method. If universallty is a prime concern, then the rejection method has little competition.

5.5. Exercises.

1. Kronmal and Peterson (1981) developed yet another Cauchy generator based upon the acceptance-complement method. It is based upon the following decomposition of the truncated Cauchy denslty f (see text for the deflition) into $f_{1}+f_{2}$:

$$
\begin{aligned}
& f_{1}(x)=f(x)-\frac{1}{\pi}(1-|x|) \quad(|x| \leq 1) \\
& f_{2}(x)=\frac{1}{\pi}(1-|x|) \quad(|x| \leq 1) \\
& g(x)=\frac{1}{2} \quad(|x| \leq 1)
\end{aligned}
$$

We have:

A Cauchy generator of Kronmal and Peterson

Generate ild uniform $[-1,1]$ random variates X and U.
IF $|U|>\frac{2}{\pi}$.

$$
\text { THEN IF }|U| \leq 0.7225
$$

THEN IF $|U|>\frac{4}{\pi\left(1+X^{2}\right)}-\frac{2}{\pi}(1-|X|)$
THEN Generate iid uniform $[-1,1]$ random variates X, U. $X \leftarrow|X|-|U|$.
ELSE Generate a uniform $[-1,1]$ random variate U. $X \leftarrow|X|-|U|$.
IF $U \leq 0$
THEN RETURN X
ELSE RETURN $\frac{1}{X}$

The first two IF's are not required for the algorithm to be correct: they correspond to squeeze steps. Verlfy that the algorlthm generates standard Cauchy random varlates. Prove also that the acceleration steps are valld. The constant 0.7225 is but an approximation of an irrational number, which should be determined.

Chapter Three
 DISCRETE RANDOM VARIATES

1. INTRODUCTION.

A discrete random varlable is a random varlable taking only values on the nonnegative integers. In probabllity theoritlcal texts, a discrete random varlable is a random varlable which takes with probabllity one values in a given countable set of points. Since there is a one-to-one correspondence between any countable set and the nonnegative integers, it is clear that we need not consider the general case. In most cases of interest to the practitioner, this one-to-one correspondence is obvlous. For example, for the countable set $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, the mapping is trivial.

The distribution of a discrete random varlable X is determined by the probablllty vector p_{0}, p_{1}, \ldots :

$$
P(X=i)=p_{i} \quad(i=0,1,2, \ldots) .
$$

The probabillty vector can be given to us in several ways, such as
A. A table of values $p_{0}, p_{1}, \ldots, p_{K}$. Note that here it is necessary that X can only take flnitely many values.
B. An analytical expression such as $p_{i}=2^{-i} \quad(i \geq 1)$. This is the standard form In statistlcal applications, and most popular distributions such as the blnomial, Polsson and hypergeometric distributions are given in this form.
C. A subprogram which allows us to compute p_{i} for each i. This is the "black box" model.
D. Indirectly.. For example, the generating function

$$
m(s)=\sum_{i=0}^{\infty} p_{i} s^{i} \quad(s \in R)
$$

can be given. Sometimes, a recurslve equation allowing us to compute p_{i} from $p_{j}, j<i$, is given.
\therefore cases B, C and D, we should also distingulsh between methods for the genera\therefore :on of X when X has a flxed distribution, and methods that should be
applicable when X belongs to a certain family of integer-valued random variables.

The methods that will be described below apply usually to only one or two of the cases llsted above. Some of these are based on princlples that are equally applicable to continuous random varlate generation like inversion, composition and refection. Other princlples are unlque to discrete random varlate generation llke the allas princlple and the method of guide tables. In any case, this chapter goes hand in hand with chapter II. Very often, the best generator for a certain denslty uses a clever comblnation of discrete random varlate generation principles and standard methods for continuous random varlates. The actual discussion of such combinations is deferred untll chapter VIII.

When we give examples in this chapter, we will refer to well-known discrete distributions. At this point, it is instructive to summarize some of these distributlons.

Name of distribution	Parameters	$P(X=i)$	Range for i
Poisson (λ)	$\lambda>0$	$\frac{e^{-\lambda} \lambda^{i}}{i!}$	$i \geq 0$
Binomial (n, p)	$n \geq 1 ; 0 \leq p \leq 1$	$\binom{n}{i} p^{i}(1-p)^{n-i}$	$0 \leq i \leq n$
Negative binomial (n, p)	$n \geq 1 ; p>0$	$\binom{n+i-1}{i} p^{i}(1+p)^{n+i}$	$i \geq 0$
Logarithmic series (θ)	$0<\theta<1$	$\frac{\theta^{i}}{-\log (1-\theta) i}$	$i \geq 1$
Geometric (p)	$0<p<1$	$p(1-p)^{i-1}$	$i \geq 1$

We refer the reader to Johnson and Kotz (1968, 1982) or Ord (1972) for a survey of the propertles of the most frequently used discrete distributions in statistics. For surveys of generators, see Schmelser (1983), Ahrens and Kohrt (1981) or Ripley (1983).

Some of the methods described below are extremely fast: this is usually the case for well-designed table methods, and for the allas method or its variant, the allas-urn method. The method of gulde tables is also very fast. Only finitevalued discrete random variates can be generated by table methods because tables must be set-up beforehand. In dynamle situations, or when distributions are infinite-talled, slower methods such as the inversion method can be used.
avolded altogether as can be seen from the following example.

Example 2.1. Poisson random variates by sequential search.

We can quickly verlfy that for the Polsson (λ) distrlbution,

$$
p_{i+1}=\frac{\lambda}{i+1} p_{i}, p_{0}=e^{-\lambda}
$$

Thus, the sequentlal search algorlthm can be slmpllfled somewhat by recursively computing the values of p_{i} during the search:

Poisson generator using sequential search

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow 0, P \leftarrow e^{-\lambda}, S \leftarrow P$.
WHILE $U>S$ DO

$$
X \leftarrow X+1, P \leftarrow \frac{\lambda P}{X}, S \leftarrow S+P
$$

RETURN X

We should note here that the expected number of comparisons is equal to $E(X+1)=\lambda+1$.

A slight improvement in which the variable S is not needed was suggested by Kemp(1981). Note however that thls forces us to destroy U :

Inversion by sequential search (Kemp, 1981)

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 0$
WHILE $U>p_{X}$ DO

$$
\begin{aligned}
& U \leftarrow U-p_{X} \\
& X \leftarrow X+1
\end{aligned}
$$

RETURN X

2. THE INVERSION METHOD.

2.1. Introduction.

In the inversion method, we generate one unlform $[0,1]$ random varlate U and obtaln X by a monotone transformation of U which is such that $P(X=i)=p_{i}$. If we deflne X by

$$
F(X-1)=\sum_{i<X} p_{i}<U \leq \sum_{i \leq X} p_{i}=F(X)
$$

then it is clear that $P(X=i)=F(i)-F(i-1)=p_{i}$. This is comparable to the Inversion method for continuous random varlates. The solution of the inequallty shown above is unlquely deflned with probabllity one. An exact solution of the inversion inequalitles can always be obtained in finite time, and the inversion method can thus truly be called universal. Note that for contlnuous distributions, we could not Invert In finlte time except in spectal cases.

There are several possible techniques for solving the inversion inequalitles. We start with the simplest and most universal one, i.e. a method which is applicable to all discrete distributions.

Inversion by sequential search

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow 0, S \leftarrow p_{0}$.
WHILE $U>S$ DO

$$
X \leftarrow X+1 ; S \leftarrow S+p_{X}
$$

RETURN X

Note that S is adjusted as we increase X in the sequential search algorithm. This method applles to the "black box" model, and it can handle infinite talls. The time taken by the algorithm is a random variable N, which can be equated In flrst approximation with the number of comparisons in the WHILE condition. But

$$
P(N=i)=P(X=i-1)=p_{i-1} \quad(i \geq 1) .
$$

Thus, $E(N)=E(X)+1$. In other words, the tall of the distribution of X determines the expected time taken by the algorithm. This is an uncomfortable situathon in vlew of the fact that $E(X)$ can posslbly be ∞. There are other more practlcal objections: p_{i} must be computed many times, and the consecutive additions $S \leftarrow S+p_{X}$ may lead to inadmissible accumulated errors. For these reasons, the sequential search algorithm is only recommended as a last resort. In the remainder of this section, we will describe varlous methods for lmproving the sequentlal search algorthm. In partlcular cases, the computation of p_{X} can be

2.2. Inversion by truncation of a continuous random variate.

If we know a continuous distribution function G on $[0, \infty)$ with the property that G agrees with F on the Integers, i.e.

$$
G(i+1)=F(i) \quad(i=0,1, \ldots), G(0)=0,
$$

then we could use the following algorithm for generating a random variate X with distrlbution function F :

Inversion by truncation of a continuous random variate

Generate a uniform $[0,1]$ random variate U.
RETURN $X \leftarrow\left\{G^{-1}(U)\right\}$

This method is extremely fast if G^{-1} is explicitly known. That it is correct follows from the observation that for all $i \geq 0$,

$$
P(X \leq i)=P\left(G^{-1}(U)<i+1\right)=P(U<G(i+1))=G(i+1)=F(i)
$$

The task of finding a G such that $G(i+1)-G(i)=p_{i}$, all i, is often very simple, as we lllustrate below with some examples.

Example 2.2. The geometric distribution.

When $G(x)=1-e^{-\lambda x}, x \geq 0$, we have

$$
G(i+1)-G(i)=e^{-\lambda i}-e^{-\lambda(i+1)}
$$

$$
=e^{-\lambda i}\left(1-e^{-\lambda}\right)
$$

$$
=(1-q) q^{i} \quad(i \geq 0)
$$

where $q=e^{-\lambda}$. From thls, we conclude that

$$
\left\lceil-\frac{1}{\lambda} \log U\right\rceil
$$

Is geometrically distributed with parameter $e^{-\lambda}$. Equivalently, $\left\lceil\frac{\log U}{\log (1-p)}\right\rceil$ is geometrically distributed with parameter p. Equivalently, $\left[-\frac{E}{\log (1-p)}\right]$ is geometrically distributed with the same parameter, when E is an exponential random varlate.

Example 2.3. A family of monotone distributions.

Consider $\quad G(x)=1-x^{-b}, x \geq 1, G(1)=0, b>0$. We see that $G(i+1)-G(i)=i^{-b}-(i+1)^{-b}$. Thus a random varlate X with probabllity vector

$$
p_{i}=\frac{1}{i^{b}}-\frac{1}{(i+1)^{b}} \quad(i \geq 1)
$$

can be generated as $\left\{U^{-\frac{1}{b}}\right\}$. In particular, $\left\lfloor\frac{1}{U}\right\rfloor$ has probabllty vector

$$
p_{i}=\frac{1}{i(i+1)} \quad(i \geq 1)
$$

Example 2.4. Uniformly distributed discrete random variates.
A discrete random varlable is sald to be unlformly distributed on $\{1,2, \ldots, K\}$ when $p_{i}=\frac{1}{K}$ for all $1 \leq i \leq K$. SInce $p_{i}=G(i+1)-G(i)$ where $G(x)=\frac{x-1}{K}, 1 \leq x \leq K+1$, we see that $X \leftarrow\lfloor 1+K U\rfloor$ is unlformly distributed on the integers 1 through K.

2.3. Comparison-based inversions.

The sequentlal search algorithm uses comparisons only (between U and certain functions of the p_{j} 's). It was convenient to compare U first with p_{0}, then with $p_{0}+p_{1}$ and so forth, but this is not by any means an optimal strategy. In thls section we will highlight some other strategles that are based upon comparisons only. Some of these require that the probabllity vector be finite.

For example, if we were allowed to permute the integers first and then perform sequential search, then we would be best off if we permuted the integers in such a way that $p_{0} \geq p_{1} \geq p_{2} \geq \cdots$. This is a consequence of the fact that the number of comparisons is equal to $1+X$ where X is the random variate generated. Reorganizations of the search that result from this will usually not preserve the monotonlcity between U and X. Nevertheless, we will keep using the term Inversion.

The improvements in expected time by reorganizations of sequentlal search can sometimes be dramatic. Thls is the case in partlcular when we have peaked distributions with a peak that is far removed from the orlgin. A case in point is the binomial distribution which has a mode at $\lfloor n p\rfloor$ where n and p are the
parameters of the blnomial distribution. Here one could first verlfy whether $U \leq F(\lfloor n p\rfloor)$, and then perform a sequentlal search "up" or "down" depending upon the outcome of the comparlson. For fixed p, the expected number of comparisons grows as \sqrt{n} instead of as n as can easily be checked. Of course, we have to compute elther directly or in a set-up step, the value of F at $\lfloor n p\rfloor$. A similar Improvement can be implemented for the Polsson distribution. Interestingly, in this slmple case, we do preserve the monotonlclty of the transformation.

Other reorganlzatlons are possible by using ldeas borrowed from computer sclence. We will replace llnear search (l.e., sequentlal search) by tree search. For good performance, the search trees must be set up in advance. And of course, we will only be able to handle a finlte number of probabilltles in our probabllity vector.

One can construct a blnary search tree for generating X. Here each node in the tree is elther a leaf (terminal node), or an Internal node, In which case it has two chlldren, a left child and a rlght chlld. Furthermore, each internal node has assoclated with it a real number, and each lear contalns one value, an integer between 0 and K. For a glven tree, we obtaln X from a unlform [0,1] random varlate U in the following manner:

Inversion by binary search

Generate a uniform $[0,1]$ random variate U.
$\mathrm{Ptr} \leftarrow$ Root of tree (Ptr points to a node)
WHILE Ptr \neq Lear DO
IF Value (Ptr) $>U$
THEN Ptr \leftarrow Leftchild (Ptr)
ELSE Ptr \leftarrow Rightchild (Ptr).
RETURN $X \leftarrow$ Value (Ptr)

Here, we travel down the tree, taking left and right turns according to the comparlsons between U and the real numbers stored in the nodes, untll we reach a leaf. These real numbers must be chosen in such a way that the leafs are reached with the correct probabllitles. There is no particular reason for choosing $K+1$ leaves, one for each possible outcome of X, except perhaps economy of storage. Having flxed the shape of the tree and defined the leaves, we are left with the task of determining the real numbers for the K Internal nodes. The real number for a glven internal node should be equal to the probabilities of all the leaves encountered before the node in an inorder traversal. At the root, we turn left with the correct probabllity, and by Induction, it is obvlous that we keep on dolng so when we travel to a leaf. Of course, we have quite a few possibillties where the shape of the tree is concerned. We could make a complete tree, i.e. a tree where all levels are full except perhaps the lowest level (which is fllled from left to rlght). Complete trees with $2 K+1$ nodes have

$$
L=1+\left\{\log _{2}(2 K+1)\right\}
$$

levels, and thus the search takes at most L comparisons. In llnear search, the worst case is always $\Omega(K)$, whereas now we have $L \sim \log _{2} K$. The data structure that can be used for the Inversion is as follows: define an array of $2 K+1$ records. The last $K+1$ records correspond to the leaves (record $K+i$ corresponds to Integer $i-1$). The first K records are internal nodes. The j-th record has as chlldren records $2 j$ and $2 j+1$, and as father $\left\lfloor\frac{j}{2}\right\rfloor$. Thus, the root of the tree is record 1, its chlldren are records 2 and 3, etcetera. This glves us a complete blnary tree structure. We need only store one value in each record, and this can be done for the entlre tree in time $O(K)$ by noting that we need only do an Inorder traversal and keep track of the cumulative probabllity of the leaves visited when a node is encountered. Using a stack traversal, and notation similar to that of Aho, Hopcroft and Ullman (1982), we can do It as follows:

Set-up of the binary search tree

($\operatorname{BST}[1], \ldots, \operatorname{BST}[2 K+1]$ is our array of values. To save space, we can store the probabilities p_{0}, \ldots, p_{K} in $\left.\operatorname{BST}[\mathrm{K}+1], \ldots, \operatorname{BST}[2 \mathrm{~K}+1].\right)$
(S is an auxiliary stack of integers.)
MAKENULL(S) (create an empty stack).
Ptr-1, PUSH(Ptr,S) (start at the root).
$P \leftarrow 0$ (set cumulative probability to zero).
REPEAT
IF $\mathrm{Ptr} \leq K$
THEN PUSH(Ptr,S), Ptr匹2 Ptr
ELSE
$P \leftarrow P+\operatorname{BST}(\operatorname{Ptr}]$
$\mathrm{Ptr} \leftarrow \mathrm{TOP}(\mathrm{S}), \mathrm{POP}(\mathrm{S})$
$\mathrm{BST}[\mathrm{Ptr}) \leftarrow P$
$\mathrm{Ptr}-2 \mathrm{Ptr}+1$
UNTIL EMPTY (S)

The binary search tree method described above is not optimal with respect to the expected number of comparisons required to reach a decision. For a fixed binary search tree, this number is equal to $\sum_{i=0}^{K} p_{i} D_{i}$ where D_{i} is the depth of the i-th leaf (the depth of the root is one, and the depth of a node is the number of nodes encountered on the path from that node to the root). A blnary search tree is optimal when the expected number of comparisons is minimal. We now deffne Huffman's tree (Huffman, 1952, Zimmerman, 1859), and show that it is optimal.

The two smallesi probabllity leaves should be furthest away from the root， for if they are not．izen we can always swap one or both of them with other nodes at a deeper lerel，and obtain a smaller value for $\sum p_{i} D_{i}$ ．Because internal nodes have two ch！$\pm=e n$ ，we can always make these leaves chlldren of the same Internal node．But tr ine indices of these nodes are j and k ，then we have

$$
\sum_{i=0}^{K} p_{i} D_{i}=\sum_{:=j, k} p_{i} D_{i}+\left(p_{j}+p_{k}\right) D *+\left(p_{j}+p_{k}\right)
$$

Here $D *$ is the defiz of the internal father node．We see that minimizing the right－hand－side of tise expression reduces to a problem with K instead of $K+1$ nodes，one of these zodes belng the new Internal node with probabllity $p_{j}+p_{k}$ assoclated with it．Thus，we can now construct the entlre（Huffman）tree． Perhaps a small exa二⿰亻⿱丶⿻工二又⿴囗⿱一一儿丶 ie is informative here．

Example 2．5．

Consider the presabilities

p_{0}	0.11
p_{1}	0.30
p_{2}	0.25
p_{3}	0.21
p_{4}	0.13

We note that we stevuld join nodes 0 and 4 frst and form an internal node of cumulative weight C .24 ．Then，this node and node 3 should be Jolned into a supernode of welgh： 0.45 ．Next，nodes 1 and 2 are made chlldren of the same Internal node of we： 5 ht 0.55 ，and the two leftover internal nodes finally become children of the root．

For a data strusture，we can no longer use a complete blnary tree，but we can make use of the array implementation in which entrles 1 through K denote Internal nodes，and entries $K+1$ through $2 K+1$ deflne leaves．For leaves，the entrles are the glven probabilitles，and for the Internal nodes，they are the thres－ hold values as defines for general binary search trees．Since the shape of the tree must also be determ：$⿻ \mathrm{zed}$ ．we are forced to add for entrles 1 through K two flelds， a leftchlldpointer aza a rightchlldpolnter．For the sake of slmpliclty，we use BST［．］for the threstold values and probabllties，and Left［．］，Right［．］for the polnter fields．The teee can be constructed in time $O(K \log K)$ by the Hu－Tucker algorlthm（Hu，Tucke－．1971）：

Construction of the Huffman tree

Create a heap H with elements $\left(K+1, p_{0}\right), \ldots,\left(2 K+1, p_{K}\right)$ and order defined by the keys p_{i} (the smallest key is at the top of the heap). (For the definition of a heap, we refer to Aho, Hopcroft and Ullman (1982)). Note that this operation can be done in $O(K)$ time.
FOR $\mathrm{i}:=1$ TO K DO
Take top element (j, p) off the heap H and fix the heap.
Take top element (k, q) off the heap H and fix the heap.
Left $[i] \leftarrow j, \operatorname{Right}[i] \leftarrow k$.
Insert $(i, p+q)$ in the heap H.
Compute the array BST by an inorder traversal of the tree. (This is analogous to the traversal seen earlier, except that for travel down the tree, we must make use of the fields Left[.] and Right[.] instead of the positional trick that in a complete binary tree the index of the leftchild is twice that of the father. The time taken by this portion is $O(K)$.)

The entire set-up takes time $O(K \log K)$ in view of the fact that insertion and deletlon-off-the-top are $O(\log K)$ operatlons for heaps.

It is worth pointing out that for familles of discrete distributions, the extra cost of setting up a binary search tree is often inacceptable.

We close this section by showing that for most distributions the expected number of comparisons $(E(C)$) with the Huffman blnary search tree is much less than with the complete binary search tree. To understand why this is possible, consider for example the simple distribution with probability vector $\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{K}}, \frac{1}{2^{K}}$. It is trivial to see that the Huffman tree here has a llnear shape: we can deflne it recursively by putting the largest probability in the right child of the root, and putting the Huffman tree for the leftover probabillties in the left subtree of the root. Clearly, the expected number of comparisons is $\left(\frac{1}{2}\right) 2+\left(\frac{1}{4}\right) 3+\left(\frac{1}{8}\right) 4+\cdots$. For any K, this is less than 3 , and as $K \rightarrow \infty$, the value 3 is approached. In fact, thls fintte bound also applies to the extended Huffman tree for the probabillty vector $\frac{1}{2^{i}}(i \geq 1)$. Similar asymmetric trees are obtalned for all distributions for which $E\left(e^{t X}\right)<\infty$ for some $t>0$: these are distributions with roughly speaking exponentially or subexponentlally decreasing tall probabilitles. The relatlonshlp between the tall of the distribution and $E(C)$ is clarifled in Theorem 2.1.

Theorem 2.1.

Let p_{1}, p_{2}, \ldots be an arbitrary probabllity vector. Then it is possible to construct a binary search tree (including the Huffman tree) for which

$$
E(C) \leq 1+4\left\lceil\log _{2}(1+E(X))\right\rceil
$$

where X is the discrete random variate generated by using the binary search tree for Inversion.

Proof of Theorem 2.1.

The tree that will be consldered here is as follows: choose first an integer $k \geq 1$. We put leaves at levels $k+1,2 k+1,3 k+1, \ldots$ only. At level $k+1$, we have 2^{k} slots, and all but one is filled from left to right. The extra slot is used as a root for a slmilar tree with $2^{k}-1$ leaves at level $2 k+1$. Thus, C is equal to:

$$
\begin{array}{ll}
k+1 & \text { with probabillty } \sum_{i=1}^{2^{k}-1} p_{i} \\
2 k+1 & \text { wlth probabllity } \sum_{i=2^{k}}^{2(k-1)} p_{i}
\end{array}
$$

Taking expected values gives

$$
\begin{aligned}
& E(C)=1+k \sum_{j=1}^{\infty} j \sum_{i=(j-1)\left(2^{k}-1\right)+1}^{j\left(2^{k}-1\right)} p_{i} \\
& =1+k \sum_{i=1}^{\infty} p_{i} \sum_{\frac{i}{2^{k}-1} \leq j \leq 1+\frac{i-1}{2^{k}-1}} \sum_{i=1}^{\infty} p_{i}\left(1+\frac{i-1}{2^{k}-1}\right)\left(2-\frac{1}{2^{k}-1}\right) \\
& \leq 1+2 k \sum_{i=1}^{\infty} p_{i}\left(1+\frac{i}{2^{k}-1}\right) \\
& \leq 1+2 k+\frac{2 k}{2^{k}-1} \sum_{i=1}^{\infty} i p_{i} \\
& =1+2 k+\frac{2 k}{2^{k}-1} E(X) .
\end{aligned}
$$

If we take $k=\left\lceil\log _{2}(1+E(X))\right\rceil$, then $2^{k}-1 \geq E(X)$, and thus,

$$
E(C) \leq 1+2\left\lceil\log _{2}(1+E(X))\right]\left(1+\frac{E(X)}{E(X)}\right)=1+4\left\lceil\log _{2}(1+E(X))\right\rceil
$$

This concludes the proof of Theorem 2.1.

We have shown two things in thls theorem. First, of all, we have exhlblted a particular binary search tree with design constant $k \geq 1$ (k is an integer) for which

$$
E(C) \leq 1+2 k+\frac{2 k}{2^{k}-1} E(X)
$$

Next, we have shown that the value of $E(C)$ for the Huffman tree does not exceed the upper bound given in the statement of the theorem by manipulating the value of k and noting that the Huffman tree is optimal. Whether in practice we can use the construction successfully depends upon whether we have a falr Idea of the value of $E(X)$, because the optlmal k depends upon this value. The upper bound of the theorem grows logarithmically in $E(X)$. In contrast, the expected number of comparisons for inversion by sequential search grows llnearly with $E(X)$. It goes without saying that if the p_{i} 's are not in decreasing order, then we can permute them to order them. If in the construction we fll empty slots by borrowing from the ordered vector $p_{(1)}, p_{(2)}, \ldots$, then the inequality remains valld if we replace $E(X)$ by $\sum_{i=1}^{\infty} i p_{(i)}$. We should also note that Theorem 2.1 is useless for distributions with $E(X)=\infty$. In those sltuations, there are other possible constructions. The binary tree that we construct has once again leaves at levels $k+1,2 k+1, \ldots$, but now, we define the leaf positions as follows: at level $k+1$, put one leaf, and define $2^{k}-1$ roots of subtrees, and recurse. This means that at level $2 k+1$ we find $2^{k}-1$ leaves. We assoclate the p_{i} 's with leaves in the order that they are encountered in this construction, and we keep on going untll K leaves are accommodated.

Theorem 2.2.

For the binary search tree constructed above with fixed design constant $k \geq 1$, we have

$$
E(C) \leq 1+k p_{1}+\frac{2 k}{\log \left(2^{k}-1\right)} E(\log X)
$$

and, for $k=\mathbf{2}$,

$$
E(C) \leq 1+2 p_{1}+\frac{4}{\log 3} E(\log X) \leq 3+\frac{4}{\log 3} E(\log X)
$$

where X is a random varlate with the probablity vector p_{1}, \ldots, p_{K} that is used In the construction of the binary search tree, and C is the number of comparisons in the inversion method.

Proof of Theorem 2.2.

Let us define $m=2^{k}-1$ to simplify the notation. It is clear that

$$
C=\left\{\begin{array}{ll}
k+1 & \text { with probabllity } p_{1} \\
2 k+1 & \text { with probabllity } p_{2}+\cdots+p_{m+1} \\
3 k+1 & \text { with probabllity } p_{m+2}+\cdots+p_{m^{2}+m+1} \\
\cdots &
\end{array} .\right.
$$

In such expressions, we assume that $p_{i}=0$ for $i>K$. The construction also works for Infinite-talled distrlbutions, so that we do not need K any further. Now,

$$
\begin{aligned}
& E(C) \leq 1+k p_{1}+k \sum_{j=2}^{\infty} j_{i=1+1+\cdots+m^{j-2}}^{1+\cdots+m^{j-1}} p_{i} \\
& =1+k p_{1}+k \sum_{i=2}^{\infty} p_{i} \sum_{1+1+\cdots+m^{j-2} \leq i \leq 1+\cdots+m^{i-1}}^{j} \\
& \leq 1+k p_{1}+k \sum_{i=2}^{\infty} p_{i} \sum_{m^{j-2}<i \leq m^{j}} j \\
& \leq 1+k p_{1}+k \sum_{i=2}^{\infty}\left(2 \frac{\log i}{\log m}\right) \\
& =1+k p_{1}+\frac{2 k}{\log m} \sum_{i=2}^{\infty} p_{i} \log i \\
& =1+k p_{1}+\frac{2 k}{\log m} E(\log X)
\end{aligned}
$$

This proves the first inequality of the theorem. The remalnder follows without work.

The bounds of Theorem 2.2 grow as $E(\log X)$ and not as $\log (E(X))$. The difference is that $E(\log X) \leq \log (E(X)$) (by Jensen's Inequallty), and that for long-talled distributions, the former expression can be finlte whlle the second expression is ∞.

2.4. The method of guide tables.

We have seen that inversion can be based upon sequential search, ordinary blnary search or modifled blnary search. All these techniques are comparisonbased. Computer sclentists have known for a long tlme that hashing methods are ultra fast for searching data structures provided that the elements are evenly distributed over the range of values of interest. This speed is bought by the exploltation of the truncation operation.

Chen and Asau (1974) frst suggested the use of hashing techniques to handle the inversion. To insure a good expected time, they introduced an ingenious trick, which we shall describe here. Thelr method has come to be known as the method of guide tables. Agaln, we have a monotone relationship between X, the generated random varlate, and U, the unlform $[0,1]$ random varlate which is inverted.

We assume that a probabllity vector $p_{0}, p_{1}, \ldots, p_{K}$ is given. The cumulatlve probabllitles are deflned as

$$
q_{i}=\sum_{j=0}^{i} p_{j} \quad(0 \leq i \leq K)
$$

If we were to throw a dart (In thls case U) at the segment $[0,1]$, which is partltloned into $K+1$ intervals $\left[0, q_{0}\right),\left[q_{0}, q_{1}\right), \ldots,\left[q_{K-1}, 1\right]$, then it would come to rest in the interval $\left(q_{i-1}, q_{i}\right)$ with probabillty $q_{i}-q_{i-1}=p_{i}$. This is another way of rephrasing the inversion princlple of course. It is another matter to find the interval to which U belongs. Thls can be done by standard blnary search in the array of q_{i} 's (thls corresponds roughly to the complete binary search tree algorithm). If we are to explolt truncation however, then we somehow have to conslder equlspaced intervals, such as $\left[\frac{i-1}{K+1}, \frac{i}{K+1}\right), 1 \leq i \leq K+1$. The method of guide tables helps the search by storing in each of the $K+1$ Intervals a "gulde table value" g_{i} where

$$
g_{i}=\max _{q_{j}<\frac{i}{K+1}} j
$$

This helps the Inversion tremendously:

Method of guide tables

Generate a uniform [0,1] random variate U.
Set $X \leftarrow\lfloor(K+1) U+1\rfloor$ (this is the truncation).
Set $X \leftarrow g_{X}+1$ (guide table look-up).
WHILE $q_{X-1}>U$ DO $X \leftarrow X-1$.
RETURN X

[^0]
Theorem 2.3.

The expected number of comparisons (of q_{X-1} and U) in the method of gulde tables is always bounded from above by 2 .

Proof of Theorem 2.3.

Observe that the number of comparisons C is not greater than the number of q_{i} values in the interval X (the returned random variate) plus one. But slnce all Intervals are equl-spaced, we have

$$
\begin{aligned}
& E(C) \leq 1+\frac{1}{K+1} \sum_{i=0}^{K} \text { (number of values of } q_{j} \ln \text { interval } i \text {) } \\
& \leq 1+1=2 .
\end{aligned}
$$

Theorem 2.3 is very important because it guarantees a uniformly good performance for all distributions as long as we make sure that the number of intervals and the number of possible values of the discrete random variable are equal.

This inversion method too requires a set-up step. The table of values $g_{1} \cdot g_{2}, \ldots, g_{K+1}$ can be found in time $O(K)$:

Set-up of guide table

```
FOR \(i:=1\) TO \(K+1\) DO \(g_{i}<0\).
\(S\) -
FOR \(i:=0\) TOK DO
    \(S \leftarrow S+p_{i} \quad\left(S\right.\) is now \(\left.q_{i}\right)\).
    \(j \leftarrow\lfloor S(K+1)+1\rfloor\). (Determine interval for \(\left.q_{i}.\right)\)
    \(g_{j} \leftarrow i\).
FOR \(i:=2\) TO \(K+1\) DO \(g_{i}-\max \left(g_{i-1}, g_{i}\right)\).
```

There is a trade-off between expected number of comparisons and the slze of the guide table. It ls easy to see that if we have a gulde table of $\alpha(K+1)$ elements for some $\alpha>0$, then we have

$$
E(C) \leq 1+\frac{1}{\alpha}
$$

If speed is extremely Important, one should not hesltate to set α equal to 5 or 10 . Of all the inversion methods discussed so far, the method of gulde tables shows clearly the greatest potential in terms of speed. This is confirmed in Ahrens and Kohrt(1981).

2.5. Inversion by correction.

It is sometimes possible to find another distribution function G that is close to the distribution function F of the random varlable X. Here G is the distribution function of another discrete random variable, Y. It is assumed that G is an easy distribution. In that case, it is possible to generate X by first generating Y and then applying a small correction. It should be stressed that the fact that G Is close to F does not Imply that the probabllltles $G(i)-G(i-1)$ are close to the probabillties $F(i)-F(i-1)$. Thus, other methods that are based upon the closeness of these probabllities, such as the rejection method, are not necessarlly appllcable. We are simply using G to obtain an initlal estimate of X.

Inversion by correction; direct version

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow G^{-1}(U)$ (i.e. X is an integer such that $G(X-1)<U \leq G(X)$. This usually means that X is obtained by truncation of a continuous random variable.)
IF $U \leq F(X)$
THEN WHILE $U \leq F(X-1)$ DO $X-X-1$.
ELSE WHILE $U>F(X+1)$ DO $X \leftarrow X+1$.
RETURN X

We can measure the time taken by this algorithm in terms of the number of F-computations. We have:

Theorem 2.4.

The number of computations C of F in the inversion algorithm shown above is

$$
2+|Y-X|
$$

where X, Y are deflned by

$$
F(X-1)<U \leq F(X), G(Y-1)<U \leq G(Y)
$$

It is clear that $E(C)=2+E(|Y-X|)$ where Y, X are as deflned in the theorem. Note that Y and X are dependent random varlables in this definition. We observe that in the algorithm, we use inversion by sequential search and start this search from the initial guess Y. The correction is $|Y-X|$.

There is one lmportant spectal case, occurring when F and G are stochastlcally ordered, for example, when $F \leq G$. Then one computation of F can be saved by noting that we can use the following implementation.

Inversion by correction; $F \leq G$
Generate a unlform $[0,1]$ random varlate U. Set $X \leftarrow G^{-1}(U)$.
WHLE $U>F(X)$ DO $X \leftarrow X+1$.
RETURN X

What is saved here is the comparison needed to decide whether we should search up or down. Since in the notation of Theorem $2.4, Y \leq X$, we see that

$$
E(C)=1+E(X-Y)
$$

When $E(X)$ and $E(Y)$ are finlte, this can be written as $1+E(X)-E(Y)$. In any case, we have

$$
E(C)=1+\sum_{i}|F(i)-G(i)|
$$

To see this, use the fact that $E(X)=\sum_{i}(1-F(i))$ and $E(Y)=\sum_{i}(1-G(i))$. When $F \geq G$, we have a symmetric development of course.

In some cases, a random varlate with distribution function G can more easily be obtalned by methods other than Inversion. Because we stlll need a unlform [0,1] random varlate, it is necessary to cook up such a random varlate from the prevlous one. Thus, the initlal palr of random variates (U, X) can be generated Indirectly:

Inversion by correction; indirect version
Generate a random variate X with distribution function G.
Generate an independent uniform $[0,1]$ random variate V, and set $U \leftarrow G(X-1)+V(G(X)-G(X-1))$.
IF $U \leq F(X)$
THEN WHILE $U \leq F(X-1)$ DO $X \leftarrow X-1$.
else while $U>F(X+1)$ DO $X \leftarrow X+1$.
RETURN X

It is easy to verify that the direct and Indirect versions are equivalent because the Joint distributions of the starting palr (U, X) are identical. Note that in both cases, we have the same monotone relation between the generated X and the random varlate U, even though in the indirect version, an auxillary unlform [0.1]
random variate V is needed.

Example 2.6.

Consider

$$
F(i)=1-\frac{1+a}{i^{p}+a i} \quad(i \geq 1)
$$

where $a>0$ and $p>1$ are given constants. Explicit Inversion of F is not feasible except perhaps in spectal cases such as $p=2$ or $p=3$. If sequentlal search is used started at 0 , then the expected number of F computations is

$$
1+\sum_{i=1}^{\infty}(1-F(i))=1+\sum_{i=1}^{\infty} \frac{1+a}{i^{p}+a i} \geq 1+\sum_{i=1}^{\infty} \frac{1}{i^{p}}
$$

Assume next that we use Inversion by correction, and that as easy distribution function we take $G(i)=1-\frac{1}{i^{p}}, i \geq 1$. First, we have stochastic ordering because $F \leq G$. Note first that $G^{-1}(U)$ (the Inverse belng deflined as in Theorem 2.4) is equal to $\left\{1+U^{-\frac{1}{p}}\right\rfloor$. Furthermore, the expected number of computations of F is

$$
1+\sum_{i=1}^{\infty} G(i)-F(i)=1+\sum_{i=2}^{\infty} \frac{a i^{p}-a i}{i^{p}\left(i^{p}+a i\right)} \leq 1+\sum_{i=2}^{\infty} \frac{a}{i^{p}}
$$

Thus, the improvement in terms of expected number of computations of F is at least $1+(1-a) \sum_{i=2}^{\infty} \frac{1}{i^{p}}$, and thls can be considerable when a is small.

2.6. Exercises.

1. Glve a one-llne generator (based upon inverslon vla truncation of a continuous random varlate) for generating a random varlate X with distrlbution

$$
P(X=i)=\frac{i}{\frac{n(n+1)}{2}} \quad(1 \leq i \leq n)
$$

2. By emplrical measurement, the following discrete cumulative distribution function was obtalned by Nigel Horspool when studying operating systems:

$$
F(i)=\min \left(1,0.114 \log \left(1+\frac{i}{0.731}\right)-0.068\right) \quad(i \geq 1)
$$

Glve a one-llne generator for this distrlbution which uses truncation of a continuous random varlate.
3. Glve one-line generators based upon inversion by truncation of a continuous random varlate for the following probabllity distributions on the posltive integers:

3. TABLE LOOK-UP METHODS.

3.1. The table look-up principle.

We can generate a random variate X very quickly if all probabllities p_{i} are rational numbers with common denominator M. It suffices to note that the sum of the numerators is also M. Thus, if we were to construct an array A of size M with $M p_{0}$ entries $0, M p_{1}$ entries 1, and so forth, then a unlformly plcked element of this array would yleld a random varlate with the given probabllity vector p_{0}, p_{1}, \ldots. Formally we have:

Table look-up method

[SET-UP]
Given the probability vector ($p_{0}=\frac{k_{0}}{M}, p_{1}=\frac{k_{1}}{M}, \ldots$), where the k_{i} 's and M are nonnegative integers, we define a table $A=(A[0], \ldots, A[M-1])$ where k_{i} entries are $i, i \geq 0$.
[GENERATOR]
Generate a uniform $[0,1]$ random variate U.
RETURN A [$\lfloor M U\rfloor]$

The beauty of this technlque is that it takes a constant time. Its disadvantages include its limitation (probabilities are rarely rational numbers) and its large table slze (M can be phenomenally big).

We will glve two Important examples to lllustrate its use.

Example 3.1. Simulating dice.

We are asked to generate the sum of n independently thrown unblased dice. This can be done nalvely by using $X_{1}+X_{2}+\cdots+X_{n}$ where the X_{i} 's are lid unlform $\{1,2, \ldots, 6\}$ random varlates. The time for this algorthm grows as n. Usually, n will be small, so that this is not a major drawback. We could also proceed as follows: first we set up a table $A[0], \ldots, A[M-1]$ of size $M=8^{n}$ where each entry corresponds to one of the 6^{n} possible outcomes of the n throws (for example, the first entry corresponds to $1,1,1,1, \ldots, 1$, the second entry to $2,1,1,1, \ldots, 1$, etcetera). The entrles themselves are the sums. Then $A[\lfloor M U\rfloor]$ has the correct distribution when U is a uniform $[0,1]$ random varlate. Note that the time is $O(1)$, but that the space requirements now grow exponentially in n. Interestingly, we have one unlform random varlate per random varlate that is generated. And if we wish to Implement the Inversion method; the only thing that we need to do is to sort the array according to Increasing values. We have thus bought time and pald with space. It should be noted though that in thls case the space requirements are so outrageous that we are practlcally llmited to $n \leq 5$. Also, the set-up is only admissible if very many lid sums are needed in the simulation.

Example 3.2. The histogram method.

Statlstlcians often construct histograms by countling frequencles of events of a certaln type. Let events $0,1, \ldots, K$ have assoclated with them frequencles $k_{0}, k_{1}, \ldots, k_{K}$. A question sometimes asked is to generate a new event with the probabilltles defined by the histogram, l.e. the probabllty of event i should be $\frac{k_{i}}{M}$ where $M=\sum_{i=0}^{K} k_{i}$. In this case, we are usually given the orlginal events in table form $A[0], \ldots, A[M-1]$, and it is obvlous that the table method can be applled here without set-up. We will refer to thls speclal case as the histogram method. Note that for Example 3.1, we could also construct a histogram, but it differs in that a table must be set up.

Assume next that we wish to generate the number of heads $\ln n$ perfect coln tosses. It is known that this number is binomlally distrlbuted with parameters n and $\frac{1}{2}$. By the method of Example 3.1, we can use a table look-up method with
table of size 2^{n}, so for $n \leq 10$, this is entirely reasonable. Unfortunately, when the coln is not perfect and the probability of heads is an Irrational number p, the table look-up method cannot be used.

3.2. Multiple table look-ups.

The table look-up method has a geometric interpretation. When the table size is M, then we can think of the algorithm in terms of the selection of one of M equi-spaced intervals of $[0,1]$ by finding the interval to which a uniform $[0,1]$ random varlate U belongs. Each Interval has an Integer assoclated with it, which should be returned.

One of the problems highllghted in the previous section is the table size. One should also recognize that there normally are many identical table entrles. These duplicates can be grouped together to reduce the table slze. Assume for example that there are k_{i} entrles with value i where $i \geq 0$ and $\sum k_{i}=M$. Then, if $M=M_{0} M_{1}$ for two integers M_{0}, M_{1}, we can set up an auxillary table $B[0], \ldots, B\left[M_{0}-1\right]$ where each $B[i]$ polnts to a block of M_{1} entrles in the true table $A[0], \ldots, A[M-1]$. If this block is such that all values are identical, then it is not necessary to store the block. If we think geometrically agaln, then this corresponds to defining a partition of $[0,1]$ into M_{0} intervals. The original partithon of M intervals is finer, and the boundaries are allgned because M is a multiple of M_{0}. If for the i-th big interval, all M_{1} values of $A[j]$ are identical, then we can store that value directly in $B[i]$ thereby saving $M_{1}-1$ entries in the A table. By rearranging the A table, it should be possible to repeat this for many large intervals. For the few large intervals covering small intervals with nonidentical values for A, we do store a placeholder such as *. In this manner, we have bullt a three-level tree. The root has M_{0} chlldren with values $B[i]$. When $B[i]$ is an integer, then i is a terminal node. When $B[i]=*$, we have an internal node. Internal nodes have in turn M_{1} chlldren, each carrying a value $A[j]$. It is obvious that thls process can be extended to any number of levels. This structure is known as a trle (Fredkin, 1960) or an extendlble hash structure (Fagin, Nlevergelt, Plppenger and Strong, 1979). If all internal nodes have preclsely two children, then we obtain in effect the binary search tree structure of section III.2. Since we want to get as much as possible from the truncation operation, it is obvious that the fan-out should be larger than 2 in all cases.

Consider for example a table for look-up with 1000 entries deffined for the
following probabllity vector:

Probability	Number of entries in table A	
p_{1}	0.005	5
p_{2}	0.123	123
p_{3}	0.240	240
p_{5}	0.355	355
p_{5}	0.277	277

Suppose now that we set up an auxiliary table B which will allow us to refer to sectlons of slze 100 in the table A. Here we could set

$\mathrm{B}[0]$	2
$\mathrm{~B}[1]$	$\mathbf{3}$
$\mathrm{B}[2]$	3
$\mathrm{~B}[3]$	4
$\mathrm{~B}[4]$	$\mathbf{4}$
$\mathrm{B}[5]$	4
$\mathrm{~B}[6]$	5
$\mathrm{~B}[7]$	5
$\mathrm{~B}[8]$	$*$
$\mathrm{~B}[9]$	$*$

The interpretation is that if $B[i]=j$ then j appears 100 times in table A, and If $B[i]=*$ then we must consult a block of 100 entrles of A which are not all Identical. Thus, if $B[8]$ or $B[\theta]$ are chosen, then we need to consult $A[800], \ldots, A[899]$, where we make sure that there are 5 "1"'s, 23 " 2 "'s, 40 $" 3 " \mathrm{~s}, 55$ " 4 "'s and 77 " 5 "'s. Note however that we need no longer store $A[0], \ldots, A[798]!$ Thus, our space requirements are reduced from 1000 words to 210 words.

After having set-up the tables $B[0], \ldots, B[9]$ and $A[800], \ldots, A$ [999], we can generate X as follows:

Example of a multiple table look-up

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow B[\lfloor 10 U\rfloor]$.
IF $X \neq *$
THEN RETURN X
ELSE RETURN A [$1000 U\rfloor]$

Here we have explolted the fact that the same U can be reused for obtaining a random entry from the table A. Notice also that in 80% of the cases, we need not access A at all. Thus, the auxlliary table does not cost us too much tlmewise. Finally, observe that the condition $X \neq *$ can be replaced by $X>7$, and that
therefore $B[8]$ and $B[8]$ need not be stored.
What we have described here forms the essence of Marsaglia's table look-up method (Marsaglla, 1983; see also Norman and Cannon, 1972). We can of course do a lot of fine-tuning. For example, the table A [800], . . . , A [899] can in turn be replaced by an auxllary table C grouplng now only 10 entrles, which could be plcked as follows:

$\mathrm{C}[80]$	2
$\mathrm{C}[81]$	2
$\mathrm{C}[82]$	3
$\mathrm{C}[83]$	3
$\mathrm{C}[84]$	3
$\mathrm{C}[85]$	3
$\mathrm{C}[86]$	4
$\mathrm{C}[87]$	4
$\mathrm{C}[88]$	4
$\mathrm{C}[89]$	4
$\mathrm{C}[90]$	4
$\mathrm{C}[91]$	5
$\mathrm{C}[92]$	5
$\mathrm{C}[93]$	5
$\mathrm{C}[94]$	5
$\mathrm{C}[95]$	5
$\mathrm{C}[96]$	5
$\mathrm{C}[97]$	5
$\mathrm{C}[98]$	$*$
$\mathrm{C}[99]$	$*$

Given that $B[i]=*$ for our value of U, we can $\ln 90 \%$ of the cases return $C[\lfloor 100 U\rfloor]$. Only if once more an entry $*$ is seen do we have to access the table $A[980], \ldots, A$ [899] at position $\lfloor 1000 U\rfloor$. The numbering in our arrays is conventent for accessing elements for our representation, i.e. $B[i]$ stands for $C[10 i], \ldots, C[10 i+8]$, or for $A[100 i], \ldots, A[100 i+99]$. Some hlgh level languages do not permit the use of subranges of the integers as indices. It is also convenlent to comblne A, B and C into one blg array. All of this requires additlonal work during the set-up stage.

We observe that in the multilevel table look-up we must group identical entries in the original table, and this forces us to introduce a nonmonotone relationshlp between U and X.

The method described here can be extended towards the case where all p_{i} 's are multiples of elther 10^{-7} or 2^{-32}. In these cases, the p_{i} 's are usually approximathons of real numbers truncated by the wordsize of the computer.

4. THE ALIAS METHOD.

4.1. Definition.

Walker (1974, 1977) proposed an Ingenlous method for generating a random varlate X with probabillty vector $p_{0}, p_{1}, \ldots, p_{K-1}$ which requires a table of slze $O(K)$ and has a worst-case time that is Independent of the probability vector and K. His method is based upon the following property:

Theorem 4.1.

Every probabllity vector $p_{0}, p_{1}, \ldots, p_{K-1}$ can be expressed as an equiprobable mixture of K two-point distributions.

Proof of Theorem 4.1.

We have to show that there are K pairs of integers $\left(i_{0}, j_{0}\right), \ldots,\left(i_{K-1}, j_{K-1}\right)$ and K probabilitles q_{0}, \ldots, q_{K-1} such that

$$
p_{i}=\frac{1}{K} \sum_{l=0}^{K-1}\left(q_{l} I_{[i,=i]}+\left(1-q_{l}\right) I_{\left[j_{l}=i\right]}\right) \quad(0 \leq i<K)
$$

This can be shown by induction. It is obvlously true when $K=1$. Assuming that it is true for $K<n$, we can show that it is true for $K=n$ as follows. Choose the minimal p_{i}. Since it is at most equal to $\frac{1}{K}$, we can take i_{0} equal to the index of this minimum, and set q_{0} equal to $K p_{i_{0}}$. Then choose the index j_{0} which corresponds to the largest p_{i}. This deflnes our first palr in the equiprobable mixture. Note that we used the fact that $\frac{\left(1-q_{0}\right)}{K} \leq p_{j_{0}}$ because $\frac{1}{K} \leq p_{j_{0}}$. The other $K-1$ palrs in the equiprobable mixture have to be constructed from the leftover probabllitles

$$
p_{0}, \ldots, p_{i_{0}}-p_{i_{0}}, \ldots, p_{j_{0}}-\frac{1}{K}\left(1-q_{0}\right), \ldots, p_{K-1}
$$

which, after deletion of the i_{0}-th entry, is easily seen to be a vector of $K-1$ nonnegative numbers summing to $\frac{K-1}{K}$. But for such a vector, an equiprobable mixture of $K-1$ two-polnt distributions can be found by our Induction hypothesis.

To turn thls theorem into proft, we have two tasks ahead of us: flrst we need to actually construct the equiprobable mixture (thls is a set-up problem), and then we need to generate a random varlate X. The latter problem is easy to solve. Theorem 4.1 tells us that it suffices to throw a dart at the unlt square in the plane and to read off the index of the reglon in which the dart has landed.

The unit square is of course partitioned into reglons by cutting the x-axis up into K equl-spaced intervals which define slabs in the plane. These slabs are then cut into two pleces by the threshold values q_{l}. If

$$
p_{i}=\frac{1}{K} \sum_{l=0}^{K-1}\left(q_{l} I_{[i,=i]}+\left(1-q_{l}\right) I_{\left[j_{l}=i\right]}\right) \quad(0 \leq i<K)
$$

then we can proceed as follows:

The alias method

Generate a uniform $\{0,1]$ random variate U. Set $X \leftarrow\lfloor K U\rfloor$. Generate a uniform $[0,1\}$ random variate V.
IF $V<q_{X}$
THEN RETURN i_{X}
ELSE RETURN j_{X}

Here one uniform random varlate is used to select one component in the equiprobable mixture, and one unlform random variate is used to decide which part in the two-point distribution should be selected. This unsophisticated verslon of the allas method thus requires precisely two unlform random varlates and two table look-ups per random varlate generated. Also, three tables of slze K are needed.

We observe that one uniform random varlate can be saved by noting that for a unlform $[0,1]$ random varlable U, the random varlables $X=\lfloor K U\rfloor$ and $V=K U-X$ are independent: X is unlformly distributed on $0, \ldots, K-1$, and the latter is agaln unform $[0,1]$. Thls trick is not recommended for large K because it relles on the randomness of the lower-order digits of the unlform random number generator. With our ideallzed model of course, thls does not matter.

One of the arrays of slze K can be saved too by noting that we can always insure that i_{0}, \ldots, i_{K-1} is a permutation of $0, \ldots, K-1$. This is one of the dutles of the set-up algorithm of course. If a set-up glves us such a permuted table of i-values, then it should be noted that we can in time $O(K)$ reorder the structure such that $i_{l}=l$, for all l. The set-up algorithm given below will directly compute the tables j and q in time $O(K)$ and is due to Kronmal and Peterson (1979, 1980):

The allas method can further be improved by minimizing this expression, but this won't be pursued any further here. The maln reason for not doing so is that there exists a slmple generallzation of the allas method, called the allas-urn method, which is deslgned to reduce the expected number of table accesses. Because of its importance, we will describe it in a separate section.

4.2. The alias-urn method.

Peterson and Kronmal (1982) suggested a generalization of the allas method In the following manner: think of the probability vector $p_{0}, p_{1}, \ldots, p_{K-1}$ as a special case of a probabllity vector with $K * \geq K$ components where $p_{i}=0$ for all $i \geq K$. Everything that was sald in the previous section remains valld for this case. In partlcular, if we use the linear set-up algorithm for the tables q and j, then it should be noted that $q_{l}>0$ for at most K values of l. At least for all $l>K-1$ we must have $q_{l}=0$. For these values of l, one table access is necessary:

The alias-urn method

Generate a random integer X uniformly distributed on $0, \ldots, K *-1$.
IF $X \geq K$
THEN RETURN j_{X}
ELSE
Generate a uniform $[0,1]$ random variate V. IF $V \leq q_{X}$

THEN RETURN X
ELSE RETURN j_{X}

Per random varlate, we require elther one or two table look-ups. It is easy to see that the expected number of table look-ups (not counting q_{X}) is

$$
\frac{K *-K}{K *}+\frac{1}{K *} \sum_{l=0}^{K-1}\left(1-q_{l}\right) \leq 1
$$

The upper bound of 1 may somehow seem like magic, but one should remember that instead of one comparison, we now have elther one or two comparisons, the expected value belng

$$
1+\frac{K}{K^{*}}
$$

Thus, as $K *$ becomes large compared to K, the expected number of comparisons and the expected number of table accesses both tend to one, as for the urn method. In thls light, the method can be considered as an urn method with slight

Set-up of tables for alias method

```
Greater \(\leftarrow \emptyset\), Smaller \(\leftarrow \emptyset\) (Greater and Smaller are sets of integers.)
FOR \(l:=0\) TO \(K-1\) DO
    \(q_{l} \leftarrow K p_{i}\).
    IF \(q_{l}<1\)
        THEN Smaller \(\leftarrow\) Smaller \(+\{l\}\).
        ELSE Greater \(\leftarrow\) Greater \(+\{l\}\).
WHLLE NOT EMPTY ( Smaller) DO
    Choose \(k \in\) Greater,\(l \in\) Smaller [ \(q_{l}\) is finalized].
    Set \(j_{l} \leftarrow k\) [ \(j_{l}\) is finalized].
    \(q_{k} \leftarrow q_{k}-\left(1-q_{l}\right)\).
    IF \(q_{k}<1\) THEN Greater \(\leftarrow\) Greater \(-\{k\}\), Smaller \(\leftarrow\) Smaller \(+\left\{k^{n}\right\}\).
    Smaller \(\leftarrow\) Smaller \(-\{l\}\).
```

The sets Greater and Smaller can be Implemented In many ways. If we can do it In such a way that the operations "grab one element", "Is set empty ?", "delete one element" and "add one element" can be done In constant tlme, then the algorlthm glven above takes time $O(K)$. Thls can always be insured if linked lists are used. But since the cardinallties sum to K at all times, we can organize it by using an ordinary array in which the top part is occupled by Smaller and the bottom part by Greater. The allas algorlthm based upon the two tables computed above reads:

Alias method with two tables

Generate a random integer X uniformly distributed on $0, \ldots, K-1$.
Generate a uniform $[0,1]$ random variate V.
IF $V \leq q_{X}$
THEN RETURN X
ELSE RETURN j_{X}

Thus, per random varlate, we have elther 1 or 2 table accesses. The expected number of table accesses is

$$
1+\frac{1}{K} \sum_{l=0}^{K-1}\left(1-q_{l}\right)
$$

flne-tunlng. We are paying for this luxury in terms of space, slnce we need to store $K *+K$ values: $j_{0}, \ldots, j_{K *-1}, q_{0}, \ldots, q_{K-1}$. Finally, note that the comparison $X \geq K$ takes much less time than the comparison $V \leq q_{X}$.

4.3. Geometrical puzzles.

We have seen the geometrical Interpretation of the allas method: throw a dart at random and unlformly on the unlt square of R^{2} properly partitioned into $2 K$ rectangles, and return the index that is assoclated with the rectangle that is hit. The indices, or allases, are stored in a table, and so are the definitions of the rectangles. The power of the allas method is due to the fact that we can take K identical slabs of helght 1 and base $\frac{1}{K}$ and then split each slab into two rectangles. It should be obvious that there are an unlimited number of ways in which the unlt square can be cut up convenlently. In general, if the components are A_{1}, \ldots, A_{M}, and the allases are j_{1}, \ldots, j_{M}, then the algorlthm

General alias algorithm

Generate a random variate (X, Y) uniformly distributed in $[0,1]^{2}$.
Determine the index Z in $1, \ldots, M$ such that $(X, Y) \in A_{Z}$.
RETURN j_{Z}
produces a random variate whlch takes the value k with probabllity

$$
\sum_{l: j_{l}=k} \operatorname{area}\left(A_{l}\right)
$$

Let us lllustrate thls with an example. Let the probabllitles for consecutive Integers $1,2, \ldots$ be $c, \frac{c}{2}, \frac{c}{2}, \frac{c}{4} \frac{c}{4}, \frac{c}{4}, \frac{c}{4}, \ldots, \frac{c}{2^{n}}$, where n is a positive integer, and $c=\frac{1}{n+1}$ is a normallzation constant. It is clear that we can group the values in groups of slze $1,2,4, \ldots, 2^{n}$, and the probabllity welghts of the groups are all equal to c. Thls suggests that we should partition the square first into $n+1$ equal vertlcal slabs of helght 1 and base $\frac{1}{n+1}$. Then, the i-th slab should be further subdivided Into 2^{i} equal rectangles to distlnguish between different Integers in the groups. The algorlthm then becomes:

Generate a random variate X with a uniform distribution on $\{0,1, \ldots, n\}$. Generate a random variate Y with a uniform distribution on $2^{X}, \ldots, 2^{X+1}-1$. RETURN Y.

In this simple example, it is possible to combine the unlform varlate generation and membershlp determination into one. Also, no table is needed.

Consider next the probabllity vector

$$
p_{i}=\frac{2}{n+1}\left(1-\frac{i}{n}\right) \quad(0 \leq i \leq n)
$$

Now, we can partition the unit square into $n(n+1)$ equal rectangles and assign allases as \ln the matrix shown below;

$$
\left|\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2 \\
0 & 1 & 2 & 3 & 3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4
\end{array}\right| .
$$

We can verlfy first that the probabllties are correct. Then, it is easily seen that the allas method applled here requires no table elther. Both examples illustrate the virtually unllmited possibillties of the allas method.

4.4. Exercises.

1. Glve a simple linear time algorlthm for sorting a table of records R_{1}, \ldots, R_{n} if it is known that the vector of key values used for sorting is a permutation of $1, \ldots, n$.
2. Show that there exists a one-line FORTRAN or PASCAL language generator for random varlates with probabllity vector $p_{i}=\frac{2}{n+1}\left(1-\frac{i}{n}\right), 0 \leq i \leq n$ (Duncan McCallum).
3. Combine the refection and geometric puzzle method for generating random varlates with probabllity vector $p_{i}=\frac{c}{i}, 1 \leq i \leq K$, where c is a normallzatlon constant. The method should take expected time bounded unlformly over K. Hint: note that the vector $c, \frac{c}{2}, \frac{c}{2}, \frac{c}{4}, \frac{c}{4}, \frac{c}{4}, \frac{c}{4}, \ldots$ dominates the
glven probabllity vector.
4. Repeat the prevlous exerclse for the two-parameter class of probabillty vectors $p_{i}=\frac{c}{i^{M}}, 1 \leq i \leq K$ where M is a positive integer.

5. OTHER GENERAL PRINCIPLES.

5.1. The rejection method.

The rejection princlple remains of course valld for discrete distributions. If the probabllity vector $p_{i}, i \geq 0$, is such that

$$
p_{i} \leq c q_{i} \quad(i \geq 0)
$$

where $c \geq 1$ is the rejection constant and $q_{i}, i \geq 0$, is an easy probabillty vector, then the following algorlthm is valld:

```
The rejection method
REPEAT
    Generate a uniform [0,1] random variate U.
    GENERATE a random variate }X\mathrm{ with discrete distribution determined by
    q},i\geq0
UNTIL Ucq}\mp@subsup{q}{X}{}\leq\mp@subsup{p}{X}{
RETURN X
```

We recall that the number of iterations is geometrically distributed with parameter $\frac{1}{c}$ (and thus mean c). Also, in each Iteration, we need to compute $\frac{p_{X}}{c q_{X}}$. In vlew of the ultra fast methods described In the previous sections for finlte-valued random varlates, it seems that the rejection method is malnly applicable in one of two situations:
A. The distribution has an infinlte tall.
B. The distribution changes frequently (so that we do not have the time to set up long tables every time).
Often, the body of a distribution can be taken care of by the guide table, allas or allas-urn methods, and the tall (which carrles small probabllty anyway) Is dealt
wlth by the rejection method.

Example 5.1.

Consider the probabillty vector

$$
p_{i}=\frac{6}{\pi^{2} i^{2}} \quad(i \geq 1)
$$

Sequential search for this distribution is undesirable because the expected number of comparisons would be $1+\sum_{i=1}^{\infty} i p_{i}=\infty$. With the easy probability vector

$$
q_{i}=\frac{1}{i(i+1)} \quad(i \geq 1)
$$

we can apply the rejection method. The best possible rejection constant is

$$
c=\sup _{i \geq 1} \frac{p_{i}}{q_{i}}=\frac{6}{\pi^{2}} \sup _{i \geq 1} \frac{i+1}{i}=\frac{12}{\pi^{2}} .
$$

Since $\left\{\frac{1}{U}\right\}$ has probability vector q (where U is a uniform $[0,1]$ random varlable), we can proceed as follows:

repeat

Generate iid uniform $[0,1]$ random variates U, V. Set $X \leftarrow\left\lfloor\frac{1}{U}\right\rfloor$.
UNTLL $2 V X \leq X+1$
RETURN X

Example 5.2. Monotone distributions.

When the probability vector p_{1}, \ldots, p_{n} is nonincreasing, then it is obvious that $p_{i} \leq \frac{1}{i}$ for all i. Thus, the following rejection algorithm is valld:

REPEAT

Generate a random variate X with probability vector proportional to $1, \frac{1}{2}, \ldots, \frac{1}{n}$. Generate a uniform $[0,1]$ random variate U.
UNTIL $U \leq X p_{X}$
RETURN X

The expected number of iterations is $\sum_{i=1}^{n} \frac{1}{i} \leq 1+\log (n)$. For example, a binomial (n, p) random varlate can be generated by this method in expected time $O(\log (n))$ provided that the probabilltles can be computed in time $O(1)$ (thls assumes that the logarithm of the factorlal can be computed in constant time). For the dominating distribution, see for example exerclse III.4.3.

Example 5.3. The hybrid rejection method.

As in example 5.1, random varlates with the dominating probabllity vector are usually obtalned by truncation of a continuous random variate. Thus, it seems Important to discuss very brlefly how we can apply a hybrld rejection method based on the following Inequallity:

$$
p_{i} \leq c g(x) \quad(\text { all } x \in[i, i+1), i \geq 0)
$$

Here $c \geq 1$ is the rejection constant, and g is an easy density on $[0, \infty)$. Note that p can be extended to a density f in the obvious manner , i.e. $f(x)=p_{i}$, all $x \in[i, i+1)$. Thus, random varlates with probabllity vector p can be generated as follows:

Hybrid rejection algorithm

REPEAT
Generate a random variate Y with density g. Set $X \leftarrow\lfloor Y\rfloor$.
Generate a uniform [0,1] random variate U.
UNTIL $\operatorname{Ucg}(Y) \leq p_{X}$
RETURN X

5.2. The composition and acceptance-complement methods.

It goes without saying that the entire discussion of the composition and acceptance-complement methods for contlnuous random varlates can be repeated for discrete random varlates.

5.3. Exercises.

1. Develop a rejection algorthm for the generation of an integer-valued random varlate X where

$$
P(X=i)=\frac{c}{2 i-1}-\frac{c}{2 i} \quad(i=1,2, \ldots)
$$

and $c=\frac{1}{2 \log 2}$ is a normallzation constant. Analyze the efficiency of your algorithm. Note: the serles $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$ converges to $\log 2$. Therefore, the terms consldered in pairs and divided by $\log 2$ can be considered as probabllitles defining a probabllity vector.
2. Consider the family of probability vectors $\frac{c(a)}{(a+i)^{2}}, i \geq 1$, where $a \geq 0$ is a parameter and $c(a)>0$ is a normalization constant. Develop the best posslble rejection algorlthm that is based upon truncation of random variables with distribution function

$$
F(x)=1-\frac{a+1}{a+x} \quad(x>1)
$$

Find the probabillty of acceptance, and show that it is at least equal to $\frac{a}{a+2}$. Show that the inflmum of the probabllity of acceptance over
$a \in[0, \infty)$ is nonzero.
3. The discrete normal distribution. A random varlable X has the discrete normal distribution with parameter $\sigma>0$ when

$$
P(X=i)=c e^{-\frac{\left(|i|+\frac{1}{2}\right)^{2}}{2 \sigma^{2}}} \quad(i \text { integer })
$$

Here $c>0$ is a normalization constant. Show flrst that

$$
c=\frac{1}{\sigma}\left(\frac{1}{\sqrt{2 \pi}}+o(1)\right)
$$

as $\sigma \rightarrow \infty$. Show then that X can be generated by the following refection algorithm:

REPEAT

Generate a normal random variate Y, and let X be the closest integer to Y, i.e. $X \leftarrow \operatorname{round}(Y)$. Set $Z \leftarrow|X|+\frac{1}{2}$.

Generate a uniform $[0,1]$ random variate U.
UNTLL $-2 \sigma^{2} \log (U) \geq Z^{2}-Y^{2}$
RETURN X

Note that $-\log (U)$ can be replaced by an exponential random varlate. Show that the probabllity of rejection does not exceed $\frac{2}{\sigma} \sqrt{\frac{2}{\pi}}$. In other words, the algorithm is very efficlent when σ is large.

Chapter Four

SPECIALIZED ALGORITHMS

1. INTRODUCTION.

1.1. Motivation for the chapter.

The maln techniques for random varlate generation were developed in chapters II and III. These will be supplemented in thls chapter with a host of other techniques: these Include historlcally Important methods (such as the Forsythe-von Neumann method), methods based upon specifle properties of the unlform distribution (such as the polar method for the normal density), methods for denslties that are glven as convergent series (the serles method) and methods that have proven partlcularly successful for many distrlbutions (such as the ratio-of-unlforms method).

To start off, we insert a section of exerclses requiring techniques of chapters II and III.

1.2. Exercises.

1. Glve one or more reasonably efflcient methods for the generation of random varlates from the following densitles (which should be plotted too to gain some inslght):

Density	Range for x	Range for the parameter(s)
$\left(\pi \log \left(\frac{1}{x}\right)\right)^{-\frac{1}{2}}$	$0<x<1$	
$2 \sqrt{\frac{1}{\pi} \log \left(\frac{1}{x}\right)}$	$0<x<1$	
$\frac{4}{\pi^{2} x} \log \left(\frac{1+x}{1-x}\right)$	$0<x<1$	
$\frac{8}{\pi^{2}\left(1-x^{2}\right)} \log \left(\frac{1}{x}\right)$	$0<x<1$	
$\frac{2 e^{2 a}}{\sqrt{2 \pi}} e^{-x^{2}-\frac{a^{2}}{x^{2}}}$	$x>0$	
$\frac{4 x^{2}}{\sqrt{\pi}} e^{-x^{2}}$	$x \geq 0$	
$\sqrt{\frac{\theta \pi}{x}} e^{-\theta x}$	$x>0$	

2. Write short and fast programs for generating random varlates with the densitles glven in the table below. In the programs, use only unlform [0,1] and/or unlform $[-1,1]$ random variates.

Density	Range for x	Range for the parameter(s)
$\frac{n}{n-1}\left(1-x^{n-1}\right)$	$0 \leq x \leq 1$	$n \geq 2, n$ integer
$\frac{1}{2 x^{4}} e^{-\frac{1}{x}}$	$x>0$	
$\frac{2}{e^{x x}+e^{-\pi x}}$	$x \in R$	
$\frac{4 \log (2 x-1)}{\pi^{2}(x-1) x}$	$x>1$	

3. Write one-line generators (i.e., assignment statements) for generating random varlates with densitles as described below. You can use log,exp,cos,atan,max,min and functions that generate unlform $[0,1]$ and normal random varlates.

Density	Range of x	Range of the parameter(s)
$\frac{(-\log x)^{n}}{n!}$	$0<x<1$	n positive integer
$\frac{1}{2} e^{-\|x\|}$	$x \in R$	
$\frac{2}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{n-1} e^{-\frac{x^{2}}{2}}$	$x>0$	n positive integer
$\frac{1}{2+e^{x}+e^{-x}}$	$x \in R$	
$a-(2 a-2) x$	$0 \leq x \leq 1$	$1 \leq a \leq 2$

In number 2 we recognize the Laplace density. Number 4 is the logistic denslty.
4. Show how one can generate a random varlate of one's cholce having a density f on $[0, \infty)$ with the property that $\lim _{x \downarrow 0} f(x)=\infty, f(x)>0$ for all x.
5. Glve random varlate generators for the following simple densitles:

Density	Range for x
$\frac{6}{\pi^{2}} \frac{x}{e^{x}-1}$	$x>0$
$\frac{12}{\pi^{2}} \frac{e^{x}+1}{e^{x}}$	$x>0$
$\frac{6}{\pi^{2}} \frac{\log \left(\frac{1}{x}\right)}{1-x}$	$0<x<1$
$\frac{12}{\pi^{2}} \frac{\log (1+x)}{x}$	$0<x<1$
$\frac{\arctan (x)}{G x}$	$0<x<1$
$\frac{\log \left(\frac{1}{x}\right)}{G\left(1+x^{2}\right)}$	$0<x<1$
$\frac{2 \tan (x)}{\pi x}$	$x \geq 0$
$\frac{2}{\pi}\left(\frac{\sin (x)}{x}\right)^{2}$	$x \geq 0$

Here G is Catalan's constant ($0.9159855941772100 . .$.).
B. Find a direct method (l.e., one not involving rejection of any kind) for generating random varlates with distribution function $F(x)=1-e^{-a x-b x^{2}-c x^{3}}$ ($x \geq 0$), where $a, b, c>0$ are parameters.
7. Someone shows you the rejection algorithm given below. Find the density of the generated random varlate. Find the dominating density used in the rejection method, and determine the rejection constant.

REPEAT

Generate iid uniform $[0,1]$ random variates U_{1}, U_{2}, U_{3}.
UNTIL $U_{3}\left(1+U_{1} U_{2}\right) \leq 1$
RETURN $X \leftarrow-\log \left(U_{1} U_{2}\right)$
8. Find a simple function of two lld unlform $[0,1]$ random varlates which has distribution function $F(x)=1-\frac{\log (1+x)}{x} \quad(x>0)$. This distribution function is important in the theory of records (see e.g. Shorrock, 1972).
9. Glve simple rejection algorithms with good rejection constants for generating discrete random varlates with distrlbutlons determined as follows:

p_{n}	Range for n
$\frac{4}{\pi} \arctan \left(\frac{1}{2 n^{2}}\right)$	$n \geq 1$
$\frac{8}{\pi} \frac{1}{(4 n+1)(4 n+3)}$	$n \geq 0$
$\frac{8}{\pi^{2}} \frac{1}{(2 n+1)^{2}}$	$n \geq 0$
$\frac{4}{\pi} \arctan \left(\frac{1}{n^{2}+n+1}\right)$	$n \geq 1$

10. The hypoexponential distribution. Glve a unlformly fast generator for the famlly of hypoexponential densittes given by

$$
f(x)=\frac{\lambda \mu}{\mu-\lambda}\left(e^{-\lambda x}-e^{-\mu x}\right) \quad(x>0),
$$

where $\mu>\lambda>0$ are the parameters of the distribution.

2. THE FORSYTHE-VON NEUMANN METHOD.

2.1. Description of the method.

In 1951, von Neumann presented an ingenlous method for generating exponentlal random varlates which requires only comparisons and a perfect unlform $[0,1]$ random variate generator. The exponentlal distribution is entirely obtalned by manlpulating the outcomes of the comparisons. Forsythe (1872) later generallzed the technique to other dlstributions, albelt at the expense of slmpllclty slnce the method requires more than just comparlsons. The method was then applled with a great deal of success in normal random varlate generation (Ahrens and Dleter, 1973; Brent, 1974) and even in beta and gamma generators (Atkinson and Pearce, 1976). Unfortunately, in the last decade, most of the algorithms based on the Forsythe-von Neumann method have been surpassed by other algorlthms partlally due to the discovery of the allas and acceptance-complement methods. The method is expensive in terms of unlform $[0,1]$ random varlates unless spectal "tricks" are used to reduce the number. In addition, for general distributlons, there is a tedlous set-up step which makes the algorithm virtually Inaccessible to the average user.

Just how comparisons can be manlpulated to create exponentlally distrlbuted random varlables is clear from the following Theorem.

Theorem 2.1.

Let X_{1}, X_{2}, \ldots be lld random varlables with distribution function F. Then:
(1) $P\left(x \geq X_{1} \geq \cdots \geq X_{k-1}<X_{k}\right)=\frac{F(x)^{k-1}}{(k-1)!}-\frac{F(x)^{k}}{k!} \quad$ (all x).
(ii) If the random varlable K is determined by the condition $x \geq X_{1} \geq \cdots \geq X_{K-1}<X_{K}$, then $P(K$ odd $)=e^{-F(x)}$, all x.
(i11) If Y has distribution function G and is independent of the X_{i} 's, and if K is defined by the condition $Y \geq X_{1} \geq \cdots \geq X_{K-1}<X_{K}$, then

$$
\left.P(Y \leq x \mid K \text { odd })=\frac{\int_{-\infty}^{x} e^{-F(y)} d G(y)}{\int_{-\infty}^{+\infty} e^{-F(y)} d G(y)} \quad \text { (all } x\right)
$$

Proof of Theorem 2.1.

For flxed x,

$$
P\left(x \geq X_{1} \geq \cdots \geq X_{k}\right)=\frac{1}{k!} P\left(\max _{i \leq k} X_{i} \leq x\right)=\frac{F(x)^{k}}{k!} .
$$

Thus,

$$
\begin{aligned}
& P\left(x \geq X_{1} \geq \cdots \geq X_{k-1}<X_{k}\right) \\
& =P\left(x \geq X_{1} \geq \cdots \geq X_{k-1}\right)-P\left(x \geq X_{1} \geq \cdots \geq X_{k}\right) \\
& =\frac{F(x)^{k-1}}{(k-1)!}-\frac{F(x)^{k}}{k!} .
\end{aligned}
$$

Also,

$$
P(K \text { odd })=\left(1-\frac{F(x)}{1!}\right)+\left(\frac{F(x)^{2}}{2!}-\frac{F(x)^{3}}{3!}\right)+\cdots=e^{-F(x)} .
$$

Part (iII) of the theorem finally follows from the following equalitles:

$$
\begin{aligned}
& P(Y \leq x, K \text { odd })=\int_{-\infty}^{x} P(K \text { odd } \mid Y=y) d G(y)=\int_{-\infty}^{x} e^{-F(y)} d G(y), \\
& P(K \text { odd })=\int_{-\infty}^{+\infty} e^{-F(y)} d G(y) .
\end{aligned}
$$

We can now describe Forsythe's method (Forsythe, 1972) for densitles f which can be written as follows:

$$
f(x)=c g(x) e^{-F(x)}
$$

where g is a density, $0 \leq F(x) \leq 1$ is some function (not necessarily a distribution function), and c is a normallzation constant.

Forsythe's method

REPEAT

Generate a random variate X with density g.
$W \leftarrow F(X)$
$K \leftarrow 1$
Stop - False (Stop is an auxiliary variable for getting out of the next loop.)
REPEAT
Generate a uniform $[0,1]$ random variate U.
IF $U>W$
THEN Stop \leftarrow True
ELSE $W \leftarrow U, K \leftarrow K+1$
UNTIL Stop'
UNTIL K odd
RETURN X

We will first verlfy with the help of Theorem 2.1 that thls algorithm is valld. First, for flxed $X=x$, we have for the first Iteration of the outer loop,

$$
P(K \text { odd })=e^{-F(x)}
$$

Thus, at the end of the first iteration,

$$
P(X \leq x, K \text { odd })=\int_{-\infty}^{x} e^{-F(y)} g(y) d y
$$

Arguing as in the proof of the properties of the rejectlon method, we deduce that:
(1) The returned random variate X satisfles

$$
P(X \leq x)=\int_{-\infty}^{x} c e^{-F(y)} g(y) d y
$$

Thus, it has density $c e^{-F(x)} g(x)$.
(11) The expected number of outer loops executed before halting is $\frac{1}{p}$ where p is the probability of exit, i.e. $p=P(K$ odd $)=\int_{-\infty}^{+\infty} e^{-F(y)} g(y) d y$.
(iii) In any single Iteration,

$$
\begin{aligned}
& E(K)=\int\left(1\left(1-\frac{F(x)}{1!}\right)+2\left(\frac{F(x)}{1!}-\frac{F(x)^{2}}{2!}\right)+\cdots\right) g(x) d x \\
& =\int\left(1+\frac{F(x)}{1!}+\frac{F(x)^{2}}{2!}+\cdots\right) g(x) d x \\
& =\int e^{F(x)} g(x) d x
\end{aligned}
$$

(iv) If N is the total number of uniform $[0,1]$ random varlates required, then (by Wald's equation)

$$
E(N)=\frac{1+E(K)}{p}=\frac{1+\int e^{F(x)} g(x) d x}{\int e^{-F(x)} g(x) d x}
$$

In addition to the N unlform random varlates, we also need on the average $\frac{1}{p}$ random varlates with density g. It should be mentioned though that g is often uniform on $[0,1]$ so that this causes no major drawbacks. In that case, the total expected number of unform random varlates needed is at least equal to $\left||f|_{\infty}\right.$ (thls follows from Letac's lower bound). From (iv) above, we deduce that

$$
2 \leq E(N) \leq \frac{1+e}{\frac{1}{e}}=e+e^{2}
$$

Observe that Forsythe's method does not require any exponentlation. There are of course about $\frac{1}{p}$ evaluations of F. If we were to use the rejection method with as dominating density g, then p would be exactly the same as here. Per iteration, we would also need a g-distributed random varlate, one unlform random varlate, and one computation of e^{-F}. In a nutshell, we have replaced the latter evaluation by a (usually) cheaper evaluation of F and some additional unlform random varlates. If exponential random varlates are cheap, then we can in the rejection method replace the e^{-F} evaluation by an evaluation of F if we replace also the uniform random varlate by the exponential random varlate. In such situations, it seems very unllkely that Forsythe's method will be faster.

One of the dlsadvantages of the algorithm shown above is that F must take values in $[0,1]$, yet many common densities such as the exponential and normal densitles when put in a form useful for Forsythe's method, have unbounded F such as $F(x)=x$ or $F(x)=\frac{x^{2}}{2}$. To get around this, the real line must be broken up into pleces, and each plece treated separately. This will be documented further on. It should be pointed out however that the rejection method for $f=c e^{-F} g$ puts no restrictions on the slze of F.

2.2. Von Neumann's exponential random variate generator.

A basic property of the exponentlal distrlbution is given in Lemma 2.1:

Lemma 2.1.

An exponentlai random varlable E is distributed as $(Z-1) \mu+Y$ where Z, Y are independent random variables and $\mu>0$ is an arbltrary positive number: Z is geometrically distributed with

$$
P(Z=i)=\int_{(i-1) \mu}^{i \mu} e^{-x} d x=e^{-(i-1) \mu-e^{-i \mu} \quad(i \geq 1), ~}
$$

and Y is a truncated exponential random variable with density

$$
f(x)=\frac{e^{-x}}{1-e^{-\mu}} \quad(0 \leq x \leq \mu)
$$

Proof of Lemma 2.1.

Stralghtforward.

If we choose $\mu=1$, then Forsythe's method can be used directly for the generation of Y. Since in this case $F(x)=x$, nothing but uniform random varlates are required:
von Neumann's exponential random variate generator
REPEAT
Generate a uniform $[0,1]$ random variate Y. Set $W \leftarrow Y$.
$K \leftarrow 1$
Stop \leftarrow False
REPEAT
Generate a uniform $[0,1]$ random variate U. IF $U>W$

THEN Stop - True
ELSE $W \leftarrow U, \dot{K} \leftarrow K+1$
UNTIL Stop
UNTIL K odd
Generate a geometric random variate Z with $P(Z=i)=\left(1-\frac{1}{e}\right)\left(\frac{1}{e}\right)^{i-1}(i \geq 1)$.
RETURN $X \leftarrow(Z-1)+Y$

The remarkable fact is that this method requires only comparisons, unlform random varlates, and a counter. A quick analysis shows that $p=P(K$ odd $)=\int_{0}^{1} e^{-x} d x=1-\frac{1}{e}$. Thus, the expected number of unform random variates needed is

$$
E(\dot{N})=\frac{1+\int_{0}^{1} e^{x} d x}{\int_{0}^{1} e^{-x} d x}=\frac{e^{2}}{e-1}
$$

Thls is a high bottom llne. Von Neumann has noted that to generate Z, we need not carry out a new experiment. It suffices to count the number of executions of the outer loop: this is geometrically distributed with the correct parameter, and turns out to be independent of Y.

2.3. Monahan's generalization.

Monahan (1979) generallzed the Forsythe-von Neumann method for generating random varlates X with distribution function

$$
F(x)=\frac{H(-G(x))}{H(-1)}
$$

where

$$
H(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

$1=a_{1} \geq a_{2} \geq \cdots \geq 0$ is a given sequence of constants, and G is a given distribution function.

Theorem 2.2. (Monahan, 1979)

The following algorithm generates a random varlate X with distribution function F :

Monahan's algorithm

REPEAT

Generate a random variate X with distribution function G.
$K \leftarrow 1$
Stop \leftarrow False
REPEAT
Generate a random variate U with distribution function G. Generate a uniform [0,1] random variate V.
IF $U \leq X$ AND $V \leq \frac{a_{K+1}}{a_{K}}$
THEN $K \leftarrow K+1$
ELSE Stop \leftarrow True
UNTIL Stop
UNTIL K odd
RETURN X

The expected number of random varlates with distribution function G is

$$
\frac{1+H(1)}{-H(-1)} .
$$

Proof of Theorem 2.2.

We deflne the event A_{n} by $\left[X=\max \left(X, U_{1}, \ldots, U_{n}\right), Z_{1}=\cdots=Z_{n}=1\right]$, where the U_{i} 's refer to the random variates U generated in the inner loop, and the Z_{i} 's are Bernoulll random varlables equal to consecutive values of I

$$
\left.\left\lvert\, V \leq \frac{a_{4}+1}{a_{1}}\right.\right]^{\circ}
$$

Thus,

$$
\begin{aligned}
& P\left(X \leq x, A_{n}\right)=a_{n} G(x)^{n} \\
& P\left(X \leq x, A_{n}, A_{n+1}{ }^{c}\right)=a_{n} G(x)^{n}-a_{n+1} G(x)^{n+1} .
\end{aligned}
$$

We will call the probabllity that X is accepted p_{0}. Then

$$
p_{0}=P(K \text { odd })=\sum_{n=1}^{\infty} a_{n}(-1)^{n+1}=H(-1)
$$

Thus, the returned X has distribution function

$$
F(x)=P(X \leq x)=\frac{\sum_{n=1}^{\infty} a_{n} G(x)^{n}(-1)^{n+1}}{p_{0}}=\frac{H(-G(x))}{H(-1)}
$$

The expected number of G-distrlbuted random varlates needed is $E(N)$ where

$$
\begin{aligned}
& E(N)=\frac{1}{p_{0}} \sum_{n=1}^{\infty}(n+1) P\left(A_{n} A_{n+1}^{c}\right) \\
& =\sum_{n=1}^{\infty}(n+1) \frac{a_{n}-a_{n+1}}{p_{0}} \\
& =\frac{1+\sum_{n=1}^{\infty} a_{n}}{p_{0}} \\
& =\frac{1+H(1)}{-H(-1)}
\end{aligned}
$$

Example 2.1.

Consider the distribution function

$$
F(x)=1-\cos \left(\frac{\pi x}{2}\right) \quad(0 \leq x \leq 1)
$$

To put this in the form of Theorem 2.2, we choose another distribution function, $G(x)=x^{2} \quad(0 \leq x \leq 1)$, and note that

$$
F(x)=\frac{H(-G(x))}{H(-1)}
$$

where

$$
H(x)=x+\frac{\pi^{2}}{48} x^{2}+\frac{\pi^{4}}{5780} x^{3}+\cdots+\frac{\pi^{2 i-2}}{2^{2 i-3}(2 i)!} x^{i}+\cdots
$$

One can easlly show that $p_{0}=H(-1)=\frac{8}{\pi^{2}}$, whlle $E(N)$ is approximately 2.74 . Also, all the conditlons of Theorem 2.2 are satlsfled. Random varlates with thls distribution function can of course be obtalned by the inversion method too, as $\frac{2}{\pi} \arccos (U)$ where U is a unlform [0,1] random varlate. Monahan's algorithm avolds of course any evaluation of a transcendental functlon. The complete algorithm can be summarized as follows, after we have noted that

$$
\frac{a_{n+1}}{a_{n}}=\left(\frac{\pi}{2}\right)^{2} \frac{1}{(2 n+2)(2 n+1)}:
$$

REPEAT

Generate $X \leftarrow \max \left(U_{1}, U_{2}\right)$ where U_{1}, U_{2} are iid uniform $[0,1]$ random variates.
$K \leftarrow 1$
Stop \leftarrow False
REPEAT
Generate U, distributed as X.
Generate a uniform $[0,1]$ random variate V.
IF $U \leq X$ AND $V \leq \frac{\left(\frac{\pi}{2}\right)^{2}}{4 K^{2}+6 K+2}$
THEN $K \leftarrow K+1$ ELSE Stop \leftarrow True
UNTIL Stop
UNTIL K odd
RETURN X

2.4. An example: Vaduva's gamma generator.

We will apply the Forsythe-von Neumann method to develop a gamma generator when the parameter a is $\ln (0,1]$. Vaduva (1977) suggests handling the part of the gamma density on $[0,1]$ separately. This part is

$$
f(x)=c\left(a x^{a-1}\right) e^{-x} \quad(0<x \leq 1),
$$

where c is a normalization constant. This is in the form $c g(x) e^{-F(x)}$ for a density g and a $[0,1]$-valued function F. Random varlates with density $g(x)=a x^{a-1}$ can be generated as $U^{\frac{1}{a}}$ where U is a uniform $[0,1]$ random varlate. Thus, we can proceed as follows:

Vadura's generator for the left part of the gamma density
repeat
Generate a uniform $[0,1]$ random variate U. Set $X \leftarrow U^{\frac{1}{a}}$.
$W \leftarrow X$
$K \curvearrowleft 1$
Stop \leftarrow False
REPEAT
Generate a uniform $[0,1]$ random variate U.
IF $U>W$
THEN Stop \leftarrow True
ELSE $W \leftarrow U, K \leftarrow K+1$
UNTIL Stop
UNTIL K odd
RETURN X

Let N be the number of unlform [0,1] random varlates required by this method. Then, as we have seen,

$$
E(N)=\frac{1+\int_{0}^{1} a x^{a-1} e^{x} d x}{\int_{0}^{1} a x^{a-1} e^{-x} d x}
$$

Lemma 2.2.

For Vaduva's partial gamma generator shown above, we have

$$
2 \leq E(N) \leq(2+a(e-1)) e^{\frac{a}{a+1}} \leq \sqrt{e}(e+1)
$$

and

$$
\lim _{a \downarrow 0} E(N)=2
$$

Proof of Lemma 2.2.

Flrst, we have

$$
\begin{aligned}
& 1=\int_{0}^{1} a x^{a-1} d x \geq \int_{0}^{1} a x^{a-1} e^{-x} d x \\
& =E\left(e^{-Y}\right) \quad \text { (where } Y \text { is a random variable with density } a x^{a-1} \text {) } \\
& \geq e^{-E(Y) \quad \text { (by Jensen's inequallty) }} \\
& =e^{\frac{-a}{a+1}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& 1 \leq \int_{0}^{1} a x^{a-1} e^{x} d x \\
& \left.=1+\frac{a}{a+1}+\frac{a}{2!(a+2)}+\cdots \quad \text { (by expansion of } e^{x}\right) \\
& \leq 1+a\left(1+\frac{1}{2!}+\frac{1}{3!}+\cdots\right) \\
& =1+a(e-1)
\end{aligned}
$$

Putting all of this together gives us the first Inequallty. Note that the supremum of the upper bound for $E(N)$ is obtained for $a=1$. Also, the llmit as $a \downarrow 0$ follows from the inequality.

What is Important here is that the expected time taken by the algorithm remalns unlformly bounded in a. We have also established that the algorithm seems most efflctent when a is near 0 . Nevertheless, the algorithm seems less efflcient than the rejection method with dominating density g developed in Example II.3.3. There the reJectlon constant was

$$
c=\frac{1}{\int_{0}^{1} a x^{a-1} e^{-x} d x}
$$

which is known to lle between 1 and $e^{\frac{a}{a+1}}$. Purely on the basis of expected number of unlform random varlates required, we see that the rejection method has $2 \leq E(N) \leq 2 e^{\frac{a}{a+1}} \leq 2 \sqrt{e}$. Thls is better than for Forsythe's method for all values of a. See also exercise 2.2 .

2.5. Exercises.

1. Apply Monahan's theorem to the exponential distribution where $H(x)=e^{x}-1, G(x)=x, 0<x<1, \quad$ and $\quad F(x)=\frac{\left(1-e^{-x}\right)}{1-\frac{1}{e}}$. Prove that $p_{0}=1-\frac{1}{e}$ and that $E(N)=\frac{e}{e-1}$ (Monahan, 1879).
2. We can use decomposition to generate gamma random varlates with parameter $a \leq 1$. The restriction of the gamma density to $[0,1]$ is dealt with in the text. For the gamma denslty restricted to $[1, \infty)$ rejection can be used based upon the dominating denslty $g(x)=e^{1-x} \quad(x \geq 1)$. Show that thls leads to the following algorithm:

REPEAT

Generate an exponential random variate E. Set $X \longleftarrow 1+E$.
Generate a uniform $[0,1]$ random variate U. Set $Y \leftarrow U^{-\frac{1}{1-a}}$.
UNTIL $X \leq Y$ RETURN X

Show that the expected number of iterations is $\frac{1}{\infty}$, and that this

$$
\int e^{1-x} x^{a-1} d x
$$

varles monotonically from 1 (for $a=1$) to $\frac{1^{1}}{\infty e^{1-x}}$ (as $a \downarrow 0$).

$$
\int_{1}^{\infty} \frac{e^{1-x}}{x} d x
$$

3. Complicated densities are often cut up into pleces, and each plece is treated separately. This usually ylelds problems of the following type: $f(x)=c e^{-F(x)}(a \leq x \leq b)$, where $0 \leq F(x) \leq F * \leq 1$, and $F *$ is usually much smaller than 1 . This is another way of putting that f varles very litthe on $[a, b]$. Show that the expected number of unform random varlates
needed In Forsythe's algorithm does not exceed $e^{F *}+e^{2 F *}$. In other words, thls approaches 2 very quickly as $F * \downarrow$.

3. ALMOST-EXACT INVERSION.

3.1. Definition.

A random varlate with absolutely continuous distribution function F can be generated as $F^{-1}(U)$ where U is a unlform $[0,1]$ random varlate. Often, F^{-1} is not feasible to compute, but can be well approximated by an easy-to-compute strictly Increasing absolutely continuous function ψ. Of course, $\psi(U)$ does not have the desired distribution unless $\psi=F^{-1}$. But it is true that $\psi(Y)$ has distribution function F where Y is a random varlate with a nearly unlform density. The density h of Y is given by

$$
h(y)=f(\psi(y)) \psi^{\prime}(y),
$$

where f is the density corresponding to F. The almost-exact inversion method can be summarized as follows:

Almost-exact inversion

Generate a random variate Y with density h.
RETURN $\psi(Y)$

The point is that we gain if two conditions are satisfled: (1) ψ is easy to compute; (II) random varlates with density h are easy to generate. But because we can choose ψ from among wide classes of transformations, it should be obvlous that thls freedom can be explolted to make generation with density h easler. Marsaglla (1977, 1980, 1984) has made the almost-exact inversion method into an art. His contrlbutlons are best explained in a serles of examples and exerclses, including generators for the gamma and t distributions.

Just how one measures the goodness of a certaln transformation ψ depends upon how one wants to generate Y. For example, if stralghtforward rejection from a uniform density is used, then the smallness of the rejection constant

$$
c=\sup _{y} h(y)
$$

would be a good measure. On the other hand, if h is treated via the mixture method and h is decomposed as

$$
h(y)=p I_{[0,1]}(y)+(1-p) r(y),
$$

then the probability p is a good measure, since the residual density r is normally difficult. A value close to 1 is highly desirable here. Note that in any case,

$$
p \leq \operatorname{lnf}_{y \in[0,1]} h(y)
$$

Thus, ψ will often be chosen so as to minimize c or to maximize p, depending upon the generator for h.

All of the above can be repeated if we take a convenient non-unlform distribution as our starting polnt. In particular, the normal density seems a useful cholce when the target densitles are the gamma or t densities. This generallzation too will be discussed in this section.

3.2. Monotone densities on $[0, \infty)$.

Nonincreasing densitles f on the positive real line have sometimes a shape that is similar to that of $\frac{\theta}{(1+\theta x)^{2}}$ where $\theta>0$ is a parameter. Since this is the density of the distribution function $\frac{\theta x}{1+\theta x}$, we could look at transformations ψ deflned by

$$
\psi(y)=\frac{y}{\theta(1-y)}
$$

In this case, h becomes:

$$
h(y)=f\left(\frac{y}{\theta(1-y)}\right) \frac{1}{\theta(1-y)^{2}} \quad(0 \leq y \leq 1)
$$

For example, for the exponential denslty, we obtaln

$$
h(y)=e^{-\frac{y}{\theta(1-y)}} \frac{1}{\theta(1-y)^{2}} \quad(0 \leq y \leq 1)
$$

Assume that we use rejection from the uniform density for generation of random varlates with density h. This suggests that we should try to minimize sup h. By elementary computations, one can see that h is maximal for $1-y=\frac{1}{2 \theta}$, and that the maximal value is

$$
4 \theta e^{\frac{1}{\theta}-2}
$$

which is minimal for $\theta=1$. The minimal value is $\frac{4}{e}=1.4715177 \ldots$. The rejection algorithm for h requires the evaluation of an exponent in every iteration, and is therefore not competitive. For this reason, the composition approach is much more llkely to produce good results.

3.3. Polya's approximation for the normal distribution.

In this section, we will lllustrate the composition approach. The example is due to Marsaglla (1984). For the inverse F^{-1} of the absolute normal distribution functlon F, Polya (1949) suggested the approximation

$$
\psi(y)=\sqrt{-\theta \log \left(1-y^{2}\right)} \quad(0 \leq y \leq 1),
$$

where he took $\theta=\frac{\pi}{2}$. Let us keep θ free for the time belng. For thls transformatlon, the density $h(y)$ of Y is

$$
h(y)=\frac{1}{\sqrt{2 \pi}} \frac{\theta y\left(1-y^{2}\right)^{\frac{\theta}{2}-1}}{\sqrt{-\theta \log \left(1-y^{2}\right)}} \quad(0 \leq y \leq 1)
$$

Let us now choose θ so that $\operatorname{lin}_{\{0,1]} h(y)$ is maximal. This occurs for $\theta \approx 1.553$ (which is close to but not equal to Polya's constant, because our criterion for closeness is different). The corresponding value p of the inflmum is about 0.985 . Thus, random varlates with density h can be generated as shown in the next algorlthm:

Normal generator based on Polya's approximation

Generate a uniform $[0,1]$ random variate U.
IF $U \leq p$ (p is about 0.985 for the optimal choice of θ)
THEN RETURN $\psi\left(\frac{U}{p}\right)\left(\right.$ where $\left.\psi(y)=\sqrt{-\theta \log \left(1-y^{2}\right)}\right)$
ELSE
Generate a random variate Y with residual density $\frac{(h(y)-p)}{(1-p)}(0 \leq y \leq 1)$. RETURN $\psi(Y)$

The detalls, such as a generator for the residual density, are delegated to exercise 3.5. It is worth pointing out however that the unlform random variate U is used In the selection of a mixture denslty and in the returned variate $\psi\left(\frac{U}{p}\right)$. For this reason, it is "almost" true that we have one normal random varlate per uniform random varlate.

3.4. Approximations by simple functions of normal random variates.

In analogy with the development for the unlform distribution, we can look at other common distributions such as the normal distribution. The question now is to find an easy to compute function ψ such that $\psi(Y)$ has the desired density, where now Y is nearly normally distributed. In fact, Y should have density h given in the introduction:

$$
h(y)=f(\psi(y)) \psi^{\prime}(y) \quad(y \in R)
$$

Usually, the purpose is to maximize p in the decomposition

$$
h(y)=p\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}\right)+(1-p) r(y)
$$

where r is a residual density. Then, the following algorlthm suggested by Marsaglia (1984) can be used:

Marsaglia's almost-exact inversion algorithm

Generate a uniform $[0,1]$ random variate U.
IF $U \leq p$
THEN Generate a normal random variate Y.
ELSE Generate a random variate Y with residual density r.
RETURN $\psi(Y)$

For the selection of ψ, one can elther look at large classes of simple functions or scan the literature for transformations. For popular distributions, the latter route is often surprisingly efficient. Let us Illustrate this for the gamma (a) density. In the table shown below, several choices for ψ are given that transform normal random varlates in nearly gamma random varlates (and hopefully nearly normal random varlates into exact gamma random varlates).

Method	$\psi(y)$	Reference
	$a+y \sqrt{a}$	Central limit theorem
Freeman-Tukey	$\frac{(y+\sqrt{4 a})^{2}}{4}$	Freeman and Tukey (1950)
Fisher	$\frac{(y+\sqrt{4 a-1})^{2}}{4}$	
Wilson-Hilferty	$a\left(\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a}\right)^{3}$	Wilson and Hilferty (1931)
Marsaglia	$a-\frac{1}{3}+p y \sqrt{a}+\frac{y^{2}}{3}, p=1-\frac{0.16}{a}$	Marsaglia (1984)

In this table we omitted on purpose more complicated and often better approximations such as those of Cornish-Fisher, Severo-Zelen and Pelzer-Pratt. For a comparative study and a blbllography of such approximations, the reader should consult Narula and Ll (1977). Bolshev $(1959,1963)$ glves a good account of how
one can obtaln normallzing transformations in general. Note that our table contalns only stmple polynomlal transformatlons. For example, Marsaglia's quadratic transformation is such that

$$
h(y)=p\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}\right)+(1-p) r(y),
$$

where $p=1-\frac{0.16}{a}$. For example, when $a=16$, we have $p=0.99$. See exerclse 3.1 for more information.

The Wilson-Hllferty transformation was flrst used by Greenwood (1974) and later by Marsaglia (1877). We first verlfy that h now is

$$
h(y)=c z^{3 a-1} e^{-a z^{3}} \quad\left(z=\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a} \geq 0\right),
$$

where c is a normallzation constant. The algorithm now becomes:

Gamma generator based upon the Wilson-Hilferty approximation

Generate a random variate Y with density h.
RETURN $X \leftarrow \psi(Y)=a\left(\frac{Y}{\sqrt{9 a}}+1-\frac{1}{9 a}\right)^{3}$

Generation from h is done now by rejection from a normal denslty. The detalls require careful analysis, and it is worthwhile to do this once. The normal density used for the rejection differs sllghtly from that used by Marsaglla (1977). The story is told in terms of inequallties. We have

Lemma 3.1.

Assume that $a>\frac{1}{3}$. Define $z=\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a}$, and $z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$. Deffne the density $h(y)=c z^{3 a-1} e^{-a z^{3}}, z \geq 0$ (note: this 1 s a density $\ln y$, not $\ln z$), where c is a normallzation constant. Then, the following Inequallty is valld for $z \geq 0$:

$$
\frac{z^{3 a-1} e^{-a z^{3}}}{z_{0}^{3 a-1} e^{-a z_{0}^{3}}} \leq e^{-\frac{\left(z-z_{0}\right)^{2}}{2 \sigma^{2}}}
$$

where $\sigma^{2}=\frac{1}{8 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}}$.

Proof of Lemma 3.1.

The proof is based upon the Taylor serles expanslon. We will write $e^{g(z)}$ instead of $h(y)$ for notational convenlence. Thus,

$$
g(z)=-a z^{3}+(3 a-1) \log z+\log c
$$

This function is majorized by a quadratic polynomial in z for thls will give us a normal dominating density. In such situations, it helps to expand the function about a point z_{0}. This polnt should be picked in such a way that it corresponds to the peak of g because dolng so will ellminate the linear term in Taylor's serles expanslon. Note that

$$
\begin{aligned}
& g^{\prime}(z)=-3 a z^{2}+\frac{3 a-1}{z}, \\
& g^{\prime \prime}(z)=-8 a z-\frac{3 a-1}{z^{2}}, \\
& g^{\prime \prime \prime}(z)=-8 a+\frac{8 a-2}{z^{3}} .
\end{aligned}
$$

We see that $g^{\prime}(z)=0$ for $z=z_{0}$. Thus, by Taylor's serles expansion,

$$
g(z)=g\left(z_{0}\right)+\frac{1}{2}\left(z-z_{0}\right)^{2} g^{\prime \prime}(\xi),
$$

where ξ is \ln the interval $\left[z, z_{0}\right]$ (or $\left[z_{0}, z\right]$). We obtain our result if we can show that

$$
\sup _{\xi \geq 0} g^{\prime \prime}(\xi) \leq-\frac{1}{\sigma^{2}}
$$

But when we look at $g^{\prime \prime \prime}$, we notice that it is zero for $z=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$. It is not difficult to verify that for this value, $g^{\prime \prime}$ attalns a maximum on the positive half of the real llne. Thus,

$$
\sup _{\xi \geq 0} g^{\prime \prime}(\xi) \leq-9 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}
$$

This concludes the proof of Lemma 3.1.

The first version of the rejection algorithm is given below.

First version of the Wilson-Hilferty based gamma generator

[SET-UP]
Set $\sigma^{2} \leftarrow \frac{1}{9 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}}, z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$.
[GENERATOR]
REPEAT
Generate a normal random variate N and a uniform $[0,1]$ random variate U.
Set $Z-z_{0}+\sigma N$
UNTIL $Z \geq 0$ AND $U e^{-\frac{(Z-z)^{2}}{2 \sigma^{2}}} \leq\left(\frac{Z}{z_{0}}\right)^{3 a-1} e^{-a\left(Z^{3}-z_{0}{ }^{3}\right)}$
RETURN $X \leftarrow a Z^{3}$

Note that we have used here the fact that $z=\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a}$. There are two things left to the designer. First, we need to check how efficlent the algorithm is. This in effect bolls down to verifying what the rejection constant is. Then, we need to streamllne the algorlthm. This can be done in several ways. For example, the acceptance condltion can be replaced by

UNTIL $Z \geq 0$ AND $-E-\frac{\left(Z-z_{0}\right)^{2}}{2 \sigma^{2}} \leq(3 a-1) \log \left(\frac{Z}{z_{0}}\right)-a\left(Z^{3}-z_{0}{ }^{3}\right)$
where E is an exponential random varlate. Also, $\frac{\left(Z-z_{0}\right)^{2}}{2 \sigma^{2}}$ is nothing but $\frac{N^{2}}{2}$. Additlonally, we could add a squeeze step by using sharp inequalitles for the logarithm. Note that $\frac{Z}{z_{0}}=1+\frac{\sigma N}{z_{0}}$, so that for large values of a, Z is close to z_{0} which in turn is close to 1 . Thus, inequalities for the logarlthm should be sharp near 1. Such inequalities are glven for example in the next Lemma.

Lemma 3.2.

Let $x \in[0,1)$. Then the following serles expansion is valld:

$$
\log (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\cdots
$$

Thus, for $k \geq 1$,

$$
-\sum_{i=1}^{k} \frac{1}{i} x^{i} \geq \log (1-x) \geq-\sum_{i<k} \frac{1}{i} x^{i}-\frac{1}{k} \frac{x^{k}}{1-x}
$$

Furthermore, for $x \leq 0$, and k odd,

$$
-\sum_{i=1}^{k+1} \frac{1}{i} x^{i} \leq \log (1-x) \leq-\sum_{i=1}^{k} \frac{1}{i} x^{i}
$$

Proof of Lemma 3.2.

We note that in all cases,

$$
-\log (1-x)=\sum_{i=1}^{k} \frac{1}{i} x^{i}+\frac{x^{k}}{k(1-\xi)^{k}}
$$

where ξ is between 0 and x. The bounds are obtained by looking at the $k-\mathrm{th}$ term in the sums. Consider first $0 \leq \xi \leq x<1$. Then, the k-th term is at least equal to $\frac{x^{k}}{k}$. If $x \leq \xi \leq 0$ and k is odd, then the same is true. If however k is even, then the k-th term is majorized by $\frac{x^{k}}{k}$.

We also note that for $0 \leq x<1$,

$$
\begin{aligned}
& -\log (1-x)=x+\frac{1}{2} x^{2}+\cdots \leq x+\cdots+\frac{1}{k} x^{k}\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& =\sum_{i=1}^{k} \frac{1}{k} \frac{x^{i}}{1-x}
\end{aligned}
$$

Let us return now to the algorithm, and use these Inequallties to avold computing the logarithm most of the time by introducing a quick acceptance step.

Second version of the Wilson-Hilferty based gamma generator

[SET-UP]
Set $\sigma^{2} \leftarrow \frac{1}{9 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}}, z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}, z_{1} \leftarrow a-\frac{1}{3}$.
[GENERATOR]
REPEAT
Generate a normal random variate N and an exponential random variate E.
Set $Z \leftarrow z_{0}+\sigma N$ (auxiliary variate)
Set $X \leftarrow a Z^{3}$ (variate to be returned)
$W \leftarrow \frac{\sigma N}{Z}$ (note that $W=1-\frac{z_{0}}{Z}$)
Set $S \leftarrow-E-\frac{N^{2}}{2}+\left(X-z_{1}\right)$
Accept $\leftarrow\left[S \leq(3 a-1)\left(W+\frac{1}{2} W^{2}+\frac{1}{3} W^{3}\right)\right]$ AND $[Z \geq 0]$
IF NOT Accept
THEN Accept $\leftarrow[S \leq-(3 a-1) \log (1-W)]$ AND $[Z \geq 0]$
UNTIL Accept
RETURN X

In this second verslon, we have Implemented most of the suggested improvements. The algorithm is only applicable for $a>\frac{1}{3}$ and differs slightly from the algorlthms proposed in Greenwood (1974) and Marsaglla (1977). Obvious things such as the observation that ($W+\frac{1}{2} W^{2}+\frac{1}{3} W^{3}$) should be evaluated by Horner's rule, are not usually shown in our algorithms. There are two quantlties that should be analyzed:
(1) The expected number of iterations before halting.
(11) The expected number of computations of the logarithm in the acceptance step (a comparlson with (l) wlll show us how efflclent the squeeze step is).

Lemma 3.3.

The expected number of iterations of the algorithm given above (or its rejectlon constant) is

$$
\left(\frac{\sqrt{a} a^{a-1}}{\Gamma(a)}\right)\left(\frac{3 a-1}{3 a}\right)^{a-\frac{1}{2}} e^{-a+\frac{1}{3}} \sqrt{2 \pi} .
$$

For $a \geq \frac{1}{2}$, this is less than $e^{\frac{1}{6 a}}$. It tends to 1 as $a \rightarrow \infty$ and to ∞ as $a \downarrow \frac{1}{3}$.

Proof of Lemma 3.3.

The area under the dominating curve for h is

$$
\int_{-\infty}^{\infty} h\left(z_{0}\right) e^{-\frac{\left(z-z_{0}\right)^{2}}{2 \sigma^{2}}} d y
$$

where we recall that $z=\frac{y}{\sqrt{8 a}}+1-\frac{1}{8 a}, z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$. Since $d y=\sqrt{\theta a} d z$, we see that this equals

$$
\begin{aligned}
& h\left(z_{0}\right) \sqrt{2 \pi} \sqrt{8 a} \sigma \\
& =c z_{0}^{3 a-1} e^{-a z 0_{0}^{3}} \sqrt{2 \pi} \frac{1}{\left(1-\frac{1}{3 a}\right)^{\frac{1}{6}}} \\
& =\left(\frac{\sqrt{a} a^{a-1}}{\Gamma(a)}\right)\left(\frac{3 a-1}{3 a}\right)^{a-\frac{1}{3}} e^{-a+\frac{1}{3}} \sqrt{2 \pi\left(\frac{3 a}{3 a-1}\right)^{\frac{1}{6}} .}
\end{aligned}
$$

Here we used the fact that the normalization constant c in the definition of h is $\frac{\sqrt{a} a^{a-1}}{\Gamma(a)}$, which is verlfied by noting that

$$
\int_{z \geq 0} z^{3 a-1} e^{-a z^{3}} d y=\frac{\Gamma(a)}{\sqrt{a} a^{a-1}}
$$

The remalnder of the proof is based upon simple facts about the Γ function: for example, the function stays bounded away from 0 on $[0, \infty)$. Also, for $a>0$,

$$
\Gamma(a)=\left(\frac{a}{e}\right)^{a} \sqrt{\frac{2 \pi}{a}} e^{\frac{\theta}{12 a}}
$$

where $0 \leq \theta \leq 1$. We will also need the elementary exponential inequalitles

$$
e^{-p x} \geq(1-x)^{p} \geq e^{-\frac{p x}{1-x}} \quad(p \geq 0,0 \leq x \leq 1)
$$

Using this in our expression for the rejection constant gives an upper bound

$$
\begin{aligned}
& \frac{\sqrt{a} a^{a-1} e^{a} \sqrt{2 \pi a} e^{-a+\frac{1}{3}}}{a^{a} \sqrt{2 \pi}}\left(\frac{3 a-1}{3 a}\right)^{a-\frac{1}{2}} \\
& =e^{\frac{1}{3}}\left(1-\frac{1}{3 a}\right)^{a-\frac{1}{2}} \\
& \leq e^{\frac{1}{3}-\left(a-\frac{1}{2}\right)(3 a)^{-1}} \\
& =e^{\frac{1}{6 a}}
\end{aligned}
$$

which is $1+\frac{1}{8 a}+O\left(\frac{1}{a^{2}}\right)$ as $a \rightarrow \infty$.

From Lemma 3.3, we conclude that the algorithm is not unlformly fast for $a \in\left(\frac{1}{3}, \infty\right)$. On the other hand, since the rejection constant is $1+\frac{1}{8 a}+O\left(\frac{1}{a^{2}}\right)$ as $a \rightarrow \infty$, it should be very efficient for large values of a. Because of thls good fit, it does not pay to introduce a quick rejection step. The quick acceptance step on the other hand is very effective, slnce asymptotically, the expected number of computations of a logarithm is o (1) (exercise 3.1). In fact, thls example is one of the most beautlful applications of the effectlve use of the squeeze princlple.

3.5. Exercises.

1. Conslder the Wilson-Hilferty based gamma generator developed in the text. Prove that the expected number of logarithm calls is o (1) as $a \rightarrow \infty$.
2. For the same generator, glve all the detalls of the proof that the expected number of Iterations tends to ∞ as $a \downarrow \frac{1}{3}$.
3. For Marsaglia's quadratic gamma-normal transformation, develop the entire comparison-based algorthm. Prove the valldty of hls claims about the value of p as a function of a. Develop a flxed residual density generator based upon rejection for

$$
r *(x)=\sup _{a \geq a_{0}} r(x)
$$

Here a_{o} is a real number. Thls helps because it avolds setting up constants each time. See Marsaglla (1984) for graphs of the residual densitles r.
4. Student's t-distribution. Consider the t-density

$$
f(x)=\frac{1}{\sqrt{\pi a}} \frac{\Gamma\left(\frac{a+1}{2}\right)}{\Gamma\left(\frac{a}{2}\right)} \frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}} .
$$

Find the best constant p if f is to be decomposed into a mixture of a normal and a residual density (p is the welght of the normal density). Repeat the same thing for $h(y)$ if we use almost-exact inversion with transformatlon

$$
\psi(y)=y+\frac{y+y^{3}}{4 a}
$$

Compare both values of p as a function of a. (This transformation was suggested by Marsaglla (1984).)
5. Work out all the detalls of the normal generator based on Polya's approximation.
8. Bolshev (1959,1963) suggests the following transformations which are supposed to produce nearly normally distributed random variables based upon sums of Ild uniform [0,1] random varlates. If X_{n} is $\sqrt{\frac{3}{n}} \sum_{i=1}^{n} U_{i}$ where the U_{i} 's are ind uniform $[0,1]$ random varlates, then

$$
Y_{n}=X_{n}-\frac{1}{20 n}\left(3 X_{n}-X_{n}^{3}\right)
$$

and

$$
Z_{n}=X_{n}-\frac{41}{13440 n^{2}}\left(X_{n}^{5}-10 X_{n}^{3}+15 X_{n}\right)
$$

are nearly normally distributed. Use thls to generate normal random varlates. Take $n=1,2,3$.
7. Show that the rejection constant of Lemma 3.3 is at most $\left(\frac{e^{2}}{3 a-1}\right)^{\frac{1}{6}}$ when $\frac{1}{3}<a \leq \frac{1}{2}$.
8. For the gamma density, the quadratic transformations lead to very simple rejection algorithms. As an example, take $s=a-\frac{1}{2}, t=\sqrt{\frac{s}{2}}$. Prove the following:
A. The density of $X=s\left(\sqrt{\frac{Z}{s}}-1\right)$ (where Z is gamma (a) distributed) is

$$
f(x)=c\left(1+\frac{x}{s}\right)^{2 a-1} e^{-2 x} e^{-\frac{x^{2}}{s}} \quad(x \geq-s)
$$

where $c=2 s^{a-1} e^{-s^{2}} / \Gamma(a)$.
B. We have

$$
f(x) \leq c e^{-\frac{x^{2}}{s}}
$$

C. If this inequality is used to generate random varlates with density f, then the rejection constant, $c \sqrt{\pi s}$, is $\sqrt{\frac{2 \pi}{e}}$ at $a=1$, and tends to
$\sqrt{2}$ as $a \nmid \infty$. Prove also that for all values $a>\frac{1}{2}$, the rejection constant Is bounded from above by $\sqrt{2} e^{\frac{1}{4 a}}$.
D. The raw almost-exact Inversion algorithm is:

Almost-exact inversion algorithm for gamma variates

REPEAT

Generate a normal random variate N and an exponential random variate E.

$$
X \leftarrow t N
$$

UNTIL $X \geq s$ AND $E-2 X+2 s \log \left(1+\frac{X}{s}\right) \geq 0$
RETURN $s\left(1+\frac{X}{s}\right)^{2}$
E. Introduce quick acceptance and rejection steps in the algorithm that are so accurate that the expected number of evaluations of the logarithm is o (1) as $a \uparrow \infty$. Prove the clalm.
Remark: for a very efficient implementation based upon another quadratic transformation, see Ahrens and Dieter (1982).

4. MANY-TO-ONE TRANSFORMATIONS.

4.1. The principle.

Sometimes it is possible to exploit some distributional propertles of random varlables. Assume for example that $\psi(X)$ has an easy denslty h, where X has density f. When ψ is a one-to-one transformation, X can then be generated as $\psi^{-1}(Y)$ where Y is a random varlate with the easy density h. A point in case is the inversion method of course where the easy density is the uniform density. There are important examples in which the transformation ψ is many-to-one, so that the inverse is not unlquely deflned. In that case, if there are k solutions X_{1}, \ldots, X_{k} of the equation $\psi(X)=Y$, it sufflces to choose among the $X_{i} \cdot \mathrm{~s}$. The probabllitles however depend upon Y. The usefulness of thls approach was first reallzed by Mlchael, Schucany and Hass (1976), who gave a comprehensive description and discussion of the method. They were motlvated by a simple fast algorlthm for the Inverse gausslan famlly based upon thls approach.

By far the most Important case is $k=2$, which is the one that we shall deal with here. Several Important examples are developed in subsections.

Assume that there exists a point t such that ψ^{\prime} is of one sign on $(-\infty, t)$ and on (t, ∞). For example, if $\psi(x)=x^{2}$, then $\psi^{\prime}(x)=2 x$ is nonpositive on $(-\infty, 0)$ and nonnegative on $(0, \infty)$, so that we can take $t=0$. We will use the notation

$$
x=l(y), x=r(y)
$$

for the two solutions of $y=\psi(x)$: here, l is the solution $\ln (-\infty, t)$, and r is the solution in (t, ∞). If ψ satisfles the conditions of Theorem I.4.1 on each interval, and X has denslty f, then $\psi(X)$ has density

$$
h(y)=\left|l^{\prime}(y)\right| f(l(y))+\left|r^{\prime}(y)\right| f(r(y))
$$

This is quickly verlfied by computing the distribution function of $\psi(X)$ and then taking the derlvative. Vice versa, glven a random varlate Y with density h, we can obtaln a random variate X with density f by choosing $X=l(Y)$ with probabllity

$$
\frac{\perp l^{\prime}(Y) \mid f(l(Y))}{h(Y)},
$$

and choosing $X=r(Y)$ otherwise. Note that $\left|l^{\prime}(y)\right|=1 /\left|\psi^{\prime}(l(y))\right|$. This, the method of Mlchael, Schucany and Haas (1876), can be summarized as follows:

Inversion of a many-to-one transformation

Generate a random variate Y with density h.
Generate a uniform $[0,1]$ random variate U.
Set $X_{1} \leftarrow l(Y), X_{2} \leftarrow r(Y)$
IF $U \leq \frac{1}{1+\frac{f\left(X_{2}\right)}{f\left(X_{1}\right)}\left|\frac{\psi^{\prime}\left(X_{1}\right)}{\psi^{\prime}\left(X_{2}\right)}\right|}$

THEN RETURN $X \leftarrow X_{1}$
ELSE RETURN $X \leftarrow X_{2}$

It will be clear from the examples that in many cases the expression in the selection step takes a stmple form.

4.2. The absolute value transformation.

The transformation $y=|x-t|$ for fixed t satisfles the conditions of the previous sectlon. Here we have $l(y)=t-y, r(y)=t+y$. Since $\left|\psi^{\prime}\right|$ remains constant, the decision is extremely simple. Thus, we have

Generate a random variate Y with density $h(y)=f(t-y)+f(t+y)$.
Generate a uniform $[0,1]$ random variate U.

$$
\begin{aligned}
& \text { IF } U \leq \frac{f(t-Y)}{f(t-Y)+f(t+Y)} \\
& \text { THEN RETURN } X \leftarrow t-Y \\
& \text { ELSE RETURN } X \leftarrow t+Y
\end{aligned}
$$

If f is symmetric about t, then the decisions $t-Y$ and $t+Y$ are equally llkely. Another Interesting case occurs when h is the unlform density. For example, consider the density

$$
f(x)=\frac{1+\cos x}{\pi} \quad(0 \leq x \leq \pi)
$$

Then, taking $t=\frac{\pi}{2}$, we see that

$$
h(y)=f(t-y)+f(t+y)=\frac{2}{\pi} \quad\left(0 \leq y \leq \frac{\pi}{2}\right) .
$$

Thus, we can generate random varlates with thls denslty as follows:

Generate two ild uniform $[0,1]$ random variates U, V.
Set $Y \leftarrow \frac{\pi V}{2}$.
IF $U \leq \frac{1+\cos Y}{2}$
THEN RETURN $X \leftarrow Y$
ELSE RETURN $X \leftarrow \pi-Y$

Here we have made use of additlonal symmetry in the problem. It should be noted that the evaluation of the cos can be avolded altogether by application of the serles method (see section 5.4).

4.3. The inverse gaussian distribution.

Mlchael, Schucany and Haas (1978) have successfully applled the many-toone transformation method to the inverse gaussian distribution. Before we proceed with the detalls of their algorithm, it is necessary to glve a short introductory tour of the distribution (see Folks and Chhikara (1878) for a survey).

A random varlable $X \geq 0$ with density

$$
f(x)=\sqrt{\frac{\lambda}{2 \pi x^{3}}} e^{-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}} \quad(x \geq 0)
$$

is said to have the inverse gausslan distribution with parameters $\mu>0$ and $\lambda>0$. We will say that a random varlate X is $I(\mu, \lambda)$. Sometimes, the distribution is also called Wald's distribution, or the first passage time distribution of Brownlan motion with positive drlft.

The densities are unimodal and have the appearance of gamma densitles. The mode is at

$$
\mu\left(\sqrt{1+\frac{9 \mu^{2}}{4 \lambda^{2}}}-\frac{3 \mu}{2 \lambda}\right)
$$

The densitles are very flat near the origin and have exponential talls. For this reason, all positive and negative moments exist. For example, $E\left(X^{-a}\right)=E\left(X^{a+1}\right) / \mu^{2 a+1}$, all $a \in R$. The mean is μ and the varlance is $\frac{\mu^{3}}{\lambda}$. The maln distributional property is captured in the following Lemma:

Lemma 4.1. (Shuster, 1988)
When X is $I(\mu, \lambda)$, then

$$
\frac{\lambda(X-\mu)^{2}}{\mu^{2} X}
$$

Is distributed as the square of a normal random variable, i.e. It is chi-square with one degree of freedom.

Proof of Lemma 4.1.

Straightforward.

Based upon Lemma 4.1, we can apply a many-to-one transformation

$$
\psi(x)=\frac{\lambda(x-\mu)^{2}}{\mu^{2} x}
$$

Here, the Inverse has two solutions, one on each side of μ. The solutions of $\psi(X)=Y$ are

$$
\begin{aligned}
& X_{1}=\mu+\frac{\mu^{2} Y}{2 \lambda}-\frac{\mu}{2 \lambda} \sqrt{4 \mu \lambda Y+\mu^{2} Y^{2}} \\
& X_{2}=\frac{\mu^{2}}{X_{1}}
\end{aligned}
$$

One can verlfy that

$$
\begin{aligned}
& \frac{f\left(X_{2}\right)}{f\left(X_{1}\right)}=\left(\frac{X_{1}}{\mu}\right)^{3} \\
& \frac{\psi^{\prime}\left(X_{1}\right)}{\psi^{\prime}\left(X_{2}\right)}=-\left(\frac{\mu}{X_{1}}\right)^{2}
\end{aligned}
$$

Thus, X_{1} should be selected with probabllity $\frac{\mu}{\mu+X_{1}}$. This leads to the following algorithm:

Inverse gaussian distribution generator of Michael, Schucany and Haas

Generate a normal random variate N.
Set $Y \leftarrow N^{2}$
Set $X_{1} \leftarrow \mu+\frac{\mu^{2} Y}{2 \lambda}-\frac{\mu}{2 \lambda} \sqrt{4 \mu \lambda Y+\mu^{2} Y^{2}}$
Generate a uniform [0,1] random variate U.
IF $U \leq \frac{\mu}{\mu+X_{1}}$
THEN RETURN $X-X_{1}$
ELSE RETURN $X \leftarrow \frac{\mu^{2}}{X_{1}}$

Thls algorlthm was later redlscovered by Padgett (1978). The time-consuming components of the algorthm are the square root and the normal random varlate generation. There are a few shortcuts: a few multiplications can be saved if we replace Y by μY at the outset, for example. There are several exerclses about the inverse gaussian distribution following thls sub-section.

4.4. Exercises.

1. First passage time distribution of drift-free Brownian motion. Show that as $\mu \rightarrow \infty$ whlle λ remalns flxed, the $I(\mu, \lambda)$ density tends to the density

$$
f(x)=\sqrt{\frac{\lambda}{2 \pi x^{3}}} e^{-\frac{\lambda}{2 x}} \quad(x \geq 0)
$$

which is the one-sided stable density with exponent $\frac{1}{2}$, or the denslty for the first passage time of drlft-free Brownlan motion. Show that this is the denslty of the inverse of a gamma ($\frac{1}{2}, \frac{2}{\lambda}$) random variable (Wasan and Roy, 1887). This is equivalent to showing that it is the density of $\frac{\lambda}{N^{2}}$ where N is a normal random variable.
2. This is a further exercise about the propertles of the inverse gaussian distribution. Show the following:
(1) If X is $I(\mu, \lambda)$, then $c X$ is $I(c \mu, c \lambda)$.
(II) The characteristic function of X is $e^{\frac{\lambda}{\mu}\left(1-\sqrt{\left.1-\frac{2 i \mu^{2} t}{\lambda}\right)}\right.}$.
(iii) If $X_{i}, 1 \leq i \leq n$, are independent $I\left(\mu_{i}, c \mu_{i}{ }^{2}\right)$ random varlables, then $\sum_{i=1}^{n} X_{i}$ is $I\left(\sum \mu_{i}, c\left(\sum \mu_{i}\right)^{2}\right)$. Thus, if the X_{i}^{\prime} s are Ild $I(\mu, \lambda)$, then $\sum X_{i}$ is $I\left(n \mu, n^{2} \lambda\right)$.
(iv) Show that when N_{1}, N_{2} are independent normal random varlables with varlances $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$, then $\frac{N_{1} N_{2}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}$ is normal with varlance $\sigma_{3}{ }^{2}$ determined by the relation $\frac{1}{\sigma_{3}}=\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}$.
(v) The distribution function of X is

$$
F(x)=\Phi\left(\sqrt{\frac{\lambda}{x}}\left(\frac{x}{\mu}-1\right)\right)+e^{\frac{2 \lambda}{\mu}} \Phi\left(-\sqrt{\frac{\lambda}{x}}\left(1+\frac{x}{\mu}\right)\right),
$$

where Φ is the standard normal distribution function (Ziganglrov, 1982).

5. THE SERIES METHOD.

5.1. Description.

In this section, we consider the problem of the computer generation of a random varlable X with density f where f can be approximated from above and below by sequences of functlons f_{n} and g_{n}. In particular, we assume that:
(1) $\lim _{n \rightarrow \infty} f_{n}=f$;

$$
\lim _{n \rightarrow \infty} g_{n}=f
$$

(II) $f_{n} \leq f \leq g_{n}$.
(III) $f \leq c h$ for some constant $c \geq 1$ and some easy denslty h.

The sequences f_{n} and g_{n} should be easy to evaluate, while the dominating denslty h should be easy to sample from. Note that f_{n} need not be positive, and that g_{n} need not be integrable. This setting is common: often f is only known as a serles, as \ln the case of the Kolmogorov-Smlrnov distribution or the stable distributions, so that random varlate generation has to be based upon this serles. But even if f is expllittly known, it can often be expanded in a fast converging series such as in the case of a normal or exponential density. The serles method described below actually avolds the exact evaluation of f all the time. It can be thought of as a rejection method with an infinite number of acceptance and rejectlon conditions for squeezing. Nearly everything in thls section was first developed In Devroye (1980).

The series method

REPEAT

Generate a random variate X with density h.
Generate a uniform $[0,1]$ random variate U.
$W \leftarrow U$ ch (X)
$n \leftarrow 0$
REPEAT

$$
n \leftarrow n+1
$$

$$
\text { FF } W \leq f_{n}(X) \text { THEN RETURN } X
$$

UNTIL $W>g_{n}(X)$
UNTIL False

The fact that the outer loop in this algorithm is an Infinite loop does not matter, because with probabllity one we wlll exit in the inner loop (in view of $f_{n} \rightarrow f, g_{n} \rightarrow f$). We have here a true rejection algorlthm because we exit when $W \leq U c h(X)$. Thus, the expected number of outer loops is c, and the choice of the dominating density h is important. Notice however that the time should be
measured in terms of the number of f_{n} and g_{n} evaluations. Such analysis will be given further on. Whlle in many cases, the convergence to f is so fast that the expected number of f_{n} evaluations is barely larger than c, it is true that there are examples in which this expected number is ∞. It is also worth observing that the squeeze steps are essentlal here for the correctness of the algorthm. They actually form the algorlthm.

In the remainder of this section, we will give three important special cases of approximating serles. The serles method and its varlants will be illustrated with the ald of the exponentlal, Raab-Green and Kolmogorov-Smirnov distributions further on.

Assume first that f can be written as a convergent serles

$$
f(x)=\sum_{n=1}^{\infty} s_{n}(x) \leq c h(x)
$$

where

$$
\left|\sum_{i=n+1}^{\infty} s_{i}(x)\right| \leq R_{n+1}(x)
$$

Is a known estimate of the remalnder, and h is a glven density. In this special instance, we can rewrite the serles method in the following form:

The convergent series method

REPEAT
Generate a random variate X with density h.
Generate a uniform $[0,1]$ random variate U.
$W \leftarrow U$ ch (X)
$S \leftarrow 0$
$n \leftarrow 0$
REPEAT
$n \leftarrow n+1$
$S \leftarrow S+s_{n}(X)$
UNTIL $|S-W|>R_{n+1}(X)$
UNTLL $S \leq W$
RETURN X

Assume next that f can be written as an alternating serles

$$
f(x)=\operatorname{ch}(x)\left(1-a_{1}(x)+a_{2}(x)-a_{3}(x)+\cdots\right)
$$

where a_{n} is a sequence of functions satisfying the condition that $a_{n}(x) \downarrow 0$ as $n \rightarrow \infty$, for all x, c is a constant, and h is an easy density. Then, the serles method can be written as follows:

The alternating series method

REPEAT
Generate a random variate X with density h.
Generate a uniform $[0, c]$ random variate U.
$n \leftarrow 0, W \leftarrow 0$
REPEAT
$n \leftarrow n+1$
$W \leftarrow W+a_{n}(X)$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+1$
$W \leftarrow W-a_{n}(X)$
UNTLL $U<W$
UNTIL False

This algorithm is valld because f is bounded from above and below by two converging sequences:

$$
1+\sum_{j=1}^{k}(-1)^{j} a_{j}(x) \leq \frac{f(x)}{c h(x)} \leq 1+\sum_{j=1}^{k+1}(-1)^{j} a_{j}(x), k \text { odd }
$$

That thls is indeed a valld inequality follows from the monotonlcity of the terms (conslder the terms pairwise). As in the ordinary serles method, f is never fully computed. In addition, h is never evaluated either.

A second important special case occurs when

$$
f(x)=\operatorname{ch}(x) e^{-a_{1}(x)+a_{2}(x)-\cdots}
$$

where c, h, a_{n} are as for the alternating serles method. Then, the alternating serles method is equivalent to:

The alternating series method; exponential version
REPEAT
Generate a random variate X with density h.
Generate an exponential random variate E.
$n \leftarrow 0, W \leftarrow 0$
REPEAT
$n \leftarrow n+1$
$W \leftarrow W+a_{n}(X)$
IF $E \geq W$ THEN RETURN X
$n \leftarrow n+1$
$W \leftarrow W-\mathfrak{a}_{n}(X)$
UNTIL $E<W$
UNTIL False

5.2. Analysis of the alternating series algorithm.

For the four versions of the serles method deflned above, we know that the expected number of Iterations is equal to the rejection constant, c. In addition, there is a hidden contribution to the time complexity due to the fact that the Inner loop, needed to decide whether $\operatorname{Uch}(X) \leq f(X)$, requires a random number of computations of a_{n}. The computations of a_{n} are assumed to take a constant time Independent of n - If they do not, Just modify the analysis given in this sectlon sllghtly. In all the examples that will follow, the a_{n} computations take a constant tlme.

In Theorem 5.1, we will give a precise answer for the alternating serles method.

Theorem 5.1.

Conslder the alternating serles method for a density f decomposed as follows:

$$
f(x)=\operatorname{ch}(x)\left(1-a_{1}(x)+a_{2}(x)-\cdots\right),
$$

where $c \geq 1$ is a normallzation constant, h is a density, and $a_{0} \equiv 1 \geq a_{1} \geq a_{2} \geq \cdots \geq 0$. Let N be the total number of computations of a factor a_{n} before the algorithm halts. Then,

$$
E(N)=c \int_{0}^{\infty}\left[\sum_{i=0}^{\infty} a_{i}(x)\right] h(x) d x
$$

Proof of Theorem 5.1.

By Wald's equation, $E(N)$ is equal to c tlmes the expected number of a_{n} computations in the first iteration. In the first iteration, we fix $X=x$ with density h. Then, dropping the dependence on x, we see that for the odd terms a_{n}, we require

1	with probabllity $1-a_{1}$
2	with probabllity $a_{1}-a_{2}$
3	wlth probabllity $a_{2}-a_{3}$
4	with probabillty $a_{3}-a_{4}$
\ldots	

computations of a_{n}. The expected value of this is

$$
\sum_{i=1}^{\infty} i\left(a_{i-1}-a_{i}\right)=\sum_{i=0}^{\infty} a_{i}
$$

Collecting these results gives us Theorem 5.1.

Theorem 5.1 shows that the expected time complexity Is equal to the oscillatlon In the serles. Fast converging serles lead to fast algorithms.

5.3. Analysis of the convergent series algorithm.

As in the prevlous section, we will let N be the number of computations of terms s_{n}. before the algorlthm halts. We have:

Theorem 5.2.

For the convergent serles algorithm of section 5.1 ,

$$
E(N) \leq 2 \int\left(\sum_{n=1}^{\infty} R_{n}(x)\right) d x
$$

Proof of Theorem 5.2.

By Wald's equation, $E(N)$ is equal to c times the expected number of s_{n} computations in the first global iteration. If we fix X with density h, then if N Is the number of s_{n} computations in the first iteration alone,

$$
P(N>n \mid X) \leq \frac{2 R_{n+1}(X)}{c h(X)}
$$

Thus,

$$
\begin{aligned}
& E(N \mid X)=\sum_{n=0}^{\infty} P(N>n \mid X) \\
& \leq \sum_{n=0}^{\infty} \frac{2 R_{n+1}(X)}{\operatorname{ch}(X)}
\end{aligned}
$$

Hence, turning to the overall number of s_{n} computations,

$$
\begin{aligned}
& E(N) \leq c \sum_{n=1}^{\infty} \int h(x) \frac{2 R_{n}(x)}{c h(x)} d x \\
& =2 \int\left(\sum_{n=1}^{\infty} R_{n}(x)\right) d x
\end{aligned}
$$

It is important to note that a serles converging at the rate $\frac{1}{n}$ or slower cannot yleld finite expected time. Luckily, many important series, such as those of all the remalning subsections on the serles method converge at an exponential rather than a polynomial rate. In vlew of Theorem 5.2, this virtually insures the finiteness of their expected time. It is still necessary however to verlfy whether the expected tlme statements are not upset in an indirect way through the dependence of $R_{n}(x)$ upon x : for example, the bound of Theorem 5.2 is Infinite when $\int R_{n}(x) d x=\infty$ for some n.

5.4. The exponential distribution.

It is known that for all odd k and all $x>0$,

$$
\sum_{j=0}^{k-1}(-1)^{j} \frac{x^{j}}{j!} \geq e^{-x} \geq \sum_{j=0}^{k}(-1)^{j} \frac{x^{j}}{j!}
$$

We will apply the alternating serles method to the truncated exponentlal density

$$
f(x)=\frac{e^{-x}}{1-e^{-\mu}} \quad(0 \leq x \leq \mu)
$$

where $1 \geq \mu>0$ is the truncation point. As dominating curve, we can use the unlform density (called h) on $[0, \mu]$. Thus, in the decomposition needed for the alternating serles method, we use

$$
\begin{aligned}
& c=\frac{\mu}{1-e^{-\mu}} \\
& h(x)=\frac{1}{\mu} I_{[0, \mu]}(x), \\
& a_{n}(x)=\frac{x^{n}}{n!}
\end{aligned}
$$

The monotonicity of the a_{n} 's is insured when $|x| \leq 1$. This forces us to choose $\mu \leq 1$. The expected number of a_{n} computations is

$$
\begin{aligned}
& E(N)=c \int_{0}^{\mu} \sum_{j=0}^{\infty} \frac{x^{j}}{j!} \frac{1}{\mu} d x \\
& =c \frac{e^{\mu}-1}{\mu} \\
& =\frac{e^{\mu}-1}{1-e^{-\mu}}
\end{aligned}
$$

For example, for $\mu=1$, the value e is obtalned. But interestingly, $E(N) \downarrow 1$ as $\mu \downarrow 0$. The truncated exponentlal density is Important, because standard exponentlal random varlates can be obtalned by adding an independent properly scaled geometric random varlate (see for example section IV.2.2 on the Forsythe-von Neumann method or section IX. 2 about exponential random variates). The algorithm for the truncated exponentlal density is glven below:

A truncated exponential generator via the alternating series method

REPEAT

Generate a uniform $[0, \mu]$ random variate X.
Generate a uniform $[0,1]$ random variate U.
$n \longleftarrow 0, W \leftarrow 0, V \longleftarrow 1$ (V is used to facilitate evaluation of consecutive terms in the alternating series.)
REPEAT
$n \leftarrow n+1$
$V \leftarrow \frac{V X}{n}$
$W-W+V$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+1$
$V \leftarrow \frac{V X}{n}$
$W \leftarrow W-V$
UNTIL $U<W$
UNTIL False

The alternating serles method based upon Taylor's serles is not applicable to the exponential distribution on $[0, \infty)$ because of the impossibility of finding a dominating density h based upon this serles. In the exercise section, the ordinary serles method is applled with a family of dominating densitles, but the squeezing is still based upon the Taylor serles for the exponential density.

5.5. The Raab-Green distribution.

The denslty

$$
\begin{aligned}
& f(x)=\frac{1+\cos (x)}{2 \pi} \quad(|x| \leq \pi) \\
& =\frac{1}{\pi}\left(1-\frac{1}{2} \frac{x^{2}}{2!}+\frac{1}{2} \frac{x^{4}}{4!}-\cdots\right)
\end{aligned}
$$

was suggested by Raab and Green (1981) as an approximation for the normal density. The serles expansion is very slmilar to that of the exponential function. Agaln, we are in a position to apply the alternating serles method, but now with $h(x)=\frac{1}{2 \pi}(|x| \leq \pi), c=2$ and $a_{n}(x)=\frac{1}{2} \frac{x^{2 n}}{2 n!}$. It is easy to verlify that $a_{n} \downarrow 0$ as $n \rightarrow \infty$ for all x in the range:

$$
\frac{a_{n+1}(x)}{a_{n}(x)}=\frac{x^{2}}{(2 n+2)(2 n+1)} \leq \frac{\pi^{2}}{12} \quad(n \geq 1)
$$

Note however that a_{1} is not smaller than 1 , which was a condition necessary for the appllcation of Theorem 5.1. Nevertheless, the alternating serles method remalns formally valld, and we have:

```
A Raab-Green density generator via the alternating series method
REPEAT
    Generate a uniform [-\pi,\pi] random variate X
    Generate a uniform [0,1] random variate U.
    n\curvearrowleft0,W\multimap0,V\multimap1 (V is used to facilitate evaluation of consecutive terms in the al-
    ternating series.)
    REPEAT
        n\leftarrown+1
        V}\frac{V\mp@subsup{X}{}{2}}{(2n)(2n-1)
        W\leftarrowW+V
        IF U}\geqW\mathrm{ THEN RETURN }
        n\leftarrown+1
        V}-\frac{V\mp@subsup{X}{}{2}}{(2n)(2n-1)
        W\leftarrowW-V
    UNTIL U<W
UNTIL False
```

The drawback with this algorithm is that c, the rejection constant, is 2 . But thls can be avolded by the use of a many-to-one transformation described in section IV.4. The princlple is this: If (X, U) is unlformly distributed $\ln \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[0,2]$, then we can exlt with X when $U \leq 1+\cos (X)$ and with $\pi \operatorname{sign} X-X$ otherwise, thereby avolding rejections altogether. With this improvement, we obtaln:

An improved Raab-Green density generator based on the alternating series method

Generate a uniform $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ random variate X.
Generate a uniform $[0,1]$ random variate U.
$n \leftarrow 0, W \leftarrow 0, V-1$ (V is used to facilitate evaluation of consecutive terms in the alternating series.)
REPEAT
$n \leftarrow n+1$
$V \leftarrow \frac{V X^{2}}{(2 n)(2 n-1)}$
$W \leftarrow W+V$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+1$
$V+\frac{V X^{2}}{(2 n)(2 n-1)}$
$W \leftarrow W-V$
IF $U \leq W$ THEN RETURN $\pi \operatorname{sign} X-X$
UNTIL False

This algorlthm improves over the algorithm of section IV. 4 for the same distributlon in which the cos was evaluated once per random varlate. We won't give a detalled time analysis here. It is perhaps worth noting that the probability that the UNTIL step is reached, l.e. the probabllity that one iteration is completed, is about 2.54%. This can be seen as follows: if $N *$ is the number of completed Iterations, then

$$
P\left(N^{*}>i\right)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \frac{x^{4 i}}{(4 i)!} d x=\frac{1}{\pi} \frac{\left(\frac{\pi}{2}\right)^{4 i+1}}{(4 i+1)!}
$$

and thus

$$
E(N *)=\sum_{i=0}^{\infty} \frac{1}{\pi} \frac{\left(\frac{\pi}{2}\right)^{4 i+1}}{(4 i+1)!}
$$

In partlcular, $P(N *>1)=\frac{\pi^{4}}{3840} \approx 0.0254$. Also, $E(N *)$ is about equal to $1+2 P(N *>1) \approx 1.0254$ because $P(N *>2)$ is extremely small.

5.6. The Kolmogorov-Smirnov distribution.

The Kolmogorov-Smirnov distribution function

$$
F(x)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{-2 n^{2} x^{2}} \quad(x \geq 0)
$$

appears as the limlt distrlbution of the Kolmogorov-Smlrnov test statistlc (Kolmogorov (1933); Smlrnov (1939); Feller (1948)). No slmple procedure for inverting F is known, hence the Inversion method is llkely to be slow. Also, both the distribution function and the corresponding density are only known as infinite series. Thus, exact evaluation of these functions is not possible in finlte time. Yet, by using the serles method, we can generate random varlates with this distribution extremely efficlently. This illustrates once more that generating random variates is slmpler than computing a distribution function.

First, it is necessary to obtain convenlent serles expansions for the density. Taking the derivative of F, we obtaln the density

$$
f(x)=8 \sum_{n=1}^{\infty}(-1)^{n+1} n^{2} x e^{-2 n^{2} x^{2}} \quad(x \geq 0)
$$

which is in the format of the alternating serles method if we take

$$
\begin{aligned}
& \operatorname{ch}(x)=8 x e^{-2 x^{2}} \\
& a_{n}(x)=(n+1)^{2} e^{-2 x^{2}\left((n+1)^{2}-1\right)} \quad(n \geq 0) .
\end{aligned}
$$

There is another serles for F and f which can be obtalned from the first serles by the theory of theta functions (see e.g. Whittaker and Watson, 1927):

$$
\begin{aligned}
& F(x)=\frac{\sqrt{2 \pi}}{x} \sum_{n=1}^{\infty} e^{-\frac{(2 n-1)^{2} \pi^{2}}{8 x^{2}}} \quad(x>0) ; \\
& f(x)=\frac{\sqrt{2 \pi}}{x} \sum_{n=1}^{\infty}\left[\frac{(2 n-1)^{2} \pi^{2}}{4 x^{3}}-\frac{1}{x}\right] e^{-\frac{(2 n-1)^{2} \pi^{2}}{8 x^{2}}} \quad(x>0) .
\end{aligned}
$$

Again, we have the format needed for the alternating serles method, but now with

$$
\begin{aligned}
& c h(x)=\frac{\sqrt{2 \pi} \pi^{2}}{4 x^{4}} e^{-\frac{\pi^{2}}{8 x^{2}}} \quad(x>0), \\
& a_{n}(x)= \begin{cases}\frac{4 x^{2}}{\pi^{2}} e^{-\frac{\left(n^{2}-1\right) \pi^{2}}{8 x^{2}}} & (n \text { odd }, x>0) \\
(n+1)^{2} e^{-\frac{\left((n+1)^{2}-1\right) \pi^{2}}{8 x^{2}}} & (n \text { even }, x>0)\end{cases}
\end{aligned}
$$

We will refer to this serles expansion as the second serles expansion. In order for the alternating serles method to be applicable, we must verify that the a_{n} 's satisfy the monotonicity condition. This is done in Lemma 5.1:

Lemma 5.1.

The terms a_{n} in the first serles expansion are monotone \downarrow for $x>\sqrt{\frac{1}{3}}$. For the second series expansion, they are monotone \downarrow when $x<\frac{\pi}{2}$.

Proof of Lemma 5.1.

In the first serles expansion, we have

$$
\begin{aligned}
& \log \left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=-2 \log \left(1+\frac{1}{n}\right)+2(2 n+1) x^{2} \\
& \geq-\frac{2}{n}+2(2 n+1) x^{2} \geq-2+8 x^{2}>0
\end{aligned}
$$

For the second serles expansion, when n is even,

$$
\frac{a_{n}(x)}{a_{n+1}(x)}=\frac{(n+1)^{2} \pi^{2}}{4 x^{2}} \geq \frac{\pi^{2}}{4 x^{2}}>1
$$

Also,

$$
\log \left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=-\log \left(\frac{(n+1)^{2} \pi^{2}}{4 x^{2}}\right)+\frac{n \pi^{2}}{2 x^{2}}=y-2 \log (n+1)-\log \left(\frac{y}{2}\right)
$$

where $y=\frac{\pi^{2}}{2 x^{2}}$. The last expression is lnc ceasing $\ln y$ for $y \geq 2$ and all $n \geq 2$. Thus, it is not smaller than $2 n-2 \log (n+1) \geq 0$.

We now glve the algorithm of Devrove (1980). It uses the mlxture method because one serles by ltself does not yleld easlly Identifiable upper and lower bounds for f on the entlre real line. We are fortunate that the monotonlity conditions are satisfled on $\left(\sqrt{\frac{1}{3}}, \infty\right)$ and on ($0, \frac{\pi}{2}$) for the two serles respectively. Had these intervals been disjolnt, then we would have been forced to look for yet another approximation. We define the breakpoint for the mixture method by $t \in\left(\sqrt{\frac{1}{3}}, \frac{\pi}{2}\right)$. The value 0.75 is suggested. Define also $p=F(t)$.

Generate a uniform $[0,1]$ random variate U. IF $U<p$

> THEN RETURN a random variate X with density $\frac{f}{p}, 0<x<t$.
> ELSE RETURN a random variate X with density $\frac{f}{1-p}, t<x$.

For generation in the two intervals, the two serles expansions are used. Another constant needed in the algorithm is $t^{\prime}=\frac{\pi^{2}}{8 t^{2}}$. We have:

Generator for the leftmost interval

REPEAT

REPEAT
Generate two iid exponential random variates, E_{0}, E_{1}.
$E_{0} \leftarrow \frac{E_{0}}{1-\frac{1}{2 t^{\prime}}}$
$E_{1} \leftarrow 2 E_{1}$
$G \leftarrow t^{\prime}+E_{0}$
Accept $\leftarrow\left[\left(E_{0}\right)^{2} \leq t^{\prime} E_{1}\left(G+t^{\prime}\right)\right]$
IF NOT Accept
THEN Accept $\leftarrow\left[\frac{G}{t^{\prime}}-1-\log \left(\frac{G}{t^{\prime}}\right) \leq E_{1}\right]$
UNTIL Accept

$$
\begin{aligned}
& X \leftarrow \frac{\pi}{\sqrt{8 G}} \\
& W \leftarrow 0 \\
& Z \leftarrow \frac{1}{2 G} \\
& P \leftarrow e^{-G} \\
& n \leftarrow 1 \\
& Q \leftarrow 1
\end{aligned}
$$

Generate a uniform $[0,1]$ random variate U.
REPEAT
$W \leftarrow W+Z Q$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+2$
$Q \leq P^{n^{2}-1}$
$W \leftarrow W-n^{2} Q$
UNTIL $U<W$
UNTIL False

Generator for the rightmost interval

REPEAT

Generate an exponential random variate E.
Generate a uniform $[0,1]$ random variate U.
$X \leftarrow \sqrt{t^{2}+\frac{E}{2}}$
$W \leftarrow 0$
$n \leftarrow 1$
$Z \leftarrow e^{-2 X^{2}}$
REPEAT

$$
\begin{aligned}
& n \leftarrow n+1 \\
& W \leftarrow W+n^{2} Z^{n^{2}-1}
\end{aligned}
$$

IF $U \geq W$ THEN RETURN X
$n \longleftarrow n+1$
$W \leftarrow W-n^{2} Z^{n^{2-1}}$
UNTIL $U \leq W$
UNTIL False

The algorithms are both stralghtforward applicatlons of the alternating serles method, but perhaps a few words of explanation are in order regarding the algorithms used for the dominating densities. This is done In two lemmas.

Lemma 5.2.

The random varlable $\sqrt{t^{2}+\frac{E}{2}}$ (where E is an exponential random varlable and $t>0$) has denslty

$$
c x e^{-2 x^{2}} \quad(x \geq t)
$$

where $c>0$ is a normalization constant.

Proof of Lemma 5.2.

Verlfy that the distribution function of the random varlable is $1-e^{-2\left(x^{2}-t^{2}\right)}(x \geq t)$. Taking the derlvative of this distribution function ylelds the destred result.

Lemma 5.3.

If G is a random varlable with truncated gamma $\left(\frac{3}{2}\right)$ density $c \sqrt{y} e^{-y} \quad\left(y \geq t^{\prime}=\frac{\pi^{2}}{8 t^{2}}\right)$, then $\frac{\pi}{\sqrt{8 G}}$ has density

$$
\frac{c}{x^{4}} e^{-\frac{\pi^{2}}{8 x^{2}}} \quad(0<x \leq t)
$$

where the c 's stand for (possibly different) normallzation constants, and $t>0$ is a constant. A truncated gamma $\left(\frac{3}{2}\right)$ random varlate can be generated by the algorlthm:

Truncated gamma generator

REPEAT

Generate two iid exponential random variates, E_{0}, E_{1}.
$E_{0} \leftarrow \frac{E_{0}}{1-\frac{1}{2 t^{\prime}}}$
$E_{1} \leftarrow 2 E_{1}$
$G \leftarrow t^{\prime}+E_{0}$
Accept $-\left[\left(E_{0}\right)^{2} \leq t^{\prime} E_{1}\left(G+t^{\prime}\right)\right]$
IF NOT Accept

$$
\text { THEN Accept } \leftarrow\left[\frac{G}{t^{\prime}}-1-\log \left(\frac{G}{t^{\prime}}\right) \leq E_{1}\right]
$$

UNTII Accept
RETURN G

Proof of Lemma 5.3.

The Jacobian of the transformation $y=\frac{\pi^{2}}{8 x^{2}}$ is $\frac{4 \pi}{{ }^{\frac{3}{2}}}$. This glves the dis$(8 y)^{\frac{3}{2}}$
tributional result without further work if we argue backwards. The validity of the rejection algorithm with squeezing requires a little work. First, we start from the Inequallty

$$
y \leq e^{\frac{y}{t^{\prime}}} \frac{t^{\prime}}{e} \quad\left(y \geq t^{\prime}\right)
$$

which can be obtalned by maximizing $y e^{\frac{-y}{t^{\prime}}}$ in the sald interval. Thus,

$$
\sqrt{y} e^{-y} \leq \sqrt{\frac{t^{\prime}}{e}} e^{-\left(1-\frac{1}{2 t^{\prime}}\right) y} \quad\left(y \geq t^{\prime}\right)
$$

The upper bound is proportlonal to the density of $t^{\prime}+\frac{E}{1-\frac{1}{2 t^{\prime}}}$ where E is an exponential random varlate. This random varlate is called G in the algorthm. Thus, if U is a unlform random varlate, we can proceed by generating couples G, U until

$$
e^{\frac{G}{2 t^{\prime}}} \sqrt{\frac{t^{\prime}}{e}} U \leq \sqrt{G} .
$$

This condition is equivalent to

$$
\frac{G}{t^{\prime}}-1-\log \left(\frac{G}{t^{\prime}}\right) \leq 2 E_{1}
$$

where E_{1} is another exponential random varlable. A squeeze step can be added by noting that $\log (1+u) \geq \frac{2 u}{2+u} \quad(u \geq 0)$ (exerclse 5.1).

All the prevlous algorithms can now be collected into one long (but fast) algorithm. For generallties on good generators for the tall of the gamma density, we refer to the section on gamma variate generation. In the implementation of Devroye (1980), two further squeeze steps were added. For the rightmost interval, we can return X when $U \geq 4 e^{-6 t^{2}}$ (whlch is a constant). For the leftmost interval, the same can be done when $U \geq \frac{4 t^{2}}{\pi^{2}}$. For $t=0.75$, we have $p \approx 0.373$, and the quick acceptance probabilitles are respectively ≈ 0.86 and ≈ 0.77 for the latter squeeze steps.

Related distributions.

The empirical distribution function $F_{n}(x)$ for a sample X_{1}, \ldots, X_{n} of lld random varlables is defined by

$$
F_{n}(x)=\sum_{i=1}^{n} \frac{1}{n} I_{\left[X_{i} \leq x \mid\right.}
$$

where I is the indicator function. If X_{i} has distribution function $F(x)$, then the following goodness-of-fit statistlcs have been proposed by varlous authors:
(1) The asymmetrical Kolmogorov-Smirnov statistics $K_{n}+=\sqrt{n} \sup \left(F_{n}-F\right), K_{n}{ }^{-}=\sqrt{n} \sup \left(F-F_{n}\right)$.
(11) The Kolmogorov-Smirnov statistlc $K_{n}=\max \left(K_{n}{ }^{+}, K_{n}{ }^{-}\right)$.
(iii) Kuiper's statistic $V_{n}=K_{n}{ }^{+}+K_{n}{ }^{-}$.
(iv). von Mises' statistic $W_{n}^{2}=n \int\left(F_{n}-F\right)^{2} d F$.
(v) Watson's statistic $U_{n}=n \cdot \int\left(F_{n}-F-\left(\int\left(F_{n}-F\right) d F\right)\right)^{2} d F$.
(vi) The Anderson-Darling statistic $A_{n}{ }^{2}=n \int \frac{\left(F_{n}-F\right)^{2}}{F(1-F)} d F$.

For surveys of the propertles and appllcatlons of these and other statistics, see Darllng (1955), Barton and Mallows (1965), and Sahler (1988). The limlt random variables (as $n \rightarrow \infty$) are denoted with the subscripts ∞. The limit distributions have characterlstic functions that are infinlte products of characteristic functions of gamma distrlbuted random varlables except in the case of A_{∞}. From this, we note several relations between the limit distributions. First, $2 K_{\infty}{ }^{+2}$ and $2 K_{\infty}{ }^{-2}$ are exponentlally distrlbuted (Smlrnov, 1938; Feller, 1948). K_{∞} has the Kolmogorov-Smlrnov distrlbution function discussed in thls sectlon (Kolmogorov, 1933; Smlrnov, 1938; Feller, 1948). Interestingly, V_{∞} is distributed as the sum of two independent random varlables distributed as K_{∞} (Kulper, 1980). Also, as shown by Watson (1981, 1982), U_{∞} is distributed as $\frac{1}{\pi} \sqrt{K_{\infty}}$. Thus, generation for all these llmit distributions poses no problems. Unfortunately, the same cannot be sald for A_{∞} (Anderson and Darllng, 1852) and W_{∞} (Smlrnov, 1937; Anderson and Darling, 1952).

5.7. Exercises.

1. Prove the following Inequality needed in Lemma 5.3: $\log (1+u) \geq \frac{2 u}{2+u} \quad(u>0)$.
2. The exponential distribution. For the exponential density, choose a dominating density h from the family of densities

$$
\frac{n a^{n}}{(x+a)^{n+1}} \quad(x>0),
$$

where $n \geq 1$ and $a>0$ are design parameters. Show the following:
(1) h is the density of $a\left(U^{-\frac{1}{n}}-1\right)$ where U is a unlform $[0,1]$ random varlable. It is also the density of $a\left(\max ^{-1}\left(U_{1}, \ldots, U_{n}\right)-1\right)$ where the U_{i} 's are $11 d$ unlform $[0,1]$ random varlables.
(i1) Show that the rejection constant is $c=\left(\frac{n+1}{e}\right)^{n+1} \frac{e^{a} a^{-n}}{n}$, and show that this is minimal when $a=n$.
(iv) Show that with $a=n$, we have $c=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+1} \rightarrow 1$ as $n \rightarrow \infty$.
(v) Give the serles method based upon rejection from h (where $a=n$ and $n \geq 1$ is an Integer). Use quick acceptance and rejection steps based upon the Taylor serles expanston.
(vi) Show that the expected time of the algorithm is ∞ when $n=1$ (thls shows the danger Inherent in the use of the serles method). Show also that the expected time is finite when $n \geq 2$.
(Devroye, 1980)
3. Apply the serles method for the normal denslty truncated to $[-a, a]$ with rejection from a unlform density. SInce the expected number of iterations is

$$
\frac{2 a}{\sqrt{2 \pi}(F(a)-F(-a))}
$$

where F is the normal distribution function, we see that it is important that a be small. How would you handle the talls of the distribution? How would you choose a for the combined algorithm?
4. In the study of spectral phenomena, the following densitles are important:
(1) $f_{1}(x)=\frac{1}{\pi}\left(\frac{\sin (x)}{x}\right)^{2}$ (the Fejer-de la Vallee Poussin density);
(i1) $f_{2}(x)=\frac{3}{\pi}\left(\frac{\sin (x)}{x}\right)^{4}$ (the Jackson-de la Vallee Poussin density).
These densitles have osclllating talls. Using the fact that

$$
\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots
$$

and that $\frac{\sin (x)}{x}$ falls between consecutive partial sums in this series, derive a good serles algorithm for random varlate generation for f_{1} and f_{2}. Compare the expected time complexity with that of the obvious rejection algorithms.
5. The normal distribution. Consider the serles method for the normal density based upon the dominating density $h(x)=\min \left(a, \frac{1}{18 a x^{2}}\right)$ where $a>0$ is a parameter. Show the following:
(1) If (U, V) are ild unlform $[-1,1]$ random varlates, then $\frac{V}{4 a U}$ has density h.
(i1) Show that
$e^{-\frac{x^{2}}{2}} \leq \max \left(\frac{1}{a}, \frac{32 a}{e}\right) h(x)$
and deduce that the best constant a is $\sqrt{\frac{e}{32}}$.
(iii) Prove that the following algorithm is valid:

Normal generator via the series method

REPEAT

Generate two iid uniform $[-1,1]$ random variates V_{1}, V_{2} and a uniform $[0,1]$ random variate U.
$X \leftarrow \sqrt{\frac{2}{e}} \frac{V_{1}}{V_{2}}$
IF $|X| \leq \sqrt{\frac{2}{e}}$
THEN $W \leftarrow \sqrt{\frac{32}{e}} U-1$
ELSE $W \leftarrow \frac{U}{\sqrt{8 e} X^{2}}-1$
$n \leftarrow 0, Y \leftarrow \frac{X^{2}}{2}, P \leftarrow-1$
REPEAT

$$
\begin{aligned}
& n \leftarrow n+1 \\
& P \leftarrow \frac{P Y}{n} \\
& W \leftarrow W+P \\
& \text { IF } W \leq 0 \text { THEN RETURN } X \\
& n \leftarrow n+1 \\
& P \leftarrow \frac{P Y}{n} \\
& W \leftarrow W+P
\end{aligned}
$$

$$
\text { UNTIL } W>0
$$

UNTIL False
(lv) Show that in this algorithm, the expected number of iterations is $\frac{4}{\sqrt{\pi e}}$. (An Iteration is defined as a check of the UNTIL False statement or a permanent return.)
6. Erdos and Kac (1846) encountered the following distribution function on $[0, \infty)$:

$$
F(x)=\frac{4}{\pi} \sum_{j=0}^{\infty}(-1)^{j} \frac{1}{2 j+1} e^{-(2 j+1)^{2} \pi^{2} /\left(8 x^{2}\right)} \quad(x>0)
$$

This shows some resemblance to the Kolmogorov-Smirnov distribution functlon. Apply the serles method to obtain an efflclent algorithm for generating random variates with thls distribution function. Furthermore, show the identlty

$$
F(x)=\sum_{j=-\infty}^{\infty}(-1)^{j}(\Phi((2 j+1) x)-\Phi((2 j-1) x))
$$

where Φ is the normal distrlbution function (Grenander and Rosenblatt, 1953), which can be of some help in the development of your algorithm.

6. REPRESENTATIONS OF DENSITIES AS INTEGRALS.

6.1. Introduction.

For most densitles, one usually flrst trles the inversion, rejection and mixture methods. When elther an ultra fast generator or an ultra universal algorithm is needed, we mlght consider looking at some other methods. But before we go through thls trouble, we should verlfy whether we do not already have a generator for the density without knowing it. Thls occurs when there exists a special distributional property that we do not know about, which would provide a vital link to other better known distributions. Thus, it is Important to be able to declde which distributional propertles we can or should look for. Lucklly, there are some general rules that just require knowledge of the shape of the density. For example, by Khlnchine's theorem (glven in thls section), we know that a random varlable with a unimodal density can be written as the product of a unlform random varlable and another random variable, which turns out to be quite simple in some cases. Khinchine's theorem follows from the representation of the unimodal denslty as an Integral. Other representations as integrals will be discussed too. These include a representation that will be useful for generating stable random varlates, and a representation for random varlables possessing a Polya type characterlstlc functlon. There are some general theorems about such representatlons which will also be discussed. It should be mentloned though that thls sectlon has no direct link with random varlate generation, since only probabllistlc propertles are explotted to obtain a convenlent reduction to simpler problems. We also need quite a lot of information about the density In question. Thus, were it not for the fact that several key reductions will follow for important densitles, we would not have included this section in the book. Also, representing a density as an Integral really bolls down to defining a continuous mixture. The only novelty here is that we will actually show how to track down and invent useful mixtures for random varlate generation.

6.2. Khinchine's and related theorems.

By far the most important class of densities is the class of unimodal densitles. Thus, it is useful to have some integral representations for such densities. Formally, a distribution is called convex on a set A of the real line if for all $x, y \in A$,

$$
F(\lambda x+(1-\lambda) y) \leq \lambda F(x)+(1-\lambda) F(y) \quad(0 \leq \lambda \leq 1)
$$

It is concave if the inequality is reversed. It is unimodal if it is convex on $(-\infty, 0)$ and concave on $[0, \infty)$, and in that case the point 0 is called a mode of the distribution. The rationale for this deflnition becomes obvlous when translated to the density (if it exists). We will not consider other possible locations for the mode to keep the notation simple.

Theorem 6.1. Khinchine's theorem.

A random variable X is unimodal if and only if X is distributed as $U Y$ where U, Y are independent random variables: U is unlformly distributed on $[0,1]$ and Y is another random varlable not necessarlly possessing a density. If Y has distribution function G on $[0, \infty)$, then $U Y$ has distribution function

$$
F(x)=\int_{0}^{1} G\left(\frac{x}{u}\right) d u
$$

Proof of Theorem 6.1.

We refer to Feller (1971 , p. 158) for the only if part. For the if part we observe that $P(U Y \leq x \mid U=u)=\frac{G(x / u)}{u}$, and thus, integrating over $[0,1]$ with respect to $d u$ gives us the result.

To handle the corollarles of Khinchine's theorem correctly, we need to recall the definition of an absolutely continuous function f on an interval $[a, b]$: for all $\epsilon>0$, there exists a $\delta>0$ such that for all nonoverlapping intervals $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$, and all integers n,

$$
\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|<\delta
$$

Implies

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|<\epsilon
$$

When f is absolutely continuous on $[a, b]$, its derivative f^{\prime} is defined almost everywhere on $[a, b]$. Also, it is the indefinite integral of its derivative:

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(u) d u \quad(a \leq x \leq b)
$$

See for example Royden (1988). Thus, Lipschitz functions are absolutely continuous. And if f is a denslty on $[0, \infty)$ with distribution function F, then F is absolutely continuous,

$$
F(x)=\int_{0}^{x} f(u) d u
$$

and

$$
F^{\prime}(x)=f(x) \text { almost everywhere }
$$

A density f is called monotone on $[0, \infty)$ (or, in short, monotone) when f is nonincreasing on $[0, \infty)$ and f vanishes on ($-\infty, 0$). However, it is posslble that $\lim _{x \downarrow 0} f(x)=\infty$.

Theorem 6.2.

Let X be a random varlable with a monotone density f. Then

$$
\lim _{x \rightarrow \infty} x f(x)=\lim _{x \downarrow 0} x f(x)=0 .
$$

If f is absolutely contlnuous on all closed Intervals of $(0, \infty)$, then f^{\prime} exists almost everywhere,

$$
f(x)=-\int_{x}^{\infty} f^{\prime}(u) d u,
$$

and X is distributed as $U Y$ where U is a unlform $[0,1]$ random variable, and Y is independent of U and has density

$$
g(x)=-x f^{\prime}(x) \quad(x>0)
$$

Proof of Theorem 6.2.

Assume that $\underset{x \rightarrow \infty}{\lim \sup } x f(x) \geq 2 a>0$. Then there exists a subsequence $x_{1}<x_{2}<\cdots$ such that $x_{i+1} \geq 2 x_{i}$ and $x_{i} f\left(x_{i}\right) \geq a>0$ for all i. But

$$
1=\int_{0}^{\infty} f(x) d x \geq \sum_{i=1}^{\infty}\left(x_{i+1}-x_{i}\right) f\left(x_{i+1}\right) \geq \sum_{i=1}^{\infty} \frac{1}{2} x_{i+1} f\left(x_{i+1}\right)=\infty
$$

which is a contradiction. Thus, $\lim _{x \rightarrow \infty} x f(x)=0$.
Assume next that $\underset{x \nmid 0}{\operatorname{llm}} \sup x f(x) \geq 2 a>0$. Then we can find $x_{1}>x_{2}>\cdots$ such that $x_{i+1} \leq \frac{x_{i}}{2}$ and $x_{i} f\left(x_{i}\right) \geq a>0$ for all i. Agaln, a contradiction is obtained:

$$
1=\int_{0}^{\infty} f(x) d x \geq \sum_{i=1}^{\infty}\left(x_{i}-x_{i+1}\right) f\left(x_{i}\right) \geq \sum_{i=1}^{\infty} \frac{1}{2} x_{i} f\left(x_{i}\right)=\infty .
$$

Thus, $\lim _{x \not 0} x f(x)=0$. Thls brings us to the last part of the Theorem. The first two statements are trivlally true by the propertles of absolutely contlnuous functlons. Next we show that g is a density. Clearly, $f^{\prime} \leq 0$ almost everywhere. Also, $x f$ is absolutely continuous on all closed intervals of ($0, \infty$). Thus, for $0<a<b<\infty$, we have

$$
b f(b)-a f(a)=\int_{a}^{b} f(x) d x+\int_{a}^{b} x f^{\prime}(x) d x
$$

By the first part of thls Theorem, the left-hand-side of this equation tends to 0 as $a \downarrow 0, b \rightarrow \infty$. By the monotone convergence theorem, the right-hand side tends to $1+\int_{0} x f^{\prime}(x) d x$, which proves that g is indeed a density. Finally, if Y has density g, then $U Y$ has density

$$
\int_{x}^{\infty} \frac{g(u)}{u} d u=-\int_{x}^{\infty} f^{\prime}(u) d u=f(x)
$$

Thls proves the last part of the Theorem.

The extra condition on f in Theorem 6.2 is needed because some monotone densitles have $f^{\prime}=0$ almost everywhere (think of stalrcase functions). The extra condition in Theorem 6.2 not present in Khinchine's theorem essentially guarantees that the mixing Y varlable has a density too. In general, Y needs to have distribution function

$$
1-x f(x)-\int_{x}^{\infty} f(u) d u \quad(x>0)
$$

(exerclse 8.8). We also note that Theorem 6.2 has an obvious extension to unlmodal densitles.

For monotone f that are absolutely continuous on all closed intervals of $(0, \infty)$, the following generator is thus valld:

Generator for monotone densities based on Khinchine's theorem

Generate a uniform $[0,1]$ random variate U.
Generate a random variate Y with density $g(x)=-x f^{\prime}(x), x>0$.
RETURN $X \leftarrow U Y$

Example 6.1. The exponential power distribution (EPD).
Subbotin (1923) introduced the following symmetric unimodal densitles:

$$
f(x)=\left(2 \Gamma\left(1+\frac{1}{\tau}\right)\right)^{-1} e^{-|x|^{\tau}},
$$

where $\tau>0$ is a parameter. This class contains the normal ($\tau=2$) and Laplace ($\tau=1$) densitles, and has the unlform density as a limlt ($\tau \rightarrow \infty$). By Theorem 6.2, and the symmetry in f, it is easlly seen that

$$
X \leftarrow V Y^{\frac{1}{\tau}}
$$

has the given density where V is uniformly distributed on $[-1,1]$ and Y is gamma $\left(1+\frac{1}{\tau}, 1\right)$ distributed. In particular, a normal random varlate can be obtalned as $V \sqrt{2 Y}$ where Y is gamma $\left(\frac{3}{2}\right)$ distributed, and a Laplace random varlate can be obtalned as $V\left(E_{1}+E_{2}\right)$ where E_{1}, E_{2} are lid exponential random varlates. Note also that X can be generated as $S Y^{1 / \tau}$ where Y is gamma $\left(\frac{1}{\tau}\right)$ distributed. For direct generation from the EPD distribution by rejection, we refer to Johnson (1979).

Example 6.2. The Johnson-Tietjen-Beckman family of densities.

Another stlll more flexible famlly of symmetric unimodal densitles was proposed by Johnson, Tletjen and Beckman (1980):

$$
f(x)=\frac{1}{2 \Gamma(\alpha)} \int_{x^{\frac{1}{\tau}}}^{\infty} u^{\alpha-\tau-1} e^{-u} d u
$$

where $\alpha>0$ and $\tau>0$ are shape parameters. An inflnite peak at 0 is obtained whenever $\alpha \leq \tau$. The EPD distribution is obtalned for $\alpha=\tau+1$, and another distribution derived by Johnson and Johnson (1978) is obtalned for $\tau=\frac{1}{2}$. By Theorem 6.2 and the symmetry $\ln f$, we observe that the random vartable

$$
X \leftarrow V Y^{\tau}
$$

has density f whenever V is unlformly distributed on $[-1,1]$ and Y is gamma (α) distributed. For the special case $\tau=1$, the gamma-Integral distribution is obtalned which is discussed in exercise 6.1.

Example 6.3. Simple relations between densities.

In the table below, a variety of distributional results are given that can help for the generation of some of them.

Density of Y	Density of $U Y(U$ is uniform on $[0,1])$
Exponential	Exponential-integral $\left(\int_{z}^{\infty} \frac{e^{-u}}{u} d u\right)$
Gamma (2)	Exponential
Beta $(2, b)$	Beta(1,b+1)
Rayleigh $\left(x e^{-x^{2} / 2}\right)$	$\int_{x}^{\infty} e^{-x^{2} / 2} d u$
Uniform $[0,1]$	$-\log (x)$
$(1+a) x^{a}(x \in[0,1])(a>0)$	$\frac{a+1}{a}\left(1-x^{a}\right)$
Maxwell $\left(\frac{x^{2}}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\right)$	Normal

There are a few other representation theorems in the spirlt of Khinchine's theorem. For partlcular forms, one could consult Lux (1978) and Mikhallov (1985). For the stable distribution discussed in this section, we will need:

Theorem 6.3.

Let U be a unform $[0,1]$ random varlable, let E be an exponentlal random variable, and let $g:[0,1] \rightarrow[0, \infty)$ be a given function. Then $\frac{E}{g(U)}$ has distribution function

$$
F(x)=1-\int_{0}^{1} e^{-x g(u)} d u
$$

and density

$$
f(x)=\int_{0}^{1} g(u) e^{-x g(u)} d u
$$

Proof of Theorem 6.3.

For $x>0$,

$$
P\left(\frac{E}{g(U)}>x\right)=P(E>x g(U))=E\left(e^{-x g(U)}\right)=\int_{0}^{1} e^{-x g(u)} d u
$$

The derivative with respect to x is $-f(x)$ where f is defined above.

Finally, we mention a useful theorem of Mikhallov's about convolutions with exponentlal random varlables:

Thẹorem 6.4. (Mikhailov, 1965)

If Y has density f and E is an exponential random varlable independent of Y, then $E+Y$ has density

$$
h(x)=\int_{0}^{\infty} e^{-u} f(x+u) d u=\int_{-\infty}^{x} f(u) e^{u-x} d u
$$

Furthermore, if g is an absolutely continuous density on $[0, \infty)$ with $g(0)=0$ and $g+g^{\prime} \geq 0$, then $X \leftarrow E+Y$ has density g where now Y has density $g+g^{\prime}$, and E is stlll exponentially distrlbuted.

Proof of Theorem 6.4.

The first statement is trivial. For part two, we note that $g+g^{\prime}$ is indeed a density since $g+g^{\prime} \geq 0$ and $\int_{0}^{\infty}\left(g+g^{\prime}\right)=1$. (This follows from the fact that g is absolutely continuous and has $g(0)=0$.) But then, by partial Integration, X has density

$$
\int_{-\infty}^{x}\left(h(u)+h^{\prime}(u)\right) e^{u-x} d u=h(x)
$$

6.3. The inverse-of-f method for monotone densities.

Assume that f is monotone on $[0, \infty)$ and continuous, and that its inverse f^{-1} can be computed relatively easily. Since f^{-1} itself is a monotone denslty, we can use the following method for generating a random varlate with density f :

The inverse-of-f method for monotone densities
Generate a random variate Y with density f^{-1}.
Generate a uniform $[0,1]$ random variate U.
RETURN $X-U f^{-1}(Y)$

The correctness of the algorithm follows from the fact that (Y, X) is unlformly distributed under the curve of f^{-1}, and thus that (X, Y) is unlformly distributed under the curve of f.

Example 6.4.

If Y is exponentially distributed, then $U e^{-Y}$ has density $-\log (x)(0<x \leq 1)$ where U is uniformly distributed on $[0,1]$. But by the well-known connection between exponentlal and unlform distrlbutlons, we see that the product of two lld uniform $[0,1]$ random variables has denslty $-\log (x)(0<x \leq 1)$.

Example 6.5.

If Y has denslty

$$
f^{-1}(y)=\left(\log \left(\frac{2}{\pi y^{2}}\right)\right)^{\frac{1}{2}} \quad\left(0 \leq y \leq \sqrt{\frac{\pi}{2}}\right)
$$

and U is unlformly distributed on $[0,1]$, then $X \leftarrow U f^{-1}(Y)$ has the halfnormal distribution.

6.4. Convex densities.

The more we know about a density, the easler it is to generate random variates with thls density. There are for example a multitude of tools avallable for monotone densitles, ranging from very specific methods based upon Khinchine's theorem to black box or universal methods. In thls section we look at an even smaller class of densitles, the convex densitles. We will consider the class C_{+}of convex densities on $[0, \infty)$, and the class C of densitles that are convex on $[0, \infty)$ and on $(-\infty, 0)$. Thus, C_{+}is a subclass of the monotone densltles dealt with in the prevlous sectlon.

Convex densitles are absolutely continuous on all closed subintervals of $(0, \infty)$, and possess monotone rlght and left derlvatives everywhere that are equal except possibly on a countable set. If the second derlvative $f^{\prime \prime}$ exists, then f is convex if $f^{\prime \prime} \geq 0$. We will give one useful representation for convex densitles.

Theorem 6.5. (Mixture of triangles)

For every $f \in C_{+}$, we have

$$
f(x)=\int_{0}^{\infty} \frac{2}{u}\left(1-\frac{x}{u}\right)_{+} d F(u),
$$

where F is a distribution function with $F(0)=0$ defined by:

$$
F(u)=1+\frac{u^{2}}{2} f^{\prime}(u)-\left(u f(u)+\int_{u}^{\infty} f\right) \quad(u>0),
$$

where f^{\prime} is the right-hand derivative of f (which exists on $[0, \infty)$). If F is absolutely contInuous, then it has density

$$
g(u)=\frac{1}{2} u f^{\prime \prime}(u) \quad(u>0)
$$

Proof of Theorem 6.5.

We have to show first that If V, Y are independent random variables, where V has a trlangular denstty $2(1-x)_{+}$and Y has distribution function F, then $X \leftarrow V Y$ has density f. But for $x>0$,

$$
\begin{aligned}
& \int_{x}^{\infty} f=\int_{x}^{\infty}\left(1-\frac{x}{u}\right)^{2} d F(u) \\
& =\int_{x}^{\infty} d F(u)-2 x \int_{x}^{\infty} \frac{d F(u)}{u}+x^{2} \int_{x}^{\infty} \frac{d F(u)}{u^{2}}, \\
& f(x)=\int_{x}^{\infty} \frac{2}{u}\left(1-\frac{x}{u}\right) d F(u)=2 \int_{x}^{\infty} \frac{d F(u)}{u}-2 x \int_{x}^{\infty} \frac{d F(u)}{u^{2}},
\end{aligned}
$$

and

$$
-f^{\prime}(x)=2 \int_{x}^{\infty} \frac{d F(u)}{u^{2}}
$$

In our case, it can be verlfled that the interchange of integrals and derivatives is allowed. Substitute the value of f^{\prime} in the right-hand sides of the equalitles for f and $\int_{x}^{\infty} f$. Then check that

$$
x f(x)+\int_{x}^{\infty} f(u) d u=\int_{x}^{\infty} d F(u)+\frac{x^{2}}{2} f^{\prime}(x)
$$

and this gives us the first result. If F is absolutely continuous, then taking the derivative gives its density, $\frac{x^{2}}{2} f^{\prime \prime}(x)$.

Thls theorem states that for $f \in C_{+}$, we can use the following algorlthm:

Generator for convex densities

Generate a triangular random variate V (this can be done as $\min \left(U_{1}, U_{2}\right)$ where the U_{i} 's are iid uniform $[0,1]$ random variates).
Generate a random varlate Y with distribution function $F(u)=1+\frac{u^{2}}{2} f^{\prime}(u)-\left(u f(u)+\int_{u}^{\infty} f\right) \quad(u>0)$. (If F is absolutely continuous, then Y has density $\frac{x^{2}}{2} f^{\prime \prime}(x)$.)
RETURN $X \leftarrow V Y$

6.5. Recursive methods based upon representations.

Representations of densitles as integrals lead sometimes to properties of the following kind: assume that three random varlables X, Y, Z have densities f, g, h which are related by the decomposition

$$
g(x)=p h(x)+(1-p) f(x) .
$$

Assume that X is distributed as $\psi(Y, U)$ for some function ψ and a unlform $[0,1]$ random variable U independent of Y (thls is always the case). Then, we have
with probabllity $p, X \approx \psi(Z, U)$ and with probabllty $1-p, X \approx \psi\left(\psi\left(Y^{\prime}, U^{\prime}\right), U\right)$ where $\left(Y^{\prime}, U^{\prime}\right)$ is another palr distributed as (Y, U). (The notation \approx is ued for "Is distributed as".) This process can be repeated untll we reach a substitution by Z. We assume that Z has an easy denslty h. Notlce that we never need to actually generate from g ! Formally, we have, starting with Z :

Recursive generator

Generate a random variate Z with density h, and a uniform $[0,1]$ random variate U.
$X \leftarrow \psi(Z, U)$
REPEAT
Generate a uniform $[0,1]$ random variate V.
IF $V \leq p$
THEN RETURN X
ELSE
Generate a uniform [0,1] random variate U.
$X \leftharpoondown \psi(X, U)$
UNTIL False

The expected number of iterations in the REPEAT loop is $\frac{1}{p}$ because the number of V-varlates needed is geometrically distributed with parameter p. This algorlthm can be flne-tuned in most applications by discovering how uniform varlates can be re-used.

Let us illustrate how this can help us. We know that for the gamma density with parameter $a \in(0,1)$,

$$
\begin{aligned}
& f(x)=\frac{x^{a-1} e^{-x}}{\Gamma(a)} \quad(x>0): \\
& g(x)=-x f^{\prime}(x)=a h(x)+(1-a) f(x),
\end{aligned}
$$

where h is the gamma $(a+1)$ density. This is a convenlent decomposition since the parameter of h is greater than one. Also, we know that a gamma (a) random varlate is distributed as $U Y$ where U is a unlform $[0,1]$ random varlate and Y has density $-x f^{\prime}(x)$ (apply Theorem 8.2). Recall that we have seen several fast gamma generators for $a \geq 1$ but none that was unformly fast over all a. The previous recursive algorithm would boll down to generating X as

$$
Z \prod_{i=1}^{L} U_{i}
$$

where Z is gamma ($a+1$) distributed, L is geometric with parameter a, and the U_{i} 's are ild unlform [0,1] random variates. Note that this in turn is distributed as $Z e^{-G_{L}}$ where G_{L} is a gamma (L) random variate. But the density of G_{L} is

$$
\sum_{i=1}^{\infty} a(1-a)^{i-1} \frac{x^{i-1} e^{-x}}{(i-1)!}=e^{-a x} \quad(x>0)
$$

Thus, we have shown that the following generator is valld:

A gamma generator for a <1

Generate a gamma ($a+1$) random variate Z.
Generate an exponential random variate E.
RETURN $X-Z e^{-\frac{E}{a}}$

The recursive algorithm does not require exponentiation, but the expected number of iterations before halting is $\frac{1}{a}$, and this is not uniformly bounded over $(0,1)$. The algorithm based upon the decomposition as $Z e^{-\frac{E}{a}}$ on the other hand is unlformly fast.

Example 6.6. Stuart's theorem.

Without knowing it, we have proved a special case of a theorem of Stuart's (Stuart, 1962): If Z is gamma (a) distributed, and Y is beta ($b, a-b$) distributed and independent of Z, then $Z Y, Z(1-Y)$ are independent gamma (b) and gamma $(a-b)$ random varlables. If we put $b=1$, and formally replace a by $a+1$ then it is clear that $Z U^{\frac{1}{a}}$ is gamma (a) distributed, where U is a unlform $[0,1]$ random varlable.

There are other simple examples. The von Neumann exponentlal generator is also based upon a recursive relationship. It is true that an exponential random varlate E is with probabllity $1-\frac{1}{e}$ distributed as a truncated exponentlal random varlate (on $[0,1]$), and that E is with probability $\frac{1}{e}$ distributed as $1+E$. This recursive rule leads precisely to the exponentlal generator of section IV.2.

6. $\dot{6}$. A representation for the stable distribution.

The standardized stable distribution is best deflned in terms of its characterlstlc function ϕ :

$$
\log \phi(t)=\left\{\begin{array}{lc}
-|t| e^{-i \frac{\pi}{2} \bar{\alpha} \delta \operatorname{sgn}(t)} & (\alpha \neq 1) \\
-|t|\left(1+i \delta \frac{2}{\pi} \operatorname{sgn}(t) \log (|t|)\right) \quad(\alpha=1)
\end{array}\right.
$$

Here $\delta \in[-1,1]$ and $\alpha \in(0,2]$ are the shape parameters of the stable distribution, and $\bar{\alpha}$ is defined by $\min (\alpha, 2-\alpha)$. We omit the location and scale parameters in thls standard form. To save space, we will say that X is stable (α, δ) when it has the above mentloned characteristlc function. This form of the characteristic function is due to Zolotarev (1959). By far the most important subclass is the class of symmetric stable distributions which have $\delta=0$: their characteristic function is simply

$$
\phi(t)=e^{-|t|^{\alpha}}
$$

Despite the simplicity of this characteristic function, it is quite difflcult to obtain useful expressions for the corresponding density except perhaps in the spectal cases $\alpha=2$ (the normal density) and $\alpha=1$ (the Cauchy density). Thus, it would be convenient if we could generate stable random varlates without having to compute the density or distribution function at any point. There are two useful representations that will enable us to apply Theorem 8.4 with a sllght modiffcation. These will be glven below.

Theorem 6.6. (Ibragimov and Chernin, 1959; Kanter, 1975)

For $\alpha<1$, the density of a stable $(\alpha, 1)$ random varlable can be written as

$$
f(x)=\frac{\alpha x^{\frac{1}{\alpha-1}}}{(1-\alpha) \pi} \int_{0}^{\pi} g(u) e^{-g(u) x^{\frac{\alpha}{\alpha-1}}} d u
$$

where

$$
g(u)=\left(\frac{\sin (\alpha u)}{\sin (u)}\right)^{\frac{1}{1-\alpha}} \frac{\sin ((1-\alpha) u)}{\sin (\alpha u)}
$$

When U is unlformly distributed on $[0,1]$ and E is independent of U and exponentlally distrlbuted, then

$$
\left(\frac{g(\pi U)}{E}\right)^{\frac{1-\alpha}{\alpha}}
$$

is stable $(\alpha, 1)$ distributed.

Proof of Theorem 6.6.

For the first statement, we refer to Ibragimov and Chernin (1959). The latter statement is an observation of Kanter's (1975) which is quite easily verified by computing the distribution function of $\left(\frac{g(\pi U)}{E}\right)^{\frac{1-\alpha}{\alpha}}$, and noting that it is equal to

$$
\frac{1}{\pi} \int_{0}^{\pi} e^{-g(u) x^{\frac{\alpha}{\alpha-1}}} d u
$$

Taking the derivative glves us the density f.

The second part of the proof uses a slight extension of Theorem 6.4. This representation allows us to generate stable $(\alpha, 1)$ random varlates quite easily - in most computer languages, one line of computer code will suffice! There are two problems however. First, we are stuck with the evaluation of several trigonometric functlons and of two powers. We will see some methods of generating stable random varlates that do not require such costly operations, but they are much more compllcated. Our second problem is that Theorem 6.8 does not cover the case $\delta \neq 1$. But this is easlly taken care of by the following Lemma for which we refer to Feller (1971):

Lemma 6.1.

A. If X and Y are IId stable $(\alpha, 1)$, then $Z \leftarrow p X-q Y$ is stable (α, δ) where

$$
\begin{aligned}
& p^{\alpha}=\sin \left(\frac{\pi \bar{\alpha}(1+\delta)}{2}\right) / \sin (\pi \bar{\alpha}), \\
& q^{\alpha}=\sin \left(\frac{\pi \bar{\alpha}(1-\delta)}{2}\right) / \sin (\pi \bar{\alpha}) .
\end{aligned}
$$

B. If X is stable $\left(\frac{\alpha}{2}, 1\right)$ and N is independent of X and normally distributed, then $N \sqrt{2 X}$ is stable $(\alpha, 0)$, all $\alpha \in(0,2]$.

Using this Lemma and Theorem 6.6, we see that we can generate all stable random varlates with elther $\alpha<1$ or $\delta=0$. To fll the vold, Chambers, Mallows and Stuck (1978) proposed to use a representation of Zolotarev's (1968):

Theorem 6.7. (Zolotarev, 1966; Chambers, Mallows and Stuck,1978)
Let E be an exponential random varlable, and let U be a unlform $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ random variable independent of E. Let further $\gamma=-\frac{\pi \delta \bar{\alpha}}{2 \alpha}$. Then, for $\alpha \neq 1$,

$$
X \leftarrow \frac{\sin (\alpha(U-\gamma))}{(\cos U)^{\frac{1}{\alpha}}}\left(\frac{\cos (U-\alpha(U-\gamma))}{E}\right)^{\frac{1-\alpha}{\alpha}}
$$

is stable (α, δ) distributed. Also,

$$
X \leftarrow \frac{2}{\pi}\left(\left(\frac{\pi}{2}+\delta U\right) \tan (U)-\delta \log \left(\frac{\pi E \cos (U)}{\pi+2 \delta U}\right)\right)
$$

is stable $(1, \delta)$ distributed.

We leave the determination of the integral representation of f to the reader. It is noteworthy that Theorem 6.7 is a true extension of Theorem 6.6 (Just note that for $\alpha<1, \delta=1$, we obtaln $\gamma=-\frac{\pi}{2}$. There are three special cases worth noting:
(1) A stable(2,0) random varlate can be generated as $\sqrt{E} \frac{\sin (2 U)}{\cos (U)}=2 \sqrt{E} \sin (U)$. This is the well-known Box-Muller representatlon of $\sqrt{2}$ times a normal random varlate (see section V.4).
(11) A stable $(1,0)$ random varlate can be obtained as $\tan (U)$, whlch ylelds the inversion method for generating Cauchy random varlates.
(III) A $\operatorname{stable}\left(\frac{1}{2}, 1\right)$ random varlate can be obtalned as

$$
\frac{1}{4 E \sin ^{2}\left(\frac{U}{2}-\frac{\pi}{4}\right)}
$$

which is distributed in turn as

$$
\frac{1}{4 E \cos ^{2}(U)}
$$

which is in turn distributed as $\frac{1}{2 N^{2}}$ where N is normally distributed.

6.7. Densities with Polya type characteristic functions.

Thls section is added because it illustrates that representations offer unexpected help in many ways. It is frustrating to come across a distribution with a very simple characteristlc function in one's research, and not be able to generate random varlates with this characteristic function, at least not without a lot of work. But we do know of course how to generate random varlates with some characteristic functions such as normal, uniform and exponentlal random variates. Thus, if we can find a representation of the characteristlc function ϕ in terms of one of these simpler characteristlc functions, then there is hope of generating random varlates with characteristic function ϕ. By this process, we can take care of quite a few characterlstlc functions, even some for which the denslty is not known in a slmple analytic form. This will be illustrated now for the class of Polya characteristic functions, l.e. real even continuous functions ϕ with $\phi(0)=1, \lim _{t \rightarrow \infty} \phi(t)=0$, convex on $(0, \infty)$. This class is important both from a practical point of view (it contalns many important distributions) and from a didactical point of vlew. The examples that we will consider in this subsection are listed in the table below.

Characteristic function $\phi(t)$	Name
$e^{-\|t\|^{\alpha}, 0<\alpha \leq 1}$	Symmetric stable distribution
$\frac{1}{1+\|t\|^{\alpha}, 0<\alpha \leq 1}$	Linnik's distribution
$(1-\|t\|)^{\alpha},\|t\| \leq 1, \alpha \geq 1$	
$1-\|t\|^{\alpha},\|t\| \leq 1,0<\alpha \leq 1$	

The second entry in this table is the characteristic function of a unimodal density for $\alpha \in(0,2]$ (Linnik (1962), Lukacs (1970, pp. 96-97)), yet no slmple form for the density is known. We are now ready for the representation.

Theorem 6.8. (Girault, 1954; Dugue and Girault, 1955)

Every Polya characteristic function ϕ can be decomposed as follows:

$$
\begin{aligned}
\phi(t) & =\int_{0}^{\infty}\left(1-\left|\frac{t}{s}\right|\right)_{+} d F(s) \quad(t>0), \\
\phi(t) & =-\phi(-t) \quad(t<0)
\end{aligned}
$$

where F is a distribution function with $F(0)=0$ and deflned by

$$
F(s)=1-\phi(s)+s \phi^{\prime}(s) \quad(s>0)
$$

Here ϕ^{\prime} is the right-hand derivative of ϕ (which exists everywhere). If F is absolutely contlnuous, then it has density

$$
g(s)=s \phi^{\prime \prime}(s) \quad(s>0)
$$

From this, It is a minor step to conclude:

Theorem 6.9. (Devroye, 1984)

If ϕ is a Polya characterlstic function, then $X \leftarrow \frac{Y}{Z}$ has this characteristic function when Y, Z are independent random varlables: Z has the distribution function F of Theorem 6.8, and Y has the Fejer-de la Vallee Poussin (or: FVP) density

$$
\frac{1}{2 \pi}\left(\frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}}\right)^{2}
$$

Theorem 8.8 uses Theorem 8.8 and the fact that the FVP denslty has characteristlc function $(1-|t|)_{+}$. There are but two things left to do now: first, we need to obtaln a fast FVP generator because it is used for all Polya type distributions. Second, it is important to demonstrate that the distribution function F in the varlous examples is often quite slmple and easy to handle.

Remark 6.1. A generator for the Fejer-de la Vallee Poussin density.

Notice that if X has density

$$
\frac{1}{\pi}\left(\frac{\sin (x)}{x}\right)^{2}
$$

then $2 X$ has the FVP density. In view of the osclllating behavior of thls density, It is best to proceed by the refection method or the serles method We note first that $\sin (x)$ is bounded from above and below by consecutlve terms in the serles expansion

$$
\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots,
$$

and that it s bounded in absolute value by 1 . Thus, the density f of X is bounded as follows:

$$
f(x) \leq \frac{4}{\pi} h(x),
$$

where $h(x)=\min \left(\frac{1}{4}, \frac{1}{4 x^{2}}\right)$, which is the density of V^{B}, where V is a unlform $[-1,1]$ random varlable, and B is ± 1 with equal probabllity. The rejection
constant of $\frac{4}{\pi} \ln$ thls inequallty is usually quite acceptable. Thus, we have:

FVP generator based upon rejection
REPEAT
Generate iid uniform $[-1,1]$ random variates U, X.
IF $U<0$

```
        THEN
```

$$
X \leftarrow \frac{1}{X}
$$

$$
\text { Accept } \leftarrow\left[|U| \leq \sin ^{2}(X)\right]
$$

$$
\text { ELSE Accept } \leftarrow\left||U| X^{2} \leq \sin ^{2}(X)\right\}
$$

UNTIL Accept
RETURN $2 X$

The expected time can be reduced by the judiclous use of squeeze steps. First, if $|X|$ is outside the range $\left[0, \frac{\pi}{2}\right]$, it can always be reduced to a value within that range (as far as the value of $\sin ^{2}(X)$ is concerned). Then there are two cases:
(1) If $|X| \leq \frac{\pi}{4}$, we can use

$$
X-\frac{X^{3}}{6} \leq \sin (X) \leq X
$$

(11) If $|X| \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right]$, then we can use the fact that $\sin (X)=\cos \left(\frac{\pi}{2}-X\right)=\cos (Y)$, where Y now is in the range of (1). The following Inequalities will be helpful:

$$
1-\frac{Y^{2}}{2} \leq \sin (X) \leq 1-\frac{Y^{2}}{2}+\frac{Y^{4}}{24} .
$$

Example 6.7. The symmetric stable distribution.

In Theorem 6.9, Z has density g glven by

$$
g(s)=\left(\alpha^{2} s^{2 \alpha-1}+\alpha(1-\alpha) s^{\alpha-1}\right) e^{-s} \quad(s>0) .
$$

But we note that Z^{α} has density

$$
\alpha\left(s e^{-s}\right)+(1-\alpha)\left(e^{-s}\right) \quad(s>0),
$$

which is a mixture of a gamma (2) and an exponentlal density. Thus, Z is distributed as

$$
\left(E_{1}+E_{2} I_{[U<\alpha]}\right)^{\frac{1}{\alpha}}
$$

where E_{1}, E_{2} and U are Independent random varlables: E_{1} and E_{2} have an exponentlal density, and U is uniformly distributed on $[0,1]$. It is also worth observing that if we use U_{1}, \ldots for $11 d$ unlform [0,1] random variables, then Z is distributed as

$$
\left(E_{1}+\max \left(E_{2}+\log (\alpha), 0\right)\right)^{\frac{1}{\alpha}}
$$

and as

$$
\log ^{\frac{1}{\alpha}}\left(\max \left(\frac{\alpha}{U_{1} U_{2}}, \frac{1}{U_{1}}\right)\right)
$$

Example 6.8. Linnik's distribution

We verlfy that Z in Theorem 8.9 has density g given by

$$
g(s)=\left(\left(\alpha^{2}+\alpha\right) s^{2 \alpha-1}+\left(\alpha-\alpha^{2}\right) s^{\alpha-1}\right)\left(1+s^{\alpha}\right)^{-3} \quad(s>0) .
$$

It is perhaps easier to work with the density of Z^{α} :

$$
\frac{s(\alpha+1)+(1-\alpha)}{(1+s)^{3}} \quad(s>0)
$$

The latter density has distribution function $1-\frac{1+\alpha}{1+s}+\frac{\alpha}{(1+s)^{2}}$, and thls is easy to Invert. Thus, a random varlate Z can be generated as

$$
\left(\frac{\alpha+1-\sqrt{(\alpha+1)^{2}-4 \alpha U}}{2 U}-1\right)^{\frac{1}{\alpha}},
$$

where U is a unlform $[0,1]$ random varlate. If speed is extremely important, the square root can be avolded if we use the rejection method for the density of Z^{α}, with dominating density $(1+s)^{-2}$, which is the density of $\frac{1}{U}-1$. A little work shows that Z can be generated as follows:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.

$$
X \leftarrow \frac{1}{U}^{-1}
$$

UNTIL $2 \alpha U \leq V$ (Now, X is distributed as Z^{α}.)
RETURN $X^{\frac{1}{\alpha}}$

The expected number of iterations is $1+\alpha$.

Example 6.9. Other examples.

Assume that $\phi(t)=(1-|t|)_{+}^{\alpha}$ for $\alpha>1$. Then $\phi(s)-s \phi^{\prime}(s)$ is absolutely continuous. Thus, the random variable Z of Theorem 6.9 has beta ($2, \alpha-1$) density $g(s)=\alpha(\alpha-1) s(1-s)^{\alpha-2} \quad(0 \leq s \leq 1)$.

There are situations in which the distribution function F of Theorems 6.8 and 6.9 Is not absolutely continuous. To Illustrate thls, take $\phi(t)=\left(1-|t|^{\alpha}\right)_{+}$, and note that $F(s)=(1-\alpha) s^{\alpha}(0 \leq s \leq 1)$. Also, $F(1)=1$. Thus, F has an atom of welght α at 1, and it has an absolutely continuous part of welght $1-\alpha$ with support on (0,1). The absolutely continuous part has density $\alpha s^{\alpha-1}(0 \leq s \leq 1)$, which is the density of $U^{\frac{1}{\alpha}}$ where U is unlform on $[0,1]$. Thus,

$$
Z= \begin{cases}1 & \text { with probabllity } \alpha \\ U^{\frac{1}{\alpha}} & \text { with probabllity } 1-\alpha\end{cases}
$$

Here we can use the standard trick of recuperating part of the unlform $[0,1]$ random varlate used to make the "with probabillty α " cholce.
A. f is convex if and only if $a, b \geq 1$. It is concave if and only if $a, b \leq 1$.
B. Y^{b} has density f, where Y is beta $(b, a+1)$ distributed.
C. $\left(\frac{Y}{Y+Z}\right)^{b}$ has density f where Y is gamma (b) distributed, and Z is gamma ($a+1$) distrlbuted and Independent of Y.
6. Thls is a continuation of exercise 5 for the spectal case $b=1$. The density is $f(x)=(a+1)(1-x)^{a} \quad(0 \leq x \leq 1)$. From the prevlous exercise we recall that a random varlate with this distribution can be obtained as $1-U^{\frac{1}{a+1}}$ and as $\frac{E}{E+G_{a+1}}$ where U is a unform $[0,1]$ random varlate, E is an exponential random varlate, and G_{a+1} is a gamma ($a+1$) random varlate independent of E. Both these methods require costly operations. The following refection algorithms are usually faster:

Rejection method \#1, recommended for a >1
repeat
REPEAT
Generate two iid exponential random variates, E_{1}, E_{2}.

$$
X \leftarrow \frac{E_{1}}{a}
$$

UNTIL $X \leq 1$
Accept $\leftarrow\left[E_{2}(1-X)-a X^{2} \geq 0\right]$
IF NOT Accept THEN Accept $\leftarrow\left[a X+E_{2}+a \log (1-X) \geq 0\right]$
UNTIL Accept
RETURN X

Rejection method \#2, recommended for a < 1

repeat

Generate two ild uniform $[0,1]$ random variates, U, X.
UNTLL $U \leq(1-X)^{a}$
RETURN X

Show that the rejection algorthms are valld. Show furthermore that the expected number of Iterations is $\frac{a+1}{a}$ and $a+1$ respectively. (Thus, a uniformly fast algorlthm can be obtalned by using the first method for $a \geq 1$

6.8. Exercises.

1. The gamma-integral distribution. We say that X is $\operatorname{GI}(a)$ (has the gamma-Integral distribution with parameter $a>0$) when its density is

$$
f(x)=\int_{x}^{\infty} \frac{u^{a-2} e^{-u}}{\Gamma(a)} d u \quad(x>0)
$$

This distribution has a few remarkable propertles: it decreases monotonically on $[0, \infty)$. It has an infinite peak at 0 when $a \leq 1$. At $a=1$, we obtain the exponential-Integral density. When $a>1$, we have $f(0)=\frac{1}{a-1}$. For $a=2$, the exponential density is obtalned. When $a>2$, there is a point of inflection at $a \mathbf{- 2}$, and $f^{\prime}(0)=0$. For $a=3$, the distribution is very close to the normal distribution. In this exercise we are malnly interested in random variate generation. Show the following:
A. X can be generated as $U Y$ where U is uniformly distributed on $[0,1]$ and Y is gamma (a) distributed.
B. When a is integer, X is distributed as G_{Z} where Z is unlformly distributed on 1, .., a-1, and G_{Z} is a gamma (Z) random varlate. Note that X is distributed as $-\log \left(U_{1} \cdots U_{Z}\right)$ where the U_{i} 's are Ild unlform $[0,1]$ random varlates. Hint: use Induction on a.
C. As $a \rightarrow \infty, \frac{X}{a}$ tends in distribution to the uniform $[0,1]$ density.

D Compute all moments of the $\operatorname{GI}(a)$ distribution. (Hint: use Khinchine's theorem.)
2. The density of the energy spectrum of flssion neutrons is

$$
f(x)=\frac{1}{\sqrt{\pi a b}} e^{-(a+x) b} \sinh \left(\frac{2 \sqrt{a x}}{b}\right) \quad(x>0),
$$

where $a, b>0$ are parameters. Recall that $\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$. Apply Theorem 6.4 for designing a generator for thls distrlbution(Mikhallov, 1965).
3. How would you compute $f(x)$ with seven digits of accuracy for the exponentlal-Integral density of Example 6.3? Prove also that for the same distribution, $F(x)=\left(1-e^{-x}\right)+x f(x)$ where F is the distribution function.
4. If U, V are ild uniform $[0,1]$ random variables, then for $0<a<1, U V^{\frac{1}{1-a}}$ has density $x^{-a}-1 \quad(0<x<1)$.
5. In the next three exerclses, we consider the following class of monotone densities on $[0,1]$:

$$
f(x)=\frac{\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1)}\left(1-x^{\frac{1}{b}}\right)^{a} \quad(0 \leq x \leq 1),
$$

where $a, b>0$ are parameters. The coefflclent will be called B. The mode of the density occurs at $x=0$, and $f(0)=B$. Show the following:
and the second method for $a<1$.)
7. Continuation of exerclse 5 for $b=\frac{1}{2}$. The density we are considering here can be written as follows:

$$
f(x)=B\left(1-x^{2}\right)^{a} \quad(0 \leq x \leq 1)
$$

(Here $B=\frac{2}{\sqrt{\pi}} \frac{\Gamma\left(a+\frac{3}{2}\right)}{\Gamma(a+1)}$.) From exerclse 5 we recall that a random varlate with this density can be generated as $\frac{N}{\sqrt{N^{2}+2 G_{a+1}}}$ where N is a normal random varlate, and G_{a+1} is a gamma ($a+1$) random varlate independent of N.
A. Show that we can also use $|2 Y-1|$ where Y is beta $(a+1, a+1)$ distributed.
B. Show that if we keep generating ild uniform $[0,1]$ random varlates U, X untll $U \leq\left(1-X^{2}\right)^{a}$, then X has density f, the expected number of iterations is B, and B increases monotonically from $1(a=0)$ to $\infty(a \rightarrow \infty)$.
C. Show that the following rejection algorithm is valid and has refection $\Gamma\left(a+\frac{3}{2}\right)$
constant $\frac{2}{\sqrt{a} \Gamma(a+1)}$ (which tends monotonically to 1 as $a \rightarrow \infty$):

Rejection from a normal density

REPEAT

$$
\begin{aligned}
& \text { Generate independent normal and exponential random variates } \\
& N, E . \\
& X \leftarrow \frac{|N|}{\sqrt{2 a}}, Y \leftarrow X^{2} \\
& \text { Accept } \leftarrow[Y \leq 1] \text { AND }\left[1-Y\left(1+\frac{a Y}{E}\right) \geq 0\right] \\
& \text { IF NOT Accept . THEN Accept } \leftarrow[Y \leq 1] \text { AND } \\
& {[a Y+E+a \log (1-Y) \geq 0]} \\
& \text { UNTL Accept }
\end{aligned}
$$

RETURN X

Hint: use the Inequallties $-\frac{x}{1-x} \leq \log (1-x) \leq-x \quad(0<x<1)$.
8. The exponential power distribution. Show that if S is a random sign, and $G_{\frac{1}{\tau}}$ is a gamma $\left(\frac{1}{\tau}\right)$ random variate, then $S\left(G_{\frac{1}{\tau}}\right)^{\frac{1}{\tau}}$ has the exponential
power distribution with parameter τ, that is, its density is of the form $c e^{-|x|^{\top}}$ where c is a normallzation constant.
8. Extend Theorem 6.2 by showing that for all monotone densities, it suffices to take Y with distribution function

$$
F(x)=1-\int_{x}^{\infty} f(u) d u-x f(x) \quad(x \in R)
$$

10. Extend Theorem 6.5 to all convex densitles $\ln C$.
11. The Pareto distribution. Let E, Y be Independent random varlables, where E is exponentlally distributed, and Y has density g on $[0, \infty)$. Give an integral form for the density and distribution function of $X=E / Y$. Random varlables of this type are called exponential scale mixtures. Show that when Y is gamma (a), then $1+E / Y$ is Pareto with parameter a, i.e. $1+E / Y$ has denslty $a / x^{a+1} \quad(x>1)$ (see e.g. Harris, 1968).
12. Develop a unlformly fast generator for the family of densities

$$
f(x)=C_{n}\left(\frac{\sin (x)}{x}\right)^{n}
$$

where $n \geq 1$ is an integer parameter, and C_{n} is a constant depending upon n only.

7. THE RATIO-OF-UNIFORMS METHOD.

7.1. Introduction.

The rejection method has one blg drawback: densities with infinite talls have to be handled with care; often, talls have to be cut off and treated separately. In many cases, this can be avolded if the ratio-of-unlforms method is used. This method is particularly well sulted for bell-shaped densities with talls that decrease at least as fast as x^{-2}. The ratio-of-unlforms method was flrst proposed by Kinderman and Monahan (1977), and later applled to a varlety of distributhons such as the t distribution (Kinderman and Monahan,1979) and the gamma distrlbution (Cheng and Feast, 1879).

Because the resulting algorithms are short and often fast, and because we have yet another beautiful lllustration of the rejection and squeeze principles, we will devote quite a blt of space to thls method. The treatment will be systematlc and slmple: we are not looking for the most general form of algorlthm but for one that is easy to understand.

We begin with

Theorem 7.1. (Kinderman and Monahan, 1977)
Let $A=\left\{(u, v): 0 \leq u \leq \sqrt{f\left(\frac{v}{u}\right)}\right\}$ where $f \geq 0$ is an integrable function. If (U, V) is a random vector uniformly distributed over A, then $\frac{V}{U}$ has density $\frac{1}{c} f$ where $c=\int f=2$ area (A).

Proof of Theorem 7.1.

Define (X, Y) by $X=U, Y=\frac{V}{U}$. The Jacoblan of the transformation $u=x, v=x y$ is x. The density of (U, V) is $I_{A}(u, v) /(c / 2)$. Thus, the density of (X, Y) is x times $I_{A}(x, y x) /(c / 2)=x I_{[0, f(y))}(x) /(c / 2)$. The density of $Y=\frac{V}{U}$ is the marginal density computed as

$$
\int_{0}^{\sqrt{y}} \frac{x}{(c / 2)} d x=\frac{f(y)}{c}
$$

But we already know how to generate unloormly distributed random vectors: It suffices to enclose the area A by a slmple set such as a rectangle, In whlch we know how to generate unlform random vectors, and to apply the rejection princlple. Thus, it is important to verify what A looks like in general. First, A is a subset of $[0, \infty) \times R$. It is symmetric about the u-axis if f is symmetric about 0 . It vanishes in the negative v-quadrant when f is the density of a nonnegative random varlable. But what interests us more than anything else are conditions Insuring that $A \subseteq[0, b) \times\left[a_{-}, a_{+}\right]$for some finlte constants $b \geq 0, a_{-} \leq 0, a_{+} \geq 0$. It helps to note that the boundary of A can be found parametrically by $\{(u(x), v(x)): x \in R\}$ where

$$
\begin{aligned}
& u(x)=\sqrt{f(x)} \\
& v(x)=x \sqrt{f(x)}
\end{aligned}
$$

Thus, A can be enclosed in a rectangle if and only if
(1) $f(x)$ is bounded;
(11) $x^{2} f(x)$ is bounded.

Bastcally, this Includes all bounded densttles with subquadratic talls; such as the normal, gamma, beta, t and exponential densitles. From now on, the enclosing rectangle will be called $B=[0, b) \times\left[a_{-}, a_{+}\right]$. For the sake of slmpllcity, we will only treat densities satisfying (1) and (il) in this sectlon.

The ratio-of-uniforms method

[SET-UP]
Compute $\quad b, a_{-}, a_{+} \quad$ for \quad an enclosing rectangle. Note that
$b \geq \sup \sqrt{f(x)}, a_{-} \leq \inf x \sqrt{f(x)}, a_{+} \geq \sup x \sqrt{f(x) .}$
$[$ GENERATOR]
REPEAT
Generate U uniformly on $[0, b]$, and V uniformly on $\left[a_{-}, a_{+}\right]$.
$X \leftarrow \frac{V}{U}$
UNTIL $U^{2} \leq f(X)$
RETURN X

By Theorem II.3.2, (U, V) is unlformly distributed $\ln A$. Thus, the algorlthm is valld, l.e. X has density proportional to the function f. We can also replace f by cf for any constant c. This allows us to ellminate all annoying normallzation constants. In any case, the expected number of iterations is

$$
\frac{b\left(a_{+}-a_{-}\right)}{\operatorname{area} A}=\frac{2 b\left(a_{+}-a_{-}\right)}{\int_{-\infty}^{\infty} f(x) d x}
$$

Thls will be called the rejection constant. Good denslties are densitles in which A fills up most of its enclosing rectangle. As we will see from the examples, this is usually the case when f puts most of its mass near zero and has monotonically decreasing talls. Roughly speaking, most bell-shaped f are acceptable candldates.

The acceptance condition $U^{2} \leq f(X)$ cannot be simplified by using logarithmic transformations as we sometimes did in the rejection method - this is because U is explicitly needed in the definition of X. The next best thing is to make sure that we can avold computing f most of the time. This can be done by introducing one or more quick acceptance and quick rejection steps. Typically, the algorlthm takes the following form.

The ratio-of-uniforms method with two-sided squeezing

[SET-UP]
Compute b, a_{n}, a_{+}for an enclosing rectangle. Note that $b \geq \sup \sqrt{f(x)}, a_{-} \leq \inf x \sqrt{f(x)}, a_{+} \geq \sup x \sqrt{f(x)}$.
[GENERATOR]
REPEAT
Generate U uniformly on $[0, b]$, and V uniformly on $\left[a_{-}, a_{+}\right]$.
$X \leftarrow \frac{V}{U}$
IF [Quick acceptance condition]
THEN Accept \leftarrow True
ELSE IF [Quick rejection condition]
THEN Accept \leftarrow False
ELSE Accept $\leftarrow\left[\right.$ Acceptance condition $\left.\left(U^{2} \leq f(X)\right)\right]$
UNTIL Accept
RETURN X

In the next sub-section, we will give various quick acceptance and quick rejection conditions for the distributions listed in this introduction, and analyze the performance for these examples.

7.2. Several examples.

We will need varlous inequallties in the design of squeeze steps. The followIng Lemma can be useful in thls respect.

Lemma 7.1.
(1) $\quad-x \geq \log (1-x) \geq-\frac{x}{1-x} \quad(0 \leq x<1)$.
(ii) $-x-\frac{x^{2}}{2} \geq \log (1-x)$
$\geq-x-\frac{x^{2}}{2(1-x)} \quad(0 \leq x<1)$.
(iii) $\log (x) \leq x-1 \quad(x>0)$.
(iv) $x-\frac{x^{2}}{2} \leq \log (1+x)$
$\leq x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \leq x \quad(0<x<1)$.
(v) $\frac{2 x+3 x^{2}}{2(1+x)^{2}} \leq \log (1+x)$
$\leq \frac{2 x+3 x^{2}+x^{3}}{2(1+x)^{2}}$
$=x-\frac{x^{2}}{2(1+x)} \quad(x \geq 0)$.
(vi) Reverse the Inequallties $\ln (\mathrm{v})$ when $-1<x \leq 0$.

Proof of Lemma 7.1.

Parts (1) through (iv) were obtalned in Lemma IV.3.2. By the Taylor serles for $g(x)=(1+x) \log (1+x)$, we see that

$$
g(x)=g(0)+x g^{\prime}(0)+\frac{x^{2}}{2} g^{\prime \prime}(\xi)
$$

for some ξ between 0 and x. But $g(0)=0, g^{\prime}(x)=\log (1+x)-1, g^{\prime}(0)=1, g^{\prime \prime}(x)=\frac{1}{1+x}$. Thus, for $x>0$,

$$
x+\frac{x^{2}}{2(1+x)} \leq g(x) \leq x+\frac{x^{2}}{2} .
$$

This proves (v) and (vi).

For varlous densities, we list quick acceptance and rejection conditions in terms of u, v, x. When used in the algorithm, these running varlables should be replaced by the random variates U, V, X of course. Other useful quantitles such
as the rejectlon constant and values for b, a_{-}, a_{+}are 11 sted too.

Example 7.1. The normal density.

All of the above is summarized in the table glven below:

$f(x)$	$e^{-\frac{x^{2}}{2}}(x \in R)$
$b=\sup \sqrt{f(x)}$	1
$\begin{aligned} & a_{+}=\sup x \sqrt{f(x)}, a_{-}=\inf x \sqrt{f(x)} \\ & \operatorname{area}(A) \end{aligned}$	$\sqrt{\frac{2}{e}},-\sqrt{\frac{2}{e}}$
	$\sqrt{\frac{\pi}{2}}$
Rejection constant	$\frac{4}{\sqrt{\pi e}}$
Acceptance condition	$x^{2} \leq-4 \log u$
Quick acceptance condition	$x^{2} \leq 4(-c u+1+\log c) \quad(c>0)$
	$x^{2} \leq 4-4 u$
	$x^{2} \leq 6-8 u+2 u^{2}$
	$x^{2} \leq \frac{44}{6}-12 u+6 u^{2}-\frac{4}{3} u^{3}$
Quick rejection condition	$x^{2}>4\left(\frac{c}{u}-1-\log c\right)(c>0)$
	$x^{2} \geq \frac{4}{4}-4$
	$x^{2} \geq \frac{2}{u}-2 u$

The table is nearly self-explanatory. The quick acceptance and rejection conditlons were obtalned from the acceptance conditlon and Lemma 7.1. Most of these are rather stralghtforward. The fastest experimental results were obtalned with the third entrles in both lists. It is worth pointing out that the first quick acceptance and rejection conditions are valid for all constants $c>0$ introduced in the conditions, by using Inequalitles for $\log (u c)$ given In Lemma 7.1. The parameter c should be chosen so that the area under the quick acceptance curve is maximal, and the area under the quick rejection curve is minimal.

Example 7.2. The exponential density.

In analogy with the normal density, we present the following table.

$f(x)$	$e^{-x} \quad(x \in R)$
$b=\sup \sqrt{f(x)}$	$\frac{1}{2}$
$a_{+}=\sup x \sqrt{f(x)}, a_{-}=\inf x \sqrt{f(x)}$	$\frac{2}{e}, 0$
area (A)	$\frac{2}{e}$
Rejection constant	$\frac{4}{e}$
Acceptance condition	$x \leq-2 \log u$
Quick acceptance condition	$x \leq 2(1-u)$
Quick rejection condition	$x \geq \frac{2}{u}-2$

It is Insightful to draw A and to construct simple quick acceptance and rejection conditions by examining the shape of A. Since A is convex, several llnear functlons could be useful.

Example 7.3. The t distribution.

The ratlo-of-uniforms method has led to some of the fastest known algorithms for the t distrlbution. In thls section, we omlt, as we can, the normalizatlon constant of the t density with parameter a, which is

$$
\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)} .
$$

Since for large values of a, the t density is close to the normal denslty, we would expect that the performance of the algorithm would be slmilar too. This is indeed the case. For example, as $a \rightarrow \infty$, the rejection constant tends to $\frac{4}{\sqrt{\pi e}}$, which is
the value for the normal density.

$f(x)$	$\frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}}(x \in R)$
$b=\sup \sqrt{f(x)}$	1
$a_{+}=\sup x \sqrt{f(x)}, a_{-}=\inf x \sqrt{f(x)}$	$\frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{(a+1)^{\frac{a+1}{4}}}, \frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{n^{\frac{a+1}{4}}}$
area (A)	$2 \frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{(a+1)^{\frac{a+1}{4}}}$
Rejection constant	$4 \frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{\Gamma\left(\frac{a+1}{2}\right)}$
Acceptance condition	$x^{\frac{a+1)^{\frac{a+1}{4}}}{\sqrt{\pi a}} \Gamma\left(\frac{a}{2)}\right.}$
Quick acceptance condition	$x^{2} \leq 5-4 u\left(u^{-\frac{4}{a+1}}-1\right)$
Quick rejection condition $)^{\frac{a+1}{4}}$	

We observe that the ratio-of-unlforms method can only be useful when $a \geq 1$ for otherwise A would be unbounded. The quick acceptance and rejection steps follow from inequallties obtalned by Kinderman and Monahan (1979). The corresponding algorithm is known in the literature as algorithm TROU: one can show that the expected number of iterations is uniformly bounded over $a \geq 1$, and that it varles from $\frac{4}{\pi}$ at $a=1$ to $\frac{4}{\sqrt{\pi e}}$ as $a \rightarrow \infty$.

There are two important special cases. For the Cauchy density ($a=1$), the acceptance condition is $u^{2} \leq \frac{1}{1+x^{2}}$, or, put differently, $u^{2}+v^{2} \leq 1$. Thus, we obtaln the result that if (U, V) is unlformly distributed in the unit clrcle, then $\frac{V}{U}$ is Cauchy distributed. Without squeeze steps, we have:

A Cauchy generator based upon the ratio-of-uniforms method

REPEAT

Generate iid uniform $[-1,1]$ random variates U, V.
UNTIL $U^{2}+V^{2} \leq 1$
RETURN $X \leftarrow \frac{\bar{V}}{U}$

For the t density with 3 degrees of freedom $(a=3)$,

$$
\frac{2}{\pi \sqrt{3}} \frac{1}{\left(1+\frac{x^{2}}{3}\right)^{2}}
$$

the acceptance condition is $\frac{x^{2}}{3} \leq \frac{1}{u}-1$, or $v^{2} \leq 3 u(1-u)$. Thus, once again, the acceptance region A is ellipsoldal. The unadorned ratio-of-uniforms algorithm is:
t3 generator based upon ratio-of-uniforms method
REPEAT
Generate U uniformly on $[0,1]$.
Generate V uniformly on $\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$.
UNTIL $V^{2} \leq 3 U(1-U)$
RETURN $X \leftarrow \frac{V}{U}$

This is equivalent to

t3 generator based upon ratio-of-uniforms method

REPEAT
Generate ild uniform $[-1,1]$ random variates U, V.
UNTIL $U^{2}+V^{2} \leq 1$
RETURN $X \leftarrow \sqrt{3} \frac{V}{1+U}$

Both the Cauchy and $t 3$ generators have obviously rejection constants of $\frac{4}{\pi}$, and should be accelerated by the judicious use of quick acceptance and rejection conditions that are linear in their arguments.

Example 7.4. The gamma density.

In thls example, we consider the centered gamma (a) denslty with mode at the origin,

$$
f(x)=c \frac{e^{a-1}}{(a-1)^{a-1}}(x+a-1)^{a-1} e^{-(x+a-1)} \quad(x+a-1 \geq 0)
$$

Here c is a normallzation constant equal to $\frac{(a-1)^{a-1}}{e^{a-1} \Gamma(a)}$ which will be dropped.The table with facts is given below. Notice that the expected number of Iterations is $\frac{4}{e}$ at $a=1$, and $\frac{4}{\sqrt{\pi e}}$ as $a \rightarrow \infty$, just as for the t density.

$f(x)$	$\frac{e^{a-1}}{(a-1)^{a-1}}(x+a-1)^{a-1} e^{-(x+a-1)} \quad(x+a-1 \geq 0)$
$b=\sup \sqrt{f(x)}$	1
$a_{+}=\sup x \sqrt{f(x)}, a_{-}=\operatorname{lnf} x \sqrt{f(x)}$	$z_{+} \sqrt{f\left(z_{+}\right)}$where $z_{+}=1+\sqrt{2 a-1}, z_{-} \sqrt{f(z-)}$ where $z_{-}=1-\sqrt{2 a-1}$
area (A)	$a_{+}-a_{-}$
Rejection constant	$2 c\left(a_{+}-a_{-}\right)$
Acceptance condition	$u \leq\left(\frac{e(x+a-1)}{a-1}\right)^{\frac{a-1}{2}} e^{-\frac{x+a-1}{2}}$
	$2 \log u+x \leq(a-1) \log \left(1+\frac{x}{a-1}\right)$
	$(x+a-1)^{2}\left(-2 u^{2}+8 u-6\right) \leq-x^{2}(2 x+a-1)(x \geq 0)$
	$(x+a-1)\left(-2 u^{2}+8 u-6\right) \leq-x^{2}(x \leq 0)$
Quick rejection condition	$(x+a-1)\left(2 u^{2}-2\right) \geq-u x^{2}(x \geq 0)$
	$(a-1)\left(2 u^{2}-2\right) \geq-u x^{2}(x \leq 0)$

We leave the verification of the inequalities implicit in the quick acceptance and rejectlon steps to the readers. All one needs here is Lemma 7.1. Timings with this algorlthm have shown that good speeds are obtalned for a greater than 5 . The algorlthm is uniformly fast for $a \in[1, \infty)$. The ratio-of-unlforms algorithms of Cheng and Feast (1979), Robertson and Walls (1980) and KInderman and Monahan (1979) are different in conception.

7.3. Exercises.

1. For the quick acceptance and rejection conditions for Student's t distributlon, the following Inequallty due to Kinderman and Monahan (1979) was used:

$$
5-4\left(1+\frac{1}{a}\right)^{\frac{a+1}{4}} u \leq a\left(u^{-\frac{4}{a+1}}-1\right) \leq-3+\frac{4\left(1+\frac{1}{a}\right)^{-\frac{a+1}{4}}}{u} \quad(u \geq 0)
$$

The upper bound is only valid for $a \geq 3$. Show this. Hint: first show that the middle expression $g(u)$ is convex $\ln u$. Thus,

$$
g(u) \geq g(z)+(u-z) g^{\prime}(z) .
$$

Here z is to be plcked later. Show that the area under the quick acceptance curve is maximal when $z=\left(1+\frac{1}{a}\right)^{-\frac{a+1}{4}}$, and substitute this value. For the lower bound, show that $g(u)$ as a function of $\frac{1}{u}$ is concave, and argue simllarly.
2. Barbu (1982) has pointed out that when (U, V) is unlformly distributed in $A=\{(u, v): 0 \leq u \leq f(u+v)\}$, then $U+V$ has a density which is proportlonal to f. Simllarly, if in the defintion of A, we replace $f(u+v)$ by $\left(f\left(\frac{v}{\sqrt{u}}\right)\right)^{\frac{2}{3}}$, then $\frac{V}{\sqrt{U}}$ has a density which is proportlonal to f. Show this.
3. Prove the following property. Let X have density f and define $Y=\sqrt{f(X)} \max \left(U_{1}, U_{2}\right)$ where U_{1}, U_{2} are IId unlform $[0,1]$ random varlables. Deflne also $U=Y, V \equiv X Y$. Then (U, V) is uniformly distributed in $A=\left\{(u, v): 0 \leq u \leq \sqrt{\left.f\left(\frac{v}{u}\right)\right\} \text {. Note that this can be useful for rejection in }}\right.$ the (u, v) plane when rectangular rejection is not feasible.
4. In this exercise, we study sufficient conditions for convergence of performances. Assume that f_{n} is a sequence of densities converging in some sense to a density f as $n \rightarrow \infty$. Let b_{n}, a_{+n}, a_{-n} be the deflning constants for the enclosing rectangles in the ratlo-of-uniforms method. Let b, a_{+}, a_{-}be the constants for f. Show that the rejection constants converge, I.e.

$$
\lim _{n \rightarrow \infty} b_{n}\left(a_{+n}-a_{-n}\right)=b\left(a_{+}-a_{-}\right)
$$

when

$$
\sup _{x}\left|\frac{f_{n}(x)}{f(x)}-1\right|=o(1),
$$

or when

$$
\sup _{x} x^{2}\left|f_{n}(x)-f(x)\right|=o(1)
$$

5. Glve an example of a bounded density on $[0, \infty)$ for which the region A is unbounded in the v-direction, i.e. $b=\infty$.
6. Let f be a mixture of nonoverlapping uniform densitles of varying widths and helghts. Draw the region A.
7. From general princlples (such as exercise 4), prove that the rejection constant for the t distribution tends to the rejection constant for the normal denslty as $a \rightarrow \infty$.
8. Prove that all the quick acceptance and rejection Inequalitles used for the gamma density are valld.

Chapter Five
 UNIFORM AND EXPONENTIAL SPACINGS

1. MOTIVATION.

The goal of this book is to demonstrate that random varlates with varlous distrlbutions can be obtalned by cleverly manlpulating lid uniform [0,1] random varlates. As we will see in thls chapter, normal, exponential, beta, gamma and t dlstrlbuted random varlates can be obtalned by manlpulation of the order statlstlcs or spacings defined by samples of lid uniform $[0,1]$ random varlates. For example, the celebrated polar method or Box-Muller method for normal random varlates will be derived in thls manner (Box and Muller, 1858).

There is a strong relatlonship between these spacings and radially symmetric distributions in R^{d}, so that with a little extra effort we will be able to handle the problem of generating unlform random varlates \ln and on the unit sphere of R^{d}.

The polar method can also be consldered as a speclal case of a more general method, the method of deconvolution. Because of thls close relatlonship it will also be presented in this chapter.

We start with the fundamental propertles of unlform order statistics and unlform spacings. This material is well-known and can be found in many books on probability theory and mathematical statistics. It is collected here for the convenlence of the readers. In the other sections, we will develop various algortthms for unlvarlate and multlvariate distrlbutions. Because order statistics and spacIngs involve sorting random varlates, we will have a short section on fast expected time sorting methods. Just as chapter IV, this chapter is highly speciallzed, and can be skipped too. Nevertheless, it is recommended for new students in the flelds of slmulation and mathematical statistics.

2. PROPERTIES OF UNIFORM AND EXPONENTLAL SPACINGS.

2.1. Uniform spacings.

Let U_{1}, \ldots, U_{n} be lid unlform $[0,1]$ random varlables with order statistics $U_{(1)} \leq U_{(2)} \leq \cdots \leq U_{(n)}$. The statistlcs S_{i} deflned by

$$
S_{i}=U_{(i)}-U_{(i-1)} \quad(1 \leq i \leq n+1)
$$

where by convention $U_{(0)}=0, U_{(n+1)}=1$, are called the uniform spacings for this sample.

Theorem 2.1.

$\left(S_{1}, \ldots, S_{n}\right)$ is unlformly distributed over the simplex

$$
A_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq 1\right\}
$$

Proof of Theorem 2.1.

We know that $U_{(1)}, \ldots, U_{(n)}$ is uniformly distributed over the simplex

$$
B_{n}=\left\{\left(x_{1}, \cdots, x_{n}\right): 0 \leq x_{1} \leq \cdots \leq x_{n} \leq 1\right\}
$$

The transformation

$$
\begin{aligned}
& s_{1}=u_{1} \\
& s_{2}=u_{2}-u_{1} \\
& \cdots \\
& s_{n}=u_{n}-u_{n-1}
\end{aligned}
$$

has as Inverse

$$
\begin{aligned}
& u_{1}=s_{1} \\
& u_{2}=s_{1}+s_{2} \\
& \cdots \\
& u_{n}=s_{1}+s_{2}+\cdots+s_{n}
\end{aligned}
$$

and the Jacoblan of the transformation, i.e. the determinant of the matrix formed by $\frac{\partial s_{i}}{\partial u_{j}}$ is 1 . This shows that the density of S_{1}, \ldots, S_{n} is uniformly distributed on the set A_{n}.

Proofs of thls sort can often be obtalned without the cumbersome transformatlons. For example, when X has the unlform density on a set $A \subseteq R^{d}$, and B is a linear nonsingular transformation: $R^{d} \rightarrow R^{d}$, then $Y=B X$ is uniformly distributed on $B A$ as can be seen from the following argument: for all Borel sets $C \subseteq R^{d}$,

$$
\begin{aligned}
& P(Y \in C)=P(B X \in C)=P\left(X \in B^{-1} C\right) \\
& =\frac{\int_{\left(B^{-1} C\right) \cap A} d x}{\int_{A} d x}=\frac{\int_{C(B A)} d x}{\int_{B A} d x} .
\end{aligned}
$$

Theorem 2.2.

S_{1}, \ldots, S_{n+1} is distributed as

$$
\frac{E_{1}}{\sum_{i=1}^{n+1} E_{i}}, \ldots, \frac{E_{n+1}}{\sum_{i=1}^{n+1} E_{i}}
$$

where E_{1}, \ldots, E_{n+1} is a sequence of ild exponential random variables. Furthermore, if G_{n+1} is independent of $\left(S_{1}, \ldots, S_{n+1}\right)$ and is gamma $(n+1)$ distributed, then

$$
S_{1} G_{n+1}, \ldots, S_{n+1} G_{n+1}
$$

is distributed as $E_{1}, E_{2}, \ldots, E_{n+1}$.

The proof of Theorem 2.2 is based upon Lemma 2.1:

Lemma 2.1.

For any sequence of nonnegative numbers x_{1}, \ldots, x_{n+1}, we have

$$
P\left(S_{1}>x_{1}, \ldots, S_{n+1}>x_{n+1}\right)=\left(1-\sum_{i=1}^{n+1} x_{i}\right)_{+}^{n}
$$

Proof of Lemma 2.1.

Assume without loss of generallty that $\sum_{i=1}^{n+1} x_{i} \leq 1$ (for otherwise the lemma is obvlously true). We use Theorem 2.1. In the notation of Theorem 2.1, we start from the fact that S_{1}, \ldots, S_{n} is unlformly distributed in A_{n}. Thus, our probablllty is equal to

$$
P\left(S_{1}>x_{1} \ldots, S_{n}>x_{n}, 1-\sum_{i=1}^{n} S_{i}>x_{n+1}\right)
$$

This is the probabllity of a set $A_{n}{ }^{*}$ which is a slmplex just as A_{n} except that its top is not at $(0,0, \ldots, 0)$ but rather at $\left(x_{1}, \ldots, x_{n}\right)$, and that its sides are not of length 1 but rather of length $1-\sum_{i=1}^{n+1} x_{i}$. For unlform distrlbutions, probabilities can be calculated as ratlos of areas. In thls case, we have

$$
\frac{\int_{A_{n}^{*}} d x}{\int_{A_{n}} d x}=\left(1-\sum_{i=1}^{n+1} x_{i}\right)^{n} \cdot \square
$$

Proof of Theorem 2.2.

Part one. Let $G=G_{n+1}$ be the random varlable $\sum_{i=1}^{n+1} E_{i}$. Note that we need only show that

$$
\frac{E_{1}}{G}, \ldots, \frac{E_{n}}{G}
$$

Is unlformly distributed in A_{n}. The last component $\frac{E_{n+1}}{G}$ is taken care of by noting that it equals 1 minus the sum of the first n components. Let us use the symbols e_{i}, y, x_{i} for the running varlables corresponding to $E_{i}, G, \frac{E_{i}}{G}$. We first compute the joint density of E_{1}, \ldots, E_{n}, G :

$$
f\left(e_{1}, \ldots, e_{n}, y\right)=\prod_{i=1}^{n} e^{-e_{i}} e^{-\left(y-e_{1}-\cdots-e_{n}\right)}=e^{-y}
$$

valld when $e_{i} \geq 0$, all i, and $y \geq \sum_{i=1}^{n} e_{i}$. Here we used the fact that the joint density is the product of the density of the first n varlables and the density of G glven $E_{1}=e_{1}, \ldots, E_{n}=e_{n}$. Next, by a simple transformation of variables, it is easily seen that the joint density of $\frac{E_{1}}{G}, \ldots, \frac{E_{n}}{G}, G$ is

$$
y^{n} f\left(x_{1} y, \ldots, x_{n} y, y\right)=y^{n} e^{-y} \quad\left(x_{i} y \geq 0, \sum_{i=1}^{n} x_{i} y \leq y\right)
$$

This is easlly obtalned by the transformation $\left\{x_{1}=\frac{e_{1}}{y}, \ldots, x_{n}=\frac{e_{n}}{y}, y=y\right\}$. Finally, the marginal density of $\frac{E_{1}}{G}, \ldots, \frac{E_{n}}{G}$ is obtained by integrating the last density with respect to $d y$, whlch glves us

$$
\int_{0}^{\infty} y^{n} e^{-y} d y I_{A_{n}}\left(x_{1}, \ldots x_{n}\right)=n!I_{A_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

This concludes the proof of part one.
Part two. Assume that $x_{1} \geq 0, \ldots, x_{n+1} \geq 0$. By Lemma 2.1, we have

$$
\begin{aligned}
& P\left(G S_{1}>x_{1}, \ldots, G S_{n+1}>x_{n+1}\right) \\
& =\int_{0}^{\infty} P\left(S_{1}>\frac{x_{1}}{y}, \ldots, \left.S_{n+1}>\frac{x_{n+1}}{y} \right\rvert\, G=y\right) \frac{y^{n} e^{-y}}{n!} d y \\
& =\int_{y: \sum \frac{x_{i}}{y} \leq 1}\left(1-\sum_{i=1}^{n+1} \frac{x_{i}}{y}\right)^{n} \frac{y^{n} e^{-y}}{n!} d y \\
& =\int_{c}^{\infty}(y-c)^{n} \frac{e^{-y}}{n!} d y \quad\left(\text { where } c=\sum_{i=1}^{n+1} x_{i}\right) \\
& =e^{-c} \\
& =\prod_{i=1}^{n+1} e^{-x_{i}}
\end{aligned}
$$

A myriad of results follow from Theorem 2.2. For example, if U, U_{1}, \ldots, U_{n} are ild uniform $[0,1]$ random variables, E is an exponential random variable, and G_{n} is a gamma (n) random varlable, then the following random varlables have identical distributions:

$$
\begin{aligned}
& \min \left(U_{1}, \ldots, U_{n}\right) \\
& 1-U^{\frac{1}{n}} \\
& 1-e^{-\frac{E}{n}} \\
& \frac{E}{E+G_{n}}\left(E, G_{n} \text { are Independent }\right) \\
& \left(\frac{E}{n}\right)-\frac{1}{2!}\left(\frac{E}{n}\right)^{2}+\frac{1}{3!}\left(\frac{E}{n}\right)^{3}-\cdots .
\end{aligned}
$$

It is also easy to show that $\frac{\max \left(U_{1}, \ldots, U_{n}\right)}{\min \left(U_{1}, \ldots, U_{n}\right)}$ is distributed as $1+\frac{G_{n-1}}{E}$, that $\max _{G_{n}}\left(U_{1}, \ldots, U_{n}\right)-\min \left(U_{1}, \ldots, U_{n}\right)$ is distributed as $1-S_{1}-S_{n+1}$ (i.e. as $\frac{G_{n-1}}{G_{n-1}+G_{2}}$), and that $U_{(k)}$ is distributed as $\frac{G_{k}}{G_{k}+G_{n+1-k}}$ where G_{k} and G_{n+1-k} are independent. Since we already know from section I. 4 that $U_{(k)}$ is beta ($k, n+1-k$) distributed, we have thus obtained a well-known relationshlp between the gamma and peta distrlbutlons.

2.2. Exponential spacings.

In this section, $E_{(1)} \leq E_{(2)} \leq \cdots \leq E_{(n)}$ are the order statistics corresponding to a sequence of ind exponential random variables $E_{1}, E_{2}, \ldots, E_{n}$.

Theorem 2.3. (Sukhatme, 1937)
If we defline $E_{(0)}=0$, then the normallzed exponential spacings

$$
(n-i+1)\left(E_{(i)}-E_{(i-1)}\right), 1 \leq i \leq n,
$$

are lid exponentlal random variables. Also,

$$
\frac{E_{1}}{n}, \frac{E_{1}}{n}+\frac{E_{2}}{n-1}, \ldots, \frac{E_{1}}{n}+\cdots+\frac{E_{n}}{1}
$$

are distributed as $E_{(1)}, \ldots, E_{(n)}$.

Proof of Theorem 2.3.

The second statement follows from the first statement: It suffices to call the random varlables of the first statement $E_{1}, E_{2}, \ldots, E_{n}$ and to note that

$$
\begin{aligned}
& E_{(1)}=\frac{E_{1}}{n}, \\
& E_{(2)}=E_{(1)}+\frac{E_{2}}{n-1}, \\
& \cdots \\
& E_{(n)}=E_{(n-1)}+\frac{E_{n}}{1} .
\end{aligned}
$$

To prove the first statement, we note that the joint density of $E_{(1)}, \ldots, E_{(n)}$ is

$$
\begin{aligned}
& n!e^{-\sum_{i=1}^{n} x_{i}} \quad\left(0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}<\infty\right) \\
& =n!e^{-\sum_{i=1}^{n}(n-i+1)\left(x_{i}-x_{i-1}\right)} \quad\left(0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}<\infty\right)
\end{aligned}
$$

Define now $Y_{i}=(n-i+1)\left(E_{(i)}-E_{(i-1)}\right), y_{i}=(n-i+1)\left(x_{i}-x_{i-1}\right)$. Thus, we have

$$
\begin{aligned}
& x_{1}=\frac{y_{1}}{n} \\
& x_{2}=\frac{y_{1}}{n}+\frac{y_{2}}{n-1}, \\
& \cdots \\
& x_{n}=\frac{y_{1}}{n}+\cdots+\frac{y_{n}}{1} .
\end{aligned}
$$

The determinant of the matrix formed by $\frac{\partial x_{i}}{\partial y_{j}}$ is $\frac{1}{n!}$. Thus, Y_{1}, \ldots, Y_{n} has density

$$
e^{-\sum_{i=1}^{\infty} y_{i}} \quad\left(y_{i} \geq 0, \text { all } i\right)
$$

which was to be shown.

Theorem 2.3 has an important corollary: in a sample of two ild exponential random varlates, $E_{(2)}-E_{(1)}$ is agaln exponentlally distributed. This is basically due to the memoryless property of the exponentlal distribution: given that $E \geq x$, $E-x$ is agaln exponentlally distributed. In fact, If we show the memoryless property (thls is easy), and if we show that the minimum of n ild exponential random varlables is distributed as $\frac{E}{n}$ (this is easy too), then we can prove Theorem 2.3 by Induction.

Theorem 2.4. (Malmquist, 1950)
Let $0 \leq U_{(1)} \leq \cdots \leq U_{(n)} \leq 1$ be the order statistics of $U_{1}, U_{2}, \ldots, U_{n}$, a sequence of ind unlform [0,1] random variables. Then, if $U_{(n+1)}=1$,
A. $\left\{\left(\frac{U_{(i)}}{U_{(i+1)}}\right)^{i}, 1 \leq i \leq n\right\}$ is distributed as U_{1}, \ldots, U_{n}.
B. $U_{n}{ }^{\frac{1}{n}}, U_{n}{ }^{\frac{1}{n}} U_{n-1}{ }^{\frac{1}{n-1}}, \ldots, U_{n}{ }^{\frac{1}{n}} \ldots U_{1}^{\frac{1}{1}}$ is distributed as $U_{(n)}, \ldots, U_{(1)}$.

Proof of Theorem 2.4.

In Theorem 2.3, replace U_{i} by $e^{-E_{i}}$ and $U_{(i)}$ by $e^{-E_{(n-i+1)} \text {. Then, In the nota- }- \text { in }}$ tion of Theorems 2.3 and 2.4 we see that the following sequences are Identically distributed:

$$
\begin{aligned}
& \left(\frac{U_{(i)}}{U_{(i+1)}}\right)^{i}, 1 \leq i \leq n, \\
& \left(e^{\left.-E_{(n-1+1)}+E_{(n-1)}\right)^{i}}, 1 \leq i \leq n,\right. \\
& e^{-E_{1}}, 1 \leq i \leq n \\
& U_{i}, 1 \leq i \leq n
\end{aligned}
$$

Thls proves part A. Part B follows without work from part A.

2.3. Exercises.

1. Glve an alternative proof of Theorem 2.3 based upon the memoryless property of the exponential distribution (see suggestion following the proof of that theorem).
2. Prove that in a sample of n ild unlform $[0,1]$ random varlates, the maximum minus the minimum (1.e., the range) is distributed as

$$
U^{\frac{1}{n}} V^{\frac{1}{n-1}}
$$

where U, V are 11 d unlform $[0,1]$ random variates.
3. Show that the minimum spacing in a unlform sample of slze n is distributed as $\frac{1}{n+1}\left(1-U^{\frac{1}{n}}\right)$ where U itself is uniformly distributed on $[0,1]$.
4. Prove or disprove: $\frac{U}{U+V}$ is uniformly distributed on $[0,1]$ when U, V are ild unlform [0,1] random variables.
5. Prove Whitworth's formula: If $S_{i}, 1 \leq i \leq n+1$ are unlform spacings, then

$$
P\left(\max _{i} S_{i} \geq x\right)=\binom{n}{1}(1-x)_{+}-\binom{n}{2}(1-2 x)_{+}^{2}+\cdots
$$

(Whitworth, 1887)
6. Let E_{1}, E_{2}, E_{3} be lid exponential random variables. Show that the following random variables are independent: $\frac{E_{1}}{E_{1}+E_{2}}, \frac{\left(E_{1}+E_{2}\right)}{E_{1}+E_{2}+E_{3}}, E_{1}+E_{2}+E_{3}$. Furthermore, show that their densitles are the uniform $[0,1]$ density, the triangular density on $[0,1]$ and the gamma (3) density, respectively.

3. GENERATION OF ORDERED SAMPLES.

The first application that one thinks of when presented with Theorem 2.2 is a method for generating the order statistics $U_{(1)} \leq \cdots \leq U_{(n)}$ directly. By thls we mean that it is not necessary to generate U_{1}, \ldots, U_{n} and then apply some sorting method.

In thls section we will describe several problems which require such ordered samples. We will not be concerned here with the problem of the generation of one order statlstic such as the maximum or the medlan.

3.1. Generating uniform $[0,1]$ order statistics.

The previous sections all suggest methods for generating uniform $[0,1]$ order statistics:

A. Sorting

Generate iid uniform $[0,1]$ random variates U_{1}, \ldots, U_{n}. Obtain $U_{(1)}, \ldots, U_{(n)}$ by sorting the U_{i} 's.

B. Via uniform spacings

Generate ild exponential random variates E_{1}, \ldots, E_{n+1}, and compute their sum G.
$U_{(0)}+0$
FOR $j:=1$ TO n DO

$$
U_{(j)} \leftarrow U_{(j-1)}+\frac{E_{j}}{G}
$$

C. Via exponential spacings

$$
U_{(n+1)} \leftarrow 1
$$

FOR $j:=n$ DOWNTO 1 DO
Generate a uniform $[0,1]$ random variate U.

$$
U_{(j)} \leftarrow U^{\frac{1}{j}} U_{(j+1)}
$$

Algorithm A is the nalve approach. Sorting methods usually found in computer libraries are comparison-based. This means that information is moved around in tables based upon palrwise comparisons of elements only. It is known (see e.g. Knuth (1973) or Baase (1978)) that the worst-case and expected times taken by these algorithms are $\Omega(n \log n)$. Heapsort and mergesort have worst-case tlmes that are $O(n \log n)$. Quicksort has expected time $O(n \log n)$, but worst-case time both $O\left(n^{2}\right)$ and $\Omega\left(n^{2}\right)$. For detalls, any standard textbook on data structures can be consulted (see e.g. Aho, Hopcroft and Ullman, 1983). What is different in the present case is that the U_{i} 's are unlformly distributed on $[0,1]$. Thus, we can hope to take advantage of truncation. As we will see in the next section, we can bucket sort the $U_{i} \cdot s \ln$ expected time $O(n)$.

Algorlthms B and C are $O(n)$ algorlthms in the worst-case. But only method C is a one-pass method. But because method C requires the computation of a power in each iteration, it is usually slower than elther A or B. Storagewise, method A ls least efficlent since additional storage proportlonal to n is needed. Nevertheless, for large n, method A with bucket sorting is recommended. This is due to the accumulation of round-off errors in algorlthms B and C.

Algorthms B and C were developed in a series of papers by Lurle and Hartley (1972), Schucany (1972) and Lurle and Mason (1973). Experimental comparisons can be found In Rablnowltz and Berenson (1974), Gerontldes and Smlth (1982), and Bentley and Saxe (1980). Ramberg and Tadlkamalla (1978) consider the case of the generation of $U_{(k)}, U_{(k+1)}, \ldots, U_{(m)}$ where $1 \leq k \leq m \leq n$. This requires generating one of the extremes $U_{(k)}$ or $U_{(m)}$, after which a sequentlal method simllar to algorithms B or C can be used, so that the total time is proportional to $m-k+1$.

3.2. Bucket sorting. Bucket searching.

We start with the description of a data structure and an algorlthm for sort$\operatorname{lng} n[0,1]$ valued elements X_{1}, \ldots, X_{n}.

Bucket sorting

[SET-UP]
We need two auxiliary tables of size n called Top and Next. Top [i] gives the index of the top element in bucket i (i.e. $\left(\frac{i-1}{n}, \frac{i}{n}\right)$). A value of 0 indicates an empty bucket. Next [$\left.i\right]$ gives the index of the next element in the same bucket as X_{i}. If there is no next element, its value is 0 .
FOR $i:=1$ TO n DO Next $[i] \leftarrow 0$
FOR $i:=0$ TO $n-1$ DO Top $[i] \curvearrowleft 0$
FOR $i:=1$ TO n DO
Bucket $\leftarrow\left\lfloor n X_{i}\right\}$
Next [i]ヶTop [Bucket]
Top [Bucket] $\leftarrow i$
[SORTING]
Sort all elements within the buckets by ordinary bubble sort or selection sort, and concatenate the nonempty buckets.

The set-up step takes time proportional to n In all cases. The sort step is where we notice a difference between distrlbutions. If each bucket contains one element, then thls step too takes time proportional to n. If all elements on the
other hand fall in the same bucket, then the time taken grows as n^{2} since selectlon sort for that one bucket takes time proportional to n^{2}. Thus, for our analysis, we will have to make some assumptions about the X_{i} 's. We will assume that the X_{i} 's are ild with density f on $[0,1]$. In Theorem 3.1 we show that the expected time is $O(n)$ for nearly all densitles f.

Theorem 3.1. (Devroye and Klincsek, 1981)

The bucket sort given above takes expected time $O(n)$ if and only if

$$
\int f^{2}(x) d x<\infty
$$

Proof of Theorem 3.1.

Assume that the buckets recelve N_{0}, \ldots, N_{n-1} points. It is clear that each N_{i} is binomially distributed with parameters n and p_{i} where

$$
p_{i}=\int_{\frac{i}{n}}^{\frac{i+1}{n}} f(x) d x
$$

By the properties of selection sort, we know that there exist finite positive constants c_{1}, c_{2}, such that the time T_{n} taken by the algorithm satisfies:

$$
c_{1} \leq \frac{T_{n}}{n+\sum_{i=0}^{n-1} N_{i}^{2}} \leq c_{2}
$$

By Jensen's inequallty for convex functions, we have

$$
\begin{aligned}
& \sum_{i=0}^{n-1} E\left(N_{i}^{2}\right)=\sum_{i=0}^{n-1}\left(n p_{i}\left(1-p_{i}\right)+n^{2} p_{i}^{2}\right) \\
& \leq \sum_{i=0}^{n-1} n p_{i}+\sum_{i=0}^{n-1}\left(n \int_{\frac{i}{n}}^{\frac{i+1}{n}} f(x) d x\right)^{2} \\
& \leq n+\sum_{i=0}^{n-1} n \int_{\frac{i}{n}}^{\frac{i+1}{n}} f^{2}(x) d x \\
& =n\left(1+\int_{0}^{1} f^{2}(x) d x\right)
\end{aligned}
$$

This proves one implication. The other impllcation requires some finer tools, especlally if we want to avold imposing smoothness conditions on f. The key measure theoretical result needed is the Lebesgue density theorem, which (phrased in a form sultable to us) states among other things that for any denslty f on R, we have

$$
\left.\lim _{n \rightarrow \infty} n \int_{x-\frac{1}{n}}^{x+\frac{1}{n}}|f(y)-f(x)| d y=0 \quad \text { (for almost all } x\right)
$$

Consult for example Wheeden and Zygmund (1977).
If we define the density

$$
f_{n}(x)=p_{i} \quad\left(0 \leq \frac{i}{n} \leq x<\frac{i+1}{n} \leq 1\right)
$$

then it is clear that

$$
\begin{aligned}
& \left|f_{n}(x)-f(x)\right| \leq \int_{\frac{i}{n}}^{\frac{i+1}{n}}|f(y)-f(x)| d y \quad\left(\frac{i}{n} \leq x<\frac{i+1}{n}\right) \\
& \leq n \int_{x-\frac{1}{n}}^{x+\frac{1}{n}}|f(y)-f(x)| d y
\end{aligned}
$$

and thls tends to 0 for for almost all x. Thus, by Fatou's lemma,

$$
\operatorname{llm} \operatorname{lnf} \int_{0}^{1} f_{n}{ }^{2}(x) d x \geq \int_{0}^{1} \operatorname{llm} \operatorname{lnf} f_{n}{ }^{2}(x) d x=\int_{0}^{1} f^{2}(x) d x
$$

But

$$
\frac{1}{n} \sum_{i=0}^{n-1} E\left(N_{i}^{2}\right) \geq \sum_{i=0}^{n-1} n p_{i}^{2}=\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}} f_{n}^{2}(x) d x=\int_{0}^{1} f_{n}^{2}(x) d x
$$

Thus, $\int f^{2}=\infty$ implles lim $\operatorname{lnf} \frac{T_{n}}{n}=\infty$.

In selection sort, the number of comparisons of two elements is $(n-1)+(n-2)+\cdots+1=\frac{n(n-1)}{2}$. Thus, the total number of comparisons needed In bucket sort Is, in the notation of the proof of Theorem 3.1,

$$
\sum_{i=0}^{n-1} \frac{N_{i}\left(N_{i}-1\right)}{2}
$$

The expected number of comparisons is thus

$$
\begin{aligned}
& \sum_{i=0}^{n-1} \frac{1}{2}\left(n^{2} p_{i}^{2}+n p_{i}\left(1-p_{i}\right)-n p_{i}\right) \\
& =\frac{n(n-1)}{2} \sum_{i=0}^{n-1} p_{i}^{2} \\
& \leq \frac{n-1}{2} \int_{0}^{1} f^{2}(x) d x
\end{aligned}
$$

This upper bound is, not unexpectedly, minlmized for the uniform density on $[0,1]$, in which case we obtaln the upper bound $\frac{n-1}{2}$. In other words, the expected number of comparisons is less than the total number of elements! This is of course due to the fact that most of the sorting is done in the set-up step.

If selection sort is replaced by an $O(n \log n)$ expected time comparison-based sortlng algorithm (such as quicksort, mergesort or heapsort), then Theorem 3.1 remains valid provided that the condition $\int f^{2}<\infty$ is replaced by

$$
\int_{0}^{\infty} f(x) \log _{+} f(x) d x<\infty .
$$

See Devroye and Kllncsek (1981). The problem wlth extra space can be alleviated to some extent by clever programming tricks. These tend to slow down the algorithm and won't be discussed here.

Let us now turn to searching. The problem can be formulated as follows. $[0,1]$-valued data X_{1}, \ldots, X_{n} are glven. We assume that thls Is an Ind sequence with common denslty f. Let T_{n} be the time taken to determine whether X_{Z} is In the structure where Z is a random integer taken from $\{1, \ldots, n\}$ independent of the X_{i} 's. This is called the successful search tlme. The time $T_{n}{ }^{*}$ taken to determine whether X_{n+1} (a random varlable distributed as X_{1} but independent of the data sequence) is in the structure is called the unsuccessful search time. If we store the elements in an array, then llnear (or sequentlal search) ylelds expected search times that are proportlonal to n. If we use binary search and the array is sorted, then it is proportional to $\log (n)$. Assume now that we use the bucket data structure, and that the elements within buckets are not sorted. Then, with linear search within the buckets, the expected number of comparisons of elements for successful search, given N_{0}, \ldots, N_{n-1}, is

$$
\sum_{i=0}^{n-1} \frac{N_{i}}{n} \frac{N_{i}+1}{2}
$$

For unsuccessiul search, we have

$$
\sum_{i=0}^{n-1} \frac{N_{i}}{n} N_{i}
$$

Argulng now as in Theorem 3.1, we have:

Theorem 3.2.

When searching a bucket structure we have $E\left(T_{n}\right)=O(1)$ if and only if $\int f^{2}<\infty$. Also, $E\left(T_{n^{*}}\right)=O(1)$ of and only if $\int f^{2}<\infty$.

3.3. Generating exponential order statistics.

To generate a sorted sample of exponentlal random varlables, there are two algorithms paralleling algorithms A and C for the uniform distribution.

A. Bucket sorting

Generate iid exponential random variates E_{1}, \ldots, E_{n}.
Obtain $E_{(1)} \leq \cdots \leq E_{(n)}$ by bucket sorting.

C. Via exponential spacings

$E_{(0)}$ (0
FOR $i:=1$ TO n DO
Generate an exponential random variate E.
$E_{(i)} \leftarrow E_{(i-1)}+\frac{E}{n-i+1}$

Method C uses the memoryless property of the exponentlal distribution. It takes time $O(n)$. Careless bucket sortlng applled to algorlthm A could lead to a superllnear time algorithm. For example, thls would be the case if we were to divide the interval $\left[0, \max E_{i}\right]$ up into n equi-sized intervals. This can of course be avolded if we first generate $U_{(1)} \leq \cdots \leq U_{(n)}$ for a unlform sample in expected time $O(n)$, and then return $-\log U_{(n)}, \ldots,-\log U_{(1)}$. Another possiblllty is to construct the bucket structure for $E_{i} \bmod 1,1 \leq i \leq n$, l.e. for the fractlonal parts only, and to sort these elements. Since the fractlonal parts have a bounded density,

$$
\frac{e^{-x} I_{[0,1]}(x)}{1-\frac{1}{e}}
$$

we know from Theorem 3.1 that a sorted array can be obtained in expected time $O(n)$. But thls sorted array has many sorted sub-arrays. In one extra pass, we can untangle it provided that we have kept track of the unused integer parts of the data, $\left\{E_{i}\right]$. Concatenation of the many sub-arrays requires another pass, but we still have linear behavlor.

3.4. Generating order statistics with distribution function F.

The order statistics $X_{(1)} \leq \cdots \leq X_{(n)}$ that correspond to X_{1}, \ldots, X_{n}, a sequence of lld random varlables with absolutely continuous distribution function F on R^{1} can be generated as

$$
F^{-1}\left(U_{(1)}\right), \ldots, F^{-1}\left(U_{(n)}\right)
$$

or as

$$
F^{-1}\left(1-e^{-E_{(1)}}\right), \ldots, F^{-1}\left(1-e^{-E_{(n)}}\right)
$$

starting from unlform or exponential order statistics. The exponentlal order statlstics method based on C (see prevlous section) was proposed by Newby (1879). In general, the cholce of one method over the other one largely depends upon the form of F. For example, for the Welbull distribution function

$$
F(x)=1-e^{-\left(\frac{x}{b}\right)^{0}} \quad(x \geq 0)
$$

we have $F^{-1}(u)=b(-\log (1-u))^{\frac{1}{a}}$ and $F^{-1}\left(1-e^{-u}\right)=b u^{\frac{1}{a}}$, so that the exponential order statlstics method seems better sulted.

In many cases, it is much faster to just sort X_{1}, \ldots, X_{n} so that the costly Inverslons can be avolded. If bucket sorting is used, one should make sure that the expected time is $O(n)$. This can be done for example by transforming the data in a monotone manner for the purpose of sorting to $[0,1]$ and Insuring that the density f of the transformed data has a small value for $\int f^{2}$. Transformations that one might consider should be simple, e.g. $\frac{x}{a+x}$ is useful for transformIng nonnegative data. The parameter $a>0$ is a design parameter which should be -picked such that the density after transformation has the smallest possible value for $\int f^{2}$.

The so-called grouplng method studled by Rabonowitz and Berenson (1974) and Gerontides and Smith (1982) is a hybrid of the inversion method and the bucket sorting method. The support of the distribution is partitioned into k intervals, each having equal probabllity. Then one keeps for each interval a linked list. Intervals are selected with equal probability, and within each interval, random points are generated directly. In a final pass, all linked lists are sorted and concatenated. The sorting and concatenating take linear expected time when
$k=n$, because the Interval cardinallties are as for the bucket method in case of a unlform distribution. There are two major differences with the bucket sorting method: first of all, the determination of the intervals requires $k-1$ implicit inversions of the distribution function. This is only worthwhile when it can be done in a set-up step and very many ordered samples are needed for the same distributlon and the same n (recall that k is best taken proportional to n). Secondly, we have to be able to generate random variates with a distribution restricted to these intervals. Candidates for this include the refection method. For monotone densitles or unimodal densitles and large n, the rejection constant will be close to one for most intervals if rejection from uniform densitles is used.

But perhaps most promising of all is the rejection method itself for generating an ordered sample. Assume that our denslty f is dominated by $c g$ where g is another density, and $c>1$ is the rejection constant. Then, exploiting propertles of points uniformly distributed under f, we can proceed as follows:

Rejection method for generating an ordered sample

[NOTE: n is the size of the ordered sample; $m>n$ is an integer picked by the user. Its recommended value is $\left.\left\{n c+\sqrt{n c(c-1) \log \left(\frac{c n}{2 \pi(c-1)}\right)}\right].\right]$
REPEAT
Generate an ordered sample X_{1}, \ldots, X_{m} with density g.
Generate m iid uniform $[0,1]$ random variates U_{1}, \ldots, U_{m}.
Delete all X_{i} 's for which $U_{i}>c g\left(X_{i}\right) / f\left(X_{i}\right)$.
UNTIL the edited (but ordered) sample has $N \geq n$ elements
Delete another $N-n$ randomly selected X_{i} 's from this sample, and return the edited sample.

The maln loop of the algorithm, when successful, glves an ordered sample of random size $N \geq n$. This sample is further edited by one of the well-known methods of selecting a random (unlform) sample of slze $N-n$ from a set of slze n (see chapter XII). The expected tlme taken by the latter procedure is $E(N-n \mid N \geq n)$ times a constant not depending upon N or n. The expected tlme taken by the global algorlthm is $m / P(N \geq n)+E(N-n \mid N \geq n)$ if constants are omltted, and a unlform ordered sample with density g can be generated in linear expected time.

Theorem 3.3.

Let m, n, N, f, c, g keep thelr meaning of the rejection algorithm defined above. Then, if $m \geq c n$ and $m=O(n)$, the algorithm takes expected time $O(n)$. If in addition $m-c n=o(n)$ and $(m-c n) / \sqrt{n} \rightarrow \infty$, then

$$
T_{n}=\frac{m}{P(N \geq n)}+E(N-n \mid N \geq n) \sim c n
$$

as $n \rightarrow \infty$.

Proof of Theorem 3.3.

In order to analyze the success probabllity, we need some result about the closeness between the blnomial and normal distributions. First of all, slnce N is blnomial ($m, \frac{1}{c}$), we know from the central llmit theorem that as $m \rightarrow \infty$,

$$
P(N<n) \sim \Phi\left(\frac{n-\frac{m}{c}}{\sqrt{m \frac{1}{c}\left(1-\frac{1}{c}\right)}}\right)
$$

where Φ is the normal distribution function. If $m \geq c n$ at all times, then we see that $P(N<n)$ stays bounded away from 1 , and oscillates asymptotlcally between 0 and $1 / 2$. It can have a llmit. If $(m-c n) / \sqrt{n} \rightarrow \infty$, then we see that $P(N<n) \rightarrow 0$.

We note that $E(N-n \mid N \geq n)=.E\left((N-n)_{+}\right) / P(N \geq n)$. Since $N-n \leq m-n$, we see that $T_{n} \leq(2 m-n) / P(N \geq n)$. The bound is $O(n)$ when $m=O(n)$ and $P(N \geq n)$ is bounded away from zero. Also, $T_{n} \sim c n$ when $P(N<n) \rightarrow 0$ and $m \sim c n$.

Remark 3.1. Optimal choice of m.

The best posslble value for T_{n} is $c n$ because we cannot hope to accept n points with large enough probability of success unless the original sample is at least of size $c n$. It is fortunate that we need not take m much larger than $c n$. Detalled computations are needed to obtain the following recommendation for m : take m close to

$$
n c+\sqrt{n c(c-1) \log \left(\frac{c n}{2 \pi(c-1)}\right)} .
$$

With this cholce, T_{n} is $c n+O(\sqrt{n \log (n)})$. See exerclse 3.7 for guidance with the derivation.

3.5. Generating exponential random variates in batches.

By Theorem 2.2, lid exponentlal random varlates E_{1}, \ldots, E_{n} can be generated as follows:

Exponential random variate generator

Generate an ordered sample $U_{(1)} \leq \cdots \leq U_{(n-1)}$ of uniform $[0,1]$ random variates. Generate a gamma (n) random variate G_{n}. $\operatorname{RETURN}\left(G_{n} U_{(1)}, G_{n}\left(U_{(2)}-U_{(1)}, \ldots, G_{n}\left(1-U_{(n-1)}\right)\right)\right.$.

Thus, one gamma variate (which we are able to generate in expected time O (1)) and a sorted uniform sample of size $n-1$ are all that is needed to obtaln an ild sequence of n exponentlal random varlates. Thus, the contribution of the gamma generator to the total time is asymptotically negligible. Also, the sorting can be done extremely quickly by bucket sort if we have a large number of buckets (exerclse 3.1), so that for good Implementations of bucket sorting, a superefflclent exponentlal random varlate generator can be obtalned. Note however that by taking differences of numbers that are close to each other, we loose some accuracy. For very large n, this method is not recommended.

One spectal case is worth mentioning here: $U G_{2}$ and $(1-U) G_{2}$ are ild exponential random varlates.

3.6. Exercises.

1. In bucket sorting, assume that instead of n buckets, we take $k n$ buckets where $k \geq 1$ is an integer. Analyze how the expected time is affected by the cholce of k. Note that there is a time component for the set-up which Increases as $k n$. The tlme component due to selectlon sort within the buckets is a decreasing function of k and f. Determine the asymptotically optimal value of k as a function of $\int f^{2}$ and of the relatlve welghts of the two tlme components.
2. Prove the clalm that if an $O(n \log n)$ expected tlme comparison-based sortIng algorithm is used within buckets, then $\int_{0} f \log _{+} f<\infty$ Implles that the
expected time is $O(n)$.
3. Show that $\int f \log _{+} f<\infty$ implies $\int f^{2}<\infty$ for any density f. Glve an example of a density f on $[0,1]$ for which $\int f \log _{+} f<\infty$, yet $\int f^{2}=\infty$. Give also an example for whlch $\int f \log _{+} f=\infty$.
4. The randomness in the time taken by bucket sorting and bucket searching can be approprlately measured by $\sum_{i=0}^{n-1} N_{i}{ }^{2}$, a quantity that we shall call T_{n}. It is often good to know that T_{n} does not become very large with high probabllity. For example, we may wish to obtain good upper bounds for $P\left(T_{n}>E\left(T_{n}\right)+\alpha\right)$, where $\alpha>0$ is a constant. For example, obtaln bounds that decrease exponentlally fast $\ln n$ for all bounded densities on $[0,1]$ and all $\alpha>0$. Hint: use an exponentlal version of Chebyshev's Inequallty and a Polssonlzation trick for the sample size.
5. Give an $O(n)$ expected time generator for the maximal unlform spacing in a sample of size n. Then glve an O (1) expected time generator for the same problem.
6. If a density f can be decomposed as $p f_{1}+(1-p) f_{2}$ where f_{1}, f_{2} are densities and $p \in[0,1]$ is a constant, then an ordered sample $X_{(1)} \leq \cdots \leq X_{(n)}$ of f can be generated as follows:

Generate a binomial (n, p) random variate N.
Generate the order statistics $Y_{(1)} \leq \cdots \leq Y_{(N)}$ and $Z_{(1)} \leq \cdots \leq Z_{(n-N)}$ for densities f_{1} and f_{2} respectively.
Merge the sorted tables into a sorted table $X_{(2)} \leq \cdots \leq X_{(n)}$.

The acceleration is due to the fact that the method based upon inversion of F is sometlmes simple for f_{1} and f_{2} but not for f; and that n coln flips needed for selection in the mixture are avolded. Of course, we need a blnomlal random varlate. Here is the question: based upon this decomposition method, derive an efficient algorithm for generating an ordered sample from any monotone denslty on $[0, \infty)$.
7. This is about the optimal choice for m in Theorem 3.3 (the rejection method for generating an ordered sample). The purpose is to find an m such that for that cholce of $m, T_{n}-c n \sim \underset{m}{\sim} \operatorname{lnf}^{(}\left(T_{n}-c n\right)$ as $n \rightarrow \infty$. Proceed as follows: first show that it suffices to consider only those m for which $T_{n} \sim c n$. This implies that $E\left((N-n)_{+}\right)=0(m-c n), P(N<n) \rightarrow 0$, and $(m-c n) / \sqrt{n} \rightarrow \infty$. Then deduce that for the optimal m,

$$
T_{n}=c n\left(1+(1+o(1))\left(\frac{m-c n}{c n}+P(N<n)\right)\right)
$$

Clearly, $m \sim c n$, and $(m-c n) / c n$ is a term which decreases much slower than $1 / \sqrt{n}$. By the Berry-Esseen theorem (Chow and Telcher (1978, p. 299) or Petrov (1975)), find a constant C depending upon c only such that

$$
\left|P(N<n)-\Phi\left(\frac{n-\frac{m}{c}}{\left.\sqrt{\frac{m}{c}\left(1-\frac{1}{c}\right.}\right)}\right)\right| \leq \frac{C}{\sqrt{n}}
$$

Conclude that it sufflces to flnd the m which minimizes

$$
\begin{aligned}
& (m-c n) /(c n)+\Phi\left(\frac{n-\frac{m}{c}}{\sqrt{\frac{m}{c}\left(1-\frac{1}{c}\right)}}\right) . \text { Next, using the fact that as } u \rightarrow \infty, \\
& 1-\Phi(u) \sim \frac{1}{u \sqrt{2 \pi}} e^{-\frac{u^{2}}{2}},
\end{aligned}
$$

reduce the problem to that of minimizing

$$
\rho \sqrt{\frac{c-1}{c n}}+\frac{1}{\rho \sqrt{2 \pi}} e^{-\frac{\rho^{2}}{2}},
$$

where $m-c n=\rho \sqrt{c(c-1) n}$ for some $\rho \rightarrow \infty, \rho=o(\sqrt{n})$. Approximate asymptotlc minimization of this ylelds

$$
\rho=\sqrt{\log \left(\frac{c n}{2 \pi(c-1)}\right)}
$$

Finally, verlfy that for the corresponding value for m, the minimal value of T_{n} is asymptotically obtained (in the " \sim " sense).

4. THE POLAR METHOD.

4.1. Radially symmetric distributions.

Here we will explain about the intlmate connection between order statistics and random vectors with radially symmetrlc distrlbutions $\ln R^{d}$. This connection will provide us with a wealth of algorithms for random varlate generation. Most importantly, we wlll obtain the time-honored Box-Muller method for the normal distribution.

A random vector $X=\left(X_{1}, \ldots, X_{d}\right) \ln R^{d}$ is radially symmetric if $A X$ is distributed as X for all orthonormal $d \times d$ matrices A. It is strictly radially symmetric if also $P(X=0)=0$. Noting that $A X$ corresponds to a rotated version of X, radial symmetry is thus nothing else but invariance under rotations of the
coordinate axes. We write C_{d} for the unit sphere in $R^{d} . X$ is uniformly dis:-ibuted on C_{d} when X is radially symmetric and $||X||=1$ with probab:ity one. Here $\left|\left|.| |\right.\right.$ is the standard L_{2} norm. Sometimes, a radially symme: :ic random vector has a density f, and then necessarlly it is of the form

$$
f\left(x_{1}, \ldots, x_{d}\right)=g(| | x| |) \quad\left(x=\left(x_{1}, \ldots, x_{d}\right) \in R^{d}\right)
$$

for some function g. This function g on $[0, \infty)$ is such that

$$
\int_{0}^{\infty} d V_{d} r^{d-1} g(r) d r=1
$$

where

$$
V_{d}=\frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}+1\right)}
$$

is the volume of the unit sphere C_{d}. We say that g defines or determines the radial denslty. Elliptical radial symmetry is not be treated in thls early chapter, nor do we specifically address the problem of multivariate random varlate generation. For a blbllography on radial symmetry, see Chmlelewskl (1981). For the fundamental propertles of radial distributions not glven below, see for example Kelker (1970).

Theorem 4.1. (Uniform distributions on the unit sphere.)

1. If X is strictly radially symmetric, then $\frac{X}{||X||}$ is uniformly distributed on C_{d}.
2. If X is uniformly distributed on C_{d}, then $\left(X_{1}{ }^{2}, \ldots, X_{d}{ }^{2}\right)$ is distributed as $\left(\frac{Y_{1}}{S}, \ldots, \frac{Y_{d}}{S}\right)$, where Y_{1}, \ldots, Y_{d} are independent gamma $\left(\frac{1}{2}\right)$ random variables with sum S.
3. If X is uniformly distributed on C_{d}, then $X_{1}{ }^{2}$ is beta $\left(\frac{1}{2}, \frac{d-1}{2}\right)$. Equivalently, $X_{1}{ }^{2}$ is distributed as $\frac{Y}{Y+Z}$ where Y, Z are independent gamma $\left(\frac{1}{2}\right)$ and gamma $\left(\frac{d-1}{2}\right)$ random varlables. Furthermore, X_{1} has denslty

$$
\frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}\left(1-x^{2}\right)^{\frac{d-3}{2}} \quad(|x| \leq 1)
$$

Proof of Theorem 4.1.

For all orthogonal $d \times d$ matrices $A, \frac{A X}{\left|X^{X}\right| \mid}$ is distributed as
$A X$ $\frac{A X}{||A X||}$, which in turn is distributed as $\frac{X^{X}}{||X||}$ because X is strictly lows.

To prove statement 2 , we deflne the lid normal random varlables N_{1}, \ldots, N_{d}, and note that $N=\left(N_{1}, \ldots, N_{d}\right)$ is radially symmetric with denslty determined by

$$
g(r)=\frac{1}{(2 \pi)^{\frac{d}{2}}} e^{-\frac{r^{2}}{2}} \quad(r \geq 0)
$$

Thus, by part 1 , the vector with components $\frac{N_{i}}{|N| \mid}$ is uniformly distributed on C_{d}. But since $N_{i}{ }^{2}$ is gamma $\left(\frac{1}{2}, 2\right)$, we deduce that the random vector with components $\frac{N_{i}^{2}}{||N||^{2}}$ is distributed as a random vector with components $\frac{2 Y_{i}}{2 S}$. This proves statement 2.

The first part of statement 3 follows easlly from statement 2 and known propertles of the beta and gamma distributions. The beta $\left(\frac{1}{2}, \frac{d-1}{2}\right)$ density is

$$
c \frac{(1-x)^{\frac{d-3}{2}}}{\sqrt{x}} \quad(0<x<1)
$$

where $c=\frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}$. Putting $Y=\sqrt{X}$, we see that Y has density

$$
c\left(1-y^{2}\right)^{\frac{d-3}{2}} \frac{1}{y} 2 y \quad(0<y<1)
$$

when X is beta $\left(\frac{1}{2}, \frac{d-1}{2}\right)$ distributed. This proves statement 3.

Theorem 4.2. (The normal distribution.)

If N_{1}, \ldots, N_{d} are Ild normal random varlables, then $\left(N_{1}, \ldots, N_{d}\right)$ is radially symmetric with denslty defined by

$$
g(r)=\frac{1}{(2 \pi)^{\frac{d}{2}}} e^{-\frac{r^{2}}{2}} \quad(r \geq 0)
$$

Furthermore, if $\left(X_{1}, \ldots, X_{d}\right)$ is strictly radially symmetric and the X_{i} 's are independent, then the X_{i} 's are Ild normal random varlables with nonzero varlance.

Proof of Theorem 4.2.

The first part was shown in Theorem 4.1. The second part is proved for example In Kelker (1970).

Theorem 4.3. (Radial transformations.)

1. If X is strictly radially symmetric in R^{d} with defining function g, then $R=||X||$ has density $d V_{d} r^{d-1} g(r) \quad(r \geq 0)$.
2. If X is unlformly distributed on C_{d}, and R is independent of X and has the density given above, then $R X$ is strictly radially symmetric in R^{d} with defining function g.
3. If X is radially symmetric in R^{d} with defining function g, and if R is a random varlable on $[0, \infty)$ with density h, Independent of X, then $R X$ is radlally symmetric with deflning function

$$
g *(r)=\int_{0}^{\infty} \frac{h(u)}{u^{d}} g\left(\frac{r}{u}\right) d u
$$

Proof of Theorem 4.3.

For statement 1, we need the fact that the surface of C_{d} has $d-1$ dimensional volume $d V_{d}$. By a simple polar transformation,

$$
P(R \leq r)=\int_{||x|| \leq r} g(| | x| |) d x=\int_{y \leq r} d V_{d} y^{d-1} g(y) d y \quad(r \geq 0)
$$

Thls proves statement 1.
$R X$ is radially symmetric because for all orthogonal $d \times d$ matrices A, $A(R X)$ is distributed as $R(A X)$ and thus as $R X$. But such distributions are uniquely determined by the distribution of $||R X||=R| | X| |=R$, and thus, statement follows from statement 1.

Consider finally part 3. Clearly, $R X$ is radially symmetric. Given R, $R||X||$ has density

$$
\frac{1}{R} d V_{d}\left(\frac{r}{R}\right)^{d-1} g\left(\frac{r}{R}\right) \quad(r \geq 0)
$$

Thus, the density of $||X||$ is the expected value of the latter expression with respect to R, which is seen to be $g *$.

Let us brlefly discuss these three theorems. Consider first the marginal distri-
butions of random vectors that are uniformly distributed on C_{d} :

d	Density of X_{1} (on $\left.[-1,1]\right)$	Name of density
2	$\frac{1}{\pi \sqrt{1-x^{2}}}$	Arc sine density
3	$\frac{1}{2}$	Uniform $[-1,1]$ density
4	$\frac{2}{\pi} \sqrt{1-x^{2}}$	
5	$\frac{3}{4}\left(1-x^{2}\right)$	
6	$\frac{8}{3 \pi}\left(1-x^{2}\right)^{\frac{3}{2}}$	

Slnce all radlally symmetric random vectors are distributed as the product of a uniform random vector on C_{d} and an independent random variable R, it follows that the first component X_{1} is distributed as R times a random varlable with densitles as glven in the table above or in part 3 of Theorem 4.1. Thus, for $d \geq 2$, X_{1} has a marginal density whenever X is strictly radially symmetric. By Khinchine's theorem, we note that for $d \geq 3$, the density of X_{1} is unimodal.

Theorem 4.2 states that radially symmetric distributions are virtually useless If they are to be used as tools for generating independent random varlates X_{1}, \ldots, X_{n} unless the X_{i} 's are normally distributed. In the next section, we will clarify the special role played by the normal distribution.

4.2. Generating random vectors uniformly distributed on \mathbf{C}_{d}.

The following two algorithms can be used to generate random varlates with a unlform distribution on C_{d} :

Via normal random variates

Generate iid normal random variates, N_{1}, \ldots, N_{d}, and compute $S \leftarrow \sqrt{N_{1}{ }^{2}+\cdots+N_{d}{ }^{2}}$. $\operatorname{RETURN}\left(\frac{N_{1}}{S}, \ldots, \frac{N_{d}}{S}\right)$.

Via rejection from the enclosing hypercube

REPEAT

> Generate iid uniform $[-1,1]$ random variates X_{1}, \ldots, X_{d}, and compute $S \leftarrow X_{1}^{2}+\cdots+X_{d}{ }^{2}$.

UNTLI $S \leq 1$
$S \leftarrow \sqrt{S}$
$\operatorname{RETURN}\left(\frac{X_{1}}{S}, \ldots, \frac{X_{d}}{S}\right)$

In addition, we could also make good use of a property of Theorem 4.1. Assume that d is even and that a d-vector X is uniformly distributed on C_{d}. Then,

$$
\left(X_{1}^{2}+X_{2}^{2}, \ldots, X_{d-1}^{2}+X_{d}^{2}\right)
$$

Is distributed as

$$
\left(\frac{E_{1}}{S}, \ldots, \frac{E_{\frac{d}{2}}}{S}\right)
$$

where the E_{i} 's are ild exponentlal random varlables and $S=E_{1}+\cdots+E_{\frac{d}{2}}$. Furthermore, given $X_{1}^{2}+X_{2}^{2}=r^{2},\left(\frac{X_{1}}{r}, \frac{X_{2}}{r}\right)$ is unlformly distributed on C_{2}. This leads to the following algorithm:

Via uniform spacings

Generate ild uniform $[0,1]$ random variates $U_{1}, \ldots, U_{\frac{d}{2}}$.
Sort the uniform variates (preferably by bucket sorting), and compute the spacings $S_{1}, \ldots, S_{\frac{d}{2}}$.
Generate independent pairs $\left(V_{1}, V_{2}\right), \ldots,\left(V_{d-1}, V_{d}\right)$, all uniformly distributed on C_{2}.
RETURN $\left(V_{1} \sqrt{S_{1}}, V_{2} \sqrt{S_{1}}, V_{3} \sqrt{S_{2}}, V_{4} \sqrt{S_{2}}, \ldots, V_{d-1} \sqrt{S_{\frac{d}{2}}}, V_{d} \sqrt{S_{\frac{d}{2}}}\right)$.

The normal and spacings methods take expected time $O(d)$, while the rejectlon method takes time increasing faster than exponentlally with d. By Stirling's formula, we observe that the expected number of Iterations in the rejection method is

$$
\frac{2^{d}}{V_{d}}=\frac{2^{d} \Gamma\left(\frac{d}{2+1)}\right.}{\pi^{\frac{d}{2}}} \sim\left(\frac{2 d}{\pi e}\right)^{\frac{d}{2}} \sqrt{\pi d}
$$

which increases very rapidly to ∞. Some values for the expected number of Iterathons are given in the table below.

d	Expected number of iterations
1	1
2	$\frac{4}{\pi} \approx 1.27$
3	$\frac{6}{\pi} \approx 1.91$
4	$\frac{32}{\pi^{2}} \approx 3.24$
5	$\frac{60}{\pi^{2}} \approx 6.06$
6	$\frac{384}{\pi^{3}} \approx 12.3$
7	$\frac{840}{\pi^{3}} \approx 27.0$
8	$\frac{6144}{\pi^{4}} \approx 62.7$
10	$\frac{122880}{\pi^{3}} \approx 399$

The rejection method is not recommended except perhaps for $d \leq 5$. The normal and spacings methods differ in the type of operations that are needed: the normal method requires d normal random varlates plus one square root, whereas the spacings method requires one bucket sort , $\frac{d}{2}$ square roots and $\frac{d}{2}-1$ uniform random variates. The spacings method is based upon the assumption that a very fast method is avallable for generating random vectors with a unlform distribution on C_{2}. Since we work with spacings, it is also possible that some accuracy is lost for large values of d. For all these reasons, it seems unllkely that the spacings method will be competitlve with the normal method. For theoretical and experimental comparlsons, we refer the reader to Deak (1979) and Rubinsteln (1882). For another derivation of the spacings method, see for example Sibuya (1982), Tashiro (1977), and Guralnik, Zemach and Warnock (1985).

4.3. Generating points uniformly in and on C_{2}.

We say that a random vector is unlformly distributed $\ln C_{d}$ when it is radially symmetric with defining function $g(r)=\frac{1}{V_{d}}(0 \leq r \leq 1)$. For $d=2$, such random vectors can be convenlently generated by the rejection method:

Rejection method

REPEAT
Generate two iid uniform $[-1,1]$ random variates U_{1}, U_{2}.
UNTIL $U_{1}{ }^{2}+U_{2}{ }^{2} \leq 1$
RETURN (U_{1}, U_{2})

On the average, $\frac{4}{\pi}$ pairs of unlform random varlates are needed before we exlt. For each palr, two multiplications are required as well. Some speed-up is possible by squeezing:

Rejection method with squeezing

REPEAT

Generate two iid uniform $[-1,1]$ random variates U_{1}, U_{2}, and compute $Z \leftarrow\left|U_{1}\right|+\left|U_{2}\right|$.
Accept $\leftarrow[Z \leq 1]$
IF NOT Accept THEN IF $Z \geq \sqrt{2}$
THEN Accept $\leftarrow\left[U_{1}{ }^{2}+U_{2}{ }^{2} \leq 1\right]$
UNTLL Accept
RETURN (U_{1}, U_{2})

In the squeeze step, we avold the two multipllcations precisely 50% of the time.
The second, slightly more difflcult problem is that of the generation of a point unlformly distributed on C_{2}. For example, if (X_{1}, X_{2}) is strictly radially symmetric (thls is the case when the components are lid normal random variables, or when the random vector is unlformly distributed in C_{2}), then it suffices to take $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right.$) where $S=\sqrt{X_{1}{ }^{2}+X_{2}{ }^{2}}$. At first sight, it seems that the costly square root is unavoldable. That this is not so follows from the following key theorem:

Theorem 4.4.

If (X_{1}, X_{2}) is uniformly distributed in C_{2}, and $S=\sqrt{X_{1}{ }^{2}+X_{2}{ }^{2}}$, then:

1. S and $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$ are independent.
2. S^{2} is unliormly distributed on $[0,1]$.
3. $\frac{X_{2}}{X_{1}}$ is Cauchy distributed.
4. $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$ is uniformly distributed on C_{2}.
5. When U is uniform $[0,1]$, then $(\cos (2 \pi U), \sin (2 \pi U))$ is unlformly distributed on C_{2}.
6. $\left(\frac{X_{1}{ }^{2}-X_{2}{ }^{2}}{S^{2}}, \frac{2 X_{1} X_{2}}{S^{2}}\right)$ is unlformly distributed on C_{2}.

Proof of Theorem 4.4.

Propertles 1,3 and 4 are valid for all strictly radially symmetric random vectors (X_{1}, X_{2}). Propertles 1 and 4 follow directly from Theorem 4.3. From Theorem 4.1, we recall that S has density $d V_{d} r^{d-1}=2 r \quad(0 \leq r \leq 1)$. Thus, S^{2} is unlformly distributed on $[0,1]$. This proves property 2. Property 5 is trivially true, and will be used to prove propertles 3 and 6. From 5, we know that $\frac{X_{2}}{X_{1}}$ is distributed as $\tan (2 \pi U)$, and thus as $\tan (\pi U)$, whlch \ln turn is Cauchy distributed (property 3). Finally, in vlew of

$$
\begin{aligned}
& \cos (4 \pi U)=\cos ^{2}(2 \pi U)-\sin ^{2}(2 \pi U), \\
& \sin (4 \pi U)=2 \sin (2 \pi U) \cos (2 \pi U),
\end{aligned}
$$

we see that $\left(\frac{X_{1}{ }^{2}-X_{2}{ }^{2}}{S^{2}}, \frac{2 X_{1} X_{2}}{S^{2}}\right.$) is uniformly distributed on C_{2}, because it is distrlbuted as $(\cos (4 \pi U), \sin (4 \pi U))$. This concludes the proof of Theorem 4.4.

Thus, for the generation of a random vector uniformly distrlbuted on C_{2}, the following algorithm is fast:

REPEAT

Generate iid uniform $[-1,1]$ random variates X_{1}, X_{2}.
Set $Y_{1} \leftarrow X_{1}{ }^{2}, Y_{2} \leftarrow X_{2}{ }^{2}, S \leftarrow Y_{1}+Y_{2}$.
UNTLL $S \leq 1$
$\operatorname{RETURN}\left(\frac{Y_{1}-Y_{2}}{S}, \frac{2 X_{1} X_{2}}{S}\right)$

4.4. Generating normal random variates in batches.

We begin with the description of the polar method for generating d ild normal random varlates:

Polar method for normal random variates

Generate X uniformly on C_{d}.
Generate a random variate R with density $d V_{d} r^{d-1} e^{-\frac{r^{2}}{2}}(r \geq 0)$. (R is distributed as $\sqrt{2 G}$ where G is gamma ($\frac{d}{2}$) distributed.)
RETURN $R X$

In partlcular, for $d=\mathbf{2}$, two independent normal random varlates can be obtalned by elther one of the following methods:

$\sqrt{2 E}\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$
$\sqrt{2 E}(\cos (2 \pi U), \sin (2 \pi U))$
$\sqrt{2 E}\left(\frac{X_{1}{ }^{2}-X_{2}{ }^{2}}{X_{1}{ }^{2}+X_{2}{ }^{2}}, \frac{2 X_{1} X_{2}}{X_{1}{ }^{2}+X_{2}{ }^{2}}\right)$
$\sqrt{-4 \log (S)}\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$

Here $\left(X_{1}, X_{2}\right)$ is uniformly distributed in $C_{2}, S=\sqrt{X_{1}{ }^{2}+X_{2}{ }^{2}}, U$ is uniformly distributed on $[0,1]$ and E is exponentlally distributed. Also, E is independent of the other random varlables. The valldity of these methods follows from Theorems 4.2, 4.3 and 4.4. The second formula is the well-known Box-Muller method
(1858). Method 4, proposed by Marsaglia, is slmilar to method 1, but uses the observation that S^{2} is a uniform $[0,1]$ random varlate independent of $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$ (see Theorem 4.4), and thus that $-2 \log (S)$ is exponentlally distributed. If the exponentlal random variate in E is obtalned by inversion of a uniform random varlate, then it cannot be competitlve with method 4. Method 3, published by Bell (1988), is based upon property 8 of Theorem 4.4, and effectively avoids the computation of the square root in the definition of S. In all cases, it is recommended that (X_{1}, X_{2}) be obtalned by rejection from the enclosing square (with an accelerating squeeze step perhaps). A closing remark about the square roots. Methods 1 and 4 can always be implemented wlth just one (not two) square roots, lf we compute, respectlvely,

$$
\sqrt{\frac{2 E}{S^{2}}}
$$

and

$$
\sqrt{\frac{-2 \log \left(S^{2}\right)}{S^{2}}}
$$

In one of the exerclses, we will Investigate the polar method with the next higher convenlent cholce for $d, d=4$. We could also make d very large, In the range $100 \cdots 300$, and use the spacings method of section 4.2 for generating X with a unlform distribution on C_{d} (the normal method is excluded since we want to generate normal random varlates). A gamma ($\frac{d}{2}$) random varlate can be generated by one of the fast methods described elsewhere in thls book.

4.5. Generating radially symmetric random vectors.

Theorem 4.3 suggests the following method for generating radially symmetric random vectors $\ln R^{d}$ with defining function g :

Generate a random vector X uniformly distributed on C_{d}.
Generate a random variate R with density $d V_{d} r^{d-1} g(r)(r \geq 0)$.
RETURN $R X$

Since we already know how to generate random varlates with a unlform distrlbution on C_{d}, we are just left with a univariate generation problem. But in the multipllcation with R, most of the information in X is lost. For example, to

Insure that X is on C_{d}, the rejection method generates X unlformly in C_{d} and divides then by $||X||$. But when we multiply the result with R, this division by $||X||$ seems somehow wasteful. Johnson and Ramberg (1977) observed that it is sometimes better to start from a random vector with a uniform distribution $\ln C_{d}$:

The Johnson-Ramberg method for generating radially symmetric random vec-
tors
Generate a random vector X uniformly in C_{d} (preferably by rejection from the enclosing
hypercube).
Generate a random variate R with density $-V_{d} r^{d} g^{\prime}(r)(r \geq 0)$, where g is the defining function of the radially symmetric distribution.
RETURN RX

This method only works when $-V_{d} r^{d} g^{\prime}(r)$ is Indeed a density in r on $[0, \infty)$. A sufficlent condition for this is that g is continuously differentiable on $(0, \infty)$, $g^{\prime}(r)<0 \quad(r>0)$, and $r^{d} g(r) \rightarrow 0$ as $r \downarrow 0$ and $r \uparrow \infty$.

Example 4.1. The multivariate Pearson II density.

Consider the multivarlate Pearson II density with parameter $a \geq 1$, defined by

$$
g(r)=c\left(1-r^{2}\right)^{a-1} \quad(0 \leq r \leq 1)
$$

where

$$
c=\frac{\Gamma\left(a+\frac{d}{2}\right)}{\pi^{\frac{d}{2}} \Gamma(a)}
$$

The density of R in the standard algorithm is the density of \sqrt{B} where B is a beta ($\frac{d}{2}, a$) random varlable:

$$
g(r)=c d V_{d} r^{d-1}\left(1-r^{2}\right)^{a-1} \quad(0 \leq r \leq 1)
$$

For $d=2, R$ can thus be generated as $\sqrt{1-U^{\frac{1}{a}}}$ where U is a uniform $[0,1]$ random varlate. We note further that in this case, very little is galned by using the Johnson-Ramberg method since R must have density

$$
g(r)=2 c V_{d} r^{d+1}(a-1)\left(1-r^{2}\right)^{a-2} \quad(0 \leq r \leq 1)
$$

This is the density of the square root of a beta $\left(\frac{d}{2}+1, a-1\right)$ random varlable.

Example 4.2. The multivariate Pearson VII density.

The multivarlate Pearson VII density with parameter $a>\frac{d}{2}$ is deflned by the function

$$
g(r)=\frac{c}{\left(1+r^{2}\right)^{a}},
$$

where

$$
c=\frac{\Gamma(a)}{\pi^{\frac{d}{2}} \Gamma\left(a-\frac{d}{2}\right)} .
$$

The densitles of R for the standard and Johnson-Ramberg methods are respectively,

$$
\frac{c d V_{d} r^{d-1}}{\left(1+r^{2}\right)^{a}}
$$

and

$$
\frac{2 c V_{d} r^{d+1} a}{\left(1+r^{2}\right)^{a+1}}
$$

In both cases, we can generate random R as $\sqrt{\frac{B}{1-B}}$ where B is beta $\left(\frac{d}{2}, a-\frac{d}{2}\right)$ In the former case, and beta $\left(\frac{d}{2}+1, a-\frac{d}{2}\right)$ In the latter case. Note here that for the special choice $a=\frac{d+1}{2}$, the multivariate Cauchy density is obtalned.

Example 4.3.

The multivarlate radially symmetric distribution determined by

$$
g(r)=\frac{1}{V_{d}\left(1+r^{d}\right)^{2}}
$$

leads to a density for R given by

$$
\frac{d r^{d-1}}{\left(1+r^{d}\right)^{2}}
$$

This is the density of $\left(\frac{U}{1-U}\right)^{\frac{1}{d}}$ where U is a uniform $[0,1]$ random variable.

4.6. The deconvolution method.

Assume that we know how to generate Z, a random varlable which is distributed as the sum $X+Y$ of two lld random variables X, Y with density f. We can then generate the pair X, Y by looking at the conditional density of X given the value of Z. The following algorithm can be used:

The deconvolution method

Generate a random variate Z with the density $h(z)=\int f(x) f(z-x) d x$.
Generate X with density $\frac{f(x) f(Z-x)}{h(Z)}$.
RETURN ($X, Z-X$)

First, we notice that h is indeed the density of the sum of two lid random variables with density f. Also, given Z, X has density $\frac{f(x) f(Z-x)}{h(Z)}$. Thus, the algorithm is valld.

To illustrate thls, recall that if X, Y are ild gamma $\left(\frac{1}{2}\right)$, then $X+Y$ is exponentlally distributed. In this example, we have therefore,

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{\pi x}} e^{-x} \quad(x \geq 0) \\
& h(z)=e^{-z} \quad(z \geq 0)
\end{aligned}
$$

Furthermore, the density $\frac{f(x) f(Z-x)}{h(Z)}$ can be written as

$$
\frac{1}{\pi \sqrt{x(Z-x)}} \quad(x \in(0, Z))
$$

which is the arc sine density. Thus, applying the deconvolution method shows the following: if E is an exponential random variable, and W is a random variable with the standard arc sine density

$$
\frac{1}{\pi \sqrt{x(1-x)}} \quad(x \in(0,1)),
$$

then $(E W, E(1-W))$ is distrlbuted as a palr of ild gamma $\left(\frac{1}{2}\right)$ random varlables. But thils leads preclsely to the polar method because the following palrs of random varlables are identically distributed:

$$
\begin{aligned}
& \left(N_{1}, N_{2}\right)(\text { two ild normal random variables }) ; \\
& (\sqrt{2 E W}, \sqrt{2 E(1-W)}) \\
& (\sqrt{2 E} \cos (2 \pi U), \sqrt{2 E} \sin (2 \pi U))
\end{aligned}
$$

Here U is a unlform $[0,1]$ random variable. The equivalence of the first two pairs is based upon the fact that a normal random varlable is distributed as the square root of 2 times a gamma $\left(\frac{1}{2}\right)$ random variable. The equivalence of the first and the thlrd palr was established in Theorem 4.4. As a side product, we observe that W is distributed as $\cos ^{2}(2 \pi U)$, l.e. as $\frac{X_{1}{ }^{2}}{X_{1}{ }^{2}+X_{2}{ }^{2}}$ where (X_{1}, X_{2}) is uniformly distributed $\ln C_{2}$.

4.7. Exercises.

1. Write one-line random variate generators for the normal, Cauchy and arc slne distributions.
2. If N_{1}, N_{2} are Ild normal random variables, then $\frac{N_{1}}{N_{2}}$ is Cauchy distributed, $N_{1}{ }^{2}+N_{2}{ }^{2}$ is exponentlally distributed, and $\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}$ has the Raylelgh distribution (the Rayleigh density is $x e^{-\frac{x^{2}}{2}} \quad(x \geq 0)$).
3. Show the following. If X is unlformly distributed on C_{d} and R is independent of X and generated as $\max \left(U_{1}, \ldots, U_{d}\right)$ where the U_{i} 's are Ild unlform $[0,1]$ random varlates, then $R X$ is unlformly distributed in C_{d}.
4. Show that if X is uniformly distributed on C_{d}, then $Y /||Y||$ is untformly distrlbuted on C_{k} where $k \leq d$ and $Y=\left(X_{1}, \ldots, X_{k}\right)$.
5. Prove by a geometrical argument that if $\left(X_{1}, X_{2}, X_{3}\right)$ is unlformly distributed on C_{3}, then X_{1}, X_{2} and X_{3} are uniform $[-1,1]$ random variables.
6. If X is radially symmetric with defining function g, then its first component, X_{1}, has density

$$
\frac{2 \pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)} \int_{r}^{\infty} u\left(u^{2}-r^{2}\right)^{\frac{d-3}{2}} g(u) d u \quad(r \geq 0)
$$

7. Show that two independent gamma ($\frac{1}{2}$) random varlates can be generated
as $\left(-S \log \left(U_{2}\right),-(1-S) \log \left(U_{2}\right)\right)$, where $S=\sin ^{2}\left(2 \pi U_{1}\right)$ and U_{1}, U_{2} are Independent uniform $[0,1]$ random varlates.
8. Consider the pair of random varlables deflned by

$$
\left(\sqrt{2 E} \frac{2 S}{1+S}, \sqrt{2 E} \frac{1-S}{1+S}\right)
$$

where E is an exponentlal random varlable, and $S \leftarrow \tan ^{2}(\pi U)$ for a unlform [0,1] random varlate U. Prove that the palr is a palr of ild absolute normal random varlables.
9. Show that when $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is unlformly distributed on C_{4}, then (X_{1}, X_{2}) is uniformly distributed in C_{2}.
10. Show that both $\frac{N}{\sqrt{N^{2}+2 E}}$ and $\sqrt{\frac{G}{G+E}}$ are unlformly distributed on [0,1] when N, E and G are independent normal, exponentlal and gamma $\left(\frac{1}{2}\right)$ random varlables, respectively.
11. Generating uniform random vectors on \mathbf{C}_{4}. Show why the following algorithm is valid for generating random vectors uniformly on C_{4} :

> Generate two iid random vectors uniformly in $C_{2},\left(X_{1}, X_{2}\right),\left(X_{3}, X_{4}\right)$ (this is best done by rejection).
> $S \leftarrow X_{1}{ }^{2}+X_{2}{ }^{2}, W \leftarrow X_{3}{ }^{2}+X_{4}{ }^{2}$
> RETURN $\left(X_{1}, X_{2}, X_{3} \sqrt{\frac{1-S}{W}}, X_{4} \sqrt{\frac{1-S}{W}}\right)$
(Marsaglla, 1972).
12. Generating random vectors uniformly on \mathbf{C}_{3}. Prove all the starred statements in this exerclse. To obtain a random vector with a uniform distribution on C_{3} by rejection from $[-1,1]^{3}$ requires on the average $\frac{18}{\pi}=5.73 \ldots$ unlform $[-1,1]$ random varlates, and one square root per random vector. The square root can be avolded by an observation due to Cook (1957): If ($X_{1}, X_{2}, X_{3}, X_{4}$) is unlformly distributed on C_{4}, then

$$
\frac{1}{X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}}\left(2\left(X_{2} X_{4}+X_{1} X_{3}\right), 2\left(X_{3} X_{4}-X_{1} X_{2}\right), X_{1}^{2}-X_{2}^{2}-X_{3}^{2}+X_{4}^{2}\right)
$$

is unlformly distributed on $C_{3}(*)$. Unfortunately, if a random vector with a unlform distribution on C_{4} is obtalned by rejection from the enclosing hypercube, then the expected number of unlform random varlates needed is $4\left(\frac{32}{\pi^{2}}\right) \approx 13$. Thus, both methods are quite expensive. Using Theorem 4.4 and
exerclses 4 and 5 , one can show (*) that

$$
\left(\frac{X_{1} \sqrt{1-Z^{2}}}{\sqrt{S}}, \frac{X_{2} \sqrt{1-Z^{2}}}{\sqrt{S}}, Z\right)
$$

is uniformly distributed on C_{3} when $\left(X_{1}, X_{2}\right)$ is uniformly distributed $\ln C_{2}$, $S=X_{1}{ }^{2}+X_{2}{ }^{2}$, and Z is independent of $\left(\frac{X_{1}}{\sqrt{S}}, \frac{X_{2}}{\sqrt{S}}\right)$ and uniformly distributed on $[-1,1]$. But $2 S-1$ itself is a candidate for $Z(*)$. Replacing Z by $2 S-1$, we conclude that

$$
\left(2 X_{1} \sqrt{1-S}, 2 X_{2} \sqrt{1-S}, 2 S-1\right)
$$

is uniformly distributed on C_{3} (thls method was suggested by Marsaglia (1872)). If the random vector (X_{1}, X_{2}) is obtalned by rejection from $[-1,1]^{2}$, the expected number of uniform $[-1,1]$ random varlates needed per threedimensional random vector is $\frac{8}{\pi} \approx 2.55$ (*).
13. The polar methods for normal random variates; $\mathbf{d}=4$. Random vectors uniformly distributed on C_{4} can be obtalned quite efficiently by Marsaglla's method described in exerclse 11. To apply the polar method for normal random varlates, we need an Independent random varlate R distributed as $\sqrt{2\left(E_{1}+E_{2}\right)}$ where E_{1}, E_{2} are independent. exponentlal random varlates. Such an R can be generated in a number of ways:
(I) As $\sqrt{2\left(E_{1}+E_{2}\right)}$.
(11) As $\sqrt{-2 \log \left(U_{1} U_{2}\right)}$ where U_{1}, U_{2} are independent unlform [0,1] random varlates.
(iii) As $\sqrt{-2 \log \left(W U_{2}\right)}$ where U_{2} is as in (ii) and W is an independent random varlate as in exerclse 11.
Why is method (ili) valld ? Compare the three methods experimentally. Compare also with the polar method for $d=2$.
14. Implement the polar method for normal random variates when d is large. Generate random vectors on C_{d} by the spacings method when you do so. Plot the average time per random variate versus d.
15. The spacings method for uniform random vectors on C_{d} when d is odd. Show the valldity of the following method for generating a unlform random vector on C_{d} :

Generate $\frac{d-1}{2}-1$ iid uniform $[0,1]$ random variates.
Obtain the spacings $S_{1}, \ldots, S_{\frac{d-1}{2}}$ by bucket sorting the uniform random variates.
Generate independent gamma ($\frac{d-1}{2}$) and gamma ($\frac{1}{2}$) random variates G, H. $R \leftarrow \sqrt{\frac{G}{G+H}}, R * \leftarrow \sqrt{1-R^{2}}=\sqrt{\frac{H}{H+G}}$
Generate iid random vectors (V_{1}, V_{2}), $\ldots,\left(V_{d-2}, V_{d-1}\right)$ uniformly on C_{2}. RETURN ($\left.R V_{1} \sqrt{S_{1}}, R V_{2} \sqrt{S_{1}}, R V_{3} \sqrt{S_{2}}, \ldots, R V_{d-1} \sqrt{\frac{S_{d-1}}{2}}, R *\right)$.
16. Let X be a random vector unlformly distributed on C_{d-1}. Then the random vector Y generated by the following procedure is unlformly distributed on C_{d} :

Generate independent gamma $\left(\frac{d-1}{2}\right)$ and gamma $\left(\frac{1}{2}\right)$ random variates G, H.
$R \leftarrow \sqrt{\frac{G}{G+H}}$
RETURN $Y \leftarrow\left(R X, \pm \sqrt{1-R^{2}}\right)$ where \pm is a random sign.

Show thls. Notice that thls method allows one to generate Y inductively by starting with $d=1$ or $d=2$. For $d=1, X$ is merely ± 1. For $d=2, R$ is distributed as $\sin \left(\frac{\pi U}{2}\right)$. For $d=3, R$ is distributed as $\sqrt{1-U^{2}}$ where U is a uniform $[0,1]$ random variable. To implement this procedure, a fast gamma generator is required (Hicks and Wheeling, 1958; see also Rublnstein, 1982).
17. In a simulation it is required at one point to obtaln a random vector (X, Y) uniformly distributed over a star on R^{2}. A star S_{a} with parameter $a>0$ is defined by four curves, one in each quadrant and centered at the origin. For example, the curve in the positive quadrant is a plece of a closed line satisfying the equation

$$
|1-x|^{a}+|1-y|^{a}=1
$$

The three other curves are defined by symmetry about all the axes and about the origin. For $a=\frac{1}{2}$, we obtain the circle, for $a=1$, we obtaln a diamond, and for $a=2$, we obtain the complement of the union of four clrcles. Glve an algorithm for generating a polnt unlformly distributed $\ln S_{a}$, where the expected time is unlformly bounded over a.
18. The Johnson-Ramberg method for normal random variates. Two methods for generating normal random varlates in batches may be competltlve with the ordinary polar method because they avold square roots. Both are based upon the Johnson-Ramberg technique:

Generate X uniformly in C_{2} by rejection from $[-1,1]^{2}$.
Generate R, which is distributed as $\sqrt{2 G}$ where G is a gamma $\left(\frac{3}{2}\right)$ random variable. (Note that R has density $\frac{r^{2}}{2} e^{-\frac{r^{2}}{2}}$.)
RETURN $R X$

Generate X uniformily in C_{3} by rejection from $[-1,1]^{3}$.
Generate R, where R is distributed as $\sqrt{2 G}$ and G is a gamma (2) random variable. (Note that R has density $\left(\frac{r}{\sqrt{2}}\right)^{3} \Gamma^{-1}\left(\frac{5}{2}\right) e^{-\frac{r^{2}}{2}}$.)
RETURN $R X$

These methods can only be competitive if fast direct methods for generating R are avallable. Develop such methods.
18. Extend the entire theory towards other norms, l.e. C_{d} is now deffned as the collection of all points for which the p-th norm is less than or equal to one. Here $p>0$ is a parameter. Reprove all theorems. Note that the role of the normal density is now Inherited by the density

$$
f(x)=c e^{-|x|^{p}},
$$

where $c>0$ is a normallzation constant. Determine this constant. Show that a random variate with this density can be obtalned as $X^{\frac{1}{p}}$ where X is gamma $\left(\frac{1}{p}\right)$ distrlbuted. Find a formula for the probabillty of acceptance
when random varlates with a unlform distribution in C_{d} are obtained by rejection from $[-1,1]^{2}$. (To check your result, the answer for $d=2$ is $\Gamma^{2}\left(\frac{1}{p}\right) \Gamma^{-1}\left(\frac{2}{p}\right)$ (Beyer, 1988, p. 630).) Dlscuss varlous methods for generating random vectors unlformly distributed on C_{d}, and deduce the marginal denslty of such random vectors.

Chapter Six
 THE POISSON PROCESS

1. THE POISSON PROCESS.

1.1. Introduction.

One of the most important processes occurring in nature is the Poisson point process. It is therefore important to understand how such processes can be slmulated. The methods of slmulation vary with the type of Polsson polnt process, i.e. with the space in whlch the process occurs, and with the homogenelty or nonhomogenelty of the process. We will not be concerned with the genesis of the Poisson polnt process, or with important applicatlons in varlous areas. To make this materlal come allve, the reader is urged to read the relevant sections in Feller (1965) and Cinlar (1975) for the basic theory, and some sections in Trlvedi (1982) for computer science applications.

In a flrst step, we will define the homogeneous Polsson process on $[0, \infty)$: the process is entirely determined by a collection of random events occurring at certaln random tlmes $0<T_{1}<T_{2}<\cdots$. These events can correspond to a varlety of things, such as bank robberies, births of quintuplets and accidents involving Montreal taxl cabs. If $N\left(t_{1}, t_{2}\right)$ is the number of events occurring in the time Interval $\left(t_{1}, t_{2}\right)$, then the following two conditions are often satisfled:
(1) For disjoint intervals $\left(t_{1}, t_{2}\right),\left(t_{3}, t_{4}\right), \ldots$, the random variables $N\left(t_{1}, t_{2}\right), N\left(t_{3}, t_{4}\right), \ldots$ are independent.
(11) $N\left(t_{1}, t_{2}\right)$ is distributed as $N\left(0, t_{2}-t_{1}\right)$, i.e. the distribution of the number of events in a certain time interval just depends upon the length of the interval.

The amazing fact is that these two conditions imply that all random varlables $N\left(t_{1}, t_{2}\right)$ are Poisson distributed, and that there exists a constant $\lambda \geq 0$ such that $N(t, t+a)$ is Polsson λa for all $t \geq 0, a>0$. See e.g. Feller (1965). Thus, the Polsson distribution occurs very naturally.

The previous concept can be generalized to R^{d}. Let A be a subset of R^{d}, and let N be a random varlable taking only integer values. Let X_{1}, \ldots, X_{N} be a sequence of random vectors taking values in A. Then we say that the X_{i} 's
deflne a unlform (or: homogeneous) Polsson process on A if
(A) For any finlte collection of finlte-volume nonoverlapping subsets of A, say A_{1}, \ldots, A_{k}, the random variables $N\left(A_{1}\right), \ldots, N\left(A_{k}\right)$ are independent.
(B) For any Borel subset $B \subseteq A$, the distribution of $N(B)$ depends upon $\operatorname{Vol}(B)$ only.
Again, these assumptions Imply that all $N(B)$'s are Polsson distributed with parameter $\lambda \operatorname{Vol}(B)$ for some $\lambda \geq 0$. λ will be called the rate, or rate parameter, of the homogeneous Polsson process on A. Examples of such processes in multidimenslonal Euclidean space Include bacteria on a Petrl plate and locations of murders in Houston.

Theorem 1.1.

Let $B \subseteq A$ be flxed sets from R^{d}, and let $0<\operatorname{Vol}(B)<\infty$. Then:
(1) If X_{1}, X_{2}, \ldots determines a unlform Polsson process on A with parameter λ, then for any parition B_{1}, \ldots, B_{k} of B, we have that $N\left(B_{1}\right), \ldots, N\left(B_{k}\right)$ are independent Polsson distributed with parameters $\lambda \operatorname{Vol}\left(B_{i}\right)$.
(11) Let N be Polsson distributed with parameter $\lambda \operatorname{Vol}(B)$, and let X_{1}, \ldots, X_{N} be the first N random vectors from an lld sequence of random vectors unlformly distributed on B. For any partltion B_{1}, \ldots, B_{k} of B, the sequence $N\left(B_{1}\right), \ldots, N\left(B_{k}\right)$ is sequence of independent Polsson random varlables with parameters $\lambda \operatorname{Vol}\left(B_{1}\right), \ldots, \lambda \operatorname{Vol}\left(B_{k}\right)$. In other words, X_{1}, \ldots, X_{N} determines a unlform Polsson process on B with rate parameter λ.

Proof of Theorem 1.1.

We will only show part (11). Assume that $\operatorname{Vol}(B)=1$ and that B is partltioned into two sets, A_{1}, A_{2} with respective volumes p and $q=1-p$. For any two Integers $i, j \geq 0$ with $i+j=k$, we have

$$
\begin{aligned}
& P\left(N\left(A_{1}\right)=i, N\left(A_{2}\right)=j\right) \\
& =P(N(B)=k) P\left(N\left(A_{1}\right)=i, N\left(A_{2}\right)=j \mid N(B)=k\right) \\
& =\left(e^{-\lambda} \frac{\lambda^{k}}{k!}\right)\binom{k}{i} p^{i} q^{j} \\
& =\left(e^{-\lambda p} \frac{\lambda p^{i}}{i!}\right)\left(e^{-\lambda q} \frac{\lambda q^{j}}{j!}\right),
\end{aligned}
$$

and therefore, $N\left(A_{1}\right)$ and $N\left(A_{2}\right)$ are independent Poisson random variables as clalmed. Thls argument can be extended towards all finlte partitions and all posltlve values for $\operatorname{Vol}(B)$.

1.2. Simulation of homogeneous Poisson processes.

If we have to slmulate a unlform Polsson process on a set $A \subseteq R^{d}$, then we need to generate a number of random vectors $X_{i} \in A$. Thls can be done as follows (by Theorem 1.1):

Homogeneous Poisson process generator

Generate a Poisson random variate N with parameter $\lambda \operatorname{Vol}(A)$.
Generate iid random vectors X_{1}, \ldots, X_{N} uniformly distributed on A.
RETURN X_{1}, \ldots, X_{N}

To generate N it is virtually useless to use an O (1) expected time algorlthm because in the remalnder of the algorithm, at least time $\Omega(N)$ is spent. Thus, it is recommended that if the algorithm is used, the Poisson random variate be generated by a very slmple algorithm (with expected time typlcally growing as λ). For specific sets A, other methods can be used which do not require the explicit generation of a Polsson random variate. There are three cases that we will use to Illustrate this:
(1) A is $[0, \infty)$.
(II) A is a circle.
(iii) A is a rectangle.

To do so, we need an interesting connectlon between Polsson processes and the exponential distribution.

Theorem 1.2.

Let $0<T_{1}<T_{2}<\cdots$ be a unform Poisson process on $[0, \infty)$ with rate parameter $\lambda>0$. Then

$$
\lambda\left(T_{1}-0\right), \lambda\left(T_{2}-T_{1}\right), \lambda\left(T_{3}-T_{2}\right), \ldots
$$

are distributed as ild exponential random variables.

Proof of Theorem 1.2.

For any $k \geq 0$ and any $x>0$,

$$
\begin{aligned}
& P\left(T_{k+1}>T_{k}+x \mid T_{k}\right)=P\left(T_{k+1} \notin\left[T_{k}, T_{k}+x\right] \mid T_{k}\right) \\
& =P\left(N_{|0, x|}=0\right) \\
& =e^{-\lambda x} \frac{\lambda^{0}}{0!} \\
& =e^{-\lambda x}
\end{aligned}
$$

Thus, given $T_{k}, T_{k+1^{-}}-T_{k}$ is exponentlal with parameter λ. Generalizing this argument to obtain the clalmed independence as well, we see that for any finlte k, and any sequence of nonnegative numbers x_{0}, x_{1}, \ldots,

$$
\begin{aligned}
& P\left(T_{k+1}-T_{k}>x_{k}, T_{k}-T_{k-1}>x_{k-1}, \ldots, T_{2}-T_{1}>x_{1}, T_{1}-0>x_{0}\right) \\
& =P\left(N_{\left(T_{k}, T_{k}+x_{k}\right)}=0, \ldots, N_{\left(0, x_{0}\right)}=0\right) \\
& =P\left(N_{\left(0, x_{0}+x_{1}+\cdots+x_{k}\right)}=0\right) \\
& =e^{-\lambda \sum_{i=0}^{k} x_{i}} \\
& =\prod_{i=0}^{k} e^{-\lambda x_{i}}
\end{aligned}
$$

This concludes the proof of Theorem 1.2.

Theorem 1.2 suggests the following method for simulating a unform Poisson process on $A=[0, \infty)$:

Uniform Poisson process generator on the real line: the exponential spacings
method
$T \leftarrow 0$ (auxiliary variable used for updating the "time")
$k \longleftarrow 0$ (initialize the event counter)
REPEAT
Generate an exponential random variate E.

$$
\begin{aligned}
& k \leftarrow k+1 \\
& T \leftarrow T+\frac{E}{\lambda} \\
& T_{k} \leftarrow T
\end{aligned}
$$

UNTIL False (this is an inflite loop; a stopping rule can be added if desired).

This algorithm is easy to Implement because no Polsson random varlates are needed. For other simple sets A, there exlst trlvial generallzations of Theorem 1.2. For example, when A is $[0, t] \times[0,1]$ where possibly $t=\infty$, $0<T_{1}<T_{2}<\cdots$ is a unlform Polsson process with rate λ on $[0, t]$, and U_{1}, U_{2}, \ldots is a sequence of ind uniform $[0,1]$ random varlables, then

$$
\left(T_{1}, U_{1}\right),\left(T_{2}, U_{2}\right), \ldots
$$

determines a uniform Polsson process with rate λ on A.

Example 1.1. A uniform Poisson process on the unit circle.

If the set A is the clrcle with unit radius, then the varlous properties of unlform Poisson processes can be used to come up with several methods of generation (these can be extended to d dimenslonal spheres). Assume that λ is the deslred rate. First, we could slmply generate a Polsson $\lambda \pi$ random varlate N, and then return a sequence of N ind random vectors unlformly distrlbuted in the unit clrcle. If we apply the order statistics method suggested by Theorem 1.2, then the Polsson random varlate is implicitly obtalned. For example, by switching to polar coordinates (R, θ), we note that for a unlform Polsson process, R and θ are independent, and that a randomly chosen R has denslty $2 r \quad(0 \leq r \leq 1)$ and that a randomiy chosen θ is uniformly distributed on $[0,2 \pi]$. Thus, we could proceed as follows: generate a unfform Polsson process $0<\theta_{1}<\theta_{2}<\cdots<\theta_{N}$ with rate parameter $\frac{\lambda}{2 \pi}$ on $[0,2 \pi]$ by the exponentlal spacings method. Exit with

$$
\left(\theta_{1}, R_{1}\right), \ldots,\left(\theta_{N}, R_{N}\right)
$$

where the R_{i} 's are lld random variates with density $2 r \quad(0 \leq r \leq 1)$ which can be generated individually as the maxima of two independent unlform [0,1] random varlates. There is no special reason for applying the exponentlal spacings method to the angles. We could have plcked the radil as well. Unfortunately, the ordered radil do not form a one-dimenslonal unlform Polsson process on [0,1$]$. They do form a nonhomogeneous Polsson process however, and the generation of such processes will be clarlfied in the next subsection.

1.3. Nonhomogeneous Poisson processes.

There are situations in which events occur at "random tlmes" but some times are more llkely than others. This is the case for arrivals in intenslve care units, for job submissions in a computer centre and for injurles to NFL players. A very good model for these cases is the nonhomogeneous Polsson process model, defined here for the sake of convenlence on $[0, \infty)$. This is the most important case because "time" is usually the running variable.

A nonhomogeneous Polsson process on $[0, \infty)$ is determined by a rate function $\lambda(t) \geq 0(t \geq 0)$, which can be considered as a density of sorts, with the difference that $\int_{0} \lambda(t) d t$ is not necessarlly 1 (usually, it is ∞). The process is defined by the following property: for all finite collectlons of dlsjoint intervals A_{1}, \ldots, A_{k}, the numbers of events happening in these intervals (N_{1}, \ldots, N_{k}) are Independent Polsson random varlables with parameters

$$
\int_{A_{i}} \lambda(t) d t \quad(1 \leq i \leq k)
$$

Let us now revlew how such processes can be slmulated. By slmulation, we understand that the tlmes of occurrences of events $0<T_{1}<T_{2}<\cdots$ are to be glven In Increasing order. The major work on slmulation of nonhomogeneous Polsson processes is Lewis and Shedler (1979). Thls entire section is a reworked version of their paper. It is interesting to observe that the general principles of continuous random varlate generation can be extended: we will see that there are analogs of the inversion, rejection and composition methods.

The role of the distribution function will be taken over by the integrated rate function

$$
\Lambda(t)=\int_{0}^{t} \lambda(u) d u
$$

We begin by noting that given $T_{n}=t, T_{n+1}-T_{n}$ has distribution function

$$
F(x)=1-e^{-(\Lambda(t+x)-\Lambda(t))} \quad(x \geq 0)
$$

provided that $\lim _{t \rightarrow \infty} \Lambda(t)=\infty$ (1.e, $\int_{0}^{\infty} \lambda(t) d t=\infty$). This follows from the fact that

$$
\begin{aligned}
& F(x)=P\left(T_{n+1}-T_{n}>x \mid T_{n}=t\right) \\
& =P\left(N(t, t+x)=0 \mid T_{n}=t\right) \\
& =e^{-(\Lambda(t+x)-\Lambda(t))} \quad(x \geq 0) .
\end{aligned}
$$

Thus, T_{n+1} is distributed as $T_{n}+F^{-1}(U)$ where U is a uniform [0,1] random varlate. Interestingly, writing U as $1-e^{-E}$ (where E denotes an exponential random varlable), we see that T_{n+1} is also distributed as $\Lambda^{-1}\left(E+\Lambda\left(T_{n}\right)\right)$. In other words, we need to Invert Λ. Formally, we have (see also Clnlar (1975) or Bratley, Fox and Schrage, 1983):

Algorithm based on inversion of the integrated rate function
$T \leftarrow 0$ (T will be an auxiliary variable)
$k \leftarrow 0$ (k is a counter)
REPEAT
Generate an exponential random variate E.
$k \leftarrow k+1$
$T \leftarrow T+\Lambda^{-1}(E+\Lambda(T))$
$T_{k} \leftarrow T$
UNTIL False

Example 1.2. Homogeneous Poisson process.

For the speclal case $\lambda(t)=\lambda, \Lambda(t)=\lambda t$, it is easlly seen that in the algorlthm glven above, the step $T \leftarrow T+\Lambda^{-1}(E+\Lambda(T))$ reduces to $T \leftarrow T+\frac{E}{\lambda}$. Thus, we obtaln the exponential spacings method again.

Example 1.3.

To model morning pre-rush hour traffic, we can sometlmes take $\lambda(t)=t$, which glves $\Lambda(t)=\frac{t^{2}}{2}$. The step $T \leftarrow T+\Lambda^{-1}(E+\Lambda(T))$ now needs to be replaced by

$$
T \leftarrow \sqrt{T^{2}+2 E} .
$$

If the rate function can be split into a sum of rate functions, as in

$$
\lambda(t)=\sum_{i=1}^{n} \lambda_{i}(t)
$$

and if $0<T_{i 1}<T_{i 2}<\cdots, 1 \leq i \leq n$ are Independent reallzations of the individual nonhomogeneous Polsson processes, then the merged ordered sequences form
a reallzation of the nonhomogeneous Polsson process with rate function $\lambda(t)$. This corresponds to the composition method, but the difference now is that we need realizations of all component processes. The decomposition can be used when there is a natural decomposition dictated by the analytical form of $\lambda(t)$. Because the basic operation in merging the processes is to take the minimal value from the n processes, it could be advantageous for large n to store the times in a heap containing n elements. We summarize:

The composition method

Generate $T_{11}, \ldots, T_{n 1}$ for the n Poisson processes, and store these values together with the indices of the corresponding processes in a table.
$T \leftharpoondown$ (T is the running time)
$k \leftarrow 0$ REPEAT
Find the minimal element (say, $T_{i j}$) in the table and delete it.
$k \leftarrow k+1$
$T_{k} \leftarrow T_{i j}$
Generate the value $T_{i j+1}$ and insert it into the table.
UNTIL False

The third general princlple is that of thinning (Lewls and Shedler, 1979). Similar to what we did in the rejection method, we assume the existence of an easy dominating rate function $\mu(t)$:

$$
\lambda(t) \leq \mu(t), \text { all } t
$$

Then the idea is to generate a homogeneous Polsson process on the part of the positive halfplane between 0 and $\mu(t)$, then to consider the homogeneous Poisson process under λ, and flnally to exit with the x-components of the events in this process. This requires a theorem similar to that preceding the rejection method.

Theorem 1.3.

Let $\lambda(t) \geq 0$ be a rate function on $[0, \infty)$, and let A be the set of all (x, y) with $x \geq 0,0 \leq y \leq \lambda(x)$. The following is true:
(1) If (X_{1}, Y_{1}),... (with ordered X_{i} 's) is a homogeneous Polsson process with unit rate on A, then $0<X_{1}<X_{2}<\cdots$ is a nonhomogeneous Polsson process with rate function $\lambda(t)$.
(i1) If $0<X_{1}<X_{2}<\cdots$ is a nonhomogeneous Polsson process with rate functlon $\lambda(t)$, and U_{1}, U_{2}, \ldots are Ild unlform $[0,1]$ random varlables, then $\left(X_{1}, U_{1} \lambda\left(X_{1}\right)\right),\left(X_{2}, U_{2} \lambda\left(X_{2}\right)\right), \ldots$ is a homogeneous Polsson process with unit rate on A.
(ili) If $B \subseteq A$, and $\left(X_{1}, Y_{1}\right), \ldots$ (with ordered X_{i} 's) is a homogeneous Polsson process with unit rate on A, then the subset of polnts (X_{i}, Y_{i}) belonging to B forms a homogeneous Polsson process with unit rate function on B.

Proof of Theorem 1.3. We verify that for nonoverlapping intervals A_{1}, \ldots, A_{k}, the number of X_{i} 's falling in the intervals (which we shall denote by $N\left(A_{1}\right), \ldots, N\left(A_{k}\right)$), satisfy:

$$
\begin{aligned}
& P\left(N\left(A_{1}\right)=i_{1}, \ldots, N\left(A_{k}\right)=i_{k}\right) \\
& =P\left(N\left(\bar{A}_{1}\right)=i_{1}, \ldots, N\left(\bar{A}_{k}\right)=i_{k}\right) \\
& =\prod_{j=1}^{k} \frac{\left(\int_{A_{i}} \lambda(t) d t\right)^{i_{j}}}{i_{j}!} e^{-\int_{\Lambda_{i}} \lambda(t) d t},
\end{aligned}
$$

where \bar{A}_{i} refers to the intersection of the infilte sllce with vertical projection A_{i} with A. This concludes the proof of part (1).

To show (II), we can use Theorem 1.1: It suffices to show that for all finite sets \bar{A}_{1}, the number of random vectors N falling in \bar{A}_{1} is Polsson distributed with parameter $\operatorname{Vol}\left(\bar{A}_{1}\right)$, and that every random vector in this set is uniformly distributed in it. The distribution of N is Indeed Polsson with the given parameter because the X_{i} sequence determines a nonhomogeneous Polsson process with the correct rate function. Also, by Theorem II.3.1, a random vector ($X, U \lambda(X)$) is uniformly distributed in \bar{A}_{1} if U is unlformly distributed on $[0,1]$ and X is a random vector with density proportional to $\lambda(x)$ restricted to A_{1}. Thus, it suffices to show that if an X is plcked at random from among the X_{i} 's in A_{1}, then X is a random vector with density proportional to $\lambda(x)$ restricted to A_{1}. Let B be a Borel set contalned $\ln A_{1}$, and let us write λ_{B} and $\lambda_{A_{1}}$ for the Integrals of λ over B and A_{1} respectively. Thus,

$$
\begin{aligned}
& P\left(X \in B \mid X \in A_{1}\right)=P\left(X \in B \mid N\left(A_{1}\right)=1\right) \\
& =\frac{P\left(N(B)=1, N\left(A_{1}-B\right)=0\right)}{P\left(N\left(A_{1}\right)=1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\lambda_{B} e^{-\lambda_{B}} e^{-\left(\lambda_{A_{1}}-\lambda_{B}\right)}}{\lambda_{A_{1}} e^{-\lambda_{A_{1}}}} \\
& =\frac{\lambda_{B}}{\lambda_{A_{1}}} \\
& =\frac{1}{\lambda_{A_{1}}} \int_{B} \lambda(x) d x
\end{aligned}
$$

which was to be shown.
Part 3 follows from Theorem 1.1 on homogeneous Polsson processes without further work.

Consider now the thinning algorithm of Lewis and Shedler (1979):

The thinning method (Lewis and Shedler)

$T \leftarrow 0$
$k \leftarrow 0$
REPEAT
Generate Z, the first event in a nonhomogeneous Poisson process with rate function μ occurring after T. Set $T \leftarrow Z$.
Generate a uniform $[0,1]$ random variate U.
IF $U \leq \frac{\lambda(Z)}{\mu(Z)}$
THEN $k \leftarrow k+1, X_{k} \leftarrow T$
UNTIL False

The sequence of X_{k} 's thus generated is claimed to determine a nonhomogeneous Polsson process with rate function λ. Notice that we have taken a nonhomogeneous Polsson process $0<Y_{1}<Y_{2}<\cdots$ with rate function μ and ellminated some polnts. As we know, $\left(Y_{1}, U_{1} \mu\left(Y_{1}\right)\right), \ldots$ is a homogeneous Polsson process with unit rate under the curve of μ if U_{1}, U_{2}, \ldots are ild unlform $[0,1]$ random varlates (Theorem 1.3). Thus, the subsequence falling under the curve of λ determines a homogeneous Polsson process with unit rate under that curve (part (iil) of the same theorem). Finally, taking the x-coordinates only of that subsequence gives a nonhomogeneous Polsson process with rate function λ.

The nonhomogeneous Polsson process with rate function μ is usually
obtalned by the inversion method.

Example 1.4. Cyclic rate functions.

The following example is also due to Lewls and Shedler (1979): consider a cycllc rate function

$$
\lambda(t)=\lambda(1+\cos (t))
$$

with as obvious choice for dominating rate function $\mu(t)=2 \lambda$. We have

$$
\begin{aligned}
& T \leftarrow 0 \\
& k \leftarrow 0 \\
& \text { REPEAT }
\end{aligned}
$$

Generate an exponential random variate E.
$T-T+\frac{E}{2 \lambda}$
Generate a uniform [0,1] random variate U.
IF $U \leq \frac{1+\cos (T)}{2}$
THEN $k \leftarrow k+1, X_{k} \leftarrow T$

UNTIL False

It goes without saying that the squeeze princlple can be used here to help avolding the cosine computation most of the time.

A final word about the efficlency of the algorithm when used for generating a nonhomogeneous Polsson process on a set $[0, t]$. The expected number of events needed from the dominating process is $\int_{0} \mu(u) d u$, whereas the expected number of random varlates returned is $\int_{0}^{t} \lambda(u) d u$. The ratio of the expected values can be considered as a falr measure of the efficlency, comparable in spirlt to the rejection constant in the standard rejection method. Note that we cannot use the expected value of the ratio because that would in general be ∞ in view of the positive pro-
$-\int_{0} \lambda(u) d u$
babllity (e^{-0}) of returning no varlates.

1.4. Global methods for nonhomogeneous Poisson process simulation.

Nonhomogeneous Polsson processes on $[0, \infty)$ can always be obtained from homogeneous Polsson processes on $[0, \infty)$ by the following property (see e.g. Cinlar (1975, pp. 98-99)):

Theorem 1.4.

If $0<T_{1}<T_{2}<\cdots$ is a homogeneous Polsson process with unlt rate on $[0, \infty)$, and if Λ is an integrated rate function, then

$$
0<\Lambda^{-1}\left(T_{1}\right)<\Lambda^{-1}\left(T_{2}\right)<\cdots
$$

determines a nonhomogeneous Polsson process with integrated rate function Λ.

Proof of Theorem 1.4.

We have impllcitly shown this in the previous section. Let i_{1}, \ldots be integers, let k be an integer, and let $N(A)$ be the number of points in a set $A \subseteq[0, \infty)$. Then, $N(A)$ is equal to $N^{*}(\Lambda(A))$ where N^{*} refers to the homogeneous Polsson process, and $\Lambda(A)$ is the set A transformed under Λ. Thus, if A_{1}, \ldots, A_{k} are disjoint sets, it is easily seen that $N\left(A_{1}\right), \ldots, N\left(A_{k}\right)$ are distributed as $N *\left(\Lambda\left(A_{1}\right)\right), \ldots, N *\left(\Lambda\left(A_{k}\right)\right)$, which is a sequence of independent Polsson random varlables with parameters equal to the Lebesgue measures of the sets $\Lambda\left(A_{i}\right)$, l.e. $\int_{A_{i}} \lambda(t) d t$ where λ is the a.e. derivative of Λ. This shows that the transformed process is a nonhomogeneous Poisson process with integrated rate function A .

We observe that if $\int_{0}^{\infty} \lambda(t) d t<\infty$, then the function Λ^{-1} is not deffned for very large arguments. In that case, the T_{i} 's with values exceeding $\int_{0}^{\infty} \lambda(t) d t$ should be ignored. We conclude thus that only a finite number of events occur in such cases. No matter how large the finlte value of the integral is, there is always a positive probabillty of not having any event at all.

Let us apply this theorem to the simulation restricted to a finite interval $\left[0, t_{0}\right]$. This is equivalent to the infinite interval case provided that $\lambda(t)$ is replaced by

$$
\begin{cases}\lambda(t) & \left(0 \leq t \leq t_{0}\right) \\ 0 & \left(t>t_{0}\right)\end{cases}
$$

Thus, it suffices to use $\Lambda^{-1}\left(T_{1}\right), \ldots$ for all T_{i} 's not exceeding $\Lambda\left(t_{0}\right)$. The inversion of Λ is sometimes not practlcal. The next property can be used to avold it, provided that we have fast methods for generating order statistics with non-unlform
densities (see e.g. chapter V). The stralghtforward proof of its validity is left to the reader (see e.g. Cox and Lewls, 1966, chapter 2).

Theorem 1.5.

Let N be a Polsson random varlate with parameter $\Lambda\left(t_{0}\right)$. Let $0<T_{1}<T_{2}<\cdots<T_{N}$ be order statistics corresponding to the distribution function

$$
\frac{\Lambda(t)}{\Lambda\left(t_{0}\right)} \quad\left(0 \leq t \leq t_{0}\right)
$$

then thls subsequence determines a nonhomogeneous Poisson process on $\left[0, t_{0}\right]$ with integrated rate function Λ.

Both Theorem 1.4 and Theorem 1.5 lead to global methods, 1.e. methods in which a nonhomogeneous Polsson process can be obtalned from another process, usually in a separate pass of the data. The methods of the previous section, In contrast, are sequentlal: the event times of the process are generated directly from left to right. Since the one-pass sequential approach allows optional stoppling and restarting anywhere in the process, it is definitely of more practical value. In some applications, there is also a considerable savings in storage because no Intermediate (or auxlliary) process needs to be stored. Finally, some global methods require the computation of Λ^{-1}, whereas the thinning method does not. This is an Important consideration when Λ is diffcult to compute.

For more examples, and additional detalls, we refer to the exercises and the other sections in this chapter. Readers who do not speclallze in random process generation will probably not galn very much from reading the other sections in this chapter.

1.5. Exercises.

1. When $\int_{0}^{\infty} \lambda(t) d t<\infty$, the inversion and thinning methods for nonhomogeneous Polsson process generation need modifying. Show how.
2. Let N be the total number of events (points) In a nonhomogeneous Polsson process on the positive real line with rate function $\lambda(t)$. Show that there are only two possible situations:

3. The following rate function is given to you: $\lambda(t)$ is plecewlse constant with breakpolnts at $a, 2 a, 3 a, 4 a, \ldots$, where for $t \in[i a,(i+1) a), \lambda(t)=\lambda_{i}$, $i=0,1,2, \ldots$. Generalize the exponential spacings method for generating a nonhomogeneous Polsson process with this rate function. Hint: do not use transformations of exponentlal random varlates when you cross breakpoints, but rely on the memoryless property of the exponential distribution.
4. We are interested in the generation of a nonhomogeneous Polsson process with log-llnear rate function

$$
\lambda(t)=c_{0} e^{c_{0}+c t} \quad(t \geq 0)
$$

where $c_{0}>0, c \in R$. There are two Important situations: when $c<0$, the process dles out and only a flnite number of events occurs. The process corresponds to an exponential population explosion however when $c>0$. Generate such a process by the Inversion-of- Λ method.
5. This is a continuation of the prevlous exercise related to a method of Lewis and Shedler (1976) for simulating non-homogeneous Polsson processes with \log-linear rate function. Show that if N is a Polsson $\left(-\frac{c_{0}}{c}\right)$ random varlable, and E_{1}, E_{2}, \ldots is a sequence of ind exponentlal random varlates, then, assumIng $c<0$,

$$
-\frac{E_{i}}{c(N-i+1)} \quad(1 \leq i \leq N)
$$

are distributed as the gaps between events in a nonhomogeneous Polsson process with rate function $\lambda(t)=c_{0} e^{c_{0}+c t} \quad(t \geq 0)$ on $[0, \infty)$. Give the algorlthm that exploits thls property. Note that thls Implles that the expected number of events in such a process is $-\frac{c_{0}}{c}<\infty$. For the case $c>0$, show how by fllpping the time axls around, you can reduce the problem to that of the case $c<0$ provided that one is only interested in simulation on a finite time Interval.
6. Glve an algorithm for generating random varlates with a log-quadratic rate function. Hint: conslder several cases as in the prevlous two exerclses (Lewls and Shedler, 1979).

2. GENERATION OF RANDOM VARIATES WITH A GIVEN HAZARD RATE.

2.1. Hazard rate. Connection with Poisson processes.

In this section we conslder the problem of the computer generation of random varlables with a given hazard rate h on $(0, \infty)$. If X is a random varlable with density f and distribution function F, then the hazard rate h and cumulative hazard rate H are inter-related as follows:

$$
\begin{aligned}
& h(x)=\frac{f(x)}{1-F(x)} \\
& H(x)=\int_{0}^{x} h(y) d y=-\log (1-F(x)) ; \\
& F(x)=1-e^{-H(x)} \\
& f(x)=h(x) e^{-H(x)}
\end{aligned}
$$

The hazard rate plays a cruclal role in rellabllty studles (Barlow and Proschan, 1085) and in all situations involving lifetime distributions. Note that ∞ $\int_{0} h(y) d y=\infty$ and thus $\lim _{x \rightarrow \infty} H(x)=\infty$. The key distribution now is the exponentlal: it has constant hazard rate of value 1. Roughly speaking, hazard rates tending to 0 correspond to densitles with larger-than-exponentlal talls, and diverging hazard rates are for densitles with smaller-than-exponentlal talls. For compact support distributions, we have $\lim _{x \uparrow c} H(x)=\infty$ for some finite c (corresponding to the rightmost point in the support). Sometimes, h or H is given, and not f or F. In particular, when only h is given, f cannot be computed exactly because we would first need to compute H by numerical integratlon. Thus, there is a need for methods which allow us to generate random varlates with a glven hazard rate h. Fortunately, such random variates are intimately connected to Polsson polnt processes.

Theorem 2.1.

Let $0<T_{1}<T_{2}<\cdots$ be a nonhomogeneous Polsson process with rate function h (and thus integrated rate function H). Then T_{1} is a random variable with hazard rate h.

Proof of Theorem 2.1.

Note that for $x>0$,

$$
\begin{aligned}
& P\left(T_{1} \leq x\right)=1-P(\text { no event times } \ln [0, x]) \\
& =1-e^{-\int_{0}^{x} h(t) d t}
\end{aligned}
$$

$$
=1-e^{-H(x)},
$$

whlch was to be shown.

This connection helps us understand the algorithms of this section. We will discuss the inversion, composition and thlnning methods. For speclal sub-classes of hazard rate functlons, there are universally applicable (black box) methods that are worth reporting. In particular for DHR distributions (distributions with decreasing hazard rate), the method of dynamlc thinning will be Introduced and analyzed (Devroye, 1985). Other classes, such as the class of IHR distributions (distributlons with increasing hazard rate), are dealt with indirectly in the text and exercises.

2.2. The inversion method.

For generating a random varlate with cumulative hazard rate H, it sufflces to invert an exponentlal random varlate:

Inversion method

Generate an exponential random variate E.
RETURN $X \leftarrow H^{-1}(E)$

If H^{-1} is not explicitly known, then we are forced to solve $H(X)=E$ for X by some iterative method. Here the discussion of the standard inversion method for distribution functions applies again.

We can easily verify that the algorithm is valid, elther by using the connectlon with Polsson processes glven in Theorem 2.1, or directly: for $x>0$ observe that if H is strictly increasing, then

$$
P\left(H^{-1}(E) \leq x\right)=P(E \leq H(x))=1-e^{-H(x)}=F(x)
$$

When H is not strictly increasing, then the chain of inequallties remains valld for any consistent deflnition of H^{-1}.

This method is difflcult to attribute to one person. It was mentioned in the works of Cinlar (1975), Kaminsky and Rumpf (1977), Lewls and Shedler (1979) and Gaver (1979). In the table below, a llst of examples is given. Basically, this llst contains distrlbutions with an easlly Invertible distribution function because
$F(x)=1-e^{-H(x)}$.

$f(x)$	$h(x)$	$H(x)$	$H^{-1}(E)$
$a x^{a-1} e^{-x^{a}} \quad(a>0)($ Weibull $)$	$a x^{a-1}$	x^{a}	$E^{\frac{1}{a}}$
$\frac{a}{(1+x)^{a+1}}($ Pareto $)$	$\frac{a}{1+x}$	$a \log (1+x)$	$e^{\frac{E}{a}}-1$
$a x^{a-1} \quad(a>0, x \leq 1)$ (power function $)$	$\frac{a x^{a-1}}{1-x^{a}}$	$-\log \left(1-x^{a}\right)$	$\left(1-e^{-E}\right)^{\frac{1}{a}}$

2.3. The composition method.

When $h=h_{1}+\cdots+h_{n}$ where the h_{i} 's are in turn hazard rates, then we can use Theorem 2.1 directly and use the fact that it suffices to consider the minimum of n random varlables X_{1}, \ldots, X_{n} with the individual hazard rates h_{i}. When the individual cumulative hazard rates are H_{i}, then this can be shown directly: for $x>0$,

$$
P\left(\min \left(X_{1}, \ldots, X_{n}\right) \geq x\right)=\prod_{i=1}^{n} e^{-H_{i}(x)}=e^{-H(x)}
$$

If the decomposition is such that for some h_{i} we have $\int_{0}^{\infty} h_{i}(t) d t<\infty$, then the method is still applicable if we switch to nonhomogeneous Polsson processes.

Composition method
$X \leftarrow \infty$
FOR $i=1$ TO n DO
Generate Z distributed as the first event time in a nonhomogeneneous Poisson process with rate function h_{i} (ignore this if there are no events in the process; if ∞ $\int_{0}^{\infty} h_{i}=\infty$, then Z has hazard rate h_{i}).
IF $Z<X$ THEN $X \leftarrow Z$
RETURN X

Usually, the composition method is slow because we have to deal with all the Individual hazard rates. There are shortcuts to speed things up a bit. For example, after we have looked at the first component and set X equal to the random varlate with hazard rate h_{1}, it sufflces to conslder the nonhomogeneous Polsson processes restricted to $[0, X]$. The point is that if X is small, then the probability of observing one or more event times in this interval is also small. Thus, often a
quick check suffices to avold random variate generation for the remalning nonhomogeneous Polsson processes. To lllustrate thls, decompose h as follows:

$$
h(x)=h_{1}(x)+h_{2}(x)
$$

where h_{1} is a hazard rate which puts its mass near the origin. The function h_{2} is nonnegative, but does not have to be a hazard rate. It can be considered as a small adjustment, h_{1} belng the maln (easy) component. Then the following algorlthm can be used:

Composition method with quick acceptance

Generate a random variate X with hazard rate h_{1}.
Generate an exponential random variate E.
IF $E \leq H_{2}(X)\left(H_{2}\right.$ is the cumulative hazard rate for $\left.h_{2}\right)$
THEN RETURN $X \leftarrow H_{2}^{-1}(E)$
ELSE RETURN X

Something can be galned if we replace $X \leftarrow H_{2}^{-1}(E)$ by a step in which we return a random varlate X distributed with hazard rate

$$
h_{2}(x) \frac{1-F_{2}(x)}{F_{2}(X)-F_{2}(x)}
$$

which can be done by methods that do not involve inversion. The expected number of times that we need to use the second (time-consuming) step in the algorithm is the probabllity that $E \leq H_{2}(X)$ where X has hazard rate h_{1} :

$$
\begin{aligned}
& P\left(E \leq H_{2}(X)\right)=\int_{0}^{\infty} h_{1}(y) e^{-H_{1}(y)}\left(1-e^{-H_{2}(y)}\right) d y \\
& =1-\int_{0}^{\infty} h_{1}(y) e^{-H(y)} d y \\
& =1-\int_{0}^{\infty}\left(h(y)-h_{2}(y)\right) e^{-H(y)} d y \\
& =\int_{0}^{\infty} h_{2}(y) e^{-H(y)} d y \\
& =\int_{0}^{\infty}\left(\frac{h_{2}(y)}{h(y)}\right) f(y) d y
\end{aligned}
$$

where f is the density corresponding to f. From the last expression we conclude that it is important to keep $\frac{h_{2}}{h}$ small.

2.4. The thinning method.

Combining the theorem about thinning Poisson processes (Theorem 1.4) with Theorem 2.1 shows that the following algorithm produces a random varlate with hazard rate h, provided that we can generate a nonhomogeneous Polsson point process with rate function g where

$$
h(x) \leq g(x) \quad(\text { all } x)
$$

Thinning method (Lewis and Shedler, 1878)
$X \leftarrow 0$
REPEAT
Generate a random variate Δ with hazard rate $g(X+x)(x \geq 0)$ (equivalently, generate the first occurrence in a nonhomogeneous Poisson point process with the same rate function).
Generate a uniform $[0,1]$ random variate U.
$X \leftarrow X+\Delta$
UNTIL $U g(X) \leq h(X)$
RETURN X

This algorithm is most efficlent when g is very simple. In particular, constant dominating rate functions $g=g_{0}$ are practical, because Δ can be obtalned as $\frac{E}{g_{0}}$ where E is an exponential random variate. We will now see what the expected complexity is for this algorithm. It is annoying that the distribution of the number of iterations (which we shall call N) depends very heavily on h and g. Recall, in comparison, that for the rejection method, the distribution is always geometric. For the thinning method, we might even have $E(N)=\infty$, so that it is absolutely essential to clarlfy Just how $E(N)$ depends upon h and g. The followIng theorem is due to Devroye (1985):

Theorem 2.2. (Analysis of the thinning method.)

Let f and F be the density and distribution function corresponding to a hazard rate h. Let $g \geq h$ be another hazard rate having cumulative hazard rate G. Then the expected number of Iterations in the thinning algorithm given above is

$$
E(N)=\int_{0}^{\infty} g(x)(1-F(x)) d x=\int_{0}^{\infty} f(x) G(x) d x
$$

Proof of Theorem 2.2.

Let us call the X varlates in subsequent iteratlons X_{i}, where $i=1,2, \ldots$. Similarly, the unlform $[0,1]$ random varlates used in the algorithm have also subscripts referring to the iteration, as in U_{1}, U_{2}, \ldots. In Theorem 1.4 we have shown that $\left(X_{1}, U_{1} g\left(X_{1}\right)\right),\left(X_{2}, U_{2} g\left(X_{2}\right)\right), \ldots$ If continued at inflitum form a homogeneous Polsson process with unlt rate on the area bounded by the x-axis and the curve g. The only thing that we introduce in the thinning method is a stopping rule. We condition now on X, the random varlate returned in the algorlthm. Notice that N is 1 plus the number of event times in a nonhomogeneous Polsson process with rate function $g-h$ restricted to $[0, X)$. Thus, conditioned on X, $N-1$ is Polsson distrlbuted with parameter $\int_{0}(g-h)$. This observation uses the propertles of Theorem 1.4 connecting homogeneous Polsson processes in the plane with nonhomogeneous Poisson processes on the llne.

It is a simple matter to compute $E(N)$:

$$
\begin{aligned}
& \quad \stackrel{X}{X} \quad \stackrel{X}{X} \\
& =E\left(\int_{0}^{X}\right)=1+E\left(\int_{0}^{X} g\right) \\
& =\int_{0}^{\infty} f G \\
& =\int_{0}^{\infty} g(H(X)) \\
& =\int_{0}^{\infty} g(1-F)
\end{aligned}
$$

Here we used the fact that $H(X)$ is exponentially distributed, and, in the last step, partlal integration.

Theorem 2.2 establishes a connection between $E(N)$ and the size of the tall of X. For example, when $g=c$ is a constant, then

$$
E(N)=c E(X)
$$

Not unexpectedly, the value of $E(N)$ is scale-Invarlant: it. depends only upon the shapes of h and g. When g increases, as for example in

$$
g(x)=\sum_{i=0}^{n} c_{i} x^{i}
$$

then $E(N)$ depends upon more than Just the first moment:

$$
E(N)=\sum_{0}^{n} \frac{c_{i}}{i+1} E\left(X^{i+1}\right)
$$

There are plenty of examples for which $E(N)=\infty$ even when $g(x)=1$ for all x. Conslder for example $h(x)=\frac{1}{x+1}$, which corresponds to the long-talled density $f(x)=\frac{1}{(x+1)^{2}}$. Generally speaking, $E(N)$ is small when g and h are close. For example, we have the following helpful inequallties:

Theorem 2.3.

The thinning algorithm satisfies

$$
\begin{aligned}
& E(N) \leq \sup _{x>0} \frac{g(x)}{h(x)} \\
& E(N) \leq \sup _{x>0} \frac{1-F(x)}{1-F *(x)}
\end{aligned}
$$

where $F, F *$ are the distribution functions for h and g respectively.

Proof of Theorem 2.3.

The first inequality follows from

$$
E(N)=\int_{0}^{\infty} \frac{g(x)}{h(x)} f(x) d x
$$

and the second inequallty is a consequence of

$$
E(N)=\int_{0}^{\infty} f *(x) \frac{1-F(x)}{1-F *(x)} d x
$$

where $f *$ is the density corresponding to g.

There are examples in which g and h appear to be far apart $\left(\lim _{x \notinfty} \frac{g(x)}{h(x)}=\infty\right)$, yet $E(N)<\infty:$ consider for example $h(x)=\frac{1}{x+1}, g(x)=\frac{1}{(x+1)^{a}}, 0<a \leq 1$. The explanation is that g and h should be close to each other near the orlgin and that the difference does not matter too much in low denslty regions such as the talls.

The expression for $E(N)$ can be manlpulated to choose the best dominating hazard rate g from a parametrized class of hazard rates. This will not be explored any further.

2.5. DHR distributions. Dynamic thinning.

In thls section we will try to obtaln a black box generator for DHR distributlons, l.e. a generator which does not require a priorl expliclt knowledge of the form of h. The method that will be given in this section is the method of dynamic thinning. This principle in itself is also useful for other distributions and for the nonhomogeneous Polsson process on the real llne. The algorlthm resembles the thinning algorithm, but the dominating hazard rate is dynamic, i.e. it varles during the execution of the algorlthm.

The DHR distributions form a sub-class of the monotone densities because $f=h e^{-H}, h \downarrow$ and $H \uparrow$. It contalns the Pareto distribution with parameter $a>0$:

$$
h(x)=\frac{a}{x+1},
$$

the Welbull distrlbution with parameter $a \leq 1$ and the gamma distribution with parameter $a \leq 1$. The peak of the density is at 0 , with value $f(0)=h(0)$. This value can of course be ∞ as for the gamma (a) density with $0<a<1$. The class has some desirable propertles, for example, it is closed under convex combinations (see exercises), which means that mixtures of DHR distributions are agaln DHR.

The Inversion method is based upon the fact that the solution X of $H(X)=E$ where E is exponentially distributed, has cumulative hazard rate H. But for DHR distributions, H is concave (its derivative h is nonincreasing). Thus, Newton-Raphson Iterations started at 0 converge whenever $h(0)<\infty$:

Inversion method for DHR distributions

$$
X \leftarrow 0
$$

REPEAT

$$
X \leftarrow X+\frac{E-H(X)}{h(X)}
$$

UNTIL False

In practical appllcatlons, an approprlate stopplng rule must be added. An exact solution usually requires inflnite time (this is not the case if h is plecewise constant !). The thinning method, if it is to be used in black box mode, can only use the constant dominating hazard rate $g=h(0)$, In which case the expected number of Iterations becomes

$$
h(0) E(X) .
$$

We recall however that DHR distributions have heavier-than-exponentlal talls. Thus, the fact that $E(N)$, the expected number of Iterations, is proportional to $E(X)$ could be a serlous drawback. The two prototype examples that we will conslder throughout thls section are the exponential density $(E(N)=h(0) E(X)=1)$ and the Pareto ($a)$ density

$$
f(x)=\frac{a}{(1+x)^{a+1}},
$$

for which $h(x)=\frac{a}{1+x}, H(x)=a \log (1+x), h(0)=a$, and, if $a>1, E(X)=\frac{1}{a-1}$. Thus,

$$
E(N)= \begin{cases}\infty & 0<a \leq 1 \\ \frac{a}{a-1} & a>1\end{cases}
$$

We are now ready to present the dynamic thinning algorithm:

Dynamic thinning algorithm for DHR distributions

$X-0$
REPEAT
$\lambda-h(X)$
Generate an exponential random variate E and a uniform $[0,1]$ random variate U.
$X \leftarrow X+\frac{E}{\lambda}$
UNTLL $\lambda U \leq h(X)$
RETURN X

The method uses thinning with a constant but continuously adjusted dominating hazard rate λ. When h decreases as X grows, so will λ. This forces the probablllty of acceptance up. The complexity can again be measured in terms of the number of iterations before halting, N. Note that the number of evaluations of h is $1+N$ (and not $2 N$ as one might conclude from the algorithm shown above, because some values can be recuperated by introducing auxillary variables). If $\lambda \leftarrow h(X)$ is taken out of the loop, and replaced at the top by $\lambda \leftarrow h(0)$, we obtain the standard thinning algorithm. While both algorithms do not require any knowledge about h except that h is DHR, a reduction in N is hoped for when dynamic thinning is used. In Devroye (1985), various useful upper bounds for $E(N)$ are obtalned. Some of these are given in the next subsection and in the exerclse section. The value of $E(N)$ is always less than or equal that of the thinning method. For example, for the Pareto (a) distribution, we obtain

$$
E(N)=\frac{1}{\int_{0}^{\infty} e^{-z}\left(1+\frac{z}{a}\right)^{-1} d z},
$$

which is finite for all $a>0$. In fact, we have the following chain of inequalitles showing the improvement over standard thinning:

$$
\begin{aligned}
& E(N)=\frac{1}{\int_{0}^{\infty} e^{-z}\left(1+\frac{z}{a}\right)^{-1} d z} \\
& \left.\leq \frac{a+1}{a} \quad \text { (use Jensen's Inequallty; note: } \frac{1}{\left(1+\frac{z}{a}\right)} \text { is convex } \ln z\right) \\
& <\frac{a}{a-1} \quad(\text { for all } a>1) \\
& =\mu=h(0) E(X) .
\end{aligned}
$$

For example, at $a=1$, we have $E(N) \leq 2$ whereas $h(0) E(X)=\infty$.

2.6. Analysis of the dynamic thinning algorithm.

Throughout this section, we will use the following notation:

$$
\begin{aligned}
\mu & =h(0) E(X), \\
\beta & =\sup _{x \geq 0}^{\infty} \int_{0}^{\infty} e^{-y h(x)}(h(x)-h(x+y)) d y, \\
\gamma & =\sup _{x \geq 0} \frac{h(x)}{h\left(x+\frac{1}{h(x)}\right)}, \\
\xi & =E\left(\log _{+}(h(0) X)\right)
\end{aligned}
$$

where μ, β, γ and ξ are varlous quantitles that will appear in the upper bounds for $E(N)$ given in this subsection. Note that ξ is the logarithmic moment of $h(0) X$, for which we have, by Jensen's Inequality,

$$
\xi \leq E(\log (h(0) X+1)) \leq \log (\mu+1) \leq \mu,
$$

so that ξ is always finlte when μ is finite. Obtalning an upper bound of the form $O(\xi)$ is, needless to say, strong proof that dynamic thinning is a drastlc improvement over standard thinning. This is the goal of this subsection. Before we proceed with the technicalltles, it is perhaps helpful to collect all the results.

Bounds C and D are never better than bound B , but often γ is easter to compute than β. For the Pareto famlly, we obtaln vala D,

$$
E(N) \leq \gamma=\frac{a+1}{a}
$$

a result that can be obtalned from B via Jensen's inequality too. Inequallties $\mathrm{E}-\mathrm{H}$ relate the size of the tall of X to $E(N)$, and give us more insight into the behavior of the algorithm. Of these, Inequallty H is perhaps the easlest to understand: $E(N)$ cannot grow faster than the logarithm of μ. Unfortunately, when $\mu=\infty$, it is of little help. In those cases, the logarithmic moment ξ is often finite. For example, this is the case for all members of the Pareto famlly. We will now prove Theorem 2.4. It requires a few Lemmas and other technical facts. Yet the proofs are Instructive to those wishing to learn how to apply embedding technlques and well-known Inequalltles in the analysis of algorlthms. Non-technical readers should most certalnly not read beyond thls point.

Proof of Theorem 2.4.

Part A. This part uses embedding. Consider the sequence of random vectors $\left(Y_{1}, h(0) U_{1}\right),\left(Y_{2}, h(0) U_{2}\right), \ldots$ where the U_{i} 's are lid unlform $[0,1]$ random varlables, and $0=Y_{0}<Y_{1}<Y_{2}<\cdots$ are deflined by the relations:

$$
Y_{i+1}=Y_{i}+\frac{E_{i+1}}{h(0)}
$$

where E_{1}, E_{2}, \ldots are IId exponential random varlates. This is the sequence considered in standard thinning, where we stop when for the first time $h(0) U_{i} \leq h\left(Y_{i}\right)$. We recall from Theorem 2.3 that in that case $E(N)=\mu=E(h(0) X)$. Let us use starred random varlables for the subsequence satisfying $h(0) U_{i} \leq h\left(Y_{i-1}\right)$. Observe flist that this sequence is distributed as the sequence of random vectors used in dynamic thinning. Then, part A follows without work because we stlll stop when the first random vector falling below the curve of h is encountered.
Part B. Let the E_{i} 's be as before. The sequence $Y_{0}<Y_{1}<\cdots$ used in dynamic thinning satisfles: $Y_{0}=0$, and

$$
Y_{i+1}=Y_{i}+\frac{E_{i+1}}{h\left(Y_{i}\right)}
$$

Note that this is the sequence of possible candidates for the returned random varlate $X \ln$ the algorlthm. The Index i refers to the Iteration. Taking the stopping rule into account, we have for $i \geq 1$,

$$
P\left(N>i \mid Y_{0}, \ldots, Y_{i}\right)=\prod_{j=1}^{i}\left(1-\frac{h\left(Y_{j}\right)}{h\left(Y_{j-1}\right)}\right)
$$

Theorem 2.4.

The expected number of iterations in the dynamic thinning algorithm applied to a DHR distribution with bounded h does not exceed any of the followlng quantities:
A. μ;
B. $\frac{1}{1-\beta}$;
C. $\frac{e}{e-1} \gamma$;
D. $\quad \gamma$ (when h is also convex);
E. $(8 \mu)^{\frac{1}{2}}+4(8 \mu)^{\frac{1}{4}}$;
F. $\quad \operatorname{lnf}_{p>2}\left(4 p+2+\frac{2 \xi}{\log (p-1)}\right)$;
G. $\quad O\left(\frac{\xi}{\log (\xi)}\right)$ as $\xi \rightarrow \infty$;
H. $\quad O\left(\frac{\log (\mu)}{\log \log (\mu)}\right)$ as $\mu \rightarrow \infty$.

Part A states that we have an improvement over standard thinning. Inequalitles B and D are sharp: for example, for the exponential distribution, we have $\beta=0$, $\gamma=1$, which leads to $E(N) \leq 1$. Inequallty B is also sharp for the Pareto family defined above. One can easily verlfy that

$$
\begin{aligned}
& \beta=\int_{0}^{\infty} e^{-\frac{y a}{1+x}}\left(\frac{a}{1+x}-\frac{a}{1+x+y}\right) d y \\
& =\int_{0}^{\infty} e^{-z}\left(1-\frac{1}{1+\frac{z}{a}}\right) d z
\end{aligned}
$$

where we used the transformation $z=\frac{a y}{1+x}$. By carefully checking the induction argument used in the proof of Theorem 2.4 , we see that for any $i \geq 0$, $P(N>i)=\beta^{i}$ and thus that

$$
\begin{aligned}
& E(N)=\frac{1}{\int_{0}^{\infty} e^{-z}\left(1+\frac{z}{a}\right)^{-1} d z} \\
& =\frac{1}{1-\beta} .
\end{aligned}
$$

Thus, for $i \geq 2$,

$$
\begin{aligned}
& P\left(N>i \mid Y_{0}, \ldots, Y_{i-1}\right) \\
& =\prod_{j=1}^{i-1}\left(1-\frac{h\left(Y_{j}\right)}{h\left(Y_{j-1}\right)}\right) \int_{0}^{\infty} e^{-y h\left(Y_{i-1}\right)}\left(h\left(Y_{i-1}\right)-h\left(Y_{i-1}+y\right)\right) d y \\
& \leq \beta \prod_{j=1}^{i-1}\left(1-\frac{h\left(Y_{j}\right)}{h\left(Y_{j-1}\right)}\right)
\end{aligned}
$$

and we obtain, by a simple Induction argument on i, that

$$
P(N>i) \leq \beta^{i} \quad(i \geq 0)
$$

Thus,

$$
E(N)=\sum_{i=0}^{\infty} P(N>i) \leq \frac{1}{1-\beta}
$$

Part C. Part C is obtained from B by bounding β from above. Fix x and $c>0$. Then

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-y h(x)}(h(x)-h(x+y)) d y \\
& \leq \int_{y>\frac{c}{h(x)}} e^{-y h(x)}(h(x)-h(x+y)) d y+\int_{0}^{\frac{c}{h(x)}} e^{-y h(x)}(h(x)-h(x+y)) d y \\
& \leq \int_{c}^{\infty} e^{-z} d z+\int_{0}^{\frac{c}{h(x)}} e^{-y h(x)}\left(h(x)-h\left(x+\frac{c}{h(x)}\right)\right) d y \\
& =e^{-c}+\left(1-e^{-c}\right)\left(\frac{h\left(x+\frac{c}{h(x)}\right)}{h(x)}\right) \\
& =1-\left(1-e^{-c}\right) \frac{h\left(x+\frac{c}{h(x)}\right)}{h(x)}
\end{aligned}
$$

Inequality C follows after taking $c=1$.
Part D. Inequality D follows by applying Jensen's inequality to an intermediate expression In the preceding chaln of inequallities:

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-y h(x)}(h(x)-h(x+y)) d y \\
& =\int_{0}^{\infty} e^{-y h(x)} h(x)\left(1-\frac{h(x+y)}{h(x)}\right) d y \\
& \leq 1-\frac{1}{h(x)} h\left(x+\int_{0}^{\infty} e^{-y h(x)} h(x) y d y\right)
\end{aligned}
$$

$$
=1-\frac{1}{h(x)} h\left(x+\frac{1}{h(x)}\right) .
$$

Lemma 2.1, needed for parts E-H. We will show that for $x \geq 0, p>2$, and integer $m \ln \{0,1, \ldots, n\}$,

$$
P(N>n) \leq P(X>x)+\frac{h(0) x}{p^{n-m}}+\left(1-\frac{1}{p}\right)^{m} \quad(n>0) .
$$

Deflne the E_{i} and Y_{i} sequences as in the proof of part B , and let U_{1}, U_{2}, \ldots be a sequence of !ld unlform $[0,1]$ random variables. Note that the random variate X returned by the algorithm is Y_{N} where N is the first index i for which $U_{i} h\left(Y_{i-1}\right) \leq h\left(Y_{i}\right)$. Define N_{1}, N_{2} by:

$$
\begin{aligned}
& N_{1}=\sum_{i=1}^{n} I \quad\left[h\left(Y_{i}\right) \leq \frac{1}{p} h\left(Y_{i-1}\right)\right] \\
& N_{2}=\sum_{i=1}^{n} I\left[h\left(Y_{i}\right)>\frac{1}{p} h\left(Y_{i-1}\right)\right]
\end{aligned}
$$

Then we can write the following:

$$
[N>n] \subseteq[X>x] \cup\left[X \leq x, N_{1} \geq n-m, N>n\right] \cup\left[N_{2} \geq m, N>n\right]
$$

Now,

$$
P\left(X \leq x, N_{1} \geq n-m, N>n\right) \leq P\left(E_{1} \leq \frac{x h(0)}{p^{n-m}}\right) \leq \frac{x h(0)}{p^{n-m}}
$$

and

$$
P\left(N_{2} \geq m, N>n\right) \leq P\left(N>n \mid N_{2} \geq m\right) \leq\left(1-\frac{1}{p}\right)^{m} .
$$

This concludes the proof of the Lemma.
Part E. Consider Lemma 2.1, and take $x=x_{n}$ random, Independent of X and unlformly distrlbuted on $\left[\frac{n}{C h(0)}, \frac{n+1}{C h(0)}\right]$ where $C>0$ is a constant to be chosen further on. Take $m=m_{n}=\left\lceil\frac{n}{2}\right\rceil$, and take p constant and Independent of n. We will apply the formula

$$
E(N)=\sum_{n=0}^{\infty} P(N>n)
$$

and use Lemma 2.1, averaged over x_{n}. This ylelds an upper bound conslsting of three terms:
(1)

$$
\sum_{n=0}^{\infty} P\left(X>x_{n}\right)=\sum_{n=0}^{\infty} \int_{n}^{n+1} P(C h(0) X>t) d t
$$

$$
=\int_{0}^{\infty} P(C h(0) X>t) d t=E(C h(0) X)=C \mu
$$

(11)

$$
\sum_{n=0}^{\infty}\left(1-\frac{1}{p}\right)^{m_{n}}=1+2 \sum_{j=1}^{\infty}\left(1-\frac{1}{p}\right)^{j}=1+\frac{2\left(1-\frac{1}{p}\right)}{\frac{1}{p}}=2 p-1
$$

(III)

$$
\begin{aligned}
& \frac{1}{C} \sum_{n=0}^{\infty}\left(\int_{n}^{n+1} t d t\right) p^{-\left(n-m_{n}\right)}=\frac{1}{C} \sum_{n=0}^{\infty} \frac{2 n+1}{2} p^{-\left(n-m_{n}\right)} \\
& =\frac{2}{C} \sum_{n=0}^{\infty}(2 n+1) p^{-n} \\
& =\frac{2}{C}\left(\frac{1}{1-\frac{1}{p}}+2 \sum_{n=0}^{\infty} n p^{-n}\right) \\
& =\frac{2}{C}\left(\frac{1}{1-\frac{1}{p}}+\frac{2}{p} \frac{1}{\left(1-\frac{1}{p}\right)^{2}}\right) \\
& =\frac{2}{C} \frac{1+\frac{1}{p}}{\left(1-\frac{1}{p}\right)^{2}}
\end{aligned}
$$

These estimates are substituted in

$$
E(N) \leq 1+\sum_{n=1}^{\infty}\left(P\left(X>x_{n}\right)+\frac{h(0) x_{n}}{p^{n-m_{n}}}+\left(1-\frac{1}{p}\right)^{m_{n}}\right.
$$

This glves the upper bound

$$
E(N) \leq 1+C \mu-P\left(X>x_{0}\right)+2(p-1)+\frac{2}{C}\left(\frac{p(p+1)}{(p-1)^{2}}-\frac{1}{4}\right)
$$

Since $h(0) X$ is stochastically greater than an exponentlal random varlate, we have

$$
\begin{aligned}
& P\left(X>x_{0}\right)=\int_{0}^{1} P(C h(0) X>t) d t \geq \int_{0}^{1} e^{-\frac{t}{C}} d t \\
& =C \int_{0}^{\frac{1}{C}} e^{-z} d z=C\left(1-e^{-\frac{1}{C}}\right) \geq 1-\frac{1}{2 C} .
\end{aligned}
$$

Thus,

$$
E(N) \leq C \mu+2(p-1)+\frac{2}{C} \frac{p(p+1)}{(p-1)^{2}}
$$

The optimal cholce for C is

$$
C=\sqrt{\frac{2 p(p+1)}{\mu(p-1)^{2}}},
$$

which, after substitution, gives

$$
\begin{aligned}
& E(N) \leq 2(p-1)+\sqrt{8 \mu} \sqrt{\frac{p(p+1)}{(p-1)^{2}}} \\
& <2(p-1)+\sqrt{8 \mu} \frac{p+1}{p-1} \\
& =2(p-1)+\frac{2 \sqrt{8 \mu}}{p-1}+\sqrt{8 \mu} .
\end{aligned}
$$

The right-hand-side is minimal for $p-1=(8 \mu)^{\frac{1}{4}}$, and this cholce gives inequallty E.

Part F. In Lemma 2.1, replace n by $2 j$, and sum over j. Set $m_{2 j}=j$, $p_{2 j}=p>2$, and $\dot{h}(0) x_{2 j}=(p-1)^{j}$. Since for any random varlable Z,

$$
\sum_{j=0}^{\infty} P(Z>j) \leq 1+\int_{0}^{\infty} P(Z>t) d t=1+E\left(Z_{+}\right)
$$

we see that

$$
\begin{aligned}
& E(N) \leq 2 \sum_{j=0}^{\infty} P(N>2 j) \\
& \leq 2 \sum_{j=0}^{\infty}\left(P\left(h(0) X>(p-1)^{j}\right)+2\left(1-\frac{1}{p}\right)^{j}\right) \\
& =2 \sum_{j=0}^{\infty} P\left(\frac{\log _{+}(h(0) X)}{\log (p-1)}>j\right)+4 p \\
& \leq 2 E\left(\frac{\log _{+}(h(0) X)}{\log (p-1)}\right)+4 p+2 .
\end{aligned}
$$

Part G. Inequallty G follows from inequality F for the following cholce of p :

$$
p=2+\frac{\xi}{2 \log ^{2}(1+\xi)}
$$

Thls value was obtalned as follows: Inequality F is sharpest when p is plcked as the solution of $(p-1) \log ^{2}(p-1)=\frac{\xi}{2}$. But because we want $p>2$, and because we want a good p for large values of ξ, it is good to obtaln a rough solution by functlonal Iteration, and then adding 2 to this to make sur that the restrictions on p are satlsfled. Resubstltution ylelds:

$$
E(N) \leq i 0+\frac{2 \xi}{\log ^{2}(1+\xi)}+\frac{2 \xi}{\log \left(1+\frac{\xi}{2 \log ^{2}(1+\xi)}\right)}
$$

which is $O\left(\frac{\xi}{\log (\xi)}\right)$ as $\xi \rightarrow \infty$.
Part H. Use the bound of part G, and the fact that $\xi \leq \log (1+\mu)$. In fact, we have shown that

$$
E(N) \leq(2+o(1)) \frac{\log (\mu)}{\log \log (\mu)}
$$

as $\mu \rightarrow \infty$.

2.7. Exercises.

1. Sketch the hazard rate for the halfnormal density for $x>0$. Determine whether it is monotone, and show that $\lim _{x \uparrow \infty} \frac{h(x)}{x}=1$.
2. Give an efficient algorithm for the generation of random varlates from the left tall of the extreme value distribution truncated at $c<0$ (the extreme value distribution function before truncation is $e^{-e^{-x}}$). Hint: when E is exponentially distributed, then $\frac{1}{b} \log \left(1+b E e^{-a}\right)$ has hazard rate $h(x)=e^{a+b x}$ for $x>0, b>0$.
3. Show that when H is a cumulative hazard rate on $[0, \infty)$, then $\frac{H(x)}{x}$ is a hazard rate on $[0, \infty)$. Assume now that random varlates with cumulative hazard rate H are easy to generate. How would you generate random varlates with hazard rate $\frac{H(x)}{x}$?
4. Prove that $\frac{1}{x}$ cannot be a hazard rate on $[0, \infty)$.
5. Construct a hazard rate on $[0, \infty)$, continuous at all points except at $c>0$, having the additional propertles that $h(x)>0$ for all $x>0$, and that $\lim _{x \uparrow c} h(x)=\lim _{x \downarrow c} h(x)=\infty$.
6. In this exercise, we conslder a tlght fit for the thinning method: $M=\int(g-h)<\infty$. Show first that

$$
E(N) \leq 1+\int_{0}^{\infty}(g-h)
$$

Prove also that the probabllity that N is larger than $M e$ decreases very rapidly to 0 , by establlshing the inequality

$$
P(N \geq i) \leq e^{-M}\left(\frac{e M}{i}\right)^{i} \quad(i \geq M)
$$

To do this, start with $P(N \geq i) \leq e^{-t i} E\left(e^{t N}\right)$ where $t \geq 0$ is arbltrary (thls Is Jensen's Inequallty). Evaluate the expected value, bound this value by introducing M, and optimize with respect to t.
7. Consider the famlly of hazard rates $h_{b}(x)=\frac{x}{1+b x} \quad(x>0)$, where $b>0$ is a parameter. Dlscuss random varlate generation for thls family. The average tlme needed per random varlate should remain unlformly bounded over b.
8. Give an algorithm for the generation of random variates with hazard rate $h_{b}(x)=b+x \quad(x>0)$ where $b \geq 0$ is a parameter. Inversion of an exponenthal random varlate requires the evaluation of a square root, which is consldered a slow operation. Can you think of a potentlally faster method?
9. Develop a thinning algorithm for the family of gamma densities with parameter $a \geq 1$ which takes expected time unlformly bounded over a.
10. The hazard rate has inflnite peaks at all locations at which the density has Infinite peaks, plus possibly an extra infinite peak at ∞. Construct a monotone denslty f which is such that it oscillates infliftely often in the followIng extreme sense:

$$
\begin{aligned}
& \lim \sup _{x \uparrow \infty} h(x)=\infty ; \\
& \lim \operatorname{lnf}_{x \uparrow \infty} h(x)=0 .
\end{aligned}
$$

Notice that h is nelther DHR nor IHR.
11. If X is a random variate with hazard rate h, and ψ is a sultable smooth monotone transformation, give a formula for the hazard rate of $\psi(X)$ and conditions under which your formula is valld. See Gaver (1979) for several examples of such transformations.
12. Show that a mixture of $D H R$ distributions is again a DHR distribution (Barlow, Marshall and Proschan, 1983).
13. Show that for any DHR random varlable $X, \mu=E(h(0) X) \geq 1$.
14. Construct a DHR distribution for which the logarithmic moment $\xi=E\left(\log _{+}(h(0) X)\right)=\infty$.
15. For the Pareto famlly (density $f(x)=\frac{a}{(1+x)^{a+1}}, x>0$), find the rate of Increase of ξ, the logarlthmic moment, as $a \downarrow 0$ (the answer should be of the form: $\xi \sim$ simple expression Involving a).
10. Develop a black box method for DHR distributlons with $h(0)=\infty$.
17. Let the hazard rate h be plecewise constant with breakpoints at $0=x_{0}<x_{1}<x_{2}<\cdots$ and values h_{i} on $\left(x_{i-1}, x_{i}\right], i \geq 1$. Assume that these numbers are given in an infinite table. Describe the inversion algorithm. Determine the expected number of iterations as a function of the x_{i} 's and the h_{i} 's.
18. Show that for the dynamic thinning method for DHR distributions, $E(N) \leq 4+\sqrt{24 \mu}$, where $\mu=E(h(0) X)$ (Devroye, 1985).
19. This exercise is concerned with an improvement over inequalities $F-H$ in Theorem 2.4. Deflne the random varlable $Y=\log _{+}(h(0) X)$, and the quantity

$$
\chi=E\left(\frac{Y}{\log (1+Y)}\right)
$$

A. Show that $\chi<\infty$ implles $\xi<\infty$ (try to do this by establishing an inequality).
B. Show by example that there exists a density f for which $\chi<\infty$, yet $\xi=\infty$.
C. Find positive constants $a>0, b>0$ such that for the dynamic thinning method, $E(N) \leq a+b \chi$. Hint: in Lemma 2.1, choose
$p=p_{n}=\frac{n}{\log ^{3}(n+1)}$,
$m=m_{n}=\left[\frac{n}{\log (n+1)}\right]$, $x=x_{n}=\frac{1}{h(0)} e^{n \log n-4 n \log \log (n+1)} ;$ and use $E(N) \leq n_{0}+\sum_{n=n_{0}}^{\infty} P(N>n)$ for an approprlate n_{0} (Devroye, 1985).

3. GENERATING RANDOM VARIATES WITH A GIVEN DISCRETE HAZARD RATE.

3.1. Introduction.

Assume that we wish to generate a random variate with a given probabillty vector p_{1}, p_{2}, \ldots, and that the discrete hazard rate function $h_{n}, n=1,2, \ldots$ is glven, where

$$
\begin{aligned}
& h_{n}=\frac{p_{n}}{q_{n}} \\
& q_{n}=\sum_{i=n}^{\infty} p_{i}
\end{aligned}
$$

One verifles quickly that

$$
p_{n}=h_{n} \prod_{i<n}\left(1-h_{i}\right)
$$

In some applications, the orlginal probabllity vector of p_{n} 's has a more compllcated form than the discrete hazard rate function.

The general methods for random varlate generation in the continuous case have natural extensions here. As we will see, the role of the exponential distribution is inherited by the geometric distribution. In different sections, we will brlefly touch upon various technlques, whlle examples will be drawn from the classes of logarithmic serles distributions and negative binomial distributions. In general, if we have finite-valued random varlables that remain flxed throughout the simulation, table methods should be used. Thus, it seems approprlate to draw all the examples from classes of distributions with unbounded support.

3.2. The sequential test method.

The following method will be called the sequential test method. Although it is conceptually very slmple, it seems to have been formally proposed for the first tlme by Shanthikumar $(1983,1985)$.

Sequential test method

$$
X \leftarrow 0
$$

REPEAT
Generate a uniform [0,1] random variate U.
$X \leftarrow X+1$
UNTIL $U \leq h_{X}$
RETURN X

The valldity of this method follows directly from the fact that all h_{n} 's are numbers $\ln [0,1]$, and that

$$
p_{n}=h_{n} \prod_{i<n}\left(1-h_{i}\right)
$$

It is obvlous that the number of iterations needed here is equal to X. The strength of this method is that it is universally applicable, and that it can be used in the black box mode. When it is compared with the Inversion method for discrete random varlates, one should observe that in both cases the expected number of iterations is $E(X)$, but that in the inversion method, only one uniform random varlate is needed, versus one unlform random variate per iteration in the sequential test method. If h_{n} is computed in O (1) time and p_{n} is computed as the product of n factors involving h_{1}, \ldots, h_{n}, then the expected time of the Inversion method grows as $E\left(X^{2}\right)$. Fortunately, there is a slmple recursive formula for p_{n} :

$$
p_{n+1}=p_{n}\left(\frac{h_{n+1}}{h_{n}}\right)\left(1-h_{n}\right)
$$

Thus, if the p_{n} 's are computed recursively in thls manner, the Inversion method takes expected tlme proportional to $E(X)$, and the performance should be comparable to that of the sequentlal test method.

3.3. Hazard rates bounded away from 1.

Conslder the class of discrete hazard rates h_{n} with supremum $\rho<1$. Thls class will be called the class $H(p)$. For such hazard rates, the sequential test method can be accelerated by observing that we can Jump ahead more than 1 in each Iteration. To see this, assume that X is geometrically distributed with parameter p :

$$
P(X=n)=p(1-p)^{n-1} \quad(n \geq 1) .
$$

Then X has hazard rate $h_{n}=p$. But in that case the sequentlal test method counts the number of ild unlform $[0,1]$ random variates generated untll for the first time a number smaller than p is obtained. Thls is of course known to be geometrically distributed with parameter p. In this special case, the individual unlform random varlates can be avolded, because we can generate X directly by inversion of a uniform random varlate U as

$$
X \leftarrow\left\lceil\frac{-\log U}{-\log (1-p)}\right\rceil
$$

or as $X \leftarrow\left\lceil\frac{E}{-\log (1-p)}\right\rceil$, where E is an exponential random variate. For the limit case $p=1$, we have $X=1$ with probability one. The smaller p, the more dramatic the improvement. For non-geometric distributions, it is possible to glve an algorithm which parallels to some extent the thinning algorithm.

Thinning method for discrete distributions

NOTE: This algorithm is valid for hazard rates in $H(\rho)$ where $\rho \in(0,1]$ is a given number.
$X \leftarrow 0$
REPEAT
Generate iid unform $[0,1]$ random variates U, V.
$X \leftarrow X+\left\lceil\frac{\log U}{\log (1-\rho)}\right\rceil$
UNTIL $V \leq \frac{h_{X}}{\rho}$
RETURN X

This algorithm is due to Shanthlkumar $(1983,1985)$. We have to show that it is valld, and verlfy what the expected time complexity is.

Theorem 3.1. (Shanthikumar, 1983,1985)

The discrete thinning method generates a random variate with discrete hazard rate h_{n}.

Proof of Theorem 3.1.

Let G_{1}, G_{2}, \ldots be the sequence of 11 d geometric (p) random varlates used in the discrete thinning method. Let X be the returned random varlate. Thus, $X=G_{1}+\cdots+G_{N}$ where N is the number of iterations. Let us define the parthal sums $S_{n}=\sum_{i=1}^{n} G_{i}$. Thus, $X=S_{N}$. We compute the probabllity $P\left(S_{N}=n\right)$ from the following formula:

$$
\begin{aligned}
& P\left(X=n, N=k+1 ; S_{1}=n_{1}, \ldots, S_{r}=n_{k}\right) \\
& =h_{n} \rho^{k}(1-\rho)^{n-1-k} \prod_{i=1}^{k}\left(1-\frac{h_{n_{i}}}{\rho}\right) \quad(k \leq n-1) .
\end{aligned}
$$

This can be seen by Just computing individual probabllities of independent events. To obtaln $P(X=n)$, it suffices to sum over all possible values of k and n_{i}. We note now that the following multinomial expansion is valld:

$$
\begin{aligned}
& \prod_{i=1}^{n-1}\left(\rho\left(1-\frac{h_{i}}{\rho}\right)+1-\rho\right) \\
& =\sum_{k=0}^{n-1} \rho^{k}(1-\rho)^{n-1-k}\left(\sum_{1 \leq n_{1}<n_{2}<\cdots \leq n_{k} \leq n-1} \prod_{i=1}^{k}\left(1-\frac{h_{n_{i}}}{\rho}\right)\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& P(X=n)=\rho \frac{h_{n}}{\rho} \prod_{i=1}^{n-1}\left(\rho\left(1-\frac{h_{i}}{\rho}\right)+1-\rho\right) \\
& =h_{n} \prod_{i=1}^{n-1}\left(1-h_{i}\right) \quad(n=1,2, \ldots),
\end{aligned}
$$

which was to be shown.

If we use the algorithm with $\rho=1$ (which is always allowed), then the sequentlal test algorlthm is obtained. For some distributions, we are forced into thls situation. For example, when X has compact support, with $p_{n}>0, p_{n+i}=0$ for some n and all $i \geq 1$, then $h_{n}=1$. In any case, we have

Theorem 3.2.

For the discrete thinning algorithm, the expected number of iterations $E(N)$ can be computed as follows:

$$
E(N)=\rho E(X)
$$

Proof of Theorem 3.2.

We observe that in the notation of the proof of the prevlous theorem,

$$
X=\sum_{i=1}^{N} G_{i}
$$

so that by Wald's equation,

$$
E(X)=E(N) E\left(G_{1}\right)=E(N) \rho,
$$

which was to be shown.

Example 3.1. The logarithmic series distribution.
For the logarithmic serles distribution defined by

$$
P(X=n)=\frac{1}{-\log (1-\theta)} \frac{\theta^{n}}{n} \quad(n \geq 1)
$$

where $\theta \in(0,1)$ is a parameter, we observe that h_{n} is not easy to compute (thus, some preprocessing seems necessary for this distribution). However, several key properties of h_{n} can be obtained with little difficulty:
(1) $\frac{1}{h_{n}}=1+\frac{n \theta}{n+1}+\frac{n \theta^{2}}{n+2}+\cdots$;
(ii) $h_{n} \downarrow 1-\theta$ as $n \rightarrow \infty$;
(iii) $\rho=\sup _{n} h_{n}=h_{1}=\frac{\theta}{-\log (1-\theta)}$.

Thus, whlle the sequentlal method has $E(N)=E(X)=\frac{\rho}{1-\theta}$, the discrete thinning method satisfles

$$
E(N)=\rho E(X)=\frac{\rho^{2}}{1-\theta}
$$

Since $\rho \rightarrow 0$ as $\theta \rightarrow 1$, we see that the improvement in performance can be dramatic. Unfortunately, even with the thinning method, we do not obtaln an algorithm that is uniformly fast over all values of θ :

```
\operatorname{sup}}E(N)=
0\in(0,1)
```


3.4. Discrete dynamic thinning.

Shanthikumar (1983,1985) has also observed that for dlstributions with decreasing discrete hazard rate (also referred to below as DHR distributions) that the value of ρ can be dynamically modiffed to lncrease the jumps for the geometric random varlates, and thus increase the performance. The formal algorithm is glven below.

Dynamic thinning method for discrete DHR distributions

$X \leftarrow 0$
REPEAT
Generate iid uniform $[0,1]$ random variates U, V.
$\rho \leftarrow h_{X+1}$
$X \leftarrow X+\left\lceil\frac{\log U}{\log (1-\rho)}\right\rceil$
UNTIL $V \leq \frac{h_{X}}{\rho}$
RETURN X

The validity of thls algorithm follows by a short recurslve argument:

$$
\begin{aligned}
& P(X>n \mid X>n-1, \text { the last partial sum of geometric varlates } \\
& \quad \text { less than } n \text { takes the value } k) \\
& =\left(1-h_{k}\right)+h_{k}\left(1-\frac{h_{n}}{h_{k}}\right) \\
& =1-h_{n} .
\end{aligned}
$$

Thus, because thls does not depend upon k,

$$
\begin{aligned}
& P(X>n)=\left(1-h_{n}\right) P(X>n-1) \\
& =\prod_{i=1}^{n}\left(1-h_{i}\right)
\end{aligned}
$$

3.5. Exercises.

1. Prove the following for the logarithmic serles distribution with parameter $\theta \in(0,1)$:
(1) $\frac{1}{h_{n}}=1+\frac{n \theta}{n+1}+\frac{n \theta^{2}}{n+2}+\cdots$,
(i1) $h_{n} \downarrow 1-\theta$ as $n \rightarrow \infty$,
(iii) $E(X)=\frac{\theta}{-\log (1-\theta)} \frac{1}{1-\theta}$.
2. Assume that discrete dynamic thinning is used for a DHR distribution. Obtaln good upper bounds for $E(N)$ in terms of the size of the tall of the distributlon. Show also that for the logarithmic serles distribution the value of $E(N)$ is not uniformly bounded in $\theta \in(0,1)$, the parameter of the distributlon.
3. Show that in the discrete thinning algorithm, quick acceptance and rejection steps can be introduced that would effectively reduce the expected number of evaluations of h_{n}. Compute the expected number of such evaluations for two squeezing sequences.
4. A continuation of exercise 3. For the logarithmic series distribution with parameter θ, show that

$$
1-\theta \leq h_{n} \leq \frac{n(1-\theta)+1}{n+1} \quad(n \geq 1)
$$

Show that if these bounds are used for squeeze steps in the discrete dynamlc thinning method, then the expected number of evaluations of h_{n} is $o(1)$ as $\theta \uparrow 1$. (The inequallties are due to Shanthikumar (1983,1985).)
5. The negative binomial distribution. A random varlable Y has the negative blnomlal distribution with parameters (k, p) where $k \geq 1, p \in(0,1)$ If

$$
P(Y=n)=\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \quad(n \geq k)
$$

Then, the normallzed random variable $X=Y-k+1$ has a distribution on all positive integers. For this random varlable X, show that $h_{n} \uparrow p$ as $n \uparrow \infty$. (Hint: the relationshlp

$$
h_{n+1}=\left(\frac{n+k-1}{n}\right)\left(\frac{h_{n}}{1-h_{n}}\right)(1-p) \quad(n \geq 1)
$$

Is helpful.) Show that in the sequential test algorithm, $E(N)=\frac{k}{p}$, while in the discrete thinning algorithm (with $\rho=p$), we have $E(N)=k$. Compare thls algorlthm with the algorithm based upon the observation that Y is distrlbuted as the sum of k lid geometric (p) random varlates. Finally, show the squeeze type inequalities

$$
1-\frac{n+k-1}{n}(1-p) \leq h_{n} \leq p \quad(n \geq 1)
$$

6. Example 3.1 for the logarithmic serles distribution and the previous exerclse for the negative blnomlal distribution require the computation of h_{n}. This can be done by settIng up a table up to some large value. If the parameters of the distrlbutions change very often, this is not feasible. Show that we can compute the sequence of values recursively during the generation process by

$$
\begin{aligned}
& h_{1}=p_{1} \\
& h_{n+1}=\frac{p_{n+1}}{p_{n}} \frac{h_{n}}{1-h_{n}} .
\end{aligned}
$$

Chapter Seven UNIVERSAL METHODS

1. BLACK BOX PHILOSOPHY.

In the next two chapters we will apply the tools of the prevlous chapters in the design of algorithms that are appllcable to large familles of distributions. Described in terms of a common property, such as the famlly of all unimodal densltles with mode at 0 , these familles are generally speaking nonparametric in nature. A method that is applicable to such a large family is called a universal method. For example, the rejection method can be used for all bounded denslities on $[0,1]$, and is thus a unlversal method. But to actually apply the rejection method correctly and efficlently would require knowledge of the supremum of the density. This value cannot be estimated in a finite amount of time unless we have more information about the density in question, usually in the form of an explicit analytic deflnition. Unlversal methods which do not require anything beyond what is glven in the definition of the famlly are called black box methods.

Consider for example all discrete distrlbutions on the positive Integers. Assume only that for each i we can evaluate p_{i} (consider this evaluation as belng performed by a black box). Then the sequentlal inversion method (section III.2) can be used to generate a random variate with this distribution, and can thus be called a black box method for this family. The inversion method for distrlbutions with a continuous distribution function is not a black box method because finite time generation is only possible in special cases (e.g., the distrlbution function is plecewise linear).

The larger the famlly for whlch we design a black box method, the less we should expect from the algorithm timewlse: a case in point is the sequential inverslon method for discrete random varlates. The undenlable advantage of having a few black box methods in one's computer llbrary is that one can always fall back on these when everything else falls. Comparative timings with algorlthms speclally designed for particular distributions are not falr.

In chapters IX and X we will mainly be concerned with fast algorithms for parametric familles that are widely used by the statistical community. In this chapter too, we will be concerned with speed, but it is by no means the driving force. Because continuous distrlbutions are more difflcult to handle in general, we
will only focus on famllies with densitles. In section 2, we present a case study for the class of log-concave densities, to wet the appetite. Since the whole story In black box methods is told in terms of Inequallites when the rejection method is involved, it is important to show how standard probabillty theoretical inequalities can ald in the design of black box algorlthms. This is done in section 3. In section 4, the inversion-rejection princlple is presented, which comblnes the sequentlal inverslon method for discrete random varlates with the rejection method. It is demonstrated there that thls method can be used for the generation of random varlables with a unimodal or monotone density.

2. LOG-CONCAVE DENSITIES.

2.1. Definition.

A density f on R^{d} is called log-concave when $\log f$ is concave on its support. In this section we will obtaln universal methods for this class of densitles when $d=1$. The class of densities is very important in statistics. A partial list of member densitles is given in the table below.

Name of density	Density	Parameter(s)
Normal	$\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$	
Gamma (a)	$\frac{x^{a-1} e^{-x}}{\Gamma(a)}(x>0)$	$a>1$
Weibull (a)	$\frac{a x^{a-1} e^{-x^{a}}(x>0)}{}$	
Beta (a, b)	$\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)}(0 \leq x \leq 1)$	$a \geq 1$
Exponential power (a)	$\frac{\left.e^{-\mid x}\right\|^{a}}{2 \Gamma\left(1+\frac{1}{a}\right)}$	$a \geq 1$
Perks (a)	$\frac{c}{e^{x}+e^{-x}+a}$	$a>-2$
Logistic	same as above, $a=2$	
Hyperbolic secant	same as above, $a=0$	
Extreme value (k)	$\frac{k^{k}}{(k-1)!} e^{-k x-k e-x}$	$k \geq 1$, integer
Generalized inverse gaussian	$c x^{a-1} e^{-b x-\frac{b *}{x}}(x \geq 0)$	$a \geq 1, b, b *>0$

Important individual members of this family also include the unlform density (as a spectal case of the beta family), and the exponential density (as a speclal case of the gamma family). For studles on the less known members, see for example Perks (1932) (for the Perks densitles), Talacko (1858) (for the hyperbollc secant denslty), Gumbel (1958) (for the extreme value distributlons) and Jorgensen (1982) (for the generallzed inverse gaussian densities).

The family of log-concave densitles on R is also important to the mathematIcal statisticlan because of a few key propertles involving closedness under certain
operations: for example, the class is closed under convolutions (Ibraglmov (1956), Lekkerkerker (1953)).

The algorithms of this section are based upon refection. They are of the black box type for all log-concave densities with mode at 0 (note that all logconcave densitles are bounded and have a mode, that is, a point x such that f is nonincreasing on $[x, \infty)$ and nondecreasing on ($-\infty, x$]). Thus, the mode must be glven to us beforehand. Because of this, we will mainly concentrate on the class $L C_{0,1}$, the class of all log-concave densitles with a mode at 0 and $f(0)=1$. The restriction $f(0)=1$ is not cruclal: since $f(0)$ can be computed at run-time, we can always rescale the axls after having computed. $f(0)$ so that the value of $f(0)$ after rescaling is 1 . We deflne $L C_{0}$ as the class of all log-concave densitles with a mode at 0 .

The bottom line of this section is that there is a rejection-based black box method for $L C_{0}$ which takes expected time unlformly bourided over thls class if the computation of f at any polnt and for any f takes one unlt of time. The algorithm can be implemented in about ten lines of FORTRAN or PASCAL code. The fundamental inequallty needed to achleve this is developed in the next sub-section. All of the results in thls section were first published in Devroye (1984).

2.2. Inequalities for log-concave densities.

Theorem 2.1.

Assume that f is a log-concave density on $[0, \infty)$ with a mode at 0 , and that $f(0)=1$. Then $f(x) \leq g(x)$ where

$$
g(x)=\left\{\begin{array}{l}
1 \quad(0 \leq x \leq 1) \\
\text { the unlque solution } t<1 \text { of } t=e^{-x(1-t)} \quad(x>1)
\end{array}\right.
$$

The inequallty cannot be improved because g is the supremum of all densities in the family.

Furthermore, for any log-concave density f on $[0, \infty)$ with mode at 0 ,

$$
\int_{x}^{\infty} f \leq e^{-x f(0)} \quad(x \geq 0)
$$

Proof of Theorem 2.1.

We need only consider the case $x>1$. The density f in the given class which ylelds the maximal value of $f(x)$ when $x>1$ is fixed is glven by

$$
\log f(u)=\left\{\begin{array}{lc}
-a u & (0 \leq u \leq x) \\
-\infty & (x<u)
\end{array}\right.
$$

for some $a>0$. Thus, $f(u)=e^{-a u}, 0 \leq u \leq x$. Here a is chosen for the sake of normallzation. We must have

$$
1=\frac{1-e^{-a x}}{a}
$$

Replace $1-a$ by t.
The second part of the theorem follows by a simllar geometrical argument. First fix $x>0$. Then notice that the tall probabllity beyond x is maximal for the exponentlal density, which because of normallzation must be of the form $f(0) e^{-y f(0)}, y \geq 0$. The tall probabllity is $e^{-x f(0)}$.

Theorem 2.2.

The function g of Theorem 2.1 can be bounded by two sequences of functlons $y_{n}(x), z_{n}(x)$ for $x>1$, where
(1) $0=z_{0}(x) \leq z_{1}(x) \leq \cdots \leq g(x) ;$
(II) $g(x) \leq \cdots \leq y_{1}(x) \leq y_{0}(x)=\frac{1}{x}$;
(III) $\lim _{n \rightarrow \infty} y_{n}(x)=g(x)$;
(iv) $\lim _{n \rightarrow \infty} z_{n}(x)=g(x)$;
(v) $y_{n+1}(x)=e^{-x\left(1-y_{n}(x)\right)}$;
(vl) $z_{n+1}(x)=e^{-x\left(1-z_{n}(x)\right)}$.

Proof of Theorem 2.2.

Flx $x>1$. Consider the functions $f_{1}(u)=u$ and $f_{2}(u)=e^{-x(1-u)}$ for $0 \leq u \leq 1 . \quad$ We have $\quad f_{1}(1)=f_{2}(1)=1 \quad, \quad f^{\prime}{ }_{2}(1)=x>1=f^{\prime}{ }_{1}(1)$, $f^{\prime}{ }_{2}(0)=x e^{-x}<1=f^{\prime}{ }_{1}(0)$. Also, f_{2} is convex and Increases from e^{-x} at $u=0$ to 1 at $u=1$. Thus, there exists preclsely one solution $\ln (0,1)$ for the equation $f_{1}(u)=f_{2}(u)$. Thls solution can be obtalned by ordinary functional iteration: if one starts with $z_{0}(x)=0$, and uses $z_{n+1}(x)=f_{2}\left(z_{n}(x)\right)$, then the unique solution Is approached from below in a monotone manner. If we start with $y_{0}(x)$ at least equal to the value of the solution, then the functional iteration $y_{n+1}(x)=f_{2}\left(y_{n}(x)\right)$ can be used to approach the solution from above in a
monotone way. Since $f(x) \leq \frac{1}{x}$ for all monotone densittes f on $[0, \infty)$, we have $g(x) \leq \frac{1}{x}$, and thus, we can take $y_{0}(x)=\frac{1}{x}$.

When f is a log-concave density on (m, ∞) with mode at m, then

$$
\frac{f\left(m+\frac{x}{f(m)}\right)}{f(m)} \leq \min \left(1, e^{1-x}\right) \quad(x \geq 0)
$$

The area under the bounding curve is exactly 2 . The Inequality applies to all logconcave densitles with mode at m (in which case the condition $x>0$ must be dropped and $1-x$ is replaced by $1-|x|)$. But unfortunately, the area under the dominating curve becomes 4. The two features that make the inequality useful for us are
(1) The fact that the area under the curve does not depend upon f. (Thls glves us a unlform guarantee about lts performance.)
(II) The fact that the top curve itself does not depend upon f. (This is a necessary condition for a true black box method.)

2.3. A black box algorithm.

Let us start with the refection algorithm based upon the inequallty

$$
\frac{f\left(m+\frac{x}{f(m)}\right)}{f(m)} \leq \min \left(1, e^{1-x}\right) \quad(x \geq 0)
$$

valld for log-concave densitles on $[m, \infty)$ with mode at m :

Rejection algorithm for log-concave densities

[SET-UP](can be omitted)
$c \leftarrow f(m)$
[GENERATOR]
REPEAT
Generate U uniformly on $[0,2]$ and V uniformly on $[0,1]$.
IF $U \leq 1$

$$
\operatorname{THEN}(X, Z) \leftarrow(U, V)
$$

$\operatorname{ELSE}(X, Z) \leftarrow(1-\log (U-1), V(U-1))$

$$
X \leftarrow m+\frac{X}{c}
$$

UNTIL $Z \leq \frac{f(X)}{c}$
RETURN X

The valldity of this algorithm is quickly verlfled: just note that the random vector (X, Z) generated in the middle section of the algorithm is unlformly distrlbuted under the curve $m \ln \left(1, e^{1-x}\right) \quad(x \geq 0)$. Because of the excellent properties of the algorithm, it is worth pointing out how we can proceed when f is logconcave with support on both sldes of the mode m. It sufflces to add a random slgn to X just after (X, Z) is generated. We should note here that we pay rather heavily for the presence of two talls because the rejection constant becomes 4. A quick fix-up is not possible because of the fact that the sum of two log-concave functions is not necessarlly log-concave. Thus, we cannot "add" the left portion of f to the right portion sultably mirrored and apply the given algorithm to the sum. However, when f is symmetrlc about the mode m, it is possible to keep the rejection constant at 2 by replacing the statement $X \leftarrow m+\frac{X}{c}$ by $X \leftarrow m+\frac{S X}{2 c}$ where S is a random sign.

Let us conclude this section of algorithms with an exponential version of the previous method which should be fast when exponential random varlates can be generated cheaply and if the computation of $\log (f)$ can be done efflciently (in most cases, $\log (f)$ can be computed faster than f).

Rejection method for log-concave densities. Exponential version

```
[SET-UP](can be omitted)
\(c \leftarrow f(m), r \leftarrow \log c\)
[GENERATOR]
REPEAT
    Generate \(U\) uniformly on \([0,2]\). Generate an exponential random variate \(E\).
    IF \(U \leq 1\)
        THEN \((X, Z) \leftarrow(U,-E)\)
        \(\operatorname{ELSE}(X, Z) \leftarrow(1+E *,-E-E *)(E *\) is a new exponential random varlate)
        CASE
        \(f\) log-concave on \((m, \infty): X \leftarrow m+\frac{X}{c}\)
        \(f\) log-concave on \((-\infty, \infty)\) :
            Generate a random sign \(S\).
            CASE
                \(f\) symmetric: \(X \leftarrow m+\frac{S X}{2 c}\)
                \(f\) not known to be symmetric: \(X \leftarrow m+\frac{S X}{c}\)
```

UNTIL $Z \leq \log f(X)-r$
RETURN X

One of the practical stumbllng blocks is that often most of the time spent in the computation of $f(X)$ is spent computing a compllcated normallzation factor. When f is glven analytically, it can be sidestepped by setting up a subprogram for the computation of the ratio $f(x) / f(m)$ slnce this is all that is needed in the algorithms. For example, for the generallzed inverse gaussian distribution, the normallzation constant has several factors Including the value of the Bessel functhon of the third kind. The factors cancel out in $f(x) / f(m)$. Note however that we cannot entirely lgnore the lissue since $f(m)$ is needed in the computation of X. Because m is fixed, we call this a set-up step.

2.4. The optimal rejection algorithm.

In this section, we assume that f is in $L C_{0,1}$. The optimal rejection algorithm uses the best possible uniform bounding curve, that is, the function g of Theorem 2.1. The problem is that g is only defined implicitly. Nevertheless, it is possible to generate random varlates with density $g / \int g$ without great difficulty:

Theorem 2.3.

Let E_{1}, E_{2}, U, D be independent random variables with the following distributions: E_{1}, E_{2} are exponentially distributed, U is unlformly distributed on $[0,1]$ and D is integer-valued with $P(D=n)=6 /\left(\pi^{2} n^{2}\right), n \geq 1$. Then

$$
(X, Y)=\left(U \frac{\left(E_{1}+E_{2}\right) / D}{1-e^{-\left(E_{1}+E_{2}\right) / D}}, e^{-\left(E_{1}+E_{2}\right) / D}\right)
$$

Is uniformly distributed in $\{(x, y): x \geq 0,0 \leq y \leq g(x)\}$ where g is defined in Theorem 2.1. In particular, X has density $g / \int g$ and Y is distributed as $V g(X)$ where V is a uniform $[0,1]$ random variable independent of X.

Proof of Theorem 2.3.

Fllp the axes around, and observe that the desired Y should have density proportlonal to $-\log (y) /(1-y), 0 \leq y \leq 1$, and that X should be distrlbuted as $U(-\log (Y) /(1-Y))$ where U is independent of Y. By the transformation $y=e^{-z}, Y=e^{-Z}$, we see that Z has density proportional to

$$
\begin{aligned}
& \frac{z e^{-z}}{1-e^{-z}}=\sum_{n=0}^{\infty} z e^{-(n+1) z} \\
& =\frac{\pi^{2}}{8}\left(\sum_{n=1}^{\infty}\left(n^{2} z e^{-n z}\right)\left(\frac{6}{\pi^{2} n^{2}}\right)\right) \quad(z \geq 0)
\end{aligned}
$$

I.e., Z is distributed as $\left(E_{1}+E_{2}\right) / D$ (since $E_{1}+E_{2}$ has density $z e^{-z}, z \geq 0$). Thus, the couple ($\left.U Z /\left(1-e^{-Z}\right)\right), e^{-Z}$) has the correct unlform distribution.

In the proof of Theorem 2.3, we have also shown that

$$
\int g=\frac{\pi^{2}}{6} \approx 1.8433
$$

This is about 18% better than for the algorithms of the prevlous section. The algorithm based upon Theorem 2.3 is as follows:

Optimal rejection algorithm for log-concave densities
[NOTE: $f \in L C_{0,1}$]
REPEAT
Generate a uniform $[0,1]$ random variate U.
Generate iid exponential random variates E_{1}, E_{2}. Set $E \leftarrow E_{1}+E_{2}$.
Generate a discrete random variate D with $P(D=n)=6 /\left(\pi^{2} n^{2}\right), n \geq 1$.
$Z \leftarrow \frac{E}{D}$
$Y \leftarrow e^{-Z}, X \leftarrow \frac{U Z}{1-Y}$
UNTLL $Y \leq f(X)$
RETURN X

For the generation of D, we could use yet another rejection method such as:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{1}{2}$

$$
\text { THEN } D \leftarrow 1
$$

ELSE $D \leftarrow\lceil 1 /(2(1-U))\rceil$
UNTIL $D V \geq 1$
RETURN D

If D is generated as suggested, we have a rejection constant of $\frac{12}{\pi^{2}}$. When used In the former algorlthm, this will offset the 18% galn so palnstakingly obtalned. Since the D generator does not vary with f, it should preferably be implemented based upon a combination of the allas method and a rejection method for the tall of the distribution.

2.5. The mirror principle.

Conslder now a normallzed log-concave f with two talls, $m=0$, and $f(0)=1$. In thls case, the original algorithms have a rejection constant equal to 4. However, there are two observatlons of Richard Brent which will considerably improve the performance. The first observation is that if $p=F(m)$ is known (F is the distribution function), then the rejection constant can be reduced to 2 again. This is based upon the following inequality:

Theorem 2.4.

If f is a \log-concave density with mode $m=0$ and $f(0)=1$, then, writing p for $F(0)$, we have

$$
f(x) \leq \begin{cases}\min \left(1, e^{1-\frac{|x|}{1-p}}\right) & (x \geq 0) \\ \min \left(1, e^{1-\frac{|x|}{p}}\right) & (x<0)\end{cases}
$$

The area under the bounding curve is 2 .

Proof of Theorem 2.4.

Note that $\frac{f(x)}{1-p}$ is a log-concave density on $(0, \infty)$, and that $\frac{f(x)}{p}$ is a log-concave density on $(-\infty, 0)$. Since $f(x(1-p))$ is log-concave on $(0, \infty)$, we have

$$
f(x(1-p)) \leq \min \left(1, e^{1-x}\right) \quad(x \geq 0)
$$

The Inequallty and the statement about the area follow without further work.

The detalls of the rejection algorlthm based upon Theorem 2.4 are left as an exercise. Brent's second observation applies to the case that $F(m)$ is not avallable. The expected number of tterations in the rejection algorithm can be reduced to between 2.64 and 2.75 at the expense of an Increased number of computations of f.

Theorem 2.5.

Let f be a log-concave density on R with mode at 0 and $f(0)=1$. Then, for $x>0$,

$$
\begin{aligned}
& f(x)+f(-x) \leq g(x)=\sup _{p \in(0,1)}\left(\operatorname{mln}\left(1, e^{1-\frac{x}{1-p}}\right)+\operatorname{mln}\left(1, e^{1-\frac{x}{p}}\right)\right) \\
& = \begin{cases}2 & \left(0 \leq x \leq \frac{1}{2}\right) \\
1+e^{2-\frac{1}{1-x}} \quad\left(\frac{1}{2} \leq x \leq 1\right) \\
e^{1-x} & (x \geq 1)\end{cases}
\end{aligned}
$$

Furthermore,

$$
\int g=\frac{5}{2}+\frac{1}{4} \int_{0}^{\infty} \frac{e^{-u}}{\left(1+\frac{u}{2}\right)^{2}} d u<\frac{5}{2}+\frac{1}{4} \int_{0}^{\infty} \frac{e^{-u}}{1+u} d u \approx 2.8491
$$

Define another function $g *$ where $g *=g$ except on $\left(\frac{1}{2}, 1\right)$, where $g *$ is linear with values $g *\left(\frac{1}{2}\right)=2, g *(1)=1$. Then $g * \geq g$ and $\int g *=\frac{11}{4}$.

Proof of Theorem 2.5.

Let us write once again $p=F(0)$. The first inequallty follows directly from Theorem 2.4. We will first rewrite g as $\sup h_{p}(x)$ where $h_{p}(x)$ is defined by

$$
\left\{\begin{array}{l}
2 \quad(x \leq p) \\
1+e^{1-\frac{x}{p}} \quad(p \leq x \leq 1-p) \\
e^{1-\frac{x}{p}}+e^{1-\frac{x}{1-p}} \quad(1-p \leq x<\infty)
\end{array}\right.
$$

To prove the maln statement of Theorem 2.5, we flrst show that g is at least equal to the right-hand-side of the maln equation. For $x \leq \frac{1}{2}$, we have $h_{1 / 2}(x)=2$. For $\frac{1}{2} \leq x \leq 1$, observe that $h_{1-x}(x)=1+e^{2-1 /(1-x)}$. Finally, for $x \geq 1$, we have $h_{0}(x)=e^{1-x}$. We now show that g is at most equal to the right-handside of the main equation. To do this, decompose h_{p} as $h_{p_{1}}+h_{p_{2}}+h_{p_{3}}$ where $h_{p 1}=h_{p} I_{[0, p]}, \quad h_{p_{2}}=h_{p} I_{(p, 1-p)}, \quad h_{p 3}=h_{p} I_{[1-p, \infty)} . \quad$ Clearly, $h_{p 1} \leq g$ for all $p \leq \frac{1}{2}, x \geq 0$. Since $(p, 1-p) \subseteq[0,1]$, we have $h_{p_{2}} \leq g$ for all $p \leq \frac{1}{2}, x \geq 0$. It suffices
to show that $h_{p 3} \leq e^{1-x}$ for all $x \geq 1, p \leq \frac{1}{2}$. This follows if for all such p,

$$
e^{-\frac{1}{p}}+e^{-\frac{1}{1-p}} \leq \frac{1}{e}
$$

because this would Imply, for $x \geq 1$,

$$
\begin{aligned}
& e\left(\left(e^{-\frac{1}{p}}\right)+\left(e^{-\frac{1}{1-p}}\right)\right) \\
& \left.\leq e e^{-\frac{1}{p}}+e^{-\frac{1}{1-p}}\right)^{x} \\
& \leq e^{1-x}
\end{aligned}
$$

Putting $u=\frac{1-p}{p}$, we have

$$
e\left(e^{-\frac{1}{p}}+e^{-\frac{1}{1-p}}\right)=e^{-u}+e^{-\frac{1}{u}}
$$

The last function has equal maxima at $u=0$ and $u \uparrow \infty$, and a minlmum at $u=1$. The maximal value is 1 and the minimal value is $\frac{2}{e}$. This concludes the proof of the main equation in the theorem.

Next, $\int g$ is

$$
\frac{5}{2}+e^{2} \int_{\frac{1}{2}}^{1} e^{-\frac{1}{1-x}} d x=\frac{5}{2}+\frac{1}{4} \int_{0}^{\infty}\left(1+\frac{u}{2}\right)^{-2} e^{-u} d u
$$

where we used the transformation $u=\frac{1}{1-x}-2$. The rest follows easlly. For example, a formula for the exponentlal integral is used at one polnt (Abramowltz and Stegun, 1970, p. 231). The last statement of the theorem is a direct consequence of the fact that $h_{p 2}$ Is convex on $\left[\frac{1}{2}, 1\right]$.

We conclude this section by mentioning the algorlthm derlved from Theorem 2.5. It requires on the average 2.75 lterations and 5.5 evaluations of f per random varlate. It should be used only when the number of unlform random varlates per generated random varlate must be kept reasonable.

Rejection method for log-concave densities on the real line
[NOTE]
We assume that f has a mode at 0 and that $f(0)=1$. Otherwise, use a linear transformation to enforce this condition.
[GENERATOR]
REPEAT
Generate iid uniform $[0,1]$ random variates U, V, W.
IF $U \leq \frac{4}{11}$
THEN $(X, Y) \leftarrow\left(\frac{W}{2}, 2 V\right)$
ELSE IF $U \leq \frac{7}{11}$
THEN
Generate a uniform $[0,1]$ random variate W^{*}.
$(X, Y) \leftarrow\left(\frac{1}{2}+\frac{1}{2} \min \left(W, 2 W^{*}\right), V(1+2(1-X))\right)$
$\operatorname{ELSE}(X, Y) \leftarrow(1-\log (W), V W)$
UNTIL $Y \leq f(X)+f(-X)$
Generate a uniform [0,1] random variate Z (this can be done by reuse of the unused portion of U).

$$
\begin{aligned}
& \text { IF } Z \leq \frac{f(X)}{f(X)+f(-X)} \\
& \text { THEN RETURN } X \\
& \text { ELSE RETURN }-X
\end{aligned}
$$

2.6. Non-universal rejection methods.

The universal rejection algorithm developed in the previous sections is suboptimal for individual log-concave densitles in the following sense: one can flnd dominating curves which consist of a constant function around the mode and two exponentlal tails and have at the same time a smaller integral than that of the dominating curves for the unlversal method. The improvements are indivldual, because for each density we require additional Information about the density not normally avallable in the black box model. The resulting algorithms are comparable with the ratlo-of-unlforms method, where the exponentlal talls are replaced with quadratic talls. Slnce log-concave densltles have sub-exponential talls, the fit will often be much better than with the ratio-of-uniforms method. More importantly, we can give a very elegant recipe for finding the optimal
dominating curve which is valid for all log-concave densities.
By log-concavity, we know that $h=\log (f)$ can be majorized by the derlvatlve of h at any point (the derivative belng considered as a line). This corresponds to fittlng an exponentlal curve over f. The problem we have is that of finding points $m+a \geq m$ and $m-b \leq m$ (where m is the mode of f) such that the area under

$$
\begin{gathered}
g(x)=\min \left(f(m), f(m+a) e^{(x-(m+a)) h^{\prime}(m+a)},\right. \\
\left.f(m-b) e^{(x-(m-b)) h^{\prime}(m-b)}\right)
\end{gathered}
$$

Is minlmal. We will formally allow $h^{\prime}(m+a)=-\infty$ and $h^{\prime}(m-b)=+\infty$. In those cases, the corresponding terms in the definition of g are elther ∞ or 0 . This distinction is important for compact support densities where a or b point at the extremal point in the support of f. We can offer the following general princlple for finding a and b.

Theorem 2.6.

Let f be decomposed as $f_{r}+f_{l}$ where f_{r}, f_{l} refer to the parts of of f to the right and left of the mode respectively. The inverses of f_{r} and f_{l} are welldeflned when evaluated at a point strictly between 0 and $f(m)$. (In case of a continuous f_{r}, there is no problem. If f_{r} has a discontinulty at y, then we know that $f_{r}(x)>0$ for $x<y$ and $f_{r}(x)=0$ for $x>y$. In that case, the inverse, If necessary, is forced to be y.)

The area under g is minimal when

$$
\begin{aligned}
& m+a=f_{\tau}^{-1}\left(\frac{f(m)}{e}\right) \\
& m-b=f_{l}^{-1}\left(\frac{f(m)}{e}\right)
\end{aligned}
$$

The minimal area is given by

$$
f(m)(a+b)
$$

Furthermore, the minimal area does not exceed $\frac{2 e}{e-1}$, and can be as small as 1. When $\ln g$ we use values of $m+a$ and $m-b$ further away from the mode than those given above, the area under g is bounded from above by $f(m)(a+b)$.

Proof of Theorem 2.6.

We will prove the theorem for a monotone density f on (m, ∞) only. The full theorem then follows by a simple combination of antlsymmetric results. We begin thus witi the inequallty

$$
g(x)=\min \left(f(m), f(m+a) e^{(x-(m+a)) h^{\prime}(m+a)}\right)
$$

The cross-over point between the top curves is at a point z between m and $m+a$:

$$
z=m+a+\frac{1}{h^{\prime}(m+a)} \log \left(\frac{f(m)}{f(m+a)}\right)
$$

The area under the curve g to the right of m is given by

$$
\begin{aligned}
& f(m)(z-m)+\int_{z}^{\infty} f(m+a) e^{(x-a) h^{\prime}(m+a)} d x \\
& =f(m)(z-m)+\frac{f(m+a)}{-h^{\prime}(m+a)} e^{(z-(m+a)) h^{\prime}(m+a)} \\
& =f(m)\left(z-m-\frac{1}{h^{\prime}(m+a)}\right) \\
& =f(m)\left(a+\frac{1}{h^{\prime}(m+a)}(h(m)-h(m+a)-1)\right)
\end{aligned}
$$

The derivative of this expression with respect to a is

$$
\frac{f(m) h^{\prime \prime}(m+a)(1+h(m+a)-h(m))}{h^{\prime 2}(m+a)}
$$

which is zero for $h(m+a)=h(m)-1$, i.e. $f(m+a)=\frac{f(m)}{e}$. Note also that $h^{\prime \prime}(m+a) \leq 0$, and thus that the derlvative is nonpositive for values of $m+a$ smaller than thls threshold value, and that it is nonnegative for larger values of $m+a$, so that we do indeed have a global minimum for the area under g. At the suggested value of $m+a$, the area ls given by $a f(m)$. For $m+a$ larger than the suggested value, the area is bounded from above by af (m), since $h^{\prime}(m+a) \leq 0$, $h(m)-h(m+a)-1 \geq 0$.

To obtain a distribution-free upper bound for the area $a f(m)$ when a is optlmally chosen, we use the Inequality of Theorem 2.1. If we use the upper bound on f given there, and set it equal to $\frac{1}{e}$, then the solution is a number greater than $a f(m)$. But that solution is $\frac{e}{e-1}$. Thus, for the optimal a, af $(m) \leq \frac{e}{e-1}$.

Theorem 2.8 is important. If a lot is known about the density in question, good rejection algorlthms can be obtained. Several examples will be given below. If we want to bound f from above by a combination of pleces of exponential functions, then the area can be reduced even further although, as we will see from the examples glven below, the reduction is often hardly worth the extra effort since the rejection constant is already good to begin with.

The formal algorithm is as follows:

Rejection with two exponential tails touching at $m-b$ and $m+a$

[SET-UP]

m is the mode; $a, b \geq 0$ are assumed given.
$\lambda_{r} \leftarrow-1 / h^{\prime}(m+a), \lambda_{l} \leftarrow 1 / h^{\prime}(m-b)$ (where $h=\log (f)$).
$f_{m}-f(m)$
$a * \leftarrow a+\lambda_{r} \log \left(\frac{f(m+a)}{f_{m}}\right), b * \leftarrow b+\lambda_{l} \log \left(\frac{f(m-b)}{f_{m}}\right) .(m+a *$ and $m-b *$ are the thresholdsk)
Compute the mixture probabilities: $s \leftarrow \lambda_{l}+\lambda_{r}+a *+b *, \quad p_{l} \leftarrow \lambda_{l} / s, \quad p_{r} \leftarrow \lambda_{r} / s$, $p_{m} \leftarrow(a *+b *) / s$.
[GENERATOR]
REPEAT
Generate id uniform $[0,1]$ random varlates U, V.
IF $U \leq p_{\dot{m}}$ THEN
Generate a uniform $[0,1]$ random variate Y (which can be done as $\left.Y \leftarrow U / p_{m}\right)$.
$X \leftarrow m-b^{*}+Y(a *+b *)$
Accept $\leftarrow\left[V f_{m} \leq f(X)\right]$
ELSE IF $p_{m}<U \leq p_{m}+p_{r}$ THEN
Generate an exponential random varlate E (which can be done as $\left.E \leftarrow-\log \left(\frac{U-p_{m}}{p_{r}}\right)\right)$.
$X-m+a *+\lambda_{r} E$
Accept $\leftarrow\left[V f_{m} e^{-(X-(m+a *)) / \lambda_{+}} \leq f(X)\right]$ (which is equivalent to Accept $\leftarrow\left[\dot{V} f_{m} e^{-E} \leq f(X)\right]$, or to Accept $\left.\leftarrow\left[V f_{m} \frac{U-p_{m}}{p_{r}} \leq f(X)\right]\right)$
ELSE

$$
\begin{aligned}
& \text { Generate an exponential random variate } E \quad \text { (which can be done as } \\
& \left.E \leftarrow-\log \left(\frac{U-\left(p_{m}+p_{r}\right)}{1-p_{m}-p_{r}}\right)\right) \text {. } \\
& X \leftarrow m-b *-\lambda_{l} E \\
& \text { Accept }-\left[V f_{m} e^{(X-(m-b *)) / \lambda_{1}} \leq f(X)\right] \quad \text { (which is equivalent to Accept } \\
& \left.\leftarrow\left[V f_{m} e^{-E} \leq f(X)\right] \text {, or to Accept } \leftarrow\left[V f_{m} \frac{U-\left(p_{m}+p_{r}\right)}{1-p_{m}-p_{r}} \leq f(X)\right]\right)
\end{aligned}
$$

UNTIL Accept
RETURN X

In most implementations, this algorithm can be considerably simpllfled. For one thing, the set-up step can be integrated in the algorithm. When the density is
monotone or symmetric unimodal, other obvious simplifications are possible.

Example 2.1. The exponential power distribution (EPD).

The EPD density with parameter $r>0$ is

$$
f(x)=\left(2 \Gamma\left(1+\frac{1}{\tau}\right)\right)^{-1} e^{-|x|^{\tau}}
$$

Generation for this density has been dealt with in Example IV.6.1, by transformations of gamma random variables. For $\tau \geq 1$, the density is log-concave. The values of a, b in the optimal rejection algorithm are easily found in this case: $a=b=1$. Before glving the detalls of the algorithm, observe that the rejection constant, the area under the dominating curve, is $f(0)(a+b)$, which is equal to $1 / \Gamma\left(1+\frac{1}{\tau}\right)$. As a function of τ, the rejection constant is a unimodal function with value 1 at the extremes $\tau=1$ (the Laplace density) and $\tau \uparrow \infty$ (the unlform $[-1,1]$ denslty), and peak at $\tau=\frac{1}{0.4616321449 \ldots . .}$. At the peak, the value is $\frac{1}{0.8856031944 \ldots .}$ (see e.g. Abramowltz and Stegun (1970, p. 259)). Thus, untformly over all $r \geq 1$, the refection rate is extremely good. For the important case of the normal denslty ($\tau=2$) we obtaln a value of $1 / \Gamma\left(\frac{3}{2}\right)=\sqrt{\frac{4}{\pi}}$. The algorithm can be summarized as follows:

REPEAT

Generate a uniform $[0,1]$ random variate U and an exponential random variate $E *$. IF $U \leq 1-\frac{1}{\tau}$ THEN
$X \leftarrow U$ (note that X is uniform on $\left.\left[0,1-\frac{1}{\tau}\right]\right)$
Accept $\leftarrow\left[|X|^{\top} \leq E *\right]$
ELSE
Generate an exponential random variate E (which can be done as $E \leftarrow-\log (\pi(1-U)))$.
$X-1-\frac{1}{\tau}+\frac{1}{\tau} E$
Accept $\leftarrow\left[|X|^{r} \leq E+E *\right]$
UNTLL Accept
RETURN $S X$ where S is a random sign.

The reader will have llttle dlfflculty verlfylng the validity of the algorithm. Consider the monotone density on $[0, \infty)$ glven by $\left(\Gamma\left(1+\frac{1}{\tau}\right)\right)^{-1} e^{-x^{5}}$. Thus, with $m=0, a=1, h^{\prime}(1)=-\tau$, we obtaln $a *=1-\frac{1}{\tau}$. Since we know that $|X|^{\tau}$ is distributed as a gamma ($\frac{1}{\tau}$) random varlable, it is easily seen that we have at the same time a good generator for gamma random varlates with parameter less than one. For the sake of easy reference, we glve the algorlthm in full:

Gamma generator with parameter a less than one

REPEAT

Generate a uniform $[0,1]$ random variate U and an exponential random variate $E *$. IF $U \leq 1-a$ THEN
$X \leftarrow U^{\frac{1}{a}}$ (note that U is uniform on $[0,1-a]$)
Accept $\leftarrow\left[|X| \leq E^{*}\right]$
ELSE
Generate an exponential random variate E (which can be done as $\left.E \leftarrow-\log \left(\frac{1-U}{a}\right)\right)$.
$X \leftarrow(1-a+a E)^{\frac{1}{a}}$
Accept $\leftarrow[|X| \leq E+E *]$
UNTIL Accept
RETURN X

Example 2.2. Complicated densities.

For more complicated densitles, the equation $f(x)=f(m) / e$ can be difficult to solve explicitly. It is always possible to take the pessimlstlc, or minimax, approach, by setting a and b both equal to $\frac{e}{(e-1) f(m)}$. In some cases, b can be set equal to 0 . In the set-up of the algorithm, it is still necessary to evaluate the derlvative of $\log (f)$ at the points $m+a, m-b$, but this can be done explicltly when f is given in analytic form. This approach can be automated for the beta and generallzed inverse gausslan distributlons, for example. When $m+a$ or $m-b$ fall outslde the support of f, one should consider one-talled dominating curves with the constant section truncated at the relevant extremal point of the support. For the beta density for example, this leads to an algorithm which resembles in many respects algorithm B2PE of Schmelser and Babu (1980).

Example 2.3. Algorithm B2PE (Schmeiser and Babu, 1980) for beta random variates.

In 1980, Schmelser and Babu proposed a highly efflclent algorthm for generating beta random varlates with parameters a and b when both parameters are at least one. Recall that for these values of the parameters, the beta density Is log-concave. Schmelser and Babu partition the interval $[0,1]$ into three intervals: In the center interval, around the mode $m=\frac{a-1}{a+b-2}$, they use as domInating function a constant function $f(m)$. In the tall intervals, they use exponentlal dominating curves that touch the graph of f at the breakpoints. At the breakpoints, Schmelser and Babu have a discontinulty. Nevertheless, analysis similar to that carrled out in Theorem 2.8 can be used to obtain the optimal placement of the breakpolnts. Schmelser and Babu suggest placing the breakpoints at the inflection points of the density, if they exist. The inflection points are at

$$
\max (m-\sigma, 0)
$$

and

$$
\min (m+\sigma, 1)
$$

where $\sigma=\sqrt{\frac{m(1-m)}{a+b-3}}$ if $a+b>3$ and $\sigma=\infty$ otherwise. Two inflection polnts exist on $[0,1]$ when $m-\sigma$ and $m+\sigma$ both take values in [0,1$]$. In that case, the area under the dominating curve is easily seen to be equal to

$$
\begin{aligned}
& 2 \sigma f(m)+f(m)\left(\frac{1}{\left|h^{\prime}(m-\sigma)\right|}+\frac{1}{\left|h^{\prime}(m+\sigma)\right|}\right) \\
& =f(m)\left(2 \sigma+\frac{1}{\sigma(a+b-2)}((m+\sigma)(1-m-\sigma)+(m-\sigma)(1-m+\sigma))\right) \\
& =f(m)\left(2 \sigma+\frac{1}{\sigma(a+b-2)} 2 m(1-m)\left(1-\frac{1}{a+b-3}\right)\right) \\
& =f(m)\left(2 \sigma+2 \sqrt{\frac{m(1-m)}{a+b-3}}\right) \\
& =4 f(m) \sigma .
\end{aligned}
$$

Thus, we have the interesting result that the probabillty mass under the exponentlal talls equals that under the constant center plece. One or both of the talls could be missing. In those cases, one or both of the contributions $f(m) \sigma$ needs to be replaced by $f(m) m$ or $f(m)(1-m)$. Thus, $4 f(m) \sigma$ is a conservative upper bound which can be used in all cases. It can be shown (see exercises) that as $a, b \rightarrow \infty, 4 f(m) \sigma \rightarrow \sqrt{\frac{8}{\pi}}$. Furthermore, a Ilttle additional analysis shows that the expected area under the dominating curve is unfformly bounded over all values of $a, b \geq 1$. Even though the fit is far from perfect, the algorithm can be made very fast by the Judiclous use of the squeeze princlple. Another acceleration trick proposed by Schmelser and Babu (algorlthm B4PE) conslsts of partitioning [0,1] into 5 intervals instead of 3 , with a linear dominating curve
added In the new lntervals.

Algorithm B2PE for beta (a,b) random variates
[SET-UP]
$m \leftarrow \frac{a-1}{a+b-2}$
IF $a+b>3$ THEN $\sigma \leftarrow \sqrt{\frac{m(1-m)}{a+b-3}}$
IF $a<2$
THEN $x \leftarrow 0, p \leftarrow 0$
ELSE

$$
\begin{aligned}
& x \leftarrow m-\sigma \\
& \lambda \leftarrow \frac{a-1}{x}-\frac{b-1}{1-x} \\
& v \leftarrow e^{(a-1) \log \left(\frac{x}{a-1}\right)+(b-1) \log \left(\frac{1-x}{b-1}\right)+(a+b-2) \log (a+b-2)} \\
& p \leftarrow \frac{v}{\lambda}
\end{aligned}
$$

Now, x is the left breakpoint, p the probability under the left exponential tail, λ the exponential parameter, and v the value of the normalized density f at x.
IF $b<2$
THEN $y \leftarrow 1, q \leftarrow 0$
ELSE

$$
\begin{aligned}
& y \leftarrow m+\sigma \\
& \mu \leftarrow \frac{a-1}{y}+\frac{b-1}{1-y} \\
& w \leftarrow e^{(a-1) \log \left(\frac{y}{a-1}\right)+(b-1) \log \left(\frac{1-y}{b-1}\right)+(a+b-2) \log (a+b-2)} \\
& q \leftarrow \frac{w}{\mu}
\end{aligned}
$$

Now, y is the left breakpoint, q the probability under the left exponential tail, μ the exponential parameter, and w the value of the normalized density f at y.

[GENERATOR]

REPEAT

Generate id uniform $[0,1]$ random variates U, V. Set $U \leftarrow U(p+q+y-x)$.
CASE

$$
\begin{aligned}
& U \leq y-x: \\
& X \leftarrow x+U(X \text { is uniformly distributed on }[x, y]) \\
& \text { IF } X<m \\
& \quad \text { THEN Accept } \leftarrow\left[V \leq v+\frac{(X-x)(1-v)}{m-x}\right] \\
& \quad \text { ELSE Accept } \leftarrow\left[V \leq w+\frac{(y-X)(1-w)}{y-m}\right] \\
& y-x<U \leq y-x+p: \\
& U \leftarrow \frac{U-(y-x)}{p} \text { (create a new uniform random variate) } \\
& X \leftarrow x+\frac{1}{\lambda} \log (U)(X \text { is exponentially distributed) } \\
& \text { Accept } \leftarrow\left[V \leq \frac{\lambda(X-x)+1}{U}\right] \\
& V \leftarrow V U v \text { (create a new uniform random variate) } \\
& y-x+p \leq U: \\
& U \leftarrow \frac{U-(y-x+p)}{q} \text { (create a new uniform random variate) } \\
& X \leftarrow y-\frac{1}{\mu} \log (U)(X \text { is exponentially distributed) } \\
& \text { Accept } \leftarrow\left[V \leq \frac{\mu(y-X)+1}{U}\right] \\
& V \leftarrow V U w \text { (create a new uniform random variate) }
\end{aligned}
$$

IF NOT Accept THEN
$T \leftarrow \log (V)$
IF $T>-2(a+b-2)(X-m)^{2}$
THEN

$$
\text { Accept } \leftarrow\left[T \leq(a-1) \log \left(\frac{X}{a-1}\right)+(b-1) \log \left(\frac{1-X}{b-1}\right)+(a+b-2) \log (a+b-2)\right]
$$

UNTL Accept
RETURN X

The algorithm can be Improved in many ways. For example, many constants can be computed in the set-up step, and quick rejection steps can be added when X falls outside $[0,1]$. Note also the presence of another quick rejection step, based upon the following inequallty:

$$
\log \left(\frac{f(x)}{f(m)}\right) \leq-2(a+b-2)(x-m)^{2}
$$

The quick rejection step is useful in situations Just llke this, l.e. when the fit is not very good.

Example 2.4. Tails of log-concave densities.

When f is log-concave, and a random varlate from the right tall of f, truncated at $t>m$ where m is the mode of f, is needed, one can always use the exponentlal majorizing function:

$$
f(x) \leq f(t) e^{\frac{f^{\prime}(t)}{f(t)}(x-t)} \quad(x \geq t)
$$

The first systematic use of these exponentlal talls can be found in Schmelser (1980). The expected number of iterations in the refection algorithm is

$$
\frac{f^{2}(t)}{\left|f^{\prime}(t)\right| \int_{t}^{\infty} f}
$$

2.7. Exercises.

1. The Pearson IV density. The Pearson IV density on R has two parameters, $m>\frac{1}{2}$ and $s \in R$, and is given by

$$
f(x)=\frac{c}{\left(1+x^{2}\right)^{m}} e^{-s \arctan x}
$$

Here c is a normallzation constant. For $s=0$ we obtain the t denslty. Show the following:
A. If X is Pearson IV (m, s), and $m \geq 1$, then $\operatorname{arc} \tan (X)$ has a \log concave density

$$
g(x)=c \cos ^{2(m-1)}(x) e^{-s x} \quad\left(|x| \leq \frac{\pi}{2}\right)
$$

B. The mode of g occurs at $\arctan \left(-\frac{s}{2(m-1)}\right)$.
C. Glve the complete rejection algorithm (exponential version) for the distribution. For the symmetric case of the t density, glve the detalls of the rejection algorlthm with rejection constant 2.
D. Find a formula for the computation of c.
2. Prove that a mixture of two log-concave denslties is not necessarly logconcave.
3. Glve the detalls of the rejection algorithm that is based upon the Inequallty of Theorem 2.4.
4. Log-concave densities can also occur in R^{d}. For example, the multivarlate normal density is log-concave. The closure under convolutions also holds in R^{d} (Davidovic et al., 1969), and marginals of log-concave densities are agaln log-concave (Prekopa, 1873). Unfortunately, it is useless to try to look for a generallzation of the inequalitles of this section to R^{d} with $d \geq 2$ because of the following fact which you are asked to show: the supremum over all logconcave densitles with mode at 0 and $f(0)=1$ is the constant function 1.
5. To speed up the algorlthms of thls section at the expense of preprocessing, we can compute the normalized log-concave density at $n>1$ carefully selected points, and use rejection (perhaps comblned with squeezing) with a dominating curve consisting of several pleces. Can you give a universal reclpe for locating the points of measurement so that the rejection constant is guaranteed to be smaller than a function of n only, and thls function of n tends to 1 as $n \rightarrow \infty$? Make sure that random varlate generation from the dominating density is not difficult, and provide the detalls of your algorithm.
8. This is about the area under the dominating curve in algorithm B2PE (Schmelser and Babu, 1980) for beta random varlate generation (Example 2.3). Assume throughout that $a, b \geq 1$.
(1) $\sigma \leq m$ if and only if $a \geq 2, \sigma \leq 1-m$ if and only if $b \geq 2$. (Thus, for $a, b \geq 2$, the area under the dominating curve is precisely $4 f(m) \sigma$.)
(ii) $\lim _{a, b \rightarrow \infty} 4 f(m) \sigma=\sqrt{\frac{8}{\pi}}$. Use Stirling's approximation.
(III) The area under the dominating curve is unlformly bounded over all $a, b \geq 1$. Use sharp inequalities for the gamma function to bound $f(m)$. Consider 3 cases: both $a, b \geq 2$, one of a, b is ≥ 2, and one is <2, and both a, b are <2. Try to obtaln as good a unlform bound as possible.
(iv) Prove the quick rejection Inequallty used in the algorithm:

$$
\log \left(\frac{f(x)}{f(m)}\right) \leq-2(a+b-2)(x-m)^{2}
$$

3. INEQUALITIES FOR DENSITIES.

3.1. Motivation.

The prevlous section has shown us the utility of upper bounds in the development of universal methods or black box methods. The strategy is to obtaln upper bounds for denslties in a large class which
(1) have a small Integral;
(11) are defined in terms of quantitles that are elther computable or present in the definitlon of the class.
For the log-concave densitles with mode at 0 we have for example obtalned an upper bound in section VII. 2 with integral 4, which requires knowledge of the position of the mode (this is in the defnition of the class), and of the value of $f(0)$ (thls can be computed). In general, quantities that are known could include:
A. A unlform upper bound for f (called M);
B. The r-th moment μ_{r};
C. The value of a functional $\int f^{\alpha}$;
D. A Llpschitz constant;
E. A uniform bound for the s-th derivative;
F. The entlre moment generating function $M(t), t \in R$;
G. The entlre distribution function $F(x), x \in R$;
H. The support of f.

When this information is combined in varlous ways, a multitude of useful domInating curves can be obtained. The goodness of a dominating curve is measured in terms of its integral and the ease with which random variates with a density proportlonal to the dominating curve can be generated. We show by example how some inequallties can be obtained.

3.2. Bounds for unimodal densities.

Let us start with the class of monotone densities on $[0,1]$ which are bounded by M. Note that if M is unknown, it can easlly be computed as $f(0)$. Thus, the only true restriction is that we must know that f vanishes off $[0,1]$. The trivial Inequality

$$
f(x) \leq M I_{[0,1]}(x)
$$

is not very useful, since the integral under the dominating curve is M. There are several ways to Increase the efficlency:

1. Use a table method by evaluating in a set-up step the value of f at many polnts. Basically, the dominating curve is plecewise constant and hugs the curve of f much better. These methods are very fast but the need for extra storage (usually growing with M) and an additlonal preprocessing step makes this approach somehow different. It should not be compared with
methods not requiring these extra costs. It wlll be developed systematically in chapter VIII.
2. Use as much information as possible to improve the bound. For example, in the inequallty $f(x) \leq M$, the monotoniclty is not used.
3. Ask the user if he has additlonal knowledge in the form of moments, quantlles, functlonals and the llke. Then construct good dominating curves.
We will illustrate approaches 2 and 3. For all monotone densities, the following is true:

Theorem 3.1.

For all monotone densities f on $[0, \infty)$,

$$
f(x) \leq \frac{1}{x}
$$

If f is also convex, then

$$
f(x) \leq \frac{1}{2 x}
$$

Proof of Theorem 3.1.

Flx $x>0$. Then, by monotonlcity,

$$
x f(x) \leq \int_{0}^{x} f(y) d y \leq 1
$$

When f is also convex, we can in fact use a geometrical argument: if we wish to find the convex f for which $f(x)$ is maximal, it suffices to consider only triangles. This class is the class of all densitles $2 a(1-a x)_{+}, 0 \leq x \leq \frac{1}{a}$. Thus, we find a for which $f(x)$ is maximal. Setting the derivative with respect to a equal to 0 glves the equation $1-a x-a x=0$, l.e. $a=\frac{1}{2 x}$. Resubstitution gives the bound. \square

The bounds of Theorem 3.1 cannot be Improved In the sense that for every x, there exists a monotone (or monotone and convex) f for which the upper bound is attalned. If we return now to the class of monotone densities on $[0,1]$ bounded by M, we see that the following Inequallty can be used:

$$
f(x) \leq \min \left(M, \frac{1}{x}\right) I_{\{0,1]}(x) .
$$

The area under the dominating curve is $1+\log (M)$. Clearly, this is always less than M. In most appllcations the improvement in computer time obtalnable by using the last inequality is noticeable if not spectacular. Let us therefore take a
moment to glve the detalls of the corresponding rejection algorlthm. The domInating density for rejection is

$$
g(x)=\frac{1}{1+\log (M)} \min \left(M, \frac{1}{x}\right) I_{[0,1]}(x) .
$$

It has distribution function

$$
\begin{cases}\frac{M x}{1+\log (M)} & , 0 \leq x \leq \frac{1}{M} \\ \frac{1+\log (M x)}{1+\log (M)} & , \frac{1}{M} \leq x \leq 1\end{cases}
$$

Using Inversion for generation from g, we obtain

Rejection algorithm for monotone densities on [0,1] bounded by M

REPEAT

Generate lid uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{1}{1+\log (M)}$
THEN

$$
\begin{aligned}
& X \leftarrow \frac{U}{M}(1+\log (M)) \\
& \text { IF } V M \leq f(X) \text { THEN RETURN } X
\end{aligned}
$$

ElSE

$$
\begin{aligned}
& X \leftharpoondown \frac{1}{M} e^{U(1+\log (M))-1} \\
& \text { IF } V \leq X f(X) \text { THEN RETURN } X
\end{aligned}
$$

UNTIL False

When f is also convex, we can use the inequality

$$
f(x) \leq c g(x)
$$

where

$$
g(x)=\frac{2}{1+\log (2 M)} \min \left(M, \frac{1}{2 x}\right) I_{[0,1]}(x)
$$

It has distribution function

$$
\begin{cases}\frac{2 M x}{1+\log (2 M)} & , 0 \leq x \leq \frac{1}{2 M} \\ \frac{1+\log (2 M x)}{1+\log (2 M)} & , \frac{1}{2 M} \leq x \leq 1\end{cases}
$$

Using Inverslon for generation from g, we obtaln

Rejection algorithm for monotone convex densities on [0,1] bounded by M REPEAT

Generate iid uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{1}{1+\log (2 M)}$ THEN

$$
X \leftarrow \frac{U}{2 M}(1+\log (2 M))
$$

IF $V M \leq f(X)$ THEN RETURN X
ELSE
$X \leftarrow \frac{1}{2 M} e^{U(1+\log (2 M))-1}$
IF $V \leq 2 X f(X)$ THEN RETURN X

UNTIL False

The expected number of iterations now is $\frac{1+\log (2 M)}{2}$, which is for large M roughly speaking half of the expected number of lteratlons for the nonconvex cases.

The function $\frac{1}{x}$ is not integrable on $[1, \infty)$, so that Theorem 3.1 is useless for handling infinite talls of monotone densitles. We have to tuck the talls under some integrable function, yet uniformly over all monotone densitles we cannot get anything better than $\frac{1}{x}$. Thus, additlonal information is required.

Theorem 3.2.

Let f be a monotone density on $[0, \infty)$.
A. If $\int x^{r} f(x) d x \leq \mu_{r}<\infty$ where $r>0$, then

$$
f(x) \leq \frac{(r+1) \mu_{r}}{x^{r+1}} \quad(x>0)
$$

B. In any case, for all $0<\alpha \leq 1$,

$$
f(x) \leq \frac{\left(\int f^{\alpha}\right)^{\frac{1}{\alpha}}}{x^{\frac{1}{\alpha}}} \quad(x>0)
$$

Proof of Theorem 3.2.

For part A we proceed as follows:

$$
\mu_{r} \geq \int_{0}^{x} y^{r} f(y) d y \geq \frac{f(x) x^{r+1}}{r+1}
$$

For part B, we use the trivial observation

$$
x f^{\alpha}(x) \leq \int f^{\alpha}
$$

For monotone densitles on $[0, \infty)$, bounded by $M=f(0)$, Theorem 3.2 provides us with bounds of the form

$$
f(x) \leq \min \left(M, \frac{A}{x^{a}}\right) \quad(x>0)
$$

where we can take (A, a) as follows:

Information	A	a
$\int x^{r} f(x) d x \leq \mu_{r}<\infty$	$(r+1) \mu_{r}$	$r+1$
$\left(\int f^{\alpha}\right)^{\frac{1}{\alpha}} \leq \nu_{\alpha}<\infty$	ν_{α}	$\frac{1}{\alpha}$

In all cases, the area under the dominating curve is

$$
\frac{a}{a-1} A^{\frac{1}{a}} M^{\frac{a-1}{a}} .
$$

Furthermore, random varlate generation for the dominating density can be done quite easlly via the inversion method or the inverse-of-f method (section N.6.3):

Theorem 3.3.

Let g be the density on $[0, \infty)$ proportional to $\min \left(M, \frac{A}{x^{a}}\right)$ where $M>0, A>0, a>1$ are parameters. Then the following random variables X have density g :
A. $\quad X=\left(\frac{A}{M}\right)^{\frac{1}{a}} \frac{U}{V^{a-1}}$ where U, V are ind uniform $[0,1]$ random varlates.
B. Let $x *$ be $\left(\frac{A}{M}\right)^{\frac{1}{a}}$ and let U be unlform on $[0,1]$. Then $X \leftarrow \frac{a}{a-1} U x *$ if

$$
U \leq \frac{a-1}{a}, \text { and } X \leftarrow \frac{x *}{(a U-(a-1))^{\frac{1}{a-1}}} \text { else. }
$$

Proof of Theorem 3.3.

By the Inverse-of-f method (section $\mathrm{N} . \theta \cdot 3$), it suffices to note that a random varlate with monotone denslty f can be obtalned as $U f^{-1}(Y)$ where Y has density f^{-1}. It is easy to see that for monotone g not necessarlly integrating to one, $U g^{-1}(Y)$ has density proportional to g if Y has density proportional to g^{-1}. In our case, $g^{-1}(y)=\left(\frac{A}{y}\right)^{\frac{1}{a}} \quad, 0 \leq y \leq M$. To generate Y with density proportional to this, we apply the inversion method. Verify that $M V^{\frac{a}{a-1}}$ has distribution function $\left(\frac{y}{M}\right)^{1-\frac{1}{a}}$ on $[0, M]$, which yields a density proportional to g^{-1}. Plugging this Y back into $U g^{-1}(Y)$ proves part A.

Part B is obtalnable by stralghtforward inversion. Note that $x *$ is the breakpoint where $M=\frac{A}{x^{a}}$, that $\int_{0}^{x *} g=M x^{*}$, and that $\int_{x *}^{\infty} g=\frac{A}{a-1} x^{-(a-1)}$. The sum of the two areas is

$$
A^{\frac{1}{a}} M^{1-\frac{1}{a}}\left(1+\frac{1}{a-1}\right)
$$

Thus, with probabllity $\frac{a-1}{a}, X$ is distributed unlformly on $[0, x *]$, and with the complementary probability, X is distributed as $\frac{x^{*}}{V^{\frac{1}{a-1}}}$ where V is uniformly distributed on $[0,1]$ (the latter random varlable has density decreasing as x^{-a} on $(x *, \infty)$). The unfform random varlates needed here can be recovered from the uniform random variate U used in the comparison with $\frac{a-1}{a}$: given that $U \leq \frac{a-1}{a}, U \frac{a}{a-1}$ is again uniform. Given that $U>\frac{a-1}{a}, a U-(a-1)$ is in turn
unlformly distributed on $[0,1]$.

For the sake of completeness, we will now glve the rejection algorithm for generating random variates with density f based upon the Inequallity

$$
f(x) \leq \min \left(M, \frac{A}{x^{a}}\right) \quad(x \geq 0)
$$

Rejection method based upon part A of Theorem 3.3

REPEAT

Generate iid unform $[0,1]$ random variates U, V.

$$
\begin{aligned}
& Y \leftarrow M V^{\frac{a}{a-1}} \\
& X \leftarrow U\left(\frac{A}{Y}\right)^{\frac{1}{a}}
\end{aligned}
$$

UNTIL $Y \leq f(X)$
RETURN X

The valldity of this algorithm is based upon the fact that $\left(Y, U g^{-1}(Y)\right)=(Y, X)$ is unlformly distributed under the curve of g^{-1}. By swapping coordinate axes, we see that (X, Y) is uniformly distributed under g, and can thus be used in the rejection method. Note that the power operation is unavoldable. Based upon part B, we can use rejection with fewer powers.

Rejection method based upon part B of Theorem 3.3.

REPEAT

Generate ild uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{a-1}{a}$
THEN

$$
X-\frac{a}{a-1} U x *
$$

IF $V M \leq f(X)$ THEN RETURN X
ELSE

$$
\begin{aligned}
& X-x *(a U-(a-1))^{-\frac{1}{a-1}} \\
& \text { IF } V A \leq X^{a} f(X) \text { THEN RETURN } X
\end{aligned}
$$

UNTIL False

For both Implementations, the expected number of computations of f is equal to the expected number of iterations,

$$
E(N)=\frac{a}{a-1} A^{\frac{1}{a}} M^{\frac{a-1}{a}}
$$

It is instructlve to analyze this measure of the performance in more detall. Conslder the moment version for example, where $A=(r+1) \mu_{r}, a=r+1$ and μ_{r} is the r-th moment of the monotone density. We have

Theorem 3.4.

Let $E(N), M, r, A, a, \mu_{r}$ be as deflned above. Then for all monotone densltles on $[0, \infty)$,

$$
E(N) \geq 1+\frac{1}{r}
$$

For all monotone densitles that are concave on their support,

$$
E(N) \leq 2\left(1+\frac{1}{r}\right)(r+2)^{-\frac{1}{r+1}} \leq 2\left(1+\frac{1}{r}\right)
$$

Finally, for all monotone log-concave densitles,

$$
E(N) \leq\left(1+\frac{1}{r}\right)(\Gamma(r+2))^{\frac{1}{r+1}} \sim \frac{r+1}{e}(\text { as } r \rightarrow \infty)
$$

Proof of Theorem 3.4.

We start from the expression

$$
E(N)=\left(1+\frac{1}{r}\right)\left((r+1) M^{r} \mu_{r}\right)^{\frac{1}{r+1}}
$$

The product $M \mu_{r}$ is scale invarlant, so that we can take $M=1$ without loss of generallty. For all such bounded densitles, we have $1-F(x) \geq(1-x)_{+}$. Thus,

$$
\begin{aligned}
& \mu_{r}=\int_{0}^{\infty} x^{r} f(x) d x=\int_{0}^{\infty} r x^{r-1}(1-F(x)) d x \\
& \geq \int_{0}^{1} r x^{r-1}(1-x) d x \\
& =1-\frac{r}{r+1}=\frac{1}{r+1}
\end{aligned}
$$

This proves the first part of the theorem. Note that we have impllcitly used the fact that every random varlable with a density bounded by 1 on $[0, \infty)$ is stochastlcally larger than a unlform $[0,1]$ random variate.

For the second part, we use the fact that all random variables with a monotone concave density satisfying $f(0)=M=1$ are stochastically smaller than a random variable with denslty $\left(1-\frac{x}{2}\right)_{+}$(exercise 3.1). Thus, for this density,

$$
\mu_{r}=\int_{0}^{2} x^{r}\left(1-\frac{x}{2}\right) d x=2^{r=1}\left(\frac{1}{r+1}-\frac{1}{r+2}\right)=\frac{2^{r+1}}{(r+1)(r+2)} .
$$

Resubstitution gives us part B for concave densitles. Finally, for log-concave densitles we need the fact that $f(0) X$ is stochastically smaller than an exponential random varlate. Thus, in particutar,

$$
M^{\tau} \mu_{r} \leq \int_{0}^{\infty} y^{\tau} e^{-y} d y=\Gamma(r+1)
$$

This proves the last part of the theorem.

A brief discussion of Theorem 3.4 is in order here. Flrst of all, the Inequallthes are quite inefliclent when r is near 0 in view of the lower bound $E(N) \geq 1+\frac{1}{r}$. What is important here is that for important subclasses of monotone densitles, the performance is unlformly bounded provided that we know the r-th moment of the density in case. For example, for the log-concave densitles,
we have the following values for the upper bound for $E(N)$:

r	$E(N) \leq$	Approximate value
1	$\frac{4}{\sqrt{3}}$	$2.3094 \ldots$
2	$\frac{3}{4^{\frac{1}{3}}}$	$1.88988 \ldots$
3	$\frac{8}{85^{\frac{1}{4}}}$	$1.7833 \ldots$
4	$\frac{5}{\frac{5}{\frac{1}{5}}}$	$1.7470 \ldots$
5	$\frac{12}{\frac{12}{\frac{1}{6}}}$	$1.7352 \ldots$
6	$\frac{7}{78^{\frac{1}{7}}}$	$1.73366 \ldots$
7	$\frac{16}{79^{\frac{1}{8}}}$	$1.7367 \ldots$
$\uparrow \infty$	$\dagger 2$	

The upper bound is minimal for r near 6 . The algorithm is guaranteed to perform at its best when the slxth moment is known. In the exerclses, we will develop a sllghtly better Inequallty for concave monotone densitles. One of the features of the present method is that we do not need any information about the support of f - such information would be required if ordinary rejection from a uniform density is used. Unfortunately, very few Important densitles are concave on their support, and often we do not know whether a density is concave or not.

The family of log-concave densitles is more Important. The upper bound for $E(N)$ in Theorem 3.4 has acceptable values for the usual values of r :

r	$E(N) \leq$	Approximate value
1	$\sqrt{8}$	$2.82 \ldots$
2	$\frac{3}{2} 6^{\frac{1}{3}}$	$2.7256 \ldots$
3	$\frac{4}{3} 24^{\frac{1}{4}}$	$2.9511 \ldots$
$\dagger \infty$	$\dagger \infty$	

In this case, the optimal Integer value of r is 2 . Note that if μ_{r} is not known, but is replaced in the algorithm and the analysls by its upper bound $\frac{\Gamma(r+1)}{M^{r}}$, then both the algorithm and the performance analysis of Theorem 3.4 remaln valld. In that case, we obtaln a black box method for all log-concave densitles on $[0, \infty)$ with mode at 0 , as in the previous section. For $r=2$, the expected number of Iterations (about 2.72) is about 36% larger than the algorithm of the previous sectlon which was spectally developed for log-concave densitles only.

3.3. Densities satisfying a Lipschitz condition.

We say that a function f is Lipschitz (C) when

$$
\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|} \leq C
$$

When f is absolutely continuous with a.e. derivative f^{\prime}, then we can take $C=\sup \left|f^{\prime}\right|$. Unfortunately, some important functions are not Llpschitz, such as \sqrt{x}. However, many of these functions are Lipschitz of order α : formally, we say that f is Lipschitz of order α with constant C (and we write $f \in \operatorname{Lip} p_{\alpha}(C)$) when

$$
\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq C
$$

Here $\alpha \in(0,1]$ is a constant. It can be shown (exercise 3.6) that the classes $\operatorname{Lip}_{\alpha}(C)$ for $\alpha>1$ contain no densities. The fundamental inequality for the Lipschitz classes is given below:

Theorem 3.5.

When f is a density in $\operatorname{Lip} \alpha_{\alpha}(C)$ for some $C>0, \alpha \in(0,1]$, then

$$
f(x) \leq\left(\min (F(x), 1-F(x)) \frac{\alpha+1}{\alpha} C^{\frac{1}{\alpha}}\right)^{\frac{\alpha}{\alpha+1}}
$$

Here F is the distribution function for f. In particular, for $\alpha=1$, we have

$$
f(x) \leq \sqrt{2 C \min (F(x), 1-F(x))}
$$

Proof of Theorem 3.5.

FIx x, and define $y=\int(x)$. Then fix $z>x$. We clearly have

$$
f(z) \geq f(x)-C(z-x)^{\alpha}
$$

The density f which ylelds the maximal value for $f(x)$ is equal to the lower bound for $f(z)$ given above. It vanlshes beyond

$$
z^{*}=x+\left(\frac{f(x)}{C}\right)^{\frac{1}{\alpha}}
$$

By Integration of the prevlous Inequality we have

$$
\begin{aligned}
& 1-F(x) \geq \int_{x}^{z *}\left(f(x)-C(z-x)^{\alpha}\right) d z \\
& =f(x)\left(z^{*}-x\right)-\frac{C\left(z^{*}-x\right)^{\alpha+1}}{\alpha+1} \\
& =f(x)\left(\frac{f(x)}{C}\right)^{\frac{1}{\alpha}}-\frac{C}{\alpha+1}\left(\frac{f(x)}{C}\right)^{\frac{\alpha+1}{\alpha}}
\end{aligned}
$$

$$
=f(x)^{\frac{\alpha+1}{\alpha}} \frac{\alpha}{\alpha+1} C^{-\frac{1}{\alpha}}
$$

By symmetry, the same lower bound is valld for $F(x)$. Rearranging the terms glves us our result.

Theorem 3.5 provides us with an important bridging device. For many distributlons, tall inequallties are readlly avallable: standard textbooks usually give Markov's and Chebyshev's inequalitles, and these are sometimes supplemented by varlous exponentlal inequalities. If f is in $L i p_{\alpha}(C)$ on $(0, \infty)$ (thus, a discontinulty could occur at 0), then we stlll have

$$
f(x) \leq\left((1-F(x)) \frac{\alpha+1}{\alpha} C^{\frac{1}{\alpha}}\right)^{\frac{\alpha}{\alpha+1}}
$$

Before we proceed with some examples of the use of Theorem 3.5, we collect some of the best known tall Inequallties in a lemma:

Lemma 3.1.

Let F be a distribution function of a random varlable X. Then the followIng Inequalitles are valld:
A. $P(|X| \geq x) \leq \frac{E\left(|X|^{r}\right)}{|x|^{r}}, r>0$ (Chebyshev's inequallty).
B. $\quad 1-F(x) \leq M(t) e^{-t x}, t>0$ where $M(t)=E\left(e^{t X}\right)$ is the moment generatIng function (Markov's inequallity); note that by symmetry, $F(x) \leq M(-t) e^{t x} \quad, t>0$.
C. For log-concave f with mode at 0 and support on $[0, \infty)$, $1-F(x) \leq e^{-f(0) x}$.
D. For monotone f on $[0, \infty), \quad 1-F(x) \leq\left(\frac{r}{r+1}\right)^{r} \frac{E\left(|X|^{r}\right)}{|x|^{r}}, x, r>0$ (Narumi's Inequallty).

Proof of Lemma 3.1.

Parts A and B are but special cases of a more general inequallty: assume that ψ is a nonnegatlve function at least equal to one on a set A. Then

$$
P(X \in A)=\int_{A} d F(x) \leq \int_{A} \psi(x) d F(x) \leq E(\psi(X))
$$

For part A, take $A=[x, \infty) \cup(-\infty, x]$ and $\psi(y)=\frac{\left.\perp y\right|^{r}}{|x|^{r}}$. For part B, take
$A=[x, \infty)$ and $\psi(y)=e^{t(y-x)}$ for some $t>0$. Part C follows slmply from the fact that for log-concave densitles on $[0, \infty)$ with mode at $0, f(0) X$ is stochastically smaller than an exponential random varlable. Thus, only part D seems nontrivial; see exerclse 3.7.

If inequallties other than those glven here are needed, the reader may want to consult the survey article of Savage (1881) or the specialized text by Godwin (1984).

Example 3.1. Convex densities.

When a convex density f on $[0, \infty)$ is $\ln \operatorname{Lip}_{1}(C)$, we can take $C=f^{\prime}(0)$. By Narumi's inequality for monotone densitles,

$$
f(x) \leq \min \left(f(0), \frac{\sqrt{2 f^{\prime}(0)\left(\frac{r}{r+1}\right)^{r} \mu_{r}}}{x^{\frac{r}{2}}}\right)
$$

where $\mu_{r}=E\left(|X|^{r}\right)$. This is of the general form dealt with in Theorem 3.3. It should be noted that for this inequally to be useful, we need $r>2$.

Example 3.2. Densities with known moment generating function.

Patel, Kapadia and Owen (1978) give several examples of the use of moment generating functions $M(t)$ in statistics. Using the exponentlal version of Markov's Inequallty, we can bound any $L i p_{1}(C)$ density as follows:

$$
f(x) \leq \begin{cases}\sqrt{2 C e^{-t|x|} M(t)} & , x \geq 0 \\ \sqrt{2 C e^{-t|x|} M(-t)} & , x<0\end{cases}
$$

Here $t>0$ is a constant. There is nothing that keeps us from making t depend upon x except perhaps the simplicity of the bound. If we do not wish to upset this simplicity, we have to take one t for all x. When f is also symmetric about the origin, then the bound can be written as follows:

$$
f(x) \leq c g(x)
$$

where $g(x)=\frac{t}{4} e^{-\frac{t}{2}|x|}$ Is the Laplace denslty with parameter $\frac{t}{2}$, and $c=\sqrt{32 C M(t) / t^{2}}$ is a constant which depends upon t only. If thls bound is
used in a rejection algorithm, the expected number of iterations is c. Thus, the best value for t is the value that minimizes $M(t) / t^{2}$. Note that c Increases with C (decreasing smoothness) and with $M(t)$ (Increasing slze of the tall). HavIng picked t, the following rejection algorithm can be used:

Rejection method for symmetric Lipschitz densities with known moment generating function
[SET-UP]
$b \leftarrow \sqrt{2 C M(t)}$
[GENERATOR]
REPEAT
Generate E, U, independent exponential and uniform $[0,1]$ random variates. $X \leftarrow \frac{2}{t} E$
UNTIL Ube ${ }^{-E} \leq f(X)$
RETURN $S X$ where S is a random sign.

Example 3.3. The generalized gaussian family.

The generallzed gaussian family of distributions contalns all distributions for which for some constant $s \geq 0, M(t) \leq e^{s^{2} t^{2} / 2}$ for all t (Chow, 1988). The mean of these distributions exists and is 0 . Also, as shown by Chow (1986), both $1-F(x)$ and $F(-x)$ do not exceed $e^{-x^{2} /\left(2 s^{2}\right)}$ for all $x>0$. Thus, by Theorem 3.5, when $f \in \operatorname{Lip}_{1}(C)$,

$$
f(x) \leq s \sqrt{8 C \pi}\left(\frac{1}{s \sqrt{4 \pi}} e^{-\frac{x^{2}}{4 s^{2}}}\right)
$$

The function in parentheses is a normal ($0, s \sqrt{2}$) density. The rejection constant is $s \sqrt{8 C \pi}$. In its crudest form the algorithm can be summarized as follows:

```
Rejection algorithm for generalized gaussian distributions with a Lipschitz densi-
ty
REPEAT
    Generate N,E, independent normal and exponential random variates.
    X\leftarrowNs \sqrt{}{2}
UNTIL - N N
RETURN X
```


Example 3.4. Densities with known moments.

The prevlous three examples apply to rather small familles of distributions. If only the r-th absolute moment μ_{r} is known, the we have by Chebyshev's Inequallty,

$$
1-F(x) \leq \frac{\mu_{r}}{|x|^{r}}
$$

for all $x, r>0$. This leads to the inequallity

$$
f(x) \leq \sqrt{2 C} \min \left(1, \frac{\sqrt{\mu_{r}}}{|x|^{\frac{r}{2}}}\right)
$$

which is only useful to us for $r>2$ (otherwise, the dominating function is not integrable). The integral of the dominating curve is $\sqrt{8 C} \frac{r}{r-2} \mu_{r}^{\frac{1}{r}}$. Just which r is best depends upon the distribution: $\frac{r}{r-2}$ decreases monotonically with r whereas $\mu_{r}{ }^{\frac{1}{r}}$ is nondecreasing in r (this is known as Lyapunov's inequality, which can be obtalned in one line from Jensen's inequallty).

Example 3.5. Log-concave densities.

Assume that f is log-concave with mode at 0 and support contalned in $[0, \infty)$. Using $1-F(x) \leq e^{-x f(0)}$, we observe that

$$
f(x) \leq \frac{\sqrt{8 C}}{f(0)}\left(\frac{f(0)}{2} e^{-\frac{x f(0)}{2}}\right) \quad(x>0)
$$

The top bound is $\frac{\sqrt{8 C}}{f(0)}$ times a Laplace density. It is thus not difflcult to see that the following algorithm is useful:

Rejection method for log-concave Lipschitz densities

REPEAT

Generate iid exponential random variates E_{1}, E_{2}
$X \leftarrow \frac{2}{f(0)} E_{1}$
UNTIL $-E_{2}-E_{1} \leq \log \left(\frac{f(X)}{\sqrt{2 C}}\right)$
RETURN X

3.4. Normal scale mixtures.

Many distributions in statistics can be written as mixtures of normal densitles in which the varlance is the mixture parameter. These normal scale mixtures have far-reaching applicatlons ranging from modeling to mathematical statistics. The corresponding random vartables X are thus distributed as $N Y$, where N is normal, and Y is a positive-valued random varlable. The class of normal scale mixtures is selected here to be contrasted agalnst the class of log-concave densitles. It should be clear that we could have picked other classes of mixture distributions.

There are two sltuations that should be clearly distingulshed: In the first case, the distribution of Y is known. In the second case, the distribution of Y is not expllcitly glven, but it is known nevertheless that X is a normal scale mixture. The first case is trivial: one just generates N and Y and exits with $N Y$. In
the table below, some examples are glven:

DENSITY OF X	DENSITY OF Y
Cauchy	Density of $1 / N$ where N is normal
Laplace	Density of $1 / \sqrt{2 E}$ where E is exponential
Logistic	Density of $2 K$ where K has the Kolmogorov-Smirnov distribution
t_{a}	Density of $\sqrt{\frac{2 a}{G}}$ where G is gamma $\left(\frac{a}{2}\right)$
Symmetric stable (α)	Density of \sqrt{S} where S is positive stable $\left(\frac{\alpha}{2}\right)$

This table is far from complete, and all the representations have been known for quite some time. For the inclusion of the symmetric stable, see e.g. Feller (1971), and for the inclusion of the logistic, see e.g. Andrews and Mallows (1974). In fact, it is known that an even density f is a normal scale mixture if and only if the derlvatives of $f(\sqrt{x})$ are of alternating slg for all $x>0$ (Kelker, 1971). Unfortunately, for all the densitles given in the table, efflclent direct methods of generation are known, so there is no reason why one should use the decomposition.

The more interesting case is the one in which we just know that the distrlbution is a normal scale mixture. To develop universal rejection methods for this class of distributions, general inequalities are needed. The following inequalities are useful for this purpose:

Theorem 3.6.

Let f be the density of a normal scale mixture, and let X be a random varlable with density f. Then f is symmetric and unlmodal, $f(x) \leq f(0)$, and for all $a \geq-1$,

$$
f(x) \leq C_{a} \frac{\mu_{a}}{|x|^{1+a}}
$$

where

$$
\mu_{a}=E\left(|X|^{a}\right)
$$

is the a-th absolute moment of X, and

$$
C_{a}=\left(\frac{1+a}{e}\right)^{\frac{1+a}{2}} \frac{1}{2^{\frac{1+a}{2}} \Gamma\left(\frac{1+a}{2}\right)}
$$

For $a=1$ and $a=2$, we have respectively,

$$
\begin{aligned}
& f(x) \leq m \ln \left(f(0), \frac{E(|X|)}{e|x|^{2}}\right) \\
& f(x) \leq \min \left(f(0),\left(\frac{3}{e}\right)^{\frac{3}{2}} \frac{E\left(X^{2}\right)}{\sqrt{2 \pi}|x|^{3}}\right)
\end{aligned}
$$

The areas under the dominating curves are respectively, $\frac{4}{\sqrt{e}} \sqrt{f(0) \mu_{1}}$, and $C\left(\mu_{2} f(0)^{2}\right)^{1 / 3}$ where $C=3(3 / e)^{1 / 2}(2 \pi)^{-1 / 6}$.

Proof of Theorem 3.6.

The unlmodality is obvlous. The upper bounds for f follow directly from slmllar upper bounds for the normal denslty. Note that we have, for all $x, \sigma>0$,

$$
e^{-\frac{x^{2}}{2 \sigma^{2}}} \leq\left(\frac{\sigma}{|x|}\right)^{1+a}\left(\frac{1+a}{e}\right)^{\frac{1+a}{2}}
$$

Observe that

$$
f(x)=E\left(\frac{1}{\sqrt{2 \pi} Y} e^{-\frac{x^{2}}{2 Y^{2}}}\right)
$$

where Y is a random varlable used in the mixture (recall that $X=N Y$). Using the normal-polynomlal bound mentloned above, this leads to the Inequallty

$$
f(x) \leq E\left(Y^{a}\right) \frac{1}{\sqrt{2 \pi}|x|^{1+a}}\left(\frac{1+a}{e}\right)^{\frac{1+a}{2}}
$$

But in vlew of the relationship $X=N Y$, we have $E\left(Y^{a}\right)=E\left(|X|^{a}\right) / E\left(|N|^{a}\right)$. Now, use the fact that $E\left(|N|^{a}\right) \sqrt{2 \pi}=2^{\frac{1+a}{2}} \Gamma\left(\frac{1+a}{2}\right)$ (which follows by definition of the gamma integral). This gives the maln inequallty. The special cases are easlly obtalned from the main inequality, as are the areas under the dominating curves.

The algorithms of sectlon 3.2 are once agaln applicable. However, we are in much better shape now. If we had just used the unlmodallty, we would have obtalned the Inequallity

$$
f(x) \leq \min \left(f(0), \frac{a+1}{2} \frac{\mu_{a}}{|x|^{a+1}}\right)
$$

which is useful for $a>0$. See the proof of Theorem 3.2. The area under this domInating curve is larger than the corresponding area for Theorem 3.6, which should come as no surprise because we are using more information in Theorem 3.6. Notice that, Just as in section 3.2, the areas under the dominating curves are scale invarlant. The cholce of a depends of course upon f. Because the class of normal mlxtures contains densitles with arbltrarlly large talls, we may be forced to choose a very close to $0 \ln$ order to make μ_{a} finlte. Such a strategy is appropriate for the symmetric stable density.

3.5. Exercises.

1. Prove the following fact needed in Theorem 3.4: all monotone densities on $[0, \infty)$ with value 1 at 0 and concave on their support are stochastically smaller than the trlangular density $f(x)=\left(1-\frac{x}{2}\right)_{+}$, i.e. their distribution functions all dominate the distribution function of the trlangular density.
2. In the rejection algorithm Immediately preceding Theorem 3.4, we exit some of the time with $X \leftarrow \frac{x^{*}}{\sqrt{a U-(a-1)}}$. The square root is costly. The special case $a=3$ is very important. Show that $\sqrt{3 U-2}$ is distributed as $\max (3 U-2, W)$ where W is another unlform $[0,1]$ random varlate.
3. Concave monotone densities. In this exerclse, we conslder densitles f which are concave on thelr support and monotone on $[0, \infty)$. Let us use $M=f(0), \mu_{r}=\int x^{r} f(x) d x$.
A. Show that $f(x) \leq \min \left(M,\left(\frac{2 \mu_{r}(r+1)}{x^{\top+1}}-M\right)_{+}\right)$.
B. Show that the area under the dominating curve is $2-2^{\frac{1}{\tau+1}}$ times the
area under the dominating curve shown in Theorem 3.4. That is, the area is

$$
\left(2-2^{\frac{1}{r+1}}\right)\left(1+\frac{1}{r}\right) M^{\frac{r}{r+1}}\left((r+1) \mu_{r}\right)^{\frac{1}{r+1}} .
$$

C. Noting that the Improvement is most outspoken for $r=1(2-\sqrt{2} \approx 0.59)$ and $r=2$ and that it is negllgible when r is very large, give the detalls of the rejection algorithm for these two cases.
4. Give the strongest counterparts of Theorems 3.1-3.4 you can find for unimodal densitles on the real line with a mode at 0 . Because this class contalns the class dealt with in the section, all the bounds given in the section remain valld for $f(|x|)$, and this leads to performances that are precisely double those of the varlous theorems. Mimicking the development of section VII. 2 for log-concave densities, this can be improved if we know $F(0)$, the value of the distribution function at 0 , or are willing to apply Brent's mirror principle (generate a random varlate X with density $f(x)+f(-x), x>0$, and exit with X or $-X$ with probabilitles $\frac{f(x)}{f(x)+f(-x)}$ and $\frac{f(-x)}{f(x)+f(-x)}$ respectively). Work out the detalls.
5. Compare the rejection constant of Example 3.5 (log-concave densitles on $[0, \infty)$) with 2 , the rejection constant obtalned for the algorithm of section VII.2. Show that it is always at least 2, that is, show that for all logconcave densities on $[0, \infty)$ belonging to $\operatorname{Lip}_{1}(C)$,

$$
\frac{\sqrt{8 C}}{f(0)} \geq 2
$$

Hint: flx C, and try to find the density in the class under conslderation for which $f(0)$ is maximal. Conclude that one should never use the algorithm of Example 3.5.
8. Show that the class $\operatorname{Lip} p_{\alpha}(C)$ has no densitles whenever $\alpha>1$.
7. Prove Narumi's Inequalltles (Lemma 3.1, part D).
8. When f is a normal scale mixture, show that for all $a>0$, the bound of Theorem 3.6 Is at least as good as the corresponding bound of Theorem 3.2.
8. Show that f is an exponential scale mixture if and only if for all $x>0$, the derivatives of f are of alternating slgn (see e.g. Feller (1971), Kellson and Steutel (1974)). These mixtures consist of convex densities densities on $[0, \infty)$. Derive useful bounds slmilar to those of Theorem 3.8.
10. The z-distribution. Barndorff-Nielsen, Kent and Sorensen (1982) Introduced the class of z-distributions with two shape parameters. The symmetric members of thls famlly have density

$$
f(x)=\frac{1}{4^{a} B_{a, a} \cosh ^{2 a}\left(\frac{x}{2}\right)} \quad(x \in R)
$$

where $a>0$ is a parameter. The translation and scale parameters are omitted. For $a=1 / 2$, this glves the hyperbolic cosine distribution. For $a=1$ we have the logistic distribution. For integer a it is also called the generallzed loglstlc distribution (Gumbel, 1944). Show the following:
A. The symmetric z-distributions are normal scale mixtures (BarndorffNlelsen, Kent and Sorensen, 1982).
B. A random varlate can be generated as $\log \left(\frac{Y}{1-Y}\right)$ where Y is symmetric beta distributed with parameter a.
C. If a random variate is generated by rejection based upon the inequalities of Theorem 3.6, the expected time stays unlformly bounded over all values of a.
Additional note: the general z distribution with parameters $a, b>0$ is defined as the distribution of $\log \left(\frac{Y}{1-Y}\right)$ where Y is beta (a, b).
11. The residual life density. In renewal theory and the study of Polsson processes, one can assoclate with every distribution function F on $[0, \infty)$ the residual life density

$$
f(x)=\frac{1-F(x)}{\mu}
$$

where $\mu=\int(1-F)$ is the mean for F. Assume that besides the mean we also know the second moment μ_{2}. This is the second moment of F, not f. Show the following:
A. $f(x) \leq \mu_{2} /\left(\mu\left(x^{2}+\mu_{2}\right)\right)$
B. The black box algortthm shown below is valld and has refection constant $\pi \sqrt{\mu_{2}} / \mu$. The rejection constant is at least equal to π, and can be arbltrarlly large.

REPEAT
Generate a Cauchy random variate Y, and a uniform $[0,1]$ random variate U.
$X \leftarrow \sqrt{\mu_{2}} Y$
UNTLL $U \leq\left(1+Y^{2}\right)(1-F(X))$
RETURN X
12. Assume that f is a monotone density on $[0, \infty)$ with distribution function F. Show that for all $0 \leq t<x$,

$$
f(x) \leq \frac{1-F(t)}{x-t}
$$

Derive from this the inequallty

$$
f(x) \leq f(0)\left(1-F\left(x-\frac{1}{f(0)}\right)\right)
$$

Note that these Inequalities can be used to derive rejection algorithms from tall inequalitles for the distribution function.

4. THE INVERSION-REJECTION METHOD.

4.1. The principle.

Assume that f is a density on R, and that we know a few things about f, but not too much. For example, we may know that f is bounded by M, or that $f \in \operatorname{Li} p_{1}(C)$, or that f is unimodal with mode at 0 . We have in addition two black boxes, one for computing f, and one for computing the distribution functlon F. The rejection method is not applicable because we cannot a prlorl find an Integrable dominating curve as for example in the case of log-concave densitles. In many cases, this problem can be overcome by the inversion-rejection method (Devroye, 1984). In its most elementary form, it can be put as follows: consider a countable partition of R into intervals $\left[x_{i}, x_{i+1}\right)$ where i can take positive and negative values. This partition is fixed but need not be stored: often we can compute the next polnt x_{i} from i and/or the previous polnt. Generate a unlform $[0,1]$ random variate U, and find the Index i for which

$$
F\left(x_{i}\right) \leq U<F\left(x_{i+1}\right)
$$

Thus, Interval $\left[x_{i}, x_{i+1}\right.$) is chosen with probabllity $F\left(x_{i+1}\right)-F\left(x_{i}\right)$ by inversion. If the x_{i} 's are not stored, then some version of sequentlal search can be used. After i is selected, return a random varlate X with denslty f restricted to the given interval. What we have galned is the fact that the interval is compact, and that in most cases we can easily find a unlform dominating density and use rejection. For example, if f is known to be bounded by M, then we can use a unlform curve with value M. When $f \in \operatorname{Lip}_{1}(C)$, we can use a triangular dominating curve with value $\min \left(f\left(x_{i}\right)+C\left(x-x_{i}\right), f\left(x_{i+1}\right)+C\left(x_{i+1}-x\right)\right)$. When f is unlmodal, then a dominating curve with value $\max \left(f\left(x_{i}\right), f\left(x_{i+1}\right)\right)$ can always be used.

There are two contributors to the expected time taken by the inversionrejection algorlthm:
(1) $E\left(N_{s}\right)$: the expected number of computations of F in the sequential search.
(11) $E\left(N_{r}\right)$: the expected number of iterations in the rejection method. It is not difficult to see that this is the area under the dominating curve.
In the example of a density bounded by M but otherwise arbltrary, the area under the dominating curve is ∞. Thus, $E\left(N_{r}\right)=\infty$. Nevertheless $N_{r}<\infty$ with probabillty one. This fact does not come as a surprise considering the magnitude of the class of densitles involved. For unimodal f, even with an infinite peak at
the mode and two blg talls, it is always possible to construct a partition such that the area under the dominating plecewise constant function is finite. Thus, in the analysls of the different cases, it will be important to distingulsh between the familles of densitles.

The inversion-rejection method is of the black-box type. Its main disadvantage is that programs for calculating both f and F are needed. On the positive slde, the famllies that can be dealt with can be gigantic. The method is not recommended when speed is the most important issue.

We look at the three familles introduced above in separate sub-sections. A little extra time is spent on the important class of unimodal densities. The analysis is \ln all cases based upon the distributional propertles of N_{s} and N_{r}.

4.2. Bounded densities.

As our first example, we take the famlly of densities f on $[0, \infty)$ bounded by M. There is nothing sacred about the positive half of R, the cholce is made for convenlence only. Assume that $[0, \infty)$ is partitioned by a sequence

$$
0=x_{0}<x_{1}<x_{2}<\cdots .
$$

Let us write $p_{i}=F\left(x_{i+1}\right)-F\left(x_{i}\right), i \geq 0$. In a black box method, the inversion step should preferably be carrled out by sequentlal search, starting from 0 . In that case, we have

$$
P\left(N_{s} \geq j\right)=\sum_{i=j-1}^{\infty} p_{i}=\int_{x_{j-1}}^{\infty} f=1-F\left(x_{j-1}\right) \quad(j \geq 1)
$$

Also,

$$
E\left(N_{s}\right)=1+\sum_{i=0}^{\infty} i p_{i}=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)
$$

Given that we have chosen the i-th interval, the number of iterations in the rejection step is geometrically distributed with parameter $p_{i} /\left(M\left(x_{i+1}-x_{i}\right)\right), i \geq 0$. Thus,

$$
P\left(N_{r} \geq j\right)=\sum_{i=0}^{\infty} p_{i}\left(1-\frac{p_{i}}{M\left(x_{i+1}-x_{i}\right)}\right)^{j}
$$

Also,

$$
E\left(N_{r}\right)=\sum_{i=0}^{\infty} p_{i} \frac{M\left(x_{i+1}-x_{i}\right)}{p_{i}}=\infty
$$

Example 4.1. Equi-spaced intervals.

When $x_{i+1}-x_{i}=\delta>0$, we obtain perhaps the slmplest algorithm of the inverslon-rejection type. We can summarize its performance as follows:

$$
\begin{aligned}
& E\left(N_{s}\right)=1+\sum_{i=0}^{\infty} i \int_{\delta i}^{\delta(i+1)} f \leq 1+\frac{1}{\delta} \sum_{i=0}^{\infty} \int_{\delta i}^{\delta(i+1)} x f=1+\frac{E(X)}{\delta} ; \\
& E\left(N_{s}\right) \geq \frac{E(X)}{\delta} ; \\
& P\left(N_{r} \geq j\right)=\sum_{i=0}^{\infty} p_{i}\left(1-\frac{1}{M \delta} p_{i}\right)^{j} .
\end{aligned}
$$

The sequentlal search is Intimately linked with the size of the tall of the density (as measured by $E(X)$). It seems reasonable to take $\delta=c E(X)$ for some unlversal constant c. When we take c too large, the probabilitles $P\left(N_{r} \geq j\right)$ could be unacceptably high. When c is too small, $E\left(N_{s}\right)$ is too large. What is needed here is a compromise. We cannot choose c so as to minlmize $E\left(N_{s}+N_{r}\right)$ for example, since thls is ∞. Another method of design can be followed: flx j, and minimize $P\left(N_{r} \geq j\right)+P\left(N_{s} \geq j\right)$. This is

$$
\begin{aligned}
& \sum_{i=0}^{\infty} p_{i}\left(1-\frac{p_{i}}{M \delta}\right)^{j}+\sum_{i=j-1}^{\infty} p_{i} \\
& \leq \sum_{i=J}^{\infty} p_{i}+\frac{J M \delta}{j+1}\left(\frac{j}{j+1}\right)^{j}+\sum_{i=j-1}^{\infty} p_{i}
\end{aligned}
$$

where J is a positive integer to be plcked later. We have used the following simple inequality:

$$
u\left(1-\frac{u}{a}\right)^{j} \leq \frac{a}{j+1}\left(1-\frac{\frac{a}{j+1}}{a}\right)^{j}
$$

Since we have difficulty minimizing the orlginal expression and the last upper bound, it seems loglcal to attempt to minimize yet another bound. This strategy is dellberately suboptimal. What we hope to buy is simplicity and insight. Assume that $\mu=E(X)$ is known. Then the tall sums of p_{i} 's can be bounded from above by Markov's Inequallty. In partlcular, using also $\left(1+\frac{1}{j}\right)^{j} \geq 2, j \geq 1$, the last expression is bounded by

$$
\frac{\mu}{\delta J}+\frac{J M \delta}{2(j+1)}+\frac{\mu+2}{\delta(j+1)}
$$

The optimal non-integer J is

$$
\sqrt{\frac{2(j+1) \mu}{M \delta^{2}}}
$$

and we will take the celling of thls. Our upper bound now reads

$$
2 \sqrt{\frac{M \mu}{2(j+1)}}+\frac{\frac{\mu+2}{\delta}+\frac{M \delta}{2}}{j+1} .
$$

The last thing left to do is to minimize this with respect to δ, the interval width. Notlce however that thls will affect only the second order term in the upper bound (coefflclent of $\frac{1}{j+1}$), and not the maln asymptotlc term. For the cholce $\delta=\sqrt{\frac{2 \mu+4}{M}}$, the second term is

$$
\frac{\sqrt{2 M(\mu+2)}}{j+1} .
$$

The important observation is that for any cholce of δ that is independent of j,

$$
P\left(N_{s} \geq j\right)+P\left(N_{\tau} \geq j\right) \leq 2 \sqrt{\frac{M \mu}{2(j+1)}}+O\left(\frac{1}{j}\right)
$$

The factor $M \mu$ is scale invariant, and is both a measure of how spread out f is and how diffcult f is for the present black box method. For this bound to hold, it is not necessary to know μ. The main term in the upper bound is the contribution from N_{r}. If we assume the existence of higher moments of the distribution, or the moment-generating function, we can obtaln upper bounds which decrease faster than $1 / \sqrt{j}$ as $j \rightarrow \infty$ (exerclse 4.1).

There are other obvlous cholces for interval slzes. For example, we could start with an interval of width δ, and then double the width of consecutive intervals. Because thls will be dealt with in greater detall for monotone densitles, it wlll be sklpped here. Also, because of the better complexity for monotone densltles, it is worthwhile to spend more time there.

4.3. Unimodal and monotone densities.

This entlre subsection is an adaptation of Devroye (1984). Let us first reduce the problem to one that is manageable. If we know the position of the mode of a unlmodal density, and if we can compute $F(x)$ at all x, which is our standing assumption, then it is obvious that we need only consider monotone densitles. These can be conven!ently filpped around and/or translated to 0 , so that all monotone densitles to be considered can be assumed to have a mode at 0 and support on $[0, \infty)$. Unfortunately, compact support cannot be assumed because nonlinear transformations to $[0,1]$ could destroy the monotonicity. One thing we can assume however is that we either have an infinite peak at 0 or an infinite tall but not both. Just use the following splitting device:

Splitting algorithm for monotone densities

[SET-UP]

Choose a number $z>0$. (If f is known to be bounded, set $z \leftarrow 0$, and if f is known to have compact support contained in $[0, c]$, set $z \leftarrow c$.)

$$
t \leftarrow F(z)
$$

[GENERATOR]
Generate a uniform $[0,1]$ random variate U.
IF $U>t$
THEN generate a random variate X with (bounded monotone) density $f(x) /(1-t)$ on $[z, \infty)$.
ELSE generate a random variate X with (compact support) density $f(x) / t$ on [$0, z$].
RETURN X

Thus, it suffices to treat compact support and bounded monotone densitles separately. We will provide the reader with three general strategles, two for bounded monotone densitles, and one for compact support monotone densitles. Undoubtedly, there are other strategles that could be preferable for certaln densltles, so no clalms of optlmallty are made. The emphasis is on the manner in whlch the problem is attacked, and on the interaction between design and analysis. As we polnted out in the introduction, the whole story is told by the quantlies $E\left(N_{s}\right)$ and $E\left(N_{r}\right)$ when they are finite.

4.4. Monotone densities on $[0,1]$.

In this section, we wlll analyze the following Inversion-rejection algorithm:

Inversion-rejection algorithm with intervals shrinking at a geometrical rate

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 1$
REPEAT

$$
X-\frac{X}{r}
$$

UNTIL $U \geq F(X)$
REPEAT
Generate two independent uniform $[0,1]$ random variates, V, W. $Y \leftarrow X(1+(r-1) V)(Y$ is uniform on $[X, r X))$
UNTIL $W \leq \frac{f(Y)}{f(X)}$
RETURN Y

The constant $r>1$ is a design constant. For a first quick understanding, one can take $r=2$. In the first REPEAT loop, the inversion loop, the following intervals are considered: $\left[\frac{1}{r}, 1\right),\left(\frac{1}{r^{2}}, \frac{1}{r}\right), \ldots$. For the case $r=2$, we have interval halving as we go along. For thls algorlthm,

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{i=1}^{\infty} i \int_{r^{-i}}^{r^{-(i-1)}} f(x) d x \\
& E\left(N_{r}\right)=\sum_{i=1}^{\infty} \frac{r-1}{r^{i}} f\left(r^{-i}\right) .
\end{aligned}
$$

The performance of this algorithm is summarized in Theorem 4.1:

Theorem 4.1.

Let f be a monotone density on $[0,1]$, and deflne

$$
H(f)=\int_{0}^{1} \log \left(\frac{1}{x}\right) f(x) d x
$$

Then, for the algorithm described above,

$$
\frac{H(f)}{\log (r)} \leq E\left(N_{s}\right) \leq 1+\frac{H(f)}{\log (r)}
$$

and

$$
1 \leq E\left(N_{r}\right) \leq r
$$

The functional $H(f)$ satisfles the following inequalltles:
A. $1 \leq H(f)$.
B. $\log \left(\frac{1}{\int_{0}^{\infty} x f(x) d x}\right) \leq H(f)$ (valld even if f has unbounded support).
C. $H(f) \leq 1+\log (f(0))$.
D. $H(f) \leq \frac{4}{e}+2 \int_{0}^{1} \log _{+} f(x) f(x) d x$ (valld even if f is not monotone).

Proof of Theorem 4.1.

For the first part, note that on $\left[r^{-i}, r^{-(i-1)}\right]$,

$$
\frac{\log (x)}{\log (r)} \leq i \leq 1+\frac{\log (x)}{\log (r)} .
$$

Thus, resubstitution in the expression of $E\left(N_{s}\right)$ ylelds the first Inequallty. We also see that $E\left(N_{r}\right) \geq 1$. To obtain the upper bound for $E\left(N_{r}\right)$, we use a short geometrical argument:

$$
\begin{aligned}
& E\left(N_{r}\right)=\sum_{i=1}^{\infty} \frac{r-1}{r^{i}} f\left(r^{-i}\right) \\
& =\sum_{i=1}^{\infty} \int_{r^{-1}}^{r^{-(i-1)}} f\left(r^{-i}\right) d x \\
& \leq \sum_{i=1 r^{-(i+1)}}^{\infty} f(x) d x \times r \\
& \frac{r^{-1}}{r} \\
& =r \int_{0}^{1} f(x) d x
\end{aligned}
$$

$$
\leq r
$$

Inequality A uses the fact that $-\log (x)$ and $f(x)$ are both nonincreasing on $[0,1]$, and therefore, by Steffensen's Inequally (1825),

$$
\int_{0}^{1}-\log (x) f(x) d x \geq \int_{0}^{1}-\log (x) d x \int_{0}^{1} f(x) d x=1
$$

Inequality B uses the convexity of $-\log (x)$ and Jensen's inequallty. If X is a random variable with density f, then

$$
H(f)=E(-\log (X)) \geq-\log (E(X))
$$

Inequallty C can be obtalned as a special case of another inequality of Steffensen's (1818): In its original form, it states that if $0 \leq h \leq 1$, and if g is nonincreasing and integrable on $[0,1]$, then

$$
\int_{0}^{1} g(x) h(x) d x \leq \int_{0}^{a} g(x) d x
$$

where $a=\int_{0}^{1} h(x) d x$. Apply this Inequality with $g(x)=-\log (x), h(x)=\frac{f(x)}{f(0)}$. Thus, $a=\frac{1}{f(0)}$. Therefore,

$$
\begin{aligned}
& \frac{H(f)}{f(0)} \leq \int_{0}^{\frac{1}{f(0)}}-\log (x) d x \\
& =\int_{\log (f(0))}^{\infty} y e^{-y} d y=\frac{1}{f(0)}(1+\log (f(0)) .
\end{aligned}
$$

Inequality D is a Young-type Inequallty which can be found in Hardy, Littlewood and Polya (1952, Theorem 239).

In Theorem 4.1, we have shown that $E\left(N_{s}\right)<\infty$ if and only if $H(f)<\infty$. On the other hand, $E\left(N_{r}\right)$ is unlformly bounded over all monotone f on $[0,1]$. Our maln concern is thus with the sequential search. We do at least as well as in the black box method of section 3.2 (Theorem 3.2), where the expected number of iterations in the rejection method was $1+\log (f(0))$. We are guaranteed to have $E\left(N_{s}\right) \leq 1+(1+\log (f(0))) / \log (r)$, and even if $f(0)=\infty$, the inversion-rejection
method can have $E\left(N_{s}\right)<\infty$.

Example 4.2. The beta density.

Consider the beta $(1, a+1)$ denslty $f(x)=(a+1)(1-x)^{a}$ on $[0,1]$ where $a>0$ is a parameter. We have $f(0)=a+1, E(X)=\frac{1}{a+2}$. Thus, by inequalities B and C of Theorem 4.1,

$$
\log (a+2) \leq H(f) \leq 1+\log (a+1)
$$

We have $H(f) \sim \log (a)$ as $a \rightarrow \infty$: the average time of the given inversionrejection algorithm grows as $\log (a)$ as $a \rightarrow \infty$.

In the absence of extra information about the density, it is recommended that r be set equal to 2 . This cholce also glves small computational advantages. It is important nevertheless to realize that this cholce is not optimal in general. For example, assume that we wish to minimize $E\left(N_{s}+N_{r}\right)$, a criterion in which both contributions are given equal welght because both N_{s} and N_{r} count in effect numbers of computations of f and/or F. The minimization problem is rather difficult. But if we work on a good upper bound for $E\left(N_{s}+N_{r}\right)$, then it is nevertheless possible to obtaln:

Theorem 4.2.

For the inversion-rejection algorithm of this section with design constant $r>1$, we have

$$
\begin{aligned}
& \operatorname{lif}_{r>1} E\left(N_{s}+N_{r}\right) \\
& \leq 1+H(f)\left(\frac{1}{\log ^{2}(H(f))}+\frac{1}{\log (H(f))-2 \log (\log (H(f)))}\right) \\
& \sim \frac{H(f)}{\log (H(f))}
\end{aligned}
$$

as $H(f) \rightarrow \infty$. The bound is attalned for

$$
r=\frac{H(f)}{\log ^{2}(H(f))}
$$

Proof of Theorem 4.2.

We start from

$$
E\left(N_{s}+N_{r}\right) \leq 1+r+\frac{H(f)}{\log (r)}
$$

Resubstltution of the value of r glven in the theorem glves us the inequality. Thls value was obtained by functional Iteration applled to

$$
r=\frac{H(f)}{\log ^{2}(r)}
$$

an equation which must be satisfled for the minimum of the upper bound (set the derlvative of the upper bound with respect to r equal to 0). The functlonal iteration was started at $r=H(f)$. That the value is not bad follows from the fact that for $H(f) \geq e$,

$$
1+r+\frac{H(f)}{\log (r)} \geq 1+\frac{H(f)}{\log (H(f))}
$$

so that at least from an asymptotic polnt of view no improvement is possible over the glven bound.

As a curlous apphcation of Theorem 4.2, consider the case again of a monotone denslty on $[0,1]$ with finlte $f(0)$. Recalling that $H(f) \leq 1+\log (f(0))$, we see that if we take

$$
r=\frac{1+f(0)}{\log ^{2}(1+f(0))}
$$

a cholce which is indeed implementable, then

$$
\begin{aligned}
& E\left(N_{s}+N_{r}\right) \\
& \leq 1+1+\frac{\log (f(0))}{\log ^{2}(1+\log (f(0)))}+\frac{\log (f(0))}{\log (1+\log (f(0)))-2 \log (\log (1+\log (f(0))))} \\
& \sim \log \frac{(f(0))}{\log (1+\log (f(0)))}
\end{aligned}
$$

as $f(0) \rightarrow \infty$. Thls should be compared with the value of $E\left(N_{r}\right)=1+\log (f(0))$ for the black box rejection algorlthm following Theorem 3.1.

For densities that are also known to be convex, a slight improvement in $E\left(N_{r}\right)$ is possible. See exercise 4.5.

4.5. Bounded monotone densities: inversion-rejection based on Newton-Raphson iterations.

In this section, we assume that f is monotone on $[0, \infty)$ and that $f(0)<\infty$. It is possible that f has a large tall. In an attempt to automatically balance $E\left(N_{s}\right)$ agalnst $E\left(N_{r}\right)$, and thus to avold the eternal problem of having to find a good design constant, we could determine intervals for sequentlal search based upon Newton-Raphson Iterations started at $x_{0}=0$. Recall the definition of the hazard rate

$$
h(x)=\frac{f(x)}{1-F(x)} .
$$

If we try to solve $F(x)=1$ for x by Newton-Raphson Iterations started at $x_{0}=0$, we obtain a sequence $x_{0} \leq x_{1} \leq x_{2} \leq \cdots$ where

$$
x_{n+1}=x_{n}+\frac{1-F\left(x_{n}\right)}{f\left(x_{n}\right)}=x_{n}+\frac{1}{h\left(x_{n}\right)} .
$$

The x_{n} 's need not be stored. Obviously, storing them could considerably speed up the algorithm.

Inversion-rejection algorithm for bounded densities based upon NewtonRaphson iterations

Generate a uniform $[0,1]$ random variate U.

$X \leftarrow 0, R \leftarrow F(X), Z \leftarrow f(X)$
REPEAT
$X * \leftarrow X+\frac{1-R}{Z}, R * \leftarrow F(X *), Z * \leftarrow f(X *)$
IF $U \leq R *$
THEN Accept \leftarrow True
ELSE $R \leftarrow R *, ~ Z \leftarrow Z *, ~ X \leftarrow X^{*}$
UNTIL Accept
REPEAT
Generate two independent uniform $[0,1]$ random variates V, W.
$Y \leftarrow X+\left(X^{*}-X\right) V, T \leftarrow W Z$ (Y is uniformly distributed on $[X, X *)$)
Accept $\leftarrow\left[T \leq Z^{*}\right]$ (optional squeeze step)
IF NOT Accept THEN Accept $\leftarrow[T \leq f(Y)]$
UNTIL Accept
RETURN Y

One of the differences with the algorthm of the previous section is that in every Iteration of the inversion step, one evaluation of both F and f is required as compared to one evaluation of F. The performance of the algorithm is dealt with In Theorem 4.3.

Theorem 4.3.

Let f be a bounded monotone denslty on $[0, \infty)$ with mode at 0 . For the inversion-rejection algorithm given above,

$$
E\left(N_{s}\right)=E\left(N_{r}\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)
$$

where $0=x_{0} \leq x_{1} \leq x_{2} \leq \cdots$ is the sequence of numbers deffned by

$$
x_{n+1}=x_{n}+\frac{1-F\left(x_{n}\right)}{f\left(x_{n}\right)} \quad(n \geq 0)
$$

If f is also DHR (has nonincreasing hazard rate), then

$$
1 \leq E\left(N_{\tau}\right)=E\left(N_{s}\right) \leq 1+E(X f(0))
$$

If f is also IHR (has nondecreasing hazard rate), then

$$
1 \leq E\left(N_{r}\right)=E\left(N_{s}\right) \leq \frac{e}{e-1}
$$

Proof of Theorem 4.3.

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{i=1}^{\infty} i\left(\left(1-F\left(x_{i-1}\right)\right)-\left(1-F\left(x_{i}\right)\right)\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right), \\
& E\left(N_{r}\right)=\sum_{i=0}^{\infty} f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)
\end{aligned}
$$

When f is DHR, then

$$
E(X f(0))=f(0) \int_{0}^{\infty}(1-F(x)) d x=\int_{0}^{\infty} \frac{f(0)}{h(x)} f(x) d x \geq 1
$$

For IHR densitles, the inequality should be reversed. Thus, for DHR densitles,

$$
\begin{aligned}
& \sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right) \leq 1+\sum_{i=1}^{\infty} \frac{\int_{x_{i-1}}^{x_{i}}(1-F(x)) d x}{x_{i}-x_{i-1}} \\
& =1+\sum_{i=1}^{\infty} \int_{x_{i-1}}^{x_{i}}(1-F(x)) d x h\left(x_{i-1}\right) \\
& \leq 1+\int_{0}^{\infty} f(0)(1-F(x)) d x=1+E(X f(0))
\end{aligned}
$$

When f is IHR, then

$$
1-F\left(x_{i+1}\right)=\left(1-F\left(x_{i}\right)\right) e^{-\int_{x_{i}}^{x_{i}+1} h(x) d x}
$$

$$
\begin{aligned}
& \leq\left(1-F\left(x_{i}\right)\right) e^{-h\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)} \\
& =\frac{1-F\left(x_{i}\right)}{e} .
\end{aligned}
$$

Thus,

$$
\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right) \leq \sum_{i=0}^{\infty} e^{-i}=\frac{e}{e-1}
$$

We have thus found an algorithm with a perfect balance between the two parts, slnce $E\left(N_{s}\right)=E\left(N_{r}\right)$. This does not mean that the algorithm is optimal. However, in many cases, the performance is very good. For example, Its expected time is unlformly bounded over all IHR densitles. Examples of IHR densitles on $[0, \infty)$ are given in the table below.

Name	Density f	Hazard rate h	$E\left(N_{a}\right)=E\left(N_{r}\right)$
Halfnormal	$\sqrt{\frac{2}{\pi} e^{-\frac{x^{2}}{2}}}$		$\leq \frac{e}{e-1}$
Gamma $(a), a \geq 1$	$\frac{x^{a-1} e^{-x}}{\Gamma(a)}$		$\leq \frac{e}{e-1}$
Exponential	e^{-x}	1	$\frac{e}{e-1}$
Weibull $(a), a \geq 1$	$a x^{a-1} e^{-x^{a}}$	$\leq \frac{e x^{a-1}}{e-1}$	
Beta $(a, 1), a \geq 1$	$a x^{a-1}(0 \leq x \leq 1)$	$\frac{x^{a-1}}{1-x^{a}}$	$\leq \frac{e}{e-1}$
Beta $(1, a+1), a \geq 0$	$(a+1)(1-x)^{a}(0 \leq x \leq 1)$	$\frac{a+1}{1-x}$	$\left(1-\left(1-\frac{1}{a+1}\right)^{a+1}\right)^{-1}$
Truncated extreme value, $a>0$	$\frac{1}{a} e^{x-\frac{e^{x}-1}{a}}$	$\frac{e^{3}}{a}$	$\leq \frac{e}{e-1}$

This is not the place to enter into a detalled study of IHR densitles. It suffices to state that they are an important family in dally statistics (see e.g. Barlow and Proschan (1965, 1975), and Barlow, Marshall and Proschan (1983)). Some of its sallent propertles are covered in exerclse 4.6. Some entrles for $E\left(N_{s}\right)$ In the table glven above are expllctly known. They show that the upper bound of Theorem 4.3 is sharp in a strong sense. For example, for the exponential density, we have $x_{n}=n$, and thus

$$
E\left(N_{s}\right)=E\left(N_{r}\right)=\sum_{i=0}^{\infty}(1-F(i))=\sum_{i=0}^{\infty} e^{-i}=\frac{e}{e-1}
$$

For the beta $(1, a+1)$ density mentioned in the table, we can verlfy that

$$
x_{n+1}=\frac{a}{a+1} x_{n}+\frac{1}{a+1},
$$

and thus,

$$
x_{n}=1-\left(\frac{a}{a+1}\right)^{n} \quad(n \geq 0)
$$

Thus,

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)=\sum_{i=0}^{\infty}\left(1-x_{i}\right)^{a+1} \\
& =\sum_{i=0}^{\infty}\left(\frac{a}{a+1}\right)^{i(a+1)}=\left(1-\left(1-\frac{1}{a+1}\right)^{a+1}\right)^{-1} .
\end{aligned}
$$

This varles from $1(a=0)$ to $\frac{e}{e-1}(a \uparrow \infty)$ without exceeding $\frac{e}{e-1}$. Thus, once agaln, the inequality of Theorem 4.3 is tlght.

For DHR densitles, the upper bound is often very loose, and not as good as the performance bounds obtalned for the dynamic thinning method (section VI.2). For example, for the Pareto density $\frac{a}{(1+x)^{a+1}}$ (where $a>0$ is a parameter), we have a hazard rate $h(x)=\frac{a}{1+x}$, and $E\left(N_{s}\right)=\left(1-\left(1+\frac{1}{a}\right)^{-a}\right)^{-1}$. Thls can be seen as follows:

$$
\begin{aligned}
& \left(x_{n+1}+1\right)=\left(x_{n}+1\right)\left(1+\frac{1}{a}\right) \\
& \left(x_{n}+1\right)=\left(1+\frac{1}{a}\right)^{n} \quad(n \geq 0) \\
& E\left(N_{8}\right)=\sum_{i=0}^{\infty}\left(1+\frac{1}{a}\right)^{-i a}=\left(1-\left(1+\frac{1}{a}\right)^{-a}\right)^{-1} .
\end{aligned}
$$

The last expression varles from $\frac{e}{e-1}(a \uparrow \infty)$ to $2(a=1)$ and up to ∞ as $a \downarrow 0$.

4.6. Bounded monotone densities: geometrically increasing interval sizes.

For bounded densitles, we can use a sequentlal search from left to right, symmetric to the method used for unbounded but compact support densitles. There are two design parameters: $t>0$ and $r>1$, and the consecutlve intervals are

$$
[0, t),[t, t r),\left[t r, t r^{2}\right), \ldots
$$

A typlcal cholce is $t=1, r=2$. General guldellnes follow after the performance analysls. Let us begln with the algorithm:

Inversion-rejection method for bounded monotone densities based upon geometrically exploding intervals

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 0, X * \leftarrow t$
WHILE $U>F\left(X^{*}\right)$ DO
$X \leftarrow X^{*}, ~ X * \leftarrow r X^{*}$
REPEAT
Generate two iid uniform $[0,1]$ random variates, V, W.
$Y \leftarrow X+(X *-X) V(Y$ is uniformly distributed on $[X, X *))$
UNTLL $W \leq \frac{f(Y)}{f(X)}$
RETURN Y

Theorem 4.4.

Let f be a bounded monotone denslty, and let $t>0$ and $r>1$ be constants. Deflne

$$
H_{t}(f)=\int_{0}^{\infty} \log _{+}\left(\frac{x}{t}\right) f(x) d x
$$

Then, for the algorithm glven above,

$$
1+\frac{H_{t}(f)}{\log (r)} \leq E\left(N_{s}\right) \leq 2+\frac{H_{t}(f)}{\log (r)},
$$

and

$$
1 \leq t f(0)+\int_{t}^{\infty} f(x) d x \leq E\left(N_{r}\right) \leq t f(0)+r
$$

Proof of Theorem 4.4.

We repeatedly use the fact that $t r^{i-1} \leq x<t r^{i}$ if and only if $i-1 \leq \log \left(\frac{x}{t}\right) / \log (r)<i, i>1$. Now,

$$
\begin{aligned}
& E\left(N_{s}\right)=\int_{0}^{t} f(x) d x+\sum_{i=1}^{\infty}(i+1) \int_{t r^{i-1}}^{t r^{\prime}} f(x) d x=1+\sum_{i=1}^{\infty} i \int_{t r^{i,-1}}^{t r^{\prime}} f(x) d x \\
& \leq 2+\int_{t}^{\infty} \frac{\log \left(\frac{x}{t}\right)}{\log (r)} f(x) d x=2+\frac{H_{t}(f)}{\log (r)}
\end{aligned}
$$

and

$$
E\left(N_{s}\right) \geq 1+\int_{t}^{\infty} \frac{\log \left(\frac{x}{t}\right)}{\log (r)} f(x) d x=1+\frac{H_{t}(f)}{\log (r)}
$$

Also,

$$
\begin{aligned}
& E\left(N_{r}\right)=t f(0)+\sum_{i=1}^{\infty}\left(t r^{i}-t r^{i-1}\right) f\left(t r^{i-1}\right) \\
& \leq t f(0)+\sum_{i=1}^{\infty} \frac{t r^{i}-t r^{i-1}}{t r^{i-1}-t r^{i-2}} \int_{t r^{i-2}} f(x) d x \\
& \leq t f(0)+r
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left(N_{r}\right) \geq t f(0)+\sum_{i=1}^{\infty} \frac{t r^{i}-t r^{i-1}}{t r^{i}-t r^{i-1}} \int_{t r^{i-1}} f(x) d x \\
& =t f(0)+\int_{t}^{\infty} f(x) d x \geq 1
\end{aligned}
$$

We would llke the algorlthm to perform at a scale-invarlant speed. This can be achleved for $t=\frac{1}{f(0)}$. In that case, the upper bounds of Theorem 4.4 read:

$$
\begin{aligned}
& E\left(N_{s}\right) \leq 2+\frac{H *(f)}{\log (r)} \\
& E\left(N_{r}\right) \leq 1+r
\end{aligned}
$$

where

$$
H *(f)=\int_{0}^{\infty} \log _{+}(x f(0)) f(x) d x
$$

is the scale invariant counterpart of the quantity $H(f)$ defined in Theorem 4.1. $H *(f)$ can be considered as the normalized logarithmic moment for the density f. For the vast majorlty of distributions, $H *(f)<\infty$. In fact, one must search hard to find a monotone denslty for which $H *(f)=\infty$. The tall of the density must at least of the order of $1 /\left(x \log ^{2}(x)\right)$ as $x \rightarrow \infty$, such as is the case for

$$
f(x)=\frac{1}{(x+e) \log ^{2}(x+e)} \quad(x>0)
$$

With ilttle a priorl information, we suggest the cholce

$$
\begin{gathered}
r=2 \\
t=\frac{1}{f(0)} \\
\hline
\end{gathered}
$$

It is interesting to derlve a good gulding formula for r. We start from the inequallty

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq 3+r+\frac{H *(f)}{\log (r)},
$$

which is minimal for the unique solution $r>1$ for which $r \log ^{2}(r)=H *(f)$. By functional iteration started at $r=H *(f)$, we obtain the crude estimate

$$
r=\frac{H *(f)}{\log ^{2}(H *(f))}
$$

For this cholce, we have as $H *(f) \rightarrow \infty$,

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq(1+o(1)) \frac{H *(f)}{\log (H *(f))} .
$$

Example 4.3. Moment known.

A loose upper bound for $H *(f)$ is afforded by Jensen's Inequality:

$$
H^{*}(f) \leq \int_{0}^{\infty} \log (1+x f(0)) f(x) d x \leq \log (1+E(X f(0)))
$$

where X is a random variable with density f. Thus, the expected time of the algorlthm grows at worst as the logarithm of the first moment of the distribution. For example, for the beta $(1, a+1)$ denslty of Example 4.1, thls upper bound is $\log \left(1+\frac{a+1}{a+2}\right) \leq \log (2)$ for all $a>0$. This is an example of a family for which the flrst moment, hence $H^{*}(f)$, is unlformly bounded. From this,

$$
\begin{aligned}
& E\left(N_{s}\right) \leq 2+\frac{\log (2)}{\log (r)} \\
& E\left(N_{r}\right) \leq 1+r
\end{aligned}
$$

The ad hoc choice $r=2$ makes both upper bounds equal to 3 .

4.7. Lipschitz densities on $[0, \infty)$.

The inversion-rejection method can also be used for Lipschitz densities f on $[0, \infty)$. This class is smaller than the class of bounded densitles, but very large compared to the class of monotone densitles. The black box method of section 3 for thls class required knowledge of a moment of the distribution. In contrast, the method presented here works for all densltles $f \in \operatorname{Lip}{ }_{1}(C)$ where only C must be given beforehand. The moments of the distribution need not even exist. If the positive half of the real line is partitioned by

$$
0=x_{0}<x_{1}<x_{2}<\cdots,
$$

then, it is easily seen that on $\left[x_{n}, x_{n+1}\right]$,

$$
f(x) \leq \min \left(f\left(x_{n}\right)+C\left(x-x_{n}\right), f\left(x_{n+1}\right)+C\left(x_{n+1}-x\right)\right)
$$

and

$$
f(x) \leq \sqrt{2 C\left(1-F\left(x_{n}\right)\right)}
$$

where the last Inequality is based upon Theorem 3.5. The areas under the respective dominating curves are

$$
E\left(N_{r}\right)=\sum_{n=0}^{\infty} \frac{1}{2 C}\left(c \Delta_{n}\left(f\left(x_{n}\right)+f\left(x_{n+1}\right)\right)-\frac{1}{2}\left(f\left(x_{n}\right)+f\left(x_{n+1}\right)\right)^{2}+\frac{C^{2} \Delta_{n}^{2}}{2}\right)
$$

and

$$
E\left(N_{r}\right)=\sum_{n=0}^{\infty} \Delta_{n} \sqrt{2 C\left(1-F\left(x_{n}\right)\right)},
$$

where $\Delta_{n}=x_{n+1}-x_{n}$. The value of $E\left(N_{s}\right)$ depends only upon the partition, and not upon the inequalitles used in the rejection step, and plays no role when the Inequallities are compared. Generally speaking, the second inequality is better because it uses more information (the value of F is used). Consider the first inequality. To guarantee that $E\left(N_{r}\right)$ be finlte, for the vast majorlty of $L_{i p}$ densltles we need to ask that

$$
\sum_{n=0}^{\infty} \Delta_{n}^{2}<\infty
$$

But, since we require a valid partition of R, we must also have

$$
\sum_{n=0}^{\infty} \Delta_{n}=\infty
$$

In particular, we cannot afford to take $\Delta_{n}=\delta>0$ for all n. Consider now Δ_{n} satisfying the conditions stated above. When $\Delta_{n} \sim n^{-a}$, then it is necessary that $a \in\left(\frac{1}{2}, 1\right]$. Thus, the intervals shrink rapidly to 0 . Consider for example

$$
\Delta_{n}=\frac{c}{n+1} \quad(n \geq 0)
$$

For this cholce, the intervals shrink so rapldly that we spend too much time searching unless f has a very small tall. In particular,

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{n=0}^{\infty} P\left(X \geq \sum_{i=0}^{n} \Delta_{i}\right) \\
& \leq \sum_{n=0}^{\infty} P(X \geq c \log (n+2)) \\
& =\sum_{n=0}^{\infty} P\left(e^{\frac{X}{c}} \geq n+2\right) \\
& \leq E\left(e^{\frac{X}{c}}\right)
\end{aligned}
$$

A similar lower bound for $E\left(N_{s}\right)$ exists, so that we conclude that $E\left(N_{s}\right)<\infty$ if and only if the moment generating function at $\frac{1}{c}$ is finite, i.e.

$$
m\left(\frac{1}{c}\right)=E\left(e^{\frac{X}{c}}\right)<\infty
$$

In other words, f must have a sub-exponential tall for good expected time. Thus, Instead of analyzing the first Inequality further, we concentrate on the second Inequallty.

The algorlthm based upon the second inequallty can be summarlzed as follows:

Inversion-rejection algorithm for Lipschitz densities

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 0, R \leftarrow F(X)$
REPEAT
$X^{*} \leftarrow \operatorname{Next}(X), R * \leftarrow F\left(X^{*}\right)$ (The function Next computes the next value in the partition.)
IF $U \leq R *$
THEN Accept \leftarrow True
ELSE $R \leftarrow R *, X \leftarrow X *$
UNTIL Accept
REPEAT
Generate two independent uniform $[0,1]$ random variates V, W.
$Y \leftarrow X+V\left(X^{*}-X\right)(Y$ is uniformly distributed on $[X, X *)$.
UNTIL $W \sqrt{2 C(1-R)} \leq f(Y)$
RETURN Y

There are three partitloning schemes that stand out as belng elther important or practical. These are deflned as follows:
A. $x_{n}=n \delta$ for some $\delta>0$ (thus, $x_{n+1}-x_{n}=\delta$).
B. $x_{n+1}=t r^{n}$ for some $t>0, r>1, x_{1}=t$ (note that $x_{n+1}=r x_{n}$ for all $n \geq 1$). The intervals grow exponentlally fast.
C. $x_{n+1}=x_{n}+\sqrt{\frac{1-F\left(x_{n}\right)}{2 C}}$ (thls cholce provides a balance between $E\left(N_{s}\right)$ and $\left.E\left(N_{r}\right)\right)$.
Schemes A and B require additional design constants, whereas scheme C is completely automatlc. Whlch scheme is actually preferable depends upon varlous factors, foremost among these the size of the tall of the distribution. By imposing conditions on the tall, we can derlve upper bounds for $E\left(N_{s}\right)$ and $E\left(N_{r}\right)$. These are collected in Theorem 4.5:

Theorem 4.5.

Let $f \in L i p_{1}(C)$ be a density on $[0, \infty)$. Let $p>1$ be a constant. When the p-th moment exists, it is denoted by μ_{p}.

For scheme A,

$$
\max \left(1, \frac{\mu_{1}}{\delta}\right) \leq E\left(N_{s}\right) \leq 1+\frac{\mu_{1}}{\delta}
$$

$$
\delta \sqrt{2 C} \max \left(1, \frac{1}{\sqrt{\mu_{2}}}, \frac{\sqrt{\mu_{2}}}{\delta}\right) \leq E\left(N_{r}\right) \leq \delta \sqrt{2 C}\left(2+\frac{p}{p-1} \frac{\left(\mu_{2 p}\right)^{\frac{1}{2 p}}}{\delta}\right)
$$

In particular, if $\delta=\sqrt{\frac{\mu_{1}}{\sqrt{8 C}}}$, then

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq 1+(8 C)^{\frac{1}{4}} \sqrt{\mu_{1}}+\sqrt{8 C}\left(\mu_{4}\right)^{\frac{1}{4}}
$$

and when $\delta=\frac{1}{\sqrt{8 C}}$,

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq 2+\sqrt{8 C}\left(\left(\mu_{4}\right)^{\frac{1}{4}}+\mu_{1}\right) \leq 2+\sqrt{32 C}\left(\mu_{4}\right)^{\frac{1}{4}}
$$

For scheme B,

$$
\begin{aligned}
& E\left(N_{s}\right) \leq 2+E\left(\frac{\log _{+}\left(\frac{X}{t}\right)}{\log (r)}\right) \\
& E\left(N_{r}\right) \leq \sqrt{2 C}\left(t+\frac{\sqrt{\mu_{2 p}} r^{p-1}(r-1)}{t^{p-1}\left(r^{p-1}-1\right)}\right)
\end{aligned}
$$

For scheme C,

$$
E\left(N_{s}\right)=E\left(N_{r}\right) \leq \sqrt{8 C} \int_{0}^{\infty} \sqrt{1-F(x)} d x \leq \frac{p}{p-1} \sqrt{8 C}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}
$$

At the same time, even if $\mu_{2}=\infty$, the following lower bound is valld:

$$
\sqrt{2 C \mu_{2}} \leq \frac{1}{2} \sqrt{8 C} \int_{0}^{\infty} \sqrt{1-F(x)} d x \leq E\left(N_{s}\right)=E\left(N_{r}\right)
$$

Proof of Theorem 4.5.

In this proof, X denotes a random varlate with denslty f. Rewrite $E\left(N_{s}\right)$ as follows:

$$
E\left(N_{s}\right)=\sum_{n=0}^{\infty} \int_{\delta n}^{\infty} f(x) d x=\int_{0}^{\infty}\left\lfloor\frac{x}{\delta}+1\right\rfloor d x
$$

This can be obtalned by an interchange of the sum and the integral. But then, by Jensen's inequallty and trivial bounds,

$$
\begin{aligned}
& \max \left(1, \frac{E(X)}{\delta}\right) \leq \int_{0}^{\infty} \max \left(1, \frac{x}{\delta}\right) f(x) d x \leq E\left(N_{s}\right) \\
& \leq \int_{0}^{\infty}\left(\frac{x}{\delta}+1\right) f(x) d x=1+\frac{E(X)}{\delta}
\end{aligned}
$$

Next,

$$
E\left(N_{r}\right)=\sum_{n=0}^{\infty} \sqrt{2 C(1-F(\delta n))} \delta
$$

so that by Chebyshev's Inequallty,

$$
\begin{aligned}
& \frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}} \leq \sum_{n=0}^{\infty} \min \left(1, \frac{\sqrt{\mu_{2 \dot{p}}}}{(n \delta)^{p}}\right) \\
& \leq 1+\frac{1}{\delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}+\sum_{n=n_{0}}^{\infty} \frac{\sqrt{\mu_{2 p}}}{(n \delta)^{p}}
\end{aligned}
$$

where $n_{0}=\left[\frac{1}{\delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}\right]$. By a simple argument, we see that

$$
\begin{aligned}
& \sum_{n=n_{0}}^{\infty} n^{-p} \leq n_{0}^{-p}+\int_{n_{0}}^{\infty} x^{-p} d x \\
& =n_{0}^{-p}+\frac{1}{p-1} n_{0}^{-(p-1)}
\end{aligned}
$$

Combining this shows that

$$
\begin{aligned}
& \frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}} \leq 1+\frac{1}{\delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}+1+\frac{1}{(p-1) \delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}} \\
& =2+\frac{p}{p-1} \frac{\left(\mu_{2 p}\right)^{\frac{1}{2 p}}}{\delta}
\end{aligned}
$$

Thls brlngs us to the lower bounds for scheme A. We have, by the CauchySchwarz Inequality,

$$
\frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}}=\sum_{n=0}^{\infty} \sqrt{\int_{\delta n}^{\infty} f}
$$

$$
\begin{aligned}
& \geq \sum_{n=0}^{\infty} \frac{\int_{\delta n}^{\infty} \sqrt{f}(x \sqrt{f})}{\sqrt{\int(x \sqrt{f})^{2}}} \\
& =\sum_{n=0}^{\infty} \frac{\int_{\delta n}^{\infty} x f}{\sqrt{\mu_{2}}} \\
& \geq \frac{1}{\sqrt{\mu_{2}}} \int x f(x) \max \left(1, \frac{x}{\delta}\right) d x \\
& \geq \frac{1}{\sqrt{\mu_{2}}} \max \left(1, \frac{\mu_{2}}{\delta}\right) \\
& =\max \left(\frac{1}{\sqrt{\mu_{2}}}, \frac{\sqrt{\mu_{2}}}{\delta}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}}=\sum_{n=0}^{\infty} \sqrt{\int_{\delta n}^{\infty} f} \\
& \geq \sum_{n=0 \delta n}^{\infty} \int_{0}^{\infty} f \\
& \geq \max \left(1, \frac{\mu_{1}}{\delta}\right)
\end{aligned}
$$

For scheme B, we have

$$
\begin{aligned}
& E\left(N_{s}\right)=1+\sum_{n=0}^{\infty}\left(1-F\left(t r^{n}\right)\right) \\
& =1+\sum_{n=0 t r^{n}}^{\infty} f(x) d x \\
& \leq 2+E\left(\frac{\log _{+}\left(\frac{X}{t}\right)}{\log (r)}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& E\left(N_{r}\right)=\sum_{n=0}^{\infty} \sqrt{2 C} \sqrt{1-F\left(t r^{n}\right) t(r-1) r^{n}}+\sqrt{2 C} t \\
& \leq \sqrt{2 C} t+\sqrt{2 C} \sum_{n=0}^{\infty} t(r-1) r^{n} \frac{\sqrt{\mu_{2 p}}}{t^{p} r^{n p}} \\
& =\sqrt{2 C}\left(t+\frac{\sqrt{\mu_{2 p}} r^{p-1}(r-1)}{t^{p-1}\left(r^{p-1}-1\right)}\right) .
\end{aligned}
$$

Finally, we consider scheme C. Consider the graph of $1-\sqrt{1-F(x)}$. Construct for glven x_{n} the triangle with top on the given curve, and base $\left[x_{n}, x_{n+1}\right]$ at helght 1 . Its area is $\frac{1-F\left(x_{n}\right)}{\sqrt{8 C}}$. The triangle lles completely above the given curve because the slope of the hypothenusa is $\sqrt{2 C}$, which is at least as steep as the derivative of $1-\sqrt{1-F}$ at any point. To see this, note that the latter derivative at x is

$$
\frac{f(x)}{2 \sqrt{1-F(x)}} \leq \frac{\sqrt{2 C(1-F(x))}}{2 \sqrt{1-F(x)}}=\sqrt{\frac{C}{2}}
$$

Thus, the sums of the areas of the triangles is not greater than the integral $\int_{0}^{\infty} \sqrt{1-F(x)} d x$. But this sum is

$$
\sum_{n=0}^{\infty} \frac{1-F\left(x_{n}\right)}{\sqrt{8 C}}=\frac{E\left(N_{r}\right)}{\sqrt{8 C}}=\frac{E\left(N_{s}\right)}{\sqrt{8 C}}
$$

Also, twice the area of the triangles is at least equal to $\int_{0}^{\infty} \sqrt{1-F(x)} d x$. The bounds in terms of the various moments mentioned are obtained without further trouble. First, by Chebyshev's Inequality,

$$
\int_{0}^{\infty} \sqrt{1-F(x)} d x \leq \int_{0}^{\infty} \min \left(1, \frac{\sqrt{\mu_{2 p}}}{x^{p}}\right) d x=\left(\mu_{2 p}\right)^{\frac{1}{2 p}}+\frac{1}{p-1}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}
$$

Also, by the Cauchy-Schwarz Inequality,

$$
\begin{aligned}
& \int_{0}^{\infty} \sqrt{\int_{x}^{\infty}} d x \geq\left(\mu_{2}\right)^{-\frac{1}{2}} \int_{0}^{\infty} \int_{x}^{\infty} y f(y) d y d x \\
& =\left(\mu_{2}\right)^{-\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{y} d x y f(y) d y=\sqrt{\mu_{2}} .
\end{aligned}
$$

We observe that $\sqrt{C} X$ is a scale-invarlant quantlty. Thus, one upper bound for scheme A (cholce $\delta=\frac{1}{\sqrt{8 C}}$) and the upper bound for scheme C are scaleInvarlant: they depend upon the shape of the density only. Scheme C is attractive because no deslgn constants have to be chosen at any time. In scheme A for example, the cholce of δ is critical. The geometrically increasing interval sizes of scheme B seem to offer little advantage over the other methods, because $E\left(N_{r}\right)$ is relatively large.

4.8. Exercises.

1. Obtaln an upper bound for $P\left(N_{r} \geq j\right)$ In terms of j when equi-spaced intervals are used for bounded densitles on $[0, \infty)$ as In Example 4.1. Assume first that the r-th moment μ_{r} is finlte. Assume next that $E\left(e^{t X}\right)=m(t)<\infty$ for some $t>0$. The interval width δ does not depend upon j. Check that the main term in the upper bound is scale-Invariant.
2. Prove Inequality D of Theorem 4.1.
3. Give an example of a monotone density on $[0,1]$, unbounded at 0 , with $H(f)<\infty$.
4. Inequalltles A through C in Theorem 4.1 are best possible: they can be attalned for some classes of monotone densitles on [0,1]. Describe some classes of densitles for which we have equality.
5. When f is a monotone convex density on $[0,1]$, then the Inversion-rejection algorithm based on shrinking Intervals given in the text can be adapted so that rejection is used with a trapezoldal dominating curve joining [$X, f(X)$] and $[r X, f(r X)$] where $r>1$ is the shrinkage parameter used in the original algorithm. Such a change would leave N_{s} the same. It reduces $E\left(N_{r}\right)$ however. Formally, the algorlthm can be written as follows:
```
Inversion-rejection algorithm with intervals shrinking at a geometrical
rate
Generate a uniform \([0,1]\) random variate \(U\).
\(X \leftarrow 1\)
REPEAT
    \(X \leftarrow \frac{X}{r}\)
UNTIL \(U \geq F(X)\)
\(Z \leftarrow f(X), Z * \leftarrow f(r X)\)
REPEAT
    Generate three independent uniform \([0,1]\) random variates, \(U, V, W\).
    \(R \leftarrow \min \left(U, V \frac{Z+Z *}{Z-Z^{*}}\right)\)
    \(Y \leftarrow X(1+(r-1) R)(Y\) has the given trapezoidal density \()\)
    \(T \leftarrow W(Z+(Z *-Z) R)\)
    Accept \(\leftarrow[T \leq Z *]\) (optional squeeze step)
    IF NOT Accept THEN Accept \(\leftarrow[W \leq f(Y)]\)
UNTIL Accept
RETURN \(Y\)
```

Prove that $E\left(N_{r}\right) \leq \frac{1}{2}(1+r)$. In other words, for large values of r, this
corresponds to an Improvement of the order of 50%.
6. IHR densities. Prove the following statements:
A. If X has an IHR density on $[0, \infty)$, then $X f(0)$ is stochastically smaller than an exponentlal random variate, i.e. for all $x>0$, $P(X f(0)>x) \leq e^{-x}$. Conclude that for $r>0, E\left(X^{r}\right) \leq \frac{\Gamma(r+1)}{f(0)^{r}}$.
B. For $r>0, E\left(X^{\dagger}\right) \leq \Gamma(r+1) E^{r}(X)$ (Barlow, Marshall and Proschan, 1963).
C. The convolution of two IHR densities is again IHR.
D. Let Y, Z be Independent IHR random variables with hazard rates h_{Y} and h_{Z}. Then, if h_{Y+Z} is the hazard rate of thelr sum, $h_{Y+Z} \leq \min \left(h_{Y}, h_{Z}\right)$.
E. Construct an IHR density which is continuous, unbounded, and has infinitely many peaks.
7. Show how to choose r and t in the inversion-rejection algorithm with geometrically exploding intervals so as to obtaln performance that is sublogarlthmic in the first moment of the distribution in the following sense:

$$
E\left(N_{r}\right)+E\left(N_{s}\right) \leq C \frac{\log (1+\mu f(0))}{\log (\log (e+\mu f(0)))}
$$

where $\mu=E(X), C$ is some universal constant, and X is a random variable with denslty f.
8. Bounded convex monotone densities. Glve an algorithm analogous to that studied in Theorem 4.4 for thls class of densitles: Its sole difference is that the rejection step uses a trapezoldal dominating curve. For this algorithm, in the notation of Theorem 4.4, prove the inequallty

$$
E\left(N_{r}\right) \leq \frac{1}{2}(t f(0)+r+1)
$$

9. Prove that if $\Delta_{n}=\frac{c}{n+1}$ in the algorithm for Lipschitz densitles, then $E\left(N_{s}\right)<\infty$ if and only if $E\left(e^{\frac{X}{c}}\right)<\infty$.
10. Suggest good cholces for t and r in scheme B of Theorem 4.5. These cholces should preferably minimize $E\left(N_{s}\right)+E\left(N_{r}\right)$, or the upper bound for this sum given in the theorem. The resulting upper bound should be scale-invariant.
11. Consider a density f on $[0, \infty)$ which is $\ln \operatorname{Lip} p_{\alpha}(C)$ for some $\alpha \in(0,1]$. Using the inequallty of Theorem 3.5 for such densities, glve an algorithm generallzing scheme C of Theorem 4.5 for Lip_{1} densitles. Make sure that $E\left(N_{s}\right)=E\left(N_{r}\right)$ and give an upper bound for $E\left(N_{s}\right)$ which generalizes the upper bound of Theorem 4.5.
12. The lower bound for scheme $\mathrm{C} \ln$ Theorem 4.5 shows that when $\mu_{2}=\infty$, then $E\left(N_{s}\right)=\infty$. This is a nearly optimal result, in that for most densities with finite second moment, $E\left(N_{s}\right)<\infty$. For example, if $\mu_{2+\epsilon}<\infty$ for some
$\epsilon>0$, then $E\left(N_{s}\right)<\infty$. Find densitles for which $\mu_{2}<\infty$, yet $E\left(N_{s}\right)=\infty$.

Chapter Eight
 TABLE METHODS FOR CONTINUOUS RANDOM VARIATES

1. COMPOSITION VERSUS REJECTION.

We have illustrated how algorlthms can be sped up if we are willing to compute certaln constants beforehand. For example, when a discrete random varlate is generated by the inversion method, it pays to compute and store the individual probabilitles p_{n} beforehand. This information can speed up sequential search, or could be used in the method of gulde tables. For continuous random varlates, the same remains true. Because we know many ultra fast dlscrete random varlate generation methods, but very few fast continuous random variate generation techniques, there is a more pressing need for acceleration in the contlnuous case. Globally speaking, discretizing the problem speeds generation.

We can for example cut up the graph of f into pleces, and use the compositlon method. Choosing a plece is a discrete random varlate generation problem. Generating a continuous random varlate for an individual plece is usually simple because of the shape of the plece which is selected by us. There are only a few drawbacks: first of all, we need to know the areas of the pieces. Typlcally, this is equivalent to knowing the distribution function. Very often, as with the normal denslty for example, the distribution function must be computed as the integral of the density, which in our model is an infinite time operation. In particular, the composition method can hardly be made automatlc because of this. Secondly, we observe that there usually are several nonrectangular pleces, which are commonly handled via the rejection method. Rectangular pleces are of course most convenlent since we can just return a properly translated and scaled uniform random varlate. For thls reason, the total area of the nonrectangular pleces should be kept as small as possible.

There is another approach which does not require integration of f. If we find a function $g \geq f$, and use rejectlon, then similar accelerations can be obtalned if we cut the graph of g up into convenient pleces. But because g is plaked by us, we do of course know the areas (welghts) of the pleces, and we can choose g plecewise constant so that each component plece is for example
rectangular. One could object that for thls method, we need to compute the ratio f / g rather often as part of the rejection algorithm. But this too can be avolded whenever a given plece lles completely under the graph of f. Thus, in the design of pieces, we should try to maximize the area of all the pleces entlrely covered by the graph of f.

From this general description, it is seen that all bolls down to decompositlons of densitles into small manageable pleces. Basically, such decompositions account for nearly all very fast methods avallable today: Marsaglla's rectangle-wedge-tall method for normal and exponential denstiles (Marsaglla, Maclaren and Bray, 1984; Marsaglla, Ananthanarayanan and Paul, 1976), the method of Ahrens and Kohrt (1981), the allas-rejection-mixture method (Kronmal and Peterson, 1980), and the zlggurat method (Marsaglia and Tsang, 1984). The acceleration can only work well if we have a finite decomposition. Thus, Infinite talls must be cut off and dealt with separately. Also, from a didactical point of view, rectangular decompositions are by far the most important ones. We could add trlangles, but thls would detract from the main points. Since we do care about the generalIty of the results, it seems polntless to describe a particular normal generator for example. Instead, we will present algorithms which are applicable to large classes of densittes. Our treatment differs from that found in the references cited above. But at the same tlme, all the Ideas are borrowed from those same references.

In section 2, we will discuss strlp methods, l.e. methods that are based upon the partltion of f into parallel strips. Because the strips have unequal probabillthes, the strip selection part of the algorithm is usually based upon the allas or allas-urn methods. Partitlons Into equal parts are convenlent because then fast table methods can be used directly. This is further explored in section 3.

2. STRIP METHODS.

2.1. Definition.

The following will be our standing assumptions in thls section: f is a bounded density on $[0,1]$; the Interval $[0,1]$ is divided into n equal parts (n is chosen by the user); g is a function constant on the n Intervals, 0 outside $[0,1]$, and at least equal to f everywhere. We set

$$
g(x)=g_{i} \quad\left(\frac{i-1}{n} \leq x<\frac{i}{n}\right) \quad(1 \leq i \leq n) .
$$

Define the strip probabillties

$$
p_{i}=\frac{g_{i}}{\sum_{j=1}^{n} g_{j}} \quad(1 \leq i \leq n)
$$

Then, the following rejection algorithm is valld for generating a random varlate with density f :

REPEAT
Generate a discrete random variate Z whose distribution is determined by $P(Z=i)=p_{i} \quad(1 \leq i \leq n)$.
Generate two ild uniform $[0,1]$ random variate U, V.
$X \leftarrow \frac{Z-1+V}{n}$
UNTIL $U_{g} \leq f(X)$
RETURN X

As n increases, the rejection rate should diminish slnce it is possible to find better and better dominating functions g. But regardless of how large n is plcked, there is no avoiding the two unlform random varlates and the computation of $f(X)$. Suppose now that each strip is cut into two parts by a horizontal line, and that the bottom part is completely tucked under the graph of f. For part i, the horlzontal line has helght h_{i}. We can set up a table of $2 n$ probabliltles: p_{1}, \ldots, p_{n} correspond to the bottom portions, and $p_{n+1}, \ldots, p_{2 n}$ to the top portions. Then, random varlate generation can proceed as follows:

REPEAT

Generate a discrete random variate Z whose distribution is determined by $P(Z=i)=p_{i} \quad(1 \leq i \leq 2 n)$.
Generate a uniform $[0,1]$ random variate V.
$X-\frac{Z-1+V}{n}$
IF $Z \leq n$
THEN RETURN X ELSE

Generate a uniform [0,1] random variate U. IF $h_{Z-n}+U\left(g_{Z-n}-h_{Z-n}\right) \leq f(X-1)$ THEN RETURN $X-1$
UNTIL False

When the bottom probabilltles are dominant, we can get away with generating just one discrete random varlate Z and one unlform $[0,1]$ random varlate V most of the time. The performance of the algorlthm is summarized in Theorem 2.1:

Theorem 2.1.

For the rejection method based upon n split strips of equal width, we have:

1. The expected number of iterations is $\frac{1}{n} \sum_{i=1}^{n} g_{i}$. This is also equal to the expected number of dlscrete random varlates Z per returned random varlate X.
2. The expected number of computations of f is $\frac{1}{n} \sum_{i=1}^{n}\left(g_{i}-h_{i}\right)$.
3. The expected number of uniform $[0,1]$ random variates is $\frac{1}{n} \sum_{i=1}^{n} g_{i}+\frac{1}{n} \sum_{i=1}^{n}\left(g_{i}-h_{i}\right)$.

Proof of Theorem 2.1.

The proof uses standard properties of rejection algortthms, together with Wald's equation.

The algorithm requires tables for $g_{i}, h_{i}, 1 \leq i \leq n$, and $p_{i}, 1 \leq i \leq 2 n$. Some of the $4 n$ numbers stored away contain redundant information. Indeed, the p_{i} 's can be computed from the g_{i} 's and h_{i} 's. We store redundant information to Increase the speed of the algorlthm. There may be additional storage requirements depending upon the discrete random varlate generation method: see for example what is needed for the method of gulde tables, and the allas and allasurn methods which are recommended for this application. Recall that the expected time of these generators does not depend upon n.

Thus, we are left only with the computation of the g_{i} 's and h_{i} 's. Consider first the best possible constants:

$$
\begin{aligned}
& g_{i}=\sup _{\frac{i-1}{n} \leq x<\frac{i}{n}} f(x) \\
& h_{i}=\operatorname{lnf}_{\frac{i-1}{n} \leq x<\frac{i}{n}} f(x)
\end{aligned}
$$

Normally, we cannot hope to compute these values in a finlte amount of time. For specially restricted densitles f, it is possible however to do so quite easlly. Regardless of whether we can actually compute them or not, we have the following Important observation:

Theorem 2.2.
Assume that f is a Rlemann integrable density on $[0,1]$. Then, if g_{i}, h_{i} are deflned by:

$$
\begin{aligned}
& g_{i}=\sup _{\frac{i-1}{n} \leq x<\frac{i}{n}} f(x) ; \\
& h_{i}=\operatorname{lnf}_{\frac{i-1}{n} \leq x<\frac{i}{n}} f(x),
\end{aligned}
$$

we have:

1. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} g_{i}=1$;
2. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(g_{i}-h_{i}\right)=0$.

Proof of Theorem 2.2.

It suffices to prove the second statement, in view of the fact that

$$
\frac{1}{n} \sum_{i=1}^{n} g_{i} \leq 1+\frac{1}{n} \sum_{i=1}^{n}\left(g_{i}-h_{i}\right) .
$$

But the second statement is a direct consequence of the definition of Riemann integrabllity.

Thus, for sufficlently well-behaved densitles, if we have optimal bounds g_{i}, h_{i} at our disposal, the algorithm becomes very efficlent when n grows large.
2.2. Example 1: monotone densities on [0,1$]$.

When f is monotone on $[0,1]$, we can set

$$
g_{i}=f\left(\frac{i-1}{n}\right) ; h_{i}=f\left(\frac{i}{n}\right)
$$

We also have

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left(g_{i}-h_{i}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\frac{i-1}{n}\right)-f\left(\frac{i}{n}\right)\right) \\
& =\frac{1}{n}(f(0)-f(1)) \leq \frac{f(0)}{n}
\end{aligned}
$$

The performance of the algorlthm can be summarlzed quite slmply:

1. The expected number of iterations is $\leq 1+\frac{f(0)}{n}$. This is also equal to the expected number of discrete random varlates Z per returned random varlate X.
2. The expected number of computations of f is $\leq \frac{f(0)}{n}$.
3. The expected number of unlform $[0,1]$ random varlates $\mathrm{is} \leq 1+\frac{2 f(0)}{n}$.

We also note that to set up the tables g_{i}, h_{i}, It suffices to evaluate f at the $n+1$ mesh polnts. Furthermore, the extremes of f are reached at the endpolnts of the Intervals, so that the constants are in thls case best possible. The only way to lmprove the performance of the algorithm would be by considering unequal interval slzes. It should be clear that the interval sizes should become smaller as we approach the orlgin. The unequal intervals need to be plcked with care if real savings are needed. For a fair comparison, we will use n intervals with breakpoints

$$
0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=1,
$$

where

$$
\begin{aligned}
& x_{i+1}-x_{i}=\delta b^{i} \quad(0 \leq i \leq n-1) \\
& \delta=\frac{b-1}{b^{n}-1}
\end{aligned}
$$

and $b>1$ is a design constant. The algorithm is only slightly different now. because an additional array of x_{i} 's is stored.

Theorem 2.3.

Assume that f is a monotone density on $[0,1]$. Then for the rejection-based strlp method shown above,
A. The expected number of lteratlons does not exceed

$$
b+f(0) \frac{b-1}{b^{n}-1} .
$$

B. If $b=1+\frac{1}{n} \log (1+f(0)+f(0) \log (f(0)))$, then the upper bound is of the form

$$
1+\frac{1}{n}(\log (1+f(0)+f(0) \log (f(0))))\left(1+\frac{1}{1+\log (f(0))}+o(1)\right)
$$

as $n \rightarrow \infty$. (Note: when $f(0)$ is large, we have approximately $1+\frac{\log (f(0))}{n}$.)

Proof of Theorem 2.3.

The expected number of terations is

$$
\begin{aligned}
& \sum_{i=0}^{n-1} f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& =\sum_{i=0}^{n-1} \delta b^{i} f\left(x_{i}\right) \\
& \leq \delta f(0)+\sum_{i=1}^{n-1} b \int_{x_{i-1}}^{x_{i}} f(y) d y \\
& \leq b+f(0) \frac{b-1}{b^{n}-1} .
\end{aligned}
$$

When $b=1+\frac{c}{n}$ for some constant $c>0$, then it is easy to see that the upper bound is

$$
1+\frac{1}{n}\left(c+f(0) \frac{c}{e^{c}-1+o(1)}\right) .
$$

Replace c by $\log (1+f(0)+f(0) \log (f=)$.

What we retain from Theorem $2 . E: \leq$ that with some careful design, we can do much better than in the equi-spacE二: - terval case. Roughly speaking, we have reduced the expected number of lter $=:=2$ for monotone densitles on [0,1] from $1+\frac{f(0)}{n}$ to $1+\frac{\log (f(0))}{n}$. Several dE: of the last algorithm are dealt with in
the exerclses.

2.3. Other examples.

In the absence of information about monotoniclty or unimodality, it is virtually impossible to compute the best possible constants g_{i} and h_{i} for the rejection-based table method. Other pleces of information can ald in the derlvatlon of sllghtly sub-optimal constants. For example, when $f \in \operatorname{Lip}{ }_{1}(C)$, then

$$
\begin{aligned}
& g_{i}=\frac{C}{2 n}+\frac{f\left(\frac{i-1}{n}\right)+f\left(\frac{i}{n}\right)}{2} \\
& h_{i}=-\frac{C}{2 n}+\frac{f\left(\frac{i-1}{n}\right)+f\left(\frac{i}{n}\right)}{2}
\end{aligned}
$$

will do. These numbers can agaln be computed from the values of f at the $n+1$ mesh polnts. We can work out the detalls of Theorem 2.1:

Theorem 2.4.

For the rejection method based upon n split strips of equal width, used on a $L_{i p}(C)$ density f on $[0,1]$, we have:

1. The expected number of iterations is

$$
\frac{C}{2 n}+\frac{f(0)+2 f\left(\frac{1}{n}\right)+\cdots+2 f\left(\frac{n-1}{n}\right)+f(1)}{2} \leq 1+\frac{C}{n}
$$

This is also equal to the expected number of dlscrete random varlates Z per returned random varlate X.
2. The expected number of computations of f is $\leq \frac{C}{n}$.
3. The expected number of unlform $[0,1]$ random varlates is $\leq 1+\frac{2 C}{n}$.

Proof of Theorem 2.4.

The first expression follows directly after resubstitution of the values of g_{i} and h_{i} into Theorem 2.1. The upper bound of parts 1 and 2 are obtalned by notIng that $g_{i}-h_{i}=\frac{C}{n}$ for all i. Finally, part 3 is obtained by summing the bounds obtained \ln parts 1 and 2.

Once again, we can control the performance characteristics of the algorthm by our cholce of n. The characteristics can be improved slightly if we make use of the fact that for Lipschitz densitles known at mesh points, the obvlous plecewise llnear dominating curve has sllghtly smaller integral than the plecewise constant dominating curve suggested here. It should be noted that the switch to plecewise llnear dominating curves is costly in terms of the number of uniform random variates needed, and in terms of the length of the program. It is much simpler to improve the performance by increasing n.

2.4. Exercises.

1. For the algorithm for monotone densitles analyzed in Theorem 2.3, give a good upper bound for the expected number of computations of f, both in terms of general constants $b>1$ and for the constant actually suggested in Theorem 2.3.
2. When f is monotone and convex on [0,1], then the plecewise llnear curve which touches the curve of f at the mesh points can be used as a dominatIng curve. If n equal Intervals are used, show that the expected number of evaluations of f can be reduced by 50% over the corresponding plecewise constant case. Glve the detalls of the algorlthm. Compare the expected number of unlform $[0,1]$ random varlates for both cases.
3. Develop the detalls of the rejection-based strip method for Lipschitz densithes which uses a plecewise llnear dominating curve and n equi-spaced intervals. Compute good bounds for the expected number of iterations, the expected number of computations of f, and the expected number of uniform $[0,1]$ random varlates actually required.
4. Adaptive methods. Consider a bounded monotone density f on $[0,1]$. When $f(0)$ is known, we can generate a random varlate by rejection from a unlform density on $[0,1]$. This corresponds to the strip method with one Interval. As random varlates are generated, the dominating curve for the strlp method can be adjusted by considering a stalrcase function with breakpoints at the X_{i} 's. This calls for a dynamic data structure for adjusting the probabllitles and sampling from a varying discrete distribution. Design such a structure, and prove that the expected tlme needed per adjustment is O (1) as $n \rightarrow \infty$, and that the expected number of f evaluations is $o(1)$ as $n \rightarrow \infty$.
5. Let F be a continuous distribution function. For flxed but large n, compute $x_{i}=F^{-1}\left(\frac{i}{n}\right), 0 \leq i \leq n$. Select one of the x_{i} 's $(0 \leq i<n)$ with equal probabllity $1 / n$, and deflne $X=x_{i}+U\left(x_{i+1}-x_{i}\right)$ where U is a unlform $[0,1]$ random varlate. The random variable X has distribution function G_{n} which is close to F. It has been suggested as a fast universal table method in a varlety of papers; for slmllar approaches, see Barnard and Cawdery (1974) and Mitchell (1977). When $x_{0}=-\infty$ or $x_{n}=\infty$, deflne X in a sensible way on the interval in question.
[SET-UP]
Choose $b>1$, and integer $n>1$. Set $\delta \leftarrow \frac{b-1}{b^{n}-1}$. Set $x_{0} \leftarrow 0$.
FOR $i:=1$ TO n DO

$$
\begin{aligned}
& x_{i} \leftarrow \delta \frac{b^{i}-1}{b-1} \\
& g_{i} \leftarrow f\left(x_{i-1}\right) ; h_{i} \leftarrow f\left(x_{i}\right) \\
& p_{i} \leftarrow h_{i}\left(x_{i}-x_{i-1}\right) \\
& p_{n+i} \leftarrow\left(g_{i}-h_{i}\right)\left(x_{i}-x_{i-1}\right)
\end{aligned}
$$

Normalize the vector of p_{i} 's.
[GENERATOR]

REPEAT

Generate a discrete random variate Z whose distribution is determined by $P(Z=i)=p_{i} \quad(1 \leq i \leq 2 n)$.
Generate a uniform $[0,1]$ random variate V.
$W-(Z-1) \bmod n$
$\left.X \leftarrow x_{W}+V\left(x_{W+1}-x_{W}\right)\right)$
IF $Z \leq n$
THEN RETURN X
ELSE
Generate a uniform $[0,1]$ random variate U.
IF $h_{Z-n}+U\left(g_{Z-n}-h_{Z-n}\right) \leq f(X)$ THEN RETURN X
UNTIL False
A. Prove that in all cases, sup $\left|F-G_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
B. Prove that when F has a density f, then $\int\left|f-g_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$, where g_{n} is the denslty of G_{n}. This property holds true without exceptlon.
C. Determine an upper bound on the L_{1} error of part B in terms of f^{\prime} and n whenever f is absolutely contlnuous with almost everywhere derlvative f^{\prime}.

3. GRID METHODS.

3.1. Introduction.

Some acceleration can be obtalned over strip methods if we make sure that all the components boxes (usually rectangles) are of equal area. In that case, the standard (very fast) table methods can be used for generation. The cost can be prohlbitive: the boxes must be fine so that they can capture the detall in the outline of the density f, and this forces us to store very many small boxes.

The versatility of the principle is illustrated here on a varlety of problems, ranging from the problem of the generation of a uniformly distributed random vector in a compact set of R^{d}, to avoldance problems, and fast random varlate generation.

3.2. Generating a point uniformly in a compact set.

Let us enclose the compact set A of R^{d} with a hyperrectangle H with sldes $h_{1}, h_{2}, \ldots, h_{d}$. Divide each side up into N_{i} intervals of length $\frac{h_{i}}{N_{i}}, 1 \leq i \leq d$. There are three types of grld rectangles, the good rectangles (entlrely contained In A), the bad rectangles (those partlally overlapping with A), and the useless rectangles (those entirely outside A). Before we start generating, we need to set up an array of addresses of rectangles, which we shall call a directory. For the tlme belng, we can think of an address of a rectangle as the coordinates of tts leftmost vertex (in all directions). The directory (called D) is such that in posttlons 1 through k we have good rectangles, and in positions $k+1$ through $k+l$, we have bad rectangles. Useless rectangles are not represented in the array. The informal algorithm for generating a uniformly distributed point in A is as follows:

REPEAT

Generate an integer Z uniformly distributed in $1,2, \ldots, k+l$.
Generate X uniformly in rectangle $D[Z](D[Z]$ contains the address of rectangle Z).
Accept $\leftarrow[Z \leq k]$ (Accept is a boolean variable.)
IF NOT Accept THEN Accept $\leftarrow[X \in A]$.
UNTIL Accept
RETURN X

The expected number of Iterations is equal to

$$
\frac{\operatorname{area}(C)}{\operatorname{area}(A)}
$$

where C is the unlon of the good and bad rectangles (if the useless rectangles are not discarded, then $C=H$). If the area of one rectangle is a, then area $(C)=a(k+l)$. For most bounded sets A, thls can be made to go to 1 as the grid becomes finer. That thls is not always the case follows from this simple example: let A be $[0,1]^{d}$ unlon all the rational vectors in $[1,2]^{d}$. Since the rationals are dense in the real line, any grid cover of A necessarlly covers $[0,1]^{d}$ and $[1,2]^{d}$, so that the ratio of the areas is always at least 2. Fortunately, for all compact (1.e., closed and bounded) sets A, the glven ratio of areas tends to one as the grid becomes flner (see Theorem 3.1).

The speed of the algorithm follows from the fact that when a good rectangle is chosen, no boundary checking needs to be done. Also, there are many more good rectangles than bad rectangles, so that the contribution to the expected time from boundary checking is small. Of course, we must in any case look up an entry in a directory. This is reminiscent of the urn or table look-up method and its modifications (such as the allas method (Walker, 1977) and the allas-urn method (Peterson and Kronmal, 1982)). Finer grids yleld faster generators but require more space.

One of the measures of the efflciency of the algorithm is the expected number of iterations. We have to make sure that as the grid becomes finer, this expected number tends to one.

Theorem 3.1.

Let A be a compact set of nonzero area (Lebesgue measure), and let us conslder a sequence of grids G_{1}, G_{2}, \ldots which is such that as $n \rightarrow \infty$, the dlameter or the prototype grid rectangle tends to 0 . If C_{n} is the grid cover of A defined by G_{n}, then the ratio $\frac{\operatorname{area}\left(C_{n}\right)}{\operatorname{area}(A)}$ tends to 1 as $n \rightarrow \infty$.

Proof of Theorem 3.1.

Let H be an open rectangle covering A, and let B be the intersection of H with the complement of A. Then, B is open. Thus, for every $x \in B$, we know that the grid rectangle $\ln G_{n}$ to which it belongs is entlrely contalned in B for all n large enough. Thus, by the Lebesgue dominated convergence theorem, the Lebesgue measure of the "useless" rectangles tends to the Lebesgue measure of B. But then, the Lebesgue measure of C_{n} must tend to the Lebesgue measure of A.

The directory itself can be constructed as follows: deffne a large enough array (of slze $n=N_{1} N_{2} \cdots N_{d}$), inttially unused, and keep two stack pointers, one for a top stack growing from position 1 down, and one for a bottom stack growing from the last position up. The two stacks are tled down at the ends of the array and grow towards each other. Travel from grid rectangle to grid rectangle, identlfy the type of rectangle, and push the address onto the top stack when it corresponds to a good rectangle, and onto the bottom stack when we have a bad rectangle. Useless rectangles are ignored. After thls, the array is partlally full, and we can move the bottom stack up to fll posttions $k+1$ through $k+l$. If the number of useless rectangles is expected to be unreasonably large, then the stacks should first be implemented as linked lists and at the end copled to the directory of size $k+l$. In any case, the preprocessing step takes time equal to n, the cardinallty of the grid.

It is Important to obtain a good estlmate of the slze of the directory. We have

$$
k+l \geq \frac{\operatorname{area}(A)}{a}=\frac{\operatorname{area}(A)}{\operatorname{area}(H)} n .
$$

We know from Theorem 3.1 and the fact that area $\left(C_{n}\right)=(k+l) a$, that

$$
\lim _{n \rightarrow \infty} \frac{k+l}{n}=\frac{\operatorname{area}(A)}{\operatorname{area}(H)}
$$

provided that as $n \rightarrow \infty$, we make sure that $\operatorname{Inf}_{i} N_{i} \rightarrow \infty$ (this will insure that the diameter of the prototype rectangle tends to 0). Upper bounds on the size of the directory are harder to come by in general. Let us consider a few speclal cases in
the plane, to lllustrate some points. If A is a convex set for example, then we can look at all N_{1} columns and N_{2} rows in the grid, and mark the extremal bad rectangles on elther slde, together with thelr Immediate nelghbors on the inside. Thus, in each row and column, we are putting at most 4 marks. Our clalm is that unmarked rectangles are elther useless or good. For if a bad rectangle is not marked, then it has at least two nelghbors due north, south, east and west that are marked. By the convexity of A, it is physically impossible that this rectangle is not completely contalned in A. Thus, the number of bad rectangles is at most $4\left(N_{1}+N_{2}\right)$. Therefore,

$$
k+l \leq n \frac{\operatorname{area}(A)}{\operatorname{area}(H)}+4\left(N_{1}+N_{2}\right)
$$

If A conslsts of a union of K convex sets, then a very crude bound for $k+l$ could be obtalned by replacing 4 by $4 K$ (just repeat the marking procedure for each convex set). We summarize:

Theorem 3.2.

The slze of the directory is $k+l$, where

$$
\frac{\operatorname{area}(A)}{\operatorname{area}(H)} \leq \frac{k+l}{n}=(1+o(1)) \frac{\operatorname{area}(A)}{\operatorname{area}(H)}
$$

The asymptotic result ls valld whenever the dlameter of the grld rectangle tends to 0 . For convex sets A on R^{2}, we also have the upper bound

$$
\frac{k+l}{n} \leq \frac{\operatorname{area}(A)}{\operatorname{area}(H)}+4 \frac{N_{1}+N_{2}}{N_{1} N_{2}} .
$$

We are left now with the cholce of the N_{i} 's. In the example of a convex set In the plane, the expected number of iterations is

$$
\frac{(k+l) a}{\operatorname{area}(A)} \leq 1+\frac{\operatorname{area}(H)}{\operatorname{area}(A)} \frac{4}{n}\left(N_{1}+N_{2}\right)
$$

The upper bound is minimal for $N_{1}=N_{2}=\sqrt{n}$ (assume for the sake of conventence that n is a perfect square). Thus, the expected number of iterations does not exceed

$$
1+\frac{\operatorname{area}(H)}{\operatorname{area}(A)} \frac{8}{\sqrt{n}} .
$$

This is of the form $1+\frac{\text { constant }}{\sqrt{n}}$ where n is the cardinality of the enclosing grid. By controlling n, we can now control the expected time taken by the algorithm. The algorlthm is fast if we avoid the bad rectangles very often. It is easy to see that the expected number of inspections of bad rectangles before halting is the expected number of iterations times $\frac{l}{k+l}$, which equals to $\frac{l \operatorname{area}(H)}{n \operatorname{area}(A)}=0$ (1)
slnce $\frac{l}{n} \rightarrow 0$ (as a consequence of Theorem 3.1). Thus, asymptotically, we spend a negllglble fraction of time inspecting bad rectangles. In fact, using the special example of a convex set in the plane with $N_{1}=N_{2}=\sqrt{n}$, we see that the expected number of bad rectangle inspections is at most

$$
\frac{\operatorname{area}(H)}{\operatorname{area}(A)} \frac{8}{\sqrt{n}} .
$$

3.3. Avoidance problems.

In some simulations, usually with geometric Implications, one is asked to generate points unformly in a set A but not in $\cup A_{i}$ where the A_{i} 's are given sets of R^{d}. For example, when one simulates the random parking process (cars of length one park at random in a street of length L but should avold each other), it is important to generate points unlformly in $[0, L]$ minus the unlon of some intervals of the same length. Towards the end of one simulation run, when the street fills up, it is not feasible to keep generating new polnts untll one falls in a good spot. Here a grid structure will be useful. In two dimensions, slmilar problems occur: for example, the circle avoldance problem is concerned with the generation of uniform points in a circle given that the polnt cannot belong to any of a given number of circles (usually, but not necessarlly, having the same radius). For applications involving nonoverlapping clrcles, see Alder and Wainwright (1882), Diggle, Besag and Gleaves (1978), Talbot and Wills (1980), Kelly and Ripley (1978) and Ripley (1977, 1979). Ripley (1979) employs the rejection method for sampling, and Lotwlck (1982) trlangulates the space in such a way that each trlangle has one of the data polnts as a vertex. The triangulation is designed to make sampllng easy, and to improve the rejection constant. Lotwick also Investlgates the performance of the ordinary rejection method when checking for incluslon in a circle is done based upon an algorithm of Green and Sibson (1978).

We could use the grid method in all the examples given above. Note that unllke the problems dealt with in the previous subsection, avoldance problems are dynamic. We cannot afford to recompute the entire directory each time. Thus, we also need a fast method for updating the directory. For thls, we will employ a dual data structure (see e.g. Aho, Hopcroft and Ullman, 1983). The operations that we are interested in are "Select a random rectangle among the good and bad rectangles", and "Update the directory" (which Involves changing the status of good or bad rectangles to bad or useless rectangles, because the avoldance region grows continuously). Also, for reasons explained above, we would like to keep the good rectangles together. Assume that we have a d-dimensional table for the rectangles containing three pleces of information:
(1) The coordinates of the rectangle (usually of vector of integers, one per coordinate).
(ii) The status of the rectangle (good, bad or useless).
(iII) The position of the rectangle in the directory (this is called a pointer to the directory).
The directory is as before, except that it will shrink in size as more and more rectangles are declared useless. The update operation Involves changing the status of a number of rectangles (for example, if a new circle to be avolded is added, then all the rectangles entlrely within that clrcle are declared useless, and those that straddle the boundary are declared bad). Since we would like to keep the time of the update proportlonal to the number of cells involved tlmes a constant, it is obvious that we wlll have to reorganize the directory. Let us use two lists agaln, a llst of good rectangles thed down at 1 and with top at k, and a list of bad rectangles tled down at n and with top at $n-l+1$ (It has l elements). There are three situations:
(A) A good rectangle becomes bad: transfer from one llst to the other. Fill the hole in the good list by fllling it with the top element. Update k and l.
(B) A good or bad rectangle becomes useless: remove the element from the approprlate llst, and fill the hole as In case (A). Update k or l.
(C) A bad rectangle remains bad: lgnore this case.

For generation, there is only a problem when $Z>k$: when this happens, replace Z by $Z+n-l-k$, and proceed as before. This replacement makes us jump to the end of the directory.

Let us turn now to the car parking problem, to see why the grid structure is to be used with care, if at all, in avoidance problems. At flrst, one might be tempted to think that for fine enough grids, the performance is excellent. Also, the number of cars (N) that are eventually parked on the street cannot exceed L, the length of the street. In fact, $E(N) \sim \lambda L$ as $L \rightarrow \infty$ where

$$
\lambda=\int_{0}^{\infty} e^{-2 \int_{0}^{1}\left(1-e^{-4}\right) / u d u} d t=0.748 \ldots
$$

(see e.g. Renyl (1958), Dvoretzky and Robblns (1984) or Mannion (1964)). What determines the time of the slmulation run is of course the number of unlform $[0,1]$ random varlates needed in the process. Let \mathbf{E} be the event
[Car 1 does not intersect [0,1]].
Let T be the time (number of unlforms) needed before we can park a car to the left of the first car. This is infinite on the complement of E , so we will only consider E . The expected time of the entire stmulation is at least equal to $P(\mathbf{E}) E(T \mid \mathbf{E})$. Clearly, $P(\mathrm{E})=(L-1) / L$ is positive for all $L>1$. We will show that $E(T \mid \mathbf{E})=\infty$, which leads us to the concluslon that for all $L>1$, and for all grid sizes n, the expected number of unlform random varlates needed is ∞. Recall however that the actual slmulation time is finte with probabllity one.

Let W be the position of the leftmost end of the first car. Then

$$
E(T \mid \mathbf{E})=\frac{L}{L-1} \int_{1}^{L} E(T \mid W=t) \frac{d t}{L}
$$

$$
\begin{aligned}
& \geq \frac{L}{L-1} \int_{1}^{1+\frac{1}{n}} E(T \mid W=t) \frac{d t}{L} \\
& \geq \frac{1}{L-1} \int_{1}^{1+\frac{1}{n}} \frac{1}{t-1} d t=\infty
\end{aligned}
$$

Simllar distressing results are true for d-dimensional generallzations of the car parking problem, such as the hyperrectangle parking problem, or the problem of parklng clrcles in the plane (Lotwlck, 1984)(the circle avoidance problem of flgure 3 is that of parking circles with centers in uncovered areas untll the unit square is covered, and is closely related to the clrcle parking problem). Thus, the rejection method of Rlpley (1979) for the clrcle parking problem, which is nothing but the grld method with one glant grid rectangle, suffers from the same drawbacks as the grid method in the car parking problem. There are several possible cures. Green and Sibson (1978) and Lotwick (1984) for example zoom in on the good areas in parking problems by using Dirichlet tessellations. Another possibility is to use a search tree. In the car parking problem, the search tree can be deflned very simply as follows: the tree is binary; every internal node corresponds to a parked car, and every terminal node corresponds to a free interval, i.e. an interval in which we are allowed to park. Some parked cars may not be represented at all. The information in one internal node consists of:
$p_{l}:$ the total amount of free space in the left subtree
of that node;
$p_{r}:$ the total amount of free space in the rlght subtree.

For a terminal node, we store the endpoints of the interval for that node. To park a car, no rejection is used at all. Just travel down the tree taking left turns with probablilty equal to $p_{l} /\left(p_{l}+p_{r}\right)$, and rlght turns otherwise, untll a terminal node is reached. This can be done by using one unlform random varlate for each Internal node, or by reusing (milking) one unlform random varlate time and again. When a terminal node is reached, a car is parked, l.e. the midpoint of the car is put uniformly on the interval in question. This car causes one of three sltuations to occur:

1. The interval of length 2 centered at the midpoint of the car covers the entire original interval.
2. The interval of length 2 centered at the midpoint of the car forces the original interval to shrink.
3. The interval of length 2 centered at the midpoint of the car splits the original Interval in two Intervals, separated by the parked car.

In case 1 , the terminal node is deleted, and the sibling terminal node is deleted too by moving it up to its parent node. In case 2, the structure of the tree is
unaltered. In case 3, the terminal node becomes an internal node, and two new terminal nodes are added. In all cases, the internal nodes on the path from the root to the terminal node in questlon need to be updated. It can be shown that the expected time needed in the simulation is $O(L \log (L))$ as $L \rightarrow \infty$. Intultively, this can be seen as follows: the tree has initially one node, the root. At the end, it has no nodes. In between, the tree grows and shrinks, but can never have more than L internal nodes. It is known that the random binary search tree has expected depth $O(\log (L))$ when there are L nodes, so that, even though our tree is not distributed as a random binary search tree, it comes as no surprise that the expected tlme per car parked is bounded from above by a constant time $\log (L)$.

3.4. Fast random variate generators.

It is known that when (X, U) is unformly distributed under the curve of a density f, then X has density f. This could be a density in R^{d}, but we will only consider $d=1$ here. All of our presentation can easlly be extended to R^{d}. Assume that f is a denslty on $[0,1]$, bounded by M. The Interval $[0,1]$ is divided into N_{1} equal intervals, and the interval $[0, M]$ for the y-direction is divided into N_{2} equal intervals. Then, a directory is set up with k good rectangles (those completely under the curve of f), and l bad rectangles. For all rectangles, we store an integer i which Indlcates that the rectangle has x-coordinates [$\frac{i}{N_{1}}, \frac{i+1}{N_{1}}$). Thus, i ranges from 0 to $N_{1}-1$. In addition, for the bad rectangles, we need to store a second integer j indicating that the y coordinates are [$M \frac{j}{N_{2}}, M \frac{j+1}{N_{2}}$). Thus, $0 \leq j<N_{2}$. It is worth repeating the algorithm now, because we can re-use some unlform random variates.

Generator for density f on $[0,1]$ bounded by M
(NOTE: $D[1], \ldots, D[k+l]$ is a directory of integer-valued x-coordinates, and $Y[k+1], \ldots, Y[k+l]$ is a directory of integer-valued y-coordinates for the bad rectangles.)
REPEAT
Generate a uniform $[0,1]$ random variate U.
$Z \leftarrow\lfloor(k+l) U\rfloor(Z$ chooses a random element in $D)$
$\Delta \leftarrow(k+l) U-Z$ (Δ is again uniform $[0,1])$
$X \leftarrow \frac{D[Z]+\Delta}{N_{1}}$
Accept $\leftarrow[Z \leq k]$
IF NOT Accept THEN
Generate a uniform $[0,1]$ random variate V.
Accept $\leftarrow\left[M(Y[Z]+V) \leq f(X) N_{2}\right]$
UNTLL Accept
RETURN X

Thls algorithm uses only one table-look-up and one unlform random variate most of the time. It should be obvlous that more can be galned if we replace the $D[i]$ entrles by $\frac{D[i]}{N_{1}}$, and that in most high level languages we should just return from inside the loop. The awkward structured exit was added for readabllity. Note further that in the algorithm, it is Irrelevant whether f is used or $c f$ where c is a convenlent constant. Usually, one might want to choose c in such a way that an annoying normalization constant cancels out.

When f is nonincreasing (an important spectal case), the set-up is facllltated. It becomes trivial to decide quickly whether a rectangle is good, bad or useless. Notice that when f is in a black box, we will not be able to declare a particular rectangle good or useless in our lifetime, and thus all rectangles must be classified as bad. This will of course slow down the expected tlme quite a bit. Still for nonincreasing f, the number of bad rectangles cannot exceed $N_{1}+N_{2}$. Thus, noting that the area of a grid rectangle is $\frac{M}{n}$, we observe that the expected number of iterations does not exceed

$$
1+M \frac{N_{1}+N_{2}}{n}
$$

Taking $N_{1}=N_{2}=\sqrt{n}$, we note that the bound is $1+O\left(\frac{1}{\sqrt{n}}\right)$. We can adjust n to off-set large values of M, the bound on f. But in comparison with strip methods, the performance is slightly worse in terms of $n: \ln$ strip methods with n equal-slze intervals, the expected number of iterations for monotone densities
does not exceed $1+\frac{M}{n}$. For grld methods, the n is replaced by \sqrt{n}. The expected number of computations of f for monotone densitles does not exceed

$$
\frac{l}{k+l}\left(\frac{(k+l) M}{n}\right)=\frac{l M}{n} \leq \frac{M\left(N_{1}+N_{2}\right)}{n}
$$

For unimodal densities, a slmilar discussion can be glven. Note that in the case of a monotone or unimodal density, the set-up of the directory can be automated.

It is also Important to prove that as the grid becomes finer, the expected number of iterations tends to 1 . This is done below.

Theorem 3.3.

For all Riemann Integrable densitles f on [0,1] bounded by M, we have, as $\operatorname{lnf}\left(N_{1}, N_{2}\right) \rightarrow \infty$, the expected number of iterations,

$$
(k+l) \frac{M}{n}
$$

tends to 1 . The expected number of evaluations of f is $o(1)$.

Proof of Theorem 3.3.

Glven an n-grld, we can construct two estlmates of $\int f$,

$$
\sum_{i=0}^{N_{1}-1} \frac{1}{N_{1}} \sup _{\frac{i}{N_{1}} \leq x \leq \frac{i+1}{N_{1}}} f(x)
$$

and

$$
\sum_{i=0}^{N_{1}-1} \frac{1}{N_{1}} \operatorname{lnf}_{\frac{i}{N_{1}} \leq x \leq \frac{i+1}{N_{1}}} f(x)
$$

By the definition of Rlemann Integrabllity (Whittaker and Watson, 1927, p.83), these tend to $\int f$ as $N_{1} \rightarrow \infty$. Thus, the difference between the estlmates tends to 0 . By a simple geometrical argument, it is seen that the area taken by the bad rectangles is at most this difference plus $2 N_{1}$ times the area of one grld rectangle, that is, $o(1)+\frac{2 M}{N_{2}}=o$ (1).

Densitles that are bounded and not Rlemann Integrable are somehow pecullar, and less interesting in practlce. Let us close this section by noting that extra savings in space can be obtalned by grouping rectangles in groups of size m, and putting the groups in an auxllary directory. If we can do this in such a way that many groups are homogeneous (all rectangles in 1 t have the same value for $D[i]$
and are all good), then the corresponding rectangles in the directory can be discarded. This, of course, is the sort of savings advocated in the multiple table look-up method of Marsaglla (1883) (see section III.3.2). The price pald for this is an extra comparison needed to examine the auxlliary directory.

A final remark is in order about the space-time trade-off. Storage is needed for at most $N_{1}+N_{2}$ bad rectangles and $\frac{n}{M}$ good rectangles when f is monotone. The bound on the expected number of lterations on the other hand is $1+\frac{M}{n}\left(N_{1}+N_{2}\right)$. If $N_{1}=N_{2}=\sqrt{n}$, then keeping the storage fixed shows that the expected time increases in proportion to M. The same rate of increase, albelt with a different constant, can be observed for the ordinary rejection method with a rectangular dominating curve. If we keep the expected time fixed, then the storage increases in proportion to M. The product of storage ($1+2 M / \sqrt{n}$) and expected time $(2 \sqrt{n}+n / M)$ is $4 \sqrt{n}+n / M+4 M$. This product is minimal for $n=1, M=\sqrt{n} / 2$, and the minimal value is 8 . Also, the fact that storage times expected time is at least $4 M$ shows that there is no hope of obtalning a cheap generator when M is large. Thls is not unexpected since no conditions on f besides the monotonlity are imposed. It is well-known for example that for specific classes of monotone or unlmodal denslties (such as all beta or gamma densities), algorithms exist which have uniformly bounded ($\ln M$) expected time and storage. On the other hand, table look-up is so fast that grld methods may well outperform standard rejectlon methods for many well known densities.

Chapter Nine CONTINUOUS UNIVARIATE DENSITIES

Chapters IX and X are included for the convenience of a large subpopulation of users, the statisticlans. The main principles in random varlate generation were developed in the first elght chapters. Most partlcular distributions found here are members of special classes of densttles for which unlversal methods are avallable. For example, a short algorlthm for log-concave densitles was developed in section VII.2. When speed is at a premium, then one of the table methods of the prevlous chapter could be used. This chapter is purely complementary. We are not in the least interested in a historical review of the different methods proposed over the years for the popular densitles. Some Interesting developments which give us new insight or lllustrate certaln general princlples will be reported. The llst of distributions corresponds roughly speaking to the list of distrlbutions in the three volumes of Johnson and Kotz.

1. THE NORMAL DENSITY.

1.1. Definition.

A random variable X is normally distributed if it has density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

When X is normally distributed, then $\mu+\sigma X$ is sald to be normal (μ, σ^{2}). The mean μ and the varlance σ^{2} are uninteresting from a random varlate generation polnt of vlew.

Comparative studles of normal generators were publlshed by Muller (1958), Ahrens and Dleter (1972), Atkinson and Pearce (1976), Kinderman and Ramage (1978), Payne (1979) and Best (1978). In the table below, we glve a general out-
llne of how the avallable algorithms are related.

Method	References	Speed	Size of code	Sectio.
Inversion	Muller (1959)	Slow	Moderate	Il.2.3
Polar method	Box and Muller (1958)	Moderate	Small	V.4.4
	Bell (1968)			
Rejection	Von Neumann (1951)	Moderate	Small	II.3.2
	Sibuya (1962)			
Ratio-of-uniforms	Kinderman and Monahan (1977)	Fast	Small to moderate	IV.7.2
Composition/rejection	Marsaglia and Bray (1964)	Fast	Small to moderate	
	Ahrens and Dieter (1972)			
	Kinderman and Ramage (1976)			
	Sakasegawa (1978)			
Series method		Fast	Small to moderate	IV.5.3
Almost-exact inversion	Wallace (1976)	Moderate	Small	IV.3.3
Table methods	Marsaglia, Maclaren and Bray (1964)	Very fast	Large	
Forsythe's method	Forsythe (1972)	Fast	Moderate	IV.2.1
	Ahrens and Dieter (1973)			
	Brent (1974)			

The list glven here is not exhaustlve. Many references are missing. What matters are the general trends. We know that table methods are fast, and the rectangle-wedge-tall method of Marsaglla, Maclaren and Bray (1964) Is no exception. At the other end of the scale are the small programs of moderate speed, such as the programs for the polar method and some rejection methods. In between are moderate-slzed programs that have good speed, such as the ratlo-of-unlforms method, the serles method, Forsythe's method and the composition/rejection method. Only the inversion method is Inadmissible because it is slower and less space efflclent than all of the other methods, the table methods excepted. Below, we will mainly focus on the composition/refection methods which have not been described in earller chapters. Because we will cut off the tall of the normal density, it seems important to show how random variates with a density proportional to the tall can be generated.

1.2. The tail of the normal density.

In this section, we consider generators for the family of tall densities

$$
f(x)=\frac{e^{-\frac{x^{2}}{2}}}{\Phi(a)} \quad(x>a)
$$

where $\Phi(a)=\int_{a}^{\infty} e^{-\frac{x^{2}}{2}}$ is a normallzation constant and $a>0$ is a parameter. Two algorlthms will be described:

Marsaglia's method for the tail-of-the-normal density (Marsaglia, 1964)

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.

$$
X \leftarrow \sqrt{a^{2}-2 \log (U)}
$$

UNTIL $V X \leq a$
RETURN X

Marsaglia's method is based upon the trivial inequallty

$$
e^{-\frac{x^{2}}{2}} \leq \frac{x}{a} e^{-\frac{x^{2}}{2}} \quad(x \geq a)
$$

But $x e^{\frac{a^{2}-x^{2}}{2}}(x \geq a)$ Is a density having distribution function

$$
F(x)=1-e^{\frac{a^{2}-x^{2}}{2}} \quad(x \geq a)
$$

which is the tall part of the Raylelgh distribution function. Thus, by inversion, $\sqrt{a^{2}-2 \log (U)}$ has distribution function F, which explains the algorlthm. The probabllity of acceptance in the rejection algorlthm is

$$
P(V X \leq a)=E\left(\frac{a}{X}\right)=\int_{a}^{\infty} a e^{\frac{a^{2}-x^{2}}{2}} d x=a e^{\frac{a^{2}}{2}} \Phi(a) \rightarrow 1
$$

as $a \rightarrow \infty$. Thus, the rejection algorlthm is asymptotlcally optimal. Even for small values of a, the probabllity of acceptance is quite high: It is about 66% for $a=1$ and about 88% for $a=3$. Note that Marsaglia's method can be sped up somewhat by postponing the square root untll after the acceptance:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.

$$
X \leftarrow c-\log (U)\left(\text { where } c=a^{2} / 2\right)
$$

UNTIL $V^{2} X \leq c$
RETURN $\sqrt{2 X}$

An algorlthm which does not require any square roots can be obtalned by rejectlon from an exponential density. We begin with the Inequallty

$$
e^{-\frac{x^{2}}{2}} \leq e^{\frac{a^{2}}{2}-a x} \quad(x \geq a)
$$

which follows from the observation that $(x-a)^{2} \geq 0$. The upper bound is proportlonal to the density of $a+\frac{E}{a}$ where E is exponentlally distributed. This ylelds without further work the following algorithm:

REPEAT

Generate id exponential random variates $E, E *$.
UNTIL $E^{2} \leq 2 a^{2} E *$
RETURN $X \leftarrow a+\frac{E}{a}$

The probabillty of acceptance is precisely as for Marsaglia's method:

$$
P\left(E * \geq E^{2} /\left(2 a^{2}\right)\right)=\int_{0}^{\infty} e^{-\frac{x^{2}}{2 a^{2}}} d x=a e^{\frac{a^{2}}{2}} \Phi(a) \rightarrow 1 \quad(a \rightarrow \infty)
$$

If a fast exponentlal random variate generator is avallable, the second rejection algorithm is probably faster than Marsaglla's.

1.3. Composition/rejection methods.

The principle underlying all good composition/rejection methods is the following: decompose the density of f into two parts, $f(x)=p g(x)+(1-p) h(x)$ where $p \in(0,1)$ is a mixture parameter, g is an easy density, and h is a residual density not very often needed when p is close to 1 . We rarely stumble upon a good cholce for g by accident. But we can always find the optimal g_{θ} in a family of sultable candidates parametrized by θ. The welght of g_{θ} in the mixture is denoted by $p(\theta)$:

$$
p(\theta)=\operatorname{lnp}_{x} \frac{f(x)}{g_{\theta}(x)} .
$$

The candldates g_{θ} should preferably be densttles of simple transformations of independent uniform $[0,1]$ random varlables. Among the slmple transformations one might conslder, we clte:
(1) $\quad \theta\left(V_{1}+\cdots+V_{n}\right)$;
(2) $\quad \theta \operatorname{median}\left(V_{1}, \ldots, V_{n}\right)$;
(3) $\theta_{1} V_{1}+\theta_{2} V_{2}$;
(4) $\quad \theta_{1} V_{1}+\theta_{2}\left(V_{1}\right)^{3}$.

Here V_{1}, V_{2}, \ldots are lld unlform $[-1,1]$ random varlates, and $\theta, \theta_{1}, \theta_{2}$ are parameters to be selected. Marsaglla and Bray (1984) used the first choice with $n=3$ and with the dellberately suboptimal value $\theta=1$ (because a time-consuming multipllcation is avolded for this value). Kinderman and Ramage (1978) optimized θ for cholce (1) when $n=2$. And Ahrens and Dieter (1972) proposed to use cholce (3). Because the shape of g_{θ} is trapezoidal, this method is known as the trapezoidal method. All three approaches lead to algorlthms of about equal length and speed. We will look at cholces (1) and (2) in more detall below, and provide enough detall for the reader to be able to reconstruct the algorithms of Marsaglla and Bray (1964) and Klnderman and Ramage (1976).

Theorem 1.1.

The density of θ median $\left(V_{1}, \ldots, V_{2 n+1}\right)$ for n positive and $\theta>0$ is

$$
c\left(1-\frac{x^{2}}{\theta^{2}}\right)^{n} \quad(|x| \leq \theta)
$$

where $c=\frac{(2 n+1)!}{2^{2 n+1} n!^{2} \theta}$. The maximal value of $p(\theta)$ is reached for $\theta=\sqrt{2 n+1}$, and takes the value

$$
p=\frac{2^{2 n+1} n!^{2} \sqrt{n}}{\sqrt{\pi e}(2 n+1)!}\left(1+\frac{1}{2 n}\right)^{n+\frac{1}{2}}
$$

We have

Proof of Theorem 1.1.

The denslty can be derlved very easlly after recalling that the median of $2 n+1$ lld unlform [0,1$]$ random varlables has a symmetrlc beta density glven by

$$
\frac{(2 n+1)!}{n!^{2}}(x(1-x))^{n} \quad(0 \leq x \leq 1)
$$

Deflne $g_{\theta}(x)=c\left(1-\left(x^{2} / \theta^{2}\right)\right)^{n} \quad(|x| \leq \theta)$, and note that $\log \left(f / g_{\theta}\right)$ attains an extremum at some polnt x for which the derlvative of the logarithm is 0 . This
ylelds the equation

$$
-x+\frac{2 x}{\theta^{2}} \frac{n}{1-\frac{x^{2}}{\theta^{2}}}=0
$$

or,

$$
x=0 ; x^{2}=\theta^{2}-2 n
$$

When $\theta^{2}<2 n, f / g_{\theta}$ attains only one minimum, at $x=0$. When $\theta^{2}>2 n$, the function f / g_{θ} is symmetric around 0 : it has a local peak at 0 , dips to a mimimum, and increases monotonically again to ∞ as $x \uparrow \theta$. Thus, we have

$$
p(\theta)=\operatorname{lnf}_{x} \frac{f(x)}{g_{\theta}(x)}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2 \pi} c}=\frac{2^{2 n+1} n!^{2} \theta}{(2 n+1)!\sqrt{2 \pi}} \quad\left(\theta^{2}<2 n\right) \\
\frac{1}{\sqrt{2 \pi} c}\left(\frac{e}{2 n}\right)^{n} \theta^{2 n} e^{-\frac{\theta^{2}}{2}} \quad\left(\theta^{2}>2 n\right) .
\end{array}\right.
$$

We still have to maximize this function with respect to θ. The function $p(\theta)$ Increases llnearly from 0 up to $\theta=\sqrt{2 n}$. Then, it increases some more, peaks, and decreases in a bell-shaped fashon. The maximum is attalned for some value $\theta>\sqrt{2 n}$. Since in that region, $p(\theta)$ is a constant times $\theta^{2 n+1} e^{-\theta^{2} / 2}$, the maximum is attalned for $\theta=\sqrt{2 n+1}$. This gives the desired result.

Had we consldered the Taylor serles expansion of f about 0 , given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}+\cdots\right),
$$

which is known to give partial sums that alternately overestimate and underestimate f, then we would have been tempted to choose $g(x)=\frac{3}{4 \sqrt{2}}\left(1-\frac{x^{2}}{2}\right)$, because of

$$
f(x) \geq \frac{1}{\sqrt{2 \pi}}\left(1-\frac{x^{2}}{2}\right)=p g(x) \quad(|x| \leq \sqrt{2})
$$

where $p=\frac{4}{3 \sqrt{\pi}} \approx 0.7522528$ is the welght of $g \ln$ the mixture. This illustrates the usefulness and the shortcomings of Taylor's serles. Simple polynomlal bounds are very easy to obtaln, but the cholce could be suboptimal. From Theorem 1.1 for example, we recall that the optimal g of the inverted parabolic form is a constant times $\left(1-\frac{x^{2}}{3}\right)(|x| \leq \sqrt{3})$. Sometimes a suboptimal choice of θ is preferable because the residual density h is easter to handle. This is the case for $n=1$ in Theorem 1.1. The suboptimal cholce $\theta=\sqrt{2 n}$, which is the cholce implicit in

Taylor's serles expansion, ylelds a much cleaner residual density. For $n=2$, we need 5 random varlates instead of 3, an increase of 66%, while the galn in efflclency (in value of p) Is only of the order of 10%. For this reason, the case $n>1$ is less Important in practice. Let us briefly describe the entire algorithm for the case $n=1, \theta=\sqrt{2}$. We can decompose f as follows:

$$
f(x)=p g(x)+q h(x)+r t(x)
$$

where
(1) $g(x)=\frac{3}{4 \sqrt{2}}\left(1-\frac{x^{2}}{2}\right)$;
$p=\frac{4}{3 \sqrt{\pi}} \approx 0.7522528 ;$
(i1) $\quad t(x)=\frac{1}{r} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad(|x|>\sqrt{2})$;

$$
r=\int_{|x|>\sqrt{2}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \approx 0.15729921
$$

(111) $h(x)=\frac{1}{q} \frac{1}{\sqrt{2 \pi}}\left(e^{-x^{2} / 2}-\left(1-\frac{x^{2}}{2}\right)\right) \quad(|x| \leq \sqrt{2})$;
$q=\int_{\mid x \backslash \leq \sqrt{2}} \frac{1}{\sqrt{2 \pi}}\left(e^{-x^{2} / 2}-\left(1-\frac{x^{2}}{2}\right) d x \approx 0.09044801\right.$.
Sampling from the tall density t has been discussed in the prevlous sub-section. Sampling from g is slmple: just generate three ild uniform $[-1,1]$ random varlates, and take $\sqrt{2}$ times the median. Sampling from the residual density h can be done as follows:

REPEAT

Generate V uniformly on $[-1,1]$, and U uniformly on [0,6].
$X \leftarrow \sqrt{2} V /|V|^{4 / 5}$
Accept $\leftarrow\left[U>X^{2}\right]$
IF NOT Accept THEN

$$
\text { IF } \begin{aligned}
U \geq & X^{2}\left(1-\frac{X^{2}}{8}\right) \text { THEN } \\
& \text { Accept } \leftarrow\left[\left(1-\frac{U}{6}\right) X^{4} \leq 8\left(e^{-\frac{X^{2}}{2}}-\left(1-\frac{X^{2}}{2}\right)\right)\right]
\end{aligned}
$$

UNTIL Accept
RETURN X

This is a simple rejection algorithm with squeezing based upon the inequalltles

$$
e^{-\frac{x^{2}}{2}}-\left(1-\frac{x^{2}}{2}\right) \leq \frac{x^{4}}{8} \quad(|x| \leq \sqrt{2})
$$

$$
\frac{x^{4}}{8}-\frac{x^{6}}{48} \leq e^{-\frac{x^{2}}{2}}-\left(1-\frac{x^{2}}{2}\right) \leq \frac{x^{4}}{8}-\frac{x^{6}}{48}+\frac{x^{8}}{384}
$$

The reader can easily work out the detalls. The probabllity of immediate acceptance In the flrst iteration is.

$$
\begin{aligned}
& P\left(X^{2}<U\right)=\int_{0}^{1} P\left(X^{2}<6 x\right) d x=\int_{0}^{1} P(|X|<\sqrt{8 x}) d x \\
& =\int_{0}^{\frac{1}{3}} \frac{5}{4 \sqrt{2}} \frac{(\sqrt{6 x})^{5}}{5} d x+\int_{\frac{1}{3}}^{1} d x \\
& =\frac{2}{3}+\frac{2}{7} \frac{6^{\frac{5}{2}}}{4 \sqrt{23^{\frac{7}{2}}}}=\frac{6}{7}
\end{aligned}
$$

The same smooth performance for a residual density could not have been obtalned had we not based our decomposition upon the Taylor serles expansion.

Let us next look at the density g_{θ} of $\theta\left(V_{1}+V_{2}+V_{3}\right)$ where the V_{i} 's are Ind unlform $[-1,1]$ random varlables. For the denslty of $\theta\left(V_{1}+V_{2}\right)$, the trlangular density, we refer to the exercises where among other things it is shown that the optimal θ is $1.1080179 \ldots$, and that the corresponding value $p(\theta)$ is $0.8840704 \ldots$.

Theorem 1.2.

The optimal value for θ In the decomposition of the normal density into $p(\theta) g_{\theta}(x)$ plus a resldual density (where g_{θ} is the density of $\theta\left(V_{1}+V_{2}+V_{3}\right)$ and the V_{i} 's are Ild unlform $[-1,1]$ random variables), is

$$
\theta=0.956668451229 \ldots
$$

The corresponding optimal value for $p(\theta)$ is $0.962365327 \ldots$.

Proof of Theorem 1.2.

The density g_{θ} of $\theta\left(V_{1}+V_{2}+V_{3}\right)$ is

$$
g_{\theta}(x)= \begin{cases}\frac{1}{8 \theta}\left(3-\left(\frac{x}{\theta}\right)^{2}\right) & (|x| \leq \theta) \\ \frac{1}{18 \theta}\left(3-\left|\frac{x}{\theta}\right|\right)^{2} & (\theta \leq|x| \leq 3 \theta) \\ 0 \quad(|x|>3 \theta) & \end{cases}
$$

The function $h_{\theta}=f / g_{\theta}$ can be written as

$$
h_{\theta}(x)= \begin{cases}\frac{8 \theta}{\sqrt{2 \pi}} \frac{e^{-\frac{x^{2}}{2}}}{3-\frac{x^{2}}{\theta^{2}}} & (0<x \leq \theta) \\ \frac{18 \theta}{\sqrt{2 \pi}} \frac{e^{-\frac{x^{2}}{2}}}{\left(3-\frac{x}{\theta}\right)^{2}} & (\theta \leq x \leq 3 \theta)\end{cases}
$$

when $x>0$. We need to find the value of θ for which $\min _{0<x \leq 3 \theta} h_{\theta}(x)$ is maximal. By setting the derivative of $\log \left(h_{\theta}\right)$ with respect to x equal to 0 , and by analyzIng the shape of h_{θ}, we see that the minimum of h_{θ} belongs to the following set of values: $0, \theta, b, c$, where

$$
\begin{aligned}
& b=\theta \sqrt{3-\frac{2}{\theta^{2}}} \\
& c=\frac{3 \theta}{2}+\frac{\theta}{2} \sqrt{9-\frac{8}{\theta^{2}}} .
\end{aligned}
$$

The following table gives all the local minima together with the values for h_{θ}.

Local minimum	Value of h_{θ} at minimum	Local minimum exists when:
0	$\eta=\frac{8 \theta}{3 \sqrt{2 \pi}}$	$\theta^{2} \leq \frac{2}{3}$
b	$\psi=\frac{4 \theta^{3}}{\sqrt{2 \pi}} e^{-\frac{b^{2}}{2}}$	$1 \geq \theta^{2} \geq \frac{2}{3}$
θ	$\xi=\frac{4 \theta}{\sqrt{2 \pi}} e^{-\frac{a^{2}}{2}}$	$\theta=1$
c	$\phi=\frac{16 \theta}{\sqrt{2 \pi}} \frac{e^{-\frac{c^{2}}{2}}}{\left(3-\frac{c}{\theta}\right)^{2}}$	$\theta^{2} \geq \frac{8}{9}$

The general shape of h_{θ} is as follows: when $\theta^{2} \geq 1$, there is no local minimum on $(0, \theta)$, and h_{θ} decreases monotonically to reach a global minimum at $x=c$ equal to ϕ, after which it increases agaln. When $\theta^{2}=1$, the same shape is observed, but a zero derivative occurs at $x=\theta$, although this does not correspond to a local minimum. When $\frac{8}{9}<\theta^{2}<1$, there are two local minima, one on $(0, \theta)$ (at b, of value ψ), and one on ($\theta, 3 \theta$) (at c, of value ϕ). For $\frac{2}{3}<\theta^{2}<\frac{8}{9}$, the local minimum at c ceases to exist. We have again a function with one minimum, thls time at $b<\theta$, of value ψ. Finally, for $\theta^{2} \leq \frac{2}{3}$, the function increases monotonically, and its global minimum occurs at $x=0$ and has value η.

Consider now the behavior of η and ψ as a function of θ. Clearly, η increases linearly with θ. Furthermore, ψ is gamma shaped with global peak at $\theta=1$, and $\eta=\psi$ for $\theta^{2}=\frac{2}{3}$. The value of ϕ on the other hand decreases monotonlcally on the set $\theta^{2} \geq \frac{8}{8}$. We verify easily that ϕ and ψ cross each other on the segment $\frac{8}{\theta}<\theta^{2}<1$. It is at this polnt that $\min _{0<x<3 \theta} h_{\theta}(x)$ is maximal. This cross-over point is precisely the value given in the statement of the theorem.

Theorem 1.2 can be used In the design of a fast composition/rejection algorithm. In particular, the tall beyond the optimal 3θ is very small, having probabllity $0.004104648 \ldots$. The residual density on $[-3 \theta, 3 \theta]$ has probabllity $0.033530022 . .$. , but has unfortunately enough flive peaks, the largest of which occurs at the origin. It is clear once again that the maximization criterion does not take the complexity of the residual density into account. A suboptimal value for θ sometlmes leads to better residual densities. For example, when $\theta=1$, we save one multiplication and end up with a more manageable residual density. This cholce was first suggested by Marsaglla and Bray (1904). We conclude thls section by glving their algorithm in its entirety.

From the proof of Theorem 1.2, we see that (In the notation of that proof),

$$
p(\theta)=\phi=\frac{18}{\sqrt{2 \pi e}}=0.86385546 \ldots
$$

The normal density f can be decomposed as follows:

$$
f(x)=\sum_{i=1}^{4} p_{i} f_{i}(x)
$$

where $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is a probability vector, and the f_{i} 's are densities defined as follows:
(1) $p_{1}=0.86385546 \ldots, f_{1}$ is the density of $V_{1}+V_{2}+V_{3}$, where the V_{i} s are 11d unlform $[-1,1]$ random varlables.
(i1) $p_{4}=0.002689798063 \ldots=\int_{|x| \geq 3} f ; f_{4}$ is the tall-of-the-normal density restricted to $|x| \geq 3$.
(III) $f_{2}(x)=\frac{1}{9}(8-4|x|)\left(|x| \leq \frac{3}{2}\right) ; p_{2}=0.1108179673 \ldots$.
(iv) $p_{3}=1-p_{1}-p_{4}-p_{2}=0.02262677245 \ldots ; f_{3}=\frac{1}{p_{3}}\left(f-p_{1} f_{1}-p_{2} f_{2}-p_{4} f_{4}\right)$.

In the design, Marsaglia and Bray decided upon the triangular form of f_{2} first, because random variates with this density can be generated simply as $\frac{3}{4}\left(V_{4}+V_{5}\right)$ where the V_{i} 's are again ild unlform [-1,1] random varlates. After having plcked this simple f_{2}, it is necessary to choose the best (largest) welght p_{2}, given by

$$
p_{2}=\operatorname{lnf}_{x} \frac{f(x)-p_{1} f_{1}(x)}{. f_{2}(x)} .
$$

This inflmum is found as follows. The derivative of the ratio is 0 at $|x|=2$ and at $|x|=0.87386312884 \ldots$. Only the latter $|x|$ corresponds to a minimum, and the corresponding value for p_{2} is $p_{2}=0.1108179873 \ldots$. Having determined random varlate generation methods for all parts except f_{3}, it remalns to establish just thls for f_{3}. First, note that f_{3} has supremum $0.3181471173 . .$. . If we use rejection from a rectangular density with support on $[-3,3]$, then the expected number of lteratlons is

$$
\frac{8 \times 0.3181471173 \ldots}{p_{3}}=1.9088827038 \ldots
$$

Combining all of this into one algorlthm, we have:

Normal generator of Marsaglia and Bray (1964)

[NOTE: This algorithm follows the implementation suggested by Kinderman and Ramage (1977).]

Generate a uniform $[0,1]$ random variate U.

CASE

 $0 \leq U \leq 0.8638$:Generate two iid uniform $[-1,1]$ random variates V, W. RETURN $X \leftarrow 2.3153508 \ldots U-1+V+W$
$0.8638<U \leq 0.9745$:
Generate a uniform [0,1] random variate V.
RETURN $X \leftarrow \frac{3}{2}(V-1+9.0334237 \ldots(U-0.8638))$
$0.9973002 \ldots<U \leq 1$:
REPEAT
Generate iid uniform $[0,1]$ random variates V, W.
$X \leftarrow \frac{9}{2}-\log (W)$
UNTIL $X V^{2} \leq \frac{9}{2}$
RETURN $X \leftarrow \sqrt{2 X} \operatorname{sign}(U-0.9986501 \ldots)$
$0.9745<U \leq 0.9973002 \ldots$:
REPEAT
Generate a uniform $[-3,3]$ random variate X and a uniform $[0,1]$ random variate U.
$V \leftarrow|X|$
$W \leftarrow 6.6313339 . . .(3-V)^{2}$
Sum ↔0
IF $V<\frac{3}{2}$ THEN Sum $\leftarrow 6.0432809 \ldots\left(\frac{3}{2}-V\right)$
IF $V<1$ THEN Sum \leftarrow Sum $+13.2626678 \ldots\left(3-V^{2}\right)-W$
UNTIL $U \leq 49.0024445 \ldots e^{-\frac{V^{2}}{2}}-$ Sum- W
RETURN X

1.4. Exercises.

1. In the trapezoldal method of Ahrens and Dleter (1972), the largest symmetric trapezold under the normal density is used as the maln component in the mixture. Show that thls trapezold is deflned by the vertices $(-\xi, 0),(\xi, 0),(\eta, \rho),(-\eta, \rho) \quad$ where $\quad \xi=2.1140280833 \ldots, \eta=0.2897295736 \ldots$, $\rho=0.3825445560 \ldots$. (Note: the area under the trapezoid is $0.9195444057 \ldots$.) A random varlate with such a trapezoldal denslty can be generated as $a V_{1}+b V_{2}$ for some constants $a, b>0$ where V_{1}, V_{2} are ild unlform $[-1,1]$ random varlates. Determine a, b in thls case.
2. Show that as $a \uparrow \infty$,

$$
\int_{a}^{\infty} e^{-\frac{x^{2}}{2}} \sim \frac{1}{a} e^{-\frac{a^{2}}{2}}
$$

3. The optimal probabillty p in Theorem 1.1 depends upon n. Use Stirling's formula to determine a constant c such that $p \geq 1-\frac{c}{n}$, valld for all $n \geq 3$.
4. If we want to generate a normal random varlate by rejection from the exponentlal density $\frac{\lambda}{2} e^{-\lambda|x|}$, the smallest rejection constant is obtained when $\lambda=1$. The constant is $\sqrt{\frac{2 e}{\pi}}$. Show this. Note that the corresponding rejection algorlthm is:

REPEAT

Generate two iid exponential random variates, X, E.
UNTIL $2 E \leq(X-1)^{2}$
RETURN $S X$ where S is a random sign.

This algorlthm is mentioned in Abramowltz and Stegun (1970), where von Neumann is credlted. Butcher (1981) attrlbutes it to Kahn. Others have rediscovered it later.
5. Teichroew's distribution. Telchroew (1957) has shown that the functions $\phi(t)=\frac{1}{\left(1+t^{2}\right)^{a}}$ are valld characteristlc functions for all values $a>0$ of the parameter. Show that random varlates from thls famlly can be generated as
(1) $G_{1}-G_{2}$, where the G_{i} 's are Ild gamma (a) random varlables;
(11) $N \sqrt{2 G}$ where N, G are independent random variables with a normal and gamma (a) distribution respectlvely.
6. This question is related to the algorithm of Kinderman and Ramage (1978) (programs glven In Kinderman and Ramage (1977)). Consider the Isosceles
trlangular density g_{θ} of the random varlable $\theta\left(V_{1}+V_{2}\right)$ where V_{1}, V_{2} are lld uniform $[-1,1]$ random varlates. Show that the largest triangle to fit under the normal denslty f touches f at the origin. Show next that the sides of the largest triangle touch f somewhere else. Conclude that the optimal θ is glven by $\theta=1.1080179 \ldots$, and that the corresponding optimal welght of the triangle is $p=0.88407040 \ldots$.
7. The lognormal density. When N is normally distributed, then $\theta+e^{\varsigma+\sigma N}$ is lognormal with parameters $\theta, \varsigma, \sigma$, all real numbers. The lognormal distribution has a density with support on (θ, ∞) given by

$$
f(x)=\frac{1}{(x-\theta) \sigma \sqrt{2 \pi}} e^{-\frac{(\log (x-\theta)-5)^{2}}{2 \sigma^{2}}} \quad(x>\theta)
$$

Random varlate generation requires the exponentlation of a normal random varlate, and can be beaten speedwise by the judiclous use of a composition/rejection algorithm, or a rejection algorlthm with a good squeeze step. Develop Just such an algorlthm. To help you find a solution, it is Instructive to draw several lognormal densitles. Consider only the case $\theta=0$ since θ is a translation parameter. Show also that in that case, the mode is at $e^{s-\sigma^{2}}$, the median is at e^{s}, and that the r-th moment is $e^{r s+r^{2} \sigma^{2} / 2}$ when $r>0$.
8. In the composition/rejection algorithm of Marsaglla and Bray (1964), we return the sum of three independent unlform $[-1,1]$ random varlates about 86% of the time. Schuster (1983) has shown that by considering sums of the form $a_{1} V_{1}+a_{2} V_{2}+a_{3} V_{3}$, where the V_{i} 's are lld unlform $[-1,1]$ random varlates, it is possible to find coefflclents a_{1}, a_{2}, a_{3} such that we can return the sald sum about 97% of the time (note however that the multiplications could actually cause a slowdown). Find these coefflclents, and glve the entlre algorlthm.

2. THE EXPONENTIAL DENSITY.

2.1. Overview.

We hardly have to convince the reader of the cruclal role played by the exponentlal distribution in probabllity and statistics and in random variate generation. We have discussed varlous generators in the early chapters of this book. No method is shorter than the inversion method, which returns $-\log (U)$ where U Is a uniform $[0,1]$ random varlate. For most users, this method is satisfactory for their needs. In a high level language, the Inversion method is difficult to beat. A varlety of algorlthms should be considered when the computer does not have a \log operation in hardware and one wants to obtain a faster method. These Include:

1. The unlform spacings method (section V.3.5).
2. von Neumann's method (section IV.2.2).
3. Marsaglla's exponentlal generator, or its modifications (dlscussed below).
4. The ratio-of-unlforms method (section IV.7.2).
5. The serles method (section IV.5.3).
6. Table methods.

The methods listed under polnts 4 and 5 will not be discussed again in this chapter. Methods 2, 3 and 6 are all based upon the memoryless property of the exponentlal distribution, which states that given that an exponential random varlable E exceeds $x>0, E-x$ is again exponentlally distributed. This is at the basls of Lemma IV.2.1, repeated here for the sake of readabllity:

Lemma IV.2.1.

An exponential random variable E is distributed as $(Z-1) \mu+Y$ where Z, Y are independent random variables and $\mu>0$ is an arbitrary positive number: Z is geometrically distributed with

$$
P(Z=i)=\int_{(i-1) \mu}^{i \mu} e^{-x} d x=e^{-(i-1) \mu_{-} e^{-i \mu} \quad(i \geq 1), ~}
$$

and Y is a truncated exponential random variable with density

$$
f(x)=\frac{e^{-x}}{1-e^{-\mu}} \quad(0 \leq x \leq \mu)
$$

Since Z, Y are independent, exponentlal random varlate generation can truly be considered as the problem of the generation of a discrete random varlate plus a contlnuous random varlate with compact support. And because the contlnuous random varlate has compact support, any fast table method can be used.

The unlform spacings method is based upon the fact that $G S_{1}, \ldots, G S_{n}$ are ild exponential random vartables when G is gamma (n), and S_{1}, \ldots, S_{n} are spacings defined by a uniform sample of size $n-1$. For $n=2$ thls is sometimes faster than stralghtforward inversion:

Generate iid uniform $[0,1]$ random variates U, V, W.
$Y \leftarrow-\log (U V)$
RETURN $W Y,(1-W) Y$

Notice that three unlform random varlates and one logarlthm are needed per couple of exponentlal random varlates. The overhead for the case $n=3$ is sometimes a drawback. We summarlze nevertheless:

```
Generate ild uniform \([0,1]\) random variates \(U_{1}, U_{2}, U_{3}, U_{4}, U_{5}\). \(Y \leftarrow-\log \left(U_{1} U_{2} U_{3}\right)\)
\(V \leftarrow \min \left(U_{4}, U_{5}\right), W \leftarrow \max \left(U_{4}, U_{5}\right)\)
RETURN \(V Y,(W-V) Y,(1-W) Y\)
```

2.2. Marsaglia's exponential generator.

Marsaglla (1981) proved the following theorem:

Theorem 2.1. (Marsaglia, 1961)

Let U_{1}, U_{2}, \ldots be lld uniform $[0,1]$ random variables. Let Z be a truncated Polsson random varlate with probabillty vector

$$
P(Z=i)=\frac{1}{e^{\mu}-1} \frac{\mu^{i}}{i!} \quad(i \geq 1)
$$

where $\mu>0$ is a constant. Let M be a geometric random vector with probabillty vector

$$
P(M=i)=\left(1-e^{-\mu}\right) e^{-\mu i} \quad(i \geq 0) .
$$

Then $X \leftarrow \mu\left(M+\min \left(U_{1}, \ldots, U_{Z}\right)\right)$ is exponentlally distributed. Also,

$$
\begin{aligned}
& E(M)=\frac{1}{e^{\mu}-1}, \\
& E(Z)=\frac{\mu e^{\mu}}{e^{\mu}-1} .
\end{aligned}
$$

Proof of Theorem 2.1.

We note that for $\mu \geq x>0$,

$$
\begin{aligned}
& P\left(\mu \min \left(U_{1}, \ldots, U_{Z}\right) \leq x\right)=\sum_{i=1}^{\infty} P(Z=i) P\left(\mu \min \left(U_{1}, \ldots, U_{i}\right) \leq x\right) \\
& =\sum_{i=1}^{\infty} \frac{1}{e^{\mu}-1} \frac{\mu^{i}}{i!}\left(1-\left(1-\frac{x}{\mu}\right)^{i}\right) \\
& =1-\sum_{i=1}^{\infty} \frac{1}{e^{\mu}-1} \frac{\left(\mu\left(1-\frac{x}{\mu}\right)\right)^{i}}{i!} \\
& =1-\frac{e^{\mu-x}-1}{e^{\mu}-1} \\
& =\frac{1-e^{-x}}{1-e^{-\mu}}
\end{aligned}
$$

Thus, $\mu \mathrm{mln}\left(U_{1}, \ldots, U_{Z}\right)$ has the exponential distribution truncated to $[0, \mu]$. The first part of the theorem now follows directly from Lemma IV.2.1. For the second part, use the fact that $M+1$ is geometrically distributed, so that $E(M+1)=\frac{1}{1-e^{-\mu}}$. Furthermore,

$$
\begin{aligned}
& E(Z)=\frac{1}{e^{\mu}-1}\left(\frac{\mu^{1}}{0!}+\frac{\mu^{2}}{1!}+\frac{\mu^{3}}{2!}+\cdots\right) \\
& =\frac{\mu e^{\mu}}{e^{\mu}-1} .
\end{aligned}
$$

We can now suggest an algorithm based upon Theorem 2.1:

Marsaglia's exponential generator
Generate a geometric random variate M defined by $P(M=i)=\left(1-e^{-\mu}\right) e^{-\mu i} \quad(i \geq 0)$.
$Z-1$
Generate iid uniform $[0,1]$ random variates U, V.
$Y-V$
WHLE True Do

$$
\begin{aligned}
& \text { IF } U \leq F(Z)\left(\text { Note: } F(i)=\frac{1}{e^{\mu}-1} \sum_{j=1}^{i} \frac{\mu^{j}}{j!} \cdot\right) \\
& \text { THEN RETURN } X \leftarrow \mu(M+Y) \\
& \text { ELSE } \\
& \quad Z \leftarrow Z+1 \\
& \quad \\
& \quad \text { Generate a uniform }[0,1] \text { random variate } V . \\
& \\
& Y \leftarrow \min (Y, V)
\end{aligned}
$$

For the geometric random varlate, the inversion method based upon sequential search seems the obvlous cholce. This can be sped up by storing the cumulative probabilitles, or by mixing sequentlal search with the allas method. Simllarly, the cumulative distribution function F of Z can be partially stored to speed up the second part of the algorithm. The design parameter μ must be found by compromise. Note that if sequential search based Inversion is used for the geometric random varlate M, then $\frac{1}{1-e^{-\mu}}$ comparlsons are needed on the average: this decreases from ∞ to 1 as μ varles from 0 to ∞. Also, the expected number of accesses of F in the second part of the algorithm is equal to $E(Z)=\frac{\mu}{1-e^{-\mu}}$, and this increases from 1 to ∞ as μ varles from 0 to ∞. Furthermore, the algorithm in its entirety requires on the average $2+E(Z)$ unlform $[0,1]$ random varlates. The two effects have to be properly balanced. For most implementations, a value μ in the range $0.40 \ldots 0.80$ seems to be optimal. This polnt was addressed in more detall by Sibuya (1981). Special advantages are offered by the cholces $\mu=1$ and $\mu=\log (2)$.

The spectal case $\mu=\log (2)$ allows one to generate the desired geometric random varlate by analyzing the random bits in a unlform $[0,1]$ random varlate, which can be done convenlently in assembly language by the logical shift operatlon. Thls algorlthm was proposed by Ahrens and Dleter (1972), where the reader can also find an excellent survey of exponential random varlate generation. Again, a table of $F(i)$ values is needed.

Exponential generator of Ahrens and Dieter (1972)

[NOTE: a table of values $F(i)=\sum_{j=1}^{i} \frac{(\log (2))^{j}}{j!}$ is required.]
$M \multimap 0$
Generate a uniform $[0,1]$ random variate U.
WHILE $U<\frac{1}{2}$ DO $U \leftarrow 2 U, M \leftrightarrows M+\log (2)$
(M is now correctly distributed. It is equal to the number of 0 's before the first 1 in the binary expansion of U. Note that $U \leftrightarrows 2 U$ is implementable by a shift operation.)
$U \leftarrow 2 U-1$ (U is again uniform $[0,1]$ and independent of M.)
IF $U<\log (2)$
THEN RETURN $X \leftarrow M+U$
ELSE
$Z \leftarrow 2$
Generate a uniform $[0,1]$ random variate V.
$Y \leftarrow V$
While True Do
Generate a uniform $[0,1]$ random variate V.
$Y \leftarrow \min (Y, V)$
IF $U \leq F(Z)$
THEN RETURN $X \leftarrow M+Y \log (2)$
ELSE $Z \leftarrow Z+1$

Ahrens and Dieter squeeze the first unlform [0,1] random variate U dry. Because of this, the algorithm requires very few unlform random varlates on the average: the expected number is $1+\log (2)$, which is about 1.69315 .

2.3. The rectangle-wedge-tail method.

One of the fastest table methods for the exponential distribution was first publlshed by Maclaren, Marsaglia and Bray (1984). It is Ideally sulted for implementation in machine language, but even in a high level language it is faster than most other methods described in this section. The extra speed is obtalned by princlples related to the table method. First, the tall of the density is cut off at some point $n \mu$ where n is a design integer and $\mu>0$ is a small design constant. The remalnder of the graph of \int is then divided Into n equal strips of width μ. And on interval $[(i-1) \mu, i \mu$], we divide the graph into a rectangular plece of helght $e^{-i \mu}$, and a wedge $f(x)-e^{-i \mu}$. Thus, the density is decomposed into
$2 n+1$ pleces of the following welghts:
one tall of welght $e^{-n \mu}$;
n rectangles with welghts $\mu e^{-i \mu}, 1 \leq i \leq n$;
n wedges of welghts $e^{-i \mu}\left(e^{\mu}-1-\mu\right), \overline{1} \leq i \leq n$.
These numbers can be used to set up a table for dlscrete random varlate generatlon. The algorlthm then proceeds as follows:

The rectangle-wedge-tail method

[NOTE: we refer to the $2 n+1$ probabilities defined above.]
$X \leftarrow 0$
REPEAT
Generate a random integer Z with values in $1, \ldots, 2 n+1$ having the given probability vector.
CASE
Rectangle i chosen: RETURN $X \leftarrow X+(i-1+U) \mu$ where U is a uniform $[0,1]$ random variate.

Wedge i chosen: RETURN $X \leftarrow X+(i-1) \mu+Y$ where Y is a random variate having the wedge density $g(x)=\frac{e^{\mu-x}-1}{e^{\mu}-1-\mu} \quad 0 \leq x \leq \mu$.

Tall is chosen: $X \leftarrow X+n \mu$
UNTIL False

Note that when the tall is plcked, we do in fact reject the cholce, but keep at the same time track of the number of rejections. Equivalently, we could have returned $n \mu-\log (U)$ but this would have been less elegant since we would in effect rely on a logarlthm. The recursive approach followed here seems cleaner. Random varlates from the wedge density can be obtalned in a number of ways. We could proceed by rejection from the trlangular density: note that

$$
g(x)=\frac{e^{\mu-x}-1}{e^{\mu}-1-\mu} \leq \frac{\mu-x}{\mu} \frac{e^{\mu}-1}{e^{\mu}-1-\mu}
$$

and

$$
g(x) \geq \frac{e^{\mu}-x e^{\mu}-1}{e^{\mu}-1-\mu}
$$

so that the following rejection algorithm is valld:

Wedge generator

REPEAT

Generate two id uniform $[0,1]$ random variates X, U.
IF $X>U$ THEN $(X, U) \leftarrow(U, X)((X, U)$ is now uniformly distributed under the triangle with unit sides.)
IF $U \leq 1-X \frac{\mu e^{\mu}}{e^{\mu}-1}$
THEN RETURN μX
ELSE IF $U \leq \frac{e^{\mu-\mu X}-1}{e^{\mu}-1}$ THEN RETURN μX
UNTIL False

The wedge generator requires on the average

$$
\frac{1}{2} \frac{\mu\left(e^{\mu}-1\right)}{e^{\mu}-1-\mu}
$$

Iteratlons. It is easy to see that this tends to 1 as $\mu \downarrow 0$. The expected number of uniform random varlates needed is thus twice this number. But note that this can be bounded as follows:

$$
\mu \frac{e^{\mu}-1}{e^{\mu}-1-\mu}=\mu\left(1+\frac{\mu}{e^{\mu}-1-\mu}\right) \leq \mu\left(1+\frac{2}{\mu}\right)=\mu+2
$$

Here we used an Inequallty based upon the truncated Taylor serles expansion. In vlew of the squeeze step, the expected number of evaluations of the exponential function is of course much less than the expected number of iterations. Having establlshed thls, we can summarize the performance of the algorlthm by repeated use of Wald's equation:

Theorem 2.2.

This theorem is about the analysis of the rectangle-wedge-tall algorithm shown above.
(1) The expected number of global Iterations is $A=\frac{1}{1-e^{-n \mu}}$.
(11) The expected number of uniform $[0,1]$ random varlates needed (excluding the discrete random variate generation portion) is $\frac{\mu}{1-e^{-\mu}}$.

Proof of Theorem 2.2.

Theorem 2.2 is establlshed as follows: we have 1 unlform random varlate per rectangle (the probability of this is $\sum_{i=1}^{n} \mu e^{-i \mu}=\mu \frac{e^{-\mu_{-}-(n+1) \mu}}{1-e^{-\mu}}$ in the first iteratlon). We have $\mu \frac{e^{\mu}-1}{e^{\mu}-1-\mu}$ per wedge (the probabillty of this is $\sum_{i=1}^{n} e^{-i \mu}\left(e^{\mu}-1-\mu\right)=\frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}\left(e^{\mu}-1-\mu\right)$ In the first Iteration). Thus, by estabIlshing the correctness of statement (1), and applying Wald's equation, we observe that the expected number of unlform random variates needed is

$$
\begin{aligned}
& A\left(\mu \frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}+\mu \frac{e^{\mu}-1}{e^{\mu}-1-\mu} \frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}\left(e^{\left.\left.\mu_{-1}-\mu\right)\right)}\right.\right. \\
& =A\left(\mu e^{\mu} \frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}\right) \\
& =A\left(\mu \frac{1-e^{-n \mu}}{1-e^{-\mu}}\right) \\
& =\frac{\mu}{1-e^{-\mu}} .
\end{aligned}
$$

The number of intervals n does not affect the expected number of unlform random variates needed in the algorlthm. Of course, the expected number of discrete random varlates needed depends very much on n, slnce it is $\frac{1}{1-e^{-n \mu}}$. It is clear that μ should be made very small because as $\mu \downarrow 0$, the expected number of unlform random varlates is $1+\frac{\mu}{2}+o(\mu)$. But when μ is small, we have to choose n large to keep the expected number of iterations down. For example, if we want the expected number of iterations to be $\frac{1}{1-e^{-4}}$, which is entirely reasonable, then we should choose $n=\frac{4}{\mu}$. When $\mu=\frac{1}{20}$, the table size is $2 n+1=161$.

The algorithm given here may differ sllghtly from the algorithms found elsewhere. The idea remalns basically the same: by picking certaln design constants, we can practlcally guarantee that one exponentlal random varlate can be obtalned at the expense of one discrete random variate and one uniform random varlate. The discrete random varlate in turn can be obtalned extremely quickly by the allas method or the allas-urn method at the cost of one other unlform random varlate and elther one or two table look-ups.

2.4. Exercises.

1. It is Important to have a fast generator for the truncated exponential density $f(x)=e^{-x} /\left(1-e^{-\mu}\right), 0 \leq x \leq \mu$. From Theorem 2.1, we recall that a random varlate with thls density can be generated as $\mu \min \left(U_{1}, .: ., U_{Z}\right)$ where the U_{i} 's are lld unlform $[0,1]$ random variates and Z is a truncated Polsson variate with probabllity vector

$$
P(Z=i)=\frac{1}{e^{\mu}-1} \frac{\mu^{i}}{i!} \quad(i \geq 1)
$$

The purpose of thls exercise is to explore alternative methods. In particular, compare with a strip table method based upon n equl-sized intervals and with a grld table method based upon n equl-slzed Intervals. Compare also with rejection from a trapezoldal dominating function, comblned with clever squeeze steps.
2. The Laplace density. The Laplace density is $f(x)=\frac{1}{2} e^{-|x|}$. Show that a random varlate X with thls density can be generated as $S E$ or as $E_{1}-E_{2}$ where E, E_{1}, E_{2} are ild exponential random varlates, and S is a random slgn.
3. Find the density of the sum of two 11d Laplace random varlables, and verify its bell shape. Prove that such a random varlate can be generated as $\log \left(\frac{U_{1} U_{2}}{U_{3} U_{4}}\right)$ where the U_{i} 's are Ild uniform [0,1] random varlates. Develop a rejection algorithm for normal random varlates with quick acceptance and rejection steps based upon the inequalities:

$$
1-\frac{x^{3}}{3} \leq \frac{e^{-\frac{x^{2}}{2}}}{(1+x) e^{-x}} \leq\left\{\begin{array}{l}
1 \quad, x>0 \\
1-\frac{x^{3}}{3}\left(\frac{23}{27}\right)\left(1-\frac{x^{2}}{6}\right) \quad, x>0
\end{array}\right.
$$

Prove these Inequalltles by using Taylor's serles expansion truncated at the third term.

3. THE GAMMA DENSITY.

3.1. The gamma family.

A random varlable X is gamma (a, b) distributed when it has density

$$
f(x)=\frac{x^{a-1} e^{-\frac{x}{b}}}{\Gamma(a) b^{a}} \quad(x \geq 0)
$$

Here $a>0$ is the shape parameter and $b>0$ is the scale parameter. We say that X is gamma (a) distributed when it is gamma ($a, 1$). Before reviewing random variate generation techniques for this famlly, we will look at some key propertles that are relevant to us and that could ald in the deslgn of an algorithm.

The density is unimodal with mode at $(a-1) b$ when $a \geq 1$. When $a<1$, it is monotone with an Infinlte peak at 0 . The moments are easlly computed. For example, we have

$$
\begin{aligned}
& E(X)=\int_{0}^{\infty} x f(x) d x=\frac{\Gamma(a+1) b^{a+1}}{\Gamma(a) b^{a}}=a b ; \\
& E\left(X^{2}\right)=\int_{0}^{\infty} x^{2} f(x) d x=\frac{\Gamma(a+2) b^{a+2}}{\Gamma(a) b^{a}}=a(a+1) b^{2} .
\end{aligned}
$$

Thus, $\operatorname{Var}(X)=a b^{2}$.
The gamma famlly is closed under many operations. For example, when X is gamma (a, b), then $c X$ is gamma ($a, b c$) when $c>0$. Also, summing gamma random variables yields another gamma random varlable. This is perhaps best seen by considering the characterlstic function $\phi(t)$ of a gamma (a, b) random varlable:

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t X}\right)=\int_{0}^{\infty} \frac{x^{a-1} e^{-x\left(\frac{1}{b}-i t\right)}}{\Gamma(a) b^{a}} d x \\
& =\frac{\left(\frac{b}{1-i t b}\right)^{a}}{b^{a}} \int_{0}^{\infty} \frac{x^{a-1} e^{-x\left(\frac{1}{b}-i t\right)}}{\Gamma(a)\left(\frac{b}{1-i t b}\right)^{a}} d x \\
& =\frac{1}{(1-i t b)^{a}} .
\end{aligned}
$$

Thus, if X_{1}, \ldots, X_{n} are independent gamma (a_{1}), .., gamma (a_{n}) random varlables, then $X=\sum_{i=1} X_{i}$ has characteristic function

$$
\phi(t)=\prod_{j=1}^{n} \frac{1}{(1-i t)^{a_{j}}}=\frac{1}{(1-i t)^{\sum_{i=1}^{n} a_{j}}},
$$

and is therefore gamma ($\sum_{j=1}^{n} a_{j}, 1$) distributed. The family is also closed under more complicated transformations. To Mllustrate thls, we consider Kullback's result (Kullback, 1934) which states that when X_{1}, X_{2} are Independent gamma (a) and gamma ($a+\frac{1}{2}$) random variables, then $2 \sqrt{X_{1} X_{2}}$ is gamma ($2 a$).

The gamma distribution is related in innumerable ways to other well-known distributions. The exponential density is a gamma density with parameters (1,1). And when X is normally distributed, then X^{2} is gamma $\left(\frac{1}{2}, 2\right)$ distributed. This

Is called the chi-square distribution with one degree of freedom. In general, a gamma $\left(\frac{r}{2}, 2\right)$ random varlable is called a chl-square random variable with r degrees of freedom. We will not use the chl-square terminology in this section. Perhaps the most important property of the gamma density is its relationship with the beta density. This is summarized in the following theorem:

Theorem 3.1.

If X_{1}, X_{2} are Independent gamma $\left(a_{1}\right)$ and gamma $\left(a_{2}\right)$ random variables,
then $\frac{X_{1}}{X_{1}+X_{2}}$ and $X_{1}+X_{2}$ are independent beta $\left(a_{1}, a_{2}\right)$ and gamma $\left(a_{1}+a_{2}\right)$ random variables. Furthermore, if Y is gamma (a) and Z is beta ($b, a-b$) for some $b>a>0$, then $Y Z$ and $Y(1-Z)$ are independent gamma (b) and gamma ($a-b$) random varlables.

Proof of Theorem 3.1.

We will only prove the first part of the theorem, and leave the second part to the reader (see exerclses). Consider first the transformation $y=x_{1} /\left(x_{1}+x_{2}\right)$, $z=x_{1}+x_{2}$, which has an inverse $x_{1}=y z, x_{2}=(1-y) z$. The Jacoblan of the transformation is

$$
\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y} & \frac{\partial x_{1}}{\partial z} \\
\frac{\partial x_{2}}{\partial y} & \frac{\partial x_{2}}{\partial z}
\end{array}\right|=\left|\begin{array}{ll}
z & y \\
-z & 1-y
\end{array}\right|=|z| .
$$

Thus, the denslty $f(y, z)$ of $(Y, Z)=\left(\frac{X_{1}}{X_{1}+X_{2}}, X_{1}+X_{2}\right)$ is

$$
\begin{aligned}
& \frac{(y z)^{a_{1}-1} e^{-y z}}{\Gamma\left(a_{1}\right)} \frac{((1-y) z)^{a_{2}-1} e^{-(1-y) z}}{\Gamma\left(a_{2}\right)} z \\
& =\frac{\Gamma\left(a_{1}+a_{2}\right) y^{a_{1}-1}(1-y)^{a_{2}-1}}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{z^{a_{1}+a_{2}-1} e^{-z}}{\Gamma\left(a_{1}+a_{2}\right)},
\end{aligned}
$$

which was to be shown.

The observation that for large values of a, the gamma density is close to the normal denslty could ald in the cholce of a dominating curve for the rejection method. Thls fact follows of course from the observation that sums of gamma random varlables are again gamma random variables, and from the central llmit theorem. However, since the central llmit theorem is concerned with the convergence of distribution functions, and since we are interested in a local central limit
theorem, convergence of a density to a density, it is perhaps instructive to glve a direct proof of thls result. We have:

Theorem 3.2.

If X_{a} is gamma (a) distributed and if f_{a} is the density of the normalized gamma random varlable $\left(X_{a}-a\right) / \sqrt{a}$, then

$$
\lim _{a \uparrow \infty} f_{a}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad(x \in R)
$$

Proof of Theorem 3.2.

The denslty of $\left(X_{a}-a\right) / \sqrt{a}$ evaluated at x is

$$
\begin{aligned}
& \sqrt{a} \frac{(x \sqrt{a}+a)^{a-1} e^{-(x \sqrt{a}+a)}}{\Gamma(a)} \sim \frac{\sqrt{a} a^{a-1}\left(1+\frac{x}{\sqrt{a}}\right)^{a-1} e^{-a} e^{-x \sqrt{a}}}{\left(\frac{a-1}{e}\right)^{a-1} \sqrt{2 \pi(a-1)}} \\
& \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{e}\left(1+\frac{1}{a-1}\right)^{a-1} e^{x \sqrt{a}+\frac{(a-1) x}{\sqrt{a}}-\frac{(a-1) x^{2}}{2 a}+O\left(\frac{1}{\sqrt{a}}\right)} \\
& =\frac{1}{\sqrt{2 \pi}}(1+o(1)) e^{-\frac{x^{2}}{2}+O\left(\frac{1}{\sqrt{a}}\right)} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}(1+o(1)) .
\end{aligned}
$$

Here we used Stirling's approximation, and the Taylor serles expansion for $\log (1+u)$ when $0<u<1$.

3.2. Gamma variate generators.

Features we could appreclate in good gamma generators include
(1) Unlform speed: the expected time is unlformly bounded over all values of a, the shape parameter.
(II) Simplicity: short easy programs are more llkely to become widely used.
(iii) Small or nonexistent set-up times: design parameters which depend upon a need to be recalculated every time a changes. These recalculations take often more tlme than the generator.
No famlly has recelved more attention in the literature than the gamma family. Many experimental comparisons are avallable in the general ilterature: see e.g. AtkInson and Pearce (1978), Vaduva (1977), or Tadikamalla and Johnson
(1980,1981).
For speclal cases, there are some good recipes: for example, when $a=1$, we return an exponential random varlate. When a is a small integer, we can return elther

$$
\sum_{i=1}^{a} E_{i}
$$

where the E_{i} 's are lid exponentlal random varlates, or

$$
-\log \left(\prod_{i=1}^{a} U_{i}\right)
$$

where the U_{i} 's are Ild unlform $[0,1]$ random variates. When a equals $\frac{1}{2}+k$ for some small integer k, it is possible to return

$$
\frac{1}{2} N^{2}+\sum_{i=1}^{k} E_{i}
$$

where N is a normal random varlate independent of the E_{i} 's. In older texts one will often find the recommendation that a gamma (a) random varlate should be generated as the sum of a gamma ($\lfloor a\rfloor$) and a gamma ($a-\lfloor a\rfloor$) random varlate. The former random variate is to be obtalned as a sum of independent exponential random varlates. The parameter of the second gamma variate is less than 1. All these strategles take time linearly increasing with a; none lead to good gamma generators in general.

There are several successful approaches in the design of good gamma generators: first and foremost are the rejection algorithms. The rejection algorlthms can be classified according to the famlly of dominating curves used. The differences in tlmings are usually minor: they often depend upon the efflclency of some quick acceptance step, and upon the way the rejection constant varles with a as $a \uparrow \infty$. Because of Theorem 3.2, we see that for the rejection constant to converge to 1 as $a \uparrow \infty$ It is necessary for the dominating curve to approach the normal density. Thus, some rejection algorithms are suboptlmal from the start. Curlously, this is sometlmes not a blg drawback provided that the rejection constant remains reasonably close to 1 . To discuss algorithms, we will inherlt the names avallable in the literature for otherwise our dlscussion would be too verbose. Some successful rejectlon algorithms include:
GB. (Cheng, 1977): rejection from the Burr XII distribution. To be discussed below.
GO. (Ahrens and Dleter, 1974): rejection from a combination of normal and exponentlal densitles.
GC. (Ahrens and Dleter, 1974): rejection from the Cauchy denslty.
XG. (Best, 1978): rejection from the t distribution with 2 degrees of freedom.
TAD2.
(Tadikamalla, 1978): rejection from the Laplace density.

Of these approaches, algorlthm GO has the best asymptotlc value for the rejection constant. Thls by itself does not make it the fastest and certainly not the shortest algorlthm. The real reason why there are so many rejection algorithms around is that the normallzed gamma density cannot be fltted under the normal density because its tall decreases much slower than the tall of the normal denslty. We can of course apply the almost exact inversion princlple and find a nonllnear transformation which would transform the gamma density into a density which is very nearly normal, and which among other things would enable us to tuck the new denslty under a normal curve. Such normalizing transformations include a quadratic transformation (Flsher's transformation) and a cublc transformation (the Wilson-Hilferty transformation): the resulting algorithms are extremely fast because of the good fit. A prototype algorithm of thls kind was developed and analyzed in detall in section IV.3.4, Marsaglla's algorithm RGAMA (Marsaglla (1977), Greenwood (1974)). In section N.7.2, we presented some gamma generators based upon the ratlo-of-uniforms method, which lmprove slightly over simllar algorlthms publlshed by Kinderman and Monahan (1977, 1978, 1979) (algorithm GRUB) and Cheng and Feast (1979, 1979) (algorithm GBH). Desplte the fact that no ratio-of-uniforms algorlthm can have an asymptotically optimal rejection constant, they are typlcally comparable to the best rejection algorithms because of the slmplicity of the dominating density. Most useful algorithms fall into one of the categorles described above. The unlversal method for log-concave densitles (section VII.2.3) (Devroye, 1984) is of course not competitive with speclally designed algorlthms.

There are no algorithms of the types described above which are unlformly fast for all a because the design is usually geared towards good performance for large values of a. Thus, for most algorithms, we have unlform speed on some interval $[a *, \infty)$ where $a *$ is typlcally near 1 . For small values of a, the algorithms are often not valld - this is due to the fact that the gamma density has an infinite peak at 0 when $a<1$, while dominating curves are often taken from a family of bounded densitles. We will devote a special section to the problem of gamma generators for values $a<1$.

Sometimes, there is a need for a very fast algorlthm which would be applied for a flxed value of a. What one should do in such case is cut off the tall, and use a strlp-based table method (sectlon VIII.2) on the body. Since these table methods can be automated, it is not worth spending extra time on this issue. It is nevertheless worth noting that some automated table methods have table slzes that in the case of the gamma density increase unboundedly as $a \rightarrow \infty$ if the expected time per random varlate is to remaln bounded, unless one applles a speclally designed technique similar to what was done for the exponential density in the rectangle-wedge-tall method. In an interesting paper, Schmelser and Lal (1980) have developed a seml-table method: the graph of the denslty is partltioned into about 10 pleces, all rectangular, triangular or exponential in shape, and the set-up time, about flve times the time needed to generate one random varlate, is reasonable. Moreover, the table slze (number of pleces) remains flxed for all values of a. When speed per random varlate is at a premium, one should certalnly use some sort of table method. When speed is important, and a varles

Theorem 3.3.

A. The denslty g has distribution function

$$
G(x)=\frac{1}{2}\left(1+\frac{\frac{x}{\sqrt{2}}}{\sqrt{1+\frac{x^{2}}{2}}}\right)
$$

A random varlate with this distribution can be generated as

$$
\frac{\sqrt{2}\left(U-\frac{1}{2}\right)}{\sqrt{U(1-U)}}
$$

where U is a unlform $[0,1]$ random varlate.
B. Let f be the gamma (a) density, and let g_{a} be the density of $(a-1)+Y \sqrt{\frac{3 a}{2}-\frac{3}{8}}$ where Y has density g. Then

$$
f(x) \leq c_{a} g_{a}(x)=\frac{1}{\Gamma(a)\left(1+\frac{1}{2}\left(\frac{x-(a-1)}{\sqrt{\frac{3 a}{2}-\frac{3}{8}}}\right)^{2}\right)^{\frac{3}{2}}},
$$

where the rejectlon constant is given by

$$
c_{a}=\frac{2 \sqrt{3 a-\frac{3}{4}}}{\Gamma(a)}\left(\frac{a-1}{e}\right)^{a-1} .
$$

C. We have $\sup _{a \geq 1} c_{a} \leq e \sqrt{\frac{6}{\pi}}$, and $\lim _{a \uparrow \infty} c_{a}=\sqrt{\frac{6}{\pi}}$.

Proof of Theorem 3.3.

The claim about the distribution function G is quickly verified. When U is uniformly distributed on $[0,1]$, then the solution X of $G(X)=U$ is precisely $X=\frac{\sqrt{2}\left(U-\frac{1}{2}\right)}{\sqrt{U(1-U)}}$. This proves part A.

Let Y have density g. Then $(a-1)+Y \sqrt{\frac{3 a}{2}-\frac{3}{8}}$ has density

$$
\frac{1}{2 \sqrt{2} \sqrt{\frac{3 a}{2}-\frac{3}{8}}}\left(1+\frac{1}{2}\left(\frac{x-(a-1)}{\sqrt{\frac{3 a}{2}-\frac{3}{8}}}\right)^{2}\right)^{-\frac{3}{2}}
$$

with each call, the almost-exact-Inverslon method seems to be the winner in most experimental comparisons, and certainly when fast exponentlal and normal random varlate generators are avallable. The best ratio-of-unlforms methods and the best rejection methods (XG,GO,GB) are next in llne, well ahead of all table methods.

Finally, we will discuss random varlate generation for closely related distributlons such as the Welbull distribution and the exponential power distribution.

3.3. Uniformly fast rejection algorithms for $a \geq 1$.

We begin with one of the shortest algorlthms for the gamma denslty, which Is based upon rejection from the t density with 2 degrees of freedom:

$$
g(x)=\frac{1}{2 \sqrt{2}}\left(1+\frac{x^{2}}{2}\right)^{-\frac{3}{2}}
$$

This density decreases as x^{-3}, and is symmetric bout 0 . Thus, it can be used as a dominating curve of a properly rescaled and translated gamma denslty. Best's algorthm XG (Best, 1978) is based upon the following facts:

To prove statement B, we need only show that for $x>0$,

$$
x^{a-1} e^{-x} \leq\left(\frac{a-1}{e}\right)^{a-1} \frac{1}{\left(1+\frac{1}{2}\left(\frac{x-(a-1)}{\sqrt{\frac{3 a}{2}-\frac{3}{8}}}\right)^{2}\right)^{\frac{3}{2}}},
$$

or, after resubstitution $y=x-(a-1)$, that for $y \geq-(a-1)$,

$$
e^{-y}\left(1+\frac{y}{a-1}\right)^{a-1} \leq\left(1+\frac{y^{2}}{3 a-\frac{3}{4}}\right)^{-\frac{3}{2}}
$$

Taking logarlthms, we see that we must show that

$$
h(y)=-y+(a-1) \log \left(1+\frac{y}{a-1}\right)+\frac{3}{2} \log \left(1+\frac{y^{2}}{3 a-\frac{3}{4}}\right) \leq 0
$$

Clearly, $h(0)=0$. It suffces to show that $h^{\prime}(y) \geq 0$ for $y \leq 0$ and that $h^{\prime}(y) \leq 0$ for $y \geq 0$. But

$$
\begin{aligned}
& h^{\prime}(y)=-1+\frac{a-1}{(a-1)\left(1+\frac{y}{a-1}\right)}+\frac{3}{2} \frac{2 y}{3 a-\frac{3}{4}} \frac{1}{1+\frac{y^{2}}{3 a-\frac{3}{4}}} \\
& =-\frac{y}{a-1+y}+\frac{y}{a-\frac{1}{4}+\frac{y^{2}}{3}} \\
& =\frac{y\left(y-\frac{3}{4}-\frac{y^{2}}{3}\right)}{(a-1+y)\left(a-\frac{1}{4}+\frac{y^{2}}{3}\right)} .
\end{aligned}
$$

The denominator is ≥ 0 for $a \geq \frac{1}{4}$. The numerator is ≥ 0 for $y \leq 0$, and is ≤ 0 for $y \geq 0$ (thls can be seen by rewriting it as $-\frac{y}{3}\left(y-\frac{3}{2}\right)^{2}$. This concludes the proof of part B.

For part C, we apply Stlrllng's approximation, and observe that

$$
\begin{aligned}
& c_{a} \sim \frac{2 \sqrt{3 a}}{\left(\frac{a}{e}\right)^{a} \sqrt{\frac{2 \pi}{a}}}\left(\frac{a-1}{e}\right)^{a-1} \\
& =\frac{2 e \sqrt{3 a}}{\sqrt{2 \pi a}}\left(1-\frac{1}{a}\right)^{a-1} \\
& \sim \sqrt{\frac{6}{\pi}} .
\end{aligned}
$$

The first \sim is also an upper bound, so that

$$
c_{a} \leq \sqrt{\frac{6}{\pi}} e^{\frac{1}{a}}
$$

when $a \geq 1$. This proves part C.

Based upon Theorem 3.3, we can now state Best's rejection algorthm:

Best's rejection algorithm XG for gamma random variates (Best, 1978)

[SET-UP]
$b \leftarrow a-1, c \leftarrow 3 a-\frac{3}{4}$
[GENERATOR]
REPEAT
Generate ild uniform $[0,1]$ random variates U, V.

$$
W \leftarrow U(1-U), Y \leftarrow \sqrt{\frac{c}{W}}\left(U-\frac{1}{2}\right), X \leftarrow b+Y
$$

IF $X \geq 0$
THEN

$$
\begin{aligned}
& Z \leftarrow 64 W^{3} V^{2} \\
& \text { Accept } \leftarrow\left[Z \leq 1-\frac{2 Y^{2}}{X}\right]
\end{aligned}
$$

IF NOT Accept

$$
\text { THEN Accept } \leftarrow\left[\log (Z) \leq 2\left(b \log \left(\frac{X}{b}\right)-Y\right)\right]
$$

UNTLL Accept
RETURN X

The random varlate X generated at the outset of the REPEAT loop has denslty g_{a}. The acceptance condition is

$$
e^{-Y}\left(1+\frac{Y}{a-1}\right)^{a-1} \geq V\left(1+\frac{Y^{2}}{3 a-\frac{3}{4}}\right)^{-\frac{3}{2}}
$$

Thls can be rewritten in a number of ways: for example, in the notation of the algorlthm,

$$
e^{-Y}\left(\frac{X}{b}\right)^{b} \geq V(4 W)^{\frac{3}{2}}
$$

$$
\begin{aligned}
& -Y+b \log \left(\frac{X}{b}\right) \geq \frac{1}{2} \log \left(4^{3} V^{2} W^{3}\right) \\
& 2\left(-Y+b \log \left(\frac{X}{b}\right)\right) \geq \log (Z)
\end{aligned}
$$

This explains the acceptance condition used in the algorithm. The squeeze step is derived from the acceptance condition, by noting that
(1) $\log (Z) \leq Z-1$;
(11) $2\left(b \log \left(1+\frac{Y}{b}\right)-Y\right) \geq 2 Y\left(-\frac{Y}{b+Y}\right)=-\frac{2 Y^{2}}{X}$.

The last inequality is obtained by noting that the left hand side as a function of Y is 0 at $Y=0$, and has derivative $-\frac{Y}{b+Y}$. Therefore, by the Taylor serles expansion truncated at the first term, we see that for $Y \geq 0$, the left hand side is at least equal to $2\left(0+Y\left(-\frac{Y}{b+Y}\right)\right)$. For $Y \leq 0$, the same bound is valld. Thus, when $Z-1 \leq-2 Y^{2} / X$, we are able to conclude that the acceptance condition is satisfled. It should be noted that in vlew of the rather large rejection constant, the squeeze step is probably not very effective, and could be omitted without a blg tlme penalty.

We wlll now move on to Cheng's algorithm GB which is based upon rejection from the Burr XII density

$$
g(x)=\lambda \mu \frac{x^{\lambda-1}}{\left(\mu+x^{\lambda}\right)^{2}}
$$

for parameters $\mu, \lambda>0$ to be determined as a function of a. Random varlates with this density can be obtalned as

$$
\left(\frac{\mu U}{1-U}\right)^{\frac{1}{\lambda}}
$$

where U is uniformly distributed on $[0,1]$. This follows from the fact that the distribution function corresponding to g is $x^{\lambda} /\left(\mu+x^{\lambda}\right), x \geq 0$. We have to choose λ and μ. Unfortunately, minimization of the area under the dominating curve does not glve expllcitly solvable equations. It is useful to match the curves of f and g, which are both unimodal. Since f peaks at $a-1$, it makes sense to match this peak. The peak of g occurs at

$$
x=\left(\frac{(\lambda-1) \mu}{\lambda+1}\right)^{\frac{1}{\lambda}}
$$

If we choose λ large, i.e. Increasing with a, then this peak will approximately match the other peak when $\mu=a^{\lambda}$. Consider now $\log \left(\frac{f}{g}\right)$. The derlvative of this function is

$$
\frac{a-\lambda-x}{x}+\frac{2 \lambda x^{\lambda-1}}{a^{\lambda}+x^{\lambda}} .
$$

This derlvative attalns the value 0 when $(a+\lambda-x) x^{\lambda}+(a-\lambda-x) a^{\lambda}=0$. By analyz Ing the derivative, we can see that it has a unique solution at $x=0$ when $\lambda=\sqrt{2 a-1}$. Thus, we have

$$
f(x) \leq c g(x)
$$

where

$$
\begin{aligned}
& c=\frac{a^{a-1} e^{-a}\left(2 a^{\lambda}\right)^{2}}{\Gamma(a) \lambda a^{\lambda} a^{\lambda-1}} \\
& =\frac{a^{a} e^{-a} 4}{\Gamma(a) \lambda} \\
& \sim \frac{4 \sqrt{a}}{\sqrt{2 \pi} \lambda} \quad(a \uparrow \infty) .
\end{aligned}
$$

Resubstitution of the value of λ ylelds the asymptotic value of $\sqrt{\frac{4}{\pi}} \approx 1.13$. In fact, we have

$$
c \leq \frac{4 \sqrt{a}}{\sqrt{2 \pi} \lambda}=\sqrt{\frac{4}{\pi}} \sqrt{a /\left(a-\frac{1}{2}\right)} \leq \sqrt{\frac{8}{\pi}},
$$

uniformly over $a \geq 1$. Thus, the rejection algorthm suggested by Cheng has a good rejection constant. In the design, we notice that if X is a random varlate with density g, and U is a unfform $[0,1]$ random varlate, then the acceptance condition is

$$
4\left(\frac{a}{e}\right)^{a}\left(\frac{a^{\lambda}}{X^{\lambda+1}}\right) \frac{X^{2 \lambda}}{\left(a^{\lambda}+X^{\lambda}\right)^{2}} U \leq X^{a-1} e^{-X} .
$$

Equivalently, since $V=X^{\lambda} /\left(a^{\lambda}+X^{\lambda}\right)$ is unlformly distributed on [0,1], the acceptance condition can be rewritten as

$$
4\left(\frac{a}{e}\right)^{a} a^{\lambda} V^{2} U \leq X^{\lambda+a} e^{-X}
$$

or

$$
\log (4)+(\lambda+a) \log (a)-a+\log \left(U V^{2}\right) \leq(\lambda+a) \log (X)-X,
$$

or

$$
\log \left(U V^{2}\right) \leq a-\log (4)+(\lambda+a) \log \left(\frac{X}{a}\right)-X .
$$

A quick acceptance step can be introduced which uses the inequality

$$
\log \left(U V^{2}\right) \leq d\left(U V^{2}\right)-\log (d)-1
$$

which is valld for all d. The value $d=\frac{9}{2}$ was suggested by Cheng. Combining all of thls, we obtaln:

Cheng's rejection algorithm GB for gamma random variates (Cheng, 1977)
[SET-UP]
$b \leftarrow a-\log (4), c \leftarrow a+\sqrt{2 a-1}$
[GENERATOR]
REPEAT
Generate iid uniform $[0,1]$ random variates U, V.
$Y \leftarrow a \log \left(\frac{V}{1-V}\right), X \leftarrow a e^{V}$
$Z \leftarrow U V^{2}$
$R \leftarrow b+c Y-X$
Accept $\leftarrow\left[R \geq \frac{9}{2} Z-\left(1+\log \left(\frac{9}{2}\right)\right)\right]\left(\right.$ note that $\left(1+\log \left(\frac{9}{2}\right)\right)=2.5040774 \ldots$...)
IF NOT Accept THEN Accept $\leftarrow[R \geq \log (Z)]$
UNTIL Accept
RETURN X

We will close this sectlon with a word about the historically important algorithm GO of Ahrens and Dleter (1074), which was the first uniformly fast gamma generator. It also has a very good asymptotic rejection constant, sllghtly larger than 1. The authors got around the problem of the tall of the gamma density by noting that most of the gamma density can be tucked under a normal curve, and that the right tall can be tucked under an exponentlal curve. The breakpoint must of course be to the right of the peak $a-1$. Ahrens and Dleter suggest the value $(a-1)+\sqrt{8\left(a+\sqrt{\frac{8 a}{3}}\right)}$. We recall that if X is gamma (a) distributed, then $\frac{(X-a)}{\sqrt{a}}$ tends in distribution to a normal density. Thus, with the breakpoint of Ahrens and Dleter, we cannot hope to construct a dominating curve with Integral tending to 1 as $a \uparrow \infty$ (for this, the breakpoint must be at $a-1$ plus a term increasing faster than \sqrt{a}). It is true however that we are in practice very close. The almost-exact inversion method for normal random variates ylelds asymptotlcally optimal rejection constants without great diffculty. For thls reason, we will delegate the treatment of algorithm GO to the exerclses.

3.4. The Weibull density.

A random varlable has the standard Weibull density with parameter $a>0$ when it has density

$$
f(x)=a x^{a-1} e^{-x^{a}} \quad(x \geq 0)
$$

In this, we recognize the density of $E^{\frac{1}{a}}$ where E is an exponential random variable. This fact can also be deduced from the form of its distribution function,

$$
F(x)=1-e^{-x^{6}} \quad(x \geq 0)
$$

Because of thls, it seems hardly worthwhlle to design rejection algorithms for thls density. But, turning the tables around for the moment, the Welbull density is very useful as an auxiliary density in generators for other densitles.

Example 3.1. Gumbel's extreme value distribution.

When X is Welbull (a), then $Y=-a \log (X)$ has the extreme value density

$$
f(x)=e^{-x} e^{-e^{-x}} \quad(x \in R)
$$

By the fact that X is distributed as $E^{\frac{1}{a}}$, we see of course that the parameter a plays no special role: thus, $-\log (E)$ and $-\log \left(\log \left(\frac{1}{U}\right)\right)$ are both extreme value random variables when E is exponentially distributed, and E is exponentlally distributed.

Example 3.2. A compound Weibull distribution.

Dubey (1988) has pointed out that the ratio $W_{a} / G_{b}{ }^{\frac{1}{a}}$ has the Pareto-llke denslty

$$
f(x)=\frac{a b x^{a-1}}{\left(1+x^{a}\right)^{b+1}} \quad(x \geq 0)
$$

Here W_{a} is a Welbull (a) random variable, and G_{b} is a gamma (b) random varlable. As a speclal case, we note that the ratio of two independent exponential random varlables has density $\frac{1}{(1+x)^{2}}$ on $[0, \infty)$.

Example 3.3. Gamma variates by rejection from the Weibull density.
Consider the gamma (a) density f with parameter $0<a \leq 1$. For thls denslty, random varlates can be generated by rejection from the Welbull (a) density (which will be called g). Thls is based upon the Inequallty

$$
\frac{f(x)}{g(x)}=\frac{e^{x^{a}-x}}{a \Gamma(a)} \leq \frac{e^{b-b^{\frac{1}{a}}}}{\Gamma(a+1)}
$$

where

$$
b=a^{\frac{a}{1-a}}
$$

A rejection algorlthm based upon this inequality has rejection constant

$$
\frac{e^{(1-a) a^{\frac{a}{1-a}}}}{\Gamma(1+a)}
$$

The rejection constant has the following propertles:

1. It tends to 1 as $a \downarrow 0$, or $a \uparrow 1$.
2. It is not greater than $\frac{e}{0.88580}$ for any value of $a \in(0,1]$. This can be seen by noting that $(1-a) b \leq 1-a \leq 1$ and that $\Gamma(1+a) \geq 0.8856031944 \ldots$. (the gamma function at $1+a$ is absolutely bounded from below by its value at $1+a=1.4818321449 . .$. ; see e.g. Abramowltz and Stegun (1870, pp. 259)).
Thls leads to a modifled verslon of an algorithm of Vaduva's (1977):

Gamma generator for parameter smaller than 1

[SET-UP]
$c \leftarrow \frac{1}{a}, d \leftarrow a^{\frac{a}{1-a}}(1-a)$
[GENERATOR]
REPEAT
Generate iid exponential random variates Z, E. Set $X \leftarrow Z^{c}(X$ is Weibull (a)). UNTIL $Z+E \leq d+X$ RETURN X

3.5. Johnk's theorem and its implications.

Random varlate generation for the case $a<1$ can be based upon a spectal property of the beta and gamma distributions. This property is usually attributed to Johnk (1964), and has later been rediscovered by others (Newman and Odell, 1871; Whlttaker, 1874). We have:

Theorem 3.4. (Johnk, 1964)

Let $a, b>0$ be given constants, and let U, V be ild unlform $[0,1]$ random variables. Then, conditioned on $U^{\frac{1}{a}}+V^{\frac{1}{b}} \leq 1$, the random variable

$$
\frac{U^{\frac{1}{a}}}{U^{\frac{1}{a}}+V^{\frac{1}{b}}}
$$

Is beta (a, b) distributed.

Theorem 3.5. (Berman, 1971)
Let $a, b>0$ be glven constants, and let U, V be ild unlform $[0,1]$ random varlables. Then, conditioned on $U^{\frac{1}{a}}+V^{\frac{1}{b}} \leq 1$, the random vartable

$$
U^{\frac{1}{a}}
$$

is betà $(a, b+1)$ distributed.

Proof of Theorems 3.4 and 3.5.

Note that $X=U^{\frac{1}{a}}$ has distribution function x^{a} on $[0,1]$. The density is $a x^{a-1}$. Thus, the Jolnt density of X and $Y=V^{\frac{1}{b}}$ is

$$
f(x, y)=b x^{a-1} y^{b-1} \quad(0 \leq x, y \leq 1) .
$$

Consider the transformation $z=x+y, t=\frac{x}{x+y}$ with inverse $x=t z, y=(1-t) z$. Thls transformation has Jacoblan

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial t} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial t} & \frac{\partial y}{\partial z}
\end{array}\right|=\left|\begin{array}{cc}
z & t \\
-z & 1-t
\end{array}\right|=|z| .
$$

The joint density of $(Z, T)=\left(X+Y, \frac{X}{X+Y}\right)$ is

$$
\begin{aligned}
& |z| f(t z,(1-t) z)=z a b(t z)^{a-1}((1-t) z)^{b-1} \quad(0 \leq t z,(1-t) z \leq 1) \\
& =a b t^{a-1}(1-t)^{b-1} z^{a+b-1} \quad(0 \leq t z,(1-t) z \leq 1) .
\end{aligned}
$$

The region in the (z, t) plane on which thls density is nonzero is $A=\left\{(z, t): t>0,0<z<\min \left(\frac{1}{t}, \frac{1}{1-t}\right)\right\}$. Let A_{t} be the collection of values z for which $0<z<\min \left(\frac{1}{t}, \frac{1}{1-t}\right)$. Then, writing $g(z, t)$ for the Joint density of (Z, T) at (z, t), we see that the density of T conditional on $Z \leq 1$ is given by

$$
\begin{aligned}
& \frac{\int_{z \leq 1, z \in A_{i}} g(z, t) d z}{\int_{A} g(z, t) d z d t} \\
& =\frac{1}{c} \frac{a b}{a+b} t^{a-1}(1-t)^{b-1}
\end{aligned}
$$

where $c=\int_{A} g(z, t) d z d t$ is a normallzation constant. Clearly,

$$
c=P(X+Y \leq 1)=\frac{a b}{a+b} \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)} .
$$

This concludes the proof of Theorem 3.4.
For Berman's theorem, consider the transformation $x=x, z=x+y$ with Inverse $x=x, y=z-x$. The joint density of (X, Z) is $f(x, z-x)=a b x^{a-1}(z-x)^{b-1} I_{B}(x, z)$ where B is the set of (z, x) satisfying $0<x<1,0<x<z<x+1$. This is a parallellepld in the (z, x) plane. The density of X conditional on $Z<1$ is equal to a constant times

$$
\int_{x<z<1} a b x^{a-1}(z-x)^{b-1} d z=a x^{a-1}(1-x)^{b} .
$$

This concludes the proof of Theorem 3.5.

These theorems provide us with recipes for generating gamma and beta varlates. For gamma random varlates, we observe that $Y Z$ is gamma (a) distributed when Y is beta ($a, 1-a$) and Z is gamma (1) (i.e. exponentlal), or when Y is beta ($a, 2-a$) and Z is gamma (2). Summarizing all of this, we have:

Johnk's beta generator

REPEAT

Generate iid uniform [0,1] random variates U, V.
$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{b}}$
UNTIL $X+Y \leq 1$
RETURN $\frac{X}{X+Y}(X$ is beta (a, b) distributed $)$

Berman's beta generator

REPEAT
Generate iid uniform $[0,1]$ random variates U, V.
$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{b}}$
UNTLL $X+Y \leq 1$
RETURN X (X is beta ($a, b+1$) distributed)

Johnk's gamma generator

REPEAT
Generate iid uniform $[0,1]$ random variates U, V.
$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{1-a}}$
UNTLL $X+Y \leq 1$
Generate an exponential random variate E.
RETURN $\frac{E X}{X+Y}$ (X is gamma (a) distributed)

Berman's gamma generator

REPEAT

$$
\text { Generate iid uniform }[0,1] \text { random variates } U, V \text {. }
$$

$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{1-a}}$
UNTIL $X+Y \leq 1$
Generate a gamma (2) random variate Z (either as the sum of two iid exponential random variates or as $-\log \left(U * V^{*}\right)$ where U^{*}, V^{*} are iid uniform [0,1$]$ random variates).
RETURN $Z X$ (X is gamma (a) distributed)

Both beta generators require on the average

$$
\frac{1}{P(X+Y \leq 1)}=\frac{\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1)}
$$

iterations, and this increases rapidly with a and b. It is however uniformly bounded over all a, b with $0<a, b \leq 1$. The two gamma generators should only be used for $a \leq 1$. The expected number of iterations is in both cases

$$
\frac{1}{\Gamma(1+a) \Gamma(2-a)} .
$$

It is known that $\Gamma(a) \Gamma(1-a)=\pi / \sin (\pi a)$. Thus, the expected number of iteratlons is

$$
\frac{\sin \pi a}{\pi a(1-a)}
$$

which is a symmetric function of a around $\frac{1}{2}$ taking the value 1 near both endpoints ($a \downarrow 0, a=1$), and peaking at the polnt $a=\frac{1}{2}$: thus, the rejection constant does not exceed $\frac{4}{\pi}$ for any $a \in(0,1]$.

3.6. Gamma variate generators when $a \leq 1$.

We can now summarlze the avalalble algorithms for gamma (a) random varlate generation when the parameter is less than one. The fact that there is an infinte peak ellminates other time-honored approaches (such as the ratio-ofunlforms method) from contentlon. We have:

1. Rejection from the Welbull density (Vaduva, 1977): see section IX.3.7.
2. The Johnk and Berman algorithms (Johnk, 1971; Berman, 1971): see section IX.3.8.
3. The generator based upon Stuart's theorem (see section IV.6.4): $G_{a+1} U^{\frac{1}{a}}$ is gamma (a) distrlbuted when G_{a+1} is gamma ($a+1$) distributed, and U is uniformly distributed on [0,1]. For G_{a+1} use an effclent gamma generator with parameter greater than unity.
4. The Forsythe-von Neumann method (see section IV.2.4).
5. The composition/rejection method, with rejection from an exponentlal density on $[1, \infty)$, and from a polynomial density on $[0,1]$. See sections $[V .2 .5$ and II.3.3 for varlous pleces of the algorithm malnly due to Vaduva (1977). See also algorithm GS of Ahrens and Dleter (1974) and Its modiflcation by Best (1983) developed in the exercise section.
6. The transformation of an EPD varlate obtained by the rejection method of section VII.2.6.
All of these algorlthms are unlformly fast over the parameter range. Comparative timings vary from experiment to experiment. Tadikamalla and Johnson (1981) report good results with algorithm GS but fall to Include some of the other algorithms in their comparison. The algorithms of Johnk and Berman are probably better sulted for beta random varlate generation because two expensive powers of unlform random varlates are needed in every lteration. The Forsythevon Neumann method seems also less effclent time-wlse. This leaves us with approaches $1,3,5$ and 6 . If a very effclent gamma generator is avallable for $a>1$, then method 3 could be as fast as algorlthm GS, or Vaduva's Welbull-based rejection method. Methods 1 and 8 are probably comparable in all respects, although the rejection constant of method 8 certainly is superior.

3.7. The tail of the gamma density.

As for the normal density, it is worthwhile to have a good generator for the tall gamma (a) density truncated at t. It is only natural to look at dominating densities of the form $b e^{b(t-x)}(x \geq t)$. The parameter b has to be plcked as a function of a and t. Note that a random varlate with this density can be generated as $t+\frac{E}{b}$ where E is an exponential random varlate. We conslder the cases $a<1$ and $a \geq 1$ separately. We can take $b=1$ because the gamma density decreases faster than e^{-x}. Therefore, rejection can be based upon the inequality

$$
x^{a-1} e^{-x} \leq t^{a-1} e^{-x} \quad(x \geq t)
$$

It is easily seen that the corresponding algorithm is

REPEAT

Generate a uniform random variate U and an exponential random variate E. Set $X \leftarrow t+E$
UNTIL $X U^{\frac{1}{1-a}} \leq a$
RETURN X (X has the gamma density restricted to $[t, \infty)$)

The efflciency of the algorthm Is given by the ratio of the integrals of the two functions. This gives

$$
\begin{aligned}
& \frac{t^{a-1} e^{-t}}{\int_{t}^{\infty} x^{a-1} e^{-x} d x} \\
& =\frac{1}{\int_{t}^{\infty}\left(\frac{x}{t}\right)^{a-1} e^{t-x} d x} \\
& =\frac{1}{\int_{0}^{\infty}\left(1+\frac{x}{t}\right)^{a-1} e^{-x} d x} \\
& \leq \frac{1}{\int_{0}^{\infty} e^{x\left(\frac{a-1}{t}-1\right)} d x} \\
& =1+\frac{1-a}{t} \\
& \rightarrow 1 \text { as } t \rightarrow \infty .
\end{aligned}
$$

When $a \geq 1$, the exponentlal with parameter 1 does not suffice because of the polynomial portion in the gamma density. It is necessary to take a slightly slower decreasing exponential density. The inequallty that we will use is

$$
\left(\frac{x}{t}\right)^{a-1} \leq e^{(a-1)\left(\frac{x}{t}-1\right)}
$$

which is easily establlshed by standard optimization methods. This suggests the cholce $b=1-\frac{a-1}{t}$ in the exponential curve. Thus, we have

$$
x^{a-1} e^{-x} \leq t^{a-1} e^{(a-1)\left(\frac{x}{t}-1\right)-x}
$$

Based on this, the rejection algorlthm becomes

REPEAT

$$
\text { Generate two iid exponential random variates } E, E^{*} .
$$

$$
X \leftarrow t+\frac{E}{1-\frac{a-1}{t}}
$$

UNTIL $\frac{X}{t}-1+\log \left(\frac{t}{X}\right) \leq \frac{E *}{a-1}$
RETURN X (X has the gamma (a) density restricted to $[t, \infty$).)

The algorithm is valld for all $a>1$ and all $t>a-1$ (the latter condition states that the tall should not include the mode of the gamma density). A squeeze step $\log \left(\frac{X}{t}\right)=\log \left(1+\frac{X-t}{t}\right) \geq 2 \frac{X-t}{X+t}=\frac{2 E \quad \text { by }}{\left(1-\frac{a-1}{t}\right)(X+t)}$. Here we used the inequallty $\log (1+u) \geq 2 u /(u+2)$. Thus, the quick acceptance step to be inserted in the algorlthm Is

$$
\text { IF } \frac{E^{2}}{\left(1-\frac{a-1}{t}\right)^{2} t(X+t)} \leq \frac{E^{*}}{a-1} \text { THEN RETURN } X
$$

We conclude this section by showing that the rejection constant is asymptotically optimal as $t \dagger \infty$: the ratio of the integrals of the two functions involved is

$$
\begin{aligned}
& \frac{t^{a-1} e^{-t}}{\left(1-\frac{a-1}{t}\right) \int_{t}^{\infty} x^{a-1} e^{-x} d x} \\
& =\frac{1}{\left(1-\frac{a-1}{t}\right) \int_{0}^{\infty}\left(1+\frac{x}{t}\right)^{a-1} e^{-x} d x}
\end{aligned}
$$

which once again tends to 1 as $t \rightarrow \infty$. We note here that the algorlthms given in this section are due to Devroye (1980). The algorithm for the case $a>1$ can be slightly improved at the expense of more compllcated design parameters. This
possibllity is explored in the exercises.

3.8. Stacy's generalized gamma distribution.

Stacy (1982) introduced the generalized gamma distribution with two shape parameters, $c, a>0$: the density is

$$
f(x)=\frac{c}{\Gamma(a)} x^{c a-1} e^{-x^{c}} \quad(x \geq 0)
$$

This famlly of densitles includes the gamma densities $(c=1)$, the halfnormal density ($a=\frac{1}{2}, c=2$) and the Welbull densitles ($a=1$). Because of the flexibllity of having two shape parameters, this distribution has been used quite often in modellng stochastic Inputs. Random varlate generation is no problem because we observe that $G_{a}^{\frac{1}{c}}$ has the sald distribution where G_{a} is a gamma (a) random varlable.

- Tadikamalla (1979) has developed a rejection algorlthm for the case $a>1$ which uses as a dominating density the Burr XII density used by Cheng in his algorlthm GB. The parameters μ, λ of the Burr XII density are $\lambda=c \sqrt{2 a-1}$, $\mu=a^{\sqrt{2 a-1}}$. The rejection constant is a function of a only. The algorlthm is virtually equivalent to generating G_{a} by Cheng's algorlthm GB and returning $G_{a}{ }^{\frac{1}{c}}$ (which explains why the rejectlon constant does not depend upon c).

3.9. Exercises.

1. Show Kullback's result (Kullback, 1934) whlch states that when X_{1}, X_{2} are Independent gamma (a) and gamma $\left(a+\frac{1}{2}\right)$ random varlables, then $2 \sqrt{X_{1} X_{2}}$ is gamma (2a).
2. Prove Stuart's theorem (the second statement of Theorem 3.1): If Y is gamma (a) and Z is beta $(b, a-b)$ for some $b>a>0$, then $Y Z$ and $Y(1-Z)$ are independent gamma (b) and gamma $(a-b)$ random variables.
3. Algorithm GO (Ahrens and Dieter, 1974). Define the breakpolnt $b=a-1+\sqrt{6\left(a+\sqrt{\frac{8 a}{3}}\right) \text {. Find the smallest exponentially decreasing }}$ function dominating the gamma (a) density to the right of b. Find a normal curve centered at $a-1$ dominating the gamma denslty to the left of b, which has the property that the area under the dominating curve divided by the area under the leftmost plece of the gamma density tends to a constant as $a \uparrow \infty$. Also, find the slmllarly defined asymptotic ratio for the rlghtmost
plece, and establlsh that it is greater than 1. By combining this, obtain an expression for the 11 mit value of the rejection constant. Having established the bounds, give a rejection method for generating a random varlate with the gamma density. Find efficlent squeeze steps if possible.
4. The Weibull density. Prove the following propertles of the Welbull (a) distrlbution:
A. For $a \geq 1$, the density is unimodal with mode at $\left(1-\frac{1}{a}\right)^{\frac{1}{a}}$. The position of the mode tends to 1 as $a \uparrow \infty$.
B. The value of the distribution function at $x=1$ is $1-\frac{1}{e}$ for all values of a.
C. The r-th moment is $\Gamma\left(1+\frac{r}{a}\right)$.
D. The minlmum of n lid Welbull random varlables is distributed as a constant times a Welbull random variable. Determine the constant and the parameter of the latter random varlable.
E. As $a \nmid \infty$, the first moment of the Welbull distribution varles as $1-\frac{\gamma}{a}+o\left(\frac{1}{a}\right)$ where $\gamma=0.57722 \ldots$ Is Euler's constant. Also, the varlance $\sim \pi^{a} / 8 a^{2}$.
5. Obtain a good unlform upper bound for the rejection constant in Vaduva's algorlthm for gamma random varlates when $a \leq 1$ whlch is based upon rejectlon from the Welbull density.
6. Algorithm GS (Ahrens and Dieter, 1974). The following algorlthm was proposed by Ahrens and Dleter (1974) for generating gamma (a) random variates when the parameter a is ≤ 1 :

Rejection algorithm GS for gamma variates (Ahrens and Dieter, 1974)

[SET-UP]
$b \leftarrow \frac{e+a}{e}, c \leftarrow \frac{1}{a}$
[GENERATOR]
REPEAT
Generate id uniform $[0,1]$ random variates U, W. Set $V \leftarrow b U$. IF $V \leq 1$

THEN

$$
X \leftarrow V^{c}
$$

Accept $\leftarrow\left[W \leq e^{-X}\right]$
ELSE
$X \leftarrow-\log (c(b-V))$
Accept $\leftarrow\left[W \leq X^{a-1}\right]$

UNTIL Accept

RETURN X

The algorlthm is based upon the Inequalltles: $f(x) \leq \frac{a}{\Gamma(1+a)} x^{a-1}(0 \leq x \leq 1)$ and $f(x) \leq \frac{a}{\Gamma(1+a)} e^{-x}(x \geq 1)$. Show that the rejection constant is $\frac{e+a}{e \Gamma(1+a)}$. Show that the rejection constant approaches 1 as $a \not \downarrow 0$, that it is $1+\frac{1}{e}$ at $a=1$, and that it is unlformly bounded over $a \in(0,1]$ by a number not exceeding $\frac{3}{2}$. Show that in sampllng from the composite dominating denslty, we have probabllity weights $\frac{e}{e+a}$ for $a x^{a-1}(0<x \leq 1)$, and $\frac{a}{e+a}$ for $e^{1-x}(x \geq 1)$ respectlvely.
7. Show that the exponentlal function of the form $c e^{-b x} \quad(x \geq t)$ of smallest Integral dominating the gamma (a) density on $[t, \infty$) (for $a>1, t>0$) has parameter b given by

$$
b=\frac{t-a+\sqrt{(t-a)^{2}+4 t}}{2 t}
$$

Hint: show flrst that the ratlo of the gamma densty over $e^{-b x}$ reaches a peak at $x=\frac{a-1}{1-b}$ (which is to the right of t when $b \geq 1-\frac{a-1}{t}$). Then compute the optimal b and verify that $b \geq 1-\frac{a-1}{t}$. Glve the algorithm for the tall of the gamma density that corresponds to this optimal inequallty. Show furthermore that as $t \uparrow \infty, b=1-\frac{a-1}{t}+o\left(\frac{1}{t}\right)$, which proves that the cholce
of b in the text is asymptotically optlmal (Dagpunar, 1978).
8. Algorithm RGS (Best, 1983). Algorlthm GS (of exercise B) can be optimlzed by two devices: first, the gamma denslty f with parameter a can be maximized by a function which is $x^{a-1} / \Gamma(a)$ on $[0, t]$ and $t^{a-1} e^{-x} / \Gamma(a)$ on $[t, \infty)$, where t is a breakpoint. In algorithm GS, the breakpoint was chosen as $t=1$. Secondly, a squeeze step can be added.
A. Show that the optlmal breakpolnt (In terms of minimization of the area under the dominating curve) is given by the solution of the transcendental equation $t=e^{-t}(1-a+t)$. (Best approximates this solution by $0.07+0.75 \sqrt{1-a}$.)
B. Prove the inequalities $e^{-x} \geq(2-x) /(2+x)(x \geq 0)$ and $(1+x)^{-c} \geq 1 /(1+c x)(x \geq 0,1 \geq c \geq 0)$. (These are needed for the squeeze steps.)
C. Show that the algorithm glven below is valld:

Algorithm RGS for gamma variates (Best, 1983)

```
[SET-UP]
t\leftarrow0.07+0.75\sqrt{}{1-a},b\leftarrow1+\frac{\mp@subsup{e}{}{-t}a}{t},c\leftarrow\frac{1}{a}
[GENERATOR]
REpeat
    Generate lid uniform [0,1] random variates }U,W\mathrm{ . Set }V\leftarrowbU\mathrm{ .
    IF V \leq1
        THEN
            X\leftarrowt\mp@subsup{V}{}{c}
```



```
            IF NOT Accept THEN Accept }\leftarrow[W\leq\mp@subsup{e}{}{-X}
        ELSE
            X\leftarrow-log(ct (b-V)),Y\leftarrow-\frac{X}{t}
            Accept -[ W(a+Y-aY)\leq1]
            IF NOT Accept THEN Accept }-[W\leq\mp@subsup{Y}{}{a-1}
UNTIL Accept
RETURN X
```

9. Algorithm G4PE (Schmeiser and Lal, 1980). The graph of the gamma density can be covered by a collection of rectangles, trlangles and exponenthal curves having the propertles that (1) all parameters involved are easy to compute; and (11) the total area under the dominating curve is unlformly bounded over $a \geq 1$. One such proposal is due to Schmelser and Lal (1980): deflne five breakpoints,

$$
\begin{aligned}
& t_{3}=a-1 \\
& t_{4}=t_{3}+\sqrt{t_{3}} \\
& t_{5}=t_{4}\left(1+1 /\left(t_{4}-t_{3}\right)\right) \\
& t_{2}=\max \left(0, t_{3}-\sqrt{t_{3}}\right) \\
& t_{1}=t_{2}\left(1-1 /\left(t_{3}-t_{2}\right)\right)
\end{aligned}
$$

where t_{3} is the mode, and t_{2}, t_{4} are the polnts of inflection of the gamma density. Furthermore, t_{1}, t_{5} are the polnts at which the tangents of f at t_{2} and t_{4} cross the x-axis. The dominating curve has flve pleces: an exponential tall on $\left(-\infty, t_{1}\right]$ with parameter $1-t_{3} / t_{1}$ and touching f at t_{1}. On $\left[t_{5}, \infty\right)$ we have a similar exponentlal dominating curve with parameter $1-t_{3} / t_{5}$. On $\left[t_{1}, t_{2}\right]$ and $\left[t_{4}, t_{5}\right]$, we have a linear dominating curve touching the density at the breakpoints. Finally, we have a constant plece of helght $f\left(t_{3}\right)$ on $\left[t_{2}, t_{4}\right]$. All the strips except the two tall sections are partitioned into a rectangle (the largest rectangle fitted under the curve of f) and a leftover plece. This gives ten pleces, of which four are rectangles totally tucked under the gamma denslty. For the six remaining pleces, we can construct very simple Ilnear acceptance steps.
A. Develop the algorlthm.
B. Compute the area under the dominating curve, and determine its asymptotlc value.
C. Determine the asymptotic probabllity that we need only one unlform random varlate (the random varlate needed to select one of the four rectangles is recycled). This is equivalent to computing the asymptotic area under the four rectangles.
D. With all the squeeze steps defined above in place, compute the asymptotlc value of the expected number of evaluations of f.

Hint: obtaln the values for an appropriately transformed normal density and use the convergence of the gamma density to the normal density.
10. The t-distribution. Show that when $G_{1 / 2}, G_{a / 2}$ are independent gamma random variables, then $\sqrt{a G_{1 / 2} / G_{a / 2}}$ is distributed as the absolute value of a random varlable having the t distribution with a degrees of freedom. (Recall that the t density is

$$
\left.f(x)=\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)\left(1+\frac{x^{2}}{2}\right)^{\frac{a+1}{2}}} .\right)
$$

In particular, if $G, G *$ are IId gamma ($\frac{1}{2}$) random variables, then $\sqrt{G / G *}$ is Cauchy distributed.
11. The Pearson VI distribution. Show that G_{a} / G_{b} has density

$$
f(x)=\frac{x^{a-1}}{B_{a, b}(1+x)^{b-1}} \quad(x \geq 0)
$$

when G_{a}, G_{b} are independent gamma random variables with parameters a and b respectively. Here $B_{a, b}=\Gamma(a) \Gamma(b) / \Gamma(a+b)$ is a normalization constant. The density in question is the Pearson VI density. It is also called the beta density of the second kind with parameters a and $b . b / a$ times the random variable in question is also called an F distributed random variable with $2 a$ and $2 b$ degrees of freedom.

4. THE BETA DENSITY.

4.1. Properties of the beta density.

We say that a random varlable X on $[0,1]$ is beta (a, b) distributed when it has density

$$
f(x)=\frac{x^{a-1}(1-x)^{b-1}}{B_{a, b}} \quad(0 \leq x \leq 1)
$$

where $a, b>0$ are shape parameters, and

$$
B_{a, b}=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

is a normallzation constant. The density can take a number of interesting shapes:

1. When $0<a, b<1$, the density is U-shaped with Infinite peaks at 0 and 1.
2. When $0<a<1 \leq b$, the density is sald to be J-shaped: it has an inflnite peak at 0 and decreases monotonically to a positive constant (when $b=1$) or to 0 (when $b>1$).
3. When $a=1<b$, the density is bounded and decreases monotonically to 0.
4. When $a=b=1$, we have the unlform $[0,1]$ density.
5. When $1<a, b$, the density is unimodal, and takes the value 0 at the endpoints.
The fact that there are two shape parameters makes the beta density a solld candidate for lllustrating the various techniques of nonunlform random variate generation. It is important for the design to understand the basic propertles. For example, when $a, b>1$, the mode is located at $\frac{a-1}{a+b-2}$. It is also quite trivial to show that for $r>-a$,

$$
E\left(X^{r}\right)=\frac{B_{a+r, b}}{B_{a, b}}
$$

In particular, $E(X)=\frac{a}{a+b}$ and $\operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)}$. There are a number of relationshlps with other distributions. These are summarized in Theorem 4.1:

Theorem 4.1.

Thls is about the relatlonships between the beta (a, b) density and other densitles.
A. Relatlonship with the gamma density: if G_{a}, G_{b} are independent gamma (a), gamma (b) random varlables, then $\frac{G_{a}}{G_{a}+G_{b}}$ is beta (a, b) distributed.
B. Relationship with the Pearson VI (or β_{2}) density: if X is beta (a, b), then $Y=\frac{X}{1-X}$ is $\beta_{2}(a, b)$, that is, Y is a beta of the second kind, with density $f(x)=\frac{x^{a-1}}{B_{a, b}(1+x)^{a+b}} \quad(x \geq 0)$.
C. Relationshlp with the (Student's) t distribution: If X is beta $\left(\frac{1}{2}, \frac{a}{2}\right)$, and S is a random sign, then $S \sqrt{\frac{a X}{1-X}}$ is t-distributed with a degrees of freedom, l.e. It has denslty
$f(x)=\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}}$.
By the prevlous property, note that $\sqrt{a Y}$ is t-distributed with parameter a when Y is $\beta_{2}(a, b)$. Furthermore, If X denotes a beta (a, a) random varlable, and T denotes a t random variable with $2 a$ degrees of freedom, then we have the following equality in distribution: $X=\frac{1}{2}+\frac{1}{2} \frac{T}{\sqrt{2 b+T^{2}}}$, or $T=\frac{\sqrt{2 a}(2 X-1)}{2 \sqrt{X-X^{2}}}$. In particular, when U is unlform on $[0,1]$, then $\frac{\sqrt{2}\left(U-\frac{1}{2}\right)}{\sqrt{U-U^{2}}}$ is t with 2 degrees of freedom.
D. Relationship with the \mathbf{F} (Snedecor) distribution: when X is beta (a, b), then $\frac{b X}{a(1-X)}$ is F-distributed with a and b degrees of freedom, 1.e. It has density $\frac{a}{b} f\left(\frac{a x}{b}\right)(x>0)$, where f is the $\beta_{2}\left(\frac{a}{2}, \frac{b}{2}\right)$ denslty.
E. Relationship with the Cauchy density: when X is beta $\left(\frac{1}{2}, \frac{1}{2}\right)$ distributed (thls is called the arc sine distribution), then $\sqrt{\frac{X}{1-X}}$ is distributed as the absolute value of a Cauchy random variable.

Proof of Theorem 4.1.

All the propertles can be obtalned by applying the methods for computing densitles of transformed random varlables explained for example in section r.4.1.

We should also mention the important connection between the beta distribution and order statistics. When $0<U_{(1)}<\cdots<U_{(n)}$ are the order statistics of a unlform $[0,1]$ random sample, then $U_{(k)}$ is beta ($k, n-k+1$) distributed. See sectlon I.4.3.

4.2. Overview of beta generators.

Beta variates can be generated by explolting special propertles of the distribution. The order statistlcs method, appllcable only when both a and b are Integer, proceeds as follows:

Order statistics method for beta variates

Generate $a+b-1$ iid uniform [0,1] random variates.
Find the a-th order statistic X (a-th smallest) among these variates.
RETURN X

Thls method, mentioned as early as 1963 by Fox, requires time at least proportlonal to $a+b-1$. If standard sorting routines are used to obtaln the a-th smallest element, then the time complexity is even worse, possibly $\Omega((a+b-1) \log (a+b-1))$. There are obvious improvements: it is wasteful to sort a sample just to obtain the a-th smallest number. First of all, via llnear selection algorithms we can find the a-th smallest in worst case time $O(a+b-1)$ (see e.g. Blum, Floyd, Pratt, Rlvest and Tarjan (1973) or Schonhage, Paterson and Plppenger (1978)). But in fact, there is no need to generate the entire sample. The unform sample can be generated directly from left to right or right to left, as shown in section V.3. This would reduce the time to $O(\min (a, b))$. Except In speclal applications, not requiring non-Integer or large parameters, this method is not recommended.

When property A of Theorem 4.1 is used, the time needed for one beta varlate is about equal to the time required to generate two gamma varlates. This method is usually very competitive because there are many fast gamma generators. In any case, if the gamma generator is uniformly fast, so will be the beta generator. Formally we have:

Beta variates via gamma variates

Generate two independent gamma random variates, G_{a} and G_{b}.
RETURN $\frac{G_{a}}{G_{a}+G_{b}}$

Roughly speaking, we will be able to improve over this generator by at most 50%. There is no need to discuss beta varlate generators which are not time efficient. A survey of pre-1972 methods can be found in Arnason (1972). None of the methods glven there has unlformly bounded expected tlme. Among the competltive approaches, we mention:
A. Standard refectlon methods. For example, we have:

Rejectlon from the Burr XII denslty (Cheng, 1878).
Rejectlon from the normal density (Ahrens and Dieter, 1974).
Rejection from polynomial densitles (Atkinson and Whittaker, 1978, 1979; Atkinson, 1979).
Rejection and composition with triangles, rectangles, and exponential curves (Schmelser and Babu, 1980).
The best of these methods will be developed below. In particular, we will highlight Cheng's uniformly fast algorithms. The algorithm of Schmelser and Babu (1980), which is unfformly fast over $a, b \geq 1$, is discussed in section VII.2.6.
B. Forsythe's method, as applled for example by Atkinson and Pearce (1978). This method requires a lot of code and the set-up time is considerable. In comparison with this investment, the speed obtalnable via this approach is disappointing.
C. Johnk's method (Johnk, 1984) and its modiffcations. This too should be consldered as a method based upon special propertles of the beta density. The expected time is not unlformly bounded in the parameters. It should be used only when both parameters are less than one. See section IX.3.5.
D. Unlversal algorithms. The beta density is unlmodal when both parameters are at least one, and it is monotone when one parameter is less than one and one is at least equal to one. Thus, the universal methods of section VII.3.2 are applicable. At the very least, the inequalltles derived in that section can be used to design good (albelt not superb) bounds for the beta density. In any case, the expected time is provably uniform over all parameters a, b with $\max (a, b) \geq 1$.
E. Strip table methods, as developed in section VIII.2.2. We will study below how many strips should be selected as a function of a and b in order to have unlformly bounded expected generation times.

The bottom llne is that the cholce of a method depends upon the user: If he is not willing to invest a lot of time, he should use the ratlo of gamma variates. If he does not mind coding short programs, and a and/or b vary frequently, one of the rejectlon methods based upon analysis of the beta density or upon universal Inequallties can be used. The method of Cheng is very robust. For speclal cases, such as symmetric beta densitles, rejection from the normal density is very competltive. If the user does not foresee frequent changes in a and b, a strip table method or the algorlthm of Schmelser and Babu (1980) are recommended. Finally, when both parameters are smaller than one, it is possible to use rejection from polynomlal densittes or to apply Johnk's method.

4.3. The symmetric beta density.

In this sectlon, we will take a close look at one of the slmplest speclal cases, the symmetric beta denslty with parameter a :

$$
f(x)=\frac{\Gamma(2 a)}{\Gamma^{2}(a)}(x(1-x))^{a-1}=C(x(1-x))^{a-1} \quad(0 \leq x \leq 1)
$$

For large values of a, this density is quite close to the normal density. To see this, consider $y=x-\frac{1}{2}$, and

$$
\begin{aligned}
& \log (f(x))=\log (C)+(a-1) \log (1+2 y)+(a-1) \log (1-2 y)-(a-1) \log 4 \\
& =\log (C)-(a-1) \log 4+(a-1) \log \left(1-4 y^{2}\right)
\end{aligned}
$$

The last term on the right hand side is not greater than $-4(a-1) y^{2}$, and it is at least equal to $-4(a-1) y^{2}-16(a-1) y^{4} /\left(1-4 y^{2}\right)$. Thus, $\log \left(f\left(\frac{1}{2}+\frac{x}{\sqrt{8(a-1)}}\right)\right)$ tends to $-\log (\sqrt{2 \pi})-\frac{x^{2}}{2}$ as $a \rightarrow \infty$ for all $x \in R$. Here we used Stirling's formula to prove that $\log (C)-(a-1) \log 4$ tends to $-\log (\sqrt{2 \pi})$. Thus, if X is beta (a, a), then the density of $\sqrt{8(a-1)}\left(X-\frac{1}{2}\right)$ tends to the standard normal density as $a \rightarrow \infty$. The only hope for an asymptotically optimal rejection constant in a rejection algorithm is to use a dominating density whlch is elther normal or tends polntwise to the normal density as $a \rightarrow \infty$. The question is whether we should use the normallzation suggested by the llmit theorem stated above. It turns out that the best rejection constant is obtalned not by taking $8(a-1)$ in the formula for the normal denslty, but $8\left(a-\frac{1}{2}\right)$. We state the algorithm first, then announce its propertles In a theorem:

Symmetric beta generator via rejection from the normal density
[NOTE: $\left.b=(a-1) \log \left(1+\frac{1}{2 a-2}\right)-\frac{1}{2}.\right]$
[GENERATOR]
REPEAT
REPEAT
Generate a normal random variate N and an exponential random variate E.
$X \leftarrow \frac{1}{2}+\frac{N}{\sqrt{8 a-4}}, Z \leftarrow N^{2}$
UNTIL $Z<2 a-1$ (now, $X \in[0,1]$)
Accept $\leftarrow\left[E+\frac{Z}{2}-\frac{(a-1) Z}{2 a-1-Z}+b \geq 0\right]$
IF NOT Accept THEN Accept $\leftarrow\left[E+\frac{Z}{2}+(a-1) \log \left(1-\frac{Z}{2 a-1}\right)+b \geq 0\right]$
UNTIL Accept
RETURN X

Theorem 4.2.

Let f be the beta (a) density with parameter $a \geq 1$. Then let $\sigma>0$ be a constant and let c_{σ} be the smallest constant such that for all x,

$$
f(x) \leq c_{\sigma} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x-\frac{1}{2}\right)^{2}}{2 \sigma^{2}}}
$$

Then c_{σ} is minimal for $\sigma^{2}=\frac{1}{8 a-4}$, and the minimal value is

$$
c_{\sigma}=\left(\frac{8(a-1)}{4 e(8 a-4)}\right)^{a-1} \frac{\sqrt{2 \pi}}{\sqrt{8 a-4} B_{a, a}} e^{\frac{8 a-4}{8}} .
$$

In the rejection algorlthm shown above, the rejection constant is c_{σ}. The rejection constant is unlformly bounded for $a \in[1, \infty)$: selected values are $\sqrt{\frac{\pi e}{6}}$ at $a=2, \sqrt{36 \pi e}$ at $a=3$. We have

$$
\lim _{a \rightarrow \infty} c_{\sigma}=1
$$

and \ln fact, $c_{\sigma} \leq e^{\frac{1}{24 a}+\frac{1}{2 a-1}}$.

Proof of Theorem 4.2.

Let us write $g(x)$ for the normal density with mean $\frac{1}{2}$ and varlance σ^{2}. We first determine the supremum of f / g by setting the derivative of $\log \left(\frac{f}{g}\right)$ equal to zero. Thls ylelds the equation

$$
\left(x-\frac{1}{2}\right)\left(\sigma^{-2}-\frac{2(a-1)}{x(1-x)}\right)=0 .
$$

One can easlly see from this that f / g has a local minimum at $x=\frac{1}{2}$ and two local maxima symmetrically located on elther side of $\frac{1}{2}$ at $\frac{1}{2} \pm \frac{1}{2} \sqrt{1-8(a-1) \sigma^{2}}$. The value of f / g at the maxima is

$$
c_{\sigma}=\left(\frac{8(a-1) \sigma^{2}}{4 e}\right)^{a-1} \frac{\sqrt{2 \pi} \sigma}{B_{a, a}} e^{\frac{1}{8 \sigma^{2}}}
$$

This depends upon σ as follows: $\sigma^{2 a-1} e^{\frac{1}{8 \sigma^{2}}}$. This has a unique minimum at $\sigma=1 / \sqrt{8 a-4}$. Resubstitution of this value gives

$$
c_{\sigma}=\left(\frac{a-1}{4 a-2}\right)^{a-1} \frac{\sqrt{2 \pi}}{\sqrt{8 a-4} B_{a, a}} e^{\frac{1}{2}}
$$

By well-known bounds on the gamma function (Whittaker ans Watson, 1927, p. 253), we have

$$
\begin{aligned}
& \frac{1}{B_{a, a}} \leq 4^{a-\frac{1}{2}} \sqrt{\frac{a}{\pi}} e^{\frac{1}{24 a}}, \\
& \frac{1}{B_{a, a}} \sim 4^{a-\frac{1}{2}} \sqrt{\frac{a}{\pi}}
\end{aligned}
$$

as $a \rightarrow \infty$. Thus,

$$
\begin{aligned}
& c_{\sigma} \leq\left(\frac{a-1}{4 a-2}\right)^{a-1} \frac{\sqrt{2 \pi}}{\sqrt{8 a-4}} 4^{a-\frac{1}{2}} \sqrt{\frac{a}{\pi}} e^{\frac{1}{24 a}} e^{\frac{1}{2}} \\
& =\sqrt{a e /\left(a-\frac{1}{2}\right)} e^{\frac{1}{24 a}\left(1-\frac{1}{2 a-1}\right)^{a-1}} \\
& \leq \sqrt{a e /\left(a-\frac{1}{2}\right)} e^{\frac{1}{24 a}} e^{-\frac{a-1}{2 a-1}} \\
& =\sqrt{1+\frac{1}{2 a-1}} e^{\frac{1}{24 a}+\frac{1}{4 a-2}} \\
& \leq e^{\frac{1}{24 a}+\frac{1}{2 a-1}}
\end{aligned}
$$

The algorlthm shown above is appllcable for all $a \geq 1$. For large values of a, we need about one normal random varlate per beta random varlate, and the probabllity that the long acceptance condition has to be verifled at all tends to 0 as $a \rightarrow \infty$ (exercise 4.1). There is another school of thought, in which normal random variates are avolded altogether, and the algorlthms are phrased in terms of unlform random variates. After all, normal random varlates are also bullt from unlform random varlates. In the search for a good dominating curve, help can be obtalned from other symmetric unimodal long-talled distributions. There are two examples that have been expllitly mentioned in the literature, one by Best (1978), and one by Ulrich (1984):

Theorem 4.3.

$$
\begin{aligned}
& \text { When } Y \text { is a } t \text { distributed random variable with parameter } 2 a \text {, then } \\
& X \leftarrow \frac{1}{2}+\frac{1}{2} \frac{Y}{\sqrt{2 a+Y^{2}}} \text { is beta }(a, a) \text { distributed (Best, 1978). } \\
& \text { When } U, V \text { are independent uniform }[0,1] \text { random variables, then } \\
& \qquad X \leftarrow \frac{1}{2}+\frac{1}{2} \sin (2 \pi V) \sqrt{1-U^{\frac{2}{2 a-1}}}
\end{aligned}
$$

is beta (a, a) distributed (Ulrich, 1984).

Proof of Theorem 4.3.

The proof is left as an exerclse on transformations of random variables.

If we follow Best, then we need a fast t generator, and we refer to section IX. 5 for such algorithms. Ulich's suggestion is intriguing because it is reminiscent of the polar method. Recall that when X, Y is unlformly distributed in the unlt circle with $S=X^{2}+Y^{2}$, then $\left(\frac{X}{\sqrt{S}}, \frac{Y}{\sqrt{S}}\right)$ and S are independent, and S is untformly distributed on $[0,1]$. Also, switching to polar coordinates (R, Θ), we see that $X Y / S=\cos (\Theta) \sin (\Theta)=2 \sin (2 \Theta)$. Thus, since 2Θ is unlformly distributed on $[0,4 \pi]$, we see that the random varlable

$$
\frac{1}{2}+\frac{X Y}{S} \sqrt{1-S^{\frac{2}{2 a-1}}}
$$

has a beta (a, a) distribution. We summarize:

Ulrich's polar method for symmetric beta random variates

REPEAT

Generate U uniformly on $[0,1]$ and V uniformly on $[-1,1]$.
$S \leftarrow U^{2}+V^{2}$
UNTIL $S \leq 1$
RETURN $X \leftarrow \frac{1}{2}+\frac{U V}{S} \sqrt{1-S^{\frac{2}{2 a-1}}}$

It should be stressed that Ulrich's method is valid for all $a>0$, provided that for the case $a=1 / 2$, we obtaln X as $1 / 2+U V / S$, that is, X is distributed as a linearly transformed arc sin random varlable. Despite the power and the square root needed in the algorlthm for general a, its elegance and generality make it a formidable candldate for inclusion in computer librarles.

4.4. Uniformly fast rejection algorithms.

The beta (a, b) density has two shape parameters. If we are to construct a uniformly fast rejection algorithm, it seems unlikely that we can Just consider rejection from a denslty with no shape parameter such as the normal density. This is generally speaking only feasible when there is one shape parameter as in the case of the gamma or symmetric beta famlles. The trick will then be to find a flexible famlly of easy dominating densitles. In his work, Cheng has repeatedly used the Burr XII density with one scale parameter and one shape parameter with a great deal of success. This density is constructed as follows. If U is unlformly distributed on $[0,1]$, then $\frac{U}{1-U}$ has density $(1+x)^{-2}$ on $[0, \infty)$. For $\mu, \lambda>0$, the density of

$$
\left(\mu \frac{U}{1-U}\right)^{\frac{1}{\lambda}}
$$

Is

$$
g(x)=\frac{\lambda \mu x^{\lambda-1}}{\left(\mu+x^{\lambda}\right)^{2}} \quad(x>0) .
$$

This is an Infinite-talled density, of little direct use for the beta density. Fortunately, beta and β_{2} random varlables are closely related (see Theorem 4.1), so that we need only consider the infinite-talled β_{2} density with parameters (a, b):

$$
f(x)=\frac{x^{a-1}}{B_{a, b}(1+x)^{a+b}} \quad(x \geq 0)
$$

The values of μ and λ suggested by Cheng (1978) for good rejection constants are

$$
\begin{aligned}
& \mu=\left(\frac{a}{b}\right)^{\lambda} \\
& \lambda= \begin{cases}\min (a, b) \quad(\min (a, b) \leq 1) \\
\sqrt{\frac{2 a b-(a+b)}{a+b-2}} & (\min (a, b)>1)\end{cases}
\end{aligned} .
$$

With these choices, it is not difmcult to verify that f / g is maximal at $x=a / b$, and that $f \leq c g$ where

$$
c=\frac{4 a^{a} b^{b}}{\lambda B_{a, b}(a+b)^{a+b}}
$$

Note that $c g(x) / f(x)$ can be slmplifled quite a blt. The unadorned algorithm is:

Cheng's rejection algorithm BA for beta random variates (Cheng, 1978)

[SET-UP]
$s \leftarrow a+b$
IF $\min (a, b) \leq 1$
THEN $\lambda \leftarrow \min (a, b)$
ELSE $\lambda \leftarrow \sqrt{\frac{2 a b-s}{s-2}}$
$u \leftarrow a+\lambda$
[GENERATOR]
REPEAT
Generate two iid uniform $[0,1]$ random variates U_{1}, U_{2}.

$$
V \leftarrow \frac{1}{\lambda} \frac{U_{1}}{1-U_{1}}, Y \leftarrow a e^{V}
$$

UNTLI $s \log \left(\frac{s}{b+Y}\right)+u V-\log (4) \geq \log \left(U_{1}{ }^{2} U_{2}\right)$
RETURN $X \leftarrow \frac{Y}{b+Y}$

The fundamental property of Cheng's algorithm is that

$$
\sup _{a, b>0} c=4 ; \sup _{a, b \geq 1} c=\frac{4}{e} \approx 1.47
$$

For fixed a, c is minimal when $b=a$ and increases when $b \downarrow 0$ or $b \uparrow \infty$. The detalls of the proofs of the varlous statements about thls algorlthm are left as an exercise. There exists an improved version of the algorithm for the case that both parameters are greater than 1 which is based upon the squeeze method (Cheng's algorlthm BB). Cheng's algorithm is slowest when $\min (a, b)<1$. In that reglon of
the parameter space, it is worthwhlle to design speclal algorithms that may or may not be unlformly fast over the entire parameter space.

4.5. Generators when $\min (a, b) \leq 1$.

Cheng's algorithm BA is robust and can be used for all values of a, b. However, when both a, b are smaller than one, and $a+b \leq 1.5$, Johnk's method is typlcally more efficlent. When $\min (a, b)$ is very small, and $\max (a, b)$ is rather large, nelther Johnk's method nor algorlthm BA are particularly fast. To fll thls gap, several algorlthms were proposed by Atkinson and Whlttaker (1976, 1879) and Atkinson (1979). In addition, Cheng (1977) developed an algorithm of hls own, called algorlthm BC.

Atkinson and Whittaker $(1978,1979)$ split $[0,1]$ into $[0, t]$ and $[t, 1]$, and construct a dominating curve for use in the rejection method based upon the inequalitles:

$$
x^{a-1}(1-x)^{b-1} \leq \begin{cases}x^{a-1}(1-t)^{b-1} & (x \leq t) \\ t^{a-1}(1-x)^{b-1} & (x>t)\end{cases}
$$

The areas under the two pleces of the dominating curve are, respectively, $(1-t)^{b-1} \frac{t^{a}}{a}$ and $t^{a-1} \frac{(1-t)^{b}}{b}$. Thus, the following rejection algorithm can be used:

First algorithm of Atkinson and Whittaker (1976, 1979)

[SET-UP]

Choose $t \in[0,1]$.
$p \leftarrow \frac{b t}{b t+a(1-t)}$
[GENERATOR]
REPEAT
Generate a uniform $[0,1]$ random variate U and an exponential random variate E. IF $U \leq p$ THEN

$$
\begin{aligned}
& X \leftarrow t\left(\frac{U}{p}\right)^{\frac{1}{a}} \\
& \text { Accept } \leftarrow\left[(1-b) \log \left(\frac{1-X}{1-t}\right) \leq E\right]
\end{aligned}
$$

ELSE

$$
\begin{aligned}
& X \leftarrow 1-(1-t)\left(\frac{1-U}{1-p}\right)^{\frac{1}{b}} \\
& \text { Accept } \leftarrow\left[(1-a) \log \left(\frac{X}{t}\right) \leq E\right]
\end{aligned}
$$

UNTIL Accept
RETURN X

Despite its simpllcity, this algorithm performs remarkably well when both parameters are less than one, although for $a+b<1$, Johnk's algorithm is still to be preferred. The explanation for this is glven in the next theorem. At the same time, the best cholce for t is derlved in the theorem.

Theorem 4.4.

Assume that $a \leq 1, b \leq 1$. The expected number of Iterations in Johnk's algorithm Is

$$
c=\frac{\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1)}
$$

The expected number of Iterations $(E(N))$ in the first algorithm of Atkinson and Whittaker is

$$
c \frac{b t+a(1-t)}{(a+b) t^{1-a}(1-t)^{1-b}} .
$$

When $a+b \leq 1$, then for all values of $t, E(N) \geq c$. In any case, $E(N)$ is minimlzed for the value

$$
t_{o p t}=\frac{\sqrt{a(1-a)}}{\sqrt{a(1-a)}+\sqrt{b(1-b)}}
$$

With $t=t_{o p t}$, we have $E(N)<c$ whenever $a+b>1$. For $a+b>1, t=\frac{1}{2}$, it is also true that $E(N)<c$.

Finally, $E(N)$ is unfformly bounded over $a, b \leq 1$ when $t=\frac{1}{2}$ (and it is therefore uniformly bounded when $t=t_{\text {opt }}$).

Proof of Theorem 4.4.

We begin with the fundamental Inequality:

$$
x^{a-1}(1-x)^{b-1} \leq \begin{cases}x^{a-1}(1-t)^{b-1} & (x \leq t) \\ t^{a-1}(1-x)^{b-1} & (x>t)\end{cases}
$$

The area under the top curve is $(1-t)^{b-1} \frac{t^{a}}{a}+t^{a-1} \frac{(1-t)^{b}}{b}$. The area under the bottom curve is of course $\Gamma(a) \Gamma(b) / \Gamma(a+b)$. The ratlo glves us the expression for $E(N) . E(N)$ is minlmal for the solution t of

$$
(1-t)^{2} a(a-1)-t^{2} b(b-1)=0,
$$

which glves us $t=t_{o p t}$. For the performance of Johnk's algorlthm, we refer to Theorem 3.4. To compare performances for $a+b \leq 1$, we have to show that for all t,

$$
\left(\frac{1}{t}\right)^{a}\left(\frac{1}{1-t}\right)^{b} \leq \frac{1}{a+b}\left(\frac{b}{1-t}+\frac{a}{t}\right)
$$

By the arlthmetic-geometric mean inequallty, the left hand side is in fact not greater than

$$
\left(\frac{1}{a+b}\left(\frac{b}{1-t}+\frac{a}{t}\right)\right)^{a+b}
$$

$$
\leq \frac{1}{a+b}\left(\frac{b}{1-t}+\frac{a}{t}\right)
$$

because $a+b \leq 1$, and the argument of the power is a number at least equal to 1 . When $a+b>1$, it is easy to check that $E(N)<c$ for $t=\frac{1}{2}$. The statement about the unlform boundedness of $E(N)$ when $t=\frac{1}{2}$ follows simply from

$$
E(N)=2^{1-a-b} c
$$

and the fact that c is unlformly bounded over $a, b \leq 1$.

Generally speaking, the first algorlthm of Atkinson and Whittaker should be used Instead of Johnk's when $a, b \leq 1$ and $a+b \geq 1$. The computation of $t_{o p t}$, which Involves one square root, is only justifled when many random varlates are needed for the same values of a and b. Otherwise, one should choose $t=\frac{1}{2}$.

When $a \leq 1$ and $b \geq 1$, the performance of the first algorithm of Atkinson and Whittaker deterlorates with increasing values of b : for fixed $a<1$, $\lim _{b \rightarrow \infty} E(N)=\infty$. The inequallities used to develop the algorlthm are altered sllghtly:

$$
x^{a-1}(1-x)^{b-1} \leq\left\{\begin{array}{l}
x^{a-1} \quad(x \leq t) \\
t^{a-1}(1-x)^{b-1} \quad(x>t)
\end{array}\right.
$$

The areas under the two pleces of the dominating curve are, respectively, $\frac{t^{a}}{a}$ and $t^{a-1} \frac{(1-t)^{b}}{b}$. The following rejection algorithm can be used:

Second algorithm of Atkinson and Whittaker (1976, 1979)

[SET-UP]
Choose $t \in[0,1]$.
$p \leftarrow \frac{b t}{b t+a(1-t)^{b}}$
[GENERATOR]
REPEAT
Generate a uniform $[0,1]$ random variate U and an exponential random variate E. IF $U \leq p$ THEN

$$
\begin{aligned}
& X \leftarrow t\left(\frac{U}{p}\right)^{\frac{1}{a}} \\
& \text { Accept } \leftarrow[(1-b) \log (1-X) \leq E]
\end{aligned}
$$

ELSE

$$
\begin{aligned}
& X \leftarrow 1-(1-t)\left(\frac{1-U}{1-p}\right)^{\frac{1}{b}} \\
& \text { Accept } \leftarrow\left[(1-a) \log \left(\frac{X}{t}\right) \leq E\right]
\end{aligned}
$$

UNTUL Accept

RETURN X

Simple calculations show that

$$
E(N)=c \frac{b t^{a}+a(1-t)^{b} t^{a-1}}{a+b}
$$

where c is the expected number of Iterations in Johnk's algorithm (see Theorems 3.4 and 4.4). The optimum value of t is the solution of

$$
b t+(a-1)(1-t)^{b}-b t(1-t)^{b-1}=0
$$

Although this can be solved numerlcally, most of the time we can not afford a numerlcal solution just to generate one random varlate. We have, however, the following reassuring performance analysis for a cholce for t suggested by Atkinson and Whlttaker (1976):

Theorem 4.5.

For the second algorithm of Atkinson and Whittaker with $t=\frac{1-a}{b+1-a}$,

$$
\begin{aligned}
& \sup _{a \leq 1, b \geq 1} E(N)<\infty \\
& \lim _{b \rightarrow \infty} E(N)=\infty \quad(\text { all } a>1) .
\end{aligned}
$$

4.6. Exercises.

1. For the symmetric beta algorithm studled in Theorem 4.2, show that the quick acceptance step is valid, and that with the quick acceptance step in place, the expected number of evaluations of the full acceptance step tends to 0 as $a \rightarrow \infty$.
2. Prove Ulrich's part of Theorem 4.3.
3. Let X be a $\beta_{2}(a, b)$ random variable. Show that $\frac{1}{Y}$ is $\beta_{2}(b, a)$, and that $E(Y)=\frac{a}{b-1}(b>1)$, and $\operatorname{Var}(Y)=\frac{a(a+b-1)}{(b-1)^{2}(b-2)}(b>2)$.
4. In the table below, some densitles are listed with one parameter $a>0$ or two parameters $a, b>0$. Let c be the shorthand notation for $1 / B(a, b)$. Show for each density how a random varlate can be generated by a sultable transformation of a beta random varlate.

$2 c x^{2 a-1}\left(1-x^{2}\right)^{b-1}$	$(0 \leq x \leq 1)$
$2 c \sin ^{2 a-1}(x) \cos ^{2 b-1}(x)$	$\left(0 \leq x \leq \frac{\pi}{2}\right)$
$\frac{c x^{a-1}}{(1+x)^{a+b}}$	$(x \geq 0)$
$\frac{2 c x^{2 a-1}}{\left(1+x^{2}\right)^{a+b}}$	$(x \geq 0)$
$\frac{x^{a-1}+x^{b-1}}{(1+x)^{a+b}}$	$(0 \leq x \leq 1)$
$\frac{(1-x)^{a-1}}{2^{2 a-1} B(a, a) \sqrt{x}}$	$(0 \leq x \leq 1)$
$\frac{\left(1-x^{2}\right)^{a-1}}{2^{2 a-2} B(a, a)}$	$(0 \leq x \leq 1)$

5. Prove Theorem 4.5.
6. Grassia's distribution. Grassia (1977) Introduced a distribution which is close to the beta distribution, and can be consldered to be as flexible, if not more flexible, than the beta distribution. When X is gamma (a, b), then e^{-X} is Grassia I, and $1-e^{-X}$ is Grassia II. Prove that for every possible combination of skewness and kurtosls achlevable by the beta density, there
exists a Grassla distrlbution with the same skewness and kurtosis (Tadikamalla, 1981).
7. A contlnuation of exerclse 6. Use the Grassla distribution to obtain an efficlent algorlthm for the generation of random varlates with density

$$
f(x)=\frac{8 a^{2} x^{a-1} \log \left(\frac{1}{x}\right)}{\pi^{2}\left(1-x^{2 a}\right)} \quad(0<x<1),
$$

where $a>0$ is a parameter.

5. THE t DISTRIBUTION.

5.1. Overview.

The \mathbf{t} distribution plays a key role in statistics. The distribution has a symmetrlc denslty with one shape parameter $a>0$:

$$
f(x)=\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}}
$$

This is a bell-shaped density which can be dealt with in a number of ways. As special members, we note the Cauchy density $(a=1)$, and the t_{3} density ($a=3$). When a is integer-valued, it is sometimes referred to as the number of degrees of freedom of the distribution. Random varlate generation methods for this distribution include:

1. The Inversion method. Expllcit forms of the distribution function are only avallable in spectal cases: for the Cauchy density ($a=1$), see section II.2.1. For the t_{2} density ($a=2$), see Theorem IX.3.3 \ln section IX.3.3. For the t_{3} density $(a=3)$, see exercise II.2.4. In general, the inversion method is not competitive because the distribution function is only avallable as an integral, and not as a slmple expllcit function of its argument.
2. Transformation of gamma varlates. When N is a normal random varlate, and $G_{a / 2}$ is a gamma $\left(\frac{a}{2}\right)$ random varlate Independent of N,

$$
\frac{\sqrt{2 a} N}{\sqrt{G_{a / 2}}}
$$

is t_{a} distributed. Equivalently, if $G_{1 / 2}, G_{a / 2}$ are Independent gamma random varlables, then

$$
s \sqrt{a} \sqrt{\frac{G_{1 / 2}}{G_{a / 2}}}
$$

Is t_{a} distributed where S is a random sign. See example I.4.8 for the derivatlon of this property. Somewhat less useful, but still noteworthy, is the property that if $G_{a / 2}, G *_{a / 2}$ are lid gamma random variates, then

$$
\frac{\sqrt{a}}{2} \frac{G_{a / 2}-G *_{a / 2}}{\sqrt{G_{a / 2} G *_{a / 2}}}
$$

Is t_{a} distributed (Cacoullos, 1885).
3. Transformation of a symmetric beta random variate. It is known that if X is symmetric beta $\left(\frac{a}{2}, \frac{a}{2}\right)$, then

$$
\sqrt{a} \frac{X-\frac{1}{2}}{\sqrt{X(1-X)}}
$$

Is t_{a} distributed. Symmetric beta random varlate generation was studled in section DX.4.3. The comblnation of a normal rejection method for symmetric random varlates, and the present transformation was proposed by Marsaglla (1980).
4. Transformation of an F random variate. When S is a random sign and X is $F(1, a)$ distributed, then $S \sqrt{X}$ is t_{a} distributed (see exercise I.4.8). Also, when X is symmetric F with parameters a and a, then

$$
\frac{\sqrt{a}}{2} \frac{1-X}{\sqrt{X}}
$$

Is t_{a} distributed.
5. The ratio-of-unlforms method. See section IV.7.2.
6. The ordinary rejection method. Since the t density cannot be dominated by densitles with exponentially decreasing talls, one needs to find a polynomially decreasing dominating function. Typical candidates for the dominating curve Include the Cauchy density and the t_{3} density. The corresponding algorithms are quite short, and do not rely on fast normal or exponential generators. See below for more detalls.
7. The composition/rejection method, slmilar to the method used for normal random varlate generation. The algorithms are generally speaking longer, more design constants need to be computed for each cholce of a, and the speed is usually a bit better than for the ordinary rejection method. See for example KInderman, Monahan and Ramage (1877) for such methods.
8. The acceptance-complement method (Stadlober, 1981).
9. Table methods.

One of the transformations of gamma or beta random varlates is recommended if one wants to save time writing programs. It is rare that additional speed is required beyond these transformation methods. For direct methods, good speed can be obtalned with the ratlo-of-unlforms method and with the ordinary rejection methods. Typlcally, the expected time per random variate is unlformly
bounded over a subset of the parameter range, such as $[1, \infty)$ or $[3, \infty)$. Not unexpectedly, the small values of a are the troublemakers, because these densitles decrease as $x^{-(a+1)}$, so that no flxed exponent polynomial dominating density exists. The large values of a glve least problems because it is easy to see that for every x,

$$
\lim _{a \rightarrow \infty} f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} .
$$

The problem of small a is not Important enough to warrant a special section. See however the exerclses.

5.2. Ordinary rejection methods.

Let us first start with the development of slmple upper bounds for f. For example, when $a \geq 1$, the following inequallty is trivially true:

$$
\frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}} \leq \frac{1}{1+\frac{a+1}{2 a} x^{2}}
$$

The top bound is proportional to the density of $\sqrt{\frac{2 a}{a+1}} C$ where C is a Cauchy random varlate. If we want to verlfy just how good this inequallty is, we note that the area under the dominating curve is $\pi \sqrt{\frac{2 a}{a+1}}$. The area under the curve on the left hand side of the Inequality is $\frac{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right)}$. By the convergence to the normal density, we deduce without computations that thls quantlty tends to $\sqrt{2 \pi}$. Thus, the ratlo of the areas, our rejection constant, tends to $\sqrt{\pi}$ as $a \rightarrow \infty$. The fit is not very good, except perhaps for a close to 1: for $a=1$, the rejection constant is obviously 1 . The detalls of the rejection algorithm are left to the reader.

Consider next rejection from the t_{3} density

$$
g(x)=\frac{1}{\sqrt{3} B\left(\frac{1}{2}, \frac{3}{2}\right)\left(1+\frac{x^{2}}{3}\right)^{2}}
$$

Best (1978) has shown the following:

Theorem 5.1.

Let f be the t_{a} density with $a \geq 3$, and let g be the t_{3} density. Then: $f(x) \leq c g(x)$
where

$$
c=\frac{8 \pi \sqrt{3}}{9 \sqrt{a} B\left(\frac{1}{2}, \frac{a}{2}\right)\left(1+\frac{1}{a}\right)^{\frac{a+1}{2}}} .
$$

Also, if

$$
T(x)=\frac{f(x)}{c g(x)}=\frac{9}{16} \frac{\left(1+\frac{x^{2}}{3}\right)^{2}}{\left(\frac{1+\frac{x^{2}}{a}}{1+\frac{1}{a}}\right)^{\frac{a+1}{2}}}
$$

then

$$
T(x) \geq \frac{9}{18} e^{\frac{1}{2}-\frac{x^{2}}{2}}\left(1+\frac{x^{2}}{3}\right)^{2}
$$

Finally,

$$
c \leq \sqrt{\frac{32 \pi}{27 e}} \sqrt{\frac{a}{a+1}} e^{\frac{1}{6 a+1}}
$$

and

$$
\lim _{a \rightarrow \infty} c=\sqrt{\frac{32 \pi}{27 e}} .
$$

Proof of Theorem 5.1.

Verlfy that f / g is maximal for $x= \pm 1$. The lower bound for $T(x)$ follows from the Inequallty

$$
\left(\frac{1+\frac{x^{2}}{a}}{1+\frac{1}{a}}\right)^{a+1}=\left(1+\frac{x^{2}-1}{a+1}\right)^{a+1} \leq e^{1-x^{2}}
$$

Finally, the statement about c follows from Stirllng's formula and bounds related to Stlrllng's formula. For example, the upper bound is obtalned as
follows:

$$
\begin{aligned}
& c=\frac{8 \pi \sqrt{3}}{9 \sqrt{a} B\left(\frac{1}{2}, \frac{a}{2}\right)\left(1+\frac{1}{a}\right)^{\frac{a+1}{2}}} \\
& \leq \frac{8 \sqrt{3 \pi}}{9 \sqrt{a}}\left(\frac{a+1}{2 e}\right)^{\frac{a+1}{2}}\left(\frac{2 e}{a}\right)^{\frac{a}{2}} \sqrt{\frac{a}{a+1} e^{\frac{1}{6(a+1)}}\left(\frac{a}{a+1}\right)^{\frac{a+1}{2}}} \\
& =\frac{8 \sqrt{3 \pi}}{9 \sqrt{2 e}} \sqrt{\frac{a}{a+1}} e^{\frac{1}{6(a+1)}} \\
& \rightarrow \sqrt{\frac{32 \pi}{27 e}}
\end{aligned}
$$

A similar lower bound is valld, which establishes the asymptotic result.

The fit with the t_{3} dominating density is much better than with the Cauchy density. Also, recalling the ratio-of-unlforms method for generating t_{3} random varlates in a form convenlent to us (see section IV.7.2),
t3 generator based upon the ratio-of-uniforms method
REPEAT
Generate lid uniform $[0,1]$ random variates U, V. Set $V \leftarrow V-\frac{1}{2}$.
UNTIL $U^{2}+V^{2} \leq U$
RETURN $X \leftarrow \sqrt{3} \frac{V}{U}$

We can summarize Best's algorithm as follows:
t generator based upon rejection from a $t 3$ density (Best, 1978)

REPEAT

Generate a t_{s} random variate X by the ratio-of-uniforms method (see above). Generate a uniform $[0,1]$ random variate U.

$$
\begin{aligned}
& Z \leftarrow X^{2}, W \leftarrow 1+\frac{Z}{3} \\
& Y \leftarrow 2 \log \left(\frac{\frac{9}{16} W^{2}}{U}\right) \\
& \text { Accept } \leftarrow(Y \geq 1-Z)
\end{aligned}
$$

IF NOT Accept THEN Accept $\leftarrow\left[Y \geq(a+1) \log \left(\frac{a+1}{a+Z}\right)\right]$
UNTLL Accept
RETURN X

The algorlthm glven above differs slightly from that glven in Best (1978). Best adds another squeeze step before the flrst logarlthm.

5.3. The Cauchy density.
 The Cauchy density

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

plays another key role in statistlcs. It has no shape parameters, and the mean does not exist. Just as for the exponentlal distribution, it is easlly seen that thls density causes no problems whatsoever. To start wlth, the inversion method is applicable because the distribution function is

$$
F(x)=\frac{1}{2}+\frac{1}{\pi} \arctan x
$$

This leads to the generator $\tan (\pi U)$ where U is a unlform random varlate. The tangent being a relatively slow operation, there is hope for improvement. The main property of the Cauchy density is that whenever (X, Y) is a radially distrlbuted random vector in R^{2} without an atom at the orlgin, then $\frac{X}{Y}$ is Cauchy distributed. The proof uses the fact that if (R, Θ) are the polar coordinates for (X, Y), then $\frac{Y}{X}=\tan (\Theta)$, and Θ is distributed as $2 \pi U$ where U is a unlform $[0,1]$ random varlate. This leads to two straightforward algorlthms for generating

Cauchy random varlates:

> Polar method I for Cauchy random variates
> Generate iid normal random variates N_{1}, N_{2}.
> RETURN $X \leftarrow \frac{N_{1}}{N_{2}}$

Polar method II for Cauchy random variates

REPEAT
Generate iid uniform $[-1,1]$ random variates V_{1}, V_{2}.
UNTIL $V_{1}{ }^{2}+V_{2}{ }^{2} \leq 1$
RETURN X

Even though the expected number of unform random variates needed in the second algorithm is $\frac{8}{\pi}$, it seems unllkely that the expected. time of the second algorlthm will be smaller than the expected time of the algorlthm based upon the ratlo of two normal random varlates. Other algorlthms have been proposed in the llterature, see for example the acceptance-complement method (section II.5.4 and exercise II.5.1) and the artlcle by Kronmal and Peterson (1981).

5.4. Exercises.

1. Laha's density (Laha, 1958). The ratio of two Independent normal random varlates is Cauchy distributed. This property is shared by other densltles as well, In the sense that the term "normal" can be replaced by the name of some other distributions. Show flrst that the ratlo of two Independent random variables with Laha's density

$$
f(x)=\frac{\sqrt{2}}{\pi\left(1+x^{4}\right)}
$$

Is Cauchy distributed. Give a good algorithm for generating random variates with Laha's density.
2. Let (X, Y) be unlformly distributed on the circle with center (a, b). Describe the density of $\frac{X}{Y}$. Note that when $(a, b)=(0,0)$, you should obtaln the

Cauchy density.
3. Consider the class of generalized Cauchy densitles

$$
f(x)=\frac{a \sin \left(\frac{\pi}{a}\right)}{2 \pi\left(1+|x|^{a}\right)},
$$

where $a>1$ is a parameter. The densities in this class are dominated by the Cauchy density times a constant when $a \geq 2$. Use thls fact to develop a generator which is unlformly fast on $[2, \infty)$. Can you also suggest an algorithm which is uniformly fast on ($1, \infty$) ?
4. The denslty

$$
f(x)=\frac{1}{\pi(1+x) \sqrt{x}} \quad(x>0)
$$

possesses both a heavy tall and a sharp peak at 0 . Suggest a good and short algorithm for the generation of random varlates with thls denslty.
5. Cacoullos's theorem (Cacoullos, 1965). Prove that when $G, G *$ are $11 d$ gamma ($\frac{a}{2}$) random varlates, then

$$
X \leftarrow \frac{\sqrt{a}}{2} \frac{G-G *}{\sqrt{G G *}}
$$

is t_{a} distributed. In particular, note that when N_{1}, N_{2} are IId normal random varlates, then $\left(N_{1}-N_{2}\right) /\left(2 \sqrt{N_{1} N_{2}}\right)$ is Cauchy distrlbuted.
6. The following famlly of densities has heavier talls than any member of the t famlly:

$$
f(x)=\frac{a-1}{x(\log (x))^{a}} \quad(x>e) .
$$

Here $a>1$ is a parameter. Propose a simple algorithm for generating random varlates from this family, and verlfy that it is unlformly fast over all values $a>1$.
7. In this exerclse, let C_{1}, C_{2}, C_{3} be lid Cauchy random varlables, and let U be a unlform $[0,1]$ random variable. Prove the following distributional propertles:
A. $\quad C_{1} C_{2}$ has density $\left(\log \left(x^{2}\right)\right) /\left(\pi^{2}\left(x^{2}-1\right)\right)$ (Feller, 1971, p. 64).
B. $\quad C_{1} C_{2} C_{3}$ has density $\left(\pi^{2}+\left(\log \left(x^{2}\right)\right)^{2}\right) /\left(2 \pi^{3}\left(1+x^{2}\right)\right)$.
C. $U C_{1}$ has denslty $\log \left(\frac{1+x^{2}}{x^{2}}\right) /(2 \pi)$.
8. Show that when X, Y are Ild random varlables with density $\frac{2}{\pi\left(e^{x}+e^{-x}\right)}$, then $X+Y$ has denslty

$$
g(x)=\frac{4 x}{\pi^{2}\left(e^{x}-e^{-x}\right)}=\frac{2}{\pi^{2}\left(1+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots\right)}
$$

Hint: find the density of $\log (|C|)$ first, where C is a Cauchy random varlate, and use the prevlous exerclse. Show how you can generate random varlates with density g directly and efficlently by the rejection method (Feller, 1971, p. 84).
9. Develop a composition-rejection algorithm for the t distribution which is based on the inequality

$$
\frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}} \geq e^{-\frac{(a+1) x^{2}}{2 a}}
$$

which for large a is close to $e^{-\frac{x^{2}}{2}}$. Make sure that if the remalnder term is majorized for use in the rejection algorithm, that the area under the remalnder term is o (1) as $a \rightarrow \infty$. Note: the remalnder term must have talls which increase at least as $|x|^{-(a+1)}$. Note also that the ratlo of the areas under the normal lower bound and the area under the t density tends to 1 as $a \rightarrow \infty$.
10. The tail of the Cauchy density. We consider the family of tall densitles of the Cauchy, with the tall being deflned as the Interval $[t, \infty)$, where $t>0$ Is a parameter. Show flrst that

$$
X \leftarrow \tan \left(\arctan (t)(1-U)+\frac{\pi U}{2}\right)
$$

has such a tall density. (This is the inversion method.) By using the polar propertles of the Cauchy denslty, show that the following rejection method is also valid, and that the rejection constant tends to 1 as $t \rightarrow \infty$:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.
$X \leftarrow \frac{t}{U}$
UNTIL $V\left(1+\frac{1}{X^{2}}\right) \leq 1$
RETURN X
11. This exercise is about Inequalitles for the function

$$
f_{a}(x)=\left(1+\frac{x^{2}}{a}\right)^{-\frac{a+1}{2}}
$$

which is proportional to the t density with parameter $a \geq 1$. The inequalitles have been used by Kinderman, Monahan and Ramage (1977) In the development of several rejection algorlthms with squeeze steps:
A. $f_{a}(x) \leq \min \left(1, \frac{1}{x^{2}}\right)$. Using this inequality in the rejection method corresponds to using the ratio-of-uniforms method.
B. $\quad f_{a}(x) \geq 1-\frac{|x|}{2}$. The trlangular lower bound is the largest such lower bound not depending upon a that is valld for all $a \geq 1$.
C. $f_{a}(x) \leq \frac{c}{1+x^{2}}$ where $c=2\left(1+\frac{1}{a}\right)^{-\frac{a+1}{2}} \leq \frac{2}{\sqrt{e}}$. If this inequallty is used In the rejection method, then the rejection constant tends to $\sqrt{\frac{2 \pi}{e}}$ as $a \rightarrow \infty$. The bound can also be used as a quick rejection step.
12. A unlformly fast rejection method for the t famlly can be obtalned by using a combination of a constant bound $(f(0))$ and a polynomlal tall bound: for the function $\left(1+\frac{x^{2}}{a}\right)^{-\frac{a+1}{2}}$, find an upper bound of the form $\frac{c}{x^{b}}$ where c, b are chosen to keep the area under the combined upper bound unfformly bounded over $a>0$.

6. THE STABLE DISTRIBUTION.

6.1. Definition and properties.

It is well known that the sum of ild random varlables with finlte varlance tends in distribution to the normal law. When the varlance is not finite, the sum tends in distribution to one of the stable laws, see e.g. Feller (1971). Stable laws have thicker talls than the normal distrlbution, and are well sulted for modeling economlc data, see e.g. Mandelbrot (1983), Press (1975). Unfortunately, stable laws are not easy to work with because with a few exceptions no simple expresslons are known for the density or distribution function of the stable distributlons. The stable distributions are most easily deflned in terms of thelr characterlstic functions. Without translation and scale parameters, the characterlstlc function ϕ is usually defined by

$$
\log (\phi(t))= \begin{cases}-|t|^{\alpha}\left(1-i \beta \operatorname{sgn}(t) \tan \left(\frac{\alpha \pi}{2}\right)\right) & (\alpha \neq 1) \\ -|t|\left(1+i \beta \frac{2}{\pi} \operatorname{sgn}(t) \log (|t|)\right) & (\alpha=1)\end{cases}
$$

where $-1 \leq \beta \leq 1$ and $0<\alpha \leq 2$ are the parameters of the distribution, and $\operatorname{sgn}(t)$ is the slgn of t. This will be called Levy's representation. There is another
parametrization and representatlon, which we will call the polar form (Zolotarev, 1959; Feller, 1971):

$$
\log (\phi(t))=-|t|^{\alpha} e^{-i \gamma \operatorname{sgn}(t)}
$$

Here, $0<\alpha \leq 2$ and $|\gamma| \leq \frac{\pi}{2} \min (\alpha, 2-\alpha)$ are the parameters. Note however that one should not equate the two forms to deduce the relationshlp between the parameters because the representations have different scale factors. After throwIng in a scale factor, one quickly notices that the α 's are identical, and that β and γ are related via the equation $\beta=\tan (\gamma) / \tan (\alpha \pi / 2)$. Because γ has a range which depends upon α, lt is more conventent to replace γ by $\frac{\pi}{2} \min (\alpha, 2-\alpha) \delta$, where δ is now allowed to vary in $[-1,1]$. Thus, we rewrite the polar form as follows:

$$
\log (\phi(t))=-|t|^{\alpha} e^{-i \frac{\pi}{2} \min (\alpha, 2-\alpha) \delta \operatorname{sgn}(t)}
$$

When we say that a random varlable is stable (1.3,0.4), we are referring to the last polar form with $\alpha=1.3$ and $\delta=0.4$. The parameters β, γ and δ are called the skewness parameters. For $\beta=0(\gamma=0, \delta=0)$, we obtain the symmetric stable distribution, which is by far the most important sub-class of stable distributions. For all forms, the symmetric stable characteristic function is

$$
\phi(t)=e^{-|t|^{\alpha}}
$$

By using the product of characteristic functions, it is easy to see that if X_{1}, \ldots, X_{n} are ild symmetric stable (α), then

$$
n^{-\frac{1}{\alpha}} \sum_{i=1}^{n} X_{i}
$$

Is again symmetrlc stable (α). The following particular cases are important: the symmetric stable (1) law colncldes with the Cauchy law, and the symmetric stable (2) distribution is normal with zero mean and vartance 2. These two representatives are typlcal: all symmetric stable densitles are unimodal (Ibraglmov and Chernin, 1959; Kanter, 1975) and In fact bell-shaped with two Inflnite talls. All moments exlst when $\alpha=2$. For $\alpha<2$, all moments of order $<\alpha$ exist, and the α-th moment is ∞.

The asymmetrlc stable laws have a nonzero skewness parameter, but in all cases, α is indicative of the slze of the tall(s) of the density. Roughly speaking, the tall or talls drop off as $|x|^{-(1+\alpha)}$ as $|x| \rightarrow \infty$. All densitles are unimodal, and the exlstence or nonexistence of moments is as for the symmetrlc stable densitles with the same value of α. There are two infinite talls when $|\delta| \neq 1$ or when $\alpha \geq 1$, and there is one infinite tall otherwise. When $0<\alpha<1$, the mode has the same sign as δ. Thus, for $\alpha<1$, a stable $(\alpha, 1)$ random varlable is positive, and a stable ($\alpha,-1$) random varlable is negative. Both are shaped as the gamma density.

There are a few relatlonshlps between stable random variates that will be useful in the sequel. It is not necessary to treat negative-valued skewness
parameters since minus a stable (α, δ) random variable is stable ($\alpha,-\delta$) distributed. Next, we have the following basic relatlonshlp:

Lemma 6.1.

Let Y be a stable ($\alpha^{\prime}, 1$) random variable with $\alpha^{\prime}<1$, and let X be an independent stable (α, δ) random variable with $\alpha \neq 1$. Then $X Y^{1 / \alpha}$ is stable $\left(\alpha \alpha^{\prime}, \delta \frac{\alpha^{\prime} \min (\alpha, 2-\alpha)}{\operatorname{m} \ln \left(\alpha \alpha^{\prime}, 2-\alpha \alpha^{\prime}\right)}\right)$. Furthermore, the following is true:
A. If N is a normal random varlable, and Y is an Independent stable ($\alpha^{\prime}, 1$) random varlable with $\alpha^{\prime}<1$, then $N \sqrt{2 Y}$ is stable ($2 \alpha^{\prime}, 0$).
B. A stable $\left(\frac{1}{2}, 1\right)$ random variable is distributed as $1 /\left(2 N^{2}\right)$ where N is a normal random varlable. In other words, it is Pearson V distributed.
C. If N_{1}, N_{2}, \ldots are Ild normal random varlables, then for integer $k \geq 1$,

$$
\begin{aligned}
& \prod_{j=0}^{k-1} \frac{1}{\left(2 N_{j}^{2}\right)^{2^{j}}} \\
& =2^{-\left(2^{k}-1\right)} \prod_{j=1}^{k} \frac{1}{N_{j}^{2 j}}
\end{aligned}
$$

is stable $\left(2^{-k}, 1\right)$.
D. For N_{1}, N_{2}, \ldots, ild normal random variables, and integer $k \geq 1$,

$$
N_{k+1} 2^{-\left(2^{k-1}-1\right)} \prod_{j=1}^{k} \frac{1}{N_{j}^{2^{j}-1}}
$$

is stable ($2^{1-k}, 0$).
E. For N_{1}, N_{2}, \ldots, lid normal random variables, and integer $k \geq 0$,

$$
\begin{aligned}
& \frac{N_{k+1}}{N_{k+2}} \prod_{j=0}^{k}\left(\frac{1}{2 N_{j}^{2}}\right)^{2 J} \\
& =\frac{N_{k+1}}{N_{k+2}} 2^{-\left(2^{k+1}-1\right)} \prod_{j=0}^{k}\left(\frac{1}{N_{j}^{2}}\right)^{2^{j}}
\end{aligned}
$$

Is stable $\left(\frac{1}{2^{k+1}}, 0\right)$.

Proof of Lemma 6.1.

The first statement is left as an exerclse. If in it, we take $\alpha=2, \delta=0$, we obtain part A. It is also seen that a symmetric stable (1) is dlstributed as a symmetric stable (2) random variable times \sqrt{X} where X is stable $\left(\frac{1}{2}, 1\right)$. But by the property that stable (1) random varlables are nothing but Cauchy random varlables, 1.e. ratlos of two independent normal random varlables, we conclude that
X must be distributed as $1 /\left(2 N^{2}\right)$ where N is normally distributed. This proves part B. Next, agaln by the maln property, if X is as above, and Y is stable $\left(\alpha^{\prime}, 1\right)$, then $X Y^{2}$ is stable $\left(\frac{\alpha^{\prime}}{2}, 1\right)$, at least when $\alpha^{\prime}<1$. If thls is applied successlvely for $\alpha^{\prime}=\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, we obtain statement C. Statement D follows from statements A and C. Finally, using the fact that a symmetric stable ($1 / 2^{k+1}$) is distributed as a symmetric stable $\left(1 / 2^{k}\right)$ times $X^{2^{k}}$, where X is stable $\left(\frac{1}{2}, 1\right)$, we see that a stable ($1 / 2^{k+1}, 0$) is distrlbuted as a Cauchy random varlable times

$$
\prod_{j=0}^{k}\left(\frac{1}{2 N_{j}^{2}}\right)^{2}
$$

Thls concludes the proof of part E.

Propertles A-E in Lemma 8.1 are all corollarles of the maln property given there. The maln property is due to Feller (1971). Property A tells us that all symmetric stable random variables can be obtalned if we can obtaln all positive $(\delta=1)$ stable random varlables with parameter $\alpha<1$. Property B is due to Levy (1940). Property C goes back to Brown and Tukey (1948). Property D is but a simple corollary of property C, and finally, property E is a representation of Mitra's (1981). For other slmilar representations, see Mltra (1982).

There is another property worthy of mention. It states that all stable (α, δ) random varlables can be written as welghted sums of two lld stable ($\alpha, 1$) random varlables. It was mentloned in chapter IV (Lemma 8.1), but we reproduce it here for the sake of completeness.

Lemma 6.2.

If X and Y are Ild stable $(\alpha, 1)$, then $Z \leftarrow p X-q Y$ is stable (α, δ) where

$$
\begin{aligned}
& p^{\alpha}=\frac{\sin \left(\frac{\pi \min (\alpha, 2-\alpha)(1+\delta)}{2}\right)}{\sin (\pi \min (\alpha, 2-\alpha))}, \\
& q^{\alpha}=\frac{\sin \left(\frac{\pi \min (\alpha, 2-\alpha)(1-\delta)}{2}\right)}{\sin (\pi \min (\alpha, 2-\alpha))}
\end{aligned}
$$

Proof of Lemma 6.2.

The characteristic function of Z is

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t p X}\right) E\left(e^{-i t q Y}\right) \\
& =\psi(p t) \psi(-q t)
\end{aligned}
$$

where ψ is the characteristic function of the stable $(\alpha, 1)$ law:

$$
\psi(t)=e^{-|t|^{\alpha^{-i}} e^{-\frac{\pi}{2} \operatorname{mn}(\alpha, \alpha-\alpha) \operatorname{sen}^{\operatorname{sg}}(t)}}
$$

Note next that for $u>0, p^{\alpha} e^{-i u}+q^{\alpha} e^{i u}$ is equal to

$$
\begin{aligned}
& \cos (u)\left(p^{\alpha}+q^{\alpha}\right)-i \sin (u)\left(p^{\alpha}-q^{\alpha}\right) \\
& =\frac{1}{\sin (\pi \min (\alpha, 2-\alpha))} 2\left(\cos (u) \sin \left(\frac{\pi}{2} \min (\alpha, 2-\alpha)\right) \cos \left(\left(\frac{\pi}{2} \delta \min (\alpha, 2-\alpha)\right)\right)-\right. \\
& \left.i \sin (u) \cos \left(\frac{\pi}{2} \min (\alpha, 2-\alpha)\right) \sin \left(\left(\frac{\pi}{2} \delta \min (\alpha, 2-\alpha)\right)\right)\right) .
\end{aligned}
$$

After replacing u by its value, $\frac{\pi}{2} \min (\alpha, 2-\alpha)$, we see that we have

$$
\frac{2 \cos (u) \sin u}{\sin (2 u)}(\cos (\delta u)-i \sin (\delta u))=e^{-i \delta u}
$$

Resubstitution glves us our result.

6.2. Overview of generators.

The difficulty with most stable densitles and distribution functions is that no simple analytical expression for its computation is avallable. The exceptions are spelled out in the previous section. Basically, stable random varlates with parameter α equal to 2^{-k} for $k \geq 0$, and with arbltrary value for δ, can be generated quite easily by the methods outlined in Lemmas 6.1 and 6.2. One just needs to combine an approprlate number of ild normal random varlates. For general α, δ, methods requiring accurate values of the density or distribution function are thus doomed, because these cannot be obtained in finite time. Approximate inversions of the distribution function are reported in Fama and Roll (1968), Dumouchel (1971) and Paulson, Holcomb and Leltch (1975). Paulauskas (1982) suggests another approximate method in which enough ild random varlables are summed. Candidates for summing include the Pareto densitles. For symmetric stable densltles, Bartels (1978) also presents approximate methods. Bondesson (1982) proposes yet another approximate method in which a stable random variable is written as an inflnite sum of powers of the event times in a homogeneous Polsson process on $[0, \infty)$. The sum is truncated, and the tall sum is replaced by an approprlately plcked normal random variate.

Fortunately, exact methods do exist. First of all, the stable density can be written as an integral which in turn leads to a slmple formula for generating
stable random varlates as a combination of one unlform and one exponentlal random variate. These generators were developed in section IV.6.6, and are based upon integral representations of Ibragimov and Chernin (1959) and Zolotarev (1986). The generators themselves were proposed by Kanter (1975) and

Chambers, Mallows and Stuck (1976), and are all of the form $g(U) E^{-\frac{1-\alpha}{\alpha}}$ where E is exponentlally distributed, and $g(U)$ is a function of a uniform $[0,1]$ random varlate U. The sheer simpllcity of the representation makes this method very attractlve, even though g is a rather complicated function of its argument Involving several trigonometric and exponential/logarlthmic operations. Unless speed is absolutely at a premlum, this method is highly recommended.

For symmetric stable random varlates with $\alpha \leq 1$, there is another representation: such random varlates are distributed as
$\frac{Y}{\left(E_{1}+E_{2} I_{[U<\alpha]}\right)^{\frac{1}{\alpha}}}$
where Y has the Fejer-de la Vallee Poussin density, and E_{1}, E_{2} are lld exponentlal random varlates. Thls representation is based upon properties of Polya characteristic functlons, see section IV.6.7, Theorems IV.6.8, TV.6.9, and Example N.6.7. Since the Fejer-de la Vallee Poussin density does not vary with α, random varlates with thls density can be generated quite quickly (remark IV.8.1). This can lead to speeds which are superlor to the speed of the method of Kanter and Chambers, Mallows and Stuck.

In the rest of this section we outline how the serles method (section IV.5) can be used to generate stable random variates. Recall that the serles method is based upon rejection, and that it is designed for densities that are given as a convergent serles. For stable densltles, such convergent serles were obtalned by Bergstrom (1952) and Feller (1971). In addition, we will need good dominating curves for the stable densitles, and sharp estimates for the tall sums of the convergent serles. In the next section, the Bergstrom-Feller serles will be presented, together with estimates of the tall sums due to Bartels (1981). Inequallties for the stable distrlbution which lead to practical implementations of the serles method are obtalned in the last sectlon. At the same tlme, we wlll obtain estlmates of the expected time performance as a function of the parameters of the distribution.

6.3. The Bergstrom-Feller series.

The purpose of this section is to get ready for the next section, where the serles method for stable random variates is developed. The form of the characteristic function most convenlent to us is the first polar form, with parameters α and γ. To obtain serles expanslons for the stable density function, we consider the Fourler inverse of ϕ, which takes a simple form since $|\phi|$ is absolutely integrable:

$$
\begin{aligned}
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} e^{-|t|^{\alpha} e^{-1 \gamma \delta 8 刀(t)}} d t \\
& =\operatorname{Re}\left\{\frac{1}{\pi} \int_{0}^{\infty} e^{-i t x} e^{-t^{\alpha} e^{-i \tau}} d t\right\} \\
& =\operatorname{Re}\left\{\frac{1}{\pi} \int_{0}^{\infty} e^{\left.-t x e^{i\left(\frac{\pi}{2}+\psi\right)} e^{-t^{\alpha} e^{i} \psi_{e}((\alpha \psi-\gamma)} d t\right\}}\right\}
\end{aligned}
$$

provided that $|\alpha \psi-\gamma| \leq \frac{\pi}{2}$ and that $\left|\frac{\pi}{2}+\psi\right| \leq \frac{\pi}{2}$ with at least one of these being a strict inequallty. We have used the fact that changing the sign of γ is equivalent to mirroring the density about the orlgin, and we have consldered a contour in the complex plane. The last expression for f will be our starting polnt. Recall that we need not only a convergent serles, but also good bounds for f and for the tall sums. Bergstrom (1952) replaces each of the exponents in the last expression in turn by its Maclaurin serles, and Integrates (see also Feller (1871)). Bartels (1881) uses Darboux's formula (1878) for the remalnder term in the serles expansion to obtain good truncation bounds. In Theorem 6.1 below, we present the two Bergstrom-Feller serles together with Bartels's bounds. The proof follows Bartels (1981).

Theorem 6.1.

The stable (α, γ) density f can be expanded for values $x \geq 0$ as follows:

$$
f(x)=\sum_{j=1}^{n} a_{n}(x)+A_{n+1}^{*}(x)
$$

where

$$
\begin{aligned}
& a_{j}(x)=\frac{1}{\alpha \pi}(-1)^{j-1} \frac{\Gamma\left(\frac{j}{\alpha}\right) x^{j-1} \sin \left(j\left(\frac{\pi}{2}+\frac{\gamma}{\alpha}\right)\right)}{j-1!}, \\
& \left|A_{n+1}^{*}(x)\right| \leq A_{n+1}(x)=\frac{1}{\alpha \pi} \frac{\Gamma\left(\frac{n+1}{\alpha}\right) x^{n}}{n!(\cos (\theta))^{\frac{n+1}{\alpha}}},
\end{aligned}
$$

where $\theta=0$ if $\gamma \leq 0$ and $\theta=\gamma$ if $\gamma>0$. For $x<0$, note that the value of the density is equal to $f(-x)$ provided that γ is replaced by $-\gamma$. The expansion converges for $1<\alpha \leq 2$. For $0<\alpha<1$, we have a divergent asymptotic serles for small $|x|$, l.e., for fixed $n, A_{n}(x) \rightarrow 0$ as $|x| \rightarrow 0$. Note also that

$$
f(x) \leq \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi(\cos (\theta))^{\frac{1}{\alpha}}}
$$

A second expansion for $f(x)$ when $x>0$ is given by

$$
f(x)=\sum_{j=1}^{n} b_{n}(x)+B_{n+1}^{*}(x)
$$

where

$$
\begin{aligned}
& b_{j}(x)=\frac{(-1)^{j-1} \Gamma(\alpha j+1) \sin \left(j\left(\frac{\alpha \pi}{2}+\gamma\right)\right)}{\pi j!x^{\alpha j+1}} \\
& \left|B_{n+1}^{*}(x)\right| \leq B_{n+1}(x)=\frac{\Gamma(\alpha(n+1)+1)}{\pi(n+1)!(x \cos (\theta))^{\alpha(n+1)+1}}
\end{aligned}
$$

with $\theta=\max \left(0, \frac{\pi}{2}+\frac{1}{\alpha}\left(\gamma-\frac{\pi}{2}\right)\right)$. The expansion is convergent for $0<\alpha<1$, and is a divergent asymptotic expansion at $|x| \rightarrow \infty$ when $\alpha>1$, i.e. for fixed n, $B_{n}(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Furthermore, for all α,

$$
f(x) \leq \frac{\Gamma(\alpha+1)}{\pi(x \cos (\theta))^{\alpha+1}}
$$

Proof of Theorem 6.1.

The proof is based upon a formula of Darboux (1876), which when applled to e^{z} with complex z leads to

$$
e^{z}=\sum_{j=0}^{n-1} \frac{z^{j}}{j!}+\frac{z^{n}}{n!} M_{n}
$$

where $M_{n}=\lambda e^{\theta z}, \lambda$ belng a complex constant with $|\lambda| \leq 1$, and θ being a real constant in the range $0 \leq \theta<1$. In particular, for $\operatorname{Re}(z)>0,\left|M_{n}\right| \leq\left|e^{z}\right|$. For $\operatorname{Re}(z) \leq 0,\left|M_{n}\right| \leq 1$. Apply this result with $z=-t x e^{j\left(\frac{\pi}{2}+\psi\right)}$ in the inversion formula for f, and note that $\operatorname{Re}(z) \leq 0$. Take the integrals, and observe that the remainder term can be bounded as follows:

$$
\begin{aligned}
& \left|A_{n+1}^{*}(x)\right| \leq \frac{x^{n}}{\pi n!} \int_{0}^{\infty} t^{n}\left|e^{-t^{\alpha} e^{j(\alpha)-\gamma)}}\right| d t \\
& =\frac{x^{n}}{\pi n!} \int_{0}^{\infty} t^{n} e^{-t^{\alpha} \cos (\alpha \psi-\gamma) d t} \\
& =\frac{1}{\alpha \pi} \frac{\Gamma\left(\frac{n+1}{\alpha}\right) x^{n}}{n!(\cos (\alpha \psi-\gamma))^{\frac{n+1}{\alpha}}} .
\end{aligned}
$$

The angle ψ can be chosen within the restrictions put on it, to make the upper bound as small as possible. This leads to the cholce $\frac{\gamma}{\alpha}$ when $\gamma \leq 0$, and 0 when $\gamma>0$. It is easy to verlfy that for $1<\alpha \leq 2$, the expansion is convergent. Finally, the upper bound is obtalned by noting that $f(x) \leq A_{1}(x)$.

The second expansion is obtalned by applying Darboux's formula to $e^{-t^{\left.\alpha_{e}\right)(a v-r)}}$ and integrating. Repeating the arguments used for the first expansion, we obtain the second expansion. Using Stirling's formula, it is easy to verify that for $0<\alpha<1$, the expansion is convergent. Furthermore, for flxed $n, B_{n}(x) \rightarrow 0$ as $|x| \rightarrow \infty$, and $f(x) \leq B_{1}(x)$.

The convergent series expansion for $\alpha>1$ requires an increasing number of terms to reach a glven truncation error as $|x|$ Increases. The asymptotic serles increases \ln accuracy and needs fewer terms as $|x|$ increases. As pointed out by Bartels (1981), the convergent serles generally tends to increase first, before converging, and the intermediate values may become so large that the final answer no longer has sufficient significant diglts. Thls drawback occurs malnly for values of α near 1 , and large values of $|\gamma|$.

6.4. The series method for stable random variates.

From Theorem 6.1, we deduce the following useful bound for the stable (α, γ) density when $\gamma \geq 0$:

$$
f(x) \leq \begin{cases}\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\frac{\alpha \pi(\cos (\gamma))^{\frac{1}{\alpha}}}{\frac{\Gamma(\alpha+1)}{\pi(x \cos (\eta))^{\alpha+1}}}} \quad & (x \geq 0) \\ \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\frac{\alpha \pi}{}} \quad(x<0) & \\ \frac{\Gamma(\alpha+1)}{\pi(-x \cos (\theta))^{\alpha+1}} & (x<0)\end{cases}
$$

where $\theta=\max \left(0, \frac{\pi}{2}+\frac{1}{\alpha}\left(-\gamma-\frac{\pi}{2}\right)\right)$ and $\eta=\max \left(0, \frac{\pi}{2}+\frac{1}{\alpha}\left(\gamma-\frac{\pi}{2}\right)\right)$. The bounds are valld for all values of α. The dominating curve will be used in the rejection algorithm to be presented below. Taking the minlmum of the bounds glves basically two constant pleces near the center and two polynomially decreasing talls. There is no problem whatsoever with the generation of random varlates with density proportlonal to the dominating curve. Unfortunately, the bounds provided by Theorem 6.1 are not very useful for asymmetric stable random varlates because the mode is located away from the orlgin. For example, for the positive stable density, we even have $f(0)=0$. Thus, a constant/polynomial dominating curve does not cap the density very well in the reglon between the origin and the mode. For a good flt, we would have needed an expansion around the mode instead of two expanslons, one around the origin, and one around ∞. The inefficlency of the bound is easily born out in the integral under the dominating curve. We will consIder four cases:
$\gamma=0, \alpha>1$ (symmetric stable).
$\gamma=0, \alpha \leq 1$ (symmetric stable).
$\gamma=(2-\alpha) \frac{\pi}{2}, \alpha>1$ (positive stable).
$\gamma=\alpha \frac{\pi}{2}, \alpha \leq 1$ (positive stable).

The upper bound given to us is of the form $\min \left(A, B x^{-(1+\alpha)}\right)$ for $x>0$. For the symmetric stable density, the dominating curve can be mirrored around the orlgin, while for the asymmetric cases, we need to replace A, B by values $A *, B *$, and x by $-x$. Recalling that

$$
\int_{0}^{\infty} \min \left(A, B x^{-(1+\alpha)}\right) d x=\frac{1+\alpha}{\alpha} A^{\frac{\alpha}{1+\alpha}} B^{\frac{1}{1+\alpha}}
$$

It is easy to compute the areas under the various dominating curves. We offer the following table for A, B :

CASE	A	B
1	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\pi \alpha}$	$\frac{\Gamma(1+\alpha)}{\pi\left(\sin \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}$
2	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\pi \alpha}$	$\frac{\Gamma(1+\alpha)}{\pi}$
3	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi\left(\sin \left((\alpha-1) \frac{\pi}{2}\right)\right)^{\frac{1}{\alpha}}}$	$\frac{\Gamma(\alpha+1)}{\pi\left(\cos \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}$
4	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi\left(\cos \left(\frac{\alpha \pi}{2}\right)\right)^{\frac{1}{\alpha}}}$	$\frac{\Gamma(\alpha+1)}{\pi\left(-\cos \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}$

For example, in case 1, we see that the area under the dominating curve is

$$
\begin{align*}
& 2 \frac{\alpha+1}{\alpha}\left(\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\pi \alpha}\right)^{\frac{\alpha}{1+\alpha}}\left(\frac{\Gamma(1+\alpha)}{\pi\left(\sin \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}\right)^{\frac{1}{\alpha+1}} \\
& \leq \frac{4}{\pi}\left(\Gamma\left(\frac{1}{\alpha}\right)\right)^{\frac{\alpha}{1+\alpha}}(\Gamma(1+\alpha))^{\frac{1}{\alpha+1}} \\
& \leq \frac{4}{\pi} \pi^{\frac{1}{3}} \sqrt{2} \tag{11}
\end{align*}
$$

where we used the following inequalltles: (1) $(\alpha+1) / \alpha^{\alpha /(1+\alpha)} \leq 2(\alpha \geq 1)$;
$\sin (\pi /(2 \alpha)) \geq 1 / \alpha ;$ (III) $\Gamma(u) \leq 2(2 \leq u \leq 3) ;($ Iv $) ~ \Gamma(u) \leq \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\left(\frac{1}{2} \leq u \leq 1\right)$.
Some of the inequalitles are rather loose, so that the actual fit is probably much better than what is predlcted by the upper bound. For $\alpha=2$, the normal density, we obtaln $32^{1 / 6} \pi^{-2 / 3}$. The Importance of the good fit is clear: we can now use the dominating curve quite confidently in any rejection type algorithm for symmetric stable random varlate generation when $\alpha \geq 1$. The story is not so rosy for the three other cases, because the integral of the dominating curve is not unlformly bounded over the specifled parameter ranges. The actual verlfication of this statement is left as an exercise, but we conclude that it is not worth to use the Bergstrom-Feller serles for asymmetrlc stable random varlates. For this reason, we will Just concentrate on the symmetrlc case. The notation $a_{n}, b_{n}, A_{n}, B_{n}$ is taken from Theorem 6.1. Furthermore, we define a density g and a normalization constant c by

$$
c g(x)=\min \left\{\begin{array}{l}
\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi} \\
\frac{\Gamma(\alpha+1)}{\pi(|x| \sin (\varsigma))^{\alpha+1}}
\end{array}\right.
$$

where $\varsigma=0$ for $\alpha<1$, and $\varsigma=\pi /(2 \alpha)$ otherwise. The algorithm is of the following form:

Series method for symmetric stable density; case of parameter >1
REPEAT
Generate X with density g.
Generate a uniform $[0,1]$ random variate U.
$T \leftarrow U c g(X)$
$S \longleftarrow 0, n \longleftarrow 0$ (Get ready for series method.)
REPEAT

$$
n \leftarrow n+1, S \leftarrow S+a_{n}(X)
$$

UNTIL $|S-T| \geq A_{n+1}(X)$
UNTIL $T \leq S$
RETURN X

Because of the convergent nature of the serles $\sum a_{n}$, thls algorlthm stops with probablity one. Note that the divergent asymptotic expansion is only used in the definition of $c g$. It could of course also be used for introducing quick acceptance and rejection steps. But because of the divergent nature of the expansion it is useless in the definition of a stopping rule. One possible use is as Indicated in the modifled algorithm shown below.

Series method for symmetric stable density; case of parameter >1

REPEAT

Generate X with density g.
Generate a uniform $[0,1]$ random variate U.
$T \leftarrow U \operatorname{cg}(X)$
$S \leftarrow 0, n \leftarrow 0$ (Get ready for series method.)
$V \leftarrow B_{2}(X), W \leftarrow b_{1}(X)$
IF $T \leq W-V$
THEN RETURN X
ELSE IF $W-V<T \leq W+V$
THEN
REPEAT

$$
\begin{gathered}
n \leftarrow n+1, S \leftarrow S+a_{n}(X) \\
\text { UNTIL }|S-T| \geq A_{n+1}(X)
\end{gathered}
$$

UNTH $T \leq S$ AND $T \leq W+V$
RETURN X

Good speed is obtalnable if we can set up some constants for a fixed value of α. In partlcular, an array of the flrst m coefflcients of x^{j-1} in the series expansion can be computed beforehand. Note that for $\alpha<1$, both algorlthms shown above can be used again, provided that the roles of a_{n} and b_{n} are interchanged. For the modifled version, we have:

Series method for symmetric stable density; case of parameter less than or equal to one

REPEAT

Generate X with density g.
Generate a uniform [0,1] random variate U.
$T \leftarrow U c g(X)$
$S \leftarrow 0, n \leftarrow 0$ (Get ready for series method.)
$V \leftarrow A_{2}(X), W \leftarrow a_{1}(X)$
IF $T \leq W-V$
THEN RETURN X
ELSE IF $W-V<T \leq W+V$
THEN
REPEAT

$$
n \leftarrow n+1, S \leftarrow S+b_{n}(X)
$$

UNTIL $|S-T| \geq B_{n+1}(X)$
UNTIL $T \leq S$ AND $T \leq W+V$
RETURN X

6.5. Exercises.

1. Prove that a symmetric stable random varlate with parameter $\frac{1}{2}$ can be obtalned as $c\left(N_{1}{ }^{-2}-N_{2}{ }^{-2}\right)$ where N_{1}, N_{2} are $11 d$ normal random varlates, and $c>0$ is a constant. Determine c too.
2. The expected number of iterations in the serles method for symmetric stable random varlates with parameter α, based upon the inequallties given in the text (based upon the Bergstrom-Feller serles), is asymptotic to

$$
\frac{2}{\pi e \alpha^{2}}
$$

as $\alpha \downarrow 0$.
3. Consider the serles method for stable random varlates glven in the text, without quick acceptance and rejection steps. For all values of α, determine $E(N)$, where N is the number of computations of some term a_{n} or b_{n} (note that slnce a_{n} or b_{n} are computed in the inner loop of two nested loops, it is an approprlate measure of the time needed to generate a random varlate). For which values, if any, is $E(N)$ finite?
4. Some approximate methods for stable random varlate generation are based upon the following limit law, which you are asked to prove. Assume that X_{1}, \ldots are ild random varlables with common distribution function F satisfying

$$
\begin{aligned}
& 1-F(x) \sim\left(\frac{b}{x}\right)^{\alpha} \quad(x \rightarrow \infty) \\
& F(-x) \sim\left(\frac{c b^{*}}{|x|}\right)^{\alpha} \quad(x \rightarrow-\infty)
\end{aligned}
$$

for some constants $0<\alpha<2, b, b * \geq 0, b+b *>0$. Show that there exist normallzing constants c_{n} such that

$$
\frac{1}{n^{\frac{1}{\alpha}}} \sum_{j=1}^{n} X_{j}-c_{n}
$$

tends \ln distribution to the stable (α, β) distribution with parameter

$$
\beta=\frac{b^{\alpha}-b *^{\alpha}}{b^{\alpha}+b *^{\alpha}}
$$

(Feller, 1871).
5. This is a continuation of the previous exercise. Glve an example of a distribution with a density satisfying the tall conditions mentioned in the exerclise, and show how you can generate a random varlate. Furthermore, suggest for your example how c_{n} can be chosen.
6. Prove the flrst statement of Lemma 6.1.
7. Find a simple dominating curve with uniformly bounded integral for all positive stable densitles with parameter $\alpha \geq 1$. Mention how you would proceed with the generation of a random varlate with density proportlonal to this curve.
8. In the spirit of the prevlous exercise, find a simple dominating curve with uniformly bounded integral for all symmetric stable densitles; α can take all values $\ln (0,2]$.

7. NONSTANDARD DISTRIBUTIONS.

7.1. Bessel function distributions.

The Polya-Aeppli distribution is a three-parameter distribution with denslty

$$
f(x)=C x^{\frac{\lambda-1}{2}} e^{-\theta x} I_{\lambda-1}(\beta \sqrt{x}) \quad(x \geq 0)
$$

IX.7.NONSTANDARD DISTRIBUTIONS

where $\theta>0, \lambda>0, \beta \geq 0$ are the parameters and $I_{a}(x)$ is the modifled Bessel functlon of the first kind, formally defined by

$$
I_{a}(x)=\sum_{j=0}^{\infty} \frac{1}{j!\Gamma(j+a+1)}\left(\frac{x}{2}\right)^{2 j+a} .
$$

The normallzation constant C is given by

$$
C=\left(\frac{2}{\beta}\right)^{\lambda-1} \theta^{\lambda} e^{-\frac{\beta^{2}}{4 \theta}}
$$

The name Polya-Aeppll is used in many texts such as Ord (1972, p. 125-128). Others prefer the name "type I Bessel function distribution" (Feller, 1971, p. 57). By using the expansion of the Bessel function, it is not difficult to see that if Z is Polsson $\left(\frac{\beta^{2}}{4 \theta}\right)$ distributed, and G is gamma $(\lambda+Z)$ distributed, then $\frac{G}{\theta}$ has the Polya-Aeppll distribution. We summarize:

Polya-Aeppli random variate generator

Generate a Poisson $\left(\frac{\beta^{2}}{4 \theta}\right)$ random variate Z.
Generate a gamma $(\lambda+Z)$ random variate G.
RETURN $X \leftarrow \frac{G}{\theta}$

The Polya-Aeppll famlly contalns as a spectal case the gamma family (set $\beta=0$, $\theta=1$). Other distributions can be derlved from it without much trouble: for example, if X is Polya-Aeppll ($\beta, \lambda, \frac{\theta}{2}$), then X^{2} is a type II Bessel function distribution with parameters (β, λ, θ), i.e. X^{2} has density

$$
f(x)=D x^{\lambda} e^{-\theta \frac{x^{2}}{2}} I_{\lambda-1}(\beta x) \quad(x \geq 0)
$$

where $D=\theta^{\lambda} \beta^{1-\lambda} e^{-\beta^{2} /(2 \theta)}$. Special cases here include the folded normal distributlon and the Rayletgh distribution. For more about the propertles of type I and II Bessel function distributions, see for example Kotz and Srinivasan (1989), Lukacs and Laha (1984) and Laha (1954).

Bessel functlons of the second kind appear in other contexts. For example, the product of two lid normal random variables has density

$$
\frac{1}{\pi} K_{0}(x)
$$

where K_{0} is the Bessel function of the second kind with purely Imaginary argument of order 0 (Springer, 1979, p. 180).

In the study of random walks, the following density appears naturally:

$$
f(x)=\frac{r}{x} e^{-x} I_{r}(x) \quad(x>0),
$$

where $r>0$ is a parameter (see Feller (1971, pp. 59-60,478)). For integer r, this is the denslty of the time before level r is crossed for the first time in a symmetric random walk, when the time between epochs is exponentially distributed:

$$
\begin{aligned}
& X \leftarrow 0, L \leftarrow 0 \\
& \text { REPEAT } \\
& \quad \text { Generate a uniform }[-1,1] \text { random variate } U . \\
& \quad L \leftarrow L+\operatorname{sign}(U) \\
& \quad X \leftarrow X-\log (|U|) \\
& \text { UNTIL } L=r \\
& \text { RETURN } X
\end{aligned}
$$

Unfortunately, the expected number of Iterations is ∞, and the number of Iteratlons is bounded from below by r, so this algorithm is not unlformly fast in any sense. We have however:

Theorem 7.1.

Let $r>0$ be a real number. If G, B are independent gamma (r) and beta $\left(\frac{1}{2}, r+\frac{1}{2}\right)$ random variables, then

$$
\frac{G}{2 B}
$$

has density

$$
f(x)=\frac{r}{x} e^{-x} I_{r}(x) \quad(x>0)
$$

Proof of Theorem 7.1.

We use an integral representation of the Bessel function I_{r} which can be found for example in Magnus et al. (1986, p. 84):

$$
f(x)=\frac{r}{x} e^{-x} I_{r}(x)
$$

$$
\begin{aligned}
& =\frac{1}{\Gamma\left(r+\frac{1}{2}\right)} \frac{r}{x} e^{-x} \frac{1}{\sqrt{\pi}}\left(\frac{x}{2}\right)^{r} \int_{-1}^{1} e^{-z x}\left(1-z^{2}\right)^{r-\frac{1}{2}} d z \\
& =\frac{1}{\Gamma\left(r+\frac{1}{2}\right)} \frac{r}{x} \frac{1}{\sqrt{\pi}}\left(\frac{x}{2}\right)^{T} 2^{2 r} \int_{0}^{1} e^{-2 y x}(y(1-y))^{r-\frac{1}{2}} d y .
\end{aligned}
$$

The result follows directly from this.

The algorithm suggested by Theorem 7.1 is unlformly fast over all $r>0$ if unlformly fast gamma and beta generators are used. Of course, we can also use direct rejection. Bounds for f can for example be obtalned starting from the Integral representation for f given in the proof of Theorem 7.1. The acceptance or rejection has to be declded based upon the serles method in that case.

7.2. The logistic and hyperbolic secant distributions.

A random varlable has the logistic distribution when it has distrlbution function

$$
F(x)=\frac{1}{1+e^{-x}}
$$

on the real line. The corresponding density is

$$
f(x)=\frac{1}{2+e^{x}+e^{-x}}
$$

For random varlate generation, we can obviously proceed by Inversion: when U Is unlformly distributed on $[0,1]$, then $X \leftarrow \log \left(\frac{U}{1-U}\right)$ is logistlc. To beat thls method, one needs elther an extremely efflclent rejection or acceptancecomplement algorithm, or a table method. Rejection could be based upon one of the following inequallties:
A. $\quad f(x) \leq e^{-|x|}$: this is rejection from the Laplace density. The rejection constant is 2.
B. $\quad f(x) \leq \frac{1}{4+x^{2}}$: this is rejection from the density of $2 C$ where C is a Cauchy random varlate. The rejection constant is $\frac{\pi}{2} \approx 1.57$.
A distribution related to the logistlc distribution is the hyperbolic secant distribution (Talacko, 1956). The density is given by

$$
f(x)=\frac{2}{\pi\left(e^{x}+e^{-x}\right)}
$$

Both the logistic and hyperbolic secant distributions are members of the famlly of Perks distributions (Talacko, 1958), with densities of the form $c /\left(a+e^{x}+e^{-x}\right)$, where $a \geq 0$ is a parameter and c is a normallzation constant. For thls family, rejection from the Cauchy density can always be used slnce the density is bounded from above by $c /\left(a+2+x^{2}\right)$, and the resulting rejection algorithm has unlformly bounded rejection constant for $a \geq 0$. For the hyperbolle secant distribution in particular, there are other possibilitles. One can easlly see that it has distribution function

$$
F(x)=\frac{2}{\pi} \arctan \left(e^{x}\right) .
$$

Thus, $X \leftarrow \log \left(\tan \left(\frac{\pi}{2} U\right)\right)$ is a hyperbolic secant random varlate whenever U is a unlform $[0,1]$ random varlate. We can also use rejection from the Laplace density, based upon the inequallty $f(x) \leq \frac{2}{\pi} e^{-|x|}$. Thls ylelds a quite acceptable rejectlon constant of $\frac{4}{\pi}$. The rejection condition can be considerably slmplified:

Rejection algorithm for the hyperbolic secant distribution

REPEAT

Generate U uniformly on $[0,1]$ and V uniformly on $[-1,1]$.
$X \leftarrow \operatorname{sign}(V) \log (|V|)$
UNTL $U(|V|+1) \leq 1$
RETURN X

Both the logistic and hyperbollc secant distributions are intimately related to a host of other distributlons. Most of the relations can be deduced from the inverslon method. For example, by the propertles of unlform spacings, we observe that $\frac{U}{1-U}$ is distributed as E_{1} / E_{2}, the ratio of two independent exponential random variates. Thus, $\log \left(E_{1}\right)-\log \left(E_{2}\right)$ is \log istic. This in turn implles that the difference between two ild extreme-value random varlables (i.e., random varlables with distribution function $\left.e^{-e^{-2}}\right)$ is logistic. Also, $\tan \left(\frac{\pi}{2} U\right)$ is distributed as the absolute value of a Cauchy random variable. Thus, if C is a Cauchy random variable, and N_{1}, N_{2} are ild normal random variables, then $\log (|C|)$ and $\log \left(\left|N_{1}\right|\right)-\log \left(\left|N_{2}\right|\right)$ are both hyperbollc secant.

Many propertles of the logistic distribution are reviewed in Olusegun George and Mudholkar (1981).

7.3. The von Mises distribution.

The von Mises distribution for polnts on a circle has become Important in the statistical theory of directional data. For its propertles, see for example the survey paper by Mardla (1975). The distribution is completely determined by the distribution of the random angle Θ on $[-\pi, \pi]$. There is one shape parameter, $\kappa>0$, and the density is given by

$$
f(\theta)=\frac{e^{\kappa \cos (\theta)}}{2 \pi I_{0}(\kappa)} \quad(|\theta| \leq \pi)
$$

Here I_{0} is the modified Bessel function of the flrst kind of order 0:

$$
I_{0}(x)=\sum_{j=0}^{\infty} \frac{1}{j!^{2}}\left(\frac{x}{2}\right)^{2 j}
$$

Unfortunately, the distribution function does not have a simple closed form, and there is no simple relationshlp between von Mises (κ) random variables and von Mises (1) random varlables which would have allowed us to ellminate in effect the shape parameter. Also, no useful characterizations are as yet avallable. It seems that the only vable method is the rejection method. Several rejection methods have been suggested in the literature, e.g. the method of Selgerstetter (1974) (see also Ripley (1983)), based upon the obvlous inequallty

$$
f(\theta) \leq f(0)
$$

which leads to a rejectlon constant $2 \pi f(0)$ which tends quickly to ∞ as $\kappa \rightarrow \infty$. We could use the universal bounding methods of chapter 7 for bounded monotone densitles since f is bounded, U-shaped (with modes at π and $-\pi$) and symmetrlc about 0 . Fortunately, there are much better alternatives. The leading work on this subject is by Best and Fisher (1979), who, after considering a varlety of dominating curves, suggest using the wrapped Cauchy density as a dominating curve. We will Just content ourselves with a reproduction of the Best-Flsher algorlthm.

We begin with the wrapped Cauchy distribution function with parameter ρ :

$$
G(x)=\frac{1}{2 \pi} \arccos \left(\frac{\left(1+\rho^{2}\right) \cos (x)-2 \rho}{1+\rho^{2}-2 \rho \cos (x)}\right) \quad(|x| \leq \pi)
$$

For later reference, the density g for G is:

$$
g(x)=\frac{1}{2 \pi} \frac{1-\rho^{2}}{1+\rho^{2}-2 \rho \cos (x)} \quad(|x| \leq \pi)
$$

A random varlate with this distribution can easlly be generated via the inversion method:

Wrapped Cauchy generator; inversion method
[SET-UP]
$s \leftarrow \frac{1+\rho^{2}}{2 \rho}$
[GENERATOR]
Generate a uniform $[-1,1]$ random variate U.
$Z \longleftarrow \cos (\pi U)$
RETURN $\Theta \leftarrow \frac{\operatorname{sign}(U)}{\cos \left(\frac{1+s Z}{s+Z}\right)}$

If the wrapped Cauchy distrlbution is to be used for rejection, we need to fine tune the distribution, l.e. choose ρ as a function of κ.

Theorem 7.2. (Best and Fisher, 1979)

Let f be the von Mlses density with parameter $\kappa>0$, and let g be the wrapped Cauchy density with parameter $\rho>0$. Then

$$
f(x) \leq \operatorname{cg}(x) \quad(|x| \leq \pi)
$$

where c is a constant depending upon κ and ρ only. The constant is minimized with respect to ρ for the value

$$
\rho=\frac{r-\sqrt{2 r}}{2 \kappa}
$$

where

$$
r=1+\sqrt{1+4 \kappa^{2}}
$$

The expected number of iterations in the rejection algorlthm is

$$
c=\frac{\frac{2 \rho}{\kappa} e^{\kappa \frac{1+\rho^{2}}{2 \rho}-1}}{\left(1-\rho^{2}\right) I_{0}(\kappa)}
$$

Furthermore, $\lim _{\kappa \downharpoonleft 0} c=\infty$ and $\lim _{\kappa \rightarrow \infty} c=\sqrt{\frac{2 \pi}{e}}$.

Proof of Theorem 7.2.

Conslder the ratio

$$
h(x)=\frac{f(x)}{g(x)}=\frac{\left(1+\rho^{2}-2 \rho \cos (x)\right) e^{\kappa \cos (x)}}{I_{0}(\kappa)\left(1-\rho^{2}\right)} .
$$

The derlvative of h is zero for $\sin (x)=0$ and for $\cos (x)=\left(1+\rho^{2}-\frac{2 \rho}{\kappa}\right) /(2 \rho)$. By verlfying the second derlvative of h, we find a local maximum value

$$
M_{1}=(1-\rho)^{2} e^{\kappa}
$$

at $\sin (x)=0$ when

$$
\frac{2 \rho}{(1-\rho)^{2}}<\kappa,
$$

and a local maximum value

$$
M_{2}=\frac{2 \rho}{\kappa} e^{\kappa \frac{1+\rho^{2}}{2 \rho}-1}
$$

at $\cos (x)=\left(1+\rho^{2}-\frac{2 \rho}{\kappa}\right) /(2 \rho)$ when

$$
\frac{2 \rho}{(1+\rho)^{2}}<\kappa<\frac{2 \rho}{(1-\rho)^{2}} .
$$

Let ρ_{0} and ρ_{1} be the roots $\ln (0,1)$ of $\frac{2 \rho}{(1-\rho)^{2}}=\kappa$ and $\frac{2 \rho}{(1+\rho)^{2}}=\kappa$ respectlvely. The two Intervals for ρ defined by the the two sets of Inequalitles are nonoverlapping. The two intervals are ($0, \rho_{0}$) and ($\rho_{0}, \min \left(1, \rho_{1}\right)$) respectlvely. The maximum M is deflned as M_{1} on ($0, \rho_{0}$) and as M_{2} on ($\rho_{0}, \min \left(1, \rho_{1}\right)$).

To find the best value of ρ, it suffices to find ρ for which M as a function of ρ is minimal. First, M_{1} considered as a function of ρ is minimal for $\rho=\rho_{0}$. Next, M_{2} considered as a function of ρ is minimal at the solution of

$$
-\kappa \rho^{4}+2 \rho^{3}+2 \kappa \rho^{2}+2 \rho-\kappa=0,
$$

i.e. at $\rho=\rho *=(r-\sqrt{2 r}) /(2 r)$ where $r=1+\sqrt{1+4 \kappa^{2}}$. It can be verifled that $\rho * \in\left(\rho_{0}, \min \left(1, \rho_{1}\right)\right)$. But because $M_{1}\left(\rho_{0}\right)=M_{2}\left(\rho_{0}\right) \geq M_{2}(\rho *)$, it is clear that the overall minimum is attalned at ρ^{*}. The remainder of the statements of Theorem 7.2 are left as an exerclse.

The rejection algorlthm based upon the Inequallty of Theorem 7.2 is given below:
von Mises generator (Best and Fisher, 1979)
[SET-UP]
$0-\frac{1 \div \rho^{2}}{2 \rho}$
[GENERATOR]
REPEAT
Generate iid uniform $[-1,1]$ random variates U, V.
$Z \leftarrow \cos (\pi U)$
$W-\frac{1+s Z}{s+Z}$
$Y \leftarrow \kappa(s-W)$
Accept $\leftarrow[W(2-W)-V \geq 0]$ (Quick acceptance step)
IF NOT Accept THEN Accept $\leftarrow\left[\log \left(\frac{W}{V}\right)+1-W \geq 0\right]$
UNTL Accept
RETURN $\theta-\frac{\operatorname{sign}(U)}{\cos (W)}$

Two final computational remarks. The cosine in the definltion of Z can be avolded by using an appropriate polar method. The coslne in the last statement of the algorlthm cannot be avolded.

7.4. The Burr distribution.

In a serles of papers, Burr $(1942,1988,1973)$ has proposed a versatlle family of densities. For the sake of completeness, his orlginal list is reproduced here. The parameters r, k, c are positive real numbers. The fact that k could take noninteger values is bound to be confusing, but at this point it is undoubtedly better to stlck to the standard notation. Note that a list of distribution functions, not
densitles, Is provided In the table.

NAME	$F(x)$	RANGE FOR x
Burr I	x	$[0,1]$
Burr II	$\left(1+e^{-x}\right)^{-r}$	$(-\infty, \infty)$
Burr III	$\left(1+x^{-k}\right)^{-r}$	$[0, \infty)$
Burr IV	$\left(1+\left(\frac{c-x}{x}\right)^{\frac{1}{c}}\right)^{-r}$	$[0, c]$
Burr V	$\left(1+k e^{-\tan (x)}\right)^{-r}$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Burr VI	$\left(1+k e^{-\sinh (x)}\right)^{-r}$	$(-\infty, \infty)$
Burr VII	$2^{-r}(1+\tanh (x))^{r}$	$(-\infty, \infty)$
Burr VIII	$\left(\frac{2}{\pi} \arctan \left(e^{x}\right)\right)^{r}$	$(-\infty, \infty)$
Burr XX	$1-\frac{2}{2+k\left(\left(1+e^{x}\right)^{r}-1\right)}$	$(-\infty, \infty)$
Burr X	$\left(1+e^{-x^{2}}\right)^{r}$	$[0, \infty)$
Burr XI	$\left(x-\frac{1}{2 \pi} \sin (2 \pi x)\right)^{r}$	$[0,1]$
Burr XII	$1-\left(1+x^{c}\right)^{-k}$	$[0, \infty)$

Most of the densities in the Burr famlly are unlmodal. In all cases, we can generate random varlates directly via the Inversion method. By far the most important of these distributions is the Burr XII distribution. The corresponding denslty,

$$
f(x)=\frac{k c x^{c-1}}{\left(1+x^{c}\right)^{k}} \quad(x \geq 0)
$$

with parameters $c, k>0$ can take a variety of shapes. Thus, f is partlcularly useful as a flexible dominating curve in random varlate generation (see e.g. Cheng (1977)). As pointed out by Tadikamalla (1980), the Burr III density is even more flexible. It is called the reclprocal Burr distribution because the reclprocal of a Burr XII with parameters c, k has the Burr III distribution function

$$
F(x)=\frac{1}{\left(1+x^{c}\right)^{k}}
$$

The density is

$$
f(x)=\frac{k c x^{c k-1}}{\left(1+x^{c}\right)^{k+1}}
$$

It should be noted that a myrlad of relationshlps exist between all the Burr distributions, because of the fact that all are directly related to the unlform distributlon via the probabllity integral transform.

7.5. The generalized inverse gaussian distribution.

The generalized inverse gaussian, or GIG, distribution is a threeparameter distribution with density

$$
f(x)=\frac{\left(\frac{\psi}{\chi}\right)^{\frac{\lambda}{2}}}{2 K_{\lambda}(\sqrt{\psi \chi})} x^{\lambda-1} e^{-\frac{1}{2}\left(\frac{\chi}{x}+\psi x\right)} \quad(x>0)
$$

Here $\lambda \in R, \chi>0$, and $\psi>0$ are the parameters of the distribution, and K_{λ} is the modifled Bessel function of the third kind, defined by

$$
K_{\lambda}(u)=\frac{1}{2} \int_{-\infty}^{\infty} \cosh (\lambda u) e^{-z \cosh (u)} d u
$$

A random varlable with the density given above will be called a GIG (λ, ψ, χ) random varlable. The GIG family was introduced by Barndorff-Nielsen and Halgreen (1877), and its propertles are reviewed by Blaesild (1978) and Jorgensen (1882). The individual densittes are gamma-shaped, and the famlly has had quite a bit of success recently because of its applicabllity in modeling. Furthermore, many well-known distributlons are but spectal cases of GIG distributions. To clte a few:
A. $\chi=0$: the gamma density.
B. $\psi=0$: the density of the Inverse of a gamma random varlable.
C. $\lambda=-\frac{1}{2}$: the Inverse gaussian distribution (see section IV.4.3).

Furthermore, the GIG distribution is closely related to the generallzed hyperbolic distribution (Barndorff-Nielsen (1977, 1978), Blaesild (1978), Barndorff-Nielsen and Blaesild (1980)), which is of interest in itself. For the relationship, we refer to the exerclses.

We begin with a partial list of propertles, which show that there are really only two shape parameters, and that for random variate generation purposes, we need only consider the cases of $\chi=\psi$ and $\lambda>0$.

Lemma 7.4.

Let GIG (.,.,.) and Gamma (.) denote GIG and gamma distributed random varlables with the given parameters, and let all random varlables be independent. Then, we have the following distributional equivalences:
A. GIG $(\lambda, \psi, \chi)=\frac{1}{c} \operatorname{GIG}\left(\lambda, \frac{\psi}{c}, \chi c\right)$ for all $c>0$. In particular,

$$
\operatorname{GIG}(\lambda, \psi, \chi)=\sqrt{\frac{\chi}{\psi}} \operatorname{GIG}(\lambda, \sqrt{\psi \chi}, \sqrt{\psi \chi})
$$

B.

$$
\operatorname{GIG}(\lambda, \psi, \psi)=\operatorname{GIG}(-\lambda, \psi, \psi)+\frac{2}{\psi} \operatorname{Gamma}(\lambda)
$$

C.

$$
\operatorname{GIG}(\lambda, \psi, \chi)=\frac{1}{\operatorname{GIG}(-\lambda, \chi, \psi)}
$$

For random varlate generation purposes, we will thus assume that $\chi=\psi$ and that $\lambda>0$. All the other cases can be taken care of va the equivalences shown in Lemma 7.4. By considering $\log (f)$, it is not hard to verlify that the distribution is unlmodal with mode m at

$$
m=\frac{1}{\sqrt{\left(\frac{\lambda-1}{\psi}\right)^{2}+1}}-\frac{\dot{\lambda-1}}{\psi}
$$

In addition, the density is \log concave for $\lambda \geq 1$. In view of the analysis of section VII.2, we know that thls is good news. Log concave densitles can be dealt with quite efflclently in a number of ways. First of all, one could employ the unlversal algorlthm for log concave densitles given in section VII.2. This has two dlsadvantages: first, the value of $f(m)$ has to be computed at least once for every cholce of the parameters (recall that thls involves computing the modified Bessel functlon of the third kind); second, the expected number of iterations in the rejection algorithm is large (but not more than 4). The advantages are that the user does not have to do any error-prone computations, and that he has the guarantee that the expected time is unlformly bounded over all $\psi>0, \lambda \geq 1$. The expected number of Iterations can further be reduced by using the non-universal rejection method of section VII.2.6, which uses rejection from a density with a flat part around m, and two exponential talls. In Theorem 2.6, a simple formula is given for the location of the polnts where the exponentlal talls should touch f : place these points such that the value of f at the points is $\frac{1}{e} f(m)$. Note that to solve this equation, the normallzation constant in f cancels out convenlently.

Because $f(0)=0$, the equation has two well-deffed solutions, one on each slde of the mode. In some cases, the numerical solution of the equation is well worth the trouble. If one Just cannot afford the tlme to solve the equation numerically, there is always the possibllity of placing the points symmetrically at distance $e /((e-1) f(m)$ from m (see section VII.2.6), but this would agaln involve computing $f(m)$. Atkinson $(1978,1982)$ also uses two exponential talls, both with and without flat center parts, and to optimize the dominating curve, he suggests a crude step search. In any case, the generation process for f can be automated for the case $\lambda \geq 1$.

When $0<\lambda<1, f$ is \log concave for $x \leq \psi /(1-\lambda)$, and is log convex otherwise. Note that thls cut-off polnt is always greater than the mode m, so that for the part of the density to the left of m, we can use the standard exponential/constant dominating curve as described above for the case $\lambda \geq 1$. The right tall of the GIG density can be bounded by the gamma denslty (by omitting the $1 / x$ term in the exponent). For most choices of $\lambda<1$ and $\psi>0$, this is satisfactory.

7.6. Exercises.

1. The generalized logistic distribution. When X is beta (a, b), then $\log \left(\frac{X}{1-X}\right)$ is generallzed logistic with parameters (a, b) (Johnson and Kotz, 1970; Olusegun George and Ojo, 1980). Give a unlformly fast rejection algorithm for the generation of such random varlates when $a=b \geq 1$. Do not use the transformation of a beta method given above.
2. Show that if L_{1}, L_{2}, \ldots are IId Laplace random variates, then $\sum_{j=1}^{\infty} \frac{L_{j}}{j^{2}}$ is logistic. Hint: show first that the logistic distribution has characteristic function $\frac{\pi i t}{\sin (\pi i t)}=\Gamma(1-i t) \Gamma(1+i t)$. Then use a key property of the gamma function.
3. Complete the proof of Theorem 7.2 by_proving that for the von Mises generator of Best and Fisher, $\lim _{\kappa \rightarrow \infty} c=\sqrt{\frac{2 \pi}{e}}$.
4. The Pearson system. In the beginning of this century, Karl Pearson developed his well-known famlly of distributions. The Pearson system was, and still is, very popular because the famlly encompasses nearly all wellknown distributions, and because every allowable combination of skewness and kurtosls is covered by at least one member of the famlly. The family has 12 member distributions, and is described in great detail in Johnson and Kotz (1970). In 1973, McGrath and Irving polnted out that random varlates for 11 member distributions can be generated by slmple transformations of one or two beta or gamma random varlates. The exception is the Pearson IV distribution. Fortunately, the Pearson IV density is log-concave, and can be dealt with quite efficiently using the methods of section VII. 2 (see exerclse
VII.2.1). The Pearson densities are llsted In the table below. In the table, a, b, c, d are shape parameters, and C is a normallzation constant. Verlfy the correctness of the generators, and in dolng so, determine the normallzation constants C.

PEARSON DENSITIES				
Pearson	$f(x)$	PARAMETERS	SUPPORT	GENERATOR
I	$C\left(1+\frac{x}{a}\right)^{b}\left(1-\frac{x}{c}\right)^{d}$	$b, d>-1 ; a, c>0$	$[-a, c]$	$\begin{gathered} \frac{(a+c) X}{X+Y} a \\ X \operatorname{gamma}(b) \\ Y \operatorname{gamma}(d) \end{gathered}$
II	$C\left(1-\left(\frac{x}{a}\right)^{2}\right)^{b}$	$b>-1 ; a>0$	$[-a, a]$	$\begin{gathered} \frac{a(X-Y)}{X+Y} \\ X \operatorname{gamma}(b+1) \\ Y \operatorname{gamma}(b+1) \end{gathered}$
III	$C\left(1+\frac{x}{a}\right)^{b a} e^{-b x}$	$b a>-1 ; b>0$	$[-a, \infty]$	$\begin{gathered} \frac{X}{b}-a \\ X \operatorname{gamma}(b a+1) \\ \hline \end{gathered}$
IV	$C\left(1+\left(\frac{x}{a}\right)^{2}\right)^{-b} e^{-c \arctan \left(\frac{x}{a}\right)}$	$a>0 ; b>\frac{1}{2}$		
V	$C x^{-b} e^{-\frac{c}{x}}$	$b>1 ; c>0$	$[0, \infty)$	$\frac{1}{c X}$ $X \operatorname{gamma}(b-1)$
VI	$\cdots(x-a)^{b} x^{-c}$	$c>b+1>0 ; a>0$	$[a, \infty)$	$\begin{gathered} a \frac{X+Y}{X} \\ X \operatorname{gamma}(c-b-1) \\ Y \operatorname{gamma}(b+1) \end{gathered}$
VII	$C\left(1+\left(\frac{x}{a}\right)^{2}\right)^{-b}$	$b>\frac{1}{2} ; a>0$		$\begin{gathered} \frac{a N}{\sqrt{X / 2}} \\ N \text { normal } \\ X \operatorname{gamma}\left(b-\frac{1}{2}\right) \end{gathered}$
VIII	$C\left(1+\frac{x}{a}\right)^{-b}$	$0 \leq b \leq 1 ; a>0$	$[-a, 0]$	$\begin{gathered} a\left(U^{-\frac{1}{b-1}}-1\right) \\ U \text { uniform }[0,1] \end{gathered}$
IX	$C\left(1+\frac{x}{a}\right)^{\text {b }}$	$b>0 ; a>0$	$[-a, 0]$	$\begin{gathered} a\left(U^{\frac{1}{b+1}}-1\right) \\ U \text { uniform }[0,1] \end{gathered}$
X	$\frac{1}{a} e^{-\frac{x}{a}}$	$a>0$	$[0, \infty)$	$\begin{gathered} a E \\ E \text { exponential } \end{gathered}$
XI	$C\left(\frac{a}{x}\right)^{\text {b }}$	$a>0 ; b>1$	$[a, \infty)$	$\begin{gathered} a U^{-\frac{1}{b-1}} \\ U \text { uniform }[0,1] \end{gathered}$
XII	$C\left(\frac{a+x}{b-x}\right)^{c}$	$0<b<a ; 0 \leq c<1$	$[-a, b]$	$\begin{gathered} (a+b) X-a \\ X \operatorname{beta}(c+1,1-c) \\ \hline \end{gathered}$

5. The arcsine distribution. A random variable X on $[-1,1]$ Is sald to have an arcsine distribution if its density is of the form $f(x)=\left(\pi \sqrt{1-x^{2}}\right)^{-1}$. Show first that when U, V are lid uniform $[0,1]$ random variables, then $\sin (\pi U), \sin (2 \pi U),-\cos (2 \pi U), \sin (\pi(U+V))$, and $\sin (\pi(U-V))$ are all have
the arcsine distribution. This immedlately suggests several polar methods for generating such random varlates: prove, for example, that if (X, Y) is unlformly distributed in C_{2}, then $\left(X^{2}-Y^{2}\right) /\left(X^{2}+Y^{2}\right)$ has the arcsine distributhon. Using the polar method, show further the following propertles for ild arcslne random varlables X, Y :
(1) $X Y$ is distributed as $\frac{1}{2}(X+Y)$ (Norton, 1978).
(ii) $\frac{1+X}{2}$ is distributed as X^{2} (Arnold and Groeneveld, 1980).
(iii) X is distributed as $2 X \sqrt{1-X^{2}}$ (Arnold and Groeneveld, 1980).
(iv) $X^{2}-Y^{2}$ is distributed as $X Y$ (Arnold and Groeneveld, 1980).
6. Ferreri's system. Ferrerl (1964) suggests the following family of densities:

$$
f(x)=\frac{\sqrt{b}}{C\left(c+e^{\left.a+b(x-\mu)^{2}\right)}\right.}
$$

where a, b, c, μ are parameters, and

$$
C=\Gamma\left(\frac{1}{2}\right) \sum_{j=1}^{\infty}(-c)^{j-1} e^{-j a} j^{-\frac{1}{2}}
$$

Is a normalization constant. The parameter c takes only the values ± 1. As $a \rightarrow \infty$, the density approaches the normal density. Develop an efficient untformly fast generator for this family.
7. The famlly of distributions of the form $a X+b Y$ where $a, b \in R$ are parameters, and X, Y are id gamma random varlables was proposed by McKay (1932) and studled by Bhattacharyya (1942). Thls famlly has basically two shape parameters. Derive its density, and note that its form is a product of a gamma density multiplled with a modified Bessel function of the second kind when $a, b>0$.
8. Toranzos's system. Show how you can generate random varlates from Toranzos's class (Toranzos, 1952) of bell-shaped densltles of the form $C x^{c} e^{-(a+b x)^{2}} \quad(x>0)(C$ is a normalization constant) In expected time unlformly bounded over all allowable values of the parameters. Do not use C in the generator, and do not compute C for the proof of the unlform boundedness of the expected time.
9. Tukey's lambda distribution. In 1960, Tukey proposed a versatlle famlly of symmetric densities in terms of the inverse distribution function:

$$
F^{-1}(U)=\frac{1}{\lambda}\left(U^{\lambda}-(1-U)^{\lambda}\right)
$$

where $\lambda \in R$ is a shape parameter. Clearly, if U is a unlform [0,1] random varlate, then $F^{-1}(U)$ has the given distribution. Note that the density is not known in closed form. Tukey's distribution was later generallzed in several directions, first by Ramberg and Schmelser (1972) who added a location and a scale parameter. The most significant generallzation was by Ramberg and Schmelser (1874), who deflned

$$
F^{-1}(U)=\lambda_{1}+\frac{1}{\lambda_{2}}\left(U^{\lambda_{3}}-(1-U)^{\lambda_{4}}\right) .
$$

For yet another generallzation, see Ramberg (1875). In the RambergSchmeiser form, λ_{1} is a locatlon parameter, and λ_{2} is a scale parameter. The merlt of thls family of distributions is its versatillty with respect to its use in modeling data. Furthermore, random varlate generation is trivial. It is therefore important to understand which shapes the density can take. Prove all the statements given below.
A. As $\lambda_{3}=\lambda_{4} \rightarrow 0$, the density tends to the logistic density.
B. The density is J-shaped when $\lambda_{3}=0$.
C. When $\lambda_{1}=\lambda_{3}=0$, and $\lambda_{2}=\lambda_{4} \rightarrow 0$, the density tends to the exponential density.
D. The density is U-shaped when $1 \leq \lambda_{3}, \lambda_{4} \leq 2$.
E. Glve necessary and sufficlent conditions for the distribution to be truncated on the left (right).
F. No positive moments exist when $\lambda_{3}<-1$ and $\lambda_{4}>1$, or vice versa.
G. The density $f(x)$ can be found by computing $1 / F^{-1 \prime}(u)$, where u is related to x via the equallty $x=F^{-1}(u)$. Thus, by letting u vary between 0 and 1 , we can compute pairs ($x, f(x)$), and thus plot the denslty.
H. Show that for $\lambda_{1}=0, \lambda_{2}=0.1975, \lambda_{3}=\lambda_{4}=0.1349$, the distribution functlon thus obtained differs from the normal distribution function by at most 0.002 .

For a general description of the family, and a more complete blbllography, see Ramberg, Tadikamalla, Dudewicz and Mykytka (1979).
10. The hyperbolic distribution. The hyperbolic distribution, introduced by Barndorff-Nlelsen $(1977,1978)$ has denslty

$$
f(x)=\frac{\zeta}{2 \alpha K_{1}(\varsigma)} e^{-\alpha \sqrt{1+x^{2}}+\beta x}
$$

Here $\alpha>|\beta|$ are the parameters, $\zeta=\sqrt{\alpha^{2}-\beta^{2}}$, and K_{1} is the modifled Bessel function of the third kind. For $\beta=0$, the density is symmetric. Show the following:
A. The distribution is log-concave.
B. If N is normally distributed, and X is GIG $\left(1, \alpha^{2}-\beta^{2}, 1\right)$, then $\beta X+N \sqrt{X}$ has the glven density.
C. The parameters for the optlmal non-universal rejection algorithm for log-concave densitles are explicitly computable. (Compute them, and obtaln an expression for the expected number of lterations. Hint: apply Theorem VII.2.6.)
11. The hyperbola distribution. The hyperbola distribution, introduced by Barndorff-Nielsen (1978) has density

$$
f(x)=\frac{1}{2 K_{0}(\varsigma) \sqrt{1+x^{2}}} e^{-\alpha \sqrt{1+x^{2}}+\beta x}
$$

Here $\alpha>|\beta|$ are the parameters, $\varsigma \sqrt{\alpha^{2}-\beta^{2}}$, and K_{0} is the modified Bessel function of the third kind. For $\beta=0$, the density is symmetric. Show the following:
A. The distribution is not log-concave.
B. If N is normally distributed, and X is $\operatorname{GIG}\left(0, \alpha^{2}-\beta^{2}, 1\right)$, then $\beta X+N \sqrt{X}$ has the given denslty.
12. Johnson's system. Every possible combination of skewness and kurtosis corresponds to one and only one distribution in the Pearson system. Other systems have been designed to have the same property too. For example, Johnson (1849) introduced a system defined by the densities of sultably transformed normal (μ, σ) random variables N : his system consists of the S_{L}, or lognormal, densitles (of e^{N}), of the S_{B} densitles (of $e^{N} /\left(1+e^{N}\right)$), and the S_{U} densitles (of $\sinh (N)=\frac{1}{2}\left(e_{*}^{N}-e^{-N}\right)$). This system has the advantage that fitting of parameters by the method of percentlles is simple. Also, random varlate generation is slmple. In Johnson (1954), a slmilar system \ln which N is replaced by a Laplace random varlate with center at μ and variance σ^{2} is described. Glve an algorithm for the generation of a Johnson system random varlable when the skewness and kurtosls are given (recall that after normalization to zero mean and unit varlance, the skewness is the third moment, and kurtosis is the fourth moment). Note that this forces you In effect to determine the different reglons in the skewness-kurtosls plane. You should be able to test very quickly which reglon you are in. However, your main problem is that the equations llnking μ and σ to the skewness and kurtosis are not easily solved. Provide fast-convergent algorithms for their numerical solution.

Chapter Ten
 DISCRETE UNIVARIATE DISTRIBUTIONS

1. INTRODUCTION.

1.1. Goals of this chapter.

We will provide the reader with some generators for the most popular famllies of discrete distributions, such as the geometrlc, binomial and Polsson distributions. These distributions are the fundamental bullding blocks in discrete probability. It is impossible to cover most distributions commonly used in practice. Indeed, there is a strong tendency to work more and more with so-called generalized distributions. These distributions are elther defined constructively by combling more elementary distrlbutlons, or analytlcally by providing a multiparameter expression for the probabllity vector. In the latter case, random varlate generation can be problematic since we cannot fall back on known distributlons. Users are sometlmes reluctant to design thelr own algorithms by mimicking the designs for similar distributlons. We therefore include a short section with unlversal algorlthms. These are in the splrlt of chapter VII: the algorlthms are very slmple albelt not extremely fast, and very importantly, thelr expected time performance is known. Armed with the unlversal algorlthms, the worked out examples of this chapter and the table methods of chapter VIII, the users should be able to handle most dlstributions to thelr satisfaction.

We assume throughout thls chapter that the discrete random varlables are all integer-valued.

1.2. Generating functions.

Let X be an lnteger-valued random varlable with probabillty vector

$$
p_{i}=P(X=i) \quad(i \text { integer })
$$

An important tool in the study of discrete distributions is the moment generating function

$$
m(s)=E\left(e^{s X}\right)=\sum_{i} p_{i} e^{s i}
$$

It is possible that $m(s)$ is not finite for some or all values $s>0$. That of course is the main difference with the characteristic function of X. If $m(s)$ is finite in some open interval containing the origin, then the coefflcient of $s^{n} / n!$ in the Taylor serles expansion of $m(s)$ is the n-th moment of X.

A related tool is the factorial moment generating function, or slmply generating function,

$$
k(s)=E\left(s^{X}\right)=\sum_{i} p_{i} s^{i}
$$

which is usually only employed for nonnegative random varlables. Note that the serles in the deffiltion of $k(s)$ is convergent for $|s| \leq 1$ and that $m(s)=k\left(e^{s}\right)$. Note also that provided that the n-th factorial moment (i.e., $E(X(X-1) \cdots(X-n+1)))$ of X is flnlte, we have

$$
k^{(n)}(1)=E(X(X-1) \cdots(X-n+1)) .
$$

In particular $E(X)=k^{\prime}(1)$ and $\operatorname{Var}(X)=k^{\prime \prime}(1)+k^{\prime}(1)-k^{\prime 2}(1)$. The generating function provides us often with the slmplest method for computing moments.

It is clear that if X_{1}, \ldots, X_{n} are independent random variables with moment generating functions m_{1}, \ldots, m_{n}, then $\sum X_{i}$ has moment generating function Πm_{i}. The same property remalns valld for the generating function.

Example 1.1. The binomial distribution.

A Bernoulli (p) random variable is a $\{0,1\}$-valued random variable taking the value 1 with probabllity p. Thus, it has generating function $1-p+p s$. A binomial (n, p) random variable is defined as the sum of n IId Bernoulll (p) random variables. Thus, it has generating function $(1-p+p s)^{n}$.

X.1.INTRODUCTION

Example 1.2. The Poisson distribution.

Often it is easy to compute generating functions by explicitly computing the convergent Inflnte serles $\sum s^{i} p_{i}$. Thls will be lllustrated for the Polsson and geometrlc distrlbutions. X is Poisson (λ) when $P(X=i)=\frac{\lambda^{i}}{i!} e^{-\lambda} \quad(i \geq 0)$. By summing $s^{i} p_{i}$, we see that the generating function is $e^{-\lambda+\lambda s} \cdot X$ is geometric (p) when $P(X=i)=(1-p)^{i} p \quad(i \geq 0)$. The corresponding generating function is $p /(1-(1-p) s)$.

If one is shown a generating function, then a careful analysis of its form can provide valuable clues as to how a random varlable with such generating function can be obtalned. For example, if the generating function is of the form

$$
g(k(s))
$$

where g, k are other generating functions, then it suffces to take $X_{1}+\cdots+X_{N}$ where the X_{i} 's are ild random varlables with generating function k, and N is an Independent random varlable with generating function g. This follows from

$$
\begin{aligned}
& g(k(s))=\sum_{n=0}^{\infty} P(N=n) k^{n}(s) \quad \text { (definition of } g \text {) } \\
& =\sum_{n=0}^{\infty} P(N=n) \sum_{i=0}^{\infty} P\left(X_{1}+\cdots+X_{n}=i\right) s^{i} \\
& =\sum_{i=0}^{\infty}\left(s^{i} \sum_{n=0}^{\infty} P(N=n) P\left(X_{1}+\cdots+X_{n}=i\right)\right) \\
& =\sum_{i=0}^{\infty} s^{i} P\left(X_{1}+\cdots+X_{N}=i\right) .
\end{aligned}
$$

Example 1.3.

If X_{1}, \ldots are Bernoulll (p) random varlables and N is Polsson (λ), then $X_{1}+\cdots+X_{N}$ has generating function

$$
e^{-\lambda+\lambda(1-p+p s)}=e^{-\lambda p+\lambda p s}
$$

1.e. the random sum is Polsson (λp) distributed (we already knew this - see chapter VI).

A compound Poisson distribution is a distribution with generating functlon of the form $e^{-\lambda+\lambda k(s)}$, where k is another generating function. By taking
$k(s)=s$, we see that the Polsson distribution Itself is a compound Polsson distribution. Another example is given below.

Example 1.4. The negative binomial distribution.

We define the negative binomial distribution with parameters (n, p) ($n \geq 1$ is integer, $p \in(0,1)$) as the distribution of the sum of n Ind geometrlc random varlables. Thus, it has generating function

$$
\left(\frac{p}{1-(1-p) s}\right)^{n}=e^{-\lambda+\lambda k(s)}
$$

where $\lambda=n \log \left(\frac{1}{p}\right)$ and

$$
\begin{aligned}
& k(s)=\frac{\log (1-(1-p) s)}{\log (p)} \\
& =-\frac{1}{\log (p)} \sum_{i=1}^{\infty} \frac{(1-p)^{i}}{i} s^{i}
\end{aligned}
$$

The function $k(s)$ is the generating function of the logarithmic series distribution with parameter $1-p$. Thus, we have just shown that the negative binomial distribution is a compound Polsson distribution, and that a negative binomlal random varlable can be generated by summing a Polsson (λ) number of lid logarithmic serles random varlables (Quenoullle, 1948).

Another common operation is the mixture operation. Assume that given Y, X has generating function $k_{Y}(s)$ where Y is a parameter, and that Y itself has some (not necessarily discrete) distribution. Then the unconditional generating function of X is $E\left(k_{Y}(s)\right)$. Let us mliustrate this once more on the negative binomial distribution.

Example 1.5. The negative binomial distribution.

Let Y be gamma ($n, \frac{1-p}{p}$), and let k_{Y} be the Poisson (Y) generating functlon. Then

$$
\begin{aligned}
& E\left(k_{Y}(s)\right)=\int_{0}^{\infty} \frac{y^{n} e^{-\frac{p y}{1-p}}}{\Gamma(n)\left(\frac{1-p}{p}\right)^{n}} e^{-y+y s} d y \\
& =\left(\frac{p}{1-(1-p) s}\right)^{n}
\end{aligned}
$$

We have discovered yet another property of the negative binomial distribution with parameters (n, p), l.e. it can be generated as a Polsson (Y) random variable where Y in turn is a gamma $\left(n, \frac{1-p}{p}\right)$ random varlable. This property will be of great use to us for large values of n, because unlformly fast gamma and Polsson generators are \ln abundant supply.

1.3. Factorials.

The evaluation of the probabilltles p_{i} frequently involves the computation of one or more factorlals. Because our maln worry is with the complexity of an algorithm, it is important to know just how we evaluate factorlals. Should we evaluate them explicitly, l.e. should $n!$ be computed as $\prod_{i=1}^{n} i$, or should we use a good approximation for $n!$ or $\log (n!)$? In the former case, we are faced with time complexity proportional to n, and with accumulated round-off errors. In the latter case, the time complexity is $O(1)$, but the price can be steep. Stirling's serles for example is a divergent asymptotic expansion. This means that for flxed n, taking more terms in the serles is bad, because the partlal sums in the serles actually diverge. The only good news is that it is an asymptotic expansion: for a flxed number of terms in the serles, the partlal sum thus obtalned is $\log (n!)+o(1)$ as $n \rightarrow \infty$. An algorlthm based upon Stlrling's serles can only be used for n larger than some threshold n_{0}, which in turn depends upon the desired error margin.

SInce our model does not allow Inaccurate computatlons, we should elther evaluate factorlals as products, or use squeeze steps based upon Stirling's serles to avold the product most of the time, or avold the product altogether by using a convergent serres. We refer to sectlons X. 3 and X. 4 for worked out examples. At issue here is the tightness of the squeeze steps: the bounds should be so tlght that the contribution of the evaluation of products in factorials to the total expected complexity is $O(1)$ or $o(1)$. It is therefore helpful to recall a few facts about approximatlons of factorlals (Whlttaker and Watson, 1927, chapter 12). We will state everything in terms of the gamma function since $n!=\Gamma(n+1)$.

Lemma 1.1. (Stirling's series, Whittaker and Watson, 1927.)
For $x>0$, the value of $\log (\Gamma(x))-\left(x-\frac{1}{2}\right) \log (x)+x-\frac{1}{2} \log (2 \pi)$ always lies between the n-th and $n+1$-st partial sums of the serles

$$
\sum_{i=1}^{\infty} \frac{(-1)^{i-1} B_{i}}{2 i(2 i-1) x^{2 i-1}}
$$

where B_{i} is the i-th Bernoull number deflned by

$$
B_{n}=4 n \int_{0}^{\infty} \frac{t^{2 n-1}}{e^{2 \pi t}-1} d t
$$

In partıcular, $B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}, B_{3}=\frac{1}{42}, B_{4}=\frac{1}{30}, B_{5}=\frac{5}{86}, B_{6}=\frac{691}{2730}, B_{7}=\frac{7}{6}$.
We have as special cases the inequallities

$$
\begin{aligned}
& \left(x+\frac{1}{2}\right) \log (x+1)-(x+1)+\frac{1}{2} \log (2 \pi) \leq \log (\Gamma(x+1)) \\
& \leq\left(x+\frac{1}{2}\right) \log (x+1)-(x+1)+\frac{1}{2} \log (2 \pi)+\frac{1}{12(x+1)} .
\end{aligned}
$$

Stirling's serles with the Whittaker-Watson lower and upper bounds of Lemma 1.1 is often sufficlent in practice. As we have polnted out earller, we will stlll have to evaluate the factorial expllictly no matter how many terms are considered in the serles, and in fact, things could even get worse if more terms are consldered. Luckily, there is a convergent series, attributed by Whittaker and Watson to Binet.

Lemma 1.2. (Binet's series for the log-gamma function.)

For $x>0$,

$$
\log (\Gamma(x))=\left(x-\frac{1}{2}\right) \log (x)-x+\frac{1}{2} \log (2 \pi)+R(x)
$$

where

$$
R(x)=\frac{1}{2}\left(\frac{c_{1}}{(x+1)}+\frac{c_{2}}{2(x+1)(x+2)}+\frac{c_{3}}{3(x+1)(x+2)(x+3)}+\cdots\right),
$$

In which

$$
c_{n}=\int_{0}^{1}(u+1)(u+2) \cdots(u+n-1)(2 u-1) u d u
$$

In particular, $c_{1}=\frac{1}{8}, c_{2}=\frac{1}{3}, c_{3}=\frac{59}{60}$, and $c_{4}=\frac{227}{60}$. All terms in $R(x)$ are positive; thus, the value of $\log (\Gamma(x))$ is approached monotonically from below as we consider more terms in $R(x)$. If we consider the first n terms of $R(x)$, then the error is at most

$$
C \frac{x+1}{x}\left(\frac{x+1}{x+n+1}\right)^{x},
$$

where $C=\frac{5}{48} \sqrt{4 \pi} e^{1 / 6}$. Another upper bound on the truncation error is provided by

$$
C\left(1+a+\frac{1}{x+1}\right)\left(\frac{a}{1+a}+\frac{1}{x+1}\right)^{n+1}+C \frac{x+1}{x}\left(\frac{1}{1+a}\right)^{x} .
$$

where $a \in(0,1]$ is arbitrary (when x is large compared to n, then the value $\frac{n+1}{x} \log \left(\frac{x}{n+1}\right)$ Is suggested).

Proof of Lemma 1.2.

Blnet's convergent serles is given for example in Whittaker and Watson (1927, p. 253). We need only establlsh upper bounds for the tall sum in $R(x)$ beginning with the $n+1$-st term. The integrand $\ln c_{i}$ is positive for $u>\frac{1}{2}$. Thus, the i-th term is at most

$$
\begin{aligned}
& \frac{1 / 2}{2 i(x+1) \cdots(x+i)}=\frac{5(i-1)!}{48(1+x) \cdots(i+x)} \\
& =\frac{5 \Gamma(i) \Gamma(x+1)}{48 \Gamma(i+x+1)} \\
& \leq \frac{5}{48} \sqrt{\frac{2 \pi(x+i+1)}{i(x+1)}} e^{\frac{1}{12 i}+\frac{1}{12(x+1)}\left(\frac{i}{x+i+1}\right)^{i}\left(\frac{x+1}{x+i+1}\right)^{x+1}}
\end{aligned}
$$

(by Lemma 1.1)

$$
\leq C\left(\frac{i}{x+i+1}\right)^{i}\left(\frac{x+1}{x+i+1}\right)^{x+1}
$$

where $C=\frac{5}{48} \sqrt{4 \pi} e^{1 / 6}$ (use the facts that $x>0, i \geq 1$). We obtain a first bound for the sum of all tall terms starting with $i=n+1$ as follows:

$$
\begin{aligned}
& \sum_{i=n+1}^{\infty} C\left(\frac{i}{x+i+1}\right)^{i}\left(\frac{x+1}{x+i+1}\right)^{x+1} \leq \sum_{i=n+1}^{\infty} C\left(\frac{x+1}{x+i+1}\right)^{x+1} \\
& \leq \int_{n}^{\infty} C\left(\frac{x+1}{x+t+1}\right)^{x+1} d t \\
& =C \frac{x+1}{x}\left(\frac{x+1}{x+n+1}\right)^{x}
\end{aligned}
$$

Another bound is obtained by choosing a constant $a \in(0,1)$, and splitting the tall sum into a sum from $i=n+1$ to $i=m=\lceil a(x+1)\rceil$, and a right-infinite sum starting at $i=m+1$. The first sum does not exceed

$$
\begin{aligned}
& \sum_{i=n+1}^{m} C\left(\frac{i}{x+i+1}\right)^{i} \leq \sum_{i=n+1}^{\infty} C\left(\frac{m}{x+m+1}\right)^{i}=C \frac{x+m+1}{x+1}\left(\frac{m}{x+m+1}\right)^{n+1} \\
& \leq C\left(1+a+\frac{1}{x+1}\right)\left(\frac{a}{1+a}+\frac{1}{x+1}\right)^{n+1}
\end{aligned}
$$

Adding the two sums gives us the following upper bound for the remainder of the serles starting with the $n+1$-st term:

$$
C\left(1+a+\frac{1}{x+1}\right)\left(\frac{a}{1+a}+\frac{1}{x+1}\right)^{n+1}+C \frac{x+1}{x}\left(\frac{1}{1+a}\right)^{x}
$$

The error term given in Lemma 1.2 can be made to tend to 0 merely by keeping n fixed and letting x tend to ∞. Thus, Binet's serles is also an asymptotlc expansion, just as Stirling's serles. It can be used to bypass the gamma function (or factorlals) altogether if one needs to decide whether $\log (\Gamma(x)) \leq t$ for some real number t. By taking n terms in Binet's serles, we have an interval $\left[a_{n}, b_{n}\right]$ to which we know $\log (\Gamma(x))$ must belong. Since $b_{n}-a_{n} \rightarrow 0$ as $n \rightarrow \infty$, we know that when $t \neq \log (\Gamma(x))$, from a given n onwards, t will fall outside the interval, and the approprlate decision can be made. The convergence of the serles is thus essentlal to insure that this method halts. In our applications, t is usually a unform or exponentlal random varlable, so that equallty $t=\log (\Gamma(x))$ occurs with probability 0 . The complexity analysis typically bolls down to computing the expected number of terms needed in Binet's serles for fixed x. A quantlty useful in thls respect is

$$
\sum_{n=0}^{\infty} n\left(b_{n}-a_{n}\right) .
$$

X.1.INTRODUCTION

Based upon the error bounds of Lemma 1.2, it can be shown that thls sum is o (1) as $x \rightarrow \infty$, and that the sum is unlformly bounded over all $x \geq 1$ (see exerclse 1.2). As we will see later, this implles that for many rejection algorlthms, the expected time spent on the decision is uniformly bounded in x. Thus, it is almost as if we can compute the gamma function in constant tlme, Just as the exponential and logarithmic functlons. In fact, there is nothing that keeps us from adding the gamma function to our list of constant time functlons, but unless explicitly mentloned, we will not do so. Another collection of inequallties useful in dealing with factortals via Stirling's serles is given in Lemma 1.3:

Lemma 1.3. (Knopp, 1964, pp. 543,548)

For integer n, we have

$$
\log (n!)=\left(n+\frac{1}{2}\right) \log (n)-n+\log (\sqrt{2 \pi})+\sum_{j=1}^{k} \frac{(-1)^{j-1} B_{j} n^{-(2 j-1)}}{(2 j-1)(2 j)}+R_{k, n}
$$

where B_{1}, B_{2}, are the Bernoulll numbers and

$$
\left|R_{k, n}\right| \leq \frac{4(2 k-1)!}{2 \pi(2 \pi n)^{2 k}}
$$

is a residual factor.

1.4. A universal rejection method.

Even when the probabilltes p_{i} are explicitly given, it is often hard to come up with an efficient generator. Quantltles such as the mode, the mean and the varlance are known, but a useful dominating curve for use in a rejection algorithm is generally not known. The purpose of this section is to go through the mechanics of derlving one acceptable rejection algorithm, which will be useful for a huge class of distributlons, the class of all unlmodal distributions on the integers for which three quantitles are known:

1. m, the location of the mode. If the mode is not unlque, i.e. several adjacent Integers are all modes, m is allowed to be any real number between the leftmost and rightmost modes.
2. M, an upper bound for the value of p_{i} at a mode i. If possible, M should be set equal to this value.
3. s^{2}, an upper bound for the second moment about m. Note that if the varlance σ^{2} and mean μ are known, then we can take $s^{2}=\sigma^{2}+(m-\mu)^{2}$.
The universal algorithm derived below is based upon the following inequalities:

Theorem 1.1.

For all unimodal distributions on the integers,

$$
p_{i} \leq \min \left(M, \frac{3 s^{2}}{|i-m|^{3}}\right) \quad(i \text { integer })
$$

In addition, for all Integer i and all $x \in\left[i-\frac{1}{2}, i+\frac{1}{2}\right]$,

$$
p_{i} \leq g(x)=\min \left(M, \frac{3 s^{2}}{\left(|x-m|-\frac{1}{2}\right)_{+}^{3}}\right)
$$

Furthermore,

$$
\int g=M+3\left(3 s^{2}\right)^{\frac{1}{3}} M^{\frac{2}{3}}
$$

Proof of Theorem 1.1.

Note that for $i>m$,

$$
\begin{aligned}
& s^{2}=\sum_{j=-\infty}^{\infty}(j-m)^{2} p_{j} \geq \sum_{i \geq j \geq m}(j-m)^{2} p_{i} \\
& \geq p_{i} \int_{m}(u-m)^{2} d u=p_{i} \frac{(i-m)^{3}}{3} .
\end{aligned}
$$

This establishes the first inequality. The bounding argument for g uses a standard tool for making the transition from discrete probabllities to densitles: we consider a histogram-shaped density on the real line with height p_{i} on $\left[i-\frac{1}{2}, i+\frac{1}{2}\right.$). This density is bounded by $g(x)$ on the interval in question. Note the adjustment by a translation term of $\frac{1}{2}$ when compared with the first discrete bound. Thls adjustment is needed to insure that g dominates p_{i} over the entire Interval.

Finally, the area under g is easy to compute. Define $\rho=\left(3 s^{2}\right)^{1 / 3} M^{2 / 3}$, and observe that the M term in g is the minimum term on $\left[m-\frac{1}{2}-\frac{\rho}{M}, m+\frac{1}{2}+\frac{\rho}{M}\right]$. The area under this part is thus $M+2 \rho$. Integrating the two talls of g gives the value ρ.

To understand our algorithm, it helps to go back to the proof of Theorem 1.1. We have turned the problem into a continuous one by replacing the probablllty vector p_{i} with a histogram-shaped denslty of helght p_{i} on $\left[i-\frac{1}{2}, i+\frac{1}{2}\right)$. Slnce
this histogram is dominated by the function g given in the algorithm, it is clear how to proceed. Note thät if Y is a random varlable with the sald histogramshaped density, then round (Y) is discrete with probabllity vector p_{i}.

Universal rejection algorithm for unimodal distributions

[SET-UP]
Compute $\rho \leftarrow\left(3 s^{2}\right)^{\frac{1}{3}} M^{\frac{2}{3}}$.
[GENERATOR]
REPEAT
Generate U, W uniformly on $[0,1]$ and V uniformly on $[-1,1]$.
IF $U<\frac{\rho}{3 \rho+M}$
THEN

$$
\begin{aligned}
& Y \leftarrow m+\left(\frac{1}{2}+\frac{\rho}{M \sqrt{|V|}}\right) \operatorname{sign}(V) \\
& X \leftarrow \operatorname{round}(Y) \\
& T \leftarrow W M|V|^{\frac{3}{2}}
\end{aligned}
$$

ELSE

$$
Y \hookleftarrow m+\left(\frac{1}{2}+\frac{\rho}{M}\right) V
$$

$X \leftarrow \operatorname{round}(Y)$
$T \leftarrow W M$
UNTIL $T \leq p_{X}$
RETURN X

In the universal algorthm, no care was taken to reuse unused portions of unlform random varlates. This is done malnly to show where independent unlform random varlates are precisely needed. The expected number of Iterations in the algorithm is precisely $M+3 \rho$. Thus, the algorithm is unlformly fast over a class Q of unimodal distributions with unlformly bounded ($1+s$) M if p_{i} can be evaluated in time independent of i and the distribution.

Example 1.6.

For the binomial distribution with parameters n, p, it is known (see section N.4) that the mean μ is $n p$, and that the varlance σ^{2} is $n p(1-p)$. Also, for fixed $p, M \sim 1 /(\sqrt{2 \pi} \sigma)$, and for all $n, p, M \leq 2 /(\sqrt{2 \pi} \sigma)$. A mode is at $m=\lfloor(n+1) p\rfloor$. stace $|\mu-m| \leq \min (1, n p)$ (exercise 1.4), we can take $s^{2}=\sigma^{2}+\min (1, n p)$. We can verlfy that

$$
\rho^{3} \leq \frac{6}{\pi}\left(1+\frac{\min (1, n p)}{n p(1-p)}\right),
$$

and this is uniformly bounded over $n \geq 1,0 \leq p \leq \frac{1}{2}$. This implles that we can generate blnomial random varlates unlformly fast provided that the binomlal probabilties can be evaluated in constant time. In section X.4, we will see that even thls is not necessary, as long as the factorlals are taken care of approprlately. We should note that when p remains flxed and $n \rightarrow \infty, \rho \sim(3 /(2 \pi))^{1 / 3}$. The expected number of iterations $\sim 3 \rho$, which is about 2.4. Even though this is far from optimal, we should recall that besides the unimodality, virtually no propertles of the blnomial distribution were used in deriving the bounds.

There are important sub-famllies of distrlbutions for which the algorithm given here is uniformly fast. Consider for example all distributions that are sums of ild integer-valued random varlables with maximal probability p and finite varlance σ^{2}. Then the sum of n such random varlables has varlance $n \sigma^{2}$. Also, $M \leq \frac{1}{\sqrt{n(1-p)}}$ (Rogozin (1861); see Petrov (1975, p. 56)). Thus, if the n-sum is unimodal, Theorem 1.1 is applicable. The rejection constant is

$$
3 \rho+M \leq 3\left(\frac{3 \sigma^{2}}{1-p}\right)^{1 / 3}+1
$$

unlformly over all n. Thus, we can handle unimodal sums of ild random varlables in expected time bounded by a constant not depending upon n. This assumes that the probabilities can all be evaluated in constant time, an assumptlon which except in the simplest cases is difficult to support. Examples of such familles are the binomial family for flxed p, and the Polsson family.

Let us close this section by noting that the rejection constant can be reduced in special cases, such as for monotone distributions, or symmetric unimodal distributions.

1.5. Exercises.

1. The discrete distributions considered in the text are all lattice distributions. In these distributions, the intervals between the atoms of the distribution are all integral multiples of one quantity, typically 1. Non-lattice distributions can be considerably more difficult to handle. For example, there are discrete distrlbutions whose atoms form a dense set on the positive real line. One such distribution is defined by

$$
P\left(X=\frac{i}{j}\right)=\frac{(e-1)^{2}}{\left(e^{i+j}-1\right)^{2}},
$$

where i and j are relatively prlme positive integers (Johnson and Kotz, 1989, p. 31). The atoms in thls case are the rationals. Discuss how you could
efflclently generate a random varlate with this distribution.
2. Using Lemma 1.2, show that if ϵ_{n} is a bound on the error committed when using Binet's series for $\log (\Gamma(x))$ with $n \geq 0$ terms, then

$$
\sup _{x \geq 1} \sum_{n=0}^{\infty} n \epsilon_{n}<\infty
$$

and

$$
\lim _{x \rightarrow \infty} \sum_{n=0}^{\infty} n \epsilon_{n}=0
$$

3. Assume that all p_{i} 's are at most equal to M, and that the variance is at most equal to σ^{2}. Derive useful bounds for a unlversal refection algorlthm whlch are slmilar to those given In Theorem 1.1. Show that there exists no dominating curve for thls class which has area smaller than a constant times $\sigma \sqrt{M}$, and show that your dominating curve is therefore close to optimal. Give the detalls of the rejection algorithm. When applled to the binomial distribution with parameters n, p varying in such a way that $n p \rightarrow \infty$, show that the expected number of Iterations grows as a constant times $(n p)^{\frac{1}{4}}$ and conclude that for this class the universal algorlthm is not unlformly fast.
4. Prove that for the binomlal distribution with parameters n, p, the mean μ and the mode $m=\lfloor(n+1) p\rfloor$ differ by at most $\min (1, n p)$.
5. Replace the Inequalitles of Theorem 1.1 by new ones when Instead of s^{2}, we are glven the r-th absolute moment about the mean ($r \geq 1$), and value of the mean. The unlmodallty is stlll understood, and values for m, M are as in the Theorem.
6. How can the rejection constant ($\int g$) in Theorem 1.1 be reduced for monotone distrlbutions and symmetric unimodal distributions?
7. The discrete Student's t distribution. Ord (1988) Introduced a discrete distribution with parameters $m \geq 0$ (m is Integer) and $a \in[0,1], b \neq 0$:

$$
p_{i}=K \prod_{j=0}^{m} \frac{1}{(j+a+i)^{2}+b^{2}} \quad(-\infty<i<\infty)
$$

Here K is a normalization constant. This distribution on the integers has the remarkable property that all the odd moments are zero, yet it is only symmetric for $a=0, a=\frac{1}{2}$ and $a=1$. Develop a uniformly fast generator for the case $m=0$.
8. Arfwedson's distribution. Arfwedson (1951) introduced the distribution deflned by

$$
p_{i}=\binom{k}{i} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\left(\frac{i-j}{k}\right)^{n} \quad(i \geq 0)
$$

where k, n are positive Integers. See also Johnson and Kotz (1989, p. 251). Compute the mean and varlance, and derlve an inequally consisting of a flat center plece and two decreasing polynomlal or exponentlal talls having the property that the sum of the upper bound expressions over all i is unfformly bounded over k, n.
9. Knopp (1984, p. 553) has shown that

$$
\sum_{n=1}^{\infty} \frac{1}{c\left(4 n^{2} \pi^{2}+t^{2}\right)}=1
$$

where $c=\frac{1}{2 t}\left(\frac{1}{e^{t}-1}-\frac{1}{t}+\frac{1}{2}\right)$ and $t>0$ is a parameter. Give a unlformly fast generator for the family of discrete probabllity vectors deflned by this sum.

2. THE GEOMETRIC DISTRIBUTION.

2.1. Definition and genesis.

X is geometrically distributed with parameter $p \in(0,1)$ when

$$
P(X=i)=p(1-p)^{i-1} \quad(i \geq 1)
$$

The geometric distribution is important in statistics and probability because it is the distrlbution of the waiting time untll success in a sequence of Bernoulll trials. In other words, if U_{1}, U_{2}, \ldots are lid unfform $[0,1]$ random variables, and X is the index of the first U_{i} for which $U_{i} \leq p$, then X is geometrlc with parameter p. This property can of course be used to generate X, but to do so has some serlous drawbacks because the algorithm is not unlformly fast over all values of $p:$ just consider that the number of uniform random varlates needed is itself geometric (p), and the expected number of unlform random varlates required is

$$
E(X)=\frac{1}{p}
$$

For $p \geq \frac{1}{3}$, the method is probably difflcult to beat in any programming environment.

X.2.THE GEOMETRIC DISTRIBUTION

2.2. Generators.

The experimental method described in the prevlous section is summarized below:

Experimental method for geometric random variates

$X \leftarrow 0$
REPEAT
Generate a uniform $[0,1]$ random variate U.

$$
X \leftarrow X+1
$$

UNTIL $U \leq p$
RETURN X

This method requires on the average $\frac{1}{p}$ uniform random varlates and $\frac{1}{p}$ comparlsons and additions. The number of unlform random varlates can be reduced to 1 If we use the inversion method (sequentlal version):

Inversion by sequential search for geometric random variates

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 1$
Sum↔p
Prod↔p
WHLLE $U>$ Sum DO
Prod \leftarrow Prod $(1-p)$
Sum+Sum+Prod
$X \leftarrow X+1$
RETURN X

Unfortunately, the expected number of additions is now $\frac{2}{p}-2$, the expected number of comparisons remains $\frac{1}{p}$, and the expected number of products is $\frac{1}{p}-1$. Inversion in constant time is possible by truncation of an exponential random varlate. What we use here is the property that

$$
F(i)=P(X \leq i)=1-\sum_{j>i} p(1-p)^{j-1}=1-(1-p)^{i}
$$

Thus, if U is uniform $[0,1]$ and E is exponentlal, it is clear that

$$
\left\lceil\frac{\log (U)}{\log (1-p)}\right\rceil
$$

and

$$
\left\lceil\frac{-E}{\log (1-p)}\right\rceil
$$

are both geometric (p).
If many geometric random varlates are needed for one flxed value of p, extra speed can be found by ellminating the need for an exponentlal random varlate and for truncation. Thls can be done by splltting the distrlbution into two parts, a tall carrying small probability, and a maln body. For the main body, a fast table method is used. For the tall, we can use the memoryless property of the geometric distribution: glven that $X>i, X-i$ is agaln geometric (p) distributed. This property follows directly from the genesis of the distribution.

2.3. Exercises.

1. The quantity $\log (1-p)$ is needed in the bounded time inversion method. For small values of p, there is an accuracy problem because 1-p is computed before the logarthm. One can create one's own new function by basing an approximation on the serles

$$
-\left(p+\frac{1}{2} p^{2}+\frac{1}{3} p^{3}+\cdots\right) .
$$

Show that the following more quickly convergent series can also be used:

$$
\frac{2}{r}\left(1+\frac{1}{3} r^{-2}+\frac{1}{5} r^{-4}+\cdots\right),
$$

where $r=1-\frac{2}{p}$.
2. Compute the varlance of a geometric (p) random varlable.

3. THE POISSON DISTRIBUTION.

3.1. Basic properties.

X is sald to be Poisson (λ) distributed when

$$
P(X=i)=\frac{\lambda^{i}}{i!} e^{-\lambda} \quad(i \geq 0)
$$

$\lambda>0$ is the parameter of the distribution. We do not have to convince the readers that the Polsson distrlbution plays a key role in probabllity and statistics. It is thus rather important that a simple uniformly fast Polsson generator be avallable In any nontrivial statistical software package. Before we tackle the development of such generators, we will brlefly revlew some properties of the Polsson distrlbutlon. The Polsson probabllities are unimodal with one mode or two adjacent modes. There is always a mode at $\lfloor\lambda\rfloor$. The tall probabillties drop off faster than the tall of the exponential density, but not as fast as the tall of the normal density. In the design of algorithms, it is also useful to know that as $\lambda \rightarrow \infty$, the random varlable $(X-\lambda) / \sqrt{\lambda}$ tends to a normal random varlable.

Lemma 3.1.

When X is Polsson (λ), then X has characteristic function

$$
\phi(t)=E\left(e^{i t X}\right)=e^{\lambda\left(e^{t}-1\right)} .
$$

It has moment generating function $E\left(e^{t X}\right)=\exp \left(\lambda\left(e^{t}-1\right)\right.$), and factorial moment generating function $E\left(t^{X}\right)=e^{\lambda(t-1)}$. Thus,

$$
E(X)=\operatorname{Var}(X)=\lambda
$$

Also, if X, Y are independent Polsson (λ) and Polsson (μ) random varlables, then $X+Y$ is Polsson $(\lambda+\mu)$.

Proof of Lemma 3.1.

Note that

$$
E\left(e^{i t X}\right)=\sum_{j=0}^{\infty} e^{-\lambda} \frac{\left(\lambda e^{i t}\right)^{j}}{j!}=e^{-\lambda+\lambda e^{t}}
$$

The statements about the moment generating function and factorlal moment generating functlon follow directly from this. Also, if the factorlal moment generatIng function is called k, then $k^{\prime}(1)=E(X)=\lambda$ and $k^{\prime \prime}(1)=E(X(X-1))=\lambda^{2}$. From this we deduce that $\operatorname{Var}(X)=\lambda$. The statement about the sum of two Independent Polsson random varlables follows directly from the form of the characteristlc function.

3.2. Overview of generators.

The generators proposed over the years can be classlfled into several groups:

1. Generators based upon the connection with homogeneous Poisson processes (Knuth, 1080). These generators are very simple, but run in expected time proportional to λ.
2. Inversion methods. Inversion by sequential search started at 0 runs in expected time proportlonal to λ (see below). If the sequentlal search is started at the mode, then the expected time is $O(\sqrt{\lambda})$ (Fishman, 1976). Inversion can always be sped up by storing tables of constants (Atkinson, 1979).
3. Generators based upon recursive propertles of the distrlbution (Ahrens and Dleter, 1974). One such generator is known to take expected time proportlonal to $\log (\lambda)$.
4. Rejection methods. Rejection methods seem to lead to the simplest uniformly fast algorlthms (Atkinson, 1979; Ahrens and Dleter, 1980; Devroye, 1981; Schmelser and Kachltvichyanukul, 1981).
5. The acceptance-complement method with the normal distribution as starting distribution. See Ahrens and Dleter (1982). This approach leads to efficient uniformly fast algorlthms, but the computer programs are rather long.
We are undoubtedly omitting a large fraction of the literature on Poisson random varlate generation. The early papers on the subject often proposed some approximate method for generating Polsson random varlates which was typlcally based upon the closeness of the Polsson distribution to the normal distribution for large values of λ. It is pointless to give an exhaustive historlcal survey. The algorithms that really matter are those that are elther simple or fast or both. The definition of "fast" may or may not include the set-up time. Also, slnce our comparisons cannot be based upon actual implementations, it is important to distinguish between computational models. In particular, the avallabllity of the factorial in constant time is a cruclal factor.

3.3. Simple generators.

The connection between the Polsson distrlbution and exponentlal interarrival times in a homogeneous point process is the following.

Lemma 3.2.

If E_{1}, E_{2}, \ldots are ild exponential random varlables, and X is the smallest integer such that

$$
\sum_{i=1}^{X+1} E_{i}>\lambda
$$

then X is Polsson (λ).

Proof of Lemma 3.2.

Let f_{k} be the gamma (k) density. Then,

$$
P(X \leq k)=P\left(\sum_{i=1}^{k+1} E_{i}>\lambda\right)=\int_{\lambda}^{\infty} f_{k+1}(y) d y
$$

Thus, by partial integration,

$$
\begin{aligned}
& P(X=k)=P(X \leq k)-P(X \leq k-1) \\
& =\int_{\lambda}^{\infty}\left(f_{k+1}(y)-f_{k}(y)\right) d y \\
& =\int_{\lambda}^{\infty}(y-k) \frac{y^{k-1}}{k!} e^{-y} d y \\
& =\frac{1}{k!} \int_{\lambda}^{\infty} d\left(-y^{k} e^{-y}\right) \\
& =e^{-\lambda} \frac{\lambda^{k}}{k!}
\end{aligned}
$$

The algorlthm based upon this property Is:

Poisson generator based upon exponential inter-arrival times
$X \leftarrow 0$
Sum $\leftarrow 0$
WHILE True DO
Generate an exponential random variate E.
Sum \leftarrow Sum $+E$
IF Sum<
THEN $X \leftarrow X+1$
ELSE RETURN X

Using the fact that a uniform random variable is distributed as e^{-E}, it is easy to see that Lemma 3.2 is equivalent to Lemma 3.3, and that the algorithm shown above is equivalent to the algorithm following Lemma 3.3:

Lemma 3.3.

Let U_{1}, U_{2}, \ldots be Ild uniform $[0,1]$ random varlables, and let X be the smallest integer such that

$$
\prod_{i=1}^{X+1} U_{i}<e^{-\lambda} .
$$

Then X is Poisson (λ).

Poisson generator based upon the multiplication of uniform random variates
$X \leftarrow 0$
Prod-1
WHILE True DO
Generate a uniform $[0,1]$ random variate U.
Prod+Prod U
IF Prod $>e^{-\lambda}$ (the constant should be computed only once)
THEN $X \leftarrow X+1$
ELSE RETURN X

3.4. Rejection methods.

To see how easy it is to Improve over the algorithms of the previous section, it helps to get an Idea of how the probabllitles vary with λ. First of all, the peak at $\lfloor\lambda\rfloor$ varles as $1 / \sqrt{\lambda}$:

Lemma 3.4.

The value of $P(X=\lfloor\lambda\rfloor)$ does not exceed

$$
\frac{1}{\sqrt{2 \pi\lfloor\lambda]}},
$$

and $\sim 1 / \sqrt{2 \pi \lambda}$ as $\lambda \rightarrow \infty$.

Proof of Lemma 3.4.

We apply the inequallty $i!\geq i^{i} e^{-i} \sqrt{2 \pi i}$, valld for all integer $i \geq 1$. Thus,

$$
\begin{aligned}
& e^{-\lambda} \frac{\lambda\lfloor\lambda\rfloor}{\lambda!} \leq e^{-(\lambda-\lfloor\lambda\rfloor)}\left(\frac{\lambda}{\lfloor\lambda]}\right)^{\lfloor\lambda\rfloor} \frac{1}{\sqrt{2 \pi[\lambda]}} \\
& \leq \frac{1}{\sqrt{2 \pi\lfloor\lambda]}}
\end{aligned}
$$

Furthermore, by Stirling's approximation, it is easy to establish the asymptotic result as well.

We also have the following inequally by monotoniclty:

Lemma 3.5.

$$
P(X=\lfloor\lambda\rfloor \pm i) \leq \frac{2(\sqrt{\lambda}+1)}{i(i+1)} \quad(i>0)
$$

Proof of Lemma 3.5.

We will argue for the positive side only. Writing p_{i} for $P(X=i)$, we have by unimodallty,

$$
\begin{aligned}
& \sqrt{\lambda}+1 \geq E(|X-\lambda|)+1 \\
& \geq E(|X-\lfloor\lambda\rfloor|) \geq \sum_{j \geq\lfloor\lambda\rfloor}|j-\lfloor\lambda\rfloor| p_{j} \\
& \geq p_{i+\lfloor\lambda\rfloor} \sum_{j=0}^{i} j
\end{aligned}
$$

The expected number of lterations is the same for both algorlthms. However, an addition and an exponentlal random varlate are replaced by a multipllcation and a unlform random varlate. Thls replacement usually works in favor of the multlpllcative method. The expected complexity of both algorlthms grows llnearly with λ.

Another simple algorithm requiring only one uniform random varlate is the inversion algorithm with sequentlal search. In vlew of the recurrence relation

$$
\frac{P(X=i+1)}{P(X=i)}=\frac{\lambda}{i+1} \quad(i \geq 0)
$$

this gives

Poisson generator based upon the inversion by sequential search

$$
\begin{aligned}
& X \leftarrow 0 \\
& \text { Sum } \leftarrow e^{-\lambda}, \text { Prod } \leftarrow e^{-\lambda} \\
& \text { Generate a uniform }[0,1] \text { random variate } U . \\
& \text { WHILE } U>\text { Sum DO } \\
& \quad X \leftarrow X+1 \\
& \quad \text { Prod } \leftarrow \frac{\lambda}{X} \text { Prod } \\
& \quad \text { Sum } \leftarrow \text { Sum }+ \text { Prod } \\
& \text { RETURN } X
\end{aligned}
$$

This algorlthm too requires expected tlme proportional to λ as $\lambda \rightarrow \infty$. For large λ, round-off errors prollferate, which provides us with another reason for avolding large values of λ. Speed-ups of the inversion algorithm are possible if sequential search is started near the mode. For example, we could compare U first with $b=P(X \leq\lfloor\lambda\rfloor)$, and then search sequentlally upwards or downwards. If b is avallable in time $O(1)$, then the algorithm takes expected time $O(\sqrt{\lambda})$ because $E(|X-\lfloor\lambda\rfloor|)=O(\sqrt{\lambda})$. See Flshman (1976). If b has to be computed first, thls method is hardly competitive. Atkinson (1978) describes varlous ways in which the Inversion can be helped by the judlclous use of tables. For small values of λ, there is no problem. He then custom bullds fast table-based generators for all λ 's that are powers of 2 , starting with 2 and ending with 128 . For a given value of λ, a sum of independent Polsson random variates is needed with parameters that are elther powers of 2 or very small. The speed-up comes at a tremendous cost in terms of space and programming effort.

$$
=\frac{i(i+1)}{2} p_{i+\lfloor\lambda\rfloor} .
$$

If we take the minimum of the constant upper bound of Lemma 3.4 and the quadratically decreasing upper bound of Lemma 3.5 , it is not difflcult to see that the cross-over point is near $\lambda \pm c \sqrt{\lambda}$ where $c=(8 \pi)^{1 / 4}$. The area under the bounding sequence of numbers is O (1) as $\lambda \rightarrow \infty$. It is unlformly bounded over all values $\lambda \geq 1$. We do not imply that one should design a generator based upon this dominating curve. The point is that it is very easy to construct good bounding sequences. In fact, we already knew from Theorem 1.1 that the universal rejectlon algorithm of section 1.4 is unlformly fast. The dominating curves of Theorem 1.1 and Lemmas 3.4 and 3.5 are similar, both having a flat center part. Atkinson (1979) proposes a logistic majorizing curve, and Ahrens and Dleter (1980) propose a double exponentlal majorizing curve. Schmeiser and Kachitvlchyanukul (1981) have a rejection method with a trlangular hat and two exponentlal talls. We do not descrlbe these methods here. Rather, we will describe an algorlthm of Devroye (1981) which is based upon a normal-exponentlal dominating curve. Thls has the advantage that the rejection constant tends to 1 as $\lambda \rightarrow \infty$. In addition, we will Illustrate how the factorial can be avolded most of the tlme by the judicious use of squeeze steps. Even if factorlals are computed in llnear tlme, the overall expected time per random varlate remalns unlformly bounded over λ. For large values of λ, we will return a truncated normal random varlate with large probabllity.

Some Inequalltles are needed for the development of tight Inequalltles for the Poisson probabilities. These are collected in the next Lemma:

Lemma 3.6.
Assume that $u \geq 0$ and all the arguments of the logarithms are positive in the llst of inequalltles shown below. We have:
(1) $\log (1+u) \leq u$
(11) $\log (1+u) \leq u-\frac{1}{2} u^{2}+\frac{1}{3} u^{3}$
(III) $\log (1+u) \geq u-\frac{1}{2} u^{2}$
(iv) $\log (1+u) \geq \frac{2 u}{2+u}$
(v) $\log (1-u) \leq-\sum_{i=1}^{k} \frac{1}{i} u^{i} \quad(k \geq 1)$
(v1) $\log (1-u) \geq-\sum_{i=1}^{k-1} \frac{1}{i} u^{i}-\frac{u^{k}}{k(1-u)} \quad(k \geq 2)$

- Most of these Inequallites are well-known. The other ones can be obtalned without difficulty from Taylor's theorem (Whittaker and Watson, 1927, is a good source of information). We assume that $\lambda \geq 1$. Since we will use rejection algorlthms, it can't harm to normallze the Polsson probabllitles. Instead of the probabllitles p_{i}, we will use the normallzed \log probabilities

$$
q_{j}=\log \left(p_{\mu+j}\right)+\log (\mu!)-\mu \log (\lambda)+\lambda
$$

where $\mu=\lfloor\lambda\rfloor$. This can convenlently be rewritten as follows:

$$
\begin{aligned}
& q_{j}=j \log \left(\frac{\lambda}{\mu}\right)+j \log (\mu)-\log \left(\frac{(\mu+j)!}{\mu!}\right) \\
& =j \log \left(\frac{\lambda}{\mu}\right)+ \begin{cases}-\log \left(\prod_{i=1}^{j}\left(1+\frac{i}{\mu}\right)\right) & (j>0) \\
0 \quad & (j=0) \\
-\log \left(\prod_{i=0}^{-j-1}\left(1-\frac{i}{\mu}\right)\right) & (j<0)\end{cases}
\end{aligned}
$$

Lemma 3.7.

Let us use the notation j_{+}for $\max (j, 0)$. Then, for all Integer $j \geq-\mu$,

$$
q_{j} \leq \frac{j_{+}}{\mu}-\frac{j(j+1)}{2 \mu+j_{+}}
$$

Proof of Lemma 3.7.

Use (iv) and (v) of Lemma 3.6, together with the Identlty

$$
\sum_{i=1}^{j} i=\frac{j(j+1)}{2}
$$

The Inequallty of Lemma 3.7 can be used as the starting point for the development of tight dominating curves. The last term on the right hand side in the upper bound is not in a famillar form. On the one hand, it suggests a normal bounding curve when j is small compared to μ. On the other hand, for large values of $|j|$, an exponentlal bounding curve seems more approprlate. Recall that the Polsson probabillties cannot be tucked under a normal curve because they drop off as $e^{-c j \log (j)}$ for some c as $j \rightarrow \infty$. In Lemma 3.8 we tuck the Polsson probabllitles under a normal maln body and an exponentlal rlght tall.

Lemma 3.8.

Assume that $\mu \geq 8$ and that δ is an integer satisfying $0 \leq \delta \leq \mu$.

Then

$$
\begin{aligned}
& q_{j} \leq-\frac{j(j+1)}{2 \mu} \leq-\frac{j^{2}}{2 \mu} \quad(j \leq 0) \\
& q_{0} \leq 0 \\
& q_{1} \leq \frac{1}{\mu(2 \mu+1)} \leq \frac{1}{78} \\
& q_{j} \leq-\frac{(j-1)^{2}}{2 \mu+\delta}+\frac{1}{2 \mu+\delta} \quad(0 \leq j \leq \delta) \\
& q_{j} \leq-\frac{\delta}{2 \mu+\delta}\left(\frac{j}{2}+1\right) \quad(j \geq \delta) .
\end{aligned}
$$

Proof of Lemma 3.8.

The frst three inequalltles follow without work from Lemma 3.7. For the fourth Inequallty, we observe that for $2 \leq j \leq \delta$,

$$
\begin{aligned}
& q_{j} \leq \frac{j+\frac{j}{2}}{\mu+\frac{j}{2}}-\frac{j(j+1)}{2\left(\mu+\frac{j}{2}\right)} \quad(\text { since } j \leq \delta \leq \mu) \\
& =\frac{2 j-j^{2}}{2 \mu+j} \\
& \leq \frac{2 j-j^{2}}{2 \mu+\delta} \quad(\text { since } 2 \leq j \leq \delta)
\end{aligned}
$$

The fourth inequality is also valld for $j=0$. For $j=1$, a quick check shows that $1 / \mu(2 \mu+1) \leq 1 /(2 \mu+\delta)$ because $\delta \leq \mu$. This leaves us with the fifth and last inequallty. We note that $\delta \geq 8 \geq \frac{4 \mu}{\mu-2}$. Thus,

$$
\begin{aligned}
& q_{j} \leq \frac{j}{\mu}-\frac{\delta}{2 \mu+\delta}(j+1) \\
& =-\frac{\delta}{2 \mu+\delta}+j\left(\frac{1}{\mu}-\frac{\delta}{2 \mu+\delta}\right) \\
& \leq-\frac{\delta}{2 \mu+\delta}\left(1+\frac{j}{2}\right)
\end{aligned}
$$

Based on these inequallties, we can now glve a first Polsson algorithm:

Rejection method for Poisson random variates

[SET-UP]
$\mu \leftarrow\lfloor\lambda\rfloor$
Choose δ integer such that $6 \leq \delta \leq \mu$.
$c_{1} \leftarrow \sqrt{\pi \mu / 2}$
$c_{2} \leftarrow c_{1}+\sqrt{\pi(\mu+\delta / 2) / 2} e^{\frac{1}{2 \mu+\delta}}$
$c_{3} \leftarrow c_{2}+1$
$c_{4}-c_{3}+e^{\frac{1}{78}}$
$c \leftarrow c_{4}+\frac{2}{\delta}(2 \mu+\delta) e^{-\frac{\delta}{2 \mu+\delta}\left(1+\frac{\delta}{2}\right)}$
[NOTE]
The function q^{*} is defined as $q_{j}-j \log \left(\frac{\lambda}{\mu}\right)=j \log (\mu)-\log ((\mu+j)!/ \mu!)$.
[GENERATOR]

REPEAT

Generate a uniform $[0, c]$ random variate U and an exponential random variate E. Accept \leftarrow False.

CASE
$U \leq c_{1}:$
Generate a normal random variate N.
$Y \longleftarrow|N| \sqrt{\mu}$
$X \leftarrow\lfloor Y\rfloor$
$W \leftarrow-\frac{N^{2}}{2}-E-X \log \left(\frac{\lambda}{\mu}\right)$
IF $X \geq-\mu$ THEN $W \leftarrow \infty$
$c_{1}<U \leq c_{2}$:
Generate a normal random variate N.
$Y \leftarrow 1+|N| \sqrt{\mu+\frac{\delta}{2}}$
$X \leftarrow\lceil Y\rceil$
$W \leftarrow \frac{-Y^{2}+2 Y}{2 \mu+\delta}-E-X \log \left(\frac{\lambda}{\mu}\right)$
IF $X \leq \delta$ THEN $W \leftarrow \infty$
$c_{2}<U \leq c_{3}$:
$X \leftarrow 0$
$W \longleftarrow-E$
$c_{3}<U \leq c_{4}:$
$X \leftarrow 1$
$W \leftarrow-E-\log \left(\frac{\lambda}{\mu}\right)$
$c_{1}<U:$
Generate an exponential random variate V.

$$
\begin{aligned}
& \qquad \begin{array}{l}
Y \leftarrow \delta+V \frac{2}{\delta}(2 \mu+\delta) \\
X \\
\\
\\
W \leftarrow\lceil Y\rceil \frac{\delta}{2 \mu+\delta}\left(1+\frac{Y}{2}\right)-E-X \log \left(\frac{\lambda}{\mu}\right) \\
\text { Accept } \leftarrow[W \leq q *] \\
\text { UNTIL Accept } \\
\text { RETURN } X+\mu
\end{array}
\end{aligned}
$$

Observe the careful use of the floor and celling functions in the algorithm to insure that the continuous dominating curves exceed the Polsson stalrcase functhon at every polnt of the real llne, not just the Integers : The monotoniclty of the dominating curves is explolted of course. The function

$$
q_{x}=x \log (\lambda)-\log \left(\frac{(\mu+x)!}{\mu!}\right)
$$

is evaluated in every iteration at some point x. If the logarithm of the factorial is avallable at unlt cost, then the algorlthm can run in unlformly bounded time provided that δ is carefully picked. Thus, the first issue to be dealt with is that of the relationshlp between the expected number of iterations and δ.

Lemma 3.9.

If δ depends upon λ in such a way that

$$
\delta=o(\mu), \frac{\delta}{\sqrt{\mu}} \rightarrow \infty
$$

then the expected number of iterations $E(N)$ tends to one as $\lambda \rightarrow \infty$. In particular, the expected number of iterations remalns unlformly bounded over $\lambda \geq 6$.

Furthermore,

$$
\inf _{\delta} E(N)=1+(1+o(1)) \sqrt{\frac{\log (\mu)}{32 \mu}} \text { as } \lambda \rightarrow \infty
$$

where the inflmum is reached if we choose

$$
\delta \sim \sqrt{2 \mu \log \left(\frac{128 \mu}{\pi}\right)}
$$

Proof of Lemma 3.9.

In a prellminary computation, we have to evaluate

$$
\sum_{j \geq-\mu} e^{q_{j}}
$$

since this is the total welght of the normalized Polsson probabllitles. It is easy to see that thls glves

$$
\begin{aligned}
& \sum_{j=0}^{\infty} p_{j} e^{\lambda} \mu!\lambda^{-\mu} \\
& \sim e^{\lambda}\left(\frac{\mu}{e \lambda}\right)^{\mu} \sqrt{2 \pi \mu} \\
& \sim \sqrt{2 \pi \mu}
\end{aligned}
$$

where we used the fact that $\log (\lambda / \mu)=\log (1+(\lambda-\mu) / \mu)=(\lambda-\mu) / \mu+O\left(\mu^{-2}\right)$. Thus, the expected number of iterations is the total area under the dominating curve (with the atoms at 0 and 1 having areas one and $e^{\frac{1}{78}}$ respectively) divided by $(1+o(1)) \sqrt{2 \pi \mu}$. The area under the dominating curve is, taking the five contrlbutors from left to right,

$$
\sqrt{\pi \mu / 2}+1+e^{\frac{1}{78}}+\sqrt{\pi\left(\mu+\frac{\delta}{2}\right) / 2} e^{\frac{1}{2 \mu+\delta}}+\frac{2(2 \mu+\delta)}{\delta} e^{-\frac{\delta}{2 \mu+\delta}\left(\frac{\delta}{2}+1\right)} .
$$

If δ is not $o(\mu)$, this can not $\sim \sqrt{2 \pi \mu}$. If $\delta \leq c \sqrt{\mu}$ for some constant c, then the last term is at least $\sim \frac{4}{c} e^{-c^{2} / 4} \sqrt{\mu}$, while it should really be $o(\sqrt{\mu})$. Thus, the conditions imposed on δ are necessary for $E(N) \rightarrow 1$. That they are also sufficlent can be seen as follows. The fifth term in the area under the dominating curves is $o(\sqrt{\mu})$, and so are the constant second and third terms. The fourth term $\sim \sqrt{\pi \mu / 2}$, which establishes the result.

To minimize $E(N)-1$ in an asymptotically optimal fashion, we have to consider some sort of expansion of the area in terms of decreasing asymptotic importance. Using the Taylor serles expansion for $\sqrt{1+u}$ for u near 0 , we can write the first four terms as

$$
\sqrt{\pi \mu / 2}\left(1+O\left(\mu^{-\frac{1}{2}}\right)+1+\frac{\delta}{4 \mu}+O\left(\left(\frac{\delta}{\mu}\right)^{2}\right)\right) .
$$

The main term in excess of $\sqrt{2 \pi \mu}$ is

$$
\sqrt{\pi \mu / 2} \frac{\delta}{4 \mu} .
$$

We can also verify easily that the contribution from the exponential tall is

$$
\frac{4 \mu}{\delta}(1+o(1)) e^{-\frac{\delta^{2}}{2(2 \mu+\delta)}}
$$

To obtaln a first (but as we will see, good) guess for δ, we will minimize

$$
\sqrt{\pi \mu / 2} \frac{\delta}{4 \mu}+\frac{4 \mu}{\delta} e^{-\frac{\delta^{2}}{2(2 \mu+\delta)}}
$$

This is equivalent to solving

$$
\left(2+\frac{4 \mu}{\delta^{2}}\right) e^{-\frac{\delta^{2}}{4 \mu}}=\sqrt{\frac{\pi}{32 \mu}}
$$

If we lgnore the $o(1)$ term $\frac{4 \mu}{\delta^{2}}$, we can solve this explicitly and obtaln

$$
\delta=\sqrt{2 \mu \log \left(\frac{128 \mu}{\pi}\right)}
$$

A plugback of this value in the original expression for the area under the domInatling curve shows that it Increases as

$$
\sqrt{2 \pi \mu}+(1+o(1)) \frac{\sqrt{\pi}}{4} \sqrt{\log (\mu)}
$$

The constant terms are absorbed in $O(1)$; the exponentlal tall contribution is $O(1 / \sqrt{\log (\mu)})$. If we replace δ by $\delta(1+\epsilon)$ where ϵ is allowed to vary with μ but is bounded from below by $c>0$, then the area is asymptotically larger because the $\sqrt{\log (\mu)}$ term should be multiplied by at least $1+c$. If we replace δ by $\delta(1-\epsilon)$, then the contribution from the exponential tall is at least $\Omega\left(\mu^{c / 2} / \sqrt{\log (\mu)}\right)$. This concludes the proof of the Lemma.

We have to insure that δ falls within the limits imposed on it when the domInating curves were derlved. Thus, the following cholce should prove fallsafe in practlce:

$$
\delta=\max \left(6, \min \left(\mu, \sqrt{\left.2 \mu \log \left(\frac{128 \mu}{\pi}\right)\right)}\right)\right.
$$

We have now in detall dealt with the optimal design for our Polsson generator. If the log-factorial is avallable at unit cost, the rejection algorithm is uniformly fast, and asymptotically, the rejection constant tends to one. δ was plcked to insure that the convergence to one takes place at the best possible rate. For the optimal δ, the algorithm basically returns a truncated normal random varlate most of the time. The exponential tall becomes asymptotically negligible.

We may ask what would happen to our algorithm if we were to compute all products of successive integers explicitly ? Disregarding the horrible accuracy problems inherent in all repeated multiplications, we would also face a breakdown in our complexity. The computation of

$$
q_{X}=X \log \left(\frac{\lambda}{\mu}\right)+X \log (\mu)-\log \left(\frac{(X+\mu)!}{\mu}!\right)
$$

can be done in time proportional to $1+|X|$. Now, X is with high probability normal with mean 0 and varlance approximately equal to $\sqrt{\mu}$. Since q is computed only once with probabllity tending to one, it is clear that the expected time complexity now grows as $\sqrt{\mu}$. If we had perfect squeeze curves, 1.e. squeeze curves in which the top and bottom bounds are equal, then we would get our unlform speed back. The same is true for very tight but imperfect squeeze curves. A class of such squeeze curves is presented below. Note that we are no longer concerned with the dominating curves. The squeeze curves given below are also not derived from the Inequalitles for Stlirling's serles or Binet's serles for the log gamma functlon (see section 1). We could have used those, but it is Instructive to show yet another method of derlving good bounds. See however exerclse 3.9 for the appllcation of Stlrling's serles \ln squeeze curves for Polsson probabilltles.

Lemma 3.10.
Defline

$$
t_{j}=q_{j}-j \log \left(\frac{\lambda}{\mu}\right)+\frac{j(j+1)}{2 \mu} .
$$

Then for integer $j \geq 0$,

$$
t_{j}\left\{\begin{array}{l}
\geq \max \left(0, \frac{j(j+1)(2 j+1)}{12 \mu^{2}}-\frac{j^{2}(j+1)^{2}}{12 \mu^{3}}\right) \\
\leq \frac{j(j+1)(2 j+1)}{12 \mu^{2}}
\end{array}\right.
$$

Furthermore, for integer $-\mu \leq j \leq 0$, the converse is almost true:

$$
t_{j}\left\{\begin{array}{l}
\geq \frac{j(j+1)(2 j+1)}{12 \mu^{2}}-\frac{j^{2}(j+1)^{2}}{12 \mu^{2}(\mu+j+1)} \\
\leq \min \left(0, \frac{j(j+1)(2 j+1)}{12 \mu^{2}}\right)
\end{array}\right.
$$

Proof of Lemma 3.10.

The proof is based upon Lemma 3.6, the Identities

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2}, \sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}, \sum_{i=1}^{k} i^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

and the fact that q_{j} can be rewritten as follows:

$$
q_{j}-j \log \left(\frac{\lambda}{\mu}\right)= \begin{cases}-\log \left(\prod_{i=1}^{j}\left(1+\frac{i}{\mu}\right)\right) & (j>0) \\ 0 & (j=0) \\ \log \left(\prod_{i=0}^{j-1}\left(1-\frac{i}{\mu}\right)\right) & (j<0)\end{cases}
$$

The algorithm requires of course little modification. Only the line

$$
\text { Accept }-\left[W \leq q_{x}^{*}\right]
$$

needs replacing. The replacement looks like this:

$$
\begin{aligned}
& T \leftarrow \frac{X(X+1)}{2 \mu} \\
& \text { Accept } \leftarrow[W \leq-T] \cap[X \geq 0] \\
& \text { IF NOT Accept THEN } \\
& \quad Q-T\left(\frac{2 X+1}{6 \mu}-1\right) \\
& \quad P-Q-\frac{T^{2}}{3\left(\mu+(X+1)_{-}\right)} \\
& \quad \text { Accept } \leftarrow[W \leq Q] \\
& \text { IF NOT Accept AND }[W \leq P] \text { THEN Accept } \leftarrow\left[W \leq q^{*}\right]
\end{aligned}
$$

It is interesting to go through the expected complexity proof in thls one example because we are no longer counting iterations but multiplications.

Lemma 3.11.

The expected time taken by the modifled Polsson generator is uniformly bounded over $\lambda \geq \theta$ when δ is chosen as in Lemma 3.10, even when factorials are explicitly evaluated as products.

Proof of Lemma 3.11.

It sufflces to establish the unlform boundedness of

$$
E\left(|X| I_{|Q<W<P|}\right)
$$

where we use the notation of the algorlthm. Note that this statement implicitly uses Wald's equatlon, and the fact that the expected number of Iterations is unlformly bounded. The expression involving $|X|$ is arrived at by looking at the time needed to evaluate q_{X}^{*}. The expected value will be spllt into five parts according to the flve components in the distribution of X. The atomlc parts

X.3.THE POISSON DISTRIBUTION

$X=0, X=1$ are easy to take care of. The contribution from the normal portions can be bounded from above by a constant times

$$
E(|X|(P-Q)) \leq E\left(|X| \frac{X^{2}(X+1)^{2}}{12 \mu^{2}(\mu+(X+1))}\right) .
$$

Here we have used the fact that W consists of a sum of some random variable and an exponential random varlable. When $X \geq 0$, the last upper bound is in turn not greater than a constant times $E\left(|X|^{5}\right) / \mu^{3}=O\left(\mu^{-1 / 2}\right)$. The case $X<0$ is taken care of simllarly, provided that we first spllt off the case $X<-\frac{\mu}{2}$. The split-off part is bounded from above by

$$
O\left(\mu^{3}\right) P\left(X<-\frac{\mu}{2}\right) \leq O\left(\mu^{3}\right) \frac{E\left(X^{2}\right)}{\mu^{2}}=O(1)
$$

For the exponential tall part, we need a uniform bound for

$$
E\left(|X|{ }^{5} \mu^{-3}\right)(\log (\mu))^{-\frac{1}{2}}
$$

where we have used a fact shown in the proof of Lemma 3.10, l.e. the probabillty that X is exponentlal decreases as a constant tlmes $\log ^{-1 / 2}(\mu)$. Verify next that given that X is from our exponentlal tall, $E\left(|X|^{5}\right)=O\left(\delta^{5}\right)$. Combining all of this shows that our expression in question is

$$
O\left(\frac{\log ^{2}(\mu)}{\sqrt{\mu}}\right)
$$

This concludes the proof of Lemma 3.11.

The computations of the previous Lemma reveal other interesting facets of the algorithm. For example, the expected tlme contrlbution of the evaluations of ractorlals is $O\left(\frac{\log ^{2}(\mu)}{\sqrt{\mu}}\right)$. In other words, it is asymptotically negllglble. Even so, the main contribution to this o (1) expected time comes from the exponentlal tall. This suggests that it is possible to obtain a new value for δ which would minimize the expected time spent on the evaluation of factorlals, and that thls value will differ from that obtained by minimizing the expected number of iterations.

3.5. Exercises.

1. Atkinson (1878) has developed a Polsson (λ) generator based upon rejection from the logistlc denslty

$$
f(x)=\frac{1}{b} e^{-\frac{x-a}{b}}\left(1+e^{-\frac{x-a}{b}}\right)^{-2},
$$

where $a=\lambda$ and $b=\sqrt{3 \lambda} / \pi$. A random varlate with this denstty can be generated as $X \leftarrow a+b \log \left(\frac{1-U}{U}\right)$ where U is uniform $[0,1]$.
A. Find the distribution of $\left\{X+\frac{1}{2}\right\rfloor$.
B. Prove that X has the same mean and variance as the Polsson distributhon.
C. Determine a rejection constant c for use with the distribution of part A.
D. Prove that c is unlformly bounded over all values of λ.
2. A recursive generator. Let n be an integer somewhat smaller than λ, and let G be a gamma (n) random varlable. Show that the random varlable X deflned below is Polsson (λ): if $G>\lambda, X$ is binomial $(n-1, \lambda / G)$; if $G \leq \lambda$, then X is n plus a Polsson ($\lambda-G$) random varlable. Then, taking $n=\lfloor 0.875 \lambda\rfloor$, use this recursive property to develop a recurslve Polsson generator. Note that one can leave the recursive loop elther when at one point $G>\lambda$ or when λ falls below a fixed threshold (such as 10 or 15). By taking n a flxed fraction of λ, the value of λ falls at a geometrlc rate. Show that in vlew of this, the expected time complexity is $O(1+\log (\lambda))$ if a constant expected time gamma generator is used (Ahrens and Dleter, 1974).
3. Prove all the inequallties of Lemma 3.6.
4. Prove that for any λ and any $c>0, \lim _{j \rightarrow \infty} p_{j} / e^{-c j^{2}}=\infty$. Thus, the Poisson curve cannot be tucked under any normal curve.
5. Poisson variates in batches. Let X_{1}, \ldots, X_{n} be a multinomial (Y, p_{1}, \ldots, p_{n}) random vector (i.e., the probabillty of attalning the value i_{1}, \ldots, i_{n} is 0 when $\sum i_{j}$ is not Y and is

$$
\frac{Y!}{i_{1}!\cdots i_{n}!} p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}
$$

otherwise. Show that if Y is Polsson (λ), then X_{1}, \ldots, X_{n} are Independent Polsson random variables with parameters $\lambda p_{1}, \ldots, \lambda p_{n}$ respectively. (Moran, 1951; Patll and Seshadrl, 1984; Bolshev, 1965; Tadikamalla, 1979).
6. Prove that as $\lambda \rightarrow \infty$, the distribution of $(X-\lambda) / \sqrt{\lambda}$ tends to the normal distribution by proving that the characteristle function tends to the characteristlic function $e^{-t^{2} / 2}$ of the normal distribution.

WHILE True DO

Generate a Poisson (1) random variate X, and a uniform [0,1] random variate U. IF $X \leq n$ THEN

$$
\begin{aligned}
& k \leftarrow 1, j \leftarrow 0, s \leftarrow 1 \\
& \text { WHILE } j \leq n-X \text { AND } U \leq s \text { DO } \\
& \qquad j \leftarrow j+1, k \leftarrow-j k, s \leftarrow s+\frac{1}{k} \\
& \operatorname{IF} j \leq n-X \text { AND } U<s \\
& \quad \text { THEN RETURN } X \\
& \quad \text { ELSE } j \leftarrow j+1, k \leftarrow j k, s \leftarrow s+\frac{1}{k}
\end{aligned}
$$

12. The Borel-Tanner distribution. A distrlbution Important in queuing theory, with parameters $n \geq 1$ (n integer) and $\alpha \in(0,1)$ was discovered by Borel and Tanner (Tanner, 1951). The probabllitles p_{i} are defined by

$$
p_{i}=\frac{n}{(i-n)!} i^{i-n-1} \alpha^{i-n} e^{-\alpha i} \quad(i \geq n)
$$

Show that the mean is $\frac{n}{1-\alpha}$ and that the varlance is $\frac{n \alpha}{(1-\alpha)^{3}}$. The distribution has a very long positive tall. Develop a unlformly fast generator.

4. THE BINOMLAL DISTRIBUTION.

4.1. Properties.

X is binomially distributed with parameters $n \geq 1$ and $p \in[0,1]$ if

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad(0 \leq i \leq n)
$$

We will say that X is binomial (n, p).
7. Show that for the refection method developed in the text, the expected time complexity is $O(\sqrt{\lambda})$ and $\Omega(\sqrt{\lambda})$ as $\lambda \rightarrow \infty$ when no squeeze steps are used and the factorial has to be evaluated expllitily.
8. Glve a detalled rejection algorithm based upon the constant upper bound of Lemma 3.4 and the quadratically decreasing talls of Lemma 3.5.
9. Assume that factorlals are avolded by using the zero-term and one-term Stirlling approximations (Lemma 1.1) as lower and upper bounds in squeeze steps (the difference between the zero-term and one-term approximations of $\log (\Gamma(n))$ is the term $1 /(12 n))$. Show that this suffices for the following rejection algorithms to be unlformly fast:
A. The unlversal algorithm of section 1.
B. The algorlthm based upon Lemmas 3.4 and 3.5 (and developed in Exercise 8).
C. The normal-exponential rejection algorithm developed in the text.
10. Repeat exercise 9, but assume now that factorials are avolded altogether by evaluating an Increasing number of terms in Blnet's convergent serles for the log gamma function (Lemma 1.2) untll an acceptance or rejection decision can be made. Read first the text following Lemma 1.2.
11. The matching distribution. Suppose that n cars are parked in front of Hanna's rubber skin sult shop, and that each of Hanna's satlsfled customers leaves in a randomly plcked car. The number N of persons who leave in thelr own car has the matching distribution with parameter n :

$$
P(N=i)=\frac{1}{i!} \sum_{j=0}^{n-i} \frac{(-1)^{j}}{j!} \quad(0 \leq i \leq n)
$$

A. Show this by invoking the inclusion exclusion princlple.
B. Show that $\operatorname{llm}_{n \rightarrow \infty} P(N=i)=\frac{1}{e i!}$, l.e. that the Polsson (1) dlstribution is the limit (Barton, 1958).
C. Show that $P(N=i) \leq \frac{1}{i!}$, i.e. rejection from the Polsson (1) distributlon can be used with rejection constant e not depending upon n.
D. Show that the algorithm given below is valld, and that its expected complexity is unlformly bounded in n.

Lemma 4.1. (Genesis.)
Let X be the number of successes in a sequence of n Bernoulll trials with success probabllity p, i.e.

$$
X=\sum_{i=1}^{n} I_{\left\{U_{i}<p\right\}}
$$

where U_{1}, \ldots, U_{n} are ild uniform $[0,1]$ random varlables. Then X is blnomial (n, p).

Lemma 4.2.

The binomlal distribution with parameters n, p has generating function $(1-p+p s)^{n}$. The mean is $n p$, and the varlance is $n p(1-p)$.

Proof of Lemma 4.2.

The factorial moment generating function of X (or simply generating functlon) is

$$
k(s)=E\left(s^{X}\right)=\prod_{i=1}^{n} E\left(s^{I_{\left[U_{i}<p\right]}}\right)
$$

where we used the Lemma 4.1 and its notation. Each factor in the product is obviously equal to $1-p+p s$. This concludes the proof of the first statement. Next, $E(X)=k^{\prime}(1)=n p$, and $E(X(X-1))=k^{\prime \prime}(1)=n(n-1) p^{2}$. Hence, $\operatorname{Var}(X)=E\left(X^{2}\right)-E^{2}(X)=E(X(X-1))+E(X)-E^{2}(X)=n p(1-p)$.

From Lemma 4.1, we can conclude without further work:

Lemma 4.3.

If X_{1}, \ldots, X_{k} are independent blnomial (n_{1}, p) , $\ldots,\left(n_{k}, p\right)$ random varlables, then $\sum_{i=1}^{k} X_{i}$ is binomial $\left(\sum_{i=1}^{k} n_{i}, p\right)$.

Lemma 4.4.(First waiting time property.)

Let G_{1}, G_{2}, \ldots be lld geometric (p) random variables, and let X be the smallest Integer such that

$$
\sum_{i=1}^{X+1} G_{i}>n
$$

Then X is blnomial (n, p).

Proof of Lemma 4.4.

G_{1} is the number of Bernoull trials up to and Including the first success. Thus, by the independence of the G_{i} 's, $G_{1}+\cdots+G_{X+1}$ is the number of Bernoulli trials up to and including the $X+1$-st success. This number is greater than n if and only if among the first n Bernoulll trials there are at most X successes. Thus,

$$
\left.P(X \leq k)=P\left(\sum_{i=1}^{k+1} G_{i}>n\right)=\sum_{j=0}^{k}\binom{n}{j} p^{j}(1-p)^{n-j} \quad \text { (Integer } k\right)
$$

Lemma 4.5. (Second waiting time property.)

Let E_{1}, E_{2}, \ldots be lld exponentlal random variables, and let X be the smallest Integer such that

$$
\sum_{i=1}^{X+1} \frac{E_{i}}{n-i+1}>-\log (1-p)
$$

Then X is binomial (n, p).

Proof of Lemma 4.5.

Let $E_{(1)}<E_{(2)}<\cdots<E_{(n)}$ be the order statistics of an exponentlal distribution. Clearly, the number of $E_{(i)}$ s smaller than $-\log (1-p)$ is binomially distributed with parameters n and $P\left(E_{1}<-\log (1-p)\right)=1-e^{\log (1-p)}=p$. Thus, if X is the smallest integer such that $E_{(X+1)} \geq-\log (1-p)$, then X is binomial (n, p). Lemma 4.5 now follows from the fact (section V.2) that ($\left.E_{(1)}, \ldots, E_{(n)}\right)$ is distributed as

$$
\left(\frac{E_{1}}{n}, \frac{E_{1}}{n}+\frac{E_{2}}{n-1}, \ldots, \frac{E_{1}}{n}+\frac{E_{2}}{n-1}+\cdots+\frac{E_{n}}{1}\right) . \square
$$

4.2. Overview of generators.

The binomial generators can be partitioned into a number of classes:
A. The simple generators. These generators are based upon the direct application of one of the lemmas of the previous section. Typlcally, the expected complexity grows as n or as $n p$, the computer programs are very short, and no additional workspace is required.
B. Uniformly fast generators based upon the refection method (Fishman (1979), Ahrens and Dleter (1980), Kachltvlchyanukul (1982), Devroye and Naderisamanl (1080)). We will not bother with older algorithms which are not untformly fast. Flshman's method is based upon rejection from the Polsson distribution, and is explored in exercise 4.1. The universal rejection algorithm derived from Theorem 1.1 is also uniformly fast, but slnce it was not speciflcally designed for the binomial distribution, it is not competitive with tallor-made rejection algorlthms. To save space, only the algorlthm of Devroye and Naderisamant (1080) will be developed in detall. Although this algorithm may not be the fastest on all computers, it has two desirable propertles: the dominating curve is asymptotically tight because it exploits convergence to the normal distribution, and it does not require a subprogram for computing the log factorial in constant time.
C. Table methods. The finite number of values make the binomial distribution a good candldate for the table methods. To obtaln unlformly fast speed, the table size has to grow in proportion to n, and a set-up time proportional to n is needed. It is generally accepted that the marginal execution tlmes of the allas or allas-urn methods are difficult to beat. See sectlons III. 3 and III. 4 for detalls.
D. Generators based upon recursion (Relles (1972), Ahrens and Dleter (1974)). The problem of generating a binomlal (n, p) random varlate is usually reduced in constant time to that of generating another binomial random varlate with much smaller value for n. Thls leads to $O(\log (n))$ or $O(\log \log (n))$ expected time algorlthms. In view of the superior performance of the generators in classes B and C, the princlple of recursion will be described very brlefly, and most detalls can be found in the exerctses.

4.3. Simple generators.

Lemma 4.1 leads to the

Coin flip method

$X \leftarrow 0$
FOR $i:=1$ TO n DO
Generate a random bit B (B is 1 with probability p, and can be obtained by generating a uniform $[0,1]$ random variate U and setting $\left.B=I_{(U \leq p)}\right)$.

$$
X \leftarrow X+B
$$

RETURN X

This slmple method requires time proportional to n. One can use n unlform random varlates, but it is often preferable to generate Just one uniform random variate and recycle the unused portion. This can be done by noting that a random blt and an independent unlform random varlate can be obtalned as $\left(I_{(U<p)} \min \left(\frac{U}{p}, \frac{1-U}{1-p}\right)\right.$). The coln flip method with recycling of unlform random varlates can be rewritten as follows:
[NOTE: We assume that $p \leq 1 / 2$.]
$X \leftharpoondown 0$
Generate a uniform $[0,1]$ random variate U.
FOR $i:=1$ TO n DO
$B \leftarrow I_{|U>1-p|}$
$U \leftarrow \frac{U-(1-p) B}{p B+(1-p)(1-B)}$ (reuse the uniform random variate)
$X \leftarrow X+B$
RETURN X

For the important case $p=\frac{1}{2}$, it suffices to generate a random uniformly distributed computer word of n blts, and to count the number of ones in the word. In machine language, this can be implemented very efficlently by the standard bit operations.

Inversion by sequential search takes as we know expected time proportional to $E(X)+1=n p+1$. We can avold tables of probabmilles because of the recurrence relatlon

$$
p_{i+1}=p_{i} \frac{(n-i) p}{(i+1)(1-p)} \quad(0 \leq i<n)
$$

where $p_{i}=P(X=i)$. The algorlthm will not be glven here. It suffices to mentlon that for large n, the repeated use of the recurrence relation could also lead to accuracy problems. These problems can be avolded if one of the two walting time algorthms (based upon Lemmas 4.4 and 4.5) is used:

First waiting time algorithm

$X--1$
Sum $\leftarrow 0$
REPEAT
Generate a geometric (p) random variate G.
Sum \leftarrow Sum $+G$
$X-X+1$
UNTIL Sum $>n$
RETURN X

Second waiting time method

[SET-UP]
$q \leftarrow-\log (1-p)$
[GENERATOR]
$X \leftarrow 0$
Sum $\leftarrow 0$
REPEAT
Generate an exponential random variate E.
Sum \leftarrow Sum $+\frac{E}{n-X}$ (Note: Sum is allowed to be ∞.)
$X-X+1$
UNTIL Sum $>q$
RETURN $X \leftarrow X-1$

Both walting time methods have expected time complexitles that grow as $n p+1$.

4.4. The rejection method.

To develop good dominating curves, it helps to recall that by the central limit theorem, the blnomial distribution tends to the normal distribution as $n \rightarrow \infty$ and p remalns fixed. When p varles with n in such a way that $n p \rightarrow c$, a positive constant, then the binomlal distribution tends to the Polsson (c) distribution, which in turn is very close to the normal distribution for large values of c. It seems thus reasonable to consider the normal density as our dominating curve. Unfortunately, the blnomial probabllitles do not decrease quickly enough for one single normal density to be useful as a dominating curve. We cover the blnomial talls with exponentlal curves and make use of Lemma 3.6. To keep things slmple, we assume:

1. $\lambda=n p$ is a nonzero integer.
2. $p \leq \frac{1}{2}$.

So as not to confuse p with $p_{i}=P(X=i)$, we use the notation

$$
b_{i}=\binom{n}{i} p^{i}(1-p)^{n-i} \quad(0 \leq i \leq n)
$$

The second assumption is not restrictive because a binomial (n, p) random varlable is distributed as n minus a binomial ($n, 1-p$) random variable. The first assumption is not limiting in any sense because of the following property.

Lemma 4.6.

If Y is a binomial $\left(n, p^{\prime}\right)$ random variable with $p^{\prime} \leq p$, and if conditional on Y, Z is a binomial $\left(n-Y, \frac{p-p^{\prime}}{1-p^{\prime}}\right)$ random varlable, then $X \leftarrow Y+Z$ is binomlal (n, p).

Proof of Lemma 4.6.

The lemma is based upon the decomposition

$$
X=\sum_{i=1}^{n} I_{\left[U_{i} \leq p\right]}=\sum_{i=1}^{n} I_{\left[U_{i} \leq p^{\prime}\right]}+\sum_{i=1}^{n} I_{\left[p^{\prime}<U_{i} \leq p\right]}=Y+Z
$$

where U_{1}, \ldots, U_{n} are ild uniform $[0,1]$ random variables.

To recapltulate, we offer the following generator for general values of n, p, but $0<p \leq \frac{1}{2}$:

Splitting algorithm for binomial random variates

[NOTE: t is a fixed threshold, typically about 7. For $n p \leq t$, one of the waiting time algorithms is recommended. Assume thus that $n p>t$.]
$p^{\prime} \leftarrow \frac{1}{n}\lfloor n p\rfloor$
Generate a binomial (n, p^{\prime}) random variate Y by the rejection method in uniformly bounded expected time.
Generate a binomial ($n-Y, \frac{p-p^{\prime}}{1-p^{\prime}}$) random variate Z by one of the waiting time methods. RETURN $X \leftarrow Y+Z$

The expected time taken by this generator when $n p>t$ is bounded from above by $c_{1}+c_{2} n \frac{p-p^{\prime}}{1-p^{\prime}} \leq c_{1}+2 c_{2}$ for some universal constants c_{1}, c_{2}. Thus, it can't harm to impose assumption 1 .

Lemma 4.7.

For integer $0 \leq i \leq n(1-p)$ and Integer $\lambda=n p \geq 1$, we have

$$
\log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right) \leq-\frac{i(i-1)}{2 n(1-p)}-\frac{i(i+1)}{2 n p+i}
$$

and

$$
\log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right)+\frac{i^{2}+((1-p)-p) i}{2 n p(1-p)}\left\{\begin{array}{l}
\leq s \\
\geq s-t
\end{array}\right.
$$

where

$$
s=\frac{i(i+1)(2 i+1)}{12 n^{2} p^{2}}-\frac{(i-1) i(2 i-1)}{12 n^{2}(1-p)^{2}}
$$

and

$$
t=\frac{i^{2}(i-1)^{2}}{12 n^{2}(1-p)^{2}(n(1-p)-i+1)}+\frac{i^{2}(i+1)^{2}}{12 n^{3} p^{3}}
$$

For all Integer $0 \leq i \leq n p, \log \left(\frac{b_{\lambda-i}}{b_{\lambda}}\right)$ satisfles the same Inequallities provided that p is replaced throughout by $1-p$ in the varlous expressions.

Proof of Lemma 4.7.

For $i=0$, the statements are obvlously true because equally is reached. Assume thus that $0<i \leq n(1-p)$. We have

$$
\begin{aligned}
& \frac{b_{\lambda+i}}{b_{\lambda}}=\frac{\binom{n}{\lambda+i} p^{\lambda+i}(1-p)^{n-\lambda-i}}{\binom{n}{\lambda} p^{\lambda}(1-p)^{n-\lambda}}=\left(\frac{p}{1-p}\right)^{i} \frac{\binom{n}{\lambda+i}}{\binom{n}{\lambda}} \\
& =\left(\frac{p}{1-p}\right)^{i} \frac{(n-\lambda)!\lambda!}{(n-\lambda-i)!(\lambda+i)!} \\
& =\frac{\prod_{j=0}^{i-1}\left(1-\frac{j}{n(1-p)}\right)}{\prod_{j=0}^{i}\left(1+\frac{j}{n p}\right)} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right)=\sum_{j=0}^{i-1} \log \left(1-\frac{j}{n(1-p)}\right)-\sum_{j=0}^{i} \log \left(1+\frac{j}{n p}\right) \\
& \leq-\sum_{j=0}^{i-1} \frac{j}{n(1-p)}-\sum_{j=0}^{i} \frac{2 j}{2 n p+j} \\
& \leq-\frac{i(i-1)}{2 n(1-p)}-\frac{i(i+1)}{2 n p+i} .
\end{aligned}
$$

Here we used Lemma 3.6. This proves the first statement of the lemma. Again by Lemma 3.6, we see that

$$
\begin{aligned}
& \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right) \leq \sum_{j=0}^{i-1}\left(-\frac{j}{n(1-p)}-\frac{j^{2}}{2 n^{2}(1-p)^{2}}\right)+\sum_{j=0}^{i}\left(-\frac{j}{n p}+\frac{j^{2}}{2 n^{2} p^{2}}\right) \\
& =-\frac{i^{2}+((1-p)-p) i}{2 n p(1-p)}+s .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right) \geq \sum_{j=0}^{i-1}\left(-\frac{j}{n(1-p)}-\frac{j^{2}}{2 n^{2}(1-p)^{2}}-\frac{j^{3}}{3 n^{3}(1-p)^{3}\left(1-\frac{i-1}{n(1-p)}\right)}\right) \\
& \quad+\sum_{j=0}^{i}\left(-\frac{j}{n p}+\frac{j^{2}}{2 n^{2} p^{2}}-\frac{j^{3}}{3 n^{3} p^{3}}\right) \\
& =-\frac{i^{2}+((1-p)-p) i}{2 n p(1-p)}+s-t .
\end{aligned}
$$

This concludes the proof of the first part of Lemma 4.7. For integer $0<i \leq n p$,
we have

$$
\begin{aligned}
& \frac{b_{\lambda-i}}{b_{\lambda}}=\left(\frac{p}{1-p}\right)^{-i} \frac{\binom{n}{\lambda-i}}{\binom{n}{\lambda}} \\
& =\frac{\prod_{j=0}^{i-1}\left(1-\frac{j}{n p}\right)}{\prod_{j=0}^{i}\left(1+\frac{j}{n(1-p)}\right)} .
\end{aligned}
$$

This is formally the same as an expresslon used as starting point above, provided that p is replaced throughout by $1-p$.

Lemma 4.7 is used in the construction of a useful function $g(x)$ with the property that for all $x \in[i, i+1)$, and all allowable $i(-n p \leq i \leq n(1-p)$),

$$
g(x) \geq \log \left(\frac{b_{\lambda+i}}{b_{\lambda}}\right)
$$

The algorithm is of the form:

REPEAT

Generate a random variate Y with density proportional to e^{ρ}.
Generate an exponential random variate E.
$X \leftarrow\lfloor Y\rfloor$ (this is truncation to the left, even for negative values of Y)
UNTIL $[-n p \leq X \leq n(1-p)]$ AND $\left[g(Y) \leq \log \left(\frac{b_{\lambda+X}}{b_{\lambda}}\right)+E\right]$
RETURN $X \leftarrow \lambda+X$

The normal-exponential dominating curve e^{g} suggested earller is defined in Lemma 4.8:

Lemma 4.8.

Let $\delta_{1} \geq 1, \delta_{2} \geq 1$ be given integers. Define furthermore

$$
\begin{aligned}
\sigma_{1} & =\sqrt{n p(1-p)}\left(1+\frac{\delta_{1}}{4 n p}\right) \\
\sigma_{2} & =\sqrt{n p(1-p)}\left(1+\frac{\delta_{2}}{4 n(1-p)}\right) \\
c & =\frac{2 \delta_{1}}{n p}
\end{aligned}
$$

Then the function g can be chosen as follows:

$$
g(x)=\left\{\begin{array}{ll}
c-\frac{x^{2}}{2 \sigma_{1}^{2}} & \left(0 \leq x<\delta_{1}\right) \\
\frac{\delta_{1}}{n(1-p)} & \frac{\delta_{1} x}{2 \sigma_{1}^{2}} \\
\left(\delta_{1}<x\right) \\
-\frac{x^{2}}{2 \sigma_{2}^{2}} & \left(-\delta_{2}<x<0\right) \\
-\frac{\delta_{2} x}{2 \sigma_{2}^{2}} & \left(x \leq-\delta_{2}\right)
\end{array} .\right.
$$

Proof of Lemma 4.8.

For $i=0$ we need to show that $c \geq 1 /\left(2 \sigma_{1}{ }^{2}\right)$. This follows from

$$
2 c \sigma_{1}^{2}=\frac{4 \delta_{1}}{n p} n p(1-p)\left(1+\frac{\delta_{1}}{4 n p}\right)^{2} \geq 4 \delta_{1}(1-p) \geq 2 \delta_{1} \geq 2
$$

When $0<i<\delta_{1}$, we have

$$
\begin{aligned}
& -\frac{i(i-1)}{2 n(1-p)} \leq-\frac{(x-1)(x-2)}{2 n(1-p)} \\
& -\frac{i(i+1)}{2 n p+i} \leq-\frac{x(x-1)}{2 n p+\delta_{1}}
\end{aligned}
$$

By Lemma 4.7,

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{(x-1)(x-2)}{2 n(1-p)}-\frac{x(x-1)}{2 n p+\delta_{1}} \\
& =-\left(\frac{1}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}\right) x^{2}+\left(\frac{3}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}\right) x-\frac{1}{n(1-p)} \\
& \leq-\left(\frac{1}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}\right) x^{2}+\frac{2 \delta_{1}}{n p} \\
& \leq-\frac{x^{2}}{2{\sigma_{1}}^{2}}+\frac{2 \delta_{1}}{n p} .
\end{aligned}
$$

The last step follows by appllcation of the Inequality $\sqrt{1+u}<1+\frac{u}{2}$, valld for $u>0$, in the following chaln of Inequallties:

$$
\begin{aligned}
& \frac{1}{2 n(1-p)}+\frac{1}{2 n p+\delta_{1}}=\frac{1+\frac{\delta_{1}}{2 n}}{2 n p(1-p)\left(1+\frac{\delta_{1}}{2 n p}\right)} \\
& \geq \frac{1}{2 n p(1-p)\left(1+\frac{\delta_{1}}{2 n p}\right)} \\
& \geq \frac{1}{\left(\sqrt{\left.2 n p(1-p)\left(1+\frac{\delta_{1}}{4 n p}\right)\right)}{ }^{2}\right.}=\frac{1}{2 \sigma_{1}^{2}} .
\end{aligned}
$$

When $i \geq \delta_{1}$, we have

$$
-\frac{i(i-1)}{2 n(1-p)} \leq-\frac{\delta_{1}(x-2)}{2 n(1-p)} ;-\frac{i(i+1)}{2 n p+i} \leq-\frac{\delta_{1} x}{2 n p+\delta_{1}} .
$$

By Lemma 4.7,

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{\delta_{1}(x-2)}{2 n(1-p)}-\frac{\delta_{1} x}{2 n p+\delta_{1}} \\
& =-\left(\frac{1}{2 n p}+\frac{1}{2 n p+\delta_{1}}\right) \delta_{1} x+\frac{\delta_{1}}{n(1-p)} \\
& \leq-\frac{\delta_{1} x}{2{\sigma_{1}}^{2}}+\frac{\delta_{1}}{n(1-p)} .
\end{aligned}
$$

When $0>i \geq-\delta_{2}$, we have

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{i(i+1)}{2 n p}-\frac{i(i-1)}{2 n(1-p)-i} \\
& =-\left(\frac{1}{2 n p}+\frac{1}{2 n(1-p)+\delta_{2}}\right) i^{2}-\frac{i}{2 n p}+\frac{i}{2 n(1-p)+\delta_{2}} \\
& \leq-\left(\frac{1}{2 n p}+\frac{1}{2 n(1-p)+\delta_{2}}\right) x^{2} \\
& \leq-\frac{x^{2}}{2 \sigma_{2}{ }^{2}}
\end{aligned}
$$

Finally, when $i<-\delta_{2}$, we see that

$$
\begin{aligned}
& -\frac{i(i+1)}{2 n p} \leq \frac{\delta_{2} x}{2 n p} \\
& -\frac{i(i-1)}{2 n(1-p)-i} \leq \frac{\delta_{2}(i-1)}{2 n(1-p)+\delta_{2}} \leq \frac{\delta_{2}(x-1)}{2 n(1-p)+\delta_{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \log \left(\frac{b_{n p+i}}{b_{n p}}\right) \leq-\frac{\delta_{2} x}{2 n p}+\frac{\delta_{2}(x-1)}{2 n(1-p)+\delta_{2}} \\
& =\left(\frac{1}{2 n p}+\frac{1}{2 n(1-p)+\delta_{2}}\right) \delta_{2} x-\frac{\delta_{2}}{2 n(1-p)+\delta_{2}} \\
& \leq \frac{\delta_{2} x}{2 \sigma_{2}^{2}}
\end{aligned}
$$

The dominating curve e^{g} suggested by Lemma 4.8 consists of four pleces, one plece per interval. The integrals of e^{g} over these intervals are needed by the generator. These are easy to compute for the exponentlal talls, but not for the normal center intervals. Not much will be lost if we replace the two normal pleces by halfnormals on the positive and negative real line respectively, and reject when the normal random variates fall outside $\left[-\delta_{2}, \delta_{1}\right]$. This at least allows us to work with the integrals of halfnormal curves. We will call the areas under the different components of $e^{g} a_{i} \quad(1 \leq i \leq 4)$. Thus,

$$
\begin{aligned}
& a_{1}=\int_{0}^{\infty} e^{c-\frac{x^{2}}{2 \sigma_{1}{ }^{2}}} d x=\frac{1}{2} e^{c} \sigma_{1} \sqrt{2 \pi}, \\
& a_{2}=\frac{1}{2} \sigma_{2} \sqrt{2 \pi}, \\
& a_{3}=\int_{\delta_{1}}^{\infty} e^{\frac{\delta_{1}}{n(1-p)}-\frac{\delta_{1} x}{2 \sigma_{1}{ }^{2}}} d x=e^{\frac{\delta_{1}}{n(1-p)}} \frac{2 \sigma_{1}{ }^{2}}{\delta_{1}} e^{-\frac{\delta_{1}{ }^{2}}{2 \sigma_{1}{ }^{2}}}, \\
& a_{4}=\frac{2 \sigma_{2}{ }^{2}}{\delta_{2}} e^{-\frac{\delta_{2}{ }^{2}}{2 \sigma_{2}^{2}}}
\end{aligned}
$$

We can now summarize the algorithm:

A rejection algorithm for binomial random variates

[SET-UP]

$$
\begin{aligned}
& \sigma_{1} \leftarrow \sqrt{n p(1-p)}\left(1+\delta_{1} /(4 n p)\right), \sigma_{2} \leftarrow \sqrt{n p(1-p)}\left(1+\delta_{2} /(4 n(1-p))\right), c \leftarrow 2 \delta_{1} /(n p) \\
& a_{1} \leftarrow \frac{1}{2} e^{c} \sigma_{1} \sqrt{2 \pi}, a_{2} \leftarrow \frac{1}{2} \sigma_{2} \sqrt{2 \pi} \\
& a_{3} \leftarrow e^{\frac{\delta_{1}}{n(1-p)}} \frac{2 \sigma_{1}{ }^{2}}{\delta_{1}} e^{-\frac{\delta_{1}{ }^{2}}{2 \sigma_{1}{ }^{2}}} \\
& a_{4} \leftarrow \frac{2 \sigma_{2}{ }^{2}}{\delta_{2}} e^{-\frac{\delta_{2}{ }^{2}}{2 \sigma_{2}{ }^{2}}} \\
& s \leftarrow a_{1}+a_{2}+a_{3}+a_{4} \\
& \text { [GENERATOR] } \\
& \text { REPEAT }
\end{aligned}
$$

Generate a uniform $[0, s]$ random variate U.
CASE

$$
U \leq a_{1}:
$$

Generate a normal random variate $N ; Y-\sigma_{1}|N|$
Reject $-\left[Y \geq \delta_{1}\right]$
IF NOT Reject THEN $X \leftarrow\lfloor Y\rfloor, V \leftarrow-E-\frac{N^{2}}{2}+c$ where E is an exponential random variate.
$a_{1}<U \leq a_{1}+a_{2}$:
Generate a normal random variate $N ; Y-\sigma_{2}|N|$
Reject $\leftarrow\left[Y \geq \delta_{2}\right]$
IF NOT Reject THEN $X \leftarrow\lfloor-Y\rfloor, V \leftarrow E-\frac{N^{2}}{2}$ where E is an exponential random variate.
$a_{1}+a_{2}<U \leq a_{1}+a_{2}+a_{3}:$
Generate two iid exponential random var: eses E_{1}, E_{2}.
$Y \leftarrow \delta_{1}+2 \sigma_{1}{ }^{2} E_{1} / \delta_{1}$
$X \leftarrow\lfloor Y\rfloor, V \leftarrow-E_{2}-\delta_{1} Y /\left(2 \sigma_{1}{ }^{2}\right)+\delta_{1} /(n(1-z$
Reject \leftarrow False
$a_{1}+a_{2}+a_{3}<U:$
Generate two iid exponential random vari:es $E_{1} . E_{2}$.
$Y \leftarrow \delta_{2}+2 \sigma_{2}^{2} E_{1} / \delta_{2}$
$X \leftarrow\lfloor-Y\rfloor, V \leftarrow-E_{2}-\delta_{2} Y /\left(2 \sigma_{2}{ }^{2}\right)$
Reject - False
Reject \leftarrow Reject $\operatorname{OR}[X<-n p]$ OR $[X>n(1-p)]$
Reject \leftarrow Reject $\operatorname{OR}\left[V>\log \left(b_{n p+} x / b_{n p}\right)\right]$
UNTIL NOT Reject
RETURN X

We need only choose δ_{1}, δ_{2} so that the expected number of iterations is approximately minimal. This is done in Lemma 4.9.

Lemma 4.9.

Assume that $p \leq \frac{1}{2}$ and that as $\lambda=n p \rightarrow \infty$, we have unlformly in p, $\delta_{1}=o(\lambda), \delta_{2}=o(n), \delta_{1} / \sqrt{\lambda} \rightarrow \infty, \delta_{2} / \sqrt{n p} \rightarrow \infty$. Then the expected number of iterations is unlformly bounded over $n \geq 1,0 \leq p \leq \frac{1}{2}$, and tends to 1 uniformly in p as $\lambda \rightarrow \infty$.

The conditions on δ_{1}, δ_{2} are satlsfled for the following (nearly optimal) cholces:

$$
\begin{aligned}
& \delta_{1}=\left\lfloor\max \left(1, \sqrt{n p(1-p) \log \left(\frac{128 n p}{81 \pi(1-p)}\right)}\right\rfloor\right. \\
& \delta_{2}=\left\{\max \left(1, \sqrt{n p(1-p) \log \left(\frac{128 n(1-p)}{\pi p}\right)}\right)\right\rfloor .
\end{aligned}
$$

Proof of Lemma 4.9.

We first observe that under the stated conditlons on δ_{1}, δ_{2}, we have

$$
\begin{aligned}
& \sigma_{1}=\sqrt{n p(1-p)(1+o(1)), \sigma_{2}=\sqrt{n p(1-p)}(1+o(1))} \\
& c=o(1) \\
& a_{1}=\sqrt{\frac{\pi n p(1-p)}{2}}(1+o(1)), a_{2}=\sqrt{\frac{\pi n p(1-p)}{2}}(1+o(1)), \\
& a_{3}=\frac{2 n p(1-p)}{\delta_{1}}(1+o(1)) e^{-\frac{\delta_{1}^{2}(1+o(1))}{2 n p(1-p)}} \\
& a_{4}=\frac{2 n p(1-p)}{\delta_{2}}(1+o(1)) e^{-\frac{\delta_{2}^{2}(1+o(1))}{2 n p(1-p)}} \\
& a_{1}+a_{3} \sim a_{1}, a_{2}+a_{4} \sim a_{2} \\
& a_{1}+a_{2}+a_{3}+a_{4} \sim \sqrt{2 \pi n p(1-p)} .
\end{aligned}
$$

The expected number of iterations in the algorithm is $\left(a_{1}+a_{2}+a_{3}+a_{4}\right) b_{n p} \sim \sqrt{2 \pi n p(1-p)} / \sqrt{2 \pi n p(1-p)}=1$. All o (.) and \sim symbols inherlt the unlformity with respect to p, as long as $\lambda \rightarrow \infty$. The unlform boundedness of the expected number of iterations follows from this.

The partlcular cholces for δ_{1}, δ_{2} are easlly seen to satisfy the convergence conditions. That they are nearly optimal (with respect to the minimization of the expected number of iterations) is now shown. The minimization of $a_{1}+a_{3}$ would provide us with a good value for δ_{1}. In the asymptotic expanstons for a_{1}, a_{3}, it is
now necessary to consider the first two terms, not Just the main term. In particular, we have

$$
\begin{aligned}
& a_{1}=\sqrt{\frac{\pi n p(1-p)}{2}} e^{c}\left(1+\frac{\delta_{1}}{4 n p}\right)=\sqrt{\frac{\pi n p(1-p)}{2}}\left(1+\frac{(9+o(1)) \delta_{1}}{4 n p}\right), \\
& a_{3}=\frac{2 n p(1-p)}{\delta_{1}} e^{-\frac{(1+o(1)) \delta_{1}{ }^{2}}{2 n p(1-p)}} \approx \frac{2 n p(1-p)}{\delta_{1}} e^{-\frac{\delta_{1}{ }^{2}}{2 n p(1-p)}}
\end{aligned}
$$

Setting the derlvative of the sum of the two right-hand-side expressions equal to zero glves the equation

$$
\frac{\delta_{1}{ }^{2}}{n p(1-p)} e^{\frac{\delta_{1}{ }^{2}}{2 n p(1-p)}}=\left(1+\frac{\delta_{1}{ }^{2}}{n p(1-p)}\right) \sqrt{n p(1-p)} \frac{8 \sqrt{2}}{8(1-p) \sqrt{\pi}}
$$

Disregarding the term " 1 " with respect to $\frac{\delta_{1}{ }^{2}}{n p(1-p)}$ and solving with respect to δ_{1} gives

$$
\delta_{1}=\sqrt{n p(1-p) \log \left(\frac{128 n p}{81 \pi(1-p)}\right)}
$$

A sultable expression for δ_{2} can be obtalned by a slmllar argument. Indeed,

$$
\begin{aligned}
a_{2}+a_{4}= & \sqrt{\frac{\pi n p(1-p)}{2}}\left(1+\frac{\delta_{2}}{4 n(1-p)}\right) \\
& +(1+o(1)) \frac{2 n p(1-p)}{\delta_{2}} e^{-\frac{(1+o(1)) \delta_{2}^{2}}{2 n p(1-p)}}
\end{aligned}
$$

Disregard the o (1) term, and set the derivative of the resulting expression with respect to δ_{2} equal to zero. This gives the equation

$$
\frac{e^{\frac{\delta_{2}^{2}}{2 n p(1-p)}}}{4 n(1-p)}=2\left(n p(1-p)+\delta_{2}^{2}\right) \sqrt{\frac{2}{\pi n p(1-p)}} \sim \sqrt{\frac{8}{\pi n p(1-p)} \delta_{2}^{2}}
$$

If \sim is replaced by equallty, then the solution with respect to δ_{2} is

$$
\delta_{2}=\sqrt{n p(1-p) \log \left(\frac{128 n(1-p)}{\pi p}\right)}
$$

Lemma 4.9 is cruclal for us. For large values of $n p$, the rejection constant is nearly 1. Also, slnce δ_{1} and δ_{2} are large compared to the standard deviation $\sqrt{n p(1-p)}$ of the distribution, the exponential talls float to inflnity as $n p \rightarrow \infty$. In other words, we exit most of the time with a properly scaled normal random varlate. At thls point we leave the algorithm. The interested readers can find more information in the exercises. For example, the evaluation of $b_{n p+i} / b_{n p}$
takes time proportional to $1+|i|$. This implles that the expected complexity grows as $\sqrt{n p(1-p)}$ when $n p \rightarrow \infty$. It can be shown that the expected complexity Is unlformly bounded if we do one of the following:
A. Use squeeze steps suggested in Lemma 4.7, and evaluate $b_{n p+i} / b_{n p}$ expllcitly when the squeeze steps fall.
B. Use squeeze steps based upon Stlyling's serles (Lemma 1.1), and evaluate $b_{n p+i} / b_{n p}$ explicitly when the squeeze steps fall.
C. Make all decisions involving factorials based upon sequentlally evaluating more and more terms in Binet's convergent serles for factorials (Lemma 1.2).
D. Assume that the log gamma function is a unlt cost function.

4.5. Recursive methods.

The recursive methods are all based upon the connection between the blnomial and beta distributions given in Lemma 4.6. This is best visualized by considering the order statistics $U_{(1)}<\cdots<U_{(n)}$ of ild uniform [0,1] random variables, and noting that the number of $U_{(i)} \mathrm{s}$ in $[0, p]$ is binomial (n, p). Let us call this quantlty X. Furthermore, $U_{(i)}$ Itself is beta ($i, n+1-i$) distributed. Because $U_{(i)}$ is approximately $\frac{i}{n+1}$, we can begin with generating a beta $(i, n+1-i)$ random varlate Y with $i=\lfloor(n+1) p\rfloor$. Y should be close to p. In any case, we have gone a long way toward solving our problem. Indeed, if $Y \leq p$, we note that X is equal to i plus the number of $U_{(j)}$'s in the interval (Y, p), which we know is binomial $\left(n-i, \frac{p-Y}{1-Y}\right.$) distributed. By symmetry, if $Y>p, X$ is equal to i minus a binomial $\left(i-1, \frac{Y-p}{Y}\right.$) random variate. Thus, the following recurslve program can be used:

Recursive binomial generator

[NOTE: n and p will be destroyed by the algorithm.]
$X \leftarrow 0, S \leftarrow+1$ (S is a sign)
REPEAT IF $n p<t$ (t is a design constant)

THEN
Generate a binomial (n, p) random variate B by a simple method such as the waiting time method.
RETURN $X \leftarrow X+S B$
ELSE
Generate a beta $(i, n+1-i)$ random variate Y with $i=\lfloor(n+1) p\rfloor$.
$X \leftarrow X+S i$
IF $Y \leq p$
THEN $n \leftarrow n-i, p \leftarrow \frac{p-Y}{1-Y}$
ELSE $S \leftarrow-S, n \leftarrow i-1, p \leftarrow \frac{Y-p}{Y}$
UNTIL False

In this slmple algorithm, we use a unlformly iast beta generator. The simple blnomial generator alluded to should be such that its expected time is $O(n p)$. Note however that it is not cruclal: the algorithm works fine even if we set $t=0$ and thus bypass the slmple binomial generator. The algorlthm halts when $n=0$, which happens with probabllity one.

Let us give an informal outline of the proof of the clalm that the expected time taken by the algorithm is bounded by a constant times $\log (\log (n))$. By the propertles of the beta distribution, $Y-p$ is of the order of $\sqrt{\frac{i(n-i)}{n^{3}}}$, i.e. It is approximately $\sqrt{p(1-p) / n}$. Since Y itself is close to p, we see that the new values for (n, p) are elther about $(n(1-p), \sqrt{p /((1-p) n)})$ or about $(n p, \sqrt{(1-p) /(p n)})$. The new product $n p$ is thus of the order of magnitude of $\sqrt{n p(1-p)}$. We see that $n p$ gets replaced at worst by about $\sqrt{n p}$ in one lteratlon. In k Iterations, we have about

$$
(n p)^{2^{-k}}
$$

Slnce we stop when this reaches t, our constant, the number of iterations should be of the order of magnitude of

$$
\log \left(\frac{\log (n p)}{\log (t)}\right)
$$

This argument can be formallzed, and the mathematically inclined reader is urged to do so (exercise 4.7). Since the loglog function increases very slowly, the recursive method can be competltive depending upon the beta generator. It was preclsely the latter polnt, poor speed of the pre-1875 beta generators, whlch prompted Relles (1972) and Ahrens and Dleter (1974) to propose slightly different recursive generators in which i is not chosen as $\lfloor(n+1) p\rfloor$, but rather as $(n+1) / 2$ when n is odd. This implies that all beta random varlates needed are symmetric beta random varlates, whlch can be generated quite efficiently. Because n gets halved at every iteration, thelr algorlthm runs $\ln O(\log (n))$ time.

4.6. Symmetric binomial random variates.

The purpose of this section is to polnt out that in the case $p=\frac{1}{2}$ a single normal dominating curve suffces in the rejection algorithm, and to present and analyze the following simple rejection algorithm:

Rejection method for symmetric binomial random variates
[NOTE: This generator returns a binomial ($2 n, \frac{1}{2}$) random variate.]
[SET-UP]
$s \leftarrow 1 / \sqrt{2\left(n^{-1}-\left(2 n^{2}\right)^{-1}\right)}, \sigma \leftarrow s+\frac{1}{4}, c \leftarrow 2 /(1+8 s)$
[GENERATOR]
REPEAT
Generate a normal random variate N and an exponential random variate E.

$$
Y \leftarrow \sigma N, X \leftarrow \operatorname{round}(Y)
$$

$$
T \longleftarrow E+c-\frac{1}{2} N^{2}+\frac{1}{n} X^{2}
$$

$$
\text { Reject } \leftarrow[|X|>n]
$$

IF NOT Reject THEN
Accept $\leftarrow\left[T<-\frac{X^{4}}{6 n^{3}\left(1-\left(\frac{|X|-1}{n}\right)^{2}\right)}\right]$
IF NOT Accept THEN
Reject $-\left\lfloor T>\frac{X^{2}}{2 n^{2}}\right]$
IF NOT Reject THEN

$$
\text { Accept } \leftarrow\left[T>\log \left(\frac{b_{n+X}}{b_{n}}\right)+\frac{X^{2}}{n}\right]
$$

UNTIL NOT Reject AND Accept
RETURN $X \leftarrow n+X$

The algorthm has one quick acceptance step and one quick rejection step designed to reduce the probability of having to evaluate the final acceptance step which involves computing the logarithms of two binomial probablilties. The valldity of the algorlthm follows from the following Lemma.

Lemma 4.10.
Let $b_{0}, \ldots, b_{2 n}$ be the probabilitles of a binomlal $(2 n, p)$ distribution. Then, for any $\sigma>s$,

$$
\left.\log \left(\frac{b_{n+i}}{b_{n}}\right) \leq c-\frac{\left(|i|+\frac{1}{2}\right)^{2}}{2 \sigma^{2}} \quad \text { (Integer } i,|i| \leq n\right)
$$

where $c=1 /\left(8\left(\sigma^{2}-s^{2}\right)\right)$. Also, for all $n>i>0$,

$$
-\frac{i^{4}}{6 n^{3}\left(1-\left(\frac{i-1}{n}\right)^{2}\right)} \leq \log \left(\frac{b_{n+i}}{b_{n}}\right)+\frac{i^{2}}{n} \leq \frac{i^{2}}{2 n^{2}} .
$$

Proof of Lemma 4.10.

We wlll use repeatedly the following fact: for $1>x>0$,

$$
\begin{aligned}
& -2 x-\frac{2 x^{3}}{3\left(1-x^{2}\right)}<\log \left(\frac{1-x}{1+x}\right)<-2 x-\frac{2 x^{3}}{3} \\
& -\frac{1}{2} x^{2}<\log (1+x)-x<0
\end{aligned}
$$

The first lnequality follows from the fact that $\log \left(\frac{1-x}{1+x}\right)$ has serles expansion $-2\left(x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots\right)$. Thus, for $n>i>0$,

$$
\begin{aligned}
& \log \left(\frac{b_{n+i}}{b_{n}}\right)=\log \left(\frac{n!n!}{(n+i)!(n-i)!}\right)=\log \left(\prod_{j=1}^{i-1} \frac{1-\frac{j}{n}}{1+\frac{j}{n}} \frac{1}{1+\frac{i}{n}}\right) \\
& =\sum_{j=1}^{i-1}\left(\log \left(\frac{1-\frac{j}{n}}{1+\frac{j}{n}}\right)+\frac{2 j}{n}\right)-\left(\log \left(1+\frac{i}{n}\right)-\frac{i}{n}\right)-\frac{i^{2}}{n} \\
& =c_{i}+d_{i}-\frac{i^{2}}{n} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& 0+\frac{1}{2}\left(\frac{i}{n}\right)^{2} \geq c_{i}+d_{i} \\
& \geq-\sum_{j=1}^{i-1} \frac{2}{3}\left(\frac{j}{n}\right)^{3}\left(1-\left(\frac{j}{n}\right)^{2}\right)^{-1}+0 \\
& \geq-\frac{2}{3}\left(1-\left(\frac{i-1}{n}\right)^{2}\right)^{-1} \sum_{j=1}^{i-1}\left(\frac{j}{n}\right)^{3}
\end{aligned}
$$

$$
\geq-\frac{2}{3}\left(1-\left(\frac{i-1}{n}\right)^{2}\right)^{-1} \frac{i^{4}}{4 n^{3}}
$$

Thus,

$$
\log \left(\frac{b_{n+i}}{b_{n}}\right) \leq-\frac{i^{2}}{n}+\frac{i^{2}}{2 n^{2}}=-\frac{i^{2}}{2 s^{2}} \leq c-\frac{\left(|i|+\frac{1}{2}\right)^{2}}{2 \sigma^{2}} \quad(|i| \leq n)
$$

where

$$
c=\sup _{u>0} \frac{\left(u+\frac{1}{2}\right)^{2}}{2 \sigma^{2}}-\frac{u^{2}}{2 s^{2}}
$$

Assuming that $\sigma>s$, this supremum is reached for

$$
u=\frac{s^{2}}{2\left(\sigma^{2}-s^{2}\right)}, c=\frac{1}{8\left(\sigma^{2}-s^{2}\right)}
$$

The dominating curve suggested by Lemma 4.11 is a centered normal density with varlance σ^{2}. The best value for σ is that for which the area $\sqrt{2 \pi} \sigma e^{c}$ is minimal. Setting the derlvative with respect to σ of the logarithm of this expresslon equal to 0 gives the equation

$$
\sigma^{2}-\frac{1}{2} \sigma-s^{2}=0
$$

The solution is $\sigma=\frac{1}{4}+s \sqrt{1+1 /\left(18 s^{2}\right)}=\frac{1}{4}+s+o$ (1). It is for thls reason that the value $\sigma=s+\frac{1}{4}$ was taken in the algorithm. The corresponding value for c is $2 /(1+8 s)$.

The expected number of Iterations is $b_{n} \sqrt{2 \pi} \sigma e^{c} \sim \frac{1}{\sqrt{\pi n}} \sqrt{2 \pi} \sqrt{\frac{n}{2}}=1$ as $n \rightarrow \infty$. Assuming that b_{n+i} / b_{n} takes time $1+|i|$ when evaluated explicitly, it Is clear that without the squeeze steps, we would have obtained an expected time which would grow as \sqrt{n} (because the i is distributed as σ times a normal random variate). The efflclency of the squeeze steps is highlighted in the following Lemma.

Lemma 4.11.

The algorithm shown above is unlformly fast in n when the quick acceptance step is used. If in addition a quick rejection step is used, then the expected time due to the explicit evaluation of b_{n+i} / b_{n} is $O(1 / \sqrt{n})$.

Proof of Lemma 4.11.

Let $p(x)$ be the probability that the inequallty in the quick acceptance step is not satisfled for fixed $X=x$. We have $P(|X| \geq 1+n \sqrt{5 / 8})=O\left(r^{-n}\right)$ for some $r>1$. For $|x| \leq 1+n \sqrt{5 / 8}$, we have in vlew of $\left|Y^{2}-x^{2}\right| \leq\left(|x|+\frac{1}{2}\right) / 2$,

$$
\begin{aligned}
& p(x) \leq P\left(-E+c-\frac{\left(x^{2}-\frac{1}{4}-\frac{|x|}{2}\right)}{2 \sigma^{2}}+\frac{x^{2}}{n}>-\frac{x^{4}}{n^{3}}\right) \\
& \leq P\left(E<c+\frac{1}{8 \sigma^{2}}+\frac{|x|}{4 \sigma^{2}}+x^{2}\left(\frac{1}{n}-\frac{1}{2 \sigma^{2}}\right)+\frac{x^{4}}{n^{3}}\right) \\
& \leq 2 c+\frac{|x|}{4 \sigma^{2}}+x^{2}\left(\frac{1}{n}-\frac{1}{2 \sigma^{2}}\right)+\frac{x^{4}}{n^{3}} \\
& =O\left(n^{-\frac{1}{2}}\right)+|x| O\left(n^{-1}\right)+x^{2} O\left(n^{-\frac{3}{2}}\right)+x^{4} O\left(n^{-3}\right) .
\end{aligned}
$$

Thus, the probabllity that a couple (X, E) does not satisfy the quick acceptance condition is $E(p(X))$. Since $E(|X|)=O(\sigma)=O(\sqrt{n}), E\left(X^{2}\right)=O(n)$ and $E\left(X^{4}\right)=O\left(n^{2}\right)$, we conclude that $E(p(X))=O(1 / \sqrt{n})$. If every time we rejected, we were to start afresh with a new couple (X, E), the expected number of such couples needed before halting would be $1+O(1 / \sqrt{n})$. Using this, it is also clear that in the algorithm without quick rejection step, the expected time is bounded by a constant times $1+E(|X| p(X))$. But

$$
\begin{aligned}
& E(|X| p(X)) \leq E\left(|X| I_{||X|>1+n \sqrt{5 / 6 \mid}}\right)+E(|X|) O\left(n^{-\frac{1}{2}}\right) \\
& +E\left(X^{2}\right) O\left(n^{-1}\right)+E\left(|X|^{3}\right) O\left(n^{-\frac{3}{2}}\right)+E\left(|X|^{5}\right) O\left(n^{-3}\right) \\
& =O(1)
\end{aligned}
$$

This concludes the proof of the first statement of the Lemma. If a quick rejection step is added, and $q(x)$ is the probabillty that for $X=x$, both the quick acceptance and refection steps are falled, then, argulng as before, we see that for $|x| \leq 1+n \sqrt{5 / \theta}$,

$$
q(x) \leq \frac{x^{4}}{n^{3}}+\frac{x^{2}}{n^{2}} .
$$

Thus, the probability that both Inequalitles are violated is

$$
E(q(X)) \leq \frac{E\left(X^{4}\right)}{n^{3}}+\frac{E\left(X^{2}\right)}{n^{2}}+P(|X| \geq 1+n \sqrt{5 / 8})=O\left(\frac{1}{n}\right) .
$$

The expected time spent on explicitly evaluating factorials is bounded by a constant times $1+E(|X| q(X))=O(1 / \sqrt{n})$.

4.7. The negative binomial distribution.

In sectlon X.1, we introduced the negative binomial distribution with parameters (n, p), where $n \geq 1$ is an integer and $p \in(0,1)$ is a real number as the distributlon of the sum of n lld geometric random varlables. It has generating function

$$
\left(\frac{p}{1-(1-p) s}\right)^{n}
$$

Using the binomial theorem, and equating the coefflcients of s^{i} with the probabllitles p_{i} for all i shows that the probabllitles are

$$
P(X=i)=p_{i}=\binom{-n}{i} p^{n}(-1+p)^{i}=\binom{n+i-1}{i} p^{n}(1-p)^{i} \quad(i \geq 0)
$$

When $n=1$, we obtain the geometric (p) distribution. For $n=1, X$ is distributed as the number of fallures in a sequence of independent experiments, each having success probabllity p, before the n-th success is encountered. From the propertles of the geometric distribution, we see that the negative binomial distributipn has mean $\frac{n(1-p)}{p}$ and varlance $\frac{n(1-p)}{p^{2}}$.

Generation by summing n Ild geometric p random varlates ylelds at best an algorithm taking expected time proportional to n. The situation is even worse if we employ Example 1.4, In which we showed that it suffices to sum N Ild logarlthmic serles ($1-p$) random varlates where N itself is Polsson (λ) and $\lambda=n \log \left(\frac{1}{p}\right)$. Here, at best, the expected time grows as $E(N)=n \log \left(\frac{1}{p}\right)$.

The property that one can use to construct a unlformly fast generator is obtalned in Example 1.5: a negative binomlal random varlate can be generated as a Polsson (Y) random varlate where Y in turn is a gamma ($n, \frac{1-p}{p}$) random varlate. The same can be achleved by designing a uniformly fast rejection algorithm from scratch.

4.8. Exercises.

1. Binomial random variates from Poisson random variates. This exerclse is motlvated by an Idea first proposed by Fishman (1979), namely to generate binomlal random varlates by rejectlon from Poisson random varlates. Let b_{i} be the probabllity that a binomlal (n, p) random varlable takes the value i, and let p_{i} be the probabllity that a Polsson $((n+1) p)$ random varlable takes the value i.
A. Prove the cruclal inequally $\sup _{i} b_{i} / p_{i} \leq e^{1 /(12(n+1))} / \sqrt{1-p}$, valld for all n and p. Since we can without loss of generallty assume that $p \leq \frac{1}{2}$, this implles that we have a uniformly fast binomial generator if
we have a unlformly fast Polsson generator, and if we can handle the evaluation of b_{i} / p_{i} in unlformly bounded time. To prove the inequallty, start with Inequalitles for the factorlal given In Lemma 1.1, write i as $(n+1) p+x$, note that $x \leq(n+1)(1-p)$, and use the inequallty $1+u \geq e^{u /(1+u)}$, valld for all $u>-1$.
B. Give the detalls of the rejection algorithm, in which factorlals are squeezed by using the zero-term and one-term bounds of Lemma 1.1, and are expllcitly evaluated as products when the squeezing falls.
C. Prove that the algorlthm given in B is unlformly fast over all $n \geq 1, p \leq 1 / 2$ if Polsson random varlates are generated in unlformly bounded expected tlme (not worst case tlme).
2. Bounds for the mode of the binomial distribution. Consider a blnomial (n, p) distribution \ln which $n p$ is integer. Then the mode m is at $n p$, and

$$
\binom{n}{m} p^{m}(1-p)^{n-m} \leq \frac{e^{\frac{1}{12(n+1)}+\frac{1}{n^{2} p(1-p)+n+1}}}{\sqrt{2 \pi n p(1-p)}} \leq \frac{2}{\sqrt{2 \pi n p(1-p)}}
$$

Prove this inequallty by using the Stirilng-Whittaker-Watson inequallty of Lemma 1.1, and the inequalities $e^{u /(1+u)} \leq 1+u \leq e^{u}$, valld for $u \geq 0$ (Devroye and Naderisamanl, 1980).
3. Add the squeeze steps suggested in the text to the normal-exponential algorithm, and prove that with thls addltion the expected complexity of the algorithm is unformly bounded over all $n \geq 1,0<p \leq \frac{1}{2}, n p$ integer (Devroye and Naderisamanl, 1980).
4. A continuation of the previous exercise. Show that for flxed $p \leq \frac{1}{2}$, the expected time spent on the expllcit evaluation of $b_{n p+i} / b_{n p}$ is $O(1 / \sqrt{n p(1-p)})$ as $n \rightarrow \infty$. (This implles that the squeeze steps of Lemma 4.7 are very powerful Indeed.)
5. Repeat exerclse 3 but use squeeze steps based upon bounds for the log gamma function given in Lemma 1.1.
8. The.hypergeometric distribution. Suppose an urn contalns N balls, of which M are white and $N-M$ are black. If a sample of n balls is drawn at random without replacement from the urn, then the number (X) of white balls drawn is hypergeometrically distrlbuted with parameters n, M, N. We have

$$
P(X=i)=\frac{\binom{M}{i}\binom{N-M}{n-i}}{\binom{N}{n}} \quad(\max (0, n-N+M) \leq i \leq \min (n, M))
$$

X.4.THE BINOMIAL DISTRIBUTION

Note that the same distribution is obtalned when n and M are interchanged. Note also that if we had sampled with replacement, we would have obtalned the binomial ($n, \frac{M}{N}$) distribution.
A. Show that if a hypergeometric random varlate is generated by rejection from the binomlal ($n, \frac{M}{N}$) distribution, then we can take $\left(1-\frac{n}{N}\right)^{-n}$ as rejection constant. Note that this tends to 1 as $n^{2} / N \rightarrow 0$.
B. Using the facts that the mean is $n \frac{M}{N}$, that the varlance σ^{2} is $\left\{\begin{array}{l}\frac{N-n}{N-1} n \frac{M}{N}\left(1-\frac{M}{N}\right) \text {, and that the distribution is unimodal with a mode at } \\ (n+1) \frac{M+1}{N+2}\end{array}\right\}$, give the detalls for the universal rejection algorithm of section X.1. Comment on the expected tlme complexity, i.e. on the maximal value for $(\sigma B)^{2 / 3}$ where B is an upper bound for the value of the distribution at the mode.
C. Find a function $g(x)$ consisting of a constant center plece and two exponential talls, having the propertles that the area under the function is uniformly bounded, and that the function has the property that for every i and all $x \in\left[i-\frac{1}{2}, i+\frac{1}{2}\right), g(x) \geq P(X=i)$. Glve the correspondIng rejection algorithm (hint: recall the universal rejection algorithm of section X.1) (Kachltvichyanukul, 1982; Kachltvichyanukul and Schmelser, 1985).
7. Prove that for all constant $t>0$, there exists a constant C only depending upon t. such that the expected time needed by the recursive binomlal algorithm given in the text is not larger than $C \log (\log (n+10))$ for all n and p. The term "10" is added to make sure that the loglog function is always strictly positive. Show also that for a fixed $p \in(0,1)$ and a flxed $t>0$, the expected time of the algorithm grows as a constant times $c \log (\log (n))$ as $n \rightarrow \infty$, where c depends upon p and t only. If tlme is equated with the number of beta random varlates needed before halting, determine c.

5. THE LOGARITHMIC SERIES DISTRIBUTION.

5.1. Introduction.

A random varlable X has the logarithmic series distribution with parameter $p \in(0,1)$ If

$$
P(X=i)=p_{i}=\frac{a}{i} p^{i} \quad(i=1,2, \ldots)
$$

where $a=-1 / \log (1-p)$ is a normallzation constant. In the tall, the probabllitles decrease exponentlally. Its generating function is

$$
a \sum_{i=1}^{\infty} \frac{1}{i} p^{i} s^{i}=\frac{\log (1-p s)}{\log (1-p)} .
$$

From this, one can easily find the mean $a p /(1-p)$ and second moment $a p /(1-p)^{2}$.

5.2. Generators.

The materlal in this section is based upon the fundamental work of Kemp (1981) on logarithmic serles distrlbutions. The problems with the logarithmic serles distribution are best highlighted by noting that the obvious inversion and rejection methods are not unlformly fast.

If we were to use sequential search in the inversion method, using the recurrence relation

$$
p_{i}=\left(1-\frac{1}{i}\right) p p_{i-1} \quad(i \geq 2)
$$

the inversion method could be implemented as follows:

Inversion by sequential search

[SET-UP]
Sum $\leftarrow-p / \log (1-p)$
[GENERATOR]
Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 1$
WHILE $U>$ Sum DO

$$
\begin{aligned}
& U \leftarrow U-\operatorname{Sum} \\
& X \leftarrow X+1 \\
& \operatorname{Sum} \leftarrow \operatorname{Sum} \frac{p(X-1)}{X}
\end{aligned}
$$

RETURN X

The expected number of comparisons required is equal to the mean of the distribution, $a p /(1-p)$, and this quantlty increases monotonlcally from $1(p \downarrow 0)$ to $\infty(p \uparrow \infty)$. For $p<0.95$, it is difficult to beat this simple algorithm in terms of expected time. Interestingly, if rejection from the geometric distribution $(1-p) p^{i}(i \geq 1)$ is used, the expected number of geometrlc random varlates required is again equal to the same mean. But because the geometric random
varlates themselves are rather costly, the sequentlal search method is to be preferred at this stage.

We can obtaln a one-llne generator based upon the following distributional property:

Theorem 5.1. (Kendall (1948), Kemp (1981))

Let U, V be lid uniform $[0,1]$ random varlables. Then

$$
X \leftarrow\left\{1+\frac{\log (V)}{\log \left(1-(1-p)^{U}\right)}\right\}
$$

has the logarlthmic serles distribution with parameter p.

Proof of Theorem 5.1.

The logarithmic serles distribution is the distrlbution of a geometric (1-Y) random varlate X (..e. $P(X=i \mid Y)=Y(1-Y)^{i-1}(i \geq 1)$), provlded that Y has distribution function

$$
F(y)=\int_{0}^{y} \frac{1}{(z-1) \log (1-p)} d z=\frac{\log (1-y)}{\log (1-p)} \quad(0 \leq y \leq p)
$$

This can be seen from the Integral

$$
\int_{0}^{p} \frac{s(1-y)}{(1-y s)(y-1) \log (1-p)} d y=\frac{\log (1-p s)}{\log (1-p)}
$$

and from the fact that the generating function of a geometric ($1-Y$) random varlate is $\frac{s(1-Y)}{(1-Y s)}$. A random variable Y with distribution function F can be obtained by the inversion method as $Y \leftarrow 1-(1-p)^{U}$ where U is a uniform $[0,1]$ random varlable.

Kemp (1981) has suggested two clever tricks for accelerating the algorlthm suggested by Theorem 5.1. First, when $V>p$, the value $X \leftarrow 1$ is dellvered because

$$
V>p \geq 1-(1-p)^{U} .
$$

For small p, the savings thus obtalned are enormous. We summarize:

Kemp's generator with acceleration
[SET-UP]
$r \leftarrow \log (1-p)$
[GENERATOR]
$X \leftarrow 1$
Generate a uniform $[0,1]$ random variate V.
IF $V \geq p$
THEN RETURN X ELSE

Generate a uniform $[0,1]$ random variate U.
$\operatorname{RETURN} X \leftarrow\left\{1+\frac{\log (V)}{\log \left(1-e^{r U}\right)}\right\}$

Kemp's second trick involves taking care of the values 1 and 2 separately. He notes that $X=1$ if and only if $V \geq 1-e^{r U}$, and that $X \in\{1,2\}$ if and only if $V \geq\left(1-e^{r U}\right)^{2}$ where r is as in the algorithm shown above. The algorithm incorporating this is given below.

Kemp's second accelerated generator

[SET-UP]
$r \leftarrow \log (1-p)$
[GENERATOR]
$X \leftarrow 1$
Generate a uniform $[0,1]$ random variate V.
IF $V \geq p$
THEN RETURN X
ELSE
Generate a uniform $[0,1]$ random variate U.
$q \leftarrow 1-e^{r U}$
CASE

$$
\begin{aligned}
& V \leq q^{2}: \operatorname{RETURN} X \leftarrow\left\{1+\frac{\log (V)}{\log (q)}\right\} \\
& q^{2}<V \leq q: \operatorname{RETURN} X-1 \\
& V>q: \operatorname{RETURN} X \leftarrow 2
\end{aligned}
$$

5.3. Exercises.

1. The following logarithmic serles generator is based upon rejection from the geometric distribution:

Logarithmic series generator based upon rejection

REPEAT

Generate a uniform $[0,1]$ random variate U and an exponential random variate E.

$$
X \leftarrow\left\lceil-\frac{E}{\log (p)}\right\rceil
$$

UNTIL $U X<1$
RETURN X

Show that the expected number of exponentlal random varlates needed is equal to the mean of the logarithmic serles distribution, i.e. $-p /((1-p) \log (1-p))$. Show furthermore that this number increases monotonlcally to ∞ as $p \uparrow 1$.
2. The generalized logarithmic series distribution. Patel (1881) has proposed the following generallzation of the logarithmic serles distribution with parameter p :

$$
p_{i}=\frac{p^{i}(1-p)^{b i-i} \Gamma(b i)}{-i \log (1-p) \Gamma(i) \Gamma(b i-i+1)} \quad(i \geq 1)
$$

Here $b \geq 1$ is a new parameter satisfying the Inequallty

$$
0<p b\left(\frac{b-b p}{b-1}\right)^{b-1}<1
$$

Suggest one or more efficient generators for this two-parameter famlly.
3. Consider the following discrete distribution:

$$
p_{i}=\frac{1}{c i} \quad(1 \leq i \leq k)
$$

where the integer k can be considered as a parameter, and c is a normalizatlon constant. Show that the following bounded workspace algorithm generates random varlates with this distribution:

REPEAT
Generate iid uniform $[0,1]$ random variates U, V.

$$
\begin{aligned}
& Y \leftarrow(k+1)^{v} \\
& X \leftarrow\lfloor Y\rfloor
\end{aligned}
$$

UNTIL $2 V X<Y$
RETURN X

Analyze the expected number of lterations as a function of k. Suggest at least one effectlve Improvement.

6. THE ZIPF DISTRIBUTION.

6.1. A simple generator.

In linguistics and soclal sclences, the Zipf distribution is frequently used to model certain quantities. Thls distribution has one parameter $a>1$, and is deflned by the probabilities

$$
p_{i}=\frac{1}{s(a) i^{a}} \quad(i \geq 1)
$$

where

$$
\varsigma(a)=\sum_{i=1}^{\infty} \frac{1}{i^{a}}
$$

Is the Rlemann zeta function. Simple expressions for the zeta function are known in special cases. For example, when a is integer, then

$$
\varsigma(2 a)=\frac{2^{2 a-1} \pi^{2 a}}{(2 a)!} B_{a}
$$

where B_{a} is the $a-t h$ Bernoull number (Titchmarsh, 1951, p. 20). Thus, for $a=2,4,6$ we obtaln the probabillty vectors $\left\{6 /(\pi i)^{2}\right\},\left\{90 /(\pi i)^{4}\right\}$ and $\left\{945 /(\pi i)^{6}\right\}$ respectively.

To generate a random Zipf variate in unlformly bounded expected time, we propose the rejection method. Consider for example the distribution of the random varlable $Y \leftarrow\left\{U^{-1 /(a-1)}\right\}$ where U is uniformly distributed on $[0,1]$:

$$
P(Y=i)=\frac{1}{(i+1)^{a-1}}\left(\left(1+\frac{1}{i}\right)^{a-1}-1\right) \quad(i \geq 1)
$$

This distribution is a good candidate because the probabilities vary as $(a-1) i^{-a}$ as $i \rightarrow \infty$. For the sake of slmpliclty, let us deflne $q_{i}=P(Y=i)$. First, we note that the rejection constant c is

$$
c=\sup _{i \geq 1} \frac{p_{i}}{q_{i}}=\frac{p_{1}}{q_{1}}=\frac{2^{a-1}}{\varsigma(a)\left(2^{a-1}-1\right)} .
$$

Hence, the following rejection algorithm can be used:

A Zipf generator based upon rejection

```
[SET-UP]
```

$b \leftarrow 2^{a-1}$
[GENERATOR]
REPEAT
Generate ild uniform $[0,1]$ random variates U, V.

$$
\begin{aligned}
& X \leftarrow\left\lfloor U^{-\frac{1}{a-1}}\right\rfloor \\
& T \leftarrow\left(1+\frac{1}{X}\right)^{a-1}
\end{aligned}
$$

UNTIL $V X \frac{T-1}{b-1} \leq \frac{T}{b}$
RETURN X

Lemma 6.1.

The rejectlon constant c in the rejection algorithm shown above satlsfles the following properties:
A. $\sup _{a \geq 2} c \leq \frac{12}{\pi^{2}}$.
B. $\sup _{1<a \leq 2} c \leq \frac{2}{\log (2)}$
C. $\lim _{a \rightarrow \infty} c=1$.
D. $\quad \lim _{a \downarrow 1} c=\frac{1}{\log (2)}$.

Proof of Lemma 6.1.

Part A follows from

$$
c \leq \frac{2^{a-1}}{2^{a-1}-1} \frac{6}{\pi^{2}} \leq \frac{12}{\pi^{2}} .
$$

Part B follows from

$$
\begin{aligned}
& c \leq \frac{2^{a-1}}{\left(2^{a-1}-1\right) \int_{1}^{\infty} x^{-a} d x}=\frac{(a-1) 2^{a-1}}{2^{a-1}-1} \\
& \leq \frac{(a-1) 2^{a-1}}{(a-1) \log (2)}=\frac{2^{a-1}}{\log (2)} \leq \frac{2}{\log (2)}
\end{aligned}
$$

Part C follows by observing that $\varsigma(a) \rightarrow 1$ as $a \uparrow \infty$. Finally, part D uses the fact that $s(a) \sim \frac{1}{a-1}$ as $a \downarrow 1$ (In fact, $s(a)-\frac{1}{a-1} \rightarrow \gamma$, Euler's constant (Whittaker and Watson, 1827, p. 271).

6.2. The Planck distribution.

The Planck distribution is a two-parameter distribution with density

$$
f(x)=\frac{b^{a+1}}{\Gamma(a+1) \varsigma(a+1)} \frac{x^{a}}{e^{b x}-1} \quad(x>0)
$$

Here $a>0$ is a shape parameter and $b>0$ is a scale parameter (Johnson and Kotz, 1970). The density f can be written as a mlxture:

$$
f(x)=\sum_{i=1}^{\infty} \frac{1}{i^{a+1} \leftrightarrows(a+1)} \frac{x^{a} e^{-i b x}(i b)^{a+1}}{\Gamma(a+1)}
$$

In vlew of this, the following algorithm can be used to generate a random varlate with the Planck distrlbution.

Planck random variate generator

Generate a gamma ($a+1$) random variate G.
Generate a Zipf $(a+1)$ random variate Z.
RETURN $X \leftarrow \frac{G}{b Z}$.

6.3. The Yule distribution.

SImon $(1954,1960)$ has suggested the Yule distribution as a better approximation of word frequencles than the Zipf distribution. He deffined the discrete distribution by the probabllitles

$$
p_{i}=c(a) \int_{0}^{1}(1-u)^{i-1} u^{a-1} d u \quad(i \geq 1)
$$

where $c(a)$ is a normalization constant and $a>1$ is a parameter. Using the fact that this is a mixture of the geometric distribution with parameter $e^{-Y /(a-1)}$ where Y is exponentlally distributed, we conclude that a random varlate X with the Yule distribution can be generated as

$$
X \leftarrow\left\lceil-\frac{E}{\log \left(1-e^{-\frac{E *}{a-1}}\right)}\right\rceil
$$

where $E, E *$ are lld exponentlal random varlates.

6.4. Exercises.

1. The digamma and trigamma distributions. Slbuya (1979) Introduced two distributions, termed the digamma and trigamma distributions. The dlgamma distrlbution has two parameters, a, c satisfying $c>0, a>-1$, $a+c>0$. It is defined by

$$
p_{i}=\frac{1}{\psi(a+c)-\psi(c)} \frac{a(a+1) \cdots(a+i-1)}{i(a+c)(a+c+1) \cdots(a+c+i-1)} \quad(i \geq 1)
$$

Here ψ is the derlvative of the log gamma function, 1.e. $\psi=\Gamma^{\prime} / \Gamma$. When we let $a \downarrow 0$, the trigamma distrlbution with parameter $c>0$ is obtalned:

$$
p_{i}=\frac{1}{\psi^{\prime}(c)} \frac{(i-1)!}{i c(c+1) \cdots(c+i-1)} \quad(i \geq 1)
$$

For $c=1$ this is a zeta distribution. Discuss random varlate generation for this famlly of distributions, and provide a uniformly fast rejection algorithm.

Chapter Eleven
 MULTIVARIATE DISTRIBUTIONS

1. GENERAL PRINCIPLES.

1.1. Introduction.

In section V.4, we have discussed in great detall how one can efficiently generate random vectors in R^{d} with radially symmetric distributions. Included in that section were methods for generating random vectors uniformly distributed in and on the unlt sphere C_{d} of R^{d}. For example, when N_{1}, \ldots, N_{d} are ild normal random varlables, then

$$
\left(\frac{N_{1}}{N}, \ldots, \frac{N_{d}}{N}\right)
$$

where $N=\sqrt{N_{1}{ }^{2}+\cdots+N_{d}{ }^{2}}$, is uniformly distributed on the surface of C_{d}. This unliorm distribution is the bullding block for all radlally symmetric distributlons because these distributions are all scale mixtures of the unlform distribution on the surface of C_{d}. This sort of technique is called a special property technique: it explolts certain characteristics of the distrlbution. What we would llke to do here is give several methods of attacking the generation problem for d dimenslonal random vectors, including many special property techniques.

The material has little global structure. Most sections can in fact be read independently of the other sections. In this introductory section several general princlples are described, Including the conditional distribution method. There is
 subclasses of dlstributions, such as unlform distrlbutions on compact sets, elliptlcally symmetric distributions (lncluding the multivarlate normal distribution), blvarlate unlform distributions and distrlbutions on llnes.

1.2. The conditional distribution method.

The conditlonal distribution method allows us to reduce the multivariate generation problem to d unlvarlate generation problems, but it can only be used when quite a blt of information is known about the distribution.

Assume that our random vector \mathbf{X} has density

$$
f\left(x_{1}, \ldots, x_{d}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2} \mid x_{1}\right) \cdots f_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right),
$$

where the f_{i} 's are conditional densitles. Generation can proceed as follows:

Conditional distribution method

FOR $i:=1$ TO d DO
Generate X_{i} with density $f_{i}\left(. \mid X_{1}, \ldots, X_{i-1}\right)$. (For $i=1$, use $f_{1}($.$))$
RETURN $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$

It is necessary to know all the conditional densitles. This is equivalent to knowing all marginal distrlbutlons, because

$$
f_{i}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=\frac{f_{i}^{*}\left(x_{1}, \ldots, x_{i}\right)}{f_{i-1}^{*}\left(x_{1}, \ldots, x_{i-1}\right)}
$$

where f_{2}^{*} is the marginal density of the flrst i components, l.e. the density of (X_{1}, \ldots, X_{i}).

Example 1.1. The multivariate Cauchy distribution.

The multivarlate Cauchy density f is given by

$$
f(x)=\frac{c}{\left(1+||x||^{2}\right)^{\frac{d+1}{2}}},
$$

where $c=\Gamma\left(\frac{d+1}{2}\right) / \pi^{(d+1) / 2}$. Here $\left|\left|.| |\right.\right.$ is the standard L_{2} EucIIdean norm. It Is known that X_{1} is unlvarlate Cauchy, and that given X_{1}, \ldots, X_{i-1}, the random varlable X_{i} is distributed as $T\left(1+\sum_{j=1}^{i-1} X_{j}\right) / \sqrt{i}$ where T has the t distributlon with i degrees of freedom (Johnson and Kotz, 1970).

Example 1.2. The normal distribution.

Assume that f is the density of the zero mean normal distribution on R^{2}, with varlance-covarlance matrix $\mathbf{A}=\left\{a_{i j}\right\}$ where $a_{i j}=E\left(X_{i} X_{j}\right)$:

$$
f(x)=\frac{1}{2 \pi \sqrt{|\mathbf{A}|}} e^{-\frac{1}{2} x^{\prime} \mathbf{A}^{-1} x}
$$

In this case, the conditional density method ylelds the following algorithm:

Conditional density method for normal random variates

Generate N_{1}, N_{2}, iid normal random variates.
$X_{1} \leftarrow N_{1} \sqrt{a_{11}}$
$X_{2} \leftarrow \frac{a_{21}}{a_{11}} X_{1}+N_{2} \sqrt{\frac{a_{22} a_{11}-a_{21}{ }^{2}}{a_{11}}}$
RETURN (X_{1}, X_{2})

This follows by noting that X_{1} is zero mean normal with varlance a_{11}, and computing the conditional density of X_{2} given X_{1} as a ratio of marginal densities.

Example 1.3.

Let f be the uniform density in the unit clrcle C_{2} of R^{2}. The conditional denslty method is easlly obtalned:

Generate X_{1} with density $f_{1}(x)=\frac{2}{\pi} \sqrt{1-x^{2}}(|x| \leq 1)$.
Generate X_{2} uniformly on $\left[-\sqrt{1-X_{2}^{2}}, \sqrt{1-X_{1}^{2}}\right]$.
RETURN (X_{1}, X_{2})

In all three examples, we could have used alternative methods. Examples 1.1 and 1.2 deal with easlly treated radially symmetric distributions, and Example 1.3 could have been handled via the ordinary rejection method.

1.3. The rejection method.

It should be clear that the rejection method is not tied to a particular space. It can be used in multivarlate random varlate generation problems, and is probably the most useful general purpose technique here. A few traps to watch out for are worth mentioning. First of all, rejection from a unlform density on a rectangle of R^{d} often leads to a rejection constant which deterlorates quickly as d increases. A case in point is the rejection method for generating points unlformly In the unlt sphere of R^{d} (see section V.4.3). Secondly, unllke $\ln R^{1}$, upper bounds for certaln densitles are not easily obtalnable. For example, the Information that f is unlmodal with a mode at the origin is of ilttle use, whereas $\ln R^{1}$, the same information allows us to conclude that $f(x) \leq 1 /|x|$. Similarly, combining unimodality with moment conditions is not enough. Even the fact that f is log-concave is not sufficient to derlve unlversally applicable upper bounds (see sectlon VII.2).

In general, the design of an efflclent rejection method is more difflcult than in the unlvarlate case.

1.4. The composition method.

The composition method is not tled to a particular space such as R^{1}. A popular technlque for obtalning dependence from independence is the following: define a random vector $\mathrm{X}=\left(X_{1}, \ldots, X_{d}\right)$ as $\left(S Y_{1}, \ldots, S Y_{d}\right)$ where the S_{i} 's are Ild random varlables, and S is a random scale. In such cases, we say that the distribution of \mathbf{X} is a scale mixture. If Y_{1} has density f, then \mathbf{X} has a density glven by

$$
E\left(\prod_{i=1}^{d}\left(\frac{1}{S} f\left(\frac{x_{i}}{S}\right)\right)\right)
$$

If Y_{1} has distribution function $F=1-G$, then

$$
P\left(X_{1}>x_{1}, \ldots, X_{d}>x_{d}\right)=E\left(\prod_{i=1}^{d} G\left(\frac{x_{i}}{S}\right)\right)
$$

Example 1.4. The multivariate Burr distribution.

When Y_{1} is Welbull with parameter a (1.e. $G(y)=e^{-y^{a}} \quad(y>0)$), and S is gamma (b), then ($S Y_{1}, \ldots, S Y_{d}$) has distribution function determined by

$$
\begin{aligned}
& P\left(X_{1}>x_{1}, \ldots, X_{d}>x_{d}\right)=E\left(\prod_{i=1}^{d} e^{-\left(x_{i} / S\right)^{a}}\right) \\
& =\int_{0}^{\infty} \frac{s^{b-1} e^{-s}}{\Gamma(b)} e^{-s^{-c}\left(\sum_{i=1}^{d} x_{i}{ }^{d}\right)} d s \\
& =\frac{1}{\left(1+\sum_{i=1}^{d} x_{i}^{a}\right)^{b}} \quad\left(x_{i}>0, i=1,2, \ldots, d\right) .
\end{aligned}
$$

This defines the multivarlate Burr distribution of Takahasi (1985). From thls relation it is also easily seen that all unlvarlate or multivarlate marginals of a multivarlate Burr distrlbution are unlvarlate or multivarlate Burr distributions. For more examples of scale mixtures in which S is gamma, see Hutchinson (1981).

Example 1.5. The multinomial distribution.

The conditional distribution method is not limited to continuous distributions. For example, consider the multinomial distribution with parameters n, p_{1}, \ldots, p_{d} where the p_{i} 's form a probabllity vector and n is a positive integer. A random vector $\left(X_{1}, \ldots, X_{d}\right)$ is multinomlally distributed with these parameters when

$$
\begin{gathered}
P\left(\left(X_{1}, \ldots, X_{d}\right)=\left(i_{1}, \ldots, i_{d}\right)\right)=\frac{n!}{\prod_{j=1}^{d} i_{j}!} \prod_{j=1}^{d} p_{j}^{i_{j}} \\
\left(i_{j} \geq 0, j=1, \ldots, d ; \sum_{j=1}^{d} i_{j}=n\right)
\end{gathered}
$$

This is the distribution of the cardinalitles of d urns into which n balls are thrown at random and independently of each other. Urn number j is selected with probabillty p_{j} by every ball. The ball-In-urn experiment can be mimicked, which leads us to an algorithm taking time $O(n+d)$ and $\Omega(n+d)$. Note however that X_{1} is binomial (n, p_{1}), and that given X_{1}, the vector (X_{2}, \ldots, X_{d}) is multinomial $\left(n-X_{1}, q_{2}, \ldots, q_{d}\right.$) where $q_{j}=p_{j} /\left(1-p_{1}\right)$. This recurrence relation is nothing but another way of describing the conditional distribution method for this case. With a uniformly fast binomlal generator we can proceed in expected tlme $O(d)$ unlformly bounded in n :

Multinomial random vector generator

[NOTE: the parameters n, p_{1}, \ldots, p_{d} are destroyed by this algorithm. Sum holds a cumulative sum of probabilities.]
Sum ↔0
FOR $i:=1$ TO d DO
Generate a binomial ($n, \frac{p_{i}}{S}$) random vector X_{i}.
$n \leftarrow n-X_{i}$
Sum $\leftarrow \operatorname{Sum}-p_{i}$

For small values of n, it is unlikely that this algorithm is very competitive, malnly because the parameters of the binomial distribution change at every call.

1.5. Discrete distributions.

Consider the problem of the generation of a random vector taking only values on d-tuples of nonnegative integers. One of the striking differences with the continuous multivarlate distributions is that the d-tuples can be put into one-to-one correspondence with the nonnegative integers on the real line. This one-to-one mapping can be used to apply the Inversion method (Kemp, 1981; Kemp and Loukas, 1978) or one of the table methods (Kemp and Loukas, 1981). We say that the function which transforms d-tuples into nonnegative integers is a coding function. The inverse function is called the decoding function.

Coding functions are easy to construct. Consider $d=2$. Then we can visit all 2 -tuples in the positive quadrant in cross-diagonal fashion. Thus, flrst we visit $(0,0)$, then $(0,1)$ and (1,0), then $(0,2),(1,1)$ and (2,0), etcetera. Note that we visit all the Integers (i, j) with $i+j=k$ before visiting those with $i+j=k+1$. Since we visit $k(k-1) / 2$ 2-tuples with $i+j<k$, we see that we can take as coding function

$$
h(i, j)=\frac{(i+j)(i+j-1)}{2}+i
$$

This can be generalized to d-tuples (exercise 1.4), and a slmple decoding function exlsts which allows us to recover (i, j) from the value of $h(i, j)$ in time $O(1)$ (exerclse 1.4). There are other orders of traversal of the 2 -tuples. For example, we could visit 2 -tuples in order of increasing values of $\max (i, j)$.

In general one cannot visit all 2 -tuples in order of increasing values of i, its first component, as there could be an inflite number of 2 -tuples with the same value of i. It is llke trying to visit all shelves in a llbrary, and getting stuck in the first shelf because it does not end. If the second component is bounded, as it often is, then the library traversal leads to a slmple coding function. Let M be the maximal value for j. Then we have

$$
h(i, j)=(M+1) i+j .
$$

One should be aware of some pitfalls when the unlvarlate connection is exploited. Even if the distribution of probabllity over the d-tuples is relatively smooth, the corresponding univarlate probabllity vector is often very oscillatory, and thus unfit for use in the rejection method. Rejectlon should be applied almost exclusively to the original space.

The fast table methods require a finite distribution. Even though on paper they can be applled to all finite distributions, one should realize that the number of possible d-tuples in such distributions usually explodes exponentially with d. For a distribution on the integers \ln the hypercube $\{1,2, \ldots, n\}^{d}$, the number of possible values is n^{d}. For this example, table methods seem useful only for moderate values of d. See also exerclse 1.5 .

Kemp and Loukas (1978) and Kemp (1981) are concerned with the inversion method and its efficiency for various coding functions. Recall that in the unlvarlate case, inversion by sequentlal search for a nonnegative integer-valued random variate X takes expected time (as measured by the expected number of comparisons) $E(X)+1$. Thus, with the coding function h for X_{1}, \ldots, X_{d}, we see without further work that the expected number of comparisons is

$$
E\left(h\left(X_{1}, \ldots, X_{d}\right)+1\right)
$$

Example 1.6.

Let us apply inversion for the generation of (X_{1}, X_{2}), and let us scan the space in cross diagonal fashion (the coding function is $\left.h(i, j)=\frac{(i+j)(i+j-1)}{2}+i\right)$. Then the expected number of comparisons before halting is

$$
E\left(\frac{\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}-1\right)}{2}+X_{1}+1\right)
$$

This is at least proportional to elther one of the marginal second moments, and is thus much worse than one would normally have expected. In fact, in d dimenslons, a slmilar coding function leads to a finite expected tlme if and only if $E\left(X_{i}{ }^{d}\right)<\infty$ for all $i=1, \ldots, d$ (see exerclse 1.6).

Example 1.7.

Let us apply inversion for the generation of $\left(X_{1}, X_{2}\right)$, where $0 \leq X_{2} \leq M$, and let us perform a library traversal (the coding functlon is $h(i, j)=(M+1) i+j)$. Then the expected number of comparisons before halting is

$$
E\left((M+1) X_{1}+X_{2}+1\right)
$$

This is finite when only the flrst moments are finite, but has the drawback that M figures explicitly in the complexity.

We have made our point. For large values of d, ordinary generation methods are often not feasible because of time or space Inefficlencles. One should nearly always try to convert the problem into several univarlate problems. This can be done by applying the conditional distribution method. For the generation of X_{1}, X_{2}, we flrst generate X_{1}, and then generate X_{2} conditional on the given value of X_{1}. Effectively, this forces us to know the marginal distribution of X_{1} and the joint two-dimenslonal distribution. The marginal distribution of X_{2} is not needed. To see how this improves the complexitles, consider using the inverslon method in both stages of the algorithm. The expected number of comparisons in the generation of X_{2} given X_{1} is $E\left(X_{2} \mid X_{1}\right)+1$. The number of comparisons if the generation of X_{1} is $X_{1}+1$. Summing and taking expected values shows that the expected number of comparisons is

$$
E\left(X_{1}+X_{2}+2\right)
$$

(Kemp and Loukas, 1978). Compare with Examples 1.0 and 1.7.
In the conditional distribution method, we can improve the complexity even further by employing table methods in one, some or all of the stages. If $d=2$ and both components have infinite support, we cannot use tables. If only the second component has Inflnite support, then a table method can be used for X_{1}. This is the Ideal situation. If both components have flnlte support, then we are tempted to apply the table method in both stages. This would force us to set up many tables, one for each of the possible values of X_{1}. In that case, we could as well have set up one glant table for the entire distribution. Finally, if the first component has infinite support, and the second component has finite support, then the Incapabllity of storing an inflinlte number of finite tables forces us to set up the tables as we need them, but the time spent doing so is prohibltively large.

If a distribution is given in analytic form, there usually is some special property which can be used in the design of an efflclent generator. Several examples can be found \ln section 3.

1.6. Exercises.

1. Consider the density $f\left(x_{1}, x_{2}\right)=5 x_{1} e^{-x_{1} x_{2}}$ defined on the infinite strip $0.2 \leq x_{1} \leq 0.4,0 \leq x_{2}$. Show that the first component X_{1} is unlformly distributed on [0.2,0.4], and that given X_{1}, X_{2} is distributed as an exponential random variable divided by X_{1} (Schmelser, 1980).
2. Show how you would generate random variates with denslty

$$
\frac{6}{\left(1+x_{1}+x_{2}+x_{3}\right)^{4}} \quad\left(x_{1}, x_{2}, x_{3} \geq 0\right) .
$$

Show also that $X_{1}+X_{2}+X_{3}$ has density $3 x^{2} /(1+x)^{4}(x \geq 0)$ (Springer, 1979, p.87).
3. Prove that for any distribution function F on R^{d}, there exists a measurable function $g:[0,1] \rightarrow R^{d}$ such that $g(U)$ has distribution function F, where U is uniformly distributed on $[0,1]$. This can be considered as a generalization of the inversion method. Hint: from U we can construct d ild unform [0,1] random varlables by skipping bits. Then argue va conditioning.
4. Consider the coding function for 2-tuples of nonnegatlve Integers (i, j) glven by $h(i, j)=\frac{(i+j)(i+j-1)}{2}+i+1$.
A. Generallze thls coding function to d-tuples. The generalization should be such that all d-tuples with sum of the components equal to some Integer k are grouped together, and the groups are ordered according to increasing values for k. Within a group, this rule should be applled recursively to groups of d-1-tuples with constant sum.
B. Glve the decoding function for the two-dimensional h shown above, and Indicate how it can be evaluated in time O (1) (Independent of the slze of the argument).
5. Consider the multinomial distribution with parameters n, p_{1}, \ldots, p_{d}, which assigns probabillty

$$
\frac{n!}{i_{1}!\cdots i_{d}!} \prod_{j=1}^{d} p_{j}^{i_{j}}
$$

to all d-tuples with $i_{j} \geq 0, \sum_{j=1}^{d} i_{j}=n$. Let the total number of possible values be $N(n, d)$. For fixed n, find a simple function $\psi(d)$ with the property that

$$
\lim _{d \rightarrow \infty} \frac{N(n, d)}{\psi(d)}=1
$$

Thls gives some Idea about how quickly $N(n, d)$ grows with d.
6. Show that when a cross-diagonal traversal is followed in dimensions for inversion by sequentlal search of a discrete probabllity distribution on the nonnegative integers of R^{d}, then the expected time required by the inverslon is finlte if and only if $E\left(X_{i}{ }^{d}\right)<\infty$ for all $i=1, \ldots, d$ where X_{1}, \ldots, X_{d} is a d-dimensional random vector with the given distribution.
7. Relationship between multinomial and Poisson distributions. Show that the algorithm given below in which the sample size parameter is used as a mixing parameter dellvers a sequence of d IId Polsson (λ) random variables.

Generate a Poisson ($d \lambda$) random variate N.
RETURN a multinomial ($N, \frac{1}{d}, \ldots, \frac{1}{d}$) random vector $\left(X_{1}, \ldots, X_{d}\right)$.

Hint: this can be proved by explicitly computing the probabllitles, by worklng with generating functions, or by employing propertles of Polsson point processes.
8. A bivariate extreme value distribution. Marshall and Oikin (1983) have studled multivariate extreme value distributions in detall. One of the distributions considered by them is defined by

$$
P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=e^{-\left(e^{-t_{1}}+e^{-t_{2}}-\left(e^{x_{1}}+e^{x_{2}}\right)-1\right)} \quad\left(x_{1} \geq 0, x_{2} \geq 0\right)
$$

How would you generate a random varlate with this distributlon?
9. Let f be an arbltrary unlvariate density on $(0, \infty)$. Show that $f\left(x_{1}+x_{2}\right) /\left(x_{1}+x_{2}\right)\left(x_{1}>0, x_{2}>0\right)$ is a blvariate density (Feller, 1971, p.100). Explolting the structure in the problem to the fullest, how would you generate a random vector with the glven blvarlate density?

2. LINEAR TRANSFORMATIONS. THE MULTINORMAL DISTRIBUTION.

2.1. Linear transformations.

When an R^{d}-valued random vector \mathbf{X} has density $f(\mathbf{x})$, then the random vector \mathbf{Y} defined as the solution of $\mathbf{X}=\mathrm{HY}$ has density

$$
g(\mathbf{y})=|\mathbf{H}| f(\mathbf{H} \mathbf{y}), \mathbf{y} \in R^{d},
$$

for all nonsingular $d \times d$ matrices \mathbf{H}. The notation $|\mathrm{H}|$ is used for the absolute value of the determinant of H . This property is reclprocal, i.e. when Y has densty g, then $\mathbf{X}=\mathbf{H Y}$ has density f.

The llnear transformation \mathbf{H} deforms the coordinate system. Partlcularly important llnear deformations are rotatlons: these correspond to orthonormal : ransformation matrices \mathbf{H}. For random varlate generation, linear transformations are important in a few spectal cases:
A. The generation of points uniformly distributed in d-dimensional slmplices or hyperellipsolds.
B. The generation of random vectors with a glven dependence structure, as measured by the covarlance matrix.
These two application areas are now dealt with separately.

2.2. Generators of random vectors with a given covariance matrix.

The covarlance matrix of an R^{d}-valued random vector Y with mean 0 is defined as $\Sigma=E\left(\mathbf{Y} \mathbf{Y}^{\prime}\right)$ where \mathbf{Y} is considered as a column vector, and \mathbf{Y}^{\prime} denotes the transpose of \mathbf{Y}. Assume first that we wish to generate a random vector \mathbf{Y} with zero mean and covarlance matrlx Σ and that we do not care for the time belng about the form of the distribution. Then, it is always possible to proceed as follows: generate a random vector \mathbf{X} with d ild components X_{1}, \ldots, X_{d} each having zero mean and unlt varlance. Then deflne \mathbf{Y} by $\mathbf{Y}=\mathbf{H X}$ where \mathbf{H} is a nonsingular $d \times d$ matrix. Note that

$$
\begin{aligned}
& E(\mathbf{Y})=\mathbf{H} E(\mathbf{X})=0 \\
& E\left(\mathbf{Y} \mathbf{Y}^{\prime}\right)=\mathbf{H} E\left(\mathbf{X X}^{\prime}\right) \mathbf{H}^{\prime}=\mathbf{H} \mathbf{H}^{\prime}=\Sigma
\end{aligned}
$$

We need a few facts now from the theory of matrices. First of all, we recall the definition of positive definiteness. A matrix \mathbf{A} is positive deflnite (positive semldefintte) when $\mathbf{x}^{\prime} \mathbf{A x}>0(\geq 0)$ for all nonzero R^{d}-valued vectors \mathbf{x}. But we have

$$
\mathbf{x}^{\prime} \Sigma \mathbf{x}=E\left(\mathbf{x}^{\prime} \mathbf{Y} \mathbf{Y}^{\prime} \mathbf{x}\right)=E\left(| | \mathbf{x}^{\prime} \mathbf{Y}| |\right) \geq 0
$$

for all nonzero \mathbf{x}. Here $||\cdot||$ is the standard L_{2} norm $\ln R^{d}$. Equality occurs only if the Y_{i} 's are linearly dependent with probabllity one, l.e. $\mathbf{x}^{\prime} \mathbf{Y}=0$ with probability one for some $\mathbf{x} \neq 0$. In that case, \mathbf{Y} is sald to have dimension less than d. Otherwise, \mathbf{Y} is said to have dimension d. Thus, all covariance matrices are positive semidefinite. They are positive definite if and only if the random vector in question has dimension d.

For symmetric positive definite matrices Σ, we can always find a nonsingular matrix \mathbf{H} such that

$$
\mathrm{HH}^{\prime}=\Sigma
$$

In fact, such matrices can be characterized by the existence of a nonsingular \mathbf{H}. We can do even better. One can always find a lower triangular nonsingular \mathbf{H} such that

$$
\mathrm{HH}^{\prime}=\Sigma .
$$

We have now turned our problem into one of decomposing a symmetric positive definite matrix Σ into a product of two lower trlangular matrices. The algorithm can be summarized as follows:

Generator of a random vector with given covariance matrix

[SET-UP]
Find a matrix H such that $\mathrm{HH}^{\prime}=\Sigma$.
[GENERATOR]
Generate d independent zero mean unit variance random variates X_{1}, \ldots, X_{d}. RETURN $\mathrm{Y}=\mathrm{HX}$

The set-up step can be done in tlme $O\left(d^{3}\right)$ as we will see below. Since \mathbf{H} can have up to $\Omega\left(d^{2}\right)$ nonzero elements, there is no hope of generating Y in less than $\Omega\left(d^{2}\right)$. Note also that the distributions of the X_{i} 's are to be plcked by the users. We could take them nd and blatomic: $P\left(X_{1}=1\right)=P\left(X_{1}=-1\right)=\frac{1}{2}$. In that case, Y is atomic with up to 2^{d} atoms. Such atomic solutions are rarely adequate. Most applications also demand some control over the marginal distributions. But these demands restrict our cholces for X_{1}. Indeed, if our method is to be unlversal, we should choose X_{1}, \ldots, X_{d} in such a way that all llnear combinations of these independent random variables have a given distribution. This can be assured in several ways, but the cholces are limited. To see this, let us consider Ild random varlables X_{i} with common characterlstlc function ϕ, and assume that we wish all linear comblnations to have the same distribution up to a scale factor. The sum $\sum a_{j} X_{j}$ has characteristlc function

$$
\prod_{j=1}^{d} \phi\left(a_{j} t\right)
$$

This is equal to $\phi(a t)$ for some constant a when ϕ has certain functional forms. Take for example

$$
\phi(t)=e^{-|t|^{\alpha}}
$$

for some $\alpha \in(0,2]$ as in the case of a symmetrlc stable distribution. Unfortunately, the only symmetric stable distribution with a finite variance is the normal distribution ($\alpha=2$). Thus, the property that the normal distribution is closed under the operation "llnear combination" is what makes it so attractive to the user. If the user specifies non-normal marglnals, the covarlance structure is much more difflcult to enforce. See however some good solutlons for the blvarlate case as developed in section XI.3.

A computational remark about H is in order here. There is a simple algorithm known as the square root method for finding a lower trlangular H with $\mathrm{HH}^{\prime}=\Sigma$ (Faddeeva, 1959; Moonan, 1957; Grayblil, 1969). We give the relationshlp between the matrices here. The elements of Σ are called $\sigma_{i j}$, and those of the lower trlangular solution matrix H are called $h_{i j}$.

$$
\begin{aligned}
& h_{i 1}=\sigma_{i 1} / \sqrt{\sigma_{11}}(1 \leq i \leq d) \\
& h_{i i}=\sqrt{\sigma_{i i}-\sum_{j=1}^{i-1} h_{i j}^{2}}(1<i \leq d) \\
& h_{i j}=\frac{\sigma_{i j}-\sum_{k=1}^{j-1} h_{i k} h_{j k}}{h_{j j}}(1<j<i \leq d) \\
& h_{i j}=0(i<j \leq d)
\end{aligned}
$$

2.3. The multinormal distribution.

The standard multinormal distribution on R^{d} has density

$$
\begin{aligned}
& f(\mathbf{x})=(2 \pi)^{-\frac{d}{2}} e^{-\frac{1}{2} \mathbf{x}^{\prime} \mathbf{x}} \\
& =(2 \pi)^{-\frac{d}{2}} e^{-\frac{1}{2}| | \mathbf{x}| |^{2}} \quad\left(\mathbf{x} \in R^{d}\right) .
\end{aligned}
$$

Thls is the density of d ild normal random varlables. When \mathbf{X} has density f, $\mathbf{Y}=\mathbf{H X}$ has density

$$
g(\mathbf{y})=\left|\mathbf{H}^{-1}\right| f\left(\mathbf{H}^{-1} \mathbf{y}\right), \mathbf{y} \in R^{d} .
$$

But we know that $\Sigma=\mathbf{H H}^{\prime}$, so that $\left|\mathbf{H}^{-1}\right|=|\Sigma|^{-1 / 2}$. Also, $\left|\left|\mathbf{H}^{-1} \mathbf{y}\right|\right|^{2}=\mathbf{y}^{\prime} \Sigma^{-1} \mathbf{y}$, which gives us the density

$$
g(\mathbf{y})=(2 \pi)^{-\frac{d}{2}}|\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2} \mathbf{y}^{\prime} \Sigma^{-1} \mathbf{y}} \quad\left(\mathbf{y} \in R^{d}\right)
$$

This is the density of the multinormal distribution with zero mean and nonsingular covarlance matrix Σ. We note without work that the i-th marginal distribution is zero mean normal with varlance given by the i-th diagonal element of Σ. In the most general form of the normal distribution, we need only add a translation parameter (mean) to the distribution.

Random varlate generation for the normal distribution can be done by the llnear transformation of d ild normal random varlables described in the previous section. This involves decomposition of $\mathbf{\Sigma}$ into a product of the form $\mathbf{H H}^{\prime}$. This method has been advocated by Scheuer and Stoller (1982) and Barr and Slezak (1972). Deak (1979) glves other methods for generating multinormal random vectors. For the conditional distribution method in the case $d=2$, we refer to Example 1.2. In the general case, see for example Scheuer and Stoller (1982).

An important special case is the blvarlate multinormal distribution with zero mean, and covarlance matrix

$$
\left|\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right|
$$

where $\rho \in[-1,1]$ is the correlation between the two marginal random variables. It Is easy to see that if (N_{1}, N_{2}) are Ild normally distributed random varlables, then

$$
\left(N_{1}, \rho N_{1}+\sqrt{1-\rho^{2}} N_{2}\right)
$$

has the said distribution. The multinormal distribution can be used as the starting point for creating other multivarlate distributions, see section XI.3. We will also exhibit many multivarlate distributions with normal marginals which are not multinormal. To keep the terminology consistent throughout thls book, we will refer to all distributions having normal marginals as multivarlate normal distributlons. Multinormal distributions form only a tiny subclass of the multivariate normal distributions.

2.4. Points uniformly distributed in a hyperellipsoid.

A hyperellipsold in R^{d} is defined by a symmetric positive definite $d \times d$ matrix \mathbf{A} : it is the collection of all points $\mathbf{y} \in R^{d}$ with the property that

$$
\mathbf{y}^{\prime} \mathbf{A y} \leq 1
$$

A random vector unlformly distributed in thls hyperellipsold can be generated by a llnear transformation of a random vector \mathbf{X} distributed unlformly in the unlt hypersphere C_{d} of R^{d}. Such random vectors can be generated quite efflclently (see section V.4). Recall that linear transformations cannot destroy unlformity. They can only alter the shape of the support of unlform distrlbutions. The only problem we face is that of the determination of the linear transformation in function of \mathbf{A}.

Let us deflne $\mathbf{Y}=\mathbf{H X}$ where H is our $d \times d$ transformation matrix. The set detined by

$$
y^{\prime} \mathbf{A y} \leq 1
$$

心rresponds to the set
$\mathbf{x}^{\prime} \mathbf{H}^{\prime} \mathbf{A H x} \leq 1$.
$3^{2}:$ since this has to coinclde with $\mathbf{x}^{\prime} \mathbf{x} \leq 1$ (the definition of C_{d}), we note that
$H^{\prime} \mathbf{A H}=\mathrm{I}$
were I is the unlt $d \times d$ matrix. Thus, we need to take H such that $\mathbf{A}^{-:}=H^{\prime}$. See also RubInsteln (1982).

2.5. Uniform polygonal random vectors.

A convex polytope of R^{d} with vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$ is the collection of all points in R^{d} that are obtainable as convex combinations of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$. Every polnt x in this convex polytope can be written as

$$
\mathbf{x}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{\mathbf{i}}
$$

for some a_{1}, \ldots, a_{n} wlth $a_{i} \geq 0, \sum_{i=1}^{n} a_{i}=1$. The set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$ is minimal for the convex polytope generated by it when all $\mathbf{v}_{\mathbf{i}}$'s are distinct, and no $\mathbf{v}_{\mathbf{i}}$ can be written as a strict convex comblnation of the $\mathbf{v}_{\mathbf{j}}$'s. (A strict convex combination is one which has at least one a_{i} not equal to 0 or 1.)

We say that a set of vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$ is in general position if no three polnts are on a line, no four polnts are in a plane, etcetera. Thus, if the set of vertices is minimal for a convex polytope P, then it is in general position.

A simplex is a convex polytope with $d+1$ vertlces In general position. Note that d points in general position in R^{d} define a hyperplane of dimension $d-1$. Thus, any convex polytope with fewer than $d+1$ vertices must have zero d dimensional volume. In this sense, the simplex is the simplest nontrivial object in R^{d}.

We can define a basic slmplex by the orlgin and d polnts on the positive coordinate axes at distance one from the origin.

There are two distinct generation problems related to convex polytopes. We could be asked to generate a random vector unlformly distrlbuted in a glven polytope (see below), or we could be asked to generate a random collection of vertices defining a convex polytope. The latter problem is not dealt with here. See however Devroye (1982) and May and Smlth (1982).

Random vectors distributed unlformly in an arbitrary slmplex can be obtalned by linear transformations of random vectors distributed uniformly in the basic simplex. Fortunately, we do not have to go through the agony of factorlzing a matrix as in the case of a glven covariance matrix structure. Rather, there is a surprisingly simple direct solution to the general problem.

Theorem 2.1.

Let $\left(S_{1}, \ldots, S_{d+1}\right)$ be the spacings generated by a unfform sample of size d on $[0,1]$. (Thus, $S_{i} \geq 0$ for all i, and $\sum S_{i}=1$.) Then

$$
\mathbf{X}=\sum_{i=1}^{d+1} S_{i} \mathbf{v}_{\mathbf{i}}
$$

is uniformly distributed in the polytope P generated by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{d}+1}$, provided that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{d}+1}$ are in general position.

Proof of Theorem 2.1.

Let \mathbf{S} be the column vector S_{1}, \ldots, S_{d}. We recall first that \mathbf{S} is uniformly distrlbuted in the basic simplex B where

$$
B=\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i} \geq 0, \sum_{i} x_{i} \leq 1\right\}
$$

If all $\mathbf{v}_{\mathbf{i}}$'s are considered as column vectors, and \mathbf{A} is the matrix

$$
\left[\begin{array}{llll}
\mathbf{v}_{1}-\mathbf{v}_{d+1} & \mathbf{v}_{2}-\mathbf{v}_{d+1} & \cdots & \mathbf{v}_{d}-\mathbf{v}_{\mathbf{d}+1}
\end{array}\right]
$$

then we can write \mathbf{X} as follows:

$$
\mathbf{X}=\mathbf{v}_{\mathrm{d}+1}+\sum_{i=1}^{d}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathrm{d}+1}\right) S_{i}=\mathbf{v}_{\mathrm{d}+1}+\mathbf{S}^{\prime} \mathbf{A}
$$

It is clear that \mathbf{X} is unlformly distributed, since it can be obtained by a llnear transformation of \mathbf{S}. The support Supp (\mathbf{X}) of the distribution of \mathbf{X} is the collecthon of all points which can be written as $\mathbf{v}_{d+1}^{d+1}+\mathbf{a}^{\prime} \mathbf{A}$ where $\mathbf{a} \in B$ is a column vector. First, assume that $\mathbf{x} \in P$. Then, $\mathbf{x}=\sum_{i=1} a_{i} \mathbf{v}_{\mathbf{i}}$ for some probablilty vector a_{1}, \ldots, a_{d+1}. Thls can be rewrltten as follows:

$$
\mathbf{x}=\mathbf{v}_{\mathbf{d}+1}+\sum_{i=1}^{d} a_{i}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathrm{d}+1}\right)=\mathbf{v}_{\mathrm{d}+1}+\mathbf{a}^{\prime} \mathbf{A}
$$

where a is the vector formed by a_{1}, \ldots, a_{d}. Thus, $P \subseteq \operatorname{Supp}(\mathbf{X})$. Next, assume $\mathbf{x} \in \operatorname{Supp}(\mathbf{X})$. Then, for some column vector $\mathbf{a} \in B$,

$$
\begin{aligned}
& \mathbf{x}=\mathbf{v}_{\mathrm{d}+1}+\mathbf{a}^{\prime} \mathbf{A}=\mathbf{v}_{\mathrm{d}+1}+\sum_{i=1}^{d} a_{i}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathrm{d}+1}\right) \\
& =\sum_{i=1}^{d+1} a_{i} \mathbf{v}_{\mathbf{i}}
\end{aligned}
$$

which implles that \mathbf{x} is a convex combination of the $\mathbf{v}_{\mathbf{i}}$'s, and thus $\mathbf{x} \in P$. Hence $\operatorname{Supp}(\mathbf{X}) \subset P$, and hence $\operatorname{Supp}(\mathbf{X})=P$, which concludes the proof of Theorem 2.1.

Example 2.1. Triangles.

The following algorithm can be used to generate random vectors unlformly distributed in the triangle defined by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ of R^{2} :

Generator for uniform distribution in triangle

Generate id uniform $[0,1]$ random variates U, V.
IF $U>V$ then swap U and V.
RETURN $\left(U \mathbf{v}_{1}+(V-U) \mathbf{v}_{2}+(1-V) \mathbf{v}_{3}\right)$

See also exerclse 2.1.

Example 2.2. Convex polygons in the plane.

Convex polygons on R^{2} with $n>3$ vertices can be partitioned into $n-2$ disjolnt triangles. Thls can always be done by connecting all vertices with a designated root vertex. Trlangulation of a polygon is of course always possible, even when the polygon is not convex. To generate a polnt uniformly in a trlangulated polygon, it suffices to generate a point unlformly in the i-th triangle (see e.g. Example 2.1), where the i-th trlangle is selected with probabllity proportional to Its area. It is worth recalling that the area of a trlangle formed by $\left(v_{11}, v_{12}\right),\left(v_{21}, v_{22}\right),\left(v_{31}, v_{32}\right)$ is

$$
\frac{1}{2}\left|\sum_{i<j}\left(v_{i 1} v_{j 2}-v_{j 1} v_{i 2}\right)\right|
$$

We can deal with all simpllces in all Euclidean spaces via Theorem 2.1. Example 2.2 shows that all polygons in the plane can be dealt with too, because all such polygons can be trlangulated. Unfortunately, decomposition of d dimensional polytopes into d-dimensional simplices is not always possible, so that Example 2.2 cannot be extended to higher dimensions. The decomposition is possible for all convex polytopes however. A decomposition algorlthm is given in Rubin (1984), who also provides a good survey of the problem. Theorem 2.1 can also be found in Rubinsteln (1982). Example 2.2 describes a method used by Hsuan (1882). The present methods which use decomposition and linear transformatlons are valld for polytopes. For sets with unusual shapes, the grid methods of section VIII.3.2 should be useful.

We conclude this section with the simple mention of how one can attack the decomposition of a convex polytope with n vertices into slmplices for general Euclldean spaces. If we are given an ordered polytope, i.e. a polytope with all its
faces clearly Identlfled, and with polnters to nelghboring faces, then the partition is trlvial: choose one vertex, and construct all slmplices consisting of a face (each face has d vertices) and the picked vertex. For selection of a simplex, we also need the area of a simplex with vertices $\mathbf{v}_{\mathbf{i}}, i=1,2, \ldots, d+1$. This is given by

$$
\frac{|\mathbf{A}|}{d!}
$$

where \mathbf{A} is the $d \times d$ matrix with as columns $\mathbf{v}_{1}-\mathbf{v}_{\mathrm{d}+1}, \ldots, \mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{d}+1}$. The complexity of the preprocessing step (decomposition, computation of areas) depends upon m, the number of faces. It is known that $m=O\left(n^{\lfloor d / 2\rfloor}\right)$ (McMullen, 1970). Since each area can be computed in constant time (d is kept fixed, n varles), the set-up time is $O(m)$. The expected generation time is O (1) if a constant tlme selection algorithm is used.

The aforementioned ordered polytopes can be obtalned from an unordered collection of n vertices in worst-case tlme $O\left(n \log (n)+n^{\lfloor(d+1) / 2\rfloor}\right)$ (Seldel, 1981), and this is worst-case optimal for even dimensions under some computational models.

2.6. Time series.

The generation of random time serles with certain speciflc propertles (marglnal distributions, autocorrelation matrlx, etcetera) is discussed by Schmeiser (1980), Franklln (1965), Price (1976), Hoffman (1979), Ll and Hammond (1975), Lakhan (1981), Polge, Holllday and Bhagavan (1973), Mikhallov (1974), Fraker and Rippy (1974), Badel (1979), Lawrance and Lewls (1977, 1980, 1981), and Jacobs and Lewls (1977).

2.7. Singular distributions.

Singular distributions in R^{d} are commonplace. Distributions that put all thelr mass on a llne or curve in the plane are slngular. So are distributions that put all thelr mass on the surface of a hypersphere of R^{d}. Computer generation of random vectors on such hyperspheres is discussed by Ulrich (1984), who in partlcular derlves an efficlent generator for the Fisher-von Mises distribution in R^{d}.

A llne $\ln R^{d}$ can be given in many forms. Perhaps the most popular form is the parametric one, where $\mathrm{x}=\mathbf{h}(z)$ and $z \in R$ is a parameter. An example is the clrcle $\ln R^{2}$, determined by

$$
\begin{aligned}
& x_{1}=\cos (2 \pi z), \\
& x_{2}=\sin (2 \pi z)
\end{aligned}
$$

Now, if Z is a random varlable and h is a Borel measurable function, then $\mathbf{X}=\mathbf{h}(Z)$ is a random vector which puts all its mass on the line deflned by $\mathbf{x}=\mathbf{h}(z)$. In other words, \mathbf{X} has a line distribution. For a one-to-one mapping $\mathbf{h}: R \rightarrow R^{d}$, which is also continuous, we can define a line density $f(z)$ at the point $\mathbf{x}=\mathbf{h}(z)$ va the relatlonships

$$
\left.P(\mathbf{X}=\mathbf{h}(z) \text { for some } z \in[a, b])=\int_{a}^{b} f(z) \psi(z) d z \quad \text { (all }[a, b]\right)
$$

where $\psi(z)=\sqrt{\sum_{i=1}^{d}{h^{\prime}}_{i}{ }^{2}(z)}$ is the norm of the tangent of h at z, and h_{i} is the i-th component of \mathbf{h}. But since this must equal $P(a \leq Z \leq b)=\int_{a} g(z) d z$ where g is the density of Z, we see that

$$
f(z)=\frac{g(z)}{\psi(z)}
$$

For a unlform llne density, we need to take g proportional to ψ.
As a flrst example, consider a function in the plane determined by the equatlon $y=\chi(x)(0 \leq x \leq 1)$. A point with unlform line density can be obtalned by considering the x-coordinate as our parameter z. This yleids the algorithm

Generate a random variate X with density $c \sqrt{1+\chi^{\prime 2}(x)}$.
$\operatorname{RETURN}(X, \chi(X))$

This could be called the projection method for obtalning random varlates with certaln line densitles. The converse, projection from a line to the x-axis is much less useful, since we already have many techniques for generating real-linevalued random varlates.

2.8. Exercises.

1. Consider a triangle with vertices $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and let U, V be ild uniform $[0,1]$ random varlables.
A. Show that if we set $\mathbf{Y} \leftarrow \mathbf{v}_{\mathbf{2}}+\left(\mathbf{v}_{\mathbf{3}}-\mathbf{v}_{2}\right) U$, and $\mathbf{X} \leftarrow \mathbf{v}_{\mathbf{1}}+\left(\mathbf{Y}-\mathbf{v}_{1}\right) V$, then \mathbf{X} is not uniformly distributed in the given trlangle. This method is misleading, as \mathbf{Y} is uniformly distributed on the edge ($\mathbf{v}_{2}, \mathbf{v}_{3}$), and \mathbf{X} is unlformly distributed on the line joining \mathbf{v}_{1} and \mathbf{Y}.
B. Show that \mathbf{X} in part A is uniformly distributed in the sald triangle if we replace V in the algorlthm by $\max (V, V *)$ where $V, V *$ are $11 d$ unlform [0,1] random variables.
2. Define a simple boolean function which returns the value true if and only if \mathbf{x} belongs to the a trlangle in R^{2} with three glven vertices.
3. Consider a triangle ABC where AB has length one, BC has length b, and the angle ABC is θ. Let \mathbf{X} be unlformly distributed in the trlangle, and let \mathbf{Y} be the Intersection of the lines AX and BC . Let Z be the distance between \mathbf{Y} and B. Show that Z has density

$$
\frac{1}{\sqrt{z^{2}-2 z \cos (\theta)+1}} \quad(0<z<b) .
$$

Compare the geometric algorithm for generating Z given above with the inversion method.

3. DEPENDENCE. BIVARLATE DISTRIBUTIONS.

3.1. Creating and measuring dependence.

In many experiments, a controlled degree of dependence is required. Sometimes, users want distributions with glven marginals and a given dependence structure as measured with some crlterion. Sometlmes, users know precisely what they want by completely specifying a multivarlate distribution. In this section, we will mainly look at problems in which certaln marginal distributions are needed together with a given degree of dependence. Usually, there are very many multivarlate distributions which satisfy the given requirements, and sometimes there are none. In the former case, we should design generators which are efficlent and lead to distributions which are not unrealistic.

For a clear treatment of the subject, it is best to emphasize blvarlate distributlons. A number of different measures of assoclation are commonly used by practicing statisticlans. First and foremost is the correlation coefficient ρ (also called Pearson product moment correlation coefflclent) defined by

$$
\rho=\frac{E\left(\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right)}{\sigma_{1} \sigma_{2}},
$$

where μ_{1}, μ_{2} are the means of X_{1}, X_{2}, and σ_{1}, σ_{2} are the corresponding standard devlations. The key properties of ρ are well-known. When X_{1}, X_{2} are independent, $\rho=0$. Furthermore, by the Cauchy-Schwarz Inequallty, it is easy to see that $|\rho| \leq 1$. When $X_{1}=X_{2}$, we have $\rho=1$, and when $X_{1}=-X_{2}$, we have $\rho=-1$. Unfortunately, there are a few enormous drawbacks related to the correlation coefflclent. First, it is only deffned for distributions having marginals with finlte varlances. Furthermore, it is not invariant under monotone transformations of the coordinate axes. For example, if we define a blvarlate uniform distribution
with a given value for ρ and then apply a transformation to get certain specific marginals, then the value of ρ could (and usually does) change. And most importantly, the value of ρ may not be a solid indicator of the dependence. For one thing, $\rho=0$ does not imply independence.

Measures of association which are Invarlant under monotone transformations are in great abundance. For example, there is Kendall's tau deffned by

$$
\tau=2 P\left(\left(X_{1}-X_{2}\right)\left(X_{1}{ }_{1}-X_{2}^{\prime}\right)>0\right)-1
$$

where $\left(X_{1}, X_{2}\right)$ and $\left(X_{1}, X_{2}^{\prime}\right)$ are Ild. The invarlance under strictly monotone transformations of the coordinate axes is obvious. Also, for all distributions, τ exists and takes values $\ln [-1,1]$, and $\tau=0$ when the components are independent and nonatomlc. The grade correlation (also called Spearman's rho or the rank correlation) ρ_{g} is defined as $\rho\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)$ where ρ is the standard correlation coefficient, and F_{1}, F_{2} are the marginal distribution functions of X_{1}, X_{2} (see for example Glbbons (1971)). ρ_{g} always exists, and is invariant under monotone transformations. τ and ρ_{g} are also called ordinal measures of association since they depend upon rank information only (Kruskal, 1958). Unfortunately, $\tau=0$ or $\rho_{g}=0$ do not imply independence (exerclse 3.4). It would be desirable for a good measure of assoclation or dependence that it be zero only when the components are independent.

The two measures given below satisfy all our requirements (universal existence, Invarlance under monotone transformations, and the zero value implyIng Independence):
A. The sup correlation (or maximal correlation) $\rho *$ defined by Gebeleln
(1941) and studled by Sarmanov (1982,1983) and Renyl (1959):

$$
\bar{\rho}\left(X_{1}, X_{2}\right)=\sup \rho\left(g_{1}\left(X_{1}\right), g_{2}\left(X_{2}\right)\right)
$$

where the supremum is taken over all Borel-measurable functions g_{1}, g_{2} such that $g_{1}\left(X_{1}\right), g_{2}\left(X_{2}\right)$ have finite positive varlance, and p is the ordinary correlation coefficient.
B. The monotone correlation $\rho *$ Introduced by Klmeldorf and Sampson (1878), which is defined as $\bar{\rho}$ except that the supremum is taken over monotone functions g_{1}, g_{2} only.
Let us outllne why these measures satisfy our requirements. If $\rho *=0$, and X_{1}, X_{2} are nondegenerate, then X_{2} is independent of X_{1} (Kimeldorf and Sampson, 1978). This is best seen as follows. We flrst note that for all s, t,

$$
\rho\left(I_{(-\infty, s)}\left(X_{1}\right), I_{(-\infty, t)}\left(X_{2}\right)\right)=0
$$

because the indicator functions are monotone and $\rho *=0$. But this implles

$$
P\left(X_{1} \leq s, X_{2} \leq t\right)=P\left(X_{1} \leq s\right) P\left(X_{2} \leq t\right)
$$

which in turn implies independence. For $\bar{\rho}$, we refer to exercise 3.6 and Renyl (1959). Good general discusslons can be found in Renyl (1959), Kruskal (1958), Klmeldorf and Sampson (1978) and Whitt (1978). The measures of dependence are obvlously interrelated. We have directly from the definltions,

$$
|\rho| \leq \rho * \leq \bar{\rho} \leq 1
$$

There are examples in which we have equallty between all correlation coefficients (multivarlate normal distribution, exercise 3.5), and there are other examples in which there is strict inequallty. It is perhaps interesting to note when $\rho *$ equals one. This is for example the case when X_{2} is monotone dependent upon X_{1}, i.e. there exlsts a monotone functlon g such that $P\left(X_{2}=g\left(X_{1}\right)\right)=1$, and X_{1}, X_{2} are nonatomic (Kimeldorf and Sampson (1978)). Thls follows directly from the fact that $\rho *$ is invariant under monotone transformations, so that we can assume without loss of generality that the distribution is bivariate uniform. But then g must be the Identity function, and the statement is proved, i.e. $\rho *=1$. Unfortunately, $\rho *=1$ does not Imply monotone dependence.

For continuous marginals, there is yet another good measure of dependence, based upon the distance between probabillty measures. It is defined as follows:

$$
\begin{aligned}
& L=\sup _{A}\left|P\left(\left(X_{1}, X_{2}\right) \in A\right)-P\left(\left(X_{1}, X^{\prime}{ }_{2}\right) \in A\right)\right| \\
& =\frac{1}{2} \int\left|f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right| d x_{1} d x_{2}
\end{aligned}
$$

where A is a Borel set of R^{2}, X_{2} is distributed as X_{2}, but is independent of X_{1}, f is the density of $\left(X_{1}, X_{2}\right)$, and f_{1}, f_{2} are the marginal densittes. The supremum in the definttion of L measures the distance between the given blvariate probabillty measure and the artificlal bivarlate probabllity measure constructed by taking the product of the two partlclpating marginal probabllity measures. The invarlance under strictly monotone transformations is clear. The integral form for L is Scheffe's theorem in disgulse (see exerclse 3.9). It is only valld when all the given densitles exist.

Example 3.1.

It is clearly possible to have unform marginals and a singular bivarlate distribution (consider $X_{2}=X_{1}$). It is even possible to find such a singular distributhon with $\rho=\rho_{g}=0$ (consider a carefully selected distribution on the surface of the unlt circle; or consider $\mathrm{I}_{2}=\mathrm{SI}_{1}$ where S takes the values +1 and -1 with equal probabllity). However, when we take A equal to the support of the singular dtstribution, then A has zero Lebesgue measure, and therefore zero measure for any absolutely continuous probabllity measure. Hence, $L=1$. In particular, when X_{2} is monotone dependent on I_{1}. then the blvarlate distribution is singular, and therefore $L=1$.

Example 3.2.

X_{1}, X_{2} are independent if and only if $L=0$. The if part follows from the fact that for all A, the product measure of A is equal to the given blvarlate probabllity measure of A. Thus, both probabllity measures are equal. The only if part is trivially true.

In the search for good measures of assoclation, there is no clear winner. Probabllity theoretical conslderations lead us to favor L over $\rho_{g}, \rho *$ and $\bar{\rho}$. On the other hand, as we have seen, approximating the blvarlate distribution by a singular distribution, always glves $L=1$. Thus, L is extremely sensitive to even small local devlations. The correlation coefficlents are much more robust in that respect.

We will assume that what the user wants is a distribution with glven absolutely continuous marginal distribution functions, and a given value for one of the transformation-Invariant measures of dependence. We can then construct a blvarlate unlform distrlbution with the given measure of dependence, and then transform the coordinate axes as in the unlvarlate inversion method to achleve given marginal dlstrlbutions (Nataf, 1982; Klmeldorf and Sampson, 1975; Mardia, 1970). If we can choose between a famlly of blvarlate unlform distributions, then it is perhaps possible to plck out the unlque distribution, if it exists, with the glven measure of dependence. In the next section, we will deal with blvarlate unlform distributions in general.

3.2. Bivariate uniform distributions.

We say that a distribution is blvarlate uniform (exponential, gamma, normal, Cauchy, etcetera) when the unlvarlate marginal distrlbutions are all unlform (exponentlal, gamma, normal, Cauchy, etcetera). Distributions of this form are extremely important in mathematical statistics in the context of testing for dependence between components. First of all, if the marginal distributions are contInuous, it is always possible by a transformation of both axes to insure that the marginal distributions have any prespecifled density such as the uniform $[0,1]$ density. If after the transformation to unlformity the joint density is uniform on $[0,1]^{2}$, then the two component random varlables are independent. In fact, the joint density after transformation provides a tremendous amount of information about the sort of dependence.

There are varlous ways of obtaining blvarlate distributions with specifled marginals from blvarlate unlform distrlbutions, which make these uniform distributions even more important. Good surveys are provided.by Johnson (1878), Johnson and Tenenbein (1878) and Marshall and Olkin (1983). The following
theorem comes closest to generallzing the unlvarlate propertles which lead to the inversion method.

Theorem 3.1.

Let $\left(X_{1}, X_{2}\right)$ be blvarlate unlform with joint density g. Let f_{1}, f_{2} be fixed univarlate densitles with corresponding distribution functions F_{1}, F_{2}. Then the density of $\left(Y_{1}, Y_{2}\right)=\left(F^{-1}{ }_{1}\left(X_{1}\right), F^{-1}{ }_{2}\left(X_{2}\right)\right)$ is

$$
f\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) g\left(F_{1}\left(y_{1}\right), F_{2}\left(y_{2}\right)\right)
$$

Conversely, if $\left(Y_{1}, Y_{2}\right)$ has density f glven by the formula shown above, then Y_{1} has marginal density f_{1} and Y_{2} has marginal density f_{2}. Furthermore, $\left(X_{1}, X_{2}\right)=\left(F_{1}\left(Y_{1}\right), F_{2}\left(Y_{2}\right)\right)$ is bivarlate unlform with joint density

$$
g\left(x_{1}, x_{2}\right)=\frac{f\left(F^{-1}{ }_{1}\left(x_{1}\right), F_{2}^{-1}\left(x_{2}\right)\right)}{f_{1}\left(F^{-1}{ }_{1}\left(x_{1}\right)\right) f_{2}\left(F_{2}^{-1}\left(x_{2}\right)\right)} \quad\left(0 \leq x_{1}, x_{2} \leq 1\right)
$$

Proof of Theorem 3.1.

Stralghtforward.

There are many reclpes for cooking up bivarlate distributions with specified marginal distribution functions F_{1}, F_{2}. We will list a few in Theorem 3.2. It should be noted that if we replace $F_{1}\left(x_{1}\right)$ by x_{1} and $F_{2}\left(x_{2}\right)$ by x_{2} in these reclpes, then we obtaln bivarlate unlform distribution functlons. Recall also that the blvarlate density, if it exlsts, can be obtalned from the blvarlate distribution function by taking the partlal derlvative with respect to $\partial x_{1} \partial x_{2}$.

Theorem 3.2.

Let $F_{1}=F_{1}\left(x_{1}\right), F_{2}=F_{2}\left(x_{2}\right)$ be univariate distribution functions. Then the following is a list of blvarlate distribution functions $F=F\left(x_{1}, x_{2}\right)$ having as marglnal distribution functions F_{1} and F_{2} :
A. $\quad F=F_{1} F_{2}\left(1+a\left(1-F_{1}\right)\left(1-F_{2}\right)\right)$. Here $a \in[-1,1]$ is a parameter (Farlie (1980), Gumbel (1958), Morgenstern (1956)). Thls will be called Morgenstern's famlly.
B. $\quad F=\frac{F_{1} F_{2}}{1-a\left(1-F_{1}\right)\left(1-F_{2}\right)}$. Here $a \in[-1,1]$ is a parameter (All, Mikhall and Haq (1978)).
C. F is the solution of $F\left(1-F_{1}-F_{2}+F\right)=a\left(F_{1}-F\right)\left(F_{2}-F\right)$ where $a \geq 0$ is a parameter (Plackett, 1985).
D. $\quad F=a \max \left(0, F_{1}+F_{2}-1\right)+(1-a) \min \left(F_{1}, F_{2}\right)$ where $0 \leq a \leq 1$ is a parameter (Frechet, 1951).
E. $(-\log (F))^{m}=\left(-\log \left(F_{1}\right)\right)^{m}+\left(-\log \left(F_{2}\right)\right)^{m}$ where $m \geq 1$ is a parameter (Gumbel, 1960).

Proof of Theorem 3.2.

To verlfy that F is Indeed a distribution function, we must verlfy that F is nondecreasing in both arguments, and that the limits as $x_{1}, x_{2} \rightarrow-\infty$ and $\rightarrow \infty$ are 0 and 1 respectively. To verlfy that the marginal distribution functions are correct, we need to check that

$$
\lim _{x_{2} \rightarrow \infty} F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right)
$$

and

$$
\lim _{x_{1} \rightarrow \infty} F\left(x_{1}, x_{2}\right)=F_{2}\left(x_{2}\right)
$$

The latter relations are easily verlfled.

It helps to visualize these reclpes. We begin with Frechet's inequallties (Frechet, 1951), which follow by simple geometric arguments in the plane:

Theorem 3.3. Frechet's inequalities.

For any two unlvarlate distribution functions F_{1}, F_{2}, and any blvarlate distribution function F having these two marginal distribution functions,

$$
\max \left(0, F_{1}(x)+F_{2}(y)-1\right) \leq F(x, y) \leq \min \left(F_{1}(x), F_{2}(y)\right) .
$$

Proof of Theorem 3.3.

For flxed $\left(x_{1}, x_{2}\right)$ in the plane, let us denote by $Q_{S E}, Q_{N E}, Q_{S W}, Q_{N W}$ the four quadrants centered at x, y where equality is resolved by including boundarles with the south and west halfplanes. Thus, $\left(x_{1}, x_{2}\right)$ belongs to $Q_{S W}$ whlle the vertical line at x_{1} belongs to $Q_{S W} \cup Q_{N W}$. It is easy to see that at x_{1}, x_{2},

$$
\begin{aligned}
& F_{1}\left(x_{1}\right)=P\left(Q_{S W} \cup Q_{N W}\right), \\
& F_{2}\left(x_{2}\right)=P\left(Q_{S W} \cup Q_{S E}\right), \\
& F\left(x_{1}, x_{2}\right)=P\left(Q_{S W}\right) .
\end{aligned}
$$

Clearly, $F \leq \min \left(F_{1}, F_{2}\right)$ and $1-F \leq 1-F_{1}+1-F_{2}$.

These inequalities are valid for all bivarlate distribution functions F with marginal distribution functions F_{1} and F_{2}. Interestingly, both extremes are also valld distribution functions. In fact, we have the following property which can be used for the generation of random vectors with these distribution functions.

Theorem 3.4.

Let U be a unlform $[0,1]$ random variable, and let F_{1}, F_{2} be continuous univariate distribution functlons. Then

$$
\left(F^{-1}{ }_{1}(U), F^{-1}(U)\right)
$$

has distrlbution function $\operatorname{mln}\left(F_{1}, F_{2}\right)$. Furthermore,

$$
\left(F_{1}^{-1}{ }_{1}(U), F^{-1}(1-U)\right)
$$

has distribution function $\max \left(0, F_{1}+F_{2^{-1}}\right)$.

Proof of Theorem 3.4.

We have

$$
P\left(F^{-1}{ }_{1}(U) \leq x_{1}, F_{2}^{-1}(U)=x_{2}\right)=P\left(U \leq \min \left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right)\right) .
$$

Also,

$$
P\left(F_{1}^{-1}(U) \leq x_{1}, F_{2}^{-1}(1-U)=x_{2}\right)=P\left(U \leq F_{1}\left(x_{1}\right), 1-U \leq F_{2}\left(x_{2}\right)\right) .
$$

Frechet's extremal distribution functions are those for which maximal positive and negative dependence are obtalned respectlvely. This is best seen by considering the blvarlate unlform case. The upper distribution function $\min \left(x_{1}, x_{2}\right)$ puts its mass uniformly on the 45 degree dlagonal of the first quadrant. The bottom distribution function $\max \left(0, x_{1}+x_{2}-1\right)$ puts its mass unlformly on the -45 degree dlagonal of $[0,1]^{2}$. Hoeffding (1840) and Whitt (1978) have shown that maximal positive and negative correlation are obtalned for Frechet's extremal distribution functions (see exerclse 3.1). Note also that maximally correlated random varlable are very important in varlance reduction technlques in Monte Carlo simulation. Theorem 3.4 shows us how to generate such random vectors. We have thus identified a large class of applications in which the inversion method seems essential (Fox, 1980). For Frechet's blvariate famlly (case D in Theorem 3.2), we note without work that it sufflces to consider a mixture of Frechet's extremal distributions. Thls is often a poor way of creating intermediate correlation. For example, in the blvarlate unlform case, all the probabilly mass is concentrated on the two diagonals of $[0,1]^{2}$.

The list of examples in Theorem 3.2 is necessarlly incomplete. Other examples can be found in exercises 3.2 and 3.3. Random varlate generation is usually taken care of via the conditional distribution method. The following example should suffice.

Example 3.3. Morgenstern's family.

Conslder the unlform verslon of Morgenstern's blvarlate family with parameter $|a| \leq 1$ glven by part A of Theorem 3.2. It is easy to see that for thls famlly, there exists a density given by

$$
f\left(x_{1}, x_{2}\right)=1+a\left(2 x_{1}-1\right)\left(2 x_{2}-1\right)
$$

Here we can generate X_{1} unlformly on [0,1]. Given X_{1}, X_{2} has a trapezoldal density which is zero outside $[0,1]$ and varles from $1-a\left(2 X_{1}-1\right)$ at $x_{2}=0$ to $1+a\left(2 X_{1}-1\right)$ at $x_{2}=1$. If U, V are 1 d unform $[0,1]$ random varlables, then X_{2}
can be generated as

$$
\begin{aligned}
& \min \left(U,-\frac{V}{a\left(2 X_{1}-1\right)}\right) \quad X_{1}<\frac{1}{2} \\
& \max \left(U, 1-\frac{V}{a\left(2 X_{1}-1\right)}\right) \quad X_{1} \geq \frac{1}{2}
\end{aligned}
$$

There are other important considerations when shopping around for a good blvarlate unlform family. For example, it is useful to have a family which contains as members, or at least as llmits of members, Frechet's extremal distributlons, plus the product of the marginals (the Independent case). We will call such famllies comprehensive. Examples of comprehenslve blvarlate famlles are given In the table below. Note that the comprehensiveness of a famlly is Invariant under strlctly monotone transformations of the coordinate axes (exercise 3.11), so that the marginals do not really matter.

Distribution function	Reference
$F \quad$ is the solution of	Plackett (1965)
$F\left(1-F_{1}-F_{2}+F\right)=a\left(F_{1}-F\right)\left(F_{2}-F\right)$	
where $a \geq 0$ is a parameter	
$F=\frac{a^{2}(1-a)}{2} \max \left(0, F_{1}+F_{2}-1\right)$	Frechet (1958)
$+\frac{a^{2}(1+a)}{2} \min \left(F_{1}, F_{2}\right)+\left(1-a^{2}\right) F_{1} F_{2}$	
where $\|a\| \leq 1$ is a parameter	
$\frac{1}{2 \pi \sqrt{1-r^{2}} e^{-\frac{x_{1}^{2}+x_{2}{ }^{2}-2 r x_{1} x_{2}}{2\left(1-r^{2}\right)}} \text { where }}$ $\|r\| \leq 1$ is a measure of associ- ation	

From this table, one can create other comprehensive famllies elther by monotone transformations, or by taking mixtures. Note that most familles, including Morgenstern's famlly, are not comprehensive.

Another issue is that of the range spanned by the family in terms of the values of a glven measure of dependence. For example, for Morgenstern's blvariate uniform family of Example 3.3, the correlation coefficlent is $-a / 3$. Therefore, it can take all the values in $\left[-\frac{1}{3}, \frac{1}{3}\right]$, but no values outside this interval. Needless to say, full ranges for certaln measures of assoclation are an asset. Typically, thls
goes hand in hand with comprehensiveness.

Example 3.4. Full correlation range families.

Plackett's blvarlate family with parameter $a \geq 0$ and arbltrary continuous marginal distribution functions has correlation coefficlent

$$
\rho=\frac{-\left(1-a^{2}\right)-2 a \log (a)}{(1-a)^{2}},
$$

which can be shown to take the values $1,0,-1$ when $a \rightarrow \infty, a=1$ and $a=0$ respectlvely (see e.g. Barnett, 1980). Since ρ is a continuous function of a, all values of ρ can be achleved.

The blvarlate normal family can also achleve all possible values of correlatlon. Since for thls famlly, $\rho=\rho *=\bar{\rho}$, we also achleve the full range for the sup correlation and the monotone correlation.

Example 3.5. The Johnson-Tenenbein families.

Johnson and Tenenbeln (1981) proposed a general method of constructing blvarlate famlles for which τ and ρ_{g} can attaln all possible values in ($-1,1$). The method consists slmply of taking $\left(X_{1}, X_{2}\right)=(U, H(c U+(1-c) V)$), where U, V are ild random varlables with common distribution function $F, c \in[0,1]$ is a welght parameter, and H is a monotone function chosen in such a way that $H(c U+(1-c) V)$ also has distribution function F. To take a simple example, let U, V be lld normal random varlables. Then we should take $H(u)=u / \sqrt{c^{2}+(1-c)^{2}}$. The resulting two-dimensional random vector is easily seen to be bivariate normal, as it is a linear combination of ild normal random varlables. Its correlation coefflclent is

$$
\frac{c}{\sqrt{c^{2}+(1-c)^{2}}},
$$

which can take all values in $[0,1]$. Moreover,

$$
\begin{aligned}
& \rho_{g}=\frac{6}{\pi} \arcsin \left(\frac{c}{2 \sqrt{c^{2}+(1-c)^{2}}}\right), \\
& \tau=\frac{2}{\pi} \arcsin \left(\frac{c}{\sqrt{c^{2}+(1-c)^{2}}}\right) .
\end{aligned}
$$

It is easy to see that these measures of association can also take all values in $[0,1]$ when we vary c. Negative correlations can be achleved by considering $(-U, H(c U+(1-c) V))$. Recall next that τ and ρ_{g} are Invarlant under strictly
monotone transformations of the coordlnate axes. Thus, we can now construct blvarlate famllies with speclfied marginals and glven values for ρ_{g} or τ.

3.3. Bivariate exponential distributions.

We wlll take the blvariate exponentlal distribution as our prototype distribution for lllustrating just how we can construct such distributions directly. At the same tlme, we will discuss random varlate generators. There are two very different approaches:
A. The analytlc method: one deflnes expllcitly a blvarlate denslty or distribution function, and worrles about generators later. An example is Gumbel's blvarlate exponentlal family (1980) described below. Another example is the distribution of Nagao and Kadoya (1971) dealt with in exercise 3.10.
B. The emplric method: one constructs a pair of random varlables known to have the correct marginals, and worrles about the form of the distribution function later. Here, random varlate generation is typlcally a trivial problem. Examples Include distributions proposed by Johnson and Tenenbeln (1981), Moran (1987), Marshall and Olkin (1987), Arnold (1987) and Lawrance and Lewls (1983).
The distinction between A and B is often not clear-cut. Familles can also be partitioned based upon the range for glven measures of assoclation, or upon the notion of comprehenslveness. Let us start with Gumbel's famlly of blvariate exponential distribution functions:

$$
1-e^{-x_{1}}-e^{-x_{2}}+e^{-x_{1}-x_{2}-a x_{1} x_{2}} \quad\left(x_{1}, x_{2}>0\right) .
$$

Here $a \in[0,1]$ ls the parameter. The joint density is

$$
e^{-x_{1}-x_{2}-a x_{1} x_{2}}\left(\left(1+a x_{1}\right)\left(1+a x_{2}\right)-a\right)
$$

Notice that the conditional density of X_{2} given $X_{1}=x_{1}$ is

$$
\begin{aligned}
& e^{-\left(1+a x_{1}\right) x_{2}}\left(\left(1+a x_{1}\right)\left(1+a x_{2}\right)-a\right) \\
& =\frac{a}{\theta}\left[\theta^{2} x_{2} e^{-\theta x_{2}}\right)+\frac{\theta-a}{\theta}\left(\theta e^{-\theta x_{2}}\right)
\end{aligned}
$$

where $\theta=1+a x_{1}$. In thls decomposition, we recognize a mixture of a gamma (2) and a gamma (1) denslty. Random varlates can easlly be generated via the condltlonal distribution method, where the conditional distribution of X_{2} given X_{1} can be handled by composition (see below). Unfortunately, the family contalns only none of Frechet's extremal distributions, which suggests that extreme correlations
cannot be obtalned.

> Gumbel's bivariate exponential distribution with parameter a
> Generate IId exponentlal random varlates X_{1}, X_{2}.
> Generate a unlform $[0,1]$ random varlate U.
> IF $U \leq \frac{a}{1+a X_{1}}$
> \quad THEN
> \quad Generate an exponential random varlate E.
> $\quad X_{2} \leftarrow X_{2}+E$
> $\operatorname{RETURN}\left(X_{1}, \frac{X_{2}}{1+a X_{1}}\right)$

Generallzations of Gumbel's distribution have been suggested by various authors. In general, one can start from a blvarlate uniform distrlbution function F, and defline a blvariate exponentlal distribution function by

$$
F\left(1-e^{-x_{1}}, 1-e^{-x_{2}}\right) .
$$

For a generator, we need only conslder $(-\log (U),-\log (V))$ where U, V is bivarlate unlform with distribution function F. For example, if we do this for Morgenstern's family with parameter $|a| \leq 1$, then we obtaln the blvarlate exponential distribution function

$$
\left(1-e^{-x_{1}}\right)\left(1-e^{-x_{2}}\right)\left(1+a e^{-x_{1}-x_{2}}\right) \quad\left(x_{1}, x_{2} \geq 0\right)
$$

This distribution has also been studled by Gumbel (1960). Both Gumbel's exponentlal distributions and other possible transformations of blvarlate unlform distributions are often artiffcial.

In the empiric (or constructive) method, one argues the other way around, by first defling the random vector. In the table shown below, a sampling of such bivarlate random vectors is given. We have taken what we consider are good didactical examples showing a variety of approaches. All of them explolt spectal propertles of the exponentlal distribution, such as the fact that the sum of squares of ild normal random variables is exponentially distributed, or the fact that the minimum of independent exponential random varlables is agaln exponen-
tlally distrlbuted.

$\left(X_{1}, X_{2}\right)$	Reference
$\left(\min \left(\frac{E_{1}}{\lambda_{1}}, \frac{E_{3}}{\lambda_{3}}\right), \min \left(\frac{E_{2}}{\lambda_{2}}, \frac{E_{3}}{\lambda_{3}}\right)\right)$	Marshall and Olkin (1967)
$\left(\beta_{1} E_{1}+S_{1} E_{2}, \beta_{2} E_{2}+S_{2} E_{1}\right)$,	
$P\left(S_{i}=1\right)=1-P\left(S_{i}=0\right)=1-\beta_{i}(i=1,2)$	
$\left(\begin{array}{ll}\left(E_{1},-\log \left((1-c) e^{-\frac{E_{2}}{1-c}}+c e^{-\frac{E_{2}}{6}}\right)+\log (1-2 c)\right) \\ c \in[0,1]\end{array}\right.$	Lawrance and Lewis (1983)
$\left(\frac{1}{2}\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right), \frac{1}{2}\left(N_{3}{ }^{2}+N_{4}{ }^{2}\right)\right)$,	Johnson and Tenenbein (1981)
$\left(N_{1}, N_{3}\right),\left(N_{2}, N_{4}\right)$ iid multinor-	
mal with correlation ρ	Moran (1967)

In thls table, E_{1}, E_{2}, E_{3} are ild exponential random varlates, and $\lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$ are parameters with $\lambda_{1} \lambda_{2}+\lambda_{3}>0$. The N_{i} 's are normal random varlables, and c, β_{1}, β_{2} are [0,1]-valued constants. A special property of the marginal distribution, closure under the operation min, is explolted in the definition. To see this, note that for $x>0$,

$$
\begin{aligned}
& P\left(X_{1}>x\right)=P\left(E_{1}>\lambda_{1} x, E_{3}>\lambda_{3} x\right) \\
& =e^{-\left(\lambda_{1}+\lambda_{3}\right) x} \quad(x>0)
\end{aligned}
$$

Thus, X_{1} is exponential with parameter $\lambda_{1}+\lambda_{3}$. The jolnt distribution function is uniquely determined by the function $G\left(x_{1}, x_{2}\right)$ defined by

$$
G\left(x_{1}, x_{2}\right)=P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=e^{-\lambda_{1} x_{1}-\lambda_{2} x_{2}-\lambda_{3} \max \left(x_{1}, x_{2}\right)} .
$$

The distribution is a mixture of a singular distribution carrying welght $\lambda_{3} /\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$, and an absolutely contlnuous part (exercise 3.8). Also, it is unfortunate that when (X_{1}, X_{2}) has the given bivarlate exponential distribution, then ($a_{1} X_{1}, a_{2} X_{2}$) is bivariate exponential in the case $a_{1}=a_{2}$ only. On the positive side, we should note that the family includes the independent case ($\lambda_{3}=0$), and one of Frechet's extremal cases ($\lambda_{1}=\lambda_{2}=0$). In the latter case, note that

$$
G\left(x_{1}, x_{2}\right)=P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=e^{-\lambda_{3} \max \left(x_{1}, x_{2}\right)} .
$$

The Lawrance-Lewls blvarlate exponential is Just one of a long list of blvariate exponentlals constructed by them. The one given in the table is particularly fiexible. We can quickly verlfy that the marginals are exponentlal via characterlstic functions. The characteristic function of X_{1} is

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t X_{1}}\right)=E\left(e^{\beta_{1} i t E_{1}}\right)\left(\beta_{1}+\left(1-\beta_{1}\right) E\left(e^{i t E_{2}}\right)\right) \\
& =\frac{1}{1-i t \beta_{1}}\left(\beta_{1}+\frac{\left(1-\beta_{1}\right)}{1-i t}\right)=\frac{1}{1-i t}
\end{aligned}
$$

The correlation $\rho=2 \beta_{1}\left(1-\beta_{2}\right)+\beta_{2}\left(1-\beta_{1}\right)$, valld for $0 \leq \beta_{1} \leq \beta_{2} \leq 1$, can take all values between 0 and 1 . To create negative correlation, one can replace E_{1}, E_{2} in the formulas for X_{2} by two other exponential random varlables, $h\left(E_{1}\right), h\left(E_{2}\right)$ where $h(x)=-\log \left(1-e^{-x}\right)$ (Lawrance and Lewls, 1983).

The Johnson and Tenenbeln construction is almost as slmple as the Lawrance-Lewis construction. Interestingly, by varying the parameter c, all possible nonnegative values for ρ_{g}, τ and ρ are achlevable.

Finally, in Moran's bivarlate distribution, good use is made of yet another property of exponential random varlables. His distribution has correlation ρ^{2} where ρ is the correlation of the underlying blvarlate normal distribution. Agaln, random varlate generation is extremely simple, and the correlation spans the full nonnegative range. Difficultles arise only when one needs to compute the exact value of the density at some points, but then again, these same difficultles are shared by most emplric methods.

3.4. A case study: bivariate gamma distributions.

We have seen how blvariate distributions with any given marginals can be constructed from blvarlate uniform distributions or blvarlate distributions with other continuous marginals, via transformations of the coordinate axes. These transformations leave ρ_{g}, τ and other ordinal measures of assoclation invarlant, but generally speaking not ρ. Furthermore, the inversion of the marginal distribution functions (F_{1}, F_{2}) required to apply these transformations is often unfeasible. Such is the case for the gamma distribution. In thls section we will look at these new problems, and provide new solutions.

To clarify the problems with inversion, we note that if X_{1}, X_{2} is blvarlate gamma (a_{1}, a_{2}), where a_{i} is the parameter for X_{i}, then maximum and minimum correlation are obtalned for the Frechet bounds, i.e.

$$
\begin{aligned}
& X_{2}=F_{2}^{-1}\left(F_{1}\left(X_{1}\right)\right) \\
& X_{2}=F_{2}^{-1}\left(1-F_{1}\left(X_{1}\right)\right)
\end{aligned}
$$

respectlvely (Moran (1987), Whitt (1978)). Direct use of Frechet's bounds is posslble but not recommended if generator efficiency is important. In fact, it is not recommended to start from any bivariate unlform distribution. Also, the method of Johnson and Tenenbein (1981) Illustrated on the blvarlate uniform, normal and exponentlal distributions in the previous sections requires an inversion of a gamma distribution function if it were to be applled here.

We can also obtain help from the composition method, noting that the random vector $\left(X_{1}, X_{2}\right)$ defined by

$$
\left(X_{1}, X_{2}\right)= \begin{cases}\left(Y_{1}, Y_{2}\right) & , \text { with probability } p \\ \left(Z_{1}, Z_{2}\right) & , \text { with probabillty 1-p }\end{cases}
$$

has the right marginal distributions if both random vectors on the right hand side have the same marginals. Also, $\left(X_{1}, X_{2}\right)$ has correlation coefficient $p \rho_{Y}+(1-p) \rho_{Z}$ where ρ_{Y}, ρ_{Z} are the correlation coefflclents of the two glven random vectors. One typlcally chooses ρ_{Y} and ρ_{Z} at the extremes, so that the entlire range of ρ values is covered by adjusting p. For example, one could take $\rho_{Y}=0$ by considering ild random varlables Y_{1}, Y_{2}. Then ρ_{Z} can be taken maximal by using the Frechet maximal dependence as in $\left(Z_{1}, Z_{2}\right)=\left(Z_{1}, F_{2}^{-1}\left(1-F_{1}\left(Z_{1}\right)\right)\right.$ where Z_{1} is gamma $\left(a_{1}\right)$. Doing so leads to a mixture of a continuous distribution (the product measure) and a slngular distributlon, which is not desirable.

The gamma distribution shares with many distributions the property that it is closed under additions of independent random variables. This has led to inverslon-free methods for generating blvarlate gamma random vectors, now known as trivariate reduction methods (Cherlan, 1941; David and Flx, 1981; Mardla, 1970; Johnson and Ramberg, 1977; Schmelser and Lal, 1982). The name is borrowed from the princlple that two dependent random varlables are constructed from three Independent random varlables. The application of the princlple is certalnly not llmited to the gamma distribution, but is perhaps best lllustrated here. Consider independent gamma random varlables G_{1}, G_{2}, G_{3} with parameters a_{1}, a_{2}, a_{3}. Then the random vector

$$
\left(X_{1}, X_{2}\right)=\left(G_{1}+G_{3}, G_{2}+G_{3}\right)
$$

is bivarlate gamma. The marginal gamma distributions have parameters $a_{1}+a_{3}$ and $a_{2}+a_{3}$ respectively. Furthermore, the correlation is given by

$$
\rho=\frac{a_{3}}{\sqrt{\left(a_{1}+a_{3}\right)\left(a_{2}+a_{3}\right)}}
$$

If ρ and the marginal gamma parameters are specifled beforehand, we have one of two situations: elther there is no possible solution for a_{1}, a_{2}, a_{3}, or there is exactly one solution. The limitation of thls technlque, which goes back to Cherlan (1941) (see Schmelser and Lal (1980) for a survey), is that

$$
0 \leq \rho \leq \frac{\min \left(\alpha_{1}, \alpha_{2}\right)}{\sqrt{\alpha_{1} \alpha_{2}}}
$$

where α_{1}, α_{2} are the marginal gamma parameters. Within this range, trivarlate reduction leads to one of the fastest algorithms known to date for blvarlate gamma dlstrlbutlons.

Trivariate reduction for bivariate gamma distribution

[NOTE: ρ is a given correlation, α_{1}, α_{2} are given parameters for the marginal gamma distributions. It is assumed that $0 \leq \rho \leq \frac{\min \left(\alpha_{1}, \alpha_{2}\right)}{\sqrt{\alpha_{1} \alpha_{2}}}$.
[GENERATOR]
Generate a gamma ($\alpha_{1}-\rho \sqrt{\alpha_{1} \alpha_{2}}$) random variate G_{1}.
Generate a gamma ($\alpha_{2}-\rho \sqrt{\alpha_{1} \alpha_{2}}$) random variate G_{2}.
Generate a gamma ($\rho \sqrt{\alpha_{1} \alpha_{2}}$) random variate G_{3}.
$\operatorname{RETURN}\left(G_{1}+G_{3}, G_{2}+G_{3}\right)$

Ronning (1877) generallzed this principle to higher dimensions, and suggested several possible linear combinations to achleve desired correlations. Schmeiser and Lal (1882) (exercise 3.18) fill the vold by extending the trivariate reduction method in two dimenslons, so that all theoretlcally possible correlations can be achleved in blvarlate gamma distributions. But we do not get something for nothIng: the algorithm requires the inversion of the gamma distribution function, and the numerical solution of a set of nonllnear equations in the set-up stage.

3.5. Exercises.

1. Prove that over all bivarlate distribution functions with given marginal univarlate distribution functions F_{1}, F_{2}, the correlation coefficlent ρ is minimized for the distribution function $\max \left(0, F_{1}(x)+F_{2}(y)-1\right)$. It is maximized for the distribution function $\min \left(F_{1}(x), F_{2}(y)\right.$) (Whitt, 1876; Hoeffding, 1940).
2. Plackett's bivariate uniform family (Plackett (1965). Consider the blvarlate unlform famlly deflned by part C of Theorem 3.2, with parameter $a \geq 0$. Show that on $[0,1]^{2}$, this distribution has a density given by

$$
f\left(x_{1}, x_{2}\right)=\frac{a(a-1)\left(x_{1}+y_{1}-2 x_{1} x_{2}\right)+a}{\left(\left((a-1)\left(x_{1}+x_{2}\right)+1\right)^{2}-4 a(a-1) x_{1} x_{2}\right)^{3 / 2}}
$$

For this dlstribution, Mardla (1970) has proposed the following generator:

Mardia's generator for Plackett's bivariate uniform family

Generate two iid uniform [0,1] random variables U, V.
$X_{1} \leftarrow U$
$Z \leftarrow V(1-V)$
$X_{2} \leftarrow \frac{2 Z\left(a^{2} X_{1}+1-X_{1}\right)+a(1-2 Z)-(1-2 V) \sqrt{a\left(a+4 Z X_{1}\left(1-X_{1}\right)(1-a)^{2}\right)}}{a+Z(1-a)^{2}}$
RETURN (X_{1}, X_{2})

Show that this algorlthm is valld.
3. Suggest generators for the following blvarlate uniform famlles of distrlbutlons:

Density	Parameter(s)	Reference
$\begin{gathered} 1+a\left((m+1) x_{1}^{m}-1\right)\left((n+1) x_{2}^{n}-1\right) \\ \underline{a\left(x_{1}^{1-a}+x_{2}^{1-a}-1\right)^{\frac{2 a-1}{1-a}}} \end{gathered}$	$\frac{1}{m n} \leq a \leq \max (m, n), m, n \geq 0$	Farlie (1960)
$\left(x_{1} x_{2}\right)^{a}$	$a>1$	(derived from multivariate Pareto)
$\begin{aligned} & \frac{\pi\left(1+u^{2}\right)\left(1+v^{2}\right)}{2+u^{2}+v^{2}} \\ & u=1 / \tan ^{2}\left(\pi x_{1}\right), v=1 / \tan ^{2}\left(\pi x_{2}\right) \end{aligned} \quad \text { where }$		Mardia (1970) (derived from multivariate Cauchy)
$1+a\left(2 x_{1}-1\right)\left(2 x_{2}-1\right)+b\left(3 x_{1}{ }^{2}-1\right)\left(3 x_{2}{ }^{2}-1\right)$	$\|a\| \leq \frac{1}{2},\|b\| \leq \frac{1}{8}$	Kimeldorf and Sampson (1975)

4. This is about varlous measures of assoclation. Construct a blvarlate unlform distribution for which $\rho=\rho_{g}=\tau=0$, and $X_{2}=g\left(X_{1}\right)$ for some function g (1.e. X_{2} is completely dependent on X_{1}, see e.g. Lancaster, 1983).
5. Show that for the normal distribution $\ln R^{2},|\rho|=\rho *=\bar{\rho}$.
6. Prove that $\bar{\rho}=0$ implies independence of components (Renyl, 1959).
7. Recall the deflnition of complete dependence of exercise 3.4. Construct a sequence of blvarlate unlform distributions \ln which for every n, the second coordinate is completely dependent on the first coordinate. The sequence should aiso tend in distribution to the independent bivarlate unlform distribution (Klmeldorf and Sampson, 1978). Conclude that the notion of complete dependence is pecullar.
*. The phenomenon described in exerclse 7 cannot happen for monotone dependent sequences. If a sequence of random blvarlate uniform random vectors in
which the second component is monotone dependent on the first component for all n, tends in distrlbution to a random vector, then this new random vector is blvarlate unlform, and the second component is monotone dependent on the first component (Klmeldorf and Sampson, 1978).
8. One measure of assoclation for blvarlate distrlbutions is

$$
\begin{aligned}
& L=\sup _{A}\left|P\left(\left(X_{1}, X_{2}\right) \in A\right)-P\left(\left(X_{1}, X_{2}\right) \in A\right)\right| \\
& =\frac{1}{2} \int\left|f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right| d x_{1} d x_{2},
\end{aligned}
$$

where A is a Borel set of R^{2}, X^{\prime} is distributed as X_{2}, but is independent of X_{1}, f is the density of (X_{1}, X_{2}) and f_{1}, f_{2} are the marginal densitles. The second equality is valld only if the densities involved in the right-hand-side exist. Prove the second equallty (Scheffe, 1947).
10. Nagao and Kadoya (1971) studled the following blvariate exponential density:

$$
f\left(x_{1}, x_{2}\right)=\frac{e^{-\frac{1}{1-r}\left(\frac{x_{1}}{\sigma_{1}}+\frac{x_{2}}{\sigma_{2}}\right)} I_{0}\left(\frac{2}{1-r} \sqrt{\frac{r x_{1} x_{2}}{\sigma_{1} \sigma_{2}}}\right)}{\sigma_{1} \sigma_{2}(1-r)}
$$

where $r \in[0,1)$ is a measure of dependence, $\sigma_{1}, \sigma_{2}>0$ are constants (parameters), and I_{0} is a modifled Bessel function of the flrst kind. Obtain the parameters of the marginal exponentlal distributions. Compute the correlation coefflcient ρ. Finally indicate how you would generate random vectors in uniformly bounded expected time.
11. Show that the property of comprehensiveness of a bivariate family is invariant under strlctly monotone transformations of the coordinate axes (Kimeldorf and Sampson, 1975).
12. Show that Plackett's blvarlate family with parameter $a \geq 0$ is comprehensive. Show in particular that Frechet's extremal distributions are attalned for $a=0$ and $a \rightarrow \infty$, and that the product of the marginals is obtalned for $a=1$.
13. Show that the standard bivarlate normal family (1.e., the normal distribution in the plane) with varlable correlation is comprehensive.
14. Show that Morgenstern's blvarlate famlly is not comprehensive.
15. Consider the Johnson-Tenenbein family of Example 3.4, with parameter $c \in[0,1]$. Let U and V have uniform $[0,1]$ densities.
A. Find H such that the distribution is blvarlate unlform. Hint: H is parabollc on $[0, b]$ and $[1-b, 1]$, and linear \ln between, where $b=\min (c, 1-c)$.
B. Find ρ, τ and ρ_{g} as a function of c. In particular, prove that

$$
\tau=\left\{\begin{array}{ll}
\frac{4 c-5 c^{2}}{6(1-c)^{2}} & 0<c<\frac{1}{2} \\
\frac{11 c^{2}-6 c+1}{6 c^{2}} & \frac{1}{2}<c<1
\end{array},\right.
$$

$$
\rho_{g}=\left\{\begin{array}{ll}
\frac{10 c-13 c^{2}}{10(1-c)^{2}} & 0<c<\frac{1}{2} \\
\frac{3 c^{3}+16 c^{2}-11 c+2}{10 c^{3}} & \frac{1}{2}<c<1
\end{array} .\right.
$$

Conclude that all nonnegative values for ρ, τ and ρ_{g} are achlevable by adJusting c (Johnson and Tenenbeln, 1981).
16. Show that for Gumbel's blvarlate exponentlal famlly with parameter $a \in[0,1]$, the correlation reaches a minimum for $a=1$, and this minimum is $-0.40385 . .$. Show that the correlation is a decreasing function of a, taking the maximal value 0 at $a=0$.
17. Consider the following palr of random variables: $\beta_{1} E_{1}+S_{1} E_{2}, \beta_{2} E_{2}+S_{2} E_{1}$ where $P\left(S_{i}=1\right)=1-P\left(S_{i}=0\right)=1-\beta_{i}(i=1,2)$ and E_{1}, E_{2} are ind exponentlal random varlables (Lawrance and Lewls (1983)). Does thls family contaln one of Frechet's extremal distributions?
18. Compute ρ, ρ_{g} and τ for the blvarlate exponentlal distribution of Johnson and Tenenbein (1981), defined as the distribution of $E_{1},-\log \left((1-c) e^{-\frac{E_{2}}{1-c}}+c e^{-\frac{E_{2}}{c}}\right)+\log (1-2 c)$ where $c \in[0,1]$ and E_{1}, E_{2} are 11 d exponentlal random variables.
18. Schmelser and Lal (1982) proposed the following method for generating a blvarlate gamma random vector: let G_{1}, G_{2}, G_{3} be independent gamma random varlables with respective parameters a_{1}, a_{2}, a_{3}, let U, V be an independent blvarlate unlform random vector with $V=U$ or $V=1-U$, let F_{b} denote the gamma distribution function with parameter b, and let b_{1}, b_{2} be two nonnegative numbers. Deflne

$$
\left(X_{1}, X_{2}\right)=\left(F_{b_{1}}^{-1}(U)+G_{1}+G_{3}, F_{b_{2}}^{-1}(V)+G_{2}+G_{3}\right) .
$$

A. Show that thls random vector is bivarlate gamma.
B. Show constructively that the five-parameter family is comprehensive, i.e. for every possible combination of specifled marginal gamma distributions, give the values of the parameters needed to obtain the Frechet extremal distributions and the product distribution. Indicate also whether $V=U$ or $V=1-U$ is needed each time.
C. Show that by varying the five parameters, we can cover all theoretically possible combinations for the correlation coefficlent and the marginal gamma parameters.
D. Consider the simpllfled three parameter model
$\left(X_{1}, X_{2}\right)=\left(F_{b_{1}}^{-1}(U)+G_{1}, F_{\alpha_{2}}^{-1}(V)\right)$
for generating a blvariate gamma random vector with marginal parameters (α_{1}, α_{2}) and correlation ρ. Show that thls famlly is stlll comprehensive. There are two equations for the two free parameters (b_{1} and a_{1}).

Suggest a good numerlcal algorithm for finding these parameters.
20. A bivariate Poisson distribution. $\left(X_{1}, X_{2}\right)$ is sald to be bivariate Polsson with parameters $\lambda_{1}, \lambda_{2}, \lambda_{3}$, when it has characteristic function

$$
\phi\left(t_{1}, t_{2}\right)=e^{\lambda_{1}\left(e^{t t_{1}}-1\right)+\lambda_{2}\left(e^{t_{2}}-1\right)+\lambda_{3}\left(e^{t_{1}+t t_{2}}-1\right)} .
$$

A. Show that thls is indeed a blvarlate Polsson distribution.
B. Apply the trivarlate reduction principle to generate a random vector with the given distribution.
C. (Kemp and Loukas, 1878). Show that we can generate the random vector as ($Z+W, X_{2}$) where X_{2} is Polsson $\left(\lambda_{1}+\lambda_{3}\right)$, and glven X_{2}, Z, W are independent Polsson $\left(\lambda_{2}\right)$ and binomlal $\left(X_{2}, \lambda_{3} /\left(\lambda_{1}+\lambda_{3}\right)\right.$) random varlables. Hint: prove thls via generating functions.
21. The Johnson-Ramberg bivariate uniform family. Let U_{1}, U_{2}, U_{3} be ild uniform [0,1] random varlables, and let $b \geq 0$ be a parameter of a family of blvarlate uniform random vectors defined by

$$
\left(X_{1}, X_{2}\right)=\left(\frac{U_{1} U_{3}^{b}-b U_{1}^{\frac{1}{b}} U_{3}}{1-b}, \frac{U_{2} U_{3}^{b}-b U_{2}^{\frac{1}{b}} U_{3}}{1-b}\right)
$$

This construction can be considered as trivarlate reduction. Show that the full range of nonnegative correlations is possible, by first showing that the correlation is

$$
\frac{b^{2}\left(2 b^{2}+9 b+8\right)}{(1+b)^{2}(1+2 b)(2+b)} .
$$

Show also that one of the Frechet extremal distributions can be approximated arbitranily closely from within the famlly. For $b=1$, the defining formula is Invalld. By what should it be replaced? (Johnson and Ramberg, 1977)
22. Consider a family of univarlate distribution functions $\left\{1-(1-F)^{a}, a>0\right\}$, where F is a distribution function. Familles of this form are closed under the operation $\min \left(X_{1}, X_{2}\right)$ where X_{1}, X_{2} are independent random variables with parameters a_{1}, a_{2} : the parameter of the minimum is $a_{1}+a_{2}$. Use this to construct a blvarlate family via trlvarlate reduction, and compute the correlations obtalnable for blvarlate exponentlal, geometric and Welbull distributlons obtalned in thls manner (Arnold, 1987).
23. The bivariate Hermite distribution. A unlvarlate Hermite distribution $\left\{p_{i}, i \geq 0\right\}$ with parameters $a, b>0$ is a distribution on the nonnegative integers which has generating function (defined as $\sum_{i} p_{i} s^{i}$)

$$
e^{a(s-1)+b\left(s^{2}-1\right)}
$$

The bivariate Hermite distrlbution with parameters $a_{i}>0, i=1,2, \ldots, 5$, is defined on all palrs of nonnegatlve integers and has blvariate generating
function (deflned as $E\left(s_{1}{ }^{X_{1}} s_{2}{ }^{X_{2}}\right)$ where $\left(X_{1}, X_{2}\right)$ is a blvariate Hermite random vector)

$$
e^{a_{1}\left(s_{1}-1\right)+a_{2}\left(s_{1}{ }^{2}-1\right)+a_{3}\left(s_{2}-1\right)+a_{4}\left(s_{2}{ }^{2}-1\right)+a_{5}\left(s_{1} s_{2}-1\right)}
$$

(Kemp and Kemp (1985,1988); Kemp and Papageorglou (1978)).
A. How can you generate a unlvarlate Hermite (a, b) random varlate using only Polsson random variates in uniformly bounded expected time?
B. Glve an algorlthm for the efflclent generation of blvarlate Hermite random varlates. Hint: derive first the generating function of ($X_{1}+X_{3}, X_{2}+X_{3}$) where X_{1}, X_{2}, X_{3} are independent random varlables with generating functions g_{1}, g_{2}, g_{3}.
Thls exercise is adapted from Kemp and Loukas (1978).
24. Write an algorithm for computing the probabllitles of a blvarlate discrete distribution on $\{1,2, \ldots, K\}^{2}$ with speclfied marginal distributions, and achleving Frechet's Inequality. Repeat for both of Frechet's extremal distributions.

4. THE DIRICHLET DISTRIBUTION.

4.1. Definitions and properties.

Let a_{1}, \ldots, a_{k+1} be positive numbers. Then (X_{1}, \ldots, X_{k}) has a Dirichlet distribution with parameters $\left(a_{1}, \ldots, a_{k+1}\right)$, denoted $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, if the Joint distribution has density

$$
f\left(x_{1}, \ldots, x_{k}\right)=c x_{1}^{a_{1}-1} \cdots x_{k}^{a_{k}-1}\left(1-x_{1}-\cdots-x_{k}\right)^{a_{k+1}-1}
$$

over the k-dimensional simplex S_{k} defined by the inequalities $x_{i}>0(i=1,2, \ldots, k), \sum_{i=1}^{k} x_{i}<1$. Here c is a normallzation constant. Baslcally, the X_{i} 's can be thought of as a_{i}-spacings in a unlform sample of size $\sum a_{j}$ If the a_{i} 's are all positive integers. The only novelty is that the a_{i} 's are now allowed to take non-Integer values. The interested reader may want to refer back to section V. 2 for the propertles of spacings and to section V. 3 for generators. The present section is only a reflnement of sorts.

Theorem 4.1.

Let Y_{1}, \ldots, Y_{k+1} be independent gamma random varlables with parameters $a_{i}>0$ respectively. Deflne $Y=\Sigma Y_{i}$ and $X_{i}=Y_{i} / Y \quad(i=1,2, \ldots, k)$. Then $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$ and $\left(X_{1}, \ldots, X_{k}\right)$ is independent of Y.

Conversely, if Y is gamma $\left(\sum a_{i}\right)$, and Y is independent of $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1_{k}} \ldots, a_{k+1}\right)$ then the random variables $Y X_{1}, \ldots, Y X_{k}, Y\left(1-\sum_{i=1} X_{i}\right)$ are independent gamma random varlables with parameters a_{1}, \ldots, a_{k+1}.

Proof of Theorem 4.1.

The joint density of the Y_{i} 's is

$$
f\left(y_{1}, \ldots, y_{k+1}\right)=c \prod_{i=1}^{k+1} y_{i}^{a_{i}-1} e^{-\sum_{i=1}^{k+1} y_{i}}
$$

where c is a normallzation constant. Consider the transformation $y=\sum_{y_{i}}, x_{i}=y_{i} / y \quad(i \leq k)$, which has as reverse transformation $y_{i}=y x_{i} \quad(i \leq k), y_{k+1}=y\left(1-\sum_{i=1}^{k} x_{i}\right)$. The Jacobian of the transformation is y^{k}. Thus, the joint density of $Y^{i}, \bar{X}_{1}, \ldots, X_{k}$) is

$$
g\left(y, x_{1}, \ldots, x_{k}\right)=c \prod_{i=1}^{k} x_{i}^{a_{i}-1}\left(1-\sum_{i=1}^{k} x_{i}\right)^{a_{k+1}-1} y^{\sum_{i=1}^{k+1} a_{i}-1} e^{-y}
$$

This proves the first part of the Theorem. The proof of the second part is omitted.

Theorem 4.1 suggests a generator for the Dirichlet distribution via gamma generators. There are important relationshlps with the beta distribution as well, which are revlewed by Wilks (1982), Altchison (1983) and Basu and Tiwarl (1982). Here we will just mention the most useful of these relationships.

Theorem 4.2.

Let Y_{1}, \ldots, Y_{k} be independent beta random variables where Y_{i} is beta $\left(a_{i}, a_{i+1}+\cdots+a_{k+1}\right)$. Then $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$ where the X_{i} 's are deflned by

$$
X_{i}=Y_{i} \prod_{j=1}^{i-1} Y_{j}
$$

Conversely, when $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, then the random variables Y_{1}, \ldots, Y_{k} defined by

$$
Y_{i}=\frac{X_{i}}{1-X_{1^{-}} \cdots-X_{i-1}}
$$

are Independent beta random varlables with parameters given in the first statement of the Theorem.

Theorem 4.3.

Let Y_{1}, \ldots, Y_{k} be independent random variables, where Y_{i} is beta $\left(a_{1}+\cdots+a_{i}, a_{i+1}\right)$ for $i<k$ and Y_{k} is gamma $\left(a_{1}+\cdots+a_{k}\right)$. Then the following random varlables are independent gamma random varlables with parameters a_{1}, \ldots, a_{k} :

$$
X_{i}=\left(1-Y_{i-1}\right) \prod_{j=i}^{k} Y_{j} \quad(i=1,2, \ldots, k)
$$

To avoid trivialitles, set $Y_{0}=0$.
Conversely, when X_{1}, \ldots, X_{k} are independent gamma random variables with parameters a_{1}, \ldots, a_{k}, then the Y_{i} 's deffned by

$$
Y_{i}=\frac{X_{1}+\cdots+X_{i}}{X_{1}+\cdots+X_{i+1}} \quad(i=1,2, \ldots, k-1)
$$

and

$$
Y_{k}=X_{1}+\cdots+X_{k}
$$

are Independent. Here Y_{i} is beta $\left(a_{1}+\cdots+a_{i}, a_{i+1}\right)$ for $i<k$ and Y_{k} is gamma $\left(a_{1}+\cdots+a_{k}\right)$.

The proofs of Theorems 4.2 and 4.3 do not differ substantlally from the proof of Theorem 4.1, and are omltted. See however the exerclses. Theorem 4.2 tells us how to generate a Dirichlet random vector by transforming a sequence of beta random varlables. Typlcally, this is more expensive than generating a Dirlchlet random vector by transforming a sequence of gamma random varlables, as
is suggested by Theorem 4.1.
Theorem 4.2 also tells us that the marginal distrlbutions of the Dirichlet distribution are all beta. In particular, when $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, then X_{i} is beta $\left(a_{i}, \sum_{j \neq i} a_{j}\right)$.

Theorem 4.1 tells us how to relate Independent gammas to a Dirichlet random vector. Theorem 4.2 tells us how to relate independent betas to a Dirlchlet distribution. These two connections are put together in Theorem 4.3, where independent gammas and betas are related to each other. This offers the exciting possibillty of using slmple transformatlons to transform long sequences of gamma random vartables into equally long sequences of beta random variables. Unfortunately, the beta random varlables do not have equal parameters. For example, consider k ind gamma (a) random variables X_{1}, \ldots, X_{k}. Then the second part of Theorem 4.3 tells us how to obtain independent random varlables distributed as beta (a, a), beta ($2 a, a$), . ., beta ($(k-1) a, a$) and gamma ($k a$) random variables respectively. When $a=1$, thls reduces to a well-known property of spacings glven in section V.2.

We also deduce that $B G,(1-B) G$ are independent gamma (a), gamma (b) random variables when G is gamma ($a+b$) and B is beta (a, b) and independent of G. In particular, we obtain Stuart's theorem (Stuart, 1962), which gives us a very fast method for generating gamma (a) random varlates when $a<1$: a gamma (a) random varlate can be generated as the product of a gamma ($a+1$) random varlate and an independent beta ($a, 1$) random varlate (the latter can be obtalned as $e^{-E / a}$ where E is exponentlally distributed).

4.2. Liouville distributions.

Sivazllan (1981) introduced the class of Llouville distributions, which generallzes the Dirichlet distributions. These distributions have a density on R^{k} glven by

$$
c \psi\left(\sum_{i=1}^{k} x_{i}\right) \prod_{i=1}^{k} x_{i}^{a_{i}-1} \quad\left(x_{i} \geq 0, i=1,2, \ldots, k\right)
$$

where ψ is a Lebesgue measurable nonnegative function, a_{1}, \ldots, a_{k} are positive constants (parameters), and c is a normallzation constant. The functional form of ψ is not flxed. Note however that not all nonnegative functions ψ can be substltuted in the formula for the denslty because the integral of the unnormalized density has to be finite. A random vector with the density given above is sald to be Llouville $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$. Sivazllan (1981) calls thls distrlbution a Liou-
ville distribution of the first kind.

Example 4.1. Independent gamma random variables.

When X_{1}, \ldots, X_{k} are independent gamma random varlables with parameters a_{1}, \ldots, a_{k}, then $\left(X_{1}, \ldots, X_{k}\right)$ is $L_{k}\left(e^{-x}, a_{1}, \ldots, a_{k}\right)$.

Example 4.2.

A random varlable X with density $c \psi(x) x^{a-1}$ on $[0, \infty)$ is $L_{1}(\psi, a)$. This famlly of distrlbutions contalns all densitles on the positive halfilne.

We are mainly interested in generating random varlates from multivariate Llouville distributions. It turns out that two key ingredlents are needed here: a Dirichlet generator, and a generator for univarlate Llouville distributions of the form given in Example 4.2. The key property ls given in Theorem 4.4.

Theorem 4.4. (Sivazlian, 1981)
The normallzation constant c for the Llouville $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$ density is glven by

where $a=\sum_{i=1}^{k} a_{i}$.
Let $\left(X_{1}, \ldots, X_{k}\right)$ be $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$, and let $\left(Y_{1}, \ldots, Y_{k}\right)$ be deffned by

$$
\begin{aligned}
Y_{i} & =\frac{X_{i}}{X_{1}+\cdots+X_{k}} \quad(1 \leq i<k), \\
Y_{k} & =X_{1}+\cdots+X_{k}
\end{aligned}
$$

Then $\left(Y_{1}, \ldots, Y_{k-1}\right)$ is Dirichlet $\left(a_{k}, \ldots, a_{k}\right)$, and Y_{k} is independent of this Dirichlet random vector and $L_{1}\left(\psi, \sum_{i=1}^{k} a_{i}\right)$.

Conversely, if $\left(Y_{1}, \ldots, Y_{k-1}\right)$ is Dirichlet $\left(a_{1}, \ldots, a_{k}\right)$, and Y_{k} is Independent of this Dirlchlet random vector and $L_{1}\left(\psi, \sum_{i=1} a_{i}\right)$, then the random vector $\left(X_{1}, \ldots, X_{k}\right)$ deflned by

$$
\begin{aligned}
& X_{i}=Y_{i} Y_{k} \quad(1 \leq i<k), \\
& X_{k}=\left(1-Y_{1}-\cdots-Y_{k-1}\right) Y_{k} .
\end{aligned}
$$

Is $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$.

Proof of Theorem 4.4.

The constant c is given by

$$
\begin{aligned}
& \frac{1}{c}=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \psi\left(\sum_{i=1}^{k} x_{i}\right) \prod_{i=1}^{k} x_{i}^{a_{i}-1} d x_{1} \cdots d x_{k} \\
& =\frac{\prod_{i=1}^{k} \Gamma\left(a_{i}\right)}{\Gamma\left(\sum_{i=1}^{k} a_{i}\right)} \int_{0}^{\infty} \psi(x) x^{a-1} d x,
\end{aligned}
$$

where a property of Llouville multiple Integrals is used (Sivazlian, 1981). This proves the first part of the Theorem.

Assume next that $\left(X_{1}, \ldots, X_{k}\right)$ is $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$, and that $\left(Y_{1}, \ldots, Y_{k}\right)$ is obtalned via the transformation glven in the statement of the Theorem. This transformation has Jacoblan $Y_{k}{ }^{k-1}$. The jolnt density of $\left(Y_{1}, \ldots, Y_{k}\right)$ is

$$
\begin{aligned}
& c y_{k}^{k-1} \psi\left(y_{k}\right) \prod_{i=1}^{k-1}\left(y_{i} y_{k}\right)^{a_{i}-1}\left(\left(1-\sum_{i=1}^{k-1} y_{i}\right) y_{k}\right)^{a_{k}-1} \\
& =c \psi\left(y_{k}\right) y_{k}^{a-1} \prod_{i=1}^{k-1} y_{i}^{a_{i}-1}\left(1-\sum_{i=1}^{k-1} y_{i}\right)^{a_{k}-1} \quad\left(y_{i} \geq 0(i=1,2, \ldots, k-1), \sum_{i=1}^{k-1} y_{i} \leq 1\right) .
\end{aligned}
$$

In thls we recognize the product of an $L_{1}(\psi, a)$ denslty (for Y_{k}), and a Dirichlet $\left(a_{1}, \ldots, a_{k}\right)$ density (for $\left(Y_{1}, \ldots, Y_{k-1}\right)$). This proves the second part of the Theorem.

For the third part, we argue similarly, starting from the last density shown above. After the transformation to $\left(X_{1}, \ldots, X_{k}\right)$, which has Jacoblan $\left(\sum_{i=1}^{k} X_{i}\right)^{k-1}$, we obtain the $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$ density again

Dirlchlet generators are described in section 4.1 , whlle $L_{1}(\psi, a)$ generators can be handled individually based upon the particular form for ψ. Since this is a univarlate generatlon problem, we won't be concerned with the assoclated problems here.

4.3. Exercises.

1. Prove Theorems 4.2 and 4.3 .
2. Prove the following fact: when $\left(\underset{k+1}{X_{1}}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, then $\left(X_{1}, \ldots, X_{i}\right) \sim D\left(a_{1}, \ldots, a_{i}, \sum_{j=i+1}^{k+1} a_{j}\right), i<k$.
3. The generalized Liouville distribution. A random vector (X_{1}, \ldots, X_{k}) Is generallzed Llouville (Sivazlian, 1981) when it has a density which can be written as

$$
c \psi\left(\sum_{i=1}^{k}\left(\frac{x_{i}}{c_{i}}\right)^{b_{i}}\right) \prod_{i=1}^{k} x_{i}^{a_{i}-1} \quad\left(x_{i} \geq 0\right)
$$

Here $a_{i}, b_{i}, c_{i}>0$ are parameters, ψ is a nonnegative Lebesgue measurable function, and c is a normallzation constant. Generallze Theorem 4.4 to thls distribution. In partlcular, show how you can generate random vectors with thls distrlbution when you have a Dirlchlet generator and an $L_{1}(\psi, a)$ generator at your disposal.
4. In the proof of Theorem 4.4, prove the two statements made about the Jacoblan of the transformation.

5. SOME USEFUL MULTIVARIATE FAMILIES.

5.1. The Cook-Johnson family.

Cook and Johnson (1981) consider the multivarlate unlform distribution defined as the distribution of

$$
\left(X_{1}, \ldots, X_{d}\right)=\left(\left(1+\frac{E_{1}}{S}\right)^{-a}, \ldots,\left(1+\frac{E_{d}}{S}\right)^{-a}\right)
$$

where E_{1}, \ldots, E_{d} are ild exponential random variables, S is an independent gamma (a) random variable, and $a>0$ is a parameter. This family is interesting from a varlety of points of view:
A. Random varlate generation is easy.
B. Many multivarlate distributions can be obtalned by approprlate monotone transformations of the components, such as the multivariate logistic distributlon (Satterthwalte and Hutchinson, 1978; Johnson and Kotz, 1872, p. 291), the multivarlate Burr distrlbution (Takahasi, 1965; Johnson and Kotz, 1972, p. 288), and the multivarlate Pareto distribution (Johnson and Kotz, 1972, p. 286).
C. For $d=\mathbf{2}$, the full range of nonnegative correlations can be achieved. The independent blvarlate uniform distribution and one of Frechet's extremal distributions (corresponding to the case $X_{2}=X_{1}$) are obtalnable as limits.

Theorem 5.1.

The Cook-Johnson distribution has distribution function

$$
F\left(x_{1}, \ldots, x_{d}\right)=\left(\sum_{i=1}^{d} x_{i}^{-\frac{1}{a}}-(d-1)\right)^{-a} \quad\left(0<x_{i} \leq 1, i=1,2, \ldots, d\right)
$$

and density

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{d}\right)= \frac{\Gamma(a+d)}{\Gamma(a) a^{d}} \prod_{i=1}^{d} x_{i} \\
& \\
&\left(0<x_{i} \leq 1, i=1,2, \ldots, d\right)
\end{aligned}
$$

The distribution is invarlant under permutations of the coordinates, and is multlvarlate unform. Furthermore, as $a \rightarrow \infty$, the distribution function converges to $\stackrel{d}{\Pi} x_{i}$ (the independent case), and as $a \downarrow$, it converges to $m \ln \left(x_{1}, \ldots, x_{d}\right)$ (the $i=1$
totally dependent case).

Proof of Theorem 5.1.

The distribution function is derived without difficulty. The density is obtalned by differentiation. The permutation Invarlance follows by inspection. The marginal distribution function of the first component is $F\left(x_{1}, 1, \ldots, 1\right)=x_{1}$ for $0<x_{1} \leq 1$. Thus, the distribution is multivariate unlform. The llmit of the distribution function as $a \downarrow 0$ is $\min \left(x_{1}, \ldots, x_{d}\right)$. Similarly, for $0<\min \left(x_{1}, \ldots, x_{d}\right) \leq \max \left(x_{1}, \ldots, x_{d}\right)<1$, as $a \rightarrow \infty$,

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{d}\right)=\left(\sum_{i=1}^{d} e^{-\frac{\log \left(x_{i}\right)}{a}}-(d-1)\right)^{-a} \\
& =\left(\sum_{i=1}^{d}\left(1-\frac{\log \left(x_{i}\right)}{a}+O\left(a^{-2}\right)\right)-(d-1)\right)^{-a} \\
& =\left(1-\frac{\log \left(\prod_{i=1}^{d} x_{i}\right)}{a}+O\left(a^{-2}\right)\right)^{-a} \\
& \sim e^{\log \left(\prod_{i=1}^{d} x_{i}\right)}=\prod_{i=1}^{d} x_{i} .
\end{aligned}
$$

Let us now turn to a collection of other distributlons obtalnable from the Cook-Johnson famlly with parameter a by simple transformations of the X_{i} 's. Some transformations to be applled to each X_{i} are shown in the next table.

Transformation for X_{i}	Parameters	Reference	
$-\log \left(X_{i}^{-\frac{1}{a}}-1\right)$		Gumbel's bivariate logistic (d=2) and the multivariate logistic (a=1)	Satterthwaite and Hutchinson (1978),
Johnson and Kotz $(1972, \mathrm{p}, 291)$			
$\left(d_{i}\left(X_{i}^{-\frac{1}{a}}-1\right)\right)^{\frac{1}{c_{i}}}$	$c_{i}, d_{i}>0$	multivariate Burr	Takahasi (1965), Johnson and Kotz $(1972$, p. 286)
$a_{i} X_{i}^{-\frac{1}{a}}$	$a_{i}>0$	multivariate Pareto	Johnson and Kotz $(1972, \mathrm{p} .286)$
$\Phi^{-1}\left(X_{i}\right)$	None. Φ is the nor- mal distribution function.	multivariate normal without elliptical contours	Cook and Johnson (1981)

Example 5.1. The multivariate logistic distribution.

In 1961, Gumbel proposed the bivariate logistic distribution, a special case of the generallzed multivariate logistic distribution with distribution function

$$
\left(1+\sum_{i=1}^{d} e^{-x_{i}}\right)^{-a} \quad\left(x_{i}>0, i=1,2, \ldots, d\right)
$$

For $a=1$ this reduces to the multivariate logistic distribution given by Johnson and Kotz (1972, p. 293). Note that from the form of the distribution function, we can deduce immedlately that all univariate and multivariate marginals are agaln multivarlate logistlc. Transformation of a Cook-Johnson random varlate leads to the following simple recipe for generating multivarlate logistic random varlates:

Multivariate logistic generator

Generate iid exponential random variates E_{1}, \ldots, E_{d+1}.
$\operatorname{RETURN}\left(\log \left(\frac{E_{1}}{E_{d+1}}\right), \ldots, \log \left(\frac{E_{d}}{E_{d+1}}\right)\right)$

Example 5.2.

The multivarlate normal distribution in the table has nonellipttcal contours. Kowalskl (1973) provides other examples of multivarlate normal distributions with nonnormal densities.

5.2. Multivariate Khinchine mixtures.

Bryson and Johnson (1882) proposed the famlly of distributions defined constructively as the distributions of random vectors in R^{d} which can be written as

$$
\left(Z_{1} U_{1}, \ldots, \grave{Z}_{d} U_{d}\right)
$$

where the Z_{1}, \ldots, Z_{d} is independent of the multivariate uniform random vector U_{1}, \ldots, U_{d}, and has a distribution which is such that certaln given marginal distributions are obtalned. Recalling Khinchine's theorem (section IV.8.2), we note that all marginal distributions have unimodal densitles.

Controlled dependence can be Introduced In many ways. We could Introduce dependence in U_{1}, \ldots, U_{d} by picking a multivariate unlform distribution based upon the multivarlate normal density or the Cook-Johnson distribution. Two models for the Z_{i} 's seem natural:
A. The Identical model: $Z_{1}=\cdots=Z_{d}$.
B. The independent model: Z_{1}, \ldots, Z_{d} are lld.

These models can be mixed by choosing the Identical model with probability p and the independent model with probabllity $1-p$.

Example 5.3.

To achleve exponential marginals, we can take all Z_{i} 's gamma (2). In the identical bivarlate model, the joint blvarlate density is

$$
\int_{\max \left(x_{1}, x_{2}\right)}^{\infty} \frac{e^{-t}}{t} d t
$$

In the independent bivariate model, the joint density is

$$
\frac{x_{1} x_{2}}{\left(x_{1}+x_{2}\right)^{3}}\left(2+2\left(x_{1}+x_{2}\right)+\left(x_{1}+x_{2}\right)^{2}\right) e^{-\left(x_{1}+x_{2}\right)}
$$

Unfortunately, the correlation in the first model is $\frac{1}{2}$, and that of the second model is $\frac{1}{3}$. By probability mixing, we can only cover correlations in the small range $\left[\frac{1}{3}, \frac{1}{2}\right]$. Therefore, it is useful to replace the independent model by the
totally independent model (with density $e^{-\left(x_{1}+x_{2}\right)}$), thereby enlarging the range to $\left[0, \frac{1}{2}\right]$.

Example 5.4. Nonnormal bivariate normal distributions.

For symmetric marginals, it is convenlent to take the U_{i} 's uniform on $[-1,1]$. It is easy to see that in order to obtain normal marginals, the Z_{i} 's have to be distrlbuted as the square roots of chl-square random varlables with 3 degrees of freedom. If (U_{1}, U_{2}) has blvariate density h on $[-1,1]^{2}$, then $\left(Z_{1} U_{1}, Z_{1} U_{2}\right)$ has joint density

$$
\int_{\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)}^{\infty} \Gamma^{-1}\left(\frac{3}{2}\right) 2^{-\frac{5}{2}} e^{-\frac{t^{2}}{2}} h\left(\frac{1}{2}+\frac{y_{1}}{2 t}, \frac{1}{2}+\frac{y_{2}}{2 t}\right) d t
$$

Thls provides us with a rich source of examples of blvarlate distributions with normal marginals, zero correlations and non-normal densitles. At the same time, random variate generation for these examples is trivial (Bryson and Johnson, 1982).

5.3. Exercises.

1. The multivariate Pareto distribution. The univarlate Pareto density with parameter $a>0$ is deflned by $a / x^{a+1}(x \geq 1)$. Johnson and Kotz (1872, p. 286) deflne a multivarlate Pareto density on R^{d} with parameter a by

$$
\frac{a(a+1) \cdots(a+d-1)}{\left(\sum_{i=1}^{d} x_{i}-(d-1)\right)^{a+d}} \quad\left(x_{i} \geq 1, i=1,2, \ldots, d\right)
$$

A. Show that the marginals are all unlvarlate Pareto with parameter a.
B. In the bivarlate case, show that the correlation is $\frac{1}{a}$. Since the marginal varlance is finlte if and only if $a>2$, we see that all correlations between 0 and $\frac{1}{2}$ can be achleved.
C. Prove that a random vector can be generated as $\left(X_{1}^{-\frac{1}{a}}, \ldots, X_{d}{ }^{-\frac{1}{a}}\right)$ where (X_{1}, \ldots, X_{d}) has the Cook-Johnson distribution with parameter a. Equivalently, it can be generated as $\left(1+\frac{E_{1}}{S}, \ldots, 1+\frac{E_{d}}{S}\right)$,
where E_{1}, \ldots, E_{d} are ild exponential random varlables, and S is an independent gamma (a) random variable.

6. RANDOM MATRICES.

6.1. Random correlation matrices.

To test certaln statistical methods, one should be able to create random test problems. In several applications, one needs a random correlation matrix. Thls problem is equivalent to that of the generation of a random covariance matrix if one asks that all varlances be one. Unfortunately, posed as such, there are infinitely many answers. Usually, one adds structural requirements to the correlation matrix in terms of expected value of elements, elgenvalues, and distributions of elements. It would lead us too far to discuss all the possibllitles in detall. Instead, we just klck around a few ideas to help us to better understand the problem. For a recent survey, consult Marsaglla and Olkin (1984).

A correlation matrix is a symmetric positive seml-definite matrix with ones on the dlagonal. It is well known that if H is a $d \times n$ matrix with $n \geq d$, then $\mathbf{H H}^{\prime}$ is a symmetric positive seml-deflnite matrix. To make it a correlation matrix, It is necessary to make the rows of H of length one (thls forces the dlagonal elements to be one). Thus, we have the following property, due to Marsaglia and Olkin (1984):

Theorem 6.1.

HH^{\prime} is a random correlation matrix if and only if the rows of \mathbf{H} are random vectors on the unit sphere of R^{n}.

Theorem 6.1 leads to a variety of algorithms. One stlll has the freedom to choose the random rows of H according to any reclpe. It seems loglcal to take the rows as independent uniformly distributed random vectors on the surface of C_{n}, the unit sphere of R^{n}, where $n \geq d$ is chosen by the user. For this case, one can actually compute the explicit form of the marginal distributlons of $\mathbf{H H}^{\prime}$. Marsaglla and Olkin suggest starting from any $d \times n$ matrix of ild random varlables, and to normallze the rows. They also suggest in the case $n=d$ starting from lower triangular H , thus saving about 50% of the varlates.

The problem of the generation of a random correlation matrlx with a given set of elgenvalues is more difficult. The diagonal matrix \mathbf{D} deffined by

$$
\left|\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right|
$$

has elgenvalues $\lambda_{1}, \ldots, \lambda_{d}$. Also, elgenvalues do not change when \mathbf{D} is pre and post multiplied with an orthogonal matrix. Thus, we need to make sure that there exlst many orthogonal matrices \mathbf{H} such that HDH^{\prime} is a correlation matrix. Since the trace of our correlation matrix must be d, we have to start with a matrix D with trace d. For the construction of random orthogonal H that satisfy the given collection of equations, see Chalmers (1975), Bendel and Mickey (1978) and Marsaglla and Olkin (1984). See also Johnson and Welch (1980), Bendel and Affl (1977) and Ryan (1880).

In a third approach, designed to obtain random correlation matrices with given mean \mathbf{A}, Marsaglla and Olkin (1884) suggest forming $\mathbf{A}+\mathbf{H}$ where \mathbf{H} is a perturbation matrix. We have

Theorem 6.2.

Let \mathbf{A} be a given $d \times d$ correlation matrix, and let H be a random symmetric $d \times d$ matrix whose elements are zero on the diagonal, and have zero mean off the diagonal. Then $\mathbf{A}+\mathbf{H}$ is a random correlation matrix with expected value \mathbf{A} if and only if the elgenvalues of $\mathbf{A}+\mathbf{H}$ are nonnegative.

Proof of Theorem 6.2.

The expected value is obviously correct. Also, $\mathbf{A}+\mathbf{H}$ is symmetric. Furthermore, the diagonal elements are all one. Finally, $\mathbf{A}+\mathbf{H}$ is positive seml-definite when its elgenvalues are nonnegative.

We should also note that the elgenvalues of $\mathbf{A}+\mathbf{H}$ and those of \mathbf{A} differ by at most

$$
\Delta=\max \left(\sqrt{\sum_{i, j} h_{i j}^{2}}, \max _{i} \sum_{j}\left|h_{i j}\right|\right)
$$

where $h_{i j}$ is an element of \mathbf{H}. Thus, if Δ is less than the smallest elgenvalue of A, then $\mathbf{A}+\mathbf{H}$ is a correlation matrix. Marshall and Olkin (1984) use this fact to suggest two methods for generating \mathbf{H} :
A. Generate all $h_{i j}$ for $i<j$ with zero mean and support on $\left[-b_{i j}, b_{i j}\right]$ where the $b_{i j}$'s form a zero dagonal symmetric matrix with Δ smaller than the smallest elgenvalue of \mathbf{A}. Then for $i>j$, deflne $h_{i j}=h_{j i}$. Finally, $h_{i i}=0$.
B. Generate $h_{12}, h_{13}, \ldots, h_{d-1, d}$ with a radially symmetric distribution in or on the $d(d-1) / 2$ sphere of radlus $\lambda / \sqrt{2}$ where λ is the smallest elgenvalue of A. Deffne the other elements of \mathbf{H} by symmetry.

6.2. Random orthogonal matrices.

An orthonormal $d \times d$ matrix can be considered as a rotation of the coordinate axes $\ln R^{d}$. In such a rotation, there are $d(d-1) / 2$ degrees of freedom. To see thls, we look at where the points $(1,0,0, \ldots, 0), \ldots,(0,0, \ldots, 0,1)$ are mapped to by the orthonormal transformation. These polnts are mapped to other points on the unit sphere. In turn, the mapped points deffne the rotation. We can choose the first point (d coordinates). Given the first point, the second polnt should be in a hyperplane perpendlcular to the line Jolning the origin and the first polnt. Here we have only $d-1$ degrees of freedom. Continulng in thls fashlon, we see that there are $d(d-1) / 2$ degrees of freedom in all.

Helberger (1978) (correction by Tanner and Thlsted (1982)) gives an algorithm for generating an orthonormal matrix which is uniformly distributed. This means that the first point is uniformly distributed on the unlt sphere of R^{d}, that the second point is uniformly distributed on the unit sphere of R^{d} intersected with the hyperplane which is perpendicular to the line from the origin to the flrst point, and so forth.

His algorithm requires $d(d+1) / 2$ independent normal random variables, while the total time is $O\left(d^{3}\right)$. It is perhaps worth noting that no heavy matrix computations are necessary at all if one is willing to spend a bit more time. To lllustrate this, consider performing $\binom{d}{2}$ random rotations of two axes, each rotatlon keeping the $d-2$ other axes flxed. A random rotation of two axes is easy to carry out, as we will see below. The global random rotation bolls down to $\binom{d}{2}$ matrix multipllcations. Luckily, each matrix is nearly diagonal: there are four random elements on the intersections of two glven rows and columns. The remalnder of each matrix is purely diagonal with ones on the diagonal. This structure implles that the time needed to compute the global (product) rotation matrix is $O\left(d^{3}\right)$.

A random uniform rotation of R^{2} can be generated as

$$
\left|\begin{array}{cc}
X & Y \\
-S Y & S X
\end{array}\right|
$$

where (X, Y) is a point unlformly distributed on C_{2}, and S is a random sign. A random rotation in R^{3} in which the z-axis remains flxed is

$$
\left|\begin{array}{ccc}
X & Y & 0 \\
-S Y & S X & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Thus, by the threefold combInation (l.e., product) of matrices of thls type, we can obtaln a random rotation in R^{3}. If $\mathbf{A}_{12}, \mathbf{A}_{23}, \mathbf{A}_{13}$ are three random rotations of two axes with the third one fixed, then the product

$$
\mathbf{A}_{12} \mathbf{A}_{23} \mathbf{A}_{13}
$$

Is a random rotation of R^{3}.

6.3. Random $\mathbf{R} \times \mathbf{C}$ tables.

A two-way contingency table with r rows and c columtis is a matrix of nonnegative integer-valued numbers. It is also called an $R \times C$ table. Typlcally, the integers represent the frequencles with which a glven pair of integers is observed in a sample of slze n. The purpose of this section is to explore the generation of a random $R \times C$ table with given sample size (sum of elements) n. Again, this is an IIl-posed problem unless we Impose more structure on 1 lt . The standard restrictlons are:
A. Generate a random table for sample size n, such that all tables are equally 11kely.
B. Generate a random table for sample size n, with given row and column totals. The row totals are called $r_{i}, 1 \leq i \leq r$. The column totals are $c_{i}, 1 \leq i \leq c$.
Let us Just consider problem B. In a first approach, we take a ball-in-urn strategy. Consider balls numbered $1,2, \ldots, n$. Of these, the first c_{1} are class one balls, the next c_{2} are class two balls, and so forth. Think of classes as different colors. Generate a random permutation of the balls, and put the first r_{1} balls in row 1, the next r_{2} balls in row 2, and so forth. Within a given row, class i balls should all be put in column i. This ball-in-urn method, flrst suggested by Boyett (1979), takes tlme proportional to n, and is not recommended when n is much larger than $r c$, the slze of the matrix.

Ball-in-urn method

[NOTE: N is an $r \times c$ array to be returned. $B[1], \ldots, B[n]$ is an auxiliary array.]
Sum $\leftarrow 0$
FOR $j:=1$ TO c DO
FOR $i:=$ Sum +1 TO Sum $+c_{j}$ DO $B[i] \leftarrow j$

$$
\operatorname{Sum} \leftarrow \operatorname{Sum}+c_{j}
$$

Randomly permute the array B.
Set N to all zeroes.
Sum $\leftarrow 0$
FOR $j:=1$ TO r DO
FOR $i:=$ Sum +1 TO Sum $+r_{j}$ DO $N[j, B[i]] \leftarrow N[j, B[i]]+1$

$$
\text { Sum } \leftarrow \operatorname{Sum}+r_{j}
$$

RETURN N

Patefleld (1980) uses the conditional distribution method to reduce the dependence of the performance upon n. The conditional distrlbution of an entry $N_{i j}$ given the entrles in the previous rows, and the previous entries in the same row i is glven by

$$
P\left(N_{i j}=k\right)=\frac{\alpha \beta \gamma \delta}{\epsilon \eta \zeta^{\theta} \theta k!}
$$

where

$$
\begin{aligned}
& \alpha=\left(r_{i}-\sum_{l<j} N_{i l}\right)!, \\
& \beta=\left(n-\sum_{m \leq i} r_{m}-\sum_{m<j} c_{m}+\sum_{l<j, m \leq i} N_{m l}\right)!, \\
& \gamma=\left(c_{j}-\sum_{m<i} N_{m j}\right)!, \\
& \delta=\left(\sum_{l>j}\left(c_{l}-\sum_{m<i} N_{m l}\right)\right)!, \\
& \epsilon=\left(r_{i}-\sum_{l<j} N_{i l}-k\right)!, \\
& \eta=\left(n-\sum_{m \leq i} r_{m}-\sum_{m \leq j} c_{m}+\sum_{l<j, m \leq i} N_{m l}+\sum_{m<i} N_{m j}+k\right)!, \\
& \varsigma=\left(c_{j}-\sum_{m<i} N_{m j}-k\right)!, \\
& \theta=\left(\sum_{l \geq j}\left(c_{l}-\sum_{m<i} N_{m l}\right)\right)!.
\end{aligned}
$$

The range for k is such that all factorial terms are nonnegative. Although the expression for the conditional probabllitles appears complicated, we note that quite a bit of regularity is present, which makes it possible to adjust the partial sums "on the fly". As we go along, we can quickly adjust all terms. More preclsely, the constants needed for the computation of the probabllitles of the next entry in the same row can be computed from the previous one and the value of the current element $N_{i j}$ in constant time. Also, there is a simple recurrence relatlon for the probablity distribution as a function of k, which makes the distribution tractable by the sequential Inversion method (as suggested by Patefleld, 1980). However, the expected time of this procedure is not bounded unlformly in n for flxed values of r, c.

6.4. Exercises.

1. Let \mathbf{A} be a $d \times d$ correlation matrix, and let \mathbf{H} be a symmetric matrix. Show that the elgenvalues of $\mathbf{A}+\mathbf{H}$ differ by at most Δ from the elgenvalues of \mathbf{A}, where

$$
\Delta=\max \left(\sqrt{\sum_{i, j} h_{i j}^{2}}, \max _{i} \sum_{j}\left|h_{i j}\right|\right) .
$$

2. Generate $h_{12}, h_{13}, \ldots, h_{d-1, d}$ with a radially symmetric distribution in or on the $d(d-1) / 2$ sphere of radius $\lambda / \sqrt{2}$ where λ is the smallest elgenvalue of A. Deflne the other elements of \mathbf{H} by symmetry. Put zeroes on the diagonal of \mathbf{H}. Then $\mathbf{A}+\mathbf{H}$ is a correlation matrix when \mathbf{A} is. Show this.
3. Consider Patefleld's conditlonal distribution method for generating a random $R \times C$ table. Show the following:
A. The conditional distribution as glven in the text is correct.
B. (Difficult.) Design a constant expected time algorithm for generating one element in the $r \times c$ matrix. The expected time should be unlformly bounded over all conditions, but with r and c flxed.

Chapter Twelve
 RANDOM SAMPLING

1. INTRODUCTION.

In thls chapter we conslder the problem of the selection of a random sample of size k from a set of n objects. This is also called sampling without replacement since dupllcates are not allowed. There are several lssues here which should be clarifled in this, the introductory section.

1. Some users may wish to generate an ordered random sample. Not unexpectedly, it is easler to generate unordered random samples. Thus, algorithms that produce ordered random samples should not be compared on an equal basls with other algorithms.
2. Sometimes, n is not known, and we are asked to grab each object in turn and make an instantaneous decislon whether to include it in our random sample or not. Thls can best be visuallzed by consldering the objects as belng given in a llnked list and not an array.
3. In nearly all cases, we worry about the expected time complexity as a functlon of k and n. In typical situations, n is much larger than k, and we would like to have expected time complexitles which are bounded by a constant times k, unlformly over n.
4. The space required by an algorithm is defined as the space required outside the original array of n records or objects and outside the array of k records to be returned. Some of the algorlthms in thls chapter are bounded workspace algorthms, i.e. the space requlrements are $O(1)$.
The strategles for sampling can be partitloned as follows: (1) classlcal sampling: generate random objects and include them in the sample if they have not already been picked; (il) sequential sampling: generate the sample by traversing the collection of objects once and making instantaneous decisions during that one pass; (III) oversampllng: by means of a slmple technlque, obtaln a random sample (usually of incorrect size), and in a second phase, adjust the sample so that it has the right size. Each of these strategles has some very competitive algorithms, so that no strategy should a priori be excluded from contention.

We assume that the set of objects is $\{1,2, \ldots, n\}$. If the objects are different, then these integers should be considered as pointers (Indices) to the objects in an array.

2. CLASSICAL SAMPLING.

2.1. The swapping method.

Assume that the objects are glven in array form: $A[1], \ldots, A[n]$. Then, if we are allowed to permute the objects, random sampling is extremely simple. We can choose an object unlformly and at random, and swap it with the last object. If we need another object, we choose one unformly from among the first $n-1$ objects, and swap with the $n-1$ st object, and so forth. This algorlthm takes time proportional to k, and $O(1)$ extra space is needed. The disadvantage is that the sample is not ordered. Also, record swapping is sometlmes not allowed. We are allowed to swap pointers though, but thls would then require $\Theta(n)$ extra space for pointers. If there are no records to begin with, then the space requirement is $\Omega(n)$. Formally we have:

Swapping method

$$
\text { FOR } i:=n \text { DOWNTO } n-k+1 \text { DO }
$$

Generate a uniform [0.1] random variate U.
$X \leftarrow\lceil i U\rceil$
Swap ($A[X], A[i])$
RETURN $A[n-k+1], \ldots, A[n]$

The swapping method is very convenlent. If we set $k=n$, then the returned array is a random permutation. Thus, the swapping method is based upon the princlple that generating a random subset of size k is equivalent to generating the first k entrles in a random permutation.

2.2. Classical sampling with membership checking.

If we are not allowed to swap information, then we are forced to check whether a certaln element is not already plcked. The checking can be achleved in a number of ways via different data structures. Regardless of the data structure, we can formulate the algorthm:

```
Classical sampling with membership checking
\(S \leftarrow \emptyset(S\) will be the set of random integers to be returned)
FOR \(i:=1\) TO \(k\) DO
REPEAT
```

Generate a random integer Z in $\{1, \ldots, n\}$.
UNTIL NOT Member (Z) (Member returns true if an integer is already picked, and false otherwise.)
$S \leftarrow S \cup\{Z\}$
RETURN S

The data structure used for S should support the following operations: Inttallze empty set, insert, member. Among the tens of posslble data structures, the following are perhaps most representative:
A. The blt-vector implementation. Define an array of n bits, which are initially set to false, and which are swltched to true upon insertion of an element.
B. An unordered array of chosen elements. Elements are added at the end of the array.
C. A binary search tree of chosen elements. The expected depth of the k-th element added to the tree is $\sim 2 \log (k)$. The worst-case depth can be as large as k.
D. A height-balanced blnary tree or 2-3 tree of chosen elements. The worst-case depth of the tree with k elements is $O(\log (k))$.
E. A bucket structure (open hashing with chaining). Partition $\{1, \ldots, n\}$ into k about equal Intervals, and keep for each interval (or: bucket) a linked list of all elements chosen untll now.
F. Closed hashing into a table of slze a bit larger than k.

It is perhaps useful to give a list of expected complexitles of the various operatlons needed on these data structures. We also include the space requirements, with the convention that the array of k Integers to be returned is in any case

Included in the space requirements.

DATA STRUCTURE	Initialize	Insert	Member	Space requirements
Bit vector	n	1	1	n
Unordered array	1	1	k	k
Binary search tree	1	$\log (k)$	$\log (k)$	k
Height-balanced tree	1	$\log (k)$	$\log (k)$	k
Buckets	k	1	1	k
Closed hashing	k	1	1	k

Timewlse, none of the suggested data structures is better than the bit-vector data structure. The problem with the bit-vector implementation is not so much the extra storage proportlonal to n, because we can often use the already existing records and use common programming tricks (such as changing slgns etcetera) to store the extra blts. The problem is the re-InItiallzation necessary after a sample has been generated. At the very least, thls will force us to consider the selected set S, and turn the k blts off again for all elements $\ln S$. Of course, at the very beginning, we need to set all n blts to false.

The first important quantity is the expected number of iterations in the sampling algorithm.

Theorem 2.1.

The expected number of iterations in classical sampling with membership checking is

$$
\sum_{i=1}^{k} \frac{n}{n-i+1}
$$

For $k=n$, this is $n \sum_{i=1}^{n} \frac{1}{i} \sim n \log (n)$. When $k \leq\left\lceil\frac{n}{2}\right\rceil$, this number is $\leq 2 k$.

Proof of Theorem 2.1.

Observe that to generate the i-th random integer, we carry out a serles of independent experiments, each having probabillty of success $\frac{n-i+1}{n}$. Thls ylelds the given expected value. The asymptotic result when $k=n$ is trivially true. The general upper bound is obtalned by a standard integral argument: bound the sum from above by

$$
\begin{aligned}
& n \sum_{i=n-k+1}^{n} \frac{1}{i} \\
& \leq n\left(\frac{1}{n-\left\lceil\frac{n}{2}\right\rceil+1}+\int_{n-k+1}^{n} \frac{1}{x} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =n\left(\frac{1}{n-\left\lceil\frac{n}{2}\right\rceil+1}+\log \left(\frac{n}{n-k+1}\right)\right. \\
& \leq 2+n \log \left(1+\frac{k-1}{n-k+1}\right) \\
& \leq 2+\frac{n}{n-k+1}(k-1) \\
& \leq 2+2(k-1)=2 k .
\end{aligned}
$$

What matters here is that the expected time Increases no faster than $O(k)$ when k is at most half of the sample. Of course, when k is larger than $\frac{n}{2}$, one should really sample the complement set. In partlcular, the expected time for the blt-vector implementation is $O(k)$. For the tree methods, we obtaln $O(k \log (k))$. If we work with ordered or unordered lists, then the generation procedure takes expected time $O\left(k^{2}\right)$. Finally, with the hash structure we have expected time $O(k)$ provided that we can show that the expected time of an Insert or a delete Is O (1) (apply Wald's equation). Assume that we have a bucket structure with $m k$ equal-sized Intervals, where $m \geq 1$ is a design integer usually equal to 1 . The Interval number is an integer between 1 and $m k$, and Integer $x \in\{1, \ldots, n\}$ is hashed to interval $\left\lceil\frac{x}{n} m k\right\rceil$. Thus, if the hash table has k elements, then every Interval has about $\frac{1}{m}$ elements. The expected number of comparisons needed to check the membershlp of a random integer in a hash table contalning i elements is bounded from above by $E\left(1+n_{Z}\right)$ where n_{Z} is equal to the number of elements in the interval Z, and Z is a random interval Index, chosen with probabllity proportional to the cardinallty of the interval. The " 1 " accounts for the comparison spent checking the endmarker In the chaln. Thus, the expected number of comparisons is not greater than

$$
\begin{aligned}
& 1+\sum_{j=1}^{m k} \frac{\left(\frac{n}{m k}+1\right)}{n} n_{j} \\
& \leq 1+i \frac{\left(\frac{n}{m k}+1\right)}{n} \\
& =1+\frac{i}{m k}+\frac{i}{n} .
\end{aligned}
$$

In the worst case ($i=k$), thls upper bound is $1+\frac{1}{m}+\frac{k}{n} \leq 2+\frac{1}{m}$. The upper bound is very loose. Nevertheless, we have an upper bound which is clearly O (1). Also, if we can afford the space, it pays to take m as large as possible. One
possible hashing algorithm is given below:

```
Classical sampling with membership checking based on a hash table
This algorithm uses three arrays of integers of size \(k\). An array of headers Head
\([1], \ldots\) Head \([k]\) is initially set to 0 . An array pointers to successor elements
\(\operatorname{Next}[1], \ldots, \operatorname{Next}[k]\) is also set to 0 . The array \(A[1], \ldots, A[k]\) will be returned.
FOR \(i:=1\) TO \(k\) DO
    Accept \(\leftarrow\) False
    REPEAT
            Generate a random integer \(Z\) uniformly distributed on \(\{1, \ldots, n\}\).
            Bucket \(\leftarrow 1+\left\lfloor\frac{k(Z-1)}{n}\right\rfloor\)
            Top \(\leftarrow\) Head [Bucket ]
            IF \(\mathrm{Top}=0\)
                THEN
                    Head [ Bucket] \(\leftarrow i\)
                    \(A[k] \leftarrow Z\)
                    Accept \(\leftarrow\) True
                ELSE
                    WHILE \(A\) (Top \(] \neq Z\) AND Top \(\neq 0\) DO
                            (Top, Top*) \(\leftarrow\) (Next [Top], Top)
                    IF Top \(=0\) THEN
                    \(A[i] \leftarrow Z\)
                            Next [ Top* ] \(\leftarrow i\)
                            Accept \(\leftarrow\) True
```

 UNTIL Accept
 RETURN $A[1], \ldots, A[k]$

The hashing algorithm requires $2 k$ extra storage space. The array returned is not sorted, but sorting can be done in linear expected tlme. We glve a short formal proof of this fact. It is only necessary to travel from bucket to bucket and sort the elements within the buckets (because an order-preserving hash function was used). If thls is done by a simple quadratic method such as bubble sort or selection sort, then the overall expected time complexity is $O(k)$ (for the overhead costs) plus a constant times

$$
E\left(\sum_{i=1}^{m k} n_{i}{ }^{2}\right) .
$$

But n_{i} is hypergeometric with parameters n, l, k where l is the number of Integers in the i-th bucket (thls is about $\frac{n}{m k}$), i.e. for each j,

$$
P\left(n_{i}=j\right)=\frac{\binom{l}{j}\binom{n-l}{k-j}}{\binom{n}{k}}
$$

We know that $E\left(n_{i}\right)=\frac{k l}{n}$, and this tends to $\frac{1}{m}$ as $k, n \rightarrow \infty$, and it does not exceed $\frac{1}{m}+\frac{k}{n} \ln$ any case. Simple computations show that

$$
\operatorname{Var}\left(n_{i}\right)=\frac{n-k}{n-1} \frac{n-l}{n} \frac{k l}{n}
$$

which in turn tends to $\frac{1}{m}$ as $k, n \rightarrow \infty$, without exceeding $\frac{1}{m}+\frac{k}{n}$ for any value of k, m, n. Combining this, we see that the the expected time complexity is a constant times

$$
\sim k\left(1+\frac{1}{m}\right) .
$$

It is not greater than a constant times

$$
m k\left(\left(\frac{1}{m}+\frac{k}{n}\right)^{2}+\left(\frac{1}{m}+\frac{k}{n}\right)\right)=k\left(1+\frac{k m}{n}\right)\left(1+\frac{1}{m}+\frac{k}{n}\right) .
$$

These expressions show that it is important to take m large. One should not fall into the trap of letting m Increase with k, n because the set-up time is proportlonal to $m k$, the number of buckets. The hashing method with chaining, as given here, was implicitly given by Muller (1958) and studied by Ernvall and Nevalainen (1982). Its space inefficlency is probably its greatest drawback. Closed hashing with a table of size k has been suggested by Nijenhuls and Wir (1975). Ahrens and Dleter (1985) consider closed hashing tables of size $m k$ where now m is a number, not necessarily integer, greater than 1 . See also Teuhola and Nevalainen (1982). It is perhaps Instructive to give a brlef description of the algorlthm of Nijenhuls and Wilf (1975). An unordered sample $A[1], \ldots, A[k]$ wlll be generated, and an auxillary vector $\operatorname{Next}[1], \ldots, N e x t[k]$ of $l n n k s$ is needed in the process. A polnter p points to the largest index i for which $A[i]$ is not yet specifled.

Algorithm of Nijenhuis and Wilf

[SET-UP]

$$
p \leftarrow k+1
$$

FOR $i:=1$ TO k DO $A[i] \leftarrow 0$
[GENERATOR]
REPEAT

```
Generate a random integer \(X\) uniformly distributed on \(1, \ldots, n\). Set Bucket \(-X \bmod k+1\).
IF \(A\) [Bucket] \(=0\)
THEN \(A\) [Bucket] \(\leftarrow X, \operatorname{Next}[\) Bucket \(] \leftarrow 0\)
ELSE
WHILE \(A\) [Bucket] \(\neq X\) DO
IF \(\operatorname{Next}[\) Bucket \(]=0\)
THEN
REPEAT \(p \leftarrow p-1\) UNTIL \(p=0\) OR \(A[p]=0\)
Next[Bucket] \(\leftarrow p\)
Bucket \(\leftarrow p\)
ELSE Bucket - Next[Bucket]
```

UNTIL $p=0$
RETURN $A[1], \ldots, A[k]$

The algorithm of Nijenhuls and Wllf differs sllghtly from standard closed hashing schemes because of the vector of links. The links actually create small linked lists within the table of slze k. When we look at the cost assoclated with the algorithm, we note first that the expected number of uniform random varlates needed is at the same as for all other classical sampling schemes (see Theorem 2.1). The search for an empty space $(p \leftarrow p-1)$ takes time $O(k)$. The search for the end of the llnked llst (Inner WHILE loop) takes on the average fewer than 2.5 link accesses per random varlate X, independent of when X is generated and how large k and n are (Knuth, 1989, pp. 513-518). Thus, both expected time and space are $O(k)$.

2.3. Exercises.

1. The number of elements n_{1} that end up in a bucket of capacity l in the bucket method is hypergeometrically distributed with parameters n, k, l. That Is,

$$
P\left(n_{1}=i\right)=\frac{\binom{l}{i}\binom{n-l}{k-i}}{\binom{n}{k}}, \quad 0 \leq i \leq \min (k, l)
$$

In the text, we needed the expected value and varlance of n_{1}. Derlve these quantitles.
2. Prove that the expected time in the algorithm of Nijenhuls and wilf is $O(k)$.
3. Weighted sampling without replacement. Assume that we wish to generate a random sample of slze k from $\{1, \ldots, n\}$, where the integers $1, \ldots, n$ have welghts w_{i}. Drawing an integer from a set of integers is to be done with probability proportional to the welght of the integer. Using classical sampling, this involves dynamically updating a selection probabillty vector. Wong and Easton (1980) suggest setting up a binary tree of height $O(\log (n))$ in time $O(n)$ in a preprocessing step, and using this tree in the inversion method. Generating a random integer takes time $O(\log (n))$, while updating the tree has a similar cost. This leads to a method with worst-case tlme $O(k \log (n)+n)$. The space requirement is proportional to n (space is less critical because the vector of welghts must be stored anyway). Develop a dynamic structure based upon the allas method or the method of gulde tables, which has a better expected time performance for all vectors of welghts.

3. SEQUENTIAL SAMPLING.

3.1. Standard sequential sampling.

In sequentlal sampling, we want an ordered sample of size k drawn from $1, \ldots, n$. An unordered sample can always be obtalned by one of the methods described in the previous section, and in many cases (e.g. the hashing methods), sorting can be done extremely efficlently in expected time $O(k)$. What we will do In this chapter is different. The methods described here are fundamentally one pass methods in which the random sample is constructed in order. There are two possible strategles: first, we could grab each integer in 1, .., $n \ln$ turn, and decide whether to take it or leave 1t. It turns out, as we will see below, that for each decision, we need only compare a new unlform random varlate with a certaln threshold. Unfortunately, this standard sequential sampling algorlthm takes
time proportional to n : it becomes particularly inefficient when k is much smaller than n. The second strategy circumvents this problem by generating the spacings between successive Integers. Assume for a moment that each spacing can be generated in expected time $O(1)$ uniformly over all parameter values. Then the spacings method takes expected tlme $O(k)$. The problem here is that the distribution of the spacings is rather complicated; it also depends upon the partlally generated sample.

In the standard sequentlal sampling algorithm of Jones (1962) and Fan, Muller and Rezucha (1962), the probabillty of selection of an integer depends upon only two quantlties: the number of integers remaining to be selected, and the number of integers not yet processed. Initially, these quantities are k and n. To keep the notation simple, we will let k decrease during execution of the algorithm.

Standard sequential sampling

FOR $i:=1$ TO n DO
Generate a uniform $[0,1]$ random variate U.
IF $U \leq \frac{k}{n-i+1}$ THEN select $i, k \leftarrow k-1$

Integer 1 is selected with probability $\frac{k}{n}$ as can easlly be seen from the following argument: there are

$$
\binom{n}{k}
$$

ways of choosing a subset of slze k from $1, \ldots, n$. Furthermore, of these,

$$
\binom{n-1}{k-1}
$$

Include integer 1. The probability of inclusion of 1 should therefore be the ratio of these two numbers, or k / n. Note that thls argument uses only k, the number of remalning integers to be selected, and n, the number of integers not yet processed. It can be used inductively to prove that the algorithm is correct. Note for example that if at any time in the algorlthm $k=n$, then each of the remaining n integers in the file is selected with probability one. If at some point $k=0$, no more integers are selected. The time taken by the algorithm is proportional to n, but no extra space is needed. For small values of n, the standard sequential algorithm has little competition.

3.2. The spacings method for sequential sampling.

We say that a random varlable X has the distribution $D(k, n)$ when X is distrlbuted as the minimal integer in a random subset of size k drawn from $\{1, \ldots, n\}$. The spacings method for sequentlal sampling is deflned as follows:

```
The spacings method for sequential sampling
Y\hookleftarrow0 (Y is a running pointer)
REPEAT
Generate a random integer \(X\) with distribution \(D(k, n)\).
\(k \leftarrow k-1, n \leftarrow n-X\) (update parameters).
Select \(Y+X\), set \(Y \leftarrow Y+X\)
UNTIL \(k=0\)
```

In the algorithm, the orlginal values of k and n are destroyed - this saves us the trouble of having to introduce two new symbols. If we can generate $D(k, n)$ random varlates in expected time O (1) unlformly over k and n, then the spacings method takes expected time $O(k)$. The space requirements depend of course on what is needed for the generation of $D(k, n)$. There are many possible algorithms for generating a $D(k, n)$ random varlable. We discuss the following approaches:

1. The Inversion method (Devroye and Yuen, 1981; Vitter, 1984).
2. The ghost sample method (Devroye and Yuen, 1981).
3. The rejection method (VItter, 1983, 1984).

The three methodologles will be discussed in different subsections. All techniques require a considerable programming effort when implemented. In cases 1 and 3 , most of the energy is spent on numerical problems such as the evaluation of ratlos of factortals. Case 2 avolds the numertcal problems at the expense of some additional storage (not exceeding $O(k)$). We will first state some propertles of $D(k, n)$.

Theorem 3.1.
Let X have distribution $D(k, n)$. Then

$$
\begin{aligned}
& P(X>i)=\frac{\binom{n-i}{k}}{\binom{n}{k}} \quad, 0 \leq i \leq n-k, \\
& P(X=i)=\frac{\binom{n-i}{k-1}}{\binom{n}{k}} \quad, 1 \leq i \leq n-k+1 .
\end{aligned}
$$

Proof of Theorem 3.1.

Argue by counting the number of subsets of k out of n, the number of subsets of k out of $n-i$, and the number of subsets of $k-1$ out of $n-i$.

Theorem 3.2.

The random variable $X=\min \left(X_{1}, \ldots, X_{k}\right)$ is $D(k, n)$ distributed whenever X_{1}, \ldots, X_{k} are independent random varlables and each X_{i} is uniformly dlstrlbuted on $\{1, \ldots, n-k+i\}$.

Proof of Theorem 3.2.

For $0 \leq i \leq n-k$, notlce that

$$
P(Y>i)=\prod_{j=1}^{k} \frac{n-k+i-j}{n-k+i}=\prod_{j=0}^{k-1} \frac{n-i-j}{n-j}=\frac{\binom{n-i}{k}}{\binom{n}{k}},
$$

which was to be shown.

From Theorem 3.2, we deduce without further work:

Theorem 3.3.

Let X be $D(k, n)$ distributed, and let Y be the minimum of k ild unlform $\{1, \ldots, n-k+1\}$ random varlables. Then X is stochastically greater than Y, that is,

$$
P(X>i) \geq P(Y>i) \quad \text {,all } i
$$

Furthermore, related to the closeness of X and Y is the following collection of inequallities.

Theorem 3.4.

Let X and Y be as in Theorem 3.3. Then

$$
\frac{n+1}{k+1}=E(X) \geq E(Y) \geq \frac{n-k+1}{k+1}
$$

In partlcular,

$$
0 \leq E(X)-E(Y) \leq 1
$$

Proof of Theorem 3.4.

In the proof, we let U_{1}, \ldots, U_{k} be lld uniform $[0,1]$ random varlables. Note that

$$
E(X)=\frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i\binom{n-i}{k-1}=\frac{\binom{n+1}{k+1}}{\binom{n}{k}}=\frac{n+1}{k+1}
$$

Also,

$$
E(Y) \geq(n-k+1) E\left(\min \left(U_{1}, \ldots, U_{k}\right)\right)=\frac{n-k+1}{k+1}
$$

Clearly,

$$
E(X)-E(Y) \leq \frac{k}{k+1}
$$

3.3. The inversion method for sequential sampling.

The distribution function F for a $D(k, n)$ random varlable X is

$$
F(i)=P(X \leq i)=1-\frac{\binom{n-i}{k}}{\binom{n}{k}} \quad 0 \leq i \leq n-k
$$

Thus, if U is a unfform $[0,1]$ random variable, the unique integer X with the property that

$$
F(X-1)<U \leq F(X)
$$

has distribution function F, and is thus $D(k, n)$ distributed. The solution can be obtalned sequentlally by computing $F(1), F(2), \ldots$ untll for the first time U is exceeded. The expected number of terations is $E(X)=\frac{n+1}{k+1}$. The expected time complexity depends upon how F is computed. If $F(i)$ is computed from scratch (Fan, Muller and Rezucha, 1982), then time proportional to $k+1$ is needed, and X is generated in expected time proportional to n. This is unacceptable as it would lead to an $O(n k)$ sampling algorlthm. Luckily, we can compute F recursively by noting that

$$
\frac{1-F(i+1)}{1-F(i)}=\frac{\binom{n-i-1}{k}}{\binom{n-i}{k}}=\frac{n-i-k}{n-i}
$$

Using thls, plus the fact that $1-F(0)=1$, we see that X can be generated in expected time proportional to $\frac{n+1}{k+1}$, and that a random sample can thus be generated in expected time proportional to n. This is still rather inefflclent. Moreover, the recurslve computation of F leads to unacceptable round-off errors for even moderate values of k and n. If F is recomputed from scratch, one must be careful In the handlling of ratios of factorials so as not to introduce large cancelation errors in the computations. Thus, help can only come if we take care of the two key stumbling blocks:

1. The efflclent computation of F.
2. The reduction of the number of iterations in the solution of $F(X-1)<U \leq F(X)$.
These issues are dealt with in the next section, where an algorlthm of Devroye and Yuen (1981) is given.

3.4. Inversion-with-correction.

A reduction in the number of iterations for solving the inversion inequalities is only possible if we can guess the solution pretty accurately. This is possible thanks to the closeness of X to Y as deflned in Theorems 3.3 and 3.4. The random varlable Y introduced there has distribution function G where

$$
G(i)=P(Y \leq i)=1-\left(\frac{n-k+1-i}{n-k+1}\right)^{k}, \quad 0 \leq i \leq n-k
$$

Recall that $F \leq G$ and that $0 \leq E(X-Y) \leq 1$. By Inversion of G, Y can be generated quite simply as

$$
Y \leftarrow\left\{\left(1-(1-U)^{\frac{1}{k}}\right)(n-k+1)+1\right\rfloor
$$

where U is the same uniform $[0,1]$ random varlate that will be used in the inversion inequalltles for X. Because X is at least equal to Y, it sufflces to start lookIng for a solution by trying $Y, Y+1, Y+2, \ldots$. This, of course, th the princlple of inverslon-with-correctlon explained in more detall in section III.2.5. The algorithm can be summarlzed as follows:

Inversion-with-correction (Devroye and Yuen, 1981)

IF $n=k$
THEN RETURN $X \longleftarrow 1$
ELSE
Generate a uniform $[0,1]$ random variate U.
$X \leftarrow\left\{\left(1-(1-U)^{\frac{1}{k}}\right)(n-k+1)+1\right\}$
$T \leftarrow 1-F(X)$
WHILE $1-U \leq T$ DO
$T \leftarrow T \frac{n-k-X}{n-X}$
$X-X+1$
RETURN X

The point here is that the expected number of terations in the WHILE loop is $E(X-Y)$, which is less than or equal to 1 . Therefore, the expected time taken by the algorithm is a constant plus the expected time needed to compute F at one point. In the worst possible scenarlo, F is computed as a ratlo of products of Integers since

$$
1-F(i)=\prod_{j=0}^{k-1} \frac{n-i-j}{n-j} .
$$

Thls takes time proportlonal to k. The random sampllng algorthm would therefore take expected time proportional to k^{2}. Interestingly, if F can be computed in time $O(1)$, then X can be generated in expected time $O(1)$, and the random sampling algorlthm takes expected time $O(k)$. Furthermore, the algorlthm requires bounded workspace.

If we accept the logarlthm of the gamma function as a function that can be computed in constant time, then F can be computed in time O (1) via:

$$
\begin{gathered}
\log (1-F(i))=\log (\Gamma(n-i+1))+\log (\Gamma(n-k+1)) \\
-\log (\Gamma(n-i-k+1))+\log (\Gamma(n+1)) .
\end{gathered}
$$

Of course, here too we are faced with some cancelation error. In practice, if one wants a certain fixed number of significant digits, there is no problem computing $\log (\Gamma)$ In constant time. From Lemma X.1.3, one can eastly check that for $n \geq 8$, the series truncated at $k=3$ glves 7 significant digits. For $n<8$, the logarithm of n can be computed directly. There are other ways for obtalning a certaln accuracy. See for example Hart et al. (1988) for the computation of $\log (\Gamma)$ as a ratlo of two polynomials. See also section X.1.3 on the computation of factorials in general.

A final polnt about cancelation errors in the computation of $1-(1-U)^{1 / k}$ when k is large. When E is an exponentlal random varlable, the following two random varlables are both distributed as $1-(1-U)^{1 / k}$:

$$
\begin{aligned}
& 1-e^{-\frac{E}{k}} \\
& \frac{\tanh \left(\frac{E}{2 k}\right)}{1+\tanh \left(\frac{E}{2 k}\right)} .
\end{aligned}
$$

The second random variable is to be preferred because it is less susceptible to cancelation error.

3.5. The ghost point method.

Random varlables with distribution $D(k, n)$ can also be generated by exploiting special propertles such as Theorem 3.2. Recall that X is distributed as

$$
1+\left\{\min \left((n-k+1) U_{1},(n-k+2) U_{2}, \ldots,(n-k+k) U_{k}\right)\right\}
$$

where U_{1}, \ldots, U_{k} are independent unform $[0,1]$ random variables. Direct use of thls property leads of course to an algorithm taking time $\Theta(k)$. Therefore, the random sampling algorithm corresponding to it would take time proportional to k^{2}. What distingulshes the algorithm from the inversion algorithms is that no heavy computations are involved. In the ghost point (or ghost sample) method, developed in Devroye and Yuen (1981), the fact that X is almost distributed as
the minimum of k ild random variables is explolted. The expected time per random varlate is bounded from above unlformly over all $k \leq \rho n$ for some constant $\rho \in(0,1)$. Unfortunately, extra storage proportional to k is needed.

We colned the term "ghost polnt" because of the following embedding argument, in which X is written as the minimum of k independent random varlables, which are linked to k ild random varlables provided that we treat some of the lid random varlables as non-exlstent. The ind random varlables are X_{1}, \ldots, X_{k}, each unlformly distributed on $\{1, \ldots, n-k+1\}$. If we were to deflne X as the minimum of the X_{i} 's, we would obtain an incorrect result. We can correct however by treating some of the X_{i} 's as ghost polnts: deffne Independent Bernoull random variables Z_{1}, \ldots, Z_{k} where $P\left(Z_{i}=1\right)=\frac{i-1}{n-k+i}$. The X_{i} 's for which $Z_{i}=1$ are to be deleted. Thus, we can define an updated collection of random varlables, $X_{1}^{\prime}, \ldots, X_{k}{ }^{\prime}$, where

$$
X_{i}^{\prime}=\left\{\begin{array}{l}
X_{i} \\
\text { if } Z_{i}=0 \\
n-k+1
\end{array} \text { if } Z_{i}=1 .\right.
$$

Theorem 3.5.

For the construction given above,

$$
X=\min \left(X_{1}^{\prime}, \ldots, X_{k}^{\prime}\right)
$$

is $D(k, n)$ distributed.

Proof of Theorem 3.5.

Fix $0 \leq i \leq n-k$. Then,

$$
\begin{aligned}
& P(X>i)=\prod_{j=1}^{k} P\left(X_{j}^{\prime}>i\right) \\
& =\prod_{j=1}^{k}\left(P\left(Z_{i}=1\right)+P\left(Z_{i}=0\right) P\left(X_{i}>k\right)\right) \\
& =\prod_{j=1}^{k}\left(\frac{j-1}{n-k+i}+\frac{n-k+1}{n-k+j} \frac{n-k+1-i}{n-k+1}\right) \\
& =\prod_{j=1}^{k} \frac{n-k+j-i}{n-k+j} \\
& =\frac{\binom{n-i}{k}}{\binom{n}{k}} .
\end{aligned}
$$

Every X_{i} has an equal probabllity of belng the smallest. Thus, we can keep generating unlformly random integers from $1, \ldots, k$, without replacement of course, untll we find one for which $Z_{i}=0$, i.e. untll we find an index for which the X_{i} is not a ghost polnt. Assume that we have skipped over m ghost polnts in the process. Then the $X_{i} \ln$ question is distributed as the $m+1$-st smallest of the orlglnal sequence X_{1}, \ldots, X_{k}. The point is that such a random varlable can be generated in expected time O (1) because beta random varlates can be generated in O (1) expected time. Before proceeding with the expected time analysis, we glve the algorlthm:

The ghost point method

[SET-UP]
An auxiliary linked list L is needed, which is initially empty. The maximum list size is k. The stack size is Size.
Size $\leftarrow 0$.
[GENERATION]
REPEAT

REPEAT

Generate an integer W uniformly distributed on $\{1, \ldots, k\}$.
UNTIL W is not in L
Add W to L, Size \leftarrow Size +1 .
Generate a uniform $[0,1]$ random variate U.
UNTL $U \geq \frac{W-1}{n-k+W}$
Generate a beta (Size, k-Size+1) random variable B (note that B is distributed as the "Size" smallest of k iid uniform $[0,1]$ random variables.)
RETURN $X-\lfloor 1+B(n-k+1)\rfloor$

We refer to the section on beta random varlate generation for unlformly fast generators. If a beta variate generator is not locally avallable, one can always generate B as $\frac{G}{G+G^{\prime}}$ where G, G^{\prime} are independent gamma (W) and gamma $(k-W+1)$ random varlables respectively.

For the analysls, we assume that $k \leq \rho n$ where $\rho \in(0,1)$ is a constant. Let N denote the number of W random varlates generated in the inner REPEAT loop. It will approprlately measure the complexlty of the algorithm provided that we can check membership in list L in constant time.

Theorem 3.6.

For the ghost point algorlthm, we have

$$
E(N) \leq c \frac{1+\rho}{(1-\rho)^{2}}
$$

where $c>0$ is a universal constant and $k \leq \rho n$ where $\rho \in(0,1)$. Furthermore, the expected length of the llst L, i.e. the expected value of Size, does not exceed $\frac{1}{1-\rho}$.

Proof of Theorem 3.6.

If T is the eventual value of Size, then

$$
E(N \mid T)=\sum_{i=1}^{T} \frac{k}{k-i+1}
$$

Therefore, for constant $a \in(0,1)$,

$$
\begin{aligned}
& E(N)=E\left(\sum_{i=1}^{T} \frac{k}{k-i+1}\right)=\sum_{i=1}^{k} \frac{k}{k-i+1} P(T \geq i) \quad\left(\text { by a change of } \int\right) \\
& \leq E\left(T^{2}\right) \sum_{i=1}^{k} \frac{k}{i^{2}(k-i+1)} \\
& \leq E\left(T^{2}\right)\left(\frac{k}{k-\lfloor a k]+1} \sum_{i=1}^{\infty} \frac{1}{i^{2}}+k \sum_{i>\lfloor a k\rfloor} \frac{1}{i^{2}}\right) \\
& \leq E\left(T^{2}\right)\left(\frac{\pi^{2}}{8(1-a)}+k\left(\frac{1}{(a k)^{2}}+\int_{a k}^{\infty} \frac{1}{x^{2}} d x\right)\right) \\
& =E\left(T^{2}\right)\left(\frac{\pi^{2}}{8(1-a)}+\frac{1}{k a^{2}}+\frac{1}{a}\right)
\end{aligned}
$$

which is approximately minimal when

$$
a=\frac{\sqrt{6}}{\pi+\sqrt{6}} .
$$

The upper bound is thus not greater than a constant times $E\left(T^{2}\right)$. But T is stochastlcally smaller than a geometric random varlable with probabillty of success $\frac{n-k+1}{n} \geq 1-\rho$. Thus, $E(T) \leq 1 /(1-\rho)$ and

$$
E\left(T^{2}\right) \leq\left(\frac{1}{1-\rho}\right)^{2}+\frac{\rho}{(1-\rho)^{2}}=\frac{1+\rho}{(1-\rho)^{2}}
$$

The value of the constant c can be deduced from the proof. However, no attempt was made to obtaln the best possible constant there. The assumption that membershlp checking in L can be done in constant time requires that a bit vector of k flags be used, Indicating for each integer whether it is included in L or not. Setting up the bit vector takes time proportional to k. However, this cost Is to be born Just once, for after one varlate X is generated, the flags can be reset by emptying the list L. The expected time taken by the reset operation is thus equal to a constant plus the expected length of the llst, which, as we have shown in Theorem 6, is bounded by $1 /(1-\rho)$. For the global random sampling algorithm, the total expected cost of setting and resetting the blt vector does not exceed a constant tlmes k.

Fortunately, we can avold the bit vector of flags altogether. Membership checking in list L can always be done in time not exceeding the length of the list. Even with this grotesquely inefflcient implementation, one can show (see exerclses) that the expected time for generating X is bounded unlformly over all $k \leq \rho n$.

The issue of membershlp checking can be sidestepped if we generate Integers without replacement by the swapping method. This would require an additional vector initlally set to $1, \ldots, k$. After X is generated, this vector is slightly permuted - its flrst "Size" members for example constltute our list L. This does not matter, as long as we keep track of where integer k is. To get ready for generatIng a $D(k-1, n)$ random varlate, we need only swap k with the last element of the vector, so that the first $k-1$ components form a permutation of $1, \ldots, k-1$. Thus, fixing the vector between random varlates takes a constant tlme. Note also that to generate X, the expected time is now bounded by a constant times the expected length of the list, which we know is not greater than $1 /(1-\rho)$. This is due to the fact that the inner loop of the algorlthm is now replaced by one loopless section of code.

When $k>\rho n$, one should use another algorlthm, such as the following plece taken from the standard sequentlal sampling algorlthm:
$X \leftarrow 0$
REPEAT
Generate a uniform random variate U.
$X \leftarrow X+1$
UNTLL $U \leq \frac{k}{n-X+1}$
RETURN X

The expected number of unlform $[0,1]$ random varlates needed by this algorlthm is $E(X)=\frac{n+1}{k+1} \leq \frac{n}{k} \leq \frac{1}{\rho}$. The combination of the two algorithms depending
upon the relative slzes of k and n ylelds an $O(1)$ expected time algorithm for generating X. The optlmal value of the threshold ρ will vary from implementation to implementation. Note that if a membership swap vector is used, it is best to reset the vector after each X is generated by traversing the list in LIFO order.

3.6. The rejection method.

The generation of $D(k, n)$ random varlates by the rejection method creates spectal problems, because the probabillties p_{i} contaln ratios of factortals. Whenever we evaluate p_{i}, we can use one of two approaches: p_{i} is evaluated in constant tlme (this, in fact, assumes that the logarithm of the Γ function is avallable in constant time, and that we do give up our Inflinte accuracy because a Stirling sertes approximation is used), and p_{i} is computed in time proportional to $k+1$ (1.e. the factorlals are evaluated explicitly). With the latter model, called the expllcit factorial model, it does not suffice to find a dominating probabllity vector q_{i} which satisfles

$$
p_{i} \leq c q_{i}
$$

for some constant c independent of k, n. We could indeed still end up with an expected time complexity that is not uniformly bounded over k, n. Thus, in the expllcit factorlal model, we have to find good dominating and squeeze curves which wlll allow us to effectively avold computing p_{i} except perhaps about $O\left(\frac{1}{k}\right)$ percent of the time. Because $D(k, n)$ is a two-parameter famlly, the design is quite a challenge. We will not be concerned with all the detalls here, just with the flavor of the problem. The detalled development can be found in Vitter (1984). Nearly all of this section is an adaptation of Vitter's results. Gehrke (1984) and Kawarasakl and Slbuya (1982) have also developed rejection algorithms, slmilar to the ones discussed in this section.

At the very heart of the design is once again a collection of inequalities. Recall that for a $D(k, n)$ random varlable X,

$$
p_{i}=P(X=i)=\frac{\binom{n-i}{k-1}}{\binom{n}{k}} \quad(1 \leq i \leq n-k+1)
$$

Theorem 3.7.

We have

$$
h_{1}(i) \leq p_{i} \leq c_{1} g_{1}(i+1)
$$

where

$$
\begin{aligned}
& h_{1}(i)=\frac{k}{n}\left(1-\frac{i-1}{n-k+1}\right)^{k-1} \quad(1 \leq i \leq n-k+1) \\
& c_{1}=\frac{n}{n-k+1} \\
& g_{1}(x)=\frac{k}{n}\left(1-\frac{x-1}{n}\right)^{k-1} \quad(1 \leq x \leq n+1)
\end{aligned}
$$

Also,

$$
h_{2}(i) \leq p_{i} \leq c_{2} g_{2}(i+1)
$$

where

$$
\begin{aligned}
& h_{2}(i)=\frac{k}{n}\left(1-\frac{k-1}{n-i+1}\right)^{i-1} \quad(1 \leq i \leq n-k+1), \\
& c_{2}=\frac{k}{k-1} \frac{n-1}{n}, \\
& g_{2}(i)=\frac{k-1}{n-1}\left(1-\frac{k-1}{n-1}\right)^{i-1} \quad(i \geq 1) .
\end{aligned}
$$

Note that g_{1} is a density $\ln x$, and that g_{2} is a probability vector $\ln i$.

Proof of Theorem 3.7.

Note that

$$
\begin{aligned}
& p_{i}=\frac{k}{n-k+1} \prod_{j=0}^{k-2} \frac{n-i-j}{n-j} \\
& \leq \frac{k}{n-k+1}\left(\frac{n-i}{n}\right)^{k-1} \\
& =\frac{k}{n-k+1}\left(1-\frac{i}{n}\right)^{k-1} \\
& =c_{1} g_{1}(i+1) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& h_{1}(i)=\frac{k}{n}\left(1-\frac{i-1}{n-k+1}\right)^{k-1} \\
& \leq \frac{k}{n} \prod_{j=0}^{k-2} \frac{n-k-i+2+j}{n-k+1+j}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k}{n} \prod_{j=0}^{k-2} \frac{n-i-j}{n-1-j} \\
& =p_{i}
\end{aligned}
$$

Thls concludes the first half of the proof. For the second half, we argue similarly. Indeed, for $i \geq 1$,

$$
\begin{aligned}
& p_{i}=\frac{k}{n} \prod_{j=0}^{i-2} \frac{n-k-j}{n-1-j} \\
& \leq \frac{k}{n}\left(\frac{n-k}{n-1}\right)^{i-1} \\
& =\frac{k}{k-1} \frac{n-1}{n} \frac{k-1}{n-1}\left(1-\frac{k-1}{n-1}\right)^{i-1} \\
& =c_{2} g_{2}(i)
\end{aligned}
$$

Furthermore,

$$
h_{2}(i)=\frac{k}{n}\left(\frac{n-k-i+2}{n-i+1}\right)^{i-1} \leq \frac{k}{n} \prod_{j=0}^{i-2} \frac{n-k-j}{n-1-j}=p_{i}
$$

Random varlate generators based upon both groups of inequallites are now easy to find, because g_{1} is baslcally a transformed beta density, and g_{2} is a geometric probabllity vector. In the case of g_{1}, we need to use rejection from a continuous density of course. The expected number of iterations in case 1 is $c_{1}=n /(n-k+1$) (which is unlformly bounded over all k, n with $k \leq \rho n$, where $\rho \in(0,1)$ is a constant). In case 2 , we have $c_{2}=\frac{k}{k-1} \frac{n-1}{n}$, and this is uniformly bounded over all $k \geq 2$ and all $n \geq 1$.

First rejection algorithm

REPEAT

Generate two iid uniform $[0,1]$ random variates U, V.
$Y \leftarrow 1+n\left(1-U^{\frac{1}{k}}\right)\left(Y\right.$ has density $\left.g_{1}\right)$
$X \leftarrow\lfloor Y\rfloor$
IF $X \leq n-k+1$
THEN

$$
\text { Accept } \leftarrow\left[V \leq \frac{n-k+1}{n}\left(\frac{1-\frac{X-1}{n-k+1}}{1-\frac{Y-1}{n}}\right)^{k-1}\right]
$$

IF NOT Accept THEN

$$
\text { Accept } \leftarrow\left[V \leq \frac{p_{X}}{c_{1} g_{1}(Y)}\right]
$$

UNTIL Accept
RETURN X

Second rejection algorithm

REPEAT

Generate an exponential random variate E and a uniform $[0,1]$ random variate V.
$X \leftarrow\left[-E / \log \left(1-\frac{k-1}{n-1}\right)\right]\left(X\right.$ has probability vector $\left.g_{2}\right)$
IF $X \leq n-k+1$
THEN

$$
\text { Accept } \leftarrow\left[V \leq\left(\frac{1-\frac{k-1}{n-X+1}}{1-\frac{k-1}{n-1}}\right)^{x-1}\right]
$$

IF NOT Accept THEN

$$
\text { Accept } \leftarrow\left[V \leq \frac{p_{X}}{c_{2} g_{2}(X)}\right]
$$

UNTIL Accept
RETURN X

3.7. Exercises.

1. Assume that in the standard sequentlal sampling algorithm, each element is chosen with equal probability $\frac{k}{n}$. The sample size is a blnomial ($n, \frac{k}{n}$) random varlable N. Show that as $k \rightarrow \infty, n \rightarrow \infty, n-k \rightarrow \infty$, we have

$$
P(N=k) \sim \sqrt{\frac{n}{2 \pi k(n-k)}} .
$$

2. Assume that $k \leq \rho n$ for some fixed $\rho \in(0,1)$. Show that if the ghost point algorithm is used to generate a random sample of size k out of n, the expected time is bounded by a function of ρ only. Assume that a vector of membership flags is used in the algorithm, but do not switch to the standard sequential method when during the generation process, the current value of k temporarlly exceeds ρ times the current value of n (as is suggested in the text).
3. Assume that in the ghost point algorithm, membership checking is done by traversing the llst L. Show that to generate a random variate X with distribution $D(k, n)$, the algorlthm takes expected time bounded by a function of $\frac{k}{n}$ only.
4. If X is $D(k, n)$ distributed, then

$$
\operatorname{Var}(X)=\frac{(n+1)(n-k) k}{(k+2)(k+1)^{2}}
$$

5. Consider the explicit factorlal model in the rejection algorithm. Noting that the value of p_{X} can be computed in time $\min (k, X+1)$, find good upper bounds for the expected time complexity of the two rejection algorithms given in the text. In particular, prove that for the first algorlthm, the expected time complexity is uniformly bounded over $k \leq \rho n$ where $\rho \in(0,1)$ is a constant (VItter, 1984).

4. OVERSAMPLING.

4.1. Definition.

If we are given a random sequence of k unlform order statistics, and transform it via truncation into a random sequence of ordered integers in $\{1, \ldots, n\}$, then we are almost done. Unfortunately, some Integers could appear more than once, and it is necessary to generate a few more observations. If we had started with $k_{1}>k$ unlform order statlstics, then with some luck we could have ended up with at least k different integers. The probabllity of thls increases rapidly with k_{1}. On the other hand, we do not want to take k_{1} too large, because then we will be left with quite a bit of work trying to ellminate some values to obtain a sample of preclsely slze k. This method is called oversampling. The
main issue at stake is the cholce of k_{1} as a function of k and n so that not only the total expected time is $O(k)$, but the total expected time is approximately minimal. One additional feature that makes oversampling attractive is that we will obtaln an ordered random sample. Because the method is baslcally a two step method (uniform sample generator, followed by excess ellminator), it is not included in the section on sequential methods.

The oversampling algorithm

REPEAT

Generate $U_{(2)}<\cdots<U_{\left(k_{1}\right)}$, the order statistics of a uniform sample of size k_{1} on [0,1$]$.
Determine $X_{i} \leftarrow\left\{1+n U_{(i)}\right\}$ for all i, and construct, after elimination of duplicates, the ordered array $X_{(1)}, \ldots, X_{\left(K_{1}\right)}$.
UNTIL $K_{1} \geq k$
Mark a random sample of size $K_{1}-k$ of the sequence $X_{(1)}, \ldots, X_{\left(K_{1}\right)}$ by the standard sequential sampling algorithm.
RETURN the sequence of k unmarked X_{i} 's.

The amount of extra storage needed is $K_{1}-k$. Note that this is always bounded by $k_{1}-k$. For the expected time analysis of the algorlthm, we observe that the uniform sample generation takes expected time $c_{u} k_{1}$, and that the elimination step takes expected time $c_{e} K_{1}$. Here c_{u} and c_{e} are positive constants. If the standard sequential sampling algorithm is replaced by classical sampling for ellmInation (1.e., to mark one integer, generate random integers on $\left\{1, \ldots, K_{1}\right\}$ untll a nonmarked integer is found), then the expected time taken by the ellmination algorlthm is

$$
\begin{aligned}
& c_{e} \sum_{i=1}^{K_{1}-k} \frac{K_{1}}{K_{1}-i+1} \\
& \leq c_{e}\left(K_{1}-k\right) \frac{K_{1}}{k+1} .
\end{aligned}
$$

What we should also count in the expected time complexity is the probablity of accepting a sequence. The results are combined in the following theorem:

Theorem 4.1.

Let c_{u}, c_{e} be as deffned above. Assume that $n>k$ and that

$$
k_{1}=k+(k+a) / \log \left(\frac{n}{k}\right)
$$

for some constant $a>0$. Then the expected time spent on the uniform sample is

$$
E(N) c_{u} k_{1}
$$

where $E(N)$ is the expected number of iterations. We have the following inequalIty:

$$
E(N)=\frac{1}{P\left(K_{1} \geq k\right)} \leq \frac{1}{1-e^{-a}}
$$

The expected time spent marking does not exceed $c_{e} k_{1}$, which, when $a=O(k), \frac{k}{n} \rightarrow 0$, is asymptotic to $c_{e} k$. If classical sampling is used for marking, then it is not greater than

$$
\frac{k_{1}}{k+1} \frac{k+a}{\log \left(\frac{n}{k}\right)}
$$

Proof of Theorem 4.1.

The expression for the expected time spent generating order statistics is based upon Wald's equation. Furthermore, $E(N)=1 / P\left(K_{1} \geq k\right)$. But

$$
\begin{aligned}
& P\left(K_{1}<k\right) \leq\binom{ n}{k}\left(\frac{k}{n}\right)^{k_{1}} \leq\left(\frac{e n}{k}\right)^{k_{1}} \\
& =\left(\frac{n}{k}\right)^{k-k_{1}} e^{k} \\
& =e^{-a}
\end{aligned}
$$

The only other statement in the theorem requiring some explanation is the statement about the marking scheme with classical samplling. The expected time spent dolng so does not exceed c_{e} times

$$
\begin{aligned}
& E\left(\left.\left(K_{1}-k\right) \frac{K_{1}}{k+1} \right\rvert\, K_{1} \geq k\right) \\
& \leq \frac{\left(k_{1}-k\right) k_{1}}{k+1} .
\end{aligned}
$$

Once agaln, we see that unlformly over $k \leq \rho n$, the expected tlme is bounded by a constant times k, for all fixed $\rho \in(0,1)$ and for all cholces of a that are elther flxed or vary with k in such a manner that $a=O(k)$. We recommend that a be taken large but fixed, say $a=10$. Note that in the speclal case that $\frac{n}{k} \rightarrow \infty, a=O(k), k_{1} \sim k$. Thus, the expected time of the marking section based upon classical sampling is $o(k)$, i.e. It is asymptotically negligible. Also, if $a \rightarrow \infty$, $E(N) \rightarrow 1$ for all cholces of n, k. In those cases, the maln contributions to the expected time complexity come from the generation of the k_{1} unform order statistics, and the ellmination of the marked values (not the marking itself).

4.2. Exercises.

1. Show that for the choice of k_{1} given \ln Theorem 4.1, we have $E(N) \rightarrow 1$ as $n, k \rightarrow \infty, \frac{k}{n} \rightarrow \rho \in(0,1)$. Do this by proving the existence of a unlversal constant A depending upon ρ only such that $E(N) \leq 1+\frac{A}{\sqrt{n}}$.

5. RESERVOIR SAMPLING

5.1. Definition.

There is one particular sequentlal sampling problem deserving speclal attention, namely the problem of sampling records from large (presumably external) flles with an unknown total population. While k is known, n is not. Knuth (1969) glves a partlcularly elegant solution for drawing such a random sample called the reservolr method. See also Vitter (1985). Imagine that we assoclate with each of the records an Independent uniform $[0,1]$ random variable U_{i}. If the object is slmply to draw a random set of size k, it suffices to pick those k records that correspond to the k largest values of the U_{i} 's. This can be done sequentlally:

Reservoir sampling

[NOTE: S is a set of pairs $\left(i, U_{i}\right)$.]
FOR $i:=1$ TO k DO
Generate a uniform $[0,1]$ random variate U_{i}, and add (i, U_{i}) to S. Keep track of the pair (m, U_{m}) with the smallest value for the uniform random variate.
$i \leftarrow k+1$ (i is a record counter)
WHILE NOT end of file DO
Generate a uniform $[0,1]$ random variate U_{i}.
IF $U_{i} \geq U_{m}$
THEN
Delete (m, U_{m}) from S.
Insert (i, U_{i}) in S.
Find a new smallest pair (m, U_{m}).
$i \leftarrow i+1$
RETURN all integers i for which $\left(i, U_{i}\right) \in S$.

The general algorithm of reservoir sampling glven above returns integers (Indlces); it is trivlal to modify the algorithm so that actual records are returned. It is clear that n uniform random varlates are needed. In addition, there is a cost for updating S. The expected number of deletions in S (which is equal to the number of Insertions minus k) is

$$
\begin{aligned}
& \sum_{i=k+1}^{n} P\left(\left(i, U_{i}\right) \text { is Inserted } \ln S\right) \\
= & \sum_{i=k+1}^{n} \frac{k}{i} \\
= & k \log \left(\frac{n}{k}\right)+o(1)
\end{aligned}
$$

as $k \rightarrow \infty$. Here we used the fact that the first n terms of the harmonlc serles are $\log (n)+\gamma+o(1 / n)$ where γ is Euler's constant. There are several possible Implementations for the set S. Because we are malnly interested in ordinary insertlons and deletions of the minimum, the obvious cholce should be a heap. Both the expected and worst-case tlmes for a delete operation in a heap of size k are proportlonal to $\log (k)$ as $k \rightarrow \infty$. The overall expected tlme complexlty for deletions is proportional to

$$
k \log \left(\frac{n}{k}\right) \log (k)
$$

as $k \rightarrow \infty$. This may or may not be larger than the $\theta(n)$ contribution from the unlform random varlate generator. With ordered or unordered llnked lists, the
time complexity is worse. In the exerclse section, a hash structure explolting the fact that the inserted elements are unlformly distributed is explored.

5.2. The reservoir method with geometric jumps.

In some appllcations, such as when records are stored on a sequentlal access device (e.g., a magnetlc tape), there is no way that we can avold traversing the entire file. When the records are in RAM or on a random access device, it is possible to skip over any number of records in constant time: in those cases, it should be possible to get rid of the $\theta(n)$ term in the time complexity. Glven (m, U_{m}), we know that the walting time untll the occurrence of a unlform value greater than U_{m} is geometrlcally distrlbuted with success probabllity $1-U_{m}$. It can be generated as $\left[-E / \log \left(U_{m}\right)\right]$ where E is an exponential random variate. The corresponding record-breaking value is uniformly distributed on [$\left.U_{m}, l\right]$. Thus, the reservoir method with geometrlc jumps can be summarlzed as follows:

Reservoir sampling with geometric jumps

[NOTE: S is a set of pairs $\left(i, U_{i}\right)$.] FOR $i:=1$ TO k DO

Generate a uniform $[0,1]$ random variate U_{i}, and add (i, U_{i}) to S. Keep track of the pair (m, U_{m}) with the smallest value for the uniform random variate.
$i \leftarrow k$ (i is a record counter)
WHILE True DO
Generate an exponential random variate E.
$i \leftarrow i+\left\lceil-E / \log \left(U_{m}\right)\right\rceil$.
IF i not outside file
THEN
Generate a uniform $\left[U_{m}, 1\right]$ random variate U_{i}.
Delete (m, U_{m}) from S.
Insert (i, U_{i}) in S.
Find a new smallest pair (m, U_{m}).
ELSE RETURN all integers i for which $\left(i, U_{i}\right) \in S$.

The analysis of the prevlous section about the expected time spent updating S remains valld here. The difference is that the $\theta(n)$ has disappeared from the plcture, because we only generate unlform random variates when insertions in S are needed.

5.3. Exercises.

1. Deslgn a bucket-based dynamic data structure for the set S, which ylelds a total expected time complexlty for N insertions and deletions that is $o(N \log (k))$ when $N, k \rightarrow \infty$. Note that inserted elements are uniformly distributed on $\left[U_{m}, 1\right]$ where U_{m} is the minlmal value present in the set. Inltlally, S contains k lid unlform $[0,1]$ random variates. For the heap implementation of S, the expected time complexity would be $\theta(N \log (k))$.

Chapter Thirteen
 RANDOM COMBINATORIAL OBJECTS

1. GENERAL PRINCIPLES.

1.1. Introduction.

Some applications demand that random combinatorlal objects be generated: by definition, a comblnatorial object is an object that can be put into one-to-one correspondence with a finlte set of Integers. The maln difference with discrete random varlate generation is that the one-to-one mapping is usually complicated, so that it may not be very efficient to generate a random integer and then determine the object by using the one-to-one mapping. Another characteristic is the size of the problem: typlcally, the number of different objects is phenomenally large. A final distingulshing feature is that most users are interested in the unlform distributlon over the set of objects.

In this chapter, we will discuss general strategles for generating random combinatorlal objects, with the understanding that only uniform distributions are considered. Then, in different subsections, particular combinatorial objects are studled. These Include random graphs, random free trees, random binary trees, random search trees, random partitlons, random subsets and random permutatlons. This is a representative sample of the simplest and most prequently used combinatorlal objects. It is hoped that for more complicated objects, the readers will be able to extrapolate from our examples. A good reference text is Nijenhuls and WIlf(1978).

1.2. The decoding method.

Slnce we want to generate only one of a finite number of objects, it is possible to find a function f such that for every palr of objects (ξ, ς) in the collection of oblects Ξ, we have

$$
f(\xi) \neq f(\varsigma) \in\{1, \ldots, n\}
$$

where n is an integer, which is usually equal to $|\Xi|$, the number of elements in E. Such a function will be called a coding function. By $f^{-1}(i)$, we define the object $\xi \ln \Xi$ for which $f(\xi)=i$ (If this object exlsts). When $|\Xi|=n$, the following decoding algorithm is valld.

The decoding method

[NOTE: f is a coding function.]
Generate a uniform random integer $X \in\{1, \ldots, n\}$.
RETURN $f^{-1}(X)$

The expected time taken by this algorithm is the average time needed for decoding f :

$$
\frac{1}{n} \sum_{i=1}^{n} \operatorname{TIME}\left(f^{-1}(i)\right)
$$

The advantage of the method is that only one unlform random varlate is needed per random combinatorial object. The decoding method is optimal from a storage polnt of view, since each combinatorlal object corresponds unlquely to an integer In $1, \ldots, n$. Thus, about $\log _{2} n$ bits are needed to store each combinatorial object, and thls cannot be improved upon. Thus, the coding functions can be used to store data in compact form. The disadvantages usually outwelgh the advantages:

1. Except in the slmplest cases, $|\Xi|$ is too large to be practical. For example, If this method is to be used to generate a random permutation of $1, \ldots, 40$, we have $|\Xi|=40$!, so that multiple precision arlthmetlc is necessary. Recall that $12!<2^{35}<13$!.
2. The expected time taken by the decoding algorithm is often unacceptable. Note that the time taken by the uniform random varlate generator is negllglble compared to the tlme needed for decoding.
3. The method can only be used when for the given value of n, we are able to count the number of objects. This is not always the case. However, if we use rejection (see below), the counting problem can be avolded.

Example 1.1. Random permutations.

Assume that $\Xi=\{$ all permutations of $1, \ldots, n\}$. There are a number of possible coding functions. For example, we could use the factorlal representation of Lehmer (1984), where a permutation $\sigma_{1}, \ldots, \sigma_{n}$ is uniquely described by a sequence of $n-1$ integers a_{1}, \ldots, a_{n-1} (where $0 \leq a_{i} \leq n-i$) according to the following rule: start with $1, \ldots, n$. Let σ_{1} be the $a_{1}+1$-st integer from this list, and delete this number. Let σ_{2} be the $a_{2}+1$-st number of the remalning numbers, and so forth. Then, deflne

$$
f\left(a_{1}, \ldots, a_{n-1}\right)=a_{1}(n-1)!+a_{2}(n-2)!+\cdots+a_{n-1} 1!+1
$$

It is easy to see that f is a proper coding function glving all values between 1 and $n!$. Just observe that

$$
\begin{aligned}
& n!=(n-1)!n=(n-1)!(n-1)+(n-1)! \\
& =(n-1)!(n-1)+(n-2)!(n-2)+\cdots+1!1+1
\end{aligned}
$$

The algorithm consists of lgenerating a random integer X between 1 and $n!$, determining a_{1}, \ldots, a_{n-1} from X, and determining the random permutation $\sigma_{1}, \ldots, \sigma_{n}$ from the a_{i} sequence. First, the a_{i} 's are obtained by repeated divislons by $(n-1)!,(n-2)!$, etcetera. The σ_{i} 's can be obtained by an exchange algorithm. Formally, we have:

Random permutation generator

Generate a random integer X uniformly distributed on $\{1, \ldots, n!\} . X \leftarrow X-1$.
FOR $i:=1$ TO $n-1$ DO
$\left(a_{i}, X\right) \leftarrow\left(\left\lfloor\frac{X}{(n-i)!}\right\rfloor, X \bmod (n-i)!\right)$ (This determines all the a_{i} 's.)
Set $\sigma_{1}, \ldots, \sigma_{n} \leftarrow 1, \ldots, n$.
FOR $i:=1$ TO $n-1$ DO
Exchange (swap) $\sigma_{a_{i}+1}$ and σ_{n-i+1}
RETURN $\sigma_{1}, \ldots, \sigma_{n}$.

In the exchange step of the algorithm, we exchange a randomly picked element with the last element in every iteration. The tlme taken by the algorithm is $O(n)$.

Sometimes simple coding functions can be found with the property that $n>|\Xi|$, that is, some of the integers $\ln 1, \ldots, n$ do not correspond to any combinatorial object in Ξ. When n is not much larger than $|\Xi|$, this is not a blg problem, because we can apply the rejectlon princlple:

Decoding with rejection

REPEAT
Generate a random integer X with a uniform distribution on $\{1, \ldots, n\}$.
Accept $\leftarrow[f(\xi)=X$ for some $\xi \in \Xi]$
UNTIL Accept
RETURN $f^{-1}(X)$

Abstract

Just how one determines quickly whether $f(\xi)=X$ for some $\xi \in \Xi$ depends upon the circumstances. Usually, because of the size of $|\Xi|$, it is impossible or not practical to store a vector of flags, flagging the bad values of X. If $|\Xi|$ is moderately small, then one could consider doing this in a preprocessing step. Most of the time, it is necessary to start decoding X, untll in the process of decoding one discovers that there is no combinatorial object for the given value of X. In any case, the expected number of Iterations is $\frac{n}{|\Xi|}$. What we have bought here is (1) simplicity (the decoding function can be slmpler if we allow gaps in our enumeration) and (il) convenlence (it is not necessary to count $|\Xi|$; in fact, thls value need not be known at all!).

1.3. Generation based upon recurrences.

Most combinatorlal objects can be counted indirectly via recurrence relations. Direct counting, as in the case of random permutations, addresses itself to the decoding method. Counting via recurrences can be used to obtaln alternative generators. The Idea has been around for some time. It was flrst developed thoroughly by Wllf (1977) (see also Nijenhuls and Wilf (1978)).

We need to have two things:

1. A formula for the number of combinatorlal objects with a certaln parameter (or parameters) k in terms of the number of combinatorial objects with smaller parameter(s). This will be called our recurrence relation.
2. A good understanding of the recurrence relation, so that the relation itself can be linked in a constructive way to a combinatorial object.
For example, consider Ξ_{n}, the collectlon of permutations of $1, \ldots, n$. We have

$$
\left|\Xi_{n}\right|=n\left|\Xi_{n-1}\right|
$$

The meaning of this relation is clear: we can obtain $\xi \in \Xi_{n}$ by considering all permutations Ξ_{n-1}, padding them with the single element n (In the last position), and then swapping the n-th element with one of the n elements. The swapping
operation gives us the factor n in the recurrence relation. We will rewrite the recurrence relation as follows:

$$
\Xi_{n}(1,2, \ldots, n)=\bigcup_{i=1}^{n} \Xi_{n-1}(1,2, \ldots, i-1, i+1, \ldots, n) \cdot i
$$

where $\Xi_{n-1}(1,2, \ldots, i-1, i+1, \ldots, n)$ is the collection of all permutations of the glven $n-1$ elements, and . Is the concatenation operator. To generate a random element from Ξ_{n}, it suffices to choose a random term in the union (with probabllity proportlonal to the cardinallty of the chosen term), and to construct the part of the combinatorlal object that corresponds to thls cholce. In the case of the random permutations, each of the n terms in the unlon shown in the recurrence relation has equal cardinallty, and should thus be chosen with equal probabillty. But choosing the i-th term corresponds to putting the i-th element of the n-vector at the end of the permutation, and generating a random permutation for the $n-1$ remalning elements. Thls leads quite naturally to the swapping method for random permutations:

The swapping method for random permutations

Set $\sigma_{1}, \ldots, \sigma_{n} \leftarrow 1, \ldots, n$.
FOR $i:=n$ DOWNTO 2 DO
Generate X uniformly in $1, \ldots, i$.
Swap σ_{X} and σ_{i}.
RETURN $\sigma_{1}, \ldots, \sigma_{n}$.

There are obviously more complicated situations: see for example the subsectlons on random partitions and random blnary trees in the corresponding subsectlons. For now, we will merely apply the technlque to the generation of random subsets of slze k out of n elements, and see that it reduces to the sequentlal method in random sampling.

There are

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

sets of slze $k \geq 1$ consisting of different integers picked from $\{1, \ldots, n\}$, where $n \geq k$. Clearly, as boundary conditions, we have

$$
\binom{n}{n}=1 ;\binom{n}{1}=1
$$

The recurrence can be interpreted as follows: k integers can be drawn from $2, \ldots, n$ (thus, lgnoring 1), or by choosing 1 and choosing a random subset of slze $k-1$ from 2, ... n (thus, Including 1). The probabillty of inclusion of 1 is
therefore

$$
\frac{\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{k}{n}
$$

This leads directly to the following algorithm:

Random subset of size k from $1, \ldots, n$

$S \leftarrow \emptyset$ (set to be returned is empty)
FOR $i:=1$ TO n DO
Generate a uniform $[0,1]$ random variate U.
IF $U \leq \frac{k}{n-i+1}$ THEN $S \leftarrow S \cup\{i\} ; k \leftarrow k-1$
RETURN S

We can also look at the method of recurrences as some sort of composition method. Typlcally, Ξ_{n} is split into a number of subsets of objects, each having a special property. Let us write

$$
\Xi_{n}=\bigcup_{i=1}^{k} \Xi_{n}(i)
$$

where the sets $\Xi_{n}(i)$ are non-overlapplng. If an Integer i is plcked with probabillty

$$
\frac{\left|\Xi_{n}(i)\right|}{\left|\Xi_{n}\right|} \quad(1 \leq i \leq k),
$$

and if we generate a unlformly distributed object in $\Xi_{n}(i)$, then the random object is unlformly distributed over Ξ_{n}. Of course, we are allowed to apply the same decomposition principle to the Individual subsets in turn. The subsets have generally speaking some property which allows us to construct part of the solutlon, as was lllustrated with random permutations and random subsets.

2. RANDOM PERMUTATIONS.

2.1. Simple generators.

The decoding method of section XIII.1.2 requires only one unlform random varlate per random permutation of $1, \ldots, n$. It was suggested in a number of papers (see e.g. Robinson (1967), Jansson (1888), de Balbine (1987), and the survey paper by Plackett (1968)). Glven an arbltrary array of length n, and one uniformly distributed random Integer on $1, \ldots, n!$, the decoding method constructs in time $O(n)$ one random permutation of $1, \ldots, n$. The algorithm of section XIII.1.2 is a two-pass algorithm. Robson (1968) has polnted out that there is a simple one-pass algorithm based upon decoding:

Robson's decoding algorithm

[NOTE: This algorithm assumes that some permutation $\sigma_{1}, \ldots, \sigma_{n}$ of $1, \ldots, n$ is given. Usually, this permutation is a previously generated random permutation.]
Generate a random integer X uniformly on $1, \ldots, n!$.
FOR $i:=n$ DOWNTO 2 DO
$(X, Z) \leftarrow\left(\left\lfloor\frac{X}{i}\right\rfloor, X \bmod i+1\right)$
Swap σ_{i} and σ_{Z}
RETURN $\sigma_{1}, \ldots, \sigma_{n}$

Despite the obvlous Improvement over the algorithm of section XIII.1.2, the decoding method remains of limited value because n ! increases too quickly with n.

The exchange method of sectlon XIII.1.3 on the other hand does not have this drawback. It is usually attributed to Moses and Oakford (1983) and to Durstenfeld (1984). The method requires $n-1$ independent unlform random variates per random permutation, but it is extremely simple in conception, requiring only one pass and no multiplications, divisions or truncations.

2.2. Random binary search trees.

Random permutations are useful in a number of applications. As we have pointed out earller, the swapping method can be stopped after a given number of iterations to yleld a method for generating a random subset of $1, \ldots, n$ of size $k<n$. This was dealt with in chapter XII on random sampling. Another application deals with the generation of a random binary search tree.

A random blnary search tree with n nodes is defined as a blnary search tree constructed from a random permutation, where each permutation is equally llkely. It is easy to see that different permutations can yleld a tree of the same shape, so all trees are not equally likely (but the permutations are !). It is clear that if we proceed by inserting the elements of a random permutation in turn, starting from an empty tree, then the expected time of the algorithm can be measured by

$$
\sum_{i=1}^{n} E\left(D_{i}\right)
$$

where D_{i} is the depth (path length from root to node) of the i-th node when inserted into a blnary search tree of slze $i-1$ (the depth of the root is 0). The following result is well-known, but is included here because of its short unorthodox proof, based upon the theory of records (see Gllck (1978) for a recent survey):

Lemma 2.1. In a random blnary search tree,

$$
E\left(D_{n}\right) \leq 2(\log (n)+1)
$$

In fact $E\left(D_{n}\right) \sim 2 \log (n)$. Based upon Lemma 2.1, it is not difficult to see that the expected time for the generator is $O(n \log (n))$. Since $E\left(D_{n}\right) \sim 2 \log (n)$, the expected time is also $\Omega(n \log (n))$.

Proof of Lemma 2.1.

D_{n} is equal to the number of left turns plus the number of right turns on the path from the root to the node corresponding to the n-th element. By symmetry, $E\left(D_{n}\right)$ is twlce the expected number of right turns. These right turns can convenlently be counted as follows. Consider the random permutation of $1, \ldots, n$, and extract the subsequence of all elements smaller than the last element. In this subsequence (of length at most $n-1$), flag the records, i.e. the largest values seen thus far. Note that the first element always represents a record. The second element is a record with probabllity one hall, and the i-th element is a record with probabllity $1 / i$. Each record corresponds to a right turn and vice versa. This can be seen by noting that elements following a record which are not records themselves are in a left subtree of a node on the path to the record, whereas the n-th orlginal element is in the right subtree. Thus, these elements cannot have any influence on the level of the $n-t$ element. The subsequence has length between 0 and $n-1$, and to bound the expected number of records from above, it suffices to consider subsequences of length equal to $n-1$. Therefore, the expected depth of the last node is not more than

$$
2 \sum_{i=1}^{n-1} \frac{1}{i} \leq 2\left(1+\int_{1}^{n} \frac{1}{x} d x\right)=2(1+\log (n))
$$

But just as with the problem of the generation of an ordered random sample, there is an important short-cut, which allows us to generate the random binary search tree in linear expected time. The important fact here is that if the root is fixed (say, its integer value is i), then the left subtree has cardinallty $i-1$, and the right subtree has cardinallty $n-i$. Furthermore, the value of the root itself is unlformly distributed on $1, \ldots, n$. These propertles allow us to use recursion in the generation of the random binary search tree. Since there are n nodes, we need no more than n uniform random varlates, so that the total expected time is $O(n)$. A rough outline follows:

Linear expected time algorithm for generating a random binary search tree with n nodes
[NOTE: The binary search tree consists of cells, having a data field "Data", and two pointer fields, "Left" and "Right". The algorithm needs a stack S for temporary storage.]
MAKENULL (S) (stack S is initially empty).
Grab an unused cell pointed to by pointer p.
PUSH $[p, 1, n$] onto S.
WHILE NOT EMPTY (S) DO
POP S, yielding the triple $[p, l, r]$.
Generate a random integer X uniformly distributed on l, \ldots, r.
$p \dagger$.Data $\leftarrow X, p \dagger$.Left \leftarrow NIL, $p \uparrow$.Right \leftarrow NIL
IF $X<r$ THEN
Grab an unused cell pointed to by q^{*}.
$p \dagger$.Right $\leftarrow q^{*}$ (make link with right subtree)
PUSH [$q^{*}, X+1, r$] onto stack S (remember for later)
IF $X>1$ THEN
Grab an unused cell pointed to by q.
$p \uparrow$.Left $\leftarrow q$ (make link with left subtree)
PUSH [$q, l, X-1$] onto stack S (remember for later)

2.3. Exercises.

1. Consider the following putative swapping method for generating a random permutation:
```
Start with an arbitrary permutation \(\sigma_{1}, \ldots, \sigma_{n}\) of \(1, \ldots, n\).
FOR \(i:=1\) TO \(n\) DO
    Generate a random integer \(X\) on \(1, \ldots, n\) (note that the range does not
    depend upon \(i\) ).
    Swap \(\sigma_{i}\) and \(\sigma_{X}\)
RETURN \(\sigma_{1}, \ldots, \sigma_{n}\)
```

Show that this algorithm does not yleld a valid random permutation (all permutations are not equally llkely). Hint: there is a three line combinatorial proof(de Balbine, 1967).
2. The distribution of the helght H_{n} of a random binary search tree is very compllcated. To simulate H_{n}, we can always generate a random binary search tree and find H_{n}. This can be done in expected time $O(n)$ as we have seen. Find an algortthm for the generation of $H_{n} \ln$ sublinear expected time. The closer to constant expected time, the better.
3. Show why Robson's decoding algorlthm is valld.
4. Show that for a random blnary search tree, $E\left(D_{n}\right) \sim 2 \log (n)$ by employing the analogy with records explalned in the proof of Lemma 2.1.
5. Glve a llnear expected time algorithm for constructing a random trie with n elements. Recall that a trle is a blnary tree in which left edges correspond to zeroes and right edges correspond to ones. The n elements can be considered as n independent infintte sequences of zeroes and ones, where all zeroes and ones are obtalned by perfect coln tosses. Thls ylelds an infinite tree in which there are preclsely n paths, one for each element. The trie defined by these elements is obtalned by truncating all these paths to the point that any further truncatlon would lead to two Identlcal paths. Thus, all internal nodes which are fathers of leaves have two children.
6. Random heap. Give a linear expected time algorithm for generating a random heap with elements $1, \ldots, n$ so that each heap is equally likely. Hint: assoclate with Integer i the i-th order statistlc of a unlform sample of size n, and argue in terms of order statistics.

3. RANDOM BINARY TREES.

3.1. Representations of binary trees.

A blnary tree consists of a root, or a root and a left and/or a right subtree, and each of the subtrees in turn is a binary tree. Two binary trees are similar if they have the same shape. They are equivalent if they are simllar, and if the corresponding nodes contain the same information. The distinction between simllarity and equivalence is thus based upon the absence or presence of labels for the nodes. If there are n nodes, then every permutation of the labels of the nodes ylelds another labeled binary tree, and all such trees are slmilar.

A random binary tree with n nodes is a random unlabeled binary tree which Is uniformly distributed over all nonsimllar blnary trees with n nodes. The unlform distribution on the n nodes causes some problems, as we can see from the following simple example: there are 5 different binary trees with 3 nodes. Yet, if we generate such a tree elther by generating a random permutation of $1,2,3$ and constructing a binary search tree from this permutation, or by growing the tree via unlform replacements of NIL polnters by new nodes, then the resulting trees are not equally llkely. For example, the complete blnary tree with 3 nodes has probabillty $\frac{1}{3}$ in both schemes, instead of $\frac{1}{5}$ as is required. The unlformity condition will roughly speaking stretch the blnary trees out, make them appear more unbalanced, because less likely shapes (under standard models) become equally 11kely.

In thls section, we look at some handy representations of binary trees which can be useful further on.

Theorem 3.1.

Let $p_{1}, p_{2}, \ldots, p_{2 n}$ be a balanced sequence of parentheses, l.e. each p_{i} belongs to $\{()$,$\} , for every partial sequence p_{1}, p_{2}, \ldots, p_{i}$, the number of opening parentheses is at least equal to the number of closing parentheses, and in the entire sequence, there are an equal number of opening and closing parentheses.

Then there exists a one-to-one correspondence between all such balanced sequences of $2 n$ parentheses and all binary trees with n nodes.

Proof of Theorem 3.1.

We will prove this constructively. Consider an inorder traversal of a binary tree, i.e. a traversal whereby each node is visited after its left subtree has been visited, but before its right subtree is visited. In the traversal, a stack S is used. Initlally the root is pushed onto the stack. Then, a move to the left down the tree corresponds to another push. If there is no left subtree, we pop the stack and go the the right subtree if there is one (this requires yet another push). If there is no right subtree elther, then we pop agaln, and so forth untll we try to pop an empty stack. The algorithm is as follows:

Inorder stack traversal of a binary tree

[NOTE: The binary tree consists of n cells, each having a left and a right pointer field. S is a stack, and $p_{1}, \ldots, p_{2 n}$ is the sequence of pushes (opening parentheses) and pops (closing parentheses) to be returned.]
$p \leftarrow$ root of tree (p is a pointer)
$i \leftarrow 2$ (i is a counter)
MAKENULL (S)
PUSH p onto $S ; p_{1} \leftarrow$ (
REPEAT
IF $p \uparrow$.Left $\neq \mathrm{NLL}$
THEN PUSH $p \dagger$ Left onto $S ; p \leftarrow p \dagger$ Left $p_{i} \leftarrow(; i \leftarrow i+1$ ELSE

REPEAT
POP S, yielding $\left.p ; p_{i} \leftarrow\right) ; i \leftarrow i+1$
UNTIL $i>2 n$ OR $p \dagger$.Right $\neq \mathrm{NLL}$ IF $i \leq 2 n$

THEN PUSH $p \uparrow$.Right onto $S ; p \leftarrow p \uparrow$.Right; $p_{i} \leftarrow(; i \leftarrow i+1$
UNTIL $i>2 n$
RETURN $p_{1}, \ldots, p_{2 n}$

Different sequences of pushes and pops correspond to different binary trees. Also, every partlal sequence of pushes and pops is such that the number of pushes is at least equal to the number of pops. Upon exit from the algorlthm, both numbers are of course equal. Thus, if a push is identifled with an opening parenthesis, and a pop with a closing parenthesis, then the equivalence clalmed in the theorem is obvlous.

For example, the sequence ()()()()$\cdots()$ corresponds to a binary tree in which all nodes have only right subtrees. And the sequence ($((((\cdots)))))$ corresponds to a binary tree in which all nodes have only left subtrees. The representation of a binary tree in terms of a balanced sequence of parentheses comes in very handy. There are other representations that can be derlved from Theorem 3.1.

Theorem 3.2.

There is a one-to-one correspondence between a balanced sequence of $2 n$ parentheses and a random walk of length $2 n$ which starts at the origin and returns to the origin without ever crossing the zero axls.

Proof of Theorem 3.2.

Let every opening parenthesis correspond to a step of slze " +1 " In the random walk, and let every closing parenthesis correspond to a step of size "-1" in the random walk. Obvlously, such a random walk returns to the orlgin if the string of parentheses is balanced. Also, it does not take any negative values.

Theorem 3.2 can be used to obtain a short proof for counting the number of different (1.e., nonslmilar) binary trees with n nodes.

Theorem 3.3.

There are

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

different blnary trees with n nodes.

Proof of Theorem 3.3.

The proof uses the celebrated mirror princlple (Feller, 1985). Consider a random walk starting at $(2 k, 0)(2 k \geq 0$ is the initial value; 0 is the initial time): in one time unlt, the value of the random walk elther increases by 1 or decreases by 1. The number of paths ending up at $(0,2 n)$ which take at least one negative value is equal to the number of unrestricted paths from $(2 k, 0)$ to $(-2,2 n)$. This can most easlly be seen by the following argument: there is a one-to-one correspondence between the glven restricted and unrestricted paths. Note that each restricted path must take the value -1 at some point in time. Let t be the first time that thls happens. From the restricted path to ($0,2 n$), construct an unrestricted path to $(-2,2 n)$ as follows: keep the initial segment up to time t, and filp the tall segment between time t and time $2 n$ around, so that the path ends up at $(-2,2 n)$. Each different restricted path ylelds a different unrestricted path. Vice versa, since the unrestricted paths must all cross the horizontal line at -1 , time t is well deflned, and each unrestricted path corresponds to a restricted path.

The number of paths from $(2 k, 0)$ to $(0,2 n)$ which do not cross the zero axls equals the total number of unrestricted paths minus the number of paths that do
cross the zero axis, i.e.

$$
\binom{2 n}{k+n}-\binom{2 n}{k+n+1}
$$

which is easlly seen by using a small argument involving numbers of possible subsets. In particular, if we set $k=0$, we see that the total number of binary trees (or the total number of nonnegative paths from $(0,0)$ to $(0,2 n)$) is

$$
\binom{2 n}{n}-\binom{2 n}{n+1}=\frac{1}{n+1}\binom{2 n}{n}
$$

The number of blnary trees with n nodes grows very quickly with n (see table below).

n	Number of binary trees with n nodes
1	1
2	2
3	5
4	14
5	42
6	132
7	429
8	3430

One can show (see exercises) that this number $\sim 4^{n} /\left(\sqrt{\pi} n^{3 / 2}\right)$. Because of this, the decoding method seems once again impractical except perhaps for n smaller than 15, because of the wordsize of the integers involved in the computations.

3.2. Generation by rejection.

Random blnary trees or random strings of balanced parentheses can be generated by the rejection method. This could be done for example by generating a random permutation of n opening parentheses and n closing parentheses, and accepting only if the resulting string satisfles the property that all partial substrings have at least as many opening parentheses as closing parentheses. There are

$$
\binom{2 n}{n}
$$

Inltlal strings, all equally likely. By Theorem 3.3, the probabllity of acceptance of a string is thus $\frac{1}{n+1}$. Furthermore, to declde whether a string has the sald
property takes expected tlme proportional to n. Thus, the expected tlme taken by the algorlthm varles as n^{2}. For thls reason, the rejection method is not recommended.

3.3. Generation by sequential sampling.

It is possible to generate a random blnary tree with n nodes \ln time $O(n)$ by first generating a random string of balanced parentheses of length $2 n$ in time $O(n)$ and then reconstructing the tree by mimicking the inorder traversal given In the proof of Theorem 3.1. The string can be generated in one pass, from left to right, simllar to the sequentlal sampling method for generating a random subset. It is perhaps best to conslder the analogy with random walks once again. We start at $(0,0)$, and have to end up at $(0,2 n)$. At each polnt, say (k, t), we decide to generate a (with probabillty equal to the ratio of the number of nonnegative paths from $(k+1, t+1)$ to $(0,2 n)$ to the number of nonnegative paths from (k, t) to $(0,2 n)$. We generate a) otherwise. It is clear that thls method uses a recurrence relation for binary trees, but the explanation glven here in terms of random walks is perhaps more insightful. The number of nonnegative paths from (k, t) to ($0,2 n$) is (see the proof of Theorem 3.3):

$$
\binom{2 n-t}{\frac{k+2 n-t}{2}}-\binom{2 n-t}{\frac{k+2+2 n-t}{2}}=\binom{2 n-t}{\frac{k+2 n-t}{2}} \frac{2 k+2}{2 n-t+k+2}
$$

The probabllity of a (at (k, t) is thus

$$
\frac{\binom{2 n-t-1}{\frac{k+2 n-t}{2}} \frac{2 k+4}{2 n-t+k+2}}{\binom{2 n-t}{\frac{k+2 n-t}{2}} \frac{2 k+2}{2 n-t+k+2}}=\frac{k+2}{k+1} \frac{2 n-t-k}{2(2 n-t)}
$$

The resulting algorithm for generating a random string of balanced parentheses is due to Arnold and Sleep (1980):

Sequential method for generating a random string of balanced parentheses

[NOTE: The string generated by us is returned in $p_{1}, \ldots, p_{2 n}$.]
$X \leftarrow 0$ (X holds the current "value" of the corresponding random walk.)
FOR $t:=0$ TO $2 n-1$ DO
Generate a uniform $[0,1]$ random variate U.
IF $U \leq \frac{X+2}{X+1} \frac{2 n-t-X}{2(2 n-t)}$
THEN $X \leftarrow X+1, p_{t+1} \leftarrow($
ELSE $X \leftarrow X-1, p_{t+1}+$)
RETURN $p_{1}, \ldots, p_{2 n}$

It is relatively stralghtforward to check that the random walk cannot take negative values because when $X=0$, the probabllity of generating (In the algorlthm is 1 . It is also not possible to overshoot the origin at time $2 n$ because whenever $X=2 n-t$, the probability that a (is generated is 0 .

The reconstruction in llnear time of a binary tree from a string of balanced parentheses is left as an exercise to the reader. Basically, one should mimic the algorithm of Theorem 3.1 where such a strlng is constructed glven a blnary tree.

3.4. The decoding method.

There are a number of sophistlcated coding functions for binary trees, which can be decoded in linear tlme, but all of them require extra storage space for auxlllary constants. See e.g. Knott (1977), Ruskey (1978), Ruskey and Hu (1977) and Trojanowskl (1978). See also Tinhofer and Schreck (1984).

3.5. Exercises.

1. Show that the number of blnary trees with n nodes $\sim \frac{4^{n}}{\sqrt{\pi} n^{\frac{3}{2}}}$.
2. Consider an arbltrary (unrestrlcted) random walk from (0,0) to ($0,2 n$) (thls can be generated by generating a random permutation of $n 1$'s and $n-1$ s). Deflne another random walk by taking the absolute value of the unrestricted random walk. This random walk does not take negatlve values, and corresponds therefore to a string of balanced parentheses of length $2 n$. Show that the random strings obtained in this manner are not unlformly
distributed.
3. Glve a llnear time algorithm for reconstructing a blnary tree from a string of balanced parentheses of length $2 n$ using the correspondence established in Theorem 3.1.
4. Random rooted trees. A rooted tree with n vertices conslsts of a root and an ordered collection of nonempty rooted subtrees when $n>1$. When $n=1$, it consists of just a root. The vertices are unlabeled. Thus, there are 5 different rooted trees when $n=4$. There are a number of representations of rooted trees, such as:
A. A vector of degrees: write down for each node the number of chlldren (nonempty subtrees) when the tree is traversed in preorder or level order.
B. A vector of levels: traverse the tree in preorder or postorder and write down the level number of each node when it is visited.
We can call these vectors of length n codewords. There are other more storage-efficient codewords: find a codeword of length $2 n$ consisting of bits only, which unlquely represents a rooted tree. Show that all codewords for representing rooted trees or binary trees must take at least ($2+o(1)) n$ bits of storage. Generating a codeword is equivalent to generating a rooted tree. Plck any codeword you llke, and give a llnear tlme algorithm for generating a valld random codeword such that all codewords are equally llkely to be generated. Hint: notlce the connection between rooted trees and binary trees.
5. Let us grow a tree by replacing on a sequential basls all NLL polnters by new nodes, where the cholce of a NIL polnter is unlform over the set of such pointers (see section 3.1). Note that there are $n+1$ NIL pointers if the tree has n nodes. Let us generate another tree by generating a random permutation and constructing a binary search tree. Are the two trees slmilar in distribution, l.e. is it true that for each shape of a tree with n nodes, and for all n, the probabillty of a tree with that shape is the same under both schemes ? Prove or disprove.
6. Find a coding function for binary trees which can be decoded in time $O(n)$.

4. RANDOM PARTITIONS.

4.1. Recurrences and codewords.

Many problems can be related to the generation of random partitions of $\{1, \ldots, n\}$ into k nonempty subsets. We know that there are $\left\{\begin{array}{c}n \\ k\end{array}\right\}$ such partltlons, where $\{$.$\} denotes the Stirling number of the second kind. Rather than give$ a formula for the Stirling numbers in terms of a serles, we will employ the
recursive definition:

$$
\begin{aligned}
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+\left\{\begin{array}{c}
n-1 \\
k-1
\end{array}\right\} \quad(0<k<n), \\
& \left\{\begin{array}{l}
n \\
1
\end{array}\right\}=1 ;\left\{\begin{array}{l}
n \\
n
\end{array}\right\}=1 .
\end{aligned}
$$

Using thls, we can form a table of Stirling numbers, Just as we can form a table (Pascal's trlangle) from the well-known recursion for blnomlal numbers. We have:

$n=$	1	2	3	4	5	6
$k=$						
1	1	1	1	1	1	1
2		1	3	7	15	31
3			1	6	25	90
4				1	10	65
5					1	15
6						1

The recursion has a physical meaning: we can form a partition into k nonempty subsets by considering a partition of $\{1, \ldots, n-1\}$ and adding one number, n. That number n can be considered as a new singleton set in the partition (this explains the contrlbution

$$
\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}
$$

In the recursion). It can also be added to one of the sets in the partition of $\{1, \ldots, n-1\}$. In this case, we can add it to one of the k sets in the latter partition. To have a unlque way of addressing these sets, we order the sets according to the value of their smallest elements, and label the sets $1,2,3, \ldots, k$. The addition of n to set i Implles that we must Include

$$
\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}
$$

In the recursion.
Before we proceed with the generation of a random partition based upon this recursion, it is perhaps useful to describe one kind of codeword for random partltlons. Consider the case $n=5$ and $k=3$. Then, the partition ($1,2,5$),(3),(4) can be represented by the n-tuple 11231 where each integer in the n-tuple represents the set to which each element belongs. By conventlon, the sets are ordered according to the values of their smallest elements. So it is easy to see that different codewords yleld different partitions, and vice versa, that all n-tuples of Integers from $\{1, \ldots, k\}$ (such that each integer is used at least once) having this ordering property correspond to some partition into k nonempty subsets. Thus, generating random codewords or random partitions is equivalent. Also, one can be constructed from the other in time $O(n)$.

4.2. Generation of random partitions.

The generator described below produces a random codeword, uniformly distributed over the collection of all possible codewords. It is based upon the recurslon explained above. To add n to a partition of $\{1, \ldots, n-1\}$, we should deffine a slngleton set $\{n\}$ (In which case it must have set number k) with probabillty

$$
\frac{\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}}{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}}
$$

and add it to a randomly picked set from among $1, \ldots, k$ with probability

$$
\frac{\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}}{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}}
$$

each. Obvlously, we have to generate the random codeword backwards.

```
Random partition generator based upon recurrence relation for Stirling
numbers
[NOTE: n and k are given and will be destroyed.]
REPEAT
    Generate a uniform [0,1] random variate U.
        IF U}\leq\frac{{\begin{array}{l}{n-1}\\{k-1}\end{array}}}{{\begin{array}{l}{n}\\{k}\end{array}}
        THEN }\mp@subsup{X}{n}{}\leftarrowk,k\leftarrowk-
        ELSE Generate }\mp@subsup{X}{n}{}\mathrm{ uniformly on 1, . . , k
        n\leftarrown-1
UNTIL n=0
RETURN the codeword }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\ldots,\mp@subsup{X}{n}{
```

If the Stirling numbers can be computed in time O (1) (for example, if they are stored in a two-dimensional table), then the algorlthm takes time $O(n)$ per codeword. The storage requlrements are proportional to $n k$. The preprocessing time needed to set up the table of size n by k is also proportional to $n k$ if we use the fundamental recursion.

We conclude this section by noting that the algorithm given above is a slightly modifled version of an algorithm given in Wlif (1977) and Nijenhuls and Whl (1978).

4.3. Exercises.

1. Deflne a coding function for random partitions, and find an $O(n)$ decoding algorithm.
2. Random partitions of integers. Let $p(n, k)$ be the number of partitions of an integer n such that the largest part is k. The following recurrence holds:

$$
p(n, k)=p(n-1, k-1)+p(n-k, k)
$$

The first term on the rlght-hand side represents those partitions of n whose largest part is k and whose second largest part is less than k (because such partitions can be obtained from one of $n-1$ whose largest part is $k-1$ by adding 1 to the largest part). The partitions of n whose largest two parts are both k come from partitions of $n-k$ of largest part k by repllcating the largest part. Argulng as in Wilf (1977), a partition is a serles of decisions "add 1 to the largest part" or "adjoin another copy of the largest part".
A. Glve an algorlthm for the generation of such a random partition (all partitions should be equally llkely of course), based upon the given recurrence relation.
B. Find a coding function for these partitions. Hint: base your function on the parts of the partition glven in descending order.
C. How would you generate an unrestricted partition of n ? Here, unrestricted means that no bound is glven for the largest part in the partltion.
D. Find a recurrence relation slmilar to the one glven above for the number of partitions of n with parts less than or equal to k.
E. For the combinatorlal objects of part D, find a coding function and a decoding algorithm for generating a random object. See also McKay (1985).

5. RANDOM FREE TREES.

5.1. Prufer's construction.

A free tree is a connected graph with no cycles. If there are n nodes, then there are $n-1$ edges. The distinction between labeled and unlabeled free trees is lmportant. Note however that unllke other trees, free trees do not have a glven root. All nodes are treated equally. We will however keep using the term leaf for nodes with degree one.

The generation of a random free tree can be based upon the following theorem:

Theorem 5.1.

Cayley's theorem. There are exactly n^{n-2} labeled free trees with n nodes.
Prufer's construction. There exists a one-to-one correspondence between all ($n-2$)-tuples ("codewords") of integers a_{1}, \ldots, a_{n-2}, each taking values in $\{1, \ldots, n\}$, and all labeled free trees with n nodes. The relationship is given in the proof below.

Proof of Theorem 5.1.

Cayley's theorem follows from Prufer's construction. Let the nodes of the labeled free tree have labels $1, \ldots, n$. From a labeled free tree a codeword can be constructed as follows. Let a_{1} be the label of the nelghbor of the leaf with the smallest label. Delete the corresponding edge. Since one of the endpoints of the edge is a leaf, removal of the edge will leave us with a labeled free tree of slze $n-1$. Repeat thls process untll $n-2$ components of the codeword have been calculated. At the end, we have a labeled free tree with just 2 nodes, which can be discarded. For example, for the labeled free tree with 8 nodes and edges (1,2), (2,3), $(4,3),(5,3),(6,3)$, the codeword $(2,3,3,3)$ is obtalned.

Conversely, from each codeword, we can construct a free tree having the property that if we use the construction glven above, the initial codeword is obtained again. This is all that is needed to establlsh the one-to-one correspondence. For the construction of the tree from a glven codeword, we begin with three lists:
A. The codeword: a_{1}, \ldots, a_{n-2}.
B. A list of n flags: f_{1}, \ldots, f_{n}, where $f_{i}=1$ indicates that node i is avallable. Inltally, all flags are 1 . Flag i is set to 0 only when i is a leaf, and the edge connected to i is suddenly removed from the tree.
C. A list of n flags indicating whether a node is a leaf or not: $l_{1}, \ldots, l_{n} \cdot l_{i}=1$ indicates that node i is a leaf. Note that this list is redundant, since a node is a leaf if and only if its label can be found in the codeword. The initialization of this list of flags is slmple.

The construction proceeds by first recreating the $n-2$ edges that correspond to the $n-2$ components of the codeword. This is done stmply as follows: choose node a_{1} (this is not a leaf, slnce it is in the codeword), and choose the smallest leaf v (flag $l_{v}=1$ and avallabillty flag $f_{v}=1$). Return the edge (a_{1}, v), and set the flag of v to 0 , which effectively ellminates v. If a_{1} cannot be found in the remalnder of the codeword, then a_{1} becomes a leaf in the new free tree, and the flag $l_{a_{1}}$ must be set to 1 . This process can be repeated untll a_{1}, \ldots, a_{n-2} is exhausted. The last ($n-1$-st) edge at the end is simply found by taking the only two nodes whose avallabllity flags are still 1 . This concludes the construction. It is easy to verify that if the tree is used to construct a codeword, the initlal codeword is obtalned.

The degree of a node is one plus the number of occurrences of the node in the codeword, at least if codewords are translated Into free trees via Prufer's construction. To generate a random labeled free tree with n nodes (such that all such trees are equally llkely), one can proceed as follows:

Random labeled free tree generator

FOR $i:=1$ TO $n-2$ DO
Generate a_{i} uniformly on $\{1, \ldots, n\}$.
Translate the codeword into a labeled free tree via Prufer's construction.

A careless translation of the codeword could be inefficlent. For example, the verlfication of whether an Internal node becomes a leaf during construction, when done by traversing the leftover part of the codeword, ylelds an $\Omega\left(n^{2}\right)$ contribution to the total time. Using llnear search to find the smallest avallable leaf would glve a contribution of $\Omega\left(n^{2}\right)$ to the total time. Even if a heap were used for thls, we would still be facing a contribution of $\Omega(n \log (n))$ to the total time. In the next section, a linear time translation algorlthm due to Klingsberg (1977) is presented.

5.2. Klingsberg's algorithm.

The purpose of this section is to explain Kllngsberg's $O(n)$ algorlthm for translating a codeword a_{1}, \ldots, a_{n-2} into a labeled free tree. His solution requires one additional array $T[1] ; \ldots, T[n]$, which is used to return the edges and to keep information about the avallabllity flags and about the leaf flags (see proof of Theorem 1). The edges returned are

$$
(1, T[1]),(2, T[2]), \ldots,(n-1, T[n-1])
$$

The other uses of thls array are:
A. $\quad T[i]=$ avallable_not_leaf means that node i is still avallable and is not a leaf. The constant is set to -1 In Klngsberg's work.
B. $\quad T[i]=$ avallable_leaf means that node i is an avallable leaf. The constant is set to 0 in Klingsberg's work.
C. $\quad T[i]=j>0$ indicates that node i is no longer avallable, and in fact that (i, j) Is an edge of the labeled free tree.
In the example of codeword $(2,3,3,3)$ glven in section 5.1 , the array T would InItlally be set to (avallable_leaf , avallable_not_leaf , avallable_not_leaf , avallable_leaf, avallable_leaf, avallable_leaf) since only nodes 2 and 3 are internal nodes.

To speed up the determination of when an internal node becomes a leaf, we merely flag the last occurrence of every node in the codeword. This can convenlently be done by changing the slgns of these entries. In our example, the codeword would initlally be replaced by $(-2,3,3,-3)$.

Finally, to find the smallest avallable leaf quickly, we note that in the construction, these leaf labels increase except when a new leaf is added, and its label is smaller than the current smallest leaf label. This can be managed with the ald of two moving pointers: there is a masterpolnter which moves up monotonically from 1 to n; in addition, there is a temporary pointer, which usually moves with the masterpointer, except in the sltuation described above, when it is temporarily set to a value smaller than that of the masterpolnter. The temporary pointer always points at the smallest avallable leaf. It is thls ingenlous device which permitted Kllngsberg to obtaln an $O(n)$ algorithm. We can now summarize hls algorlthm.

```
Klingsberg's algorithm for constructing a labeled free tree from a codeword
[PREPARATION.]
FOR \(i:=1\) TO \(n\) DO \(T(i] \leftarrow\) available_leaf
FOR \(i:=n-2\) DOWNTO 1 DO
        IF \(T\left[a_{i}\right]=\) available_leaf THEN
            \(T\left[a_{i}\right]=\) available_not_leaf; \(a_{i} \leftarrow-a_{i}\)
Master \(\leftarrow 1\)
\(a_{n-1} \leftarrow n\) (for convenience in defining last edge)
Master \(\leftarrow \min (j: T[j]=\) available_leaf \()\)
Temp \(\leftarrow\) Master
[TRANSLATION.]
FOR \(i:=1\) TO \(n-1\) DO
    Select \(\leftarrow\left|a_{i}\right| \quad\) (select internal node)
    \(T\) [Temp] Select (return edge)
    IF \(i<n-1\) THEN
        IF \(a_{i}>0\)
                THEN
                    Master \(\leftarrow \min (j: T[j)=\) avallable_leaf \()\)
                    Temp \(\leftarrow\) Master
            ELSE
                    \(T\) [Select] available_leaf
                    IF Select \(\leq\) Master THEN Temp \(\leftarrow\) Select (temporary step
                    up)
\(\operatorname{RETURN}(1, T[1]), \ldots,(n-1, T[n-1])\)
```

The llnearlty of the algorlthm follows from the fact that the masterpolnter can only Increase, and that all the operations in every Iteration that do not Involve the masterpointer are constant time operations.

5.3. Free trees with a given number of leaves.

Assume next that we wish to generate a labeled free tree with n nodes and l leaves where $2 \leq l \leq n-1$. For the solution of thls problem, we recall Prufer's codeword. The codeword contains the labels of all Internal nodes. Thus, it is necessary to generate only codewords in which preclsely $n-l$ labels are present. The actual labels can be put in by selecting $n-l$ labels from n labels by one of the random sampling algorthms. Thus, we have:

Generator of a labeled free tree with n nodes and I leaves

Generate a random subset of $n-l$ labels from $1, \ldots, n$.
Perform a random permutation on these labels (this may not be necessary, depending upon
the random subset algorithm.)
Generate a random partition of $n-2$ elements into $n-l$ non-empty subsets, and assign the
first label to the first subset, etcetera. This yields a codeword of length $n-2$ with precisely
$n-l$ different labels.
Translate the codeword into a labeled free tree (preferably using Klingsberg's algorithm).

In thls algorithm, we need algorithms for random subsets, random partitions and random permutations. It goes without saying that some of these algorlthms can be combined. Another by-product of the decomposition of the problem into manageable sub-problems is that it is easy to count the number of combinatorial objects. We obtain, in this example:

$$
\left(\begin{array}{l}
n \\
l
\end{array}\right\}(n-l)!\left\{\begin{array}{c}
n-2 \\
n-l
\end{array}\right\}=\frac{n!}{l!}\left\{\begin{array}{c}
n-2 \\
n-l
\end{array}\right\} .
$$

5.4. Exercises.

1. Let d_{1}, \ldots, d_{n} be the degrees of the nodes $1, \ldots, n$ in a free tree. (Note that the sum of the degrees is $2 n-2$.) How would you generate such a free tree ? Hint: generate a random Prufer codeword with the correct number of occurrences of all labels. The answer is extremely slmple. Derive also a simple formula for the number of such labeled free trees.
2. Glve an algorlthm for computing the Prufer codeword for a labeled free tree with n nodes in tlme $O(n)$.
3. Prove that the number of free trees that can be bullt with n labeled edges (but unlabeled nodes) is $(n+1)^{n-2}$. Hint: count the number of free trees with n labeled nodes and $n-1$ labeled edges first.
4. Glve an $O(n)$ algorlthm for the generation of a random free tree with n labeled edges and $n+1$ unlabeled nodes. Hint: try to use Kllngsberg's algorithm by reducing the problem to one of generating a labeled free tree.
5. Random unlabeled free trees with \mathbf{n} vertices. Find the connection between unlabeled free trees with n vertices and rooted trees with n vertices. Explolt the connection to generate random unlabeled free trees such that all trees are equally likely (Whf, 1981).

6. RANDOM GRAPHS.

6.1. Random graphs with simple properties.

Graphs are the most general combinatorial objects dealt with in thls chapter. They have applications in nearly all flelds of science and engineering. It is quite impossible to glve a thorough overview of the different subclasses of graphs, and how objects in these subclasses can be generated unlformly and at random. Instead, we will just give a superficlal treatment, and refer the reader to general principles or specific artlcles in the literature whenever necessary.

We wlll use the notation n for the number of nodes in a graph, and e for the number of edges in a graph. A random graph with a certaln property P is such that all graphs with this property are equally llkely to occur. Perhaps the slmplest property is the property: "Graph G has n nodes". We know that there are

$$
2^{\binom{n}{2}}
$$

objects with this property. Thls can easlly be seen by consldering that each of the $\binom{n}{2}$ possible edges can elther be present or absent. Thus, we should include each edge in a random graph with thls property with probabllity $1 / 2$.

The number of edges chosen is binomlally distributed with parameters n and $1 / 2$. It is often necessary to generate sparser graphs, where roughly speaking e is $O(n)$ (or at least not $\Omega\left(n^{2}\right)$). This can be done in two ways. If we do not require a specific number of edges, then the simplest solution is to select all edges Independently and with probabllity p. Note that the expected number of edges is $p\binom{n}{2}$. This is most easily implemented, espectally for small p, by using the fact that the walting time between two selected edges is geometrically distributed with parameter p, where by "walting time" we mean the number of edges we must manipulate before we see another selected edge. This requires a llnear ordering on the edges, which can be done by the coding function given below.

If the property is "Graph G has n nodes and e edges", then we should first select a random subset of e edges for the set of $\binom{n}{2}$ possible edges. This property is slmple to deal with. The only slight problem is that of establishing a simple coding function for the edges, which is easy to decode. This is needed since we have to access the endpoints of the edges some of the tlme (e.g., when returning edges), and the coded edges most of the tlme (e.g., when random sampling
based upon hashing). One possibllity is shown below:

Node u	Node v	Coded version of edge (u, v)
1	2	1
1	3	2
\cdots	\cdots	\cdots
\cdots	\cdots	\cdots
1	n	$n-1$
2	3	$(n-1)+1$
\cdots	\cdots	\cdots
\cdots	\cdots	\vdots
2	n	$(n-1)+(n-2)$
\cdots	\cdots	\cdots
$n-1$	n	$(n-1)+(n-2)+\cdots+2+1$

The coding function for this scheme is

$$
f(u, v)=(u-1) n-\frac{u(u-1)}{2}+(v-u) .
$$

Interestingly, this function can be decoded in time O (1) (see exercise 8.1). Whether random sampling should be done on coded integers with decoding only at the very end, or on sets of edges (u, v) without any decoding, depends upon the sampling scheme. In classical sampling schemes for example, it is necessary to verlfy whether a certaln edge has already been selected. The verlfication can be based upon a vector of flags (which can be done here by using a lower trlangular n by n matrix of flags). When a heap or a tree structure is used, there is no need ever for coding. When hashing is used, coding seems approprlate. In sequentlal sampling, no coding is needed, as long as we can easily implement the function $\operatorname{NEXT}(u, v) \quad(\mathrm{IF} \quad v=n \quad \operatorname{THEN} \quad \operatorname{NEXT}(u, v) \leftarrow(u+1, u+2) \quad \operatorname{ELSE}$ $\operatorname{NEXT}(u, v) \leftarrow(u, v+1))$. However, if sequential sampling is accelerated by taking glant steps, then coding the edges seems the wise thing to do.

6.2. Connected graphs.

Most random graphs that people want to generate should be of the connected type. From the work of Erdos and Renyl (1959, 1960), we know that if e is much larger than $\frac{1}{2} n \log (n)$ (or if p is much larger than $\frac{\log (n)}{n}$), then the probabllity that a random graph with e (or binomlal (n, p)) edges is connected tends to 1 as $n \rightarrow \infty$. In those situations, it is clear that we could use the rejection algorlthm:

```
Rejection method for generating a connected random graph with n nodes and e
edges
REPEAT
    Generate a random graph G with e edges and n nodes.
UNTIL G is connected
RETURN G
```

To verify that a graph is connected is a standard operation: if we use depth first search, this can be done in time $O(\max (n, e))$ (Aho, Hopcroft and Ullman, 1283). Thus, the expected time needed by the algorthm is $O(\max (n, e))$ when

$$
\lim _{n \rightarrow \infty} \operatorname{lnf} \frac{e}{n \log (n)}>\frac{1}{2}
$$

In fact, since in those cases the probabllity of acceptance tends to 1 as $n \rightarrow \infty$, the expected time taken by the algorithm is ($1+o(1)$) times the expected time needed to check for connectedness and to generate a random graph with e edges. Unfortunately, the condition glven above is asymptotic, and it is difficult to verlfy whether for given values of e and n, we have a good rejection constant. Also, there is a gap for precisely the most Interesting sorts of graphs, the very sparse graphs when e is of the order of n. This can be done via a general graph generation technique of Tinhofer's (1978,1980), which is explalned in the next section. In it, we recognize Ingredients of Wllf's recurrence based method.

6.3. Tinhofer's graph generators.

In two publications, Tinhofer $(1978,1980)$ has proposed useful random graph generators, with appllcations to connected graphs (with or without a speciflc number of edges), digraphs, blchromatlc graphs, and acycllc connected graphs. Hls algorthms require in all cases that we can count certain subclasses of graphs, and they run fastest if tables of these counts can be set up beforehand. We will merely glve the general outllne, and refer to Tlnhofer's work for the detalls.

Let us represent a graph by a sequence of adjacency lists, wlth the property that each edge should appear in only one adjacency list. The adjacency list for node i will be denoted by A_{i}. Thus, the graph is completely determined by the sequence

$$
A_{1} A_{2} \cdots A_{n}
$$

We will generate the adjacency lists in some (usually random) order, $A_{v_{1}}, A_{v_{2}}, \ldots$, where $v_{1}, v_{2}, \ldots, v_{n}$ is a permutation of $1, \ldots, n$. To avold
the dupllcation of nodes, we require that all nodes in adjacency list $A_{v_{j}}$ fall outside $\bigcup_{i=1}^{j}\left\{v_{i}\right\}$. The following sets of nodes will be needed:

1. The set U_{j} of all nodes $\ln \bigcup_{i=1}^{j} A_{v_{i}}$ with label not $\ln v_{1}, \ldots, v_{j}$. This set contains all nelghbors of the first j nodes outside v_{1}, \ldots, v_{j}.
2. The set V_{j} which conslsts of all nodes with label outside v_{1}, \ldots, v_{j} that are not $\ln U_{j}$.
3. The speclal sets $U_{0}=\{1\}, V_{0}=\{2,3, \ldots, n\}$.

When the adjacency lists are being generated, it is also necessary to do some countling: define the quantlty N_{j} as the total number of graphs with the desired property, having flxed adjacency lists $A_{v_{1}}, \ldots, A_{v_{j}}$. Sometimes we will write $N_{j}\left(A_{v_{1}}, \ldots, A_{v_{j}}\right)$ to make the dependence explicit. Glven $A_{v_{1}}, \ldots, A_{v_{j-1}}$, we should of course generate $A_{v_{j}}$ according to the following distribution:

$$
P\left(A_{v_{j}}=A\right)=\frac{N_{j}\left(A_{v_{1}}, \ldots, A_{v_{j-1}}, A\right)}{N_{j-1}\left(A_{v_{1}}, \ldots, A_{v_{j-1}}\right)}
$$

It is easy to see that this is indeed a probabllity vector in A. We are now ready to glve Tinhofer's general algorlthm.

Tinhofer's random graph generator

```
\(U_{0} \leftarrow\{1\} ; V_{0} \leftarrow\{2, \ldots, n\}\)
FOR \(j:=1\) TO \(n\) DO
    IF EMPTY \(\left(U_{j-1}\right)\)
        THEN \(v_{j} \leftarrow \min \left(i: i \in V_{j-1}\right)\)
        \(\operatorname{ELSE} v_{j} \leftarrow \min \left(i: i \in U_{j-1}\right)\)
```

Generate a random subset $A_{0_{j}}$ on $U_{j-1} \cup V_{j-1}-\left\{v_{j}\right\}$ according to the probability distribution given above.
$U_{j} \leftarrow U_{j-1} \cup A_{j}-\left\{v_{j}\right\}$
$V_{j} \leftarrow V_{j-1}-A_{j}-\left\{v_{j}\right\}$
RETURN $A_{v_{1}}, A_{v_{2}}, \ldots, A_{v_{n-1}}$

The major problem in this algorithm is to compute (on-llne) the probablity distribution for $A_{v_{j}}$. In many examples, the probabllitles depend only upon the cardinalitles of U_{j-1} and V_{j-1} and possibly some other sets, and not upon the actual structure of these sets. This is the case for the class of all connected graphs with n nodes, or all connected graphs with n nodes and e edges (see Tinhofer, 1980). Nevertheless, we still have to count, and run into numerical problems when n or e are large.

6.4. Bipartite graphs.

A bipartite graph is a graph in which we can color all vertlces with two colors (baby pink and mustard yellow) such that no two vertlces with the same color are adjacent. There exlsts a useful connectlon with matrices which makes blpartlte graphs a manageable class of graphs. If there are b baby vertlces and m mustard vertices, then a blpartite graph is completely deflned by a $b \times m$ Incldence matrlx of 0 's and 1 's. At thls polnt we may recall the algorlthms of sectlon XI.6.3 for generating a random $R \times C$ table with given row and column totals. Thls leads directly to a rejectlon algorithm for generating a random blpartite graph with given degrees for all vertices:

Bipartite graph generator

[NOTE: This algorithm returns a $b \times m$ incidence matrix defining a random bipartite graph with b baby vertices and m mustard vertices. The row totals are $r_{i}, 1 \leq i \leq b$, and the column totals are $c_{j}, 1 \leq j \leq m$.]
REPEAT
Generate a random $R \times C$ matrix of dimension $b \times m$ with the given row and column totals.
UNTIL all elements in the matrix are 0 or 1
RETURN the matrix

The reduction to a random $R \times C$ matrix was suggested by Wormald (1984). By Wald's equation, we know that the expected time taken by the algorithm is equal to the product of the expected tlme needed to generate one random $R \times C$ matrix and the expected number of iteratlons. For example, if we use the ball-In-urn method of section XI.6.3, then a random $R \times C$ matrix can be obtained in time proportional to e, the total number of edges (which is also equal to $\sum r_{i}$ and to $\sum c_{j}$). The analysis of the expected number of iterations is also due to Wormald (1984):

Theorem 6.1.

Assume that all r_{i} 's and c_{j} 's are at most equal to k. The expected number of Iterations in the rejection algorithm is

$$
(1+o(1)) \exp \left(\frac{2}{e^{2}} \sum_{i=1}^{b}\binom{r_{i}}{2} \sum_{j=1}^{m}\binom{c_{j}}{2}\right)
$$

where e is the total number of edges, and $o(1)$ denotes a function tending to 0 as $e \rightarrow \infty$ which depends only upon k and not on the r_{i} 's and b_{j} 's.

As a corollary of this Theorem, we see that the expected number of iteratlons is unlformly bounded over all blpartlte graphs whose degrees are uniformly bounded by some number k.

Blpartite graphs play a cruclal role in graph theory partly because of the following connection. Consider a $b \times m$ incldence matrix for a blpartite graph in which all baby vertices have degree 2, l.e. all r_{i} 's are equal to 2 . This defines a graph on m nodes in the following manner: each palr of edges connected to a baby vertex defines an edge In the graph on m nodes. Thus, the new graph has b edges. We can now generate a random graph with given collection of degrees as follows:

Random graph generator

(NOTE: This algorithm returns an array of b edges defined on a graph with vertices $\{1, \ldots, m\}$. The degree sequence is c_{1}, \ldots, c_{m}.]
REPEAT
Generate a random $b \times m$ bipartite graph with degrees all equal to two for the baby vertices ($r_{i}=2$), and degrees equal to c_{1}, \ldots, c_{m} for the mustard vertices.
UNTL no two baby vertices share the same two neighbors
RETURN (k_{1}, l_{1}), $\ldots,\left(k_{m}, l_{m}\right)$ where k_{i} and l_{i} are the columns of the two 1 's found in the i-th row of the incidence matrix of the bipartite graph.

Again we use the rejection princlple, In the hope that for many graphs the rejection constant is not unreasonable. Note that we need to check that there are no duplicate edges in the graph. This is done by checking that no two rows in the blpartite graph's incldence matrix are identical. It can be verified that the procedure takes expected time $O(b+m)$ where b is the number of edges in the graph, provided that all degrees of the vertices in the graph are bounded by a constant k (Wormald, 1884). In partlcular, the method seems to be ideally sulted for generating random r-regular graphs, i.e. graphs in which all degrees are equal to r. It can be shown that the expected number of $R \times C$ matrices needed before halting is roughly speaking $e^{\left(r^{2}-1\right) / 4}$. This increases rapidly with r. Wormald also gives a particular algorithm for generating 3 -regular, or cublc, graphs.

6.5. Exercises.

1. Find a simple O (1) decoding rule for the coding function for edges in a graph given In the text.
2. Prove Theorem 6.1.
3. Prove that if random graphs with b edges and m vertices are generated by Wormald's method, then, provided that all degrees are bounded by k, the expected time is $O(b+m)$. Glve the detalls of all the data structures involved in the solution.
4. Event simulators. We are glven n events with the following dependence structure. Each Individual event has probabllity p of occurring, and each palr of events has probability q of occurring. All triples carry probabllity zero. Determine the allowable values for p, q. Also indleate how you would handle one slmulation. Note that in one slmulation, we have to report all the Indlces of events that are supposed to occur. Your procedure should have constant expected time.
5. Random strings in a context-free language. Let S be the set of all strings of length n generated by a given context-free grammar. Assume that the grammar is unambiguous. Using at most $O\left(n^{r+1}\right)$ space where r is the number of nonterminals in the grammar, and using any amount of preprocessing time, find a method for generating a unlformly distributed random string of length n in S in linear expected time. See also Hickey and Cohen (1983).

Chapter Fourteen
 PROBABILISTIC SHORTCUTS AND ADDITIONAL TOPICS

A probabillstlc shortcut in random varlate generation is a method for reducing the expected time in a slmulation by recognizing a certain structure in the problem. This princlple can be illustrated in hundreds of ways. Indeed, there is not a single example that could be called "typical". It should be stressed that the efflelency is derived from the problem itself, and is probabllistic in nature. This distingulshes these shortcuts from certaln techniques that are based upon clever data structures or fast algorithms for certaln sub-tasks. We will draw our examples from three sources: the slmulation of maxima and sums of IId random variables, and the simulation of regenerative processes.

Other toples brlefly touched upon include the problem of the generation of random varlates under incomplete information (e.g. one just wants to generate random varlates with a unlmodal density having certaln given moments) and the generation of random varlates when the distribution is indirectly specifled (e.g. the characteristic function is given). Finally, we will briefly deal with the problem of the design of effclent algorithms for large slmulations.

1. THE MAXIMUM OF IID RANDOM VARIABLES.

1.1. Overview of methods.

In this section, we will look at methods for generating $X=\max \left(X_{1}, \ldots, X_{n}\right)$, where the X_{i} 's are IId random varlables with common density f (the corresponding distribution function will be called F). We will malnly be interested in the expected time as a function of n. For example, the naive method takes time proportional to n, and should be avolded whenever possible. Because X has distribution function F^{n}, it is easy to see that the following algorithm is valld:

Inversion method

Generate a uniform $[0,1]$ random variate U. RETURN $X \leftarrow F^{-1}\left(U^{\frac{1}{n}}\right)$.

The problem with this approach is that for large $n, U^{1 / n}$ is close to 1 , so that in regular wordsize arthmetic, there could be an accuracy problem (see e.g. Devroye, 1980). This problem can be allevlated if we use $G=1-F$ Instead of F and proceed as follows:

Inversion method with more accuracy
Generate an exponential random variate E and a gamma (n) random variate G_{n}. RETURN $X \leftarrow G^{-1}\left(\frac{E}{E+G_{n}}\right)$.

Unless the distribution function is explicitly Invertible, both inversion-based algorithms are virtually useless. In the remalning sections, we present two probabillstlc shortcuts, one based upon the quick ellmination principle, and one on the use of records. The expected times of these methods usually increase as $\log (n)$. This is not as good as the constant time inversion method, but a lot better than the nalve method. The advantages over the inversion method are measured in terms of accuracy and flexibility (fewer things are needed in order to be able to apply the shortcuts).

1.2. The quick elimination principle.

In the quick ellmination princlple, we generate the maximum of a sequence of Ind random varlables after having ellminated all but a few of the X_{i} 's without ever generating them. We need a threshold point t and the tall probabillty $p=1-F(t)$. These are picked before application of the algorithm. Typically, p is of the order of $(\log (n)) / n$. The number of X_{i} 's that exceed t is binomial (n, p). Thus, the following algorithm is guaranteed to work:

The quick elimination algorithm (Devrose, 1980)
Generate a binomial (n, p) random variaie Z.
IF $Z=0$
THEN
RETURN $X \leftarrow \max \left(X_{1}, \ldots,-\mathcal{F}_{2}\right.$ where the X_{i} 's are iid random variates with density $f /(1-p)$ on $(-\infty, t]$.
ELSE
RETURN $X \leftarrow \max \left(X_{1}, \ldots, X_{z}\right.$ where the X_{i} 's are iid random variates with density f / p on $[t, \infty)$.

To analyze the expected time complexity, observe that the binomial (n, p) random varlate can be generated in expectec $\because:$ me proportional to $n p$ as $n p \rightarrow \infty$ by the walting tlme method. Obvlously, we cc:ad use O (1) expected time algorlthms too, but there is no need for thls here. Ass:me furthermore that every X_{i} in the algorlthm is generated in one unlt of expez:ed time, unlformly over all values of p. It is easy to see that the expected time of the algorithm is $T+o(n p)$ where we deflne $T=a P(Z=0) n+b(1-P(Z=0)) n p+c n p$ for some constants $a, b, c>0$.

Lemma 1.1.

$$
\operatorname{lnf}_{0<p<1} T \sim(b+c) \log (n) \quad(n-\infty)
$$

If we set

$$
p=\frac{\log (n)+\delta_{n}}{n}
$$

then $T \sim(b+c) \log (n)$ provided that the sequence of real numbers δ_{n} is chosen so that

$$
\lim _{n \rightarrow \infty} \delta_{n}+\log (\log (n))=\infty, \delta_{n}=o(\log (n))
$$

Proof of Lemma 1.1.

Note that

$$
\begin{aligned}
& T=n a(1-p)^{n}+b n p\left(1-(1-p)^{n}\right)+c n p \\
& \leq(b+c) n p+a n e^{-n p}
\end{aligned}
$$

The upper bound is convex in p with one minimum. Setting the derivative with respect to p equal to zero and solving for p gives the solution

$$
p=\frac{1}{n} \log \left(\frac{a n}{b+c}\right) .
$$

Resubstitution in the upper bound for T shows that

$$
T \leq(b+c) \log \left(\frac{a n e}{b+c}\right)
$$

When $p=\left(\log (n)+\delta_{n}\right) / n$, then the upper bound for T is

$$
a e^{-\delta_{n}}+(b+c)\left(\log (n)+\delta_{n}\right)
$$

This $\sim(b+c) \log (n)$ if $\delta_{n}=o(\log (n))$ and $e^{-\delta_{n}}=o(\log (n))$. The latter condition is satisfled when $\delta_{n}+\log (\log (n)) \rightarrow \infty$.

Finally, it suffices to work on a lower bound for T. We have for every $\epsilon>0$ and all n large enough, since the optlmal p tends to zero:

$$
\begin{aligned}
& T \geq(n a-b n p) e^{-\frac{n p}{1-p}}+(b+c) n p \\
& \geq n a(1-\epsilon) e^{-\frac{n p}{1-\epsilon}}+(b+c) n p
\end{aligned}
$$

We have already minimized such an expression with respect to p above. It suffices to formally replace n by $n /(1-\epsilon), a$ by $a(1-\epsilon)^{2}$, and $(b+c)$ by $(b+c)(1-\epsilon)$. Thus,

$$
\operatorname{lnf}_{0<p<1} T \geq(1-\epsilon)(b+c) \log \left(\frac{a n e}{b+c}\right)
$$

for all n large enough. This concludes the proof of Lemma 1.1.

A good choice for δ_{n} in Lemma 1.1 is $\delta_{n}=\log \left(\frac{a}{b+c}\right)$. When $Z=0$ in the algorithm, ild random varlates from the density $f /(1-p)$ restricted to ($-\infty, t$] can be generated by generating random variates from f untll n values less than or equal to t are observed. Thls would force us to replace the term $a P(Z=0) n$ In the definition of T by $a P(Z=0) n /(1-p)$. However, all the statements of Lemma 1.1 remain valld.

The main problem is that of the computation of a palr (p, t). For if we start with a value for p, such as the value suggested by Lemma 1.1 , then the value for t is given by $F^{-1}(1-p)$ (or $G^{-1}(p)$ where $G=1-F$, if numerical accuracy is of concern). This is unfortunately possible only when the inverse of the distribution function is known. But if the Inverse of the distribution were known, we would have been able to generate the maximum quite efflclently by the inversion method. There is a subtle difference though: for here, we need one inverston, even if we would need to generate a million ild random varlables all distributed as the maximum X. With the inversion method, a million Inversions would be required. If on the other hand we were to start with a value for t, then p would have to be set equal to $\int_{t}^{\infty} f=G(t)=1-F(t)$. This requires knowledge of the distribution function but not of its inverse. The value of t we start with should be such that p satisfles the conditions of Lemma 1.1. Typlcally, t is picked on theoretical grounds as is now lllustrated for the normal density.

Example 1.1.

For the normal density it is known that $G(x) \sim f(x) / x$ as $x \rightarrow \infty$. A first approximate solution of $f(t) / t=p$ is $t=\sqrt{2 \log (1 / p)}$, but even if we substitute the value $p=(\log (n)) / n$ in thls formula, the value of $G(t)$ would be such that the expected time taken by the algorlthm far exceeds $\log (n)$. A second approximation is

$$
t=\sqrt{2 \log \left(\frac{1}{p}\right)}-\frac{\log (4 \pi)+\log \left(\log \left(\frac{1}{p}\right)\right)}{2 \sqrt{2 \log \left(\frac{1}{p}\right)}}
$$

with $p=(\log (n)) / n$. It can be verffied that with thls choice, $T=O(\log (n))$.

For other densitles, one can use slmilar arguments. For the gamma (a) density for example, we have $G(x) \sim f(x)$ as $x \rightarrow \infty$, and $f(x) \leq G(x) \leq f(x) /(1-(a / x))$ for $a>1, x>a-1$. This helps in the construction of a useful value for t.

The computation of $G(t)$ is relatively stralghtforward for most distributlons. For the normal density, see the serles of papers published after the book of Kendall and Stuart (1977) (Cooper (1968), HIII (1968), HItchin (1973)), the paper by Adams (1968), and an improved version of Adams's method, called algorithm AS66 (Hill (1973)): For the gamma density, algortthm AS32 (Bhattacharjee (1970)) is recommended: it is based upon a continued fraction expansion given in Abramowltz and Stegun (1865).

1.3. The record time method.

In some process slmulations one needs a sequence ($Z_{n_{1}}, \ldots, Z_{n_{k}}$) of maxima that correspond to one reallzation of the experiment, where $n_{1}<n_{2}<\cdots<n_{k}$. In other words, for all i, we have $Z_{i}=\max \left(X_{1}, \ldots, X_{i}\right)$ where the X_{i} 's are IId random varlables with common denslty f. The inversion method requires k inversions, and can be implemented as follows:

Inversion method

$n_{0} \leftarrow 0, Z \leftarrow-\infty$
FOR $i:=1$ TO k DO
Generate Z, the maximum of $n_{i}-n_{i-1}$ iid random variables with common density f.

$$
Z_{n_{i}} \leftarrow \max \left(Z_{n_{i-1}}, Z\right)
$$

The record time method introduced in thls section requires on the average about $\log \left(n_{k}\right)$ exponential random varlates and evaluations of the distribution function. In addition, we need to report the k values $Z_{n_{i}}$. When $\log \left(n_{k}\right)$ is small compared to k, the record time method can be competitive. It exploits the fact that in a sequence of n ild random varlables with common density f, there are about $\log (n)$ records, where we call the n-th observation a record if it is the largest observation seen thus far. If the n-th observation is a record, then the Index n Itself is called a record time. It is noteworthy that given the value V_{i} of the i-th record, and given the record time T_{i} of the i-th record, $T_{i+1}-T_{i}$ and V_{i+1} are independent: $T_{i+1}-T_{i}$ is geometrically distrlbuted with parameter $G\left(V_{i}\right)$:

$$
P\left(T_{i+1}-T_{i}=j \mid T_{i}, V_{i}\right)=G\left(V_{i}\right)\left(1-G\left(V_{i}\right)\right)^{j-1 .} \quad(j \geq 1) .
$$

Also, V_{i+1} has conditional density $f / G\left(V_{i}\right)$ restricted to $\left[V_{i}, \infty\right)$. An infinite sequence of records and record times $\left\{\left(V_{i}, T_{i}\right), i \geq 1\right\}$ can be generated as follows:

The record time method (Devroye, 1980)
$T_{1} \leftarrow 1, i \leftarrow 1$
Generate a random variate V_{1} with density f.
$p \leftarrow G\left(V_{1}\right)$
WHILE True DO
$i \leftarrow i+1$
Generate an exponential random variate E.
$T_{i} \leftarrow T_{i-1}+\lceil-E / \log (1-p)\rceil$
Generate V_{i} from the tail density $\frac{f(x)}{1-p} I_{i_{2} \geq V_{i-1}}$.
$p \leftarrow G\left(V_{i}\right)$

It is a stralghtforward exercise to report the $Z_{n_{i}}$ values glven the sequence of records and record times. We should extt from the loop when $T_{i} \geq n_{k}$. The expected number of loops before halting is thus equal to the expected number of records in a sequence of length n_{k}, i.e. It is

$$
\sum_{i=1}^{n_{k}} \frac{1}{i}=\log \left(n_{k}\right)+\gamma+o(1)
$$

where $\gamma=0.5772 \ldots$ Is Euler's constant. We note that the most time consuming operation in every Iteration is the evaluation of G. If the inverse of G is avallable, the llnes

Generate V_{i} from the tail density $\frac{f(x)}{1-p} I_{[x} \geq V_{i-1}$.
$p \leftarrow G\left(V_{i}\right)$
can be replaced by

Generate a uniform $[0,1]$ random variate U.
$p \leftarrow p U$
$V_{i} \leftarrow G^{-1}(p)$

A flnal remark is in order here. If we assume that G can be computed in one unlt of time for all distributions, then the (random) time taken by the algorithm is an invarlant, because the distribution of record times is distribution-free.

1.4. Exercises.

1. Tail of the normal density. Let f be the normal density, let $t>0$ and define $p=G(t)$ where $G=1-F$ and F is the normal distribution function. Prove the following statements:
A. Gordon's inequality. (Gordon (1941), Mitrinovic (1970)).

$$
\frac{t}{t^{2}+1} f(t) \leq p \leq \frac{1}{t} f(t)
$$

B. As $t \rightarrow \infty, G(t) \sim f(t) / t$.
C. If $t=\sqrt{2 \log (n / \log (n))}$, then for the qulck ellmination algorithm, $T=\Omega\left(n^{1-\epsilon}\right)$ for every $\epsilon>0$ as $n \rightarrow \infty$.
D. If $t=s-\frac{1}{2 s}\left(\log (4 \pi)+\log \left(\log \left(\frac{n}{\log }(n)\right)\right)\right)$, where s is as \ln polnt C, then for the quick ellmination algorithm, $T=O(\log (n))$. Does $T \sim(b+c) \log (n)$ if b, c are the constants in the defintion of T (see Lemma 1.1)?
2. Let T_{1}, T_{2}, \ldots be the record times \ln a sequence of $11 d$ unlform $[0,1]$ random varlables. Prove that $E\left(T_{2}\right)=\infty$. Show furthermore that $\log \left(T_{n}\right) \sim n$ in probabllity as $n \rightarrow \infty$.

2. RANDOM VARIATES WITH GIVEN MOMENTS

2.1. The moment problem.

The classlcal moment problem can be formulated as follows. Let $\left\{\mu_{i} ; 1 \leq i\right\}$ be a collection of moments. Determine whether there is at least one distribution which glves rise to these moments; if so, construct such a distribution and determine whether it is unique. Solld detalled treatments of this problem can be found In Shohat and Tamarkin (1943) and Widder (1941). The maln result is the following.

Theorem 2.1.

If there exists a distribution with moments $\mu_{i}, 1 \leq i$, then

$$
\left|\begin{array}{ccccc}
1 & \mu_{1} & \cdots & \mu_{s} \\
\mu_{1} & \mu_{2} & & \mu_{s+1} \\
\cdot & & & & \cdot \\
\cdot & & & \cdot \\
\mu_{s} & \cdots & \cdots & \mu_{2 s}
\end{array}\right| \geq 0
$$

for all integers s with $s \geq 1$. The inequallties hold strictly if the distribution is nonatomic. Conversely, if the matrix inequallty holds strictly for all integers s with $s \geq 1$, then there exists a nonatomic distribution matching the given moments.

Proof of Theorem 2.1.

We will only outline why the matrix Inequallty is necessary. Considering the fact that

$$
E\left(\left(c_{0}+c_{1} X+\cdots+c_{s} X^{s}\right)^{2}\right) \geq 0
$$

for all values of c_{0}, \ldots, c_{s}, we have by a standard result from linear algebra (Mirsky (1955, p. 400)) that

$$
\left|\begin{array}{ccccc}
1 & \mu_{1} & \cdots & \mu_{s} \\
\mu_{1} & \mu_{2} & & \mu_{s+1} \\
\cdot & & & \ddots \\
\cdot & & & & \cdot \\
\mu_{s} & \cdots & \cdots & \mu_{2 s}
\end{array}\right| \geq 0 . \square
$$

Theorem 2.2.
If there exlsts a distribution on $[0, \infty)$ with moments $\mu_{i}, 1 \leq i$, then

for all Integers $s \geq 0$. The Inequallties hold strictly if the distribution is nonatomic. Conversely, if the matrix Inequality holds strictly for all integers $s \geq 0$, then there exists a nonatomic distribution matching the given moments.

The determinants in Theorems 2.1, 2.2 are called Hankel determinants. What happens when one or more of them are zero is more compllcated (see e.g. Widder (1941)). The problem of the uniqueness of a distribution is covered by Theorem 2.3.

Theorem 2.3.

Let μ_{1}, μ_{2}, \ldots be the moment sequence of at least one distribution. Then this distribution is unique if Carleman's condition holds, 1.e.

$$
\sum_{i=0}^{\infty}\left|\mu_{2 i}\right|^{-\frac{1}{2 i}}=\infty
$$

If we have a distrlbution on the positlve halfilne, then a sufficlent condition for uniqueness is

$$
\sum_{i=0}^{\infty}\left(\mu_{i}\right)^{-\frac{1}{2 i}}=\infty
$$

When the distribution has a density f, then a necessary and sufficient condition for unlqueness is

$$
\int_{-\infty}^{\infty} \frac{\log (f(x))}{1+x^{2}} d x=-\infty
$$

(Kreln's condition).

For example, normal distributions or distributions on compact sets satisfy Carleman's condition and are thus uniquely determined by their moment sequence. In exerclses 2.2 and 2.3, examples are developed of distributions having identical infinite moment sequences, but widely varying densitles. In exercise 2.2 , a unimodal discrete distribution is given which has the same moments as the lognormal distribution.

The problem that we refer to as the moment problem is that of the generatlon of a random varlate with a given collection of moments $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, where n can be ∞. Note that if we expand the characteristic function ϕ of a random varlable in its Taylor serles about 0 , then

$$
\phi(t)=\phi(0)+\frac{t}{1!} \phi^{(1)}(0)+\cdots+\frac{t^{k-1}}{(k-1)!} \phi^{(k-1)}(0)+R_{k}
$$

where the remainder term satisfles

$$
\left|R_{k}\right| \leq \mu_{k} \frac{|t|^{k}}{k!}
$$

This uses the fact that if $\left|\mu_{k}\right|<\infty$, the k-th derivative of ϕ exists, and is a continuous function given by $E\left((i X)^{k} e^{i t X}\right)$. In particular, the k-th derivative is In absolute value not greater than $E\left(|X|^{k}\right)$. See for example Feller (1971, pp. 512-514). The remalnder term R_{k} tends to 0 in a neighborhood of the origin when

$$
\operatorname{llm} \sup \frac{\left|\mu_{k}\right|^{1 / k}}{k}<\infty
$$

Thus, the Taylor serles converges in those cases. It follows that ϕ is analytic in a nelghborhood of the origin, and hence completely determined by its power serles about the orlgin. The condltion given above is thus sufficlent for the moment sequence to uniquely determine the distribution. One can verify that the condition is weaker, but not much weaker, than Carleman's condition. The polnt of all this is that if we are given an infinite moment sequence which unlquely determines the distribution, we are in fact glven the characterlstic function in a spectal form. The problem of the generation of a random varlate with a given characterlstlc functlon will be dealt with in section 3 . Here we will malnly be concerned with the finite moment case. This is by far the most Important case in practice, because researchers usually worry about matching the first few moments, and because the majorlty of distributions have only a finlte number of finlte moments. Unfortunately, there are typically an Infinite number of distributions sharing the same flrst n moments. These include discrete distributions and distributlons with densitles. If some additlonal constraints are satisfied by the moments, it may be possible to plck a distribution from relatively small classes of distributions. These Include:
A. The class of all unimodal densities, 1.e. unlform scale mixtures.
B. The class of normal scale mixtures.
C. Pearson's system of densittes.
D. Johnson's system of densittes.
E. The class of all histograms.
F. The class of all distributions of random varlables of the form $a+b N+c N^{2}+d N^{3}$ where N is normally distributed.
The list is incomplete, but representative of the attempts made in practice by some statistlclans. For example, in cases C,D and F, we can match the flrst four moments with those of exactly one member in the class except in case F, where some combinations of the first four moments have no match in the class. The fact that a match always occurs in the Pearson system has contributed a lot to the early popularlty of the system. For a description and detalls of the Pearson system, see exerclse IX.7.4. Johnson's system (exerclse IX.7.12) is better for quantlle matching than moment matching. We also refer the reader to the Burr famlly (section IX.7.4) and other familles given in section IX.7.5. These familles of distributions are usually designed for matching up to four moments. This of course is their main limitation. What is needed is a general algorlthm that can be used for arbltrary $n>4$. In this respect, it may first be worthwhile to verlfy whether there exlsts a unlform or normal scale mixture having the given set of moments. If thls is the case, then one could proceed with the construction of one such distribution. If this attempt falls, it may be necessary to construct a matching histogram or discrete distribution (note that discrete distrlbutions are llmits of histograms). Good references about the moment problem Include Widder (1941), Shohat and Tamarkin (1843), Godwin (1984), von Mises (1984), Hill (1889) and Springer (1979).

2.2. Discrete distributions.

Assume that we want to match the first $2 n-1$ moments with those of a discrete distribution having n atoms located at x_{1}, \ldots, x_{n}, with respective welghts p_{1}, \ldots, p_{n}. We know that we should have

$$
\sum_{i=1}^{n} p_{i}\left(x_{i}\right)^{j}=\mu_{j} \quad(0 \leq j \leq 2 n-1)
$$

This is a system of $2 n$ equalities with $2 n$ unknowns. It has prectsely one solution If at least one distribution exists with the given moments (von Mises, 1964). In particular, if the locations x_{i} are known, then the p_{i} 's can be determined from the first n linear equations. The locations can first be obtalned as the n roots of the equation

$$
x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}=0
$$

where the c_{i} 's are the solutions of

$$
\left|\begin{array}{ccc}
\mu_{0} & \cdot & \mu_{n-1} \\
\mu_{1} & \cdot & \mu_{n} \\
\cdot & & \cdot \\
\mu_{n-1} & \cdot & \mu_{2 n-2}
\end{array}\right|\left|\begin{array}{c}
c_{0} \\
c_{1} \\
\cdot \\
c_{n-1}
\end{array}\right|=-\left|\begin{array}{c}
\mu_{n} \\
\mu_{n+1} \\
\cdot \\
\mu_{2 n-1}
\end{array}\right|
$$

To do thls could take some valuable time, but at least we have a minimal solutlon, in the sense that the distribution is as concentrated as possible in as few atoms as posslble. One could argue that this ylelds some savings in space, but n is rarely large enough to make thls the deciding factor. On the other hand, it is impossible to start with $2 n$ locatlons of atoms and solve the $2 n$ equations for the welghts p_{i}, because there is no guarantee that all p_{i} 's are nonnegative.

If an even number of moments Is given, say $2 n$, then we have $2 n+1$ equatlons. If we consider $n+1$ atom locations with $n+1$ welghts, then there is an excess of one varlable. We can thus choose one item, such as the location of one atom. Call thls location a. Shohat and Tamarkin (1843) (see also Royden, 1953) have shown that if there exists at least one distribution with the glven moments, then there exists at least one distribution with at most $n+1$ atoms, one of them located at a, sharing the same moments. The locations x_{0}, \ldots, x_{n} of the atoms are the zeros of

$$
\left|\begin{array}{ccccc}
1 & 1 & \mu_{0} & \cdot & \mu_{n-1} \\
x & a & \mu_{1} & \cdot & \mu_{n} \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
x^{n+1} & a^{n+1} & \mu_{n+1} & \cdot & \mu_{2 n}
\end{array}\right|=0 .
$$

The welghts $p_{0}, p_{1}, \ldots, p_{n}$ are linear comblnations of the moments:

$$
p_{i}=\sum_{j=0}^{n} c_{j i} \mu_{j}
$$

The coefficlents $c_{j i}$ in turn are deffned by the identity

$$
\sum_{j=0}^{n} c_{j i} x^{j} \equiv \prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}} \quad(0 \leq i \leq n)
$$

When the distribution puts all its mass on the nonnegative real line, a slight modification is necessary (Royden, 1953). Closely related to dlscrete distributions are the histograms: these can be considered as special cases of distributions with densitles

$$
f(x)=\sum_{i=1}^{n} \frac{p_{i}}{h_{i}} K\left(\frac{x-x_{i}}{h_{i}}\right),
$$

where K is a flxed form density (such as the unlform $[-1,1]$ density in the case of a histogram), x_{i} is the center of the i-th component, p_{i} is the welght of the i-th component, and h_{i} is the "wldth" of the i-th component. Densitles of this form are well-known in the nonparametric density estimation literature: they are the kernel estlmates. Archer (1980) proposes to solve the moment equations numerically for the unknown parameters in the histogram. We should polnt out that the density f shown above is the density of $x_{Z}+h_{Z} Y$ where Y has density K, and Z has probabillty vector p_{1}, \ldots, p_{n} on $\{1, \ldots, n\}$. This greatly facllltates the computations and the visualization process.

2.3. Unimodal densities and scale mixtures.

A random variable X has a unimodal distribution if and only if there exists a random variable Y such that X is distributed as $Y U$ where U is a unform [0,1] random varlable independent of Y (Khinchine's theorem). If U is not unlform and Y is arbitrary then the distribution of X is called a scale mixture for U. Of particular Importance are the normal scale mixtures, which correspond to the case when U is normally distributed. For us it helps to be able to verify whether for a given collection of n moments, there exists a unimodal distribution or a scale mlxture which matches these moments. Usually, we have a particular scale mlxture in mind. Assume for example that U has moments ν_{1}, ν_{2}, \ldots. Then, because $E\left(X^{i}\right)=E\left(Y^{i}\right) E\left(U^{i}\right)$, we see that Y has i-th moment μ_{i} / ν_{i}. Thus, the existence problem is solved if we can find at least one distribution having moments μ_{i} / ν_{i}.

Applying Theorem 2.1, then we observe that a sufflcient condition for the moment sequence μ_{i} to correspond to a U scale mixture is that the determinants

$$
\left|\begin{array}{cccc}
1 & \mu_{1} / \nu_{1} & \cdots & \mu_{s} / \nu_{s} \\
\mu_{1} / \nu_{1} & \mu_{2} / \nu_{2} & & \mu_{s+1} / \nu_{s+1} \\
\cdot & & & \\
\cdot & & & \cdot \\
\mu_{s} / \nu_{s} & \cdot & \cdots & \mu_{2 s} / \nu_{2 s}
\end{array}\right| \geq 0
$$

are all positive for $2 s<n, n$ odd. This was first observed by Johnson and Rogers (1951). For uniform mixtures, i.e. unimodal distributions, we should replace ν_{i} by $1 /(i+1)$ in the determinants. Having establlshed the existence of a scale mixture with the glven moments, it is then up to us to determine at least one Y with moment sequence μ_{i} / ν_{i}. This can be done by the methods of the prevlous sectlon.

By insisting that a particular scale mixture be matched, we are narrowing down the possibilties. By this is meant that fewer moment sequences lead to solutions. The advantage is that if a solution exists, it is typically "nicer" than in the discrete case. For example, if Y is discrete with no atom at 0 , and U is uniform, then X has a unimodal stalrcase-shaped density with mode at the origin and breakpoints at the atoms of Y. If U is normal, then X is a superposition of a few normal densitles centered at 0 with different varlances. Let us Illustrate brlefly how restrictive some scale mixtures are. We will take as example the case of four moments, with normalized mean and varlance, $\mu_{1}=0, \mu_{2}=1$. Then, the conditions of Theorem 2.1 Imply that we must always have

$$
\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & \mu_{3} \\
1 & \mu_{3} & \mu_{4}
\end{array}\right| \geq 0
$$

Thus, $\mu_{4} \geq\left(\mu_{3}\right)^{2}+1$. It turns out that for all μ_{3}, μ_{4} satisfying the inequality, we can find at least one distribution with these moments. Incidentally, equally occurs for the Bernoulli distribution. When the Inequality is strict, a density exists. Consider next the case of a unimodal distribution with zero mean and unit varlance. The existence of at least one distribution with the given moments is guaranteed if

$$
\left|\begin{array}{ccc}
1 & 0 & 3 \\
0 & 3 & 4 \mu_{3} \\
3 & 4 \mu_{3} & 5 \mu_{4}
\end{array}\right| \geq 0,
$$

In other words, $\mu_{4} \geq \frac{9}{5}+\frac{18}{15}\left(\mu_{3}\right)^{2}$. It is eqasy to check that in the $\left(\mu_{3}, \mu_{4}\right)$ plane, a smaller area gets selected by thls condltion. It is precisely the (μ_{3}, μ_{4}) plane which can help us in the fast construction of moment matching distributlons. This is done in the next section.

2.4. Convex combinations.

If Y and Z are random varlables with moment sequences μ_{i} and ν_{i} respectively, then the random varlable X which equals Y with probablltty p and Z with probabllity $1-p$ has moment sequence $p \mu_{i}+(1-p) \nu_{i}$, in other words, it is the convex combination of the original moment sequences. Assume that we want to match four normallzed moments. Recall that the allowable area in the (μ_{3}, μ_{4}) plane is the area above the parabola $\mu_{4} \geq\left(\mu_{3}\right)^{2}+1$. Every point (μ_{3}, μ_{4}) In this area lles on a horizontal line at helght μ_{4} which intersects the parabola at the points $\left(-\sqrt{\mu_{4}-1}, \mu_{4}\right),\left(\sqrt{\mu_{4}-1}, \mu_{4}\right)$. In other words, we can match the moments by a simple convex combination of two distributions with third and fourth moments $\left(-\sqrt{\mu_{4}-1}, \mu_{4}\right)$ and ($\sqrt{\mu_{4}-1}, \mu_{4}$) respectively.

The welght in the convex combination is determined quite easlly since we must have, attaching weight p to the distribution with positive third moment,

$$
(p-(1-p)) \sqrt{\mu_{4}-1}=\mu_{3} .
$$

Thus, it suffices to take

$$
p=\frac{1+\frac{\mu_{3}}{\sqrt{\mu_{4}-1}}}{2}
$$

It is also easy to verlfy that for a Bernoulll (q) random varlable, we have normalized fourth moment

$$
\frac{3 q^{2}-3 q+1}{q(1-q)}
$$

and normalized third moment

$$
\frac{1-2 q}{\sqrt{q(1-q)}} .
$$

Notice that this distribution always falls on the limiting parabola. Furthermore, by letting q vary from 0 to 1 , all points on the parabola are obtalned. Given the fourth moment μ_{4}, we can determine q via the equation

$$
q=\frac{1}{2}\left(1 \pm \sqrt{\frac{\mu_{4}-1}{\mu_{4}+3}}\right),
$$

where the plus sign is chosen if $\mu_{3} \geq 0$, and the minus sign is chosen otherwise. Let us call the solution with the plus sign q. The minus sign solution is $1-q$. If B Is a Bernoulli (q) random varlable, then $(B-q) / \sqrt{q(1-q)}$ and $-(B-q) / \sqrt{q(1-q)}$ are the two random variables corresponding to the two intersection polnts on the parabola. Thus, the following algorithm can be used to generate a general random variate with four moments μ_{1}, \ldots, μ_{4} :

Generator matching first four moments

Normalize the moments: $\sigma \leftarrow \sqrt{\mu_{2}-\left(\mu_{1}\right)^{2}}$,
$\left(\mu_{3}, \mu_{4}\right) \leftarrow\left(\frac{\mu_{3}-3 \mu_{2} \mu_{1}+2\left(\mu_{1}\right)^{3}}{\sigma^{3}}, \frac{\mu_{4}-4 \mu_{3} \mu_{1}+6 \mu_{2}\left(\mu_{1}\right)^{2}-3\left(\mu_{1}\right)^{4}}{\sigma^{4}}\right)$
$q \leftarrow \frac{1}{2}\left(1+\sqrt{\frac{\mu_{4}-1}{\mu_{4}+3}}\right)$
$p \leftarrow \frac{1+\frac{\mu_{3}}{\sqrt{\mu_{4}-1}}}{2}$
Generate a uniform $[0,1]$ random variate U.
IF $U \leq p$
THEN

$$
\begin{aligned}
& X \leftarrow I_{[U \leq p q]}(X \text { is Bernoulli }(q)) \\
& \text { RETURN } X \leftarrow \mu_{1}+\sigma \frac{X-q}{\sqrt{q(1-q)}}
\end{aligned}
$$

ELSE

$$
\begin{aligned}
& X \leftarrow I_{|U \leq p+(1-p) q|}(X \text { is Bernoulli }(q)) \\
& \text { RETURN } X \leftarrow \mu_{1}-\sigma \frac{X-q}{\sqrt{q(1-q)}}
\end{aligned}
$$

The algorithm shown above can be shortened by a variety of tricks. As it stands, one unlform random varlate is needed per returned random varlate. The polnt of this example is that it is very slmple to generate random varlates that match four moments if one is not picky. Indeed, few users will be pleased with the convex combination of two Bernoulll distributions used in the example. But interestingly, the example can also be used in the construction of the distrlbution of Y in scale mixtures of the form $Y U$ discussed in the previous section. In that respect, the algorlthm becomes more useful, because the returned distrlbutions are "nlcer". The algorithm for unlmodal distributions with mode at 0 is glven below.

Simple unimodal distribution generator matching four moments

Readjustment of moments: $\mu_{1} \leftarrow 2 \mu_{1}, \mu_{2} \leftarrow 3 \mu_{2}, \mu_{3} \leftarrow 4 \mu_{3}, \mu_{4} \leftarrow 5 \mu_{5}$.
Generate a random variate Y having the readjusted moments (e.g. by the algorithm given above).
Generate a uniform $[0,1]$ random variate U.
RETURN $X \leftarrow Y U$.

The algorlthms for other scale mlxtures are simllar.
One final remark about moment matching is in order here. Even with a unlmodallty constraint, there are many distributions with widely varying densitles but identical moments up to the n-th moment. One should therefore always ask the question whether it is a good thing at all to blindly go ahead and generate random varlates with a certain collection of moments. Let us make this point wlth two examples.

Example 2.1.(Godwin, 1964)

The following two densitles have Identical lnfinlte moment sequences:

$$
\begin{aligned}
& f(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}} \quad(x \in R) \\
& g(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}}(1+\cos (\sqrt{|x|}) \quad(x \in R)
\end{aligned}
$$

(Kendall and Stuart (1977), see exercise 2.3). Thus, noting that

$$
\int_{A} f=0.4856 \ldots ; \int_{A} g=0.7328 \ldots
$$

where $A=\left[-\pi^{2} / 4, \pi^{2} / 4\right]$, we observe that

$$
\int|f-g| \geq 0.5344 \ldots
$$

Consldering that the L_{1} distance between two densitles is at most 2, the distance $0.5344 \ldots$ is phenomenally large.

Example 2.2.

The prevlous example involves a unimodal and an osclllating density. But even if we enforce unlmodality on our counterexamples, not much changes. See for example Lelpnik's example described in exercise 2.2. Another way of illustrating this is as follows: for any symmetric unimodal denslty f with moments μ_{2}, μ_{4}, It is true that

$$
\sup _{g} \int|f-g| \geq \omega^{2}(1-\omega)
$$

where the supremum is taken over all symmetric unimodal g with the same second and fourth moments, and $\omega=\sqrt{\left(3 \mu_{2}\right)^{2} /\left(5 \mu_{4}\right)}$. It should be noted that $0 \leq \omega \leq 1 \ln$ all cases (thls follows from the nonnegativity of the Hankel determinants applled to unimodal distributions). When f is normal, $\omega=\sqrt{3 / 5}$ and the lower bound is $\frac{3}{5}\left(1-\sqrt{\frac{3}{5}}\right)$, which is still quite large. For some comblnations of moments, the lower bound can be as large as $\frac{4}{27}$. There are two differences with Example 2.1: we are only matching the first four moments, not all moments, and the counterexample applles to any symmetric unimodal f, not Just one denslty plcked beforehand for convenlence. Example 2.2 thus relnforces the bellef that the moments contain surprisingly little information about the distribution. To prove the Inequality of this example, we will argue as follows: let f, g, h be three densities in the given class of densities. Clearly,

$$
\begin{aligned}
& \max \left(\int|f-h|, \int|f-g|\right) \geq \frac{1}{2}\left(\int|f-h|+\int|f-g|\right) \\
& \geq \frac{1}{2} \int|h-g| .
\end{aligned}
$$

Thus it suffces to prove twice the lower bound for $\int|h-g|$ for two particular densities h, g : Consider densittes of random varlables $Y U$ where U is unfformly distributed on $[0,1]$ and Y is independent of U and has a symmetric discrete distrlbution with atoms at $\pm b, \pm c$, where $0<b<c<\infty$. The atom at c has weight $p / 2$, and the atom at b has welght $(1-p) / 2$. For h and g we will consider different cholces of b, c, p. First, any cholce must be conslstent with the moment restrictions:

$$
\begin{aligned}
& (1-p) b^{2}+p c^{2}=3 \mu_{2}, \\
& (1-p) b^{4}+p c^{4}=5 \mu_{4} .
\end{aligned}
$$

Solving for p glves

$$
1-p=\frac{5 \mu_{4}-3 \mu_{2} c^{2}}{b^{4}-b^{2} c^{2}}
$$

Forclng $p \in[0,1]$ gives us the constralnts $0 \leq 3 \mu_{2} c^{2}-5 \mu_{4} \leq b^{2}\left(c^{2}-b^{2}\right)$. It is to our advantage to take the extreme values for c. In particular, for g we will take $c=\sqrt{\left(5 \mu_{4}\right) /\left(3 \mu_{2}\right)}, b=0, p=\omega^{2}$. It should be noted that this not yleld a densty g since there will be an atom at the origin. Thus, we use an approximating
argument with a sequence g_{n} approaching g in the sense that the atom at 0 is approached by an atom at $\epsilon_{n} \rightarrow 0$. Next, for h, we take the limit of the sequence h_{n} where as $n \rightarrow \infty, b \rightarrow \sqrt{3 \mu_{2}}, p \rightarrow 0$, and $c \rightarrow \infty$. This is the case in which the rightmost atom escapes to inflnity but has increasingly negliglble welght p. Since $p \rightarrow 0$, the contribution of the rightmost atom to the L_{1} distance is also o (1). Thus, h can be consldered as having one atom at $\sqrt{3 \mu_{2}}$ of welght $1 / 2$. We obtain by simple geometrical considerations,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int\left|g_{n}-h_{n}\right|=4\left(\sqrt{\left(5 \mu_{4}\right) /\left(3 \mu_{2}\right)}-\sqrt{3 \mu_{2}}\right)\left(\frac{1}{2} \omega^{2} \frac{1}{\sqrt{\left(5 \mu_{4}\right) /\left(3 \mu_{2}\right)}}\right) \\
& =2 \omega^{2}(1-\omega)
\end{aligned}
$$

Since the sequences h_{n}, g_{n} are entlrely in our class, we see that the lower bound for $\sup _{g} \int|f-g|$ is at least $\omega^{2}(1-\omega)$.

2.5. Exercises.

1. Show that for the normal density, the $2 i$-th moment is

$$
\mu_{2 i}=(2 i-1)(2 i-3) \cdots(3)(1) \quad(i \geq 2)
$$

Show furthermore that Carleman's condition holds.
2. The lognormal density. In this exerclse, we consider the lognormal density

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma x} e^{-\frac{(\log (x))^{2}}{2 \sigma^{2}}} \quad(x>0)
$$

Show first that this density falls both Carleman's condition and Krein's condition. Hint: show flrst that the r-th moment is $\mu_{r}=e^{\sigma^{2} r^{2} / 2}$. Thus, there exist other distributions with the same moments. We will construct a family of such distributions, referred to hereafter as Heyde's family (Heyde (1983), Feller (1971, p. 227)): let $-1 \leq a \leq 1$ be a parameter, and deflne the density

$$
f_{a}(x)=f(x)(1+a \sin (2 \pi \log (x))) \quad(x>0)
$$

To show that f_{a} is a density, and that all the moments are equal to the moments of $f_{0}=f$, it sufflees to show that

$$
\int_{0}^{\infty} x^{k} f(x) \sin (2 \pi \log (x)) d x=0
$$

for all integer $k \geq 0$. Show this. Show also the following result due to Lelpnik (1981): there exists a family of discrete unimodal random variables X having the same moments as a lognormal random varlable. It suffices to let X take the value $a e^{\sigma i}$ with probabllity $c a^{-i} e^{-\sigma^{2} i^{2} / 2}$ for $i=0, \pm 1, \pm 2, \ldots$, where $a>0$ is a parameter, and c is a normallzation constant.
3. The Kendall-Stuart density. Kendall and Stuart (1977) Introduced the density

$$
f(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}} \quad(x \in R)
$$

Following Kendall and Stuart, show that for all real a with $|a| \leq 1$,

$$
f_{a}(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}}(1+a \cos (\sqrt{|x|}) \quad(x \in R)
$$

are densities with moments equal to those of f.
4. Yet another famlly of densitles sharing the same moment sequence is given by

$$
f_{a}(x)=e^{-x^{\frac{1}{4}} \frac{\left(1-a \sin \left(x^{\frac{1}{4}}\right)\right)}{24} \quad(x>0), ~ . ~}
$$

where $a \in[0,1)$ is a parameter. Show that f_{0} violates Kreln's condition and that all moments are equal to those of $f 0$. This example is due to Stieltjes (see e.g. Wldder (1941, pp. 125-126)).
5. Let $p \in\left(0, \frac{1}{2}\right)$ be a parameter, and let $c=(p \cos (p \pi))^{1 / p} / \Gamma(1 / p)$ be a constant. Show that the following two densitles on $(0, \infty)$ have the same moments:

$$
\begin{aligned}
& f(x)=c e^{-x^{p} \cos (p \pi)} \\
& g(x)=f(x)\left(1+\sin \left(x^{p} \sin (p \pi)\right)\right)
\end{aligned}
$$

(Lukacs (1870, p. 20)).
6. Fleishman's family of distributions. Consider all random variables of the form $a+b N+c N^{2}+d N^{3}$ where N is a normal random variable, and a, b, c, d are constants. Many distributlons are known to be approximately normal, and can probably be modeled by distributions of random varlables of the form given above. This family of distributions, studied by Fleishman (1978), has the advantage that random varlate generation is easy once the constants are determined. To compute the constants, the first four moments can be matched with fixed values $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$. For the sake of slmplicity, let us normalize as follows: $\mu_{1}=0, \mu_{2}=1$. Show that b, d can be found by solvIng

$$
\begin{aligned}
& 1=b^{2}+8 b d+15 d^{2}+2 c^{2} \\
& \mu_{4}-3=24\left(b d+c^{2}\left(1+b^{2}+28 b d\right)+d^{2}\left(12+48 b d+141 c^{2}+255 d^{2}\right)\right)
\end{aligned}
$$

where

$$
c=\frac{\mu_{3}}{2\left(b^{2}+24 b d+105 d^{2}+2\right)} .
$$

Furthermore, $a=-c$. Show that not all combinations of normallzed moments of distributlons (i.e. all palrs (μ_{3}, μ_{4}) with $\mu_{4} \geq\left(\mu_{3}\right)^{2}+1$) lead to a solution. Determine the region in the (μ_{3}, μ_{4}) plane of allowable pairs. Finally, prove that there exist comblnations of constants for which the density is not unimodal, and determine the form of the distribution in these cases.
7. Assume that we wish to match the first slx moments of a symmetrlc distribution (all odd moments are zero). We normallze by forclng μ_{2} to be 1 . Show flrst that the allowable region in the (μ_{4}, μ_{6}) plane is deflned by the Inequallthes $\mu_{4} \geq 1, \mu_{6} \geq\left(\mu_{4}\right)^{2}$. Find simple familles of distributions which cover the borders of thls region. Rewrite each point in the plane as the convex comblnation of two of these simple distrlbutions, and give the corresponding generator, l.e. the generator for the distribution that corresponds to thls point.
8. Let the a-th and b-th absolute moments of a unimodal symmetric distribution with a density be given. Find a useful lower bound for

$$
\operatorname{lnf}_{f} \sup _{g} \int|f-g|
$$

where the infimum and supremum is over all symmetric unimodal densitles having the given absolute moments. The lower bound should coinclde with that of Example 2.2 In the case $a=2, b=4$.

3. CHARACTERISTIC FUNCTIONS.

3.1. Problem statement.

In many applications, a distribution is best described by its characteristic function ϕ. Sometimes, it is outright difficult to invert the characteristic function to obtaln a value for the density or distrlbution function. One mlght ask whether In those cases, it is still possible to generate a random variate X with the given distribution. An example of such a distribution is the stable distribution. In particular, the symmetric stable distribution with parameter $\alpha \in(0,2]$ has the simple characteristic function $e^{-|t|^{\alpha}}$. Yet, except for $\alpha \in\left\{\frac{1}{2}, 1,2\right\}$, no conventent analytic expression is known for the corresponding density f; the density is best computed with the help of a convergent serles or a divergent asymptotic expansion (section IX.8.3). For random varlate generation in this slmple case, we refer to section IX.B. For $\alpha \in(0,1]$ the characteristic function can be written as a mixture of trlangular characteristic functions. This property is shared by all real (thus, symmetric) convex characteristic functions, also called Polya characteristic
functions. The mlxture property can be used to obtain generators (Devroye, 1984; see also section IV.6.7). In a black box method one only assumes that ϕ belongs to a certain class of characterlstic functions, and that $\phi(t)$ can be computed in finlte time for every t. Thus, making use of the mixture property of Polya characteristic functions cannot lead to a black box method because ϕ has to be glven expllcitly in analytlc form.

Under certaln regularlty conditions, upper bounds for the density can be obtalned in terms of quantlies (functlonals, suprema, and so forth) deflned in terms of the characteristic function (Devroye, 1981). These upper bounds can in turn be used in a rejection algorithm. This simple approach is developed in section 3.2. Unfortunately, one now needs to compute f in every lteration of the rejection algorithm. This requires once again an inversion of ϕ, and may not be feasible. One should note however that this can be avoided if we are able to use the serles method based upon a convergent serles for f. This serles could be based upon the inversion formula.

A genuine black box method for a large subclass of Polya characteristic functions was developed in Devroye (1985). Another black box method based upon the serles method will be studled in section 3.3.

3.2. The rejection method for characteristic functions.

General rejection algorlthms can be based upon the following inequallty:

Theorem 3.1.

Assume that a given distribution has two finite moments, and that the characteristic function ϕ has two absolutely integrable. Then the distribution has a density f bounded as follows:

$$
f(x) \leq\left\{\begin{array}{c}
\frac{1}{2 \pi} \int|\phi| \\
\frac{1}{2 \pi x^{2}} \int\left|\phi^{\prime \prime}\right|
\end{array}\right.
$$

The area under the minimum of the two bounding curves is $\frac{2}{\pi} \sqrt{\int|\phi| \int\left|\phi^{\prime \prime}\right|}$.

Proof of Theorem 3.1.

Since ϕ is absolutely integrable, f can be computed as follows from ϕ :

$$
f(x)=\frac{1}{2 \pi} \int \phi(t) e^{-i t x} \cdot d t
$$

Furthermore, because the first absolute moment is finite, ϕ^{\prime} exists and

$$
f(x)=\frac{1}{2 \pi i x} \int \phi^{\prime}(t) e^{-i t x} d t
$$

Because the second moment is finite, $\phi^{\prime \prime}$ exists and

$$
f(x)=-\frac{1}{2 \pi x^{2}} \int \phi^{\prime \prime}(t) e^{-i t x} d t
$$

(Loeve, 1983, p. 199). From thls, all the Inequallties follow trivially.

The integrabillty condition on ϕ implles that f is bounded and continuous. The integrability condition on $\phi^{\prime \prime}$ translates into a strong tall condition: the tall of f can be tucked under a quickly decreasing curve. This explains why f can globally be tucked under a bounded integrable curve. Based upon Theorem 3.1, we can now formulate a first general rejection algorithm for characteristlc functions satisfying the conditions of the Theorem.

General rejection algorithm for characteristic functions

[SET-UP]
$a \leftarrow \frac{1}{2 \pi} \int|\phi|, b \leftarrow \frac{1}{2 \pi} \int\left|\phi^{\prime \prime}\right|$
[GENERATOR]

REPEAT

Generate two ild uniform $[-1,1]$ random variates U, V.
IF $U<0$

> THEN $X \leftarrow \sqrt{\frac{b}{a}} V, T \leftarrow|U| a$
> ELSE $X \leftarrow \sqrt{\frac{b}{a}} \frac{1}{V}, T \leftarrow \frac{\perp U \mid b}{X^{2}}$
(Note that this is $|U| a V^{2}$.)
UNTIL $T \leq f(X)$
RETURN X

Varlous slmplifications are possible in this rudimentary algorithm. What matters is that f is still required in the acceptance step.

Remark 3.1.

The expected number of iterations is $\frac{2}{\pi} \sqrt{\int|\phi| \int\left|\phi^{\prime \prime}\right|}$. This is a scale Invarlant quantity: Indeed, let X have characteristic function ϕ. Then, under the conditions of Theorem 3.1, $\phi(t)=E\left(e^{i t X}\right), \phi^{\prime \prime}(t)=E\left(-X^{2} e^{i t X}\right)$. For the scaled random varlable $a X$, we obtaln respectively $\phi(a t)$ and $a^{2} \phi^{\prime \prime}(a t)$. The product of the integrals of the last two functions does not depend upon a. Unfortunately, the product is not translation invarlant. Noting that $X+c$ has characteristic function $\phi(t) e^{i t c}$, we see that $\int|\phi|$ is translation Invarlant. However,

$$
\int\left|\phi^{\prime \prime}\right|=\int\left|E\left(-(X-c)^{2} e^{i t X}\right)\right|
$$

is not. From the quadratlc form of the integrand, one deduces quickly that the integral is approximately minimal when $c=E(X)$, i.e. when the distribution is centered at the mean. This is a common sense observation, reinforced by the symmetric form of the dominating curve. Let us finally note that in Theorem 3.1 we have Implicitly proved the Inequallty

$$
\int|\phi| \int\left|\phi^{\prime \prime}\right| \geq \frac{\pi^{2}}{4}
$$

which is of independent interest in mathematical statistics.

If the evaluation of f is to be avolded, then we must find at the very least a converging serles for f. Assume first that ϕ is absolutely integrable, symmetric and nonnegative. Then $f(x)$ is sandwiched between consecutive partial sums in the serles

$$
f(0)-\frac{x^{2}}{2!} f^{\prime}(0)+\frac{x^{4}}{4!} f^{\prime \prime}(0)-\cdots
$$

This can be seen as follows: since $\cos (t x)$ is sandwiched between consecutive parthal sums in its Taylor serles expansion, and since

$$
f(x)=\frac{1}{2 \pi} \int \phi(t) \cos (t x) d t
$$

we see that by our assumptions on $\phi, f(x)$ is sandwiched between consecutive partial sums in

$$
\nu_{0}-\frac{x^{2}}{2!} \nu_{2}+\frac{x^{4}}{4!} \nu_{4}-\cdots,
$$

where

$$
\nu_{2 n}=\frac{1}{2 \pi} \int t^{2 n} \phi(t) d t
$$

If $\int t^{2 n} \phi(t) d t$ is finite, then $f{ }^{(2 n)}$ exists, and its value at 0 is equal to It . This gives the desired collection of inequalities. Note thus that for an inequallty involving $f^{(2 n)}$ to be valld, we need to ask that

$$
\int t^{2 n} \phi(t) d t<\infty
$$

Thls moment condition on ϕ is a smoothness condltion on f. For extremely smooth f, all moments can be finlte. Examples include the normal denslty, the Cauchy density and all symmetrlc stable densitles with parameter at least equal to one. Also, all characteristlc functlons with compact support are included, such as the triangular characteristlic function. If furthermore the series $x^{2 n} \nu_{2 n} /(2 n)$! is summable for all $x>0$, we see that f is determined by all its derlvatives at 0 . A sufficient condition is

$$
\nu_{2 n}{ }^{\frac{1}{2 n}}=o(n)
$$

This class of densitles is enormously smooth. In addition, these densitles are unimodal with a unlque mode at 0 (see exerclses). Random varlate generation can thus be based upon the alternating serles method. As dominating curve, we can use any curve avallable to us. If Theorem 3.1 is used, note that $\int|\phi|=\int \phi=f(0)$.

Series method for very smooth densities

[NOTE: This algorithm is valid for densities with a symmetric real nonnegative characteristic function for which the value of f is uniquely determined by the Taylor series expansion of f about 0.]
[SET-UP]
$a \leftarrow \frac{1}{2 \pi} \int|\phi|(=f(0)), b \leftarrow \frac{1}{2 \pi} \int\left|\phi^{\prime \prime}\right|$.
[GENERATOR]
REPEAT
Generate a uniform $[0,1]$ random variate U, and a random variate X with density proportional to $g(x)=\min \left(a, b / x^{2}\right)$.
$T \leftarrow U g(X)$
$S \leftarrow f(0), n \leftarrow 0, Q \leftarrow 1$ (prepare for series method)
WHILE $T \leq S$ DO
$n \leftarrow n+1, Q \leftarrow Q X^{2} /(2 n(2 n-1))$
$S \leftarrow S+Q f^{(n)}(0)$
IF $T \leq S$ THEN RETURN X
$n \leftarrow n+1, Q \leftarrow-Q X^{2} /(2 n(2 n-1)), S \leftarrow S+Q f^{(n)}(0)$
UNTIL False

This algorithm could have been presented in the section on the serles method, or in the section on universal algorithms. It has a place in this section because it shows how one can avold inverting the characterlstic function in a general rejectlon method for characteristic functions.

3.3. A black box method.

When ϕ is absolutely integrable, the value of the density f can be computed by the inversion formula

$$
f(x)=\frac{1}{2 \pi} \int \phi(t) e^{-i t x} d t=\int \psi(t) d t
$$

This integral can be approxlmated in a number of ways, by using well-known techniques from numerical Integration. If such approximations are to be useful, it is essentlal that we have good expllcit estimates of the error. The approximations include the rectangular rule

$$
r_{n}(x)=\frac{b-a}{n} \sum_{j=0}^{n-1} \psi\left(a+(b-a) \frac{j}{n}\right),
$$

where $[a, b]$ is a finite interval. Other popular rules are the trapezoidal rule

$$
t_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n}\left(\frac{1}{2} \psi\left(a+\frac{(j-1)(b-a)}{n}\right)+\frac{1}{2} \psi\left(a+\frac{j(b-a)}{n}\right)\right),
$$

and Simpson's rule

$$
\begin{aligned}
& s_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n}\left(\frac{1}{6} \psi\left(a+\frac{(j-1)(b-a)}{n}\right)\right. \\
& \left.+\frac{4}{6} \psi\left(a+\frac{\left(j-\frac{1}{2}\right)(b-a)}{n}\right)+\frac{1}{6} \psi\left(a+\frac{j(b-a)}{n}\right)\right) .
\end{aligned}
$$

These are the first few rules in an Infinite sequence of rules called the NewtonCotes integration formulas. The simple trapezoldal rule integrates linear functions on [a, b] exactly, and Simpson's rule integrates cubics exactly. The next few rules, llsted for example in Davis and Rabinowitz (1975, p. 83-84), Integrate higher degree polynomlals exactly. For example, Boole's rule is

$$
\begin{aligned}
& b_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n}\left(\frac{7}{90} \psi\left(a+\frac{(j-1)(b-a)}{n}\right)+\frac{32}{90} \psi\left(a+\frac{\left(j-\frac{3}{4}\right)(b-a)}{n}\right)\right. \\
& +\frac{12}{90} \psi\left(a+\frac{\left(j-\frac{1}{2}\right)(b-a)}{n}\right)+\frac{32}{90} \psi\left(a+\frac{\left(j-\frac{1}{4}\right)(b-a)}{n}\right) \\
& \left.+\frac{7}{90} \psi\left(a+\frac{j(b-a)}{n}\right)\right)
\end{aligned}
$$

The error committed by these rules is very important to us. In general ψ is a complex-valued function; and so are the estimates r_{n}, t_{n}, etcetera. A llttle care should be taken when we use only the real parts of these estlmates. The main tools are collected in Theorem 3.2:

Theorem 3.2.

Let $[-a, a]$ be a finite interval on the real llne, let n be an arbitrary integer, and let the density $f(x)$ be approximated by $f_{n}(x)$ where $f_{n}(x)$ is $\operatorname{Re}\left(r_{n}(x)\right)$, $\operatorname{Re}\left(t_{n}(x)\right), \operatorname{Re}\left(s_{n}(x)\right)$, or $\operatorname{Re}\left(b_{n}(x)\right)$. Let X be a random variable with density f and j-th absolute moment μ_{j}. Deflne the absolute difference $E_{n}=\left|f(x)-f_{n}(x)\right|$, and the tall Integral

$$
T_{n}=\frac{1}{2 \pi}\left(\int_{-\infty}^{-a}|\phi|+\int_{a}^{\infty}|\phi|\right) .
$$

Then:
A. If r_{n} is used and $\mu_{1}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{2}}{4 \pi n}\left(|x|+\mu_{1}\right)
$$

B. If t_{n} is used and $\mu_{2}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{3}}{24 \pi n^{2}}\left(|x|+\mu_{2}^{\frac{1}{2}}\right)^{2}
$$

C. If s_{n} is used and $\mu_{4}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{5}}{360 \pi n^{4}}\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4}
$$

D. If b_{n} is used and $\mu_{6}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{7}}{3870720 \pi n^{6}}\left(|x|+\mu_{6}^{\frac{1}{6}}\right)^{6}
$$

Before proving Theorem 3.2, it is helpful to point out the following inequalltles:

Lemma 3.1.
Let ϕ be a characteristic function, and let ψ be deflned by

$$
\psi(t)=\phi(t) e^{-i t x}
$$

Assume that the absolute moments for the distribution corresponding to ϕ are denoted by μ_{j}. Then, if the j-th absolute moment is finite,

$$
\sup _{t}\left|\psi^{(j)}(t)\right| \leq\left(|x|+\mu_{j}^{\frac{1}{j}}\right)^{j}
$$

where $j=0,1,2, \ldots$.

Proof of Lemma 3.1.

Note that $\psi^{(j)}=g_{j} e^{-i t x}$ for some function g_{j}. It can be verifled by inductlon that

$$
g_{j}=\sum_{k=0}^{j}\binom{j}{k}(-i x)^{k} \phi^{(j-k)}
$$

When $\mu_{j}<\infty, \phi^{(j)}$ is a bounded continuous function given by $\int(i x)^{j} e^{i t x} f(x) d x$. In particular, $\left|\phi^{(j)}\right| \leq \mu_{j}$. If we also use the inequalitles

$$
\mu_{k} \leq \mu_{j}^{\frac{k}{j}} \quad(k \leq j)
$$

then we obtaln

$$
\begin{aligned}
& \left|\psi^{(j)}\right| \leq\left|g_{j}\right| \leq \sum_{k=0}^{j}\binom{j}{k}|x|^{k} \mu_{j-k} \\
& \leq \sum_{k=0}^{j}\binom{j}{k}|x|^{k} \mu_{j} \frac{j-k}{j} \\
& =\left(|x|+\mu_{j}{ }^{\frac{1}{j}}\right)^{j} .
\end{aligned}
$$

Proof of Theorem 3.2.

Let us define $\psi(t)=\frac{1}{2 \pi} \phi(t) e^{-i t x}$. Then by Lemma 3.1,

$$
2 \pi\left|\psi^{(j)}\right| \leq\left(|x|+\mu_{j}^{\frac{1}{j}}\right)^{j}
$$

where μ_{j} is the finite j-th absolute moment of the distribution. Next, we need some estimates from numerical analysis. In particular,

$$
\left|f(x)-f_{n}(x)\right| \leq T_{n}+\left|\int_{-a}^{a} \operatorname{Re}(\psi(t)) d t-f_{n}(x)\right|
$$

To the last term, which is an error term in the estimation of the integral of $\operatorname{Re}(\psi)$ over a finite interval, we can apply estimates such as those given in Davis and Rabinowitz (1975, pp. 40-64). To apply these estimates, we recall that, when $\mu_{j}<\infty, \psi$ is a bounded continuous function on the real line. If r_{n} is used and $\mu_{1}<\infty$, then the last term does not exceed

$$
\begin{aligned}
& \frac{(2 a)^{2}}{2 n} \sup \left|\operatorname{Re}(\psi)^{\prime}\right| \leq \frac{(2 a)^{2}}{2 n} \sup \left|\psi^{(1)}\right| \\
& \leq \frac{(2 a)^{2}}{4 \pi n}\left(|x|+\mu_{1}\right) .
\end{aligned}
$$

If t_{n} is used and $\mu_{2}<\infty$, then the last term does not exceed

$$
\frac{(2 a)^{3}}{12 n^{2}} \sup \left|\psi^{(2)}\right| \leq \frac{(2 a)^{3}}{24 \pi n^{2}}\left(|x|+\mu_{2}^{\frac{1}{2}}\right)^{2} .
$$

If s_{n} is used and $\mu_{4}<\infty$, then the last term does not exceed

$$
\frac{(2 a)^{5}}{180 n^{4}} \sup \left|\psi^{(4)}\right| \leq \frac{(2 a)^{5}}{380 \pi n^{4}}\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4}
$$

If b_{n} is used and $\mu_{6}<\infty$, then the last term does not exceed

$$
\frac{(2 a)^{7}}{1935360 n^{6}} \sup \left|\psi^{(6)}\right| \leq \frac{(2 a)^{7}}{3870720 \pi n^{6}}\left(|x|+\mu_{6}^{\frac{1}{6}}\right)^{6} .
$$

The bounds of Theorem 3.2 allow us to apply the serles method. There are two key problems left to solve:
A. The cholce of a as a function of n.
B. The selection of a dominating curve g for rejection.

It is wasteful to compute $t_{n}, t_{n+1}, t_{n+2}, \ldots$ when trying to make an acceptance or rejection decision. Because the error decreases at a polynomial rate with n, it seems better to evaluate t_{c} for some $c>1$ and $k=1,2, \ldots$. Additionally, it is advantageous to use the standard dyadic "trick" of computing only t_{2}, t_{4}, t_{8}, etcetera. When computing $t_{2 n}$, the computations made for t_{n} can be reused provided that we align the cutpoints. In other words, if a_{n} is the constant a with the dependence upon n made explicit, it is necessary to demand that

$$
\frac{a_{2^{k}}}{2^{k}}
$$

be equal to

$$
\frac{a_{2^{k+1}}}{2^{k+1}}
$$

or to

$$
\frac{a_{2^{k+1}}}{2^{k}}
$$

Thus, $a_{2^{k+1}}$ is equal to $a_{2^{k}}$ or to twice that value. Note that for the estimates f_{n} In Theorem 3.2 to tend to $f(x)$, it is necessary that $a_{n} \rightarrow \infty$ (unless the characteristic function has compact support), and that $a_{n}=0\left(n^{\frac{j}{j+1}}\right)$ where j is $1,2,4$ or 6 depending upon the estimator used. Thus, it does not hurt to choose a_{n} monotone and of the form

$$
a_{2^{k}}=a_{\mathrm{o}^{2}} 2^{c_{k}}
$$

where c_{k} is a positive Integer sequence satisfying $c_{k+1}-c_{k} \in\{0,1\}$, and a_{0} is a constant.

The problem of the selection of a dominating curve has a simple solution in m_{∞} my cases. To be able to use Theorem 3.2, we need upper bounds for μ_{j} and ∞ $\int_{a}|\phi|$. Luckily, this is also sufficlent for the design of good upper bounds. To make this polnt, we consider several examples, after an auxlliary lemma.

Lemma 3.2.

Let ϕ be a characteristlc function with continuous absolutely integrable n-th derlvative $\phi^{(n)}$ where n is a nonnegative Integer. Then ϕ has a density f where

$$
f(x) \leq \frac{\int\left|\phi^{(n)}\right|}{2 \pi|x|^{n}}
$$

If $\int|t||\phi(t)| d t<\infty$, then ϕ has a Lipschitz density f with Lipschitz constant not exceeding

$$
\frac{\int|t||\phi(t)| d t}{2 \pi}
$$

Proof of Lemma 3.2.

When ϕ has a continuous absolutely integrable n-th derivative $\phi^{(n)}$, then a density f exists, and the following inversion formula is valld:

$$
(i x)^{n} f(x)=\frac{1}{2 \pi} \int \phi^{(n)}(t) e^{-t x} d t
$$

The first inequallty follows directly from thls. Next, assume that $\int|t||\phi(t)| d t<\infty$. Once agaln, a density f exists, and because f can be computed by the standard inversion formula, we have

$$
\begin{aligned}
& |f(x)-f(y)|=\frac{1}{2 \pi}\left|\int\left(e^{-i t x}-e^{-i t y}\right) \phi(t) d t\right| \\
& \leq \frac{1}{2 \pi} \int\left|e^{-i t(y-x)}-1\right||\phi(t)| d t \\
& \leq \frac{1}{2 \pi}|y-x| \int|t||\phi(t)| d t
\end{aligned}
$$

Example 3.1. Characteristic functions with compact support.

Assume that ϕ is known to vanish outside $[-A, A]$ for some finite value A. It should be stressed that this is a very strong condition of smoothness for the denslty f of this distribution. From Lemma 3.2, we know that f is a bounded denslty:

$$
f(x) \leq \frac{A}{\pi}
$$

Furthermore, f is Lipschitz with Lipschitz constant C not exceeding $A^{2} /(2 \pi)$. The densitles in this class can have arbitrarily large talls, and can not be unlformly bounded without imposing some sort of tall condition. For a detalled discussion of this, we refer to section VII.3.3, and in particular to Example VII.3.4, where a dominating curve for a Lipschitz (C) density on the positive real line with absolute moment $\mu_{j}(j>2)$ is glven. The area under that dominating curve is

$$
2 \sqrt{8 C} \frac{j}{j-2} \mu_{j}^{\frac{1}{j}}
$$

Here the factor 2 allows for the extension of the bound to the entire real line. Note that with $C=A^{2} /(2 \pi)$, the rejection constant becomes

$$
\frac{4 A}{\sqrt{\pi}} \frac{j}{j-2} \mu_{j}{ }^{\frac{1}{j}}
$$

which is scale Invariant.
We suggest that a be plcked constant and equal to A, slnce $T_{n}=0 \ln$ Theorem 3.2 when $a \geq A$.

Example 3.2. Unimodal densities.

For unimodal densitles with mode at 0 , a varlety of good dominating curves were glven in section VII.3.2. These required a bound on the value of $f(0)$ and one additional plece of information, such as an upper bound for μ_{j}. For the bound at the mode, we can use

$$
f(x) \leq \frac{\int|\phi|}{2 \pi}
$$

It is difflcult to verlfy the unimodality of a denslty from a characteristlc function, so this example is not as strong as Example 3.1. Also, the cholce of a causes a few extra problems. See Example 3.3 below.

Example 3.3. Optimization of parameter a.

Using a Chebyshev type inequality applled to characteristic functions,

$$
\int_{a}^{\infty}|\phi| \leq \frac{\int_{0}^{\infty}|t|^{r}|\phi(t)| d t}{a^{r}}
$$

we can obtaln upper bounds of the form $c a^{k}+d a^{-r}$ for the error E_{n} In Theorem 3.2 , where c, d, k, r are positive constants, and c depends upon n. Considered as a function of a, this has one minimum at

$$
a=\left(\frac{d r}{c k}\right)^{\frac{1}{k+r}}
$$

The minimal value is

$$
c^{\frac{r}{k+r}} d^{\frac{k}{k+r}}\left(\left(\frac{r}{k}\right)^{\frac{k}{k+r}}+\left(\frac{k}{r}\right)^{\frac{r}{k+r}}\right)
$$

What matters here is that the only factor depending upon n is the flrst one, and that it tends to 0 at the rate $c^{+/(k+r)}$. Since c varles typlcally as $n^{-(k-1)}$ for the estimators given in Theorem 3.2, we obtaln the rate

$$
n^{-\frac{r(k-1)}{k+r}} .
$$

This rate is necessarlly sublinear when $r=1$, regardless of how large k is. Note that it decreases quickly when $r \geq 2$ for all usual values of k. For example, with $r=2$ and Simpson's rule ($k=5$), our rate is $n^{-8 / 7}$. With $r=3$ and the trapezoldal rule $(k=3)$, our rate is $n^{-3 / 2}$.

Example 3.4. Sums of iid uniform random variables.

The uniform density on $[-1,1]$ has characterlstic function $\phi(t)=\sin (t) / t$. The sum of m ild uniform $[-1,1]$ random variables has characteristlc function

$$
\phi_{m}(t)=\left(\frac{\sin (t)}{t}\right)^{m}
$$

The corresponding density is unimodal, which should be of help in the derivation of bounds for the density. By taking consecutive derivatives of ϕ_{m}, it is easily established that the second moment μ_{2} is $\frac{m}{3}$, and that the fourth moment μ_{4} is $\frac{m^{2}}{3}-\frac{2 m}{15}$. Furthermore, the mode, which occurs at zero, has value

$$
\begin{aligned}
& \frac{1}{2 \pi} \int \phi_{m}(t) d t \\
& \leq \frac{1}{2 \pi} \int \min \left(\left(1-\frac{t^{2}}{6}+\frac{t^{4}}{120}\right)^{m},|t|^{-m}\right) d t \\
& \leq \frac{1}{2 \pi} \int \min \left(e^{-\frac{m}{6} t^{2}\left(1-\frac{t^{2}}{20}\right)},|t|^{-m}\right) d t \\
& \leq \frac{2}{2 \pi(m-1)}+\int \frac{1}{2 \pi} e^{-\frac{m}{6} \frac{19}{20} t^{2}} d t \\
& =\frac{1}{\pi(m-1)}+\sqrt{\frac{60}{18 m}}=M,
\end{aligned}
$$

where we split the integral over the intervals $[-1,1]$ and its complement. We now refer to Theorem VII.3.2 for symmetric unimodal densitles bounded by M and having r-th absolute moment μ_{r}. Such densitles are bounded by $\min \left(M,(r+1) \mu_{r} /|x|^{r+1}\right)$, and the dominating curve has integral

$$
\frac{r+1}{r}\left((r+1) \mu_{r}\right)^{\frac{1}{r+1}} M^{\frac{r}{r+1}} .
$$

For example, for $r=4$, we obtain \ln our example

$$
\frac{5}{4}\left(5 \mu_{4}\right)^{\frac{1}{5}} M^{\frac{4}{5}} \sim \frac{5}{4}\left(\frac{5}{3}\right)^{\frac{1}{5}}\left(\frac{60}{19}\right)^{\frac{2}{5}}
$$

as $m \rightarrow \infty$. In other words, as $m \rightarrow \infty$, the rejection constant tends to a flxed value. One can verlfy that thls same property holds true for all values of $r>0$. This example is continued in Example 3.6.

This leaves us with the black box algorithm and its analysis. We assume that a dominating curve $c g$ is known, where g is a density, that another function h is known having the property that

$$
\frac{1}{2 \pi}\left(\int_{-\infty}^{-a}|\phi|+\int_{a}^{\infty}|\phi|\right) \leq h(a) \quad(a>0)
$$

and that integrals will be evaluated only for the subsequence $a_{0} 2^{k}, k \geq 0$, where a_{0} is a given integer. Let f_{n} denote a numerical integral. estimating ψ such as r_{n}, s_{n}, t_{n} or b_{n}. This estimate uses as Interval of Integration $[-l(n, x), l(n, x)]$ for some function l which normally diverges as n tends to ∞.

Series method based upon numerical integration

REPEAT

Generate a random variate X with density g.
Generate a uniform $[0,1]$ random variate U.
Compute $T \leftarrow U c g(X)$ (recall that $f \leq c g$).
$n \leftarrow a_{0} 2^{k}, a \leftarrow l(n, X)$ (prepare for integration)
REPEAT
$W \leftarrow f_{n}(X)\left(f_{n}\right.$ is an integral estimate of $f=\int \psi$ with parameter n on interval $[-a, a]$; the number of evaluations of ϕ required is proportional to n)
Compute an upper bound on the error, E. (Use the bounds of Theorem 3.2 plus $h(a)$.)
$n \leftarrow 2 n$
UNTIL $|T-W|>E$
UNTLL $T<W$
RETURN X

The first issue is that of correctness of the algorlthm. This bolls down to verlfylng whether the algorlthm halts with probabllity one. We have:

Theorem 3.3.

The algorithm based upon the serles method given above is correct, 1.e. halts with probabllity one, when

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} l(n, x)=\infty \quad(\text { all } x) \\
& \lim _{a \rightarrow \infty} h(a)=\infty
\end{aligned}
$$

(this forces ϕ to be absolutely integrable), and one of the following conditions holds:
A. $\quad r_{n}$ is used, $\mu_{1}<\infty$, and $l(n, x)=0\left(n^{1 / 2}\right)$ for all x.
B. t_{n} is used, $\mu_{2}<\infty$, and $l(n, x)=0\left(n^{2 / 3}\right)$ for all x.
C. s_{n} is used, $\mu_{4}<\infty$, and $l(n, x)=o\left(n^{4 / 5}\right)$ for all x.
D. $\quad b_{n}$ is used, $\mu_{6}<\infty$, and $l(n, x)=o\left(n^{6 / 7}\right)$ for all x.

Here μ_{j} is the j-th absolute moment for f.

Proof of Theorem 3.3.

We need only verlfy that the error bound used in the algorlthm tends to 0 as $n \rightarrow \infty$ for all x. Theorem 3.3 is a direct corollary of Theorem 3.2.

Theorem 3.3 is reassuring. Under very mild conditions on the density, a valld algorlthm indeed exlsts. We have to know μ_{j} for some j and we need also an expllcit expression for the tall bound $h(a)$. The theorem just states that glven this information, we can choose a function $l(n, x)$ and an estimator f_{n} which guarantee the validity. Unfortunately, there is a snake in the grass. The function $l(n, x)$ has a profound impact on the tlme before halting. In many examples, the expected time is ∞. Thus, let us consider the expected number of evaluations of ψ (or ϕ) before halting. This can't possibly be glven without discussing how large $h($.$) is, and whlch function l(.,$.$) is plcked. Perhaps the best$ thing to do at this stage is to offer a helpful lemma, and then to llustrate it on a few examples.

Lemma 3.3.

Consider the serles method glven above, and assume that for the glven functlons h and l, we have an Inequallty of the type

$$
\left|f(x)-f_{n}(x)\right| \leq C(x) n^{-\alpha} \quad(n \geq 1, \text { all } x)
$$

where C is a positive function and $\alpha>1$ is a constant. If $a_{0}=1$ and f_{n} requires $\beta n+1$ evaluations of ψ for some constant β (for $t_{n}, \beta=1$, and for $s_{n}, \beta=2$), then the expected number of evaluations of ψ before halting does not exceed

$$
\begin{aligned}
& \leq c(\beta+1)+2^{\gamma} c c^{1-\gamma} \int C^{\gamma} g{ }^{1-\gamma} \frac{2 \beta+1}{1-2^{1-\gamma \alpha}} \\
& \leq c(\beta+1)+2^{\gamma} c c^{1-\gamma} \frac{2 \beta+1}{1-2^{1-\gamma \alpha}}\left(\int C g\right)^{1-\gamma}\left(\int C^{2-\frac{1}{\gamma}}\right)^{\gamma}
\end{aligned}
$$

where γ is a number satisfying

$$
\alpha \gamma>1, \gamma \leq 1
$$

Proof of Lemma 3.3.

By Wald's equation, our expected number is equal to c tlmes the expected number of evaluations in the flrst iteration (regardless of acceptance or rejection). Let us first condition on $X=x$ with density g. For f_{1}, we use up $\beta+1$ evaluatlons in all cases. The probablilty of having to evaluate f_{2} does not exceed $2 C(x) 1^{-\alpha} / c g(x)$. Continuing in this fashion, it is easily seen that the expected number of evaluations of ψ is not greater than

$$
\sum_{k=0}^{\infty}\left(\left(\beta 2^{k+1}+1\right) \min \left(\frac{2 C(x)\left(2^{k}\right)^{-\alpha}}{c g(x)}, 1\right)\right)+\beta+1
$$

Taking expectations with respect to $g(x) d x$ and multiplying with c gives the unconditional upper bound

$$
\begin{aligned}
& c(\beta+1)+\sum_{k=0}^{\infty}\left(\left(\beta 2^{k+1}+1\right) \int \min \left(2 C(x)\left(2^{k}\right)^{-\alpha}, c g(x)\right) d x\right) \\
& \leq c(\beta+1)+\sum_{k=0}^{\infty}\left(\left(\beta 2^{k+1}+1\right) \int \min \left(2 C(x)\left(2^{k}\right)^{-\alpha}, c g(x)\right) d x\right) \\
& \leq c(\beta+1)+\int(2 C(x))^{\gamma}(c g(x))^{1-\gamma} d x \sum_{k=0}^{\infty} 2^{-k \gamma \alpha}\left(\beta 2^{k+1}+1\right) \\
& =c(\beta+1)+2^{\gamma} c^{1-\gamma} \int C^{\gamma} g^{1-\gamma}\left(\frac{2 \beta}{1-2^{1-\gamma \alpha}}+\frac{1}{1-2^{-\gamma \alpha}}\right) \\
& \leq c(\beta+1)+2^{\gamma} c^{1-\gamma} \int C^{\gamma} g^{1-\gamma} \frac{2 \beta+1}{1-2^{1-\gamma \alpha}},
\end{aligned}
$$

where γ is a number satisfying

$$
\alpha \gamma>1, \gamma \leq 1
$$

By Holder's inequallty, the Integral in the last expression does not exceed

$$
\left(\int C g\right)^{1-\gamma}\left(\int C^{2-\frac{1}{\gamma}}\right)^{\gamma}
$$

Lemma 3.3 reveals the extent to which the efflclency of the algorithm is affected by $c, C(x), g(x)$ and μ_{j}.

Example 3.5. Characteristic functions with compact support.

Assume that the characteristic function vanishes outside $[-A, A]$. If we take $l(n, x)=A$, then $h \equiv 0$ in the algorithm. Note that this cholce violates the consistency conditions of Theorem 3.3, but leads nevertheless to a consistent procedure. With t_{n}, we have $\beta=1, \alpha=2$ and an error

$$
E_{n} \leq C(x) n^{-\alpha}
$$

where

$$
C(x)=\frac{(2 A)^{3}}{24 \pi}\left(|x|+\sqrt{\mu_{2}}\right)^{2} .
$$

With s_{n}, we have $\beta=2, \alpha=4$ and

$$
C(x)=\frac{(2 A)^{5}}{360 \pi}\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4}
$$

'With both error bounds, $\int C=\infty$, so we can't take $\gamma=1 \ln$ Lemma 3.3. Also,

$$
\int C^{2-\frac{1}{\gamma}}<\infty
$$

when $\frac{1}{\gamma}>2+\frac{1}{\alpha}$. Thus, for the bound of Lemma 3.3 to be useful, we need to choose

$$
\frac{1}{\alpha}<\gamma<\frac{\alpha}{2 \alpha+1}
$$

This yields the intervals $\left(\frac{1}{2}, \frac{2}{5}\right)$ and ($\frac{1}{4}, \frac{4}{9}$) respectively. Of course, the former Interval is empty. This is due to the fact that the last inequallty in Lemma 3.3 (combined with Theorem 3.2) never leads to a finte upper bound for the trapezoldal rule. Let us further concentrate therefore on s_{n}. Note that

$$
\begin{aligned}
& \int C g \leq \frac{(2 A)^{5}}{360 \pi} \int g(x)\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4} d x \\
& \leq \frac{(2 A)^{5}}{360 \pi} 8 \int g(x)\left(|x|^{4}+\mu_{4}\right) d x \\
& =\frac{32 A^{5}\left(\mu{ }_{4}^{*}+\mu_{4}\right)}{45 \pi},
\end{aligned}
$$

where μ_{4}^{*} is the fourth absolute moment for g. Typically, when g is close to f, the fourth moment is close to that of f. We won't proceed here with the expllcit computation of the full bound of Lemma 3.3. It suffices to note that the bound is large when elther A or μ_{4} is large. In other words, it is large when the support of ϕ is large. (the density is less smooth) and/or the tall of the density is large. Let us conclude thls section by repeating the algorithm:

Series method based upon numerical integration

[NOTE: The characteristic function ϕ vanishes off $[-A, A]$, and the fourth absolute moment does not exceed μ_{4}.]
REPEAT
Generate a random variate X with density g.
Generate a uniform $[0,1]$ random variate U.
Compute $T \leftarrow U c g(X)$ (recall that $f \leq c g$).
$n \leftarrow a_{0}$ (prepare for integration)
REPEAT
$W \leftarrow \operatorname{Re}\left(s_{n}(X)\right)$ (s_{n} is Simpson's integral estimate of $f=\int \psi$ with parameter n on interval $[-A, A]$; the number of evaluations of ϕ required is $2 n+1$)
$E \ldots \frac{(2 A)^{5}}{360 \pi}\left(|X|+\mu_{4}^{\frac{1}{4}}\right)^{4} n^{-4}$
$n \leftarrow 2 n$
UNTIL $|T-W|>E$
UNTIL $T<W$
RETURN X

For dominating curves $c g$, there are numerous possibllitles. See for example Lemma 3.2. In Example 3.1, a dominating curve based upon an Inequallty for Llpschitz densitles (sectlon VII.3.4) was developed. The rejection constant c for that example is

$$
\frac{8}{\sqrt{\pi}} A \mu_{4}^{\frac{1}{4}}
$$

Example 3.6. Sums of iid uniform random variables.

This is a continuation of Example 3.4, where a good dominating density was found for use in the rejection algorlthm. What is left here is mainly the cholce of h and l for use in the algorithm. Let us start with the decision to estimate f by Simpson's rule s_{n}. This is based upon a quick prellminary analysis which shows that the trapezoldal rule for example just isn't good enough to obtain finlte expected time.

The function $h(a)$ can be chosen as

$$
h(a)=\frac{1}{\pi a^{m-1}(m-1)}
$$

where m is the number of uniform $[-1,1]$ random varlables that are summed. To see this, note that

$$
2 \int_{a}^{\infty} \frac{1}{2 \pi}\left|\frac{\sin (t)}{t}\right|^{m} d t \leq \frac{1}{\pi} \int_{a}^{\infty}|t|^{-m} d t=h(a)
$$

Given $X=x$ in the algorithm, we see that with s_{n}, the error E_{n} is not greater than

$$
E_{n} \leq h(a)+\frac{(2 a)^{5}\left(|x|+\mu_{4}^{1 / 4}\right)^{4}}{380 \pi n^{4}}
$$

where a determines the integration interval (Theorem 3.2). Optimization of the upper bound with respect to a is simple and leads to the value

$$
a=\left(\frac{9 n^{4}}{4\left(|x|+\mu_{4}^{1 / 4}\right)}\right)^{\frac{1}{m+4}}
$$

With this value for a (or $l(n, x)$), we obtaln

$$
E_{n} \leq C(x) n^{-\alpha}
$$

for $\alpha=4(m-1) /(m+4)$ and

$$
C(x)=\frac{m}{m-1} \frac{1}{\pi}\left(\frac{4}{9}\right)^{\frac{m-1}{m+4}}\left(|x|+\mu_{4}^{1 / 4}\right)^{\alpha}
$$

This is all the users need to implement the algorithm. We can now apply Lemma 3.3 to obtain an idea of the expected complexity of the algorlthm. We will show that the expected time is better than $O\left(m^{(5+\epsilon) / 8}\right)$ for all $\epsilon>0$. A brlef outllne of the proof should suffice at thls point. In Lemma 3.3, we need to plck a constant γ. The conditions $\alpha \gamma>1$ and $\int C^{2-\frac{1}{\gamma}}<\infty$ force us to impose the conditions

$$
\frac{m+4}{4 m-4}<\gamma<\frac{4 m-4}{9 m-4}
$$

Both inequallties can be satisfled simultaneously for all $m \geq 0$. After fixing γ, compute all quantities in the upper bound of Lemma 3.3. Since $C(x)=\left(C_{0}+o(1)\right)\left(|x|+\mu_{4}^{1 / 4}\right)^{\alpha}$ with $C_{0}=4 /(9 \pi)$, it is easy to see that

$$
\int C g=\left(C_{0}+o(1)\right) E\left(\left(|X|+\mu_{4}^{\frac{1}{4}}\right)^{\alpha}\right)
$$

where X is a random variable with density g, and $\alpha=4(m-1) /(m+4)$. We can choose g such that $E\left(|X|^{\alpha}\right)$ is close to $\mu_{4}^{\alpha / 4}$ (e.g., In Example 3.4, take $r=0$ or larger in the bound for unimodal densitles; taking $r=4$ lsn't good enough because for $\left.r=4, E\left(|X|^{4}\right)=\infty\right)$. Notlng next that $\mu_{4}{ }^{1 / 4} \sim \sqrt{m} / 3^{1 / 4}$ as $m \rightarrow \infty$, we note that $\int C g$ increases as a constant times $m^{\alpha / 2}$. Next, $\int C^{2-\frac{1}{\gamma}}$ Increases as a constant times

$$
\mu_{4} \frac{1+\alpha\left(2-\frac{1}{\gamma}\right)}{4}
$$

which in turn increases as $m^{\frac{9}{2}-\frac{2}{\gamma}}$. The upper bound in Lemma 3.3 Increases as

$$
m^{2-2 \gamma+\frac{9 \gamma}{2}-2}=m^{\frac{5 \gamma}{2}}
$$

The smallest allowable value for γ is $1 / \alpha \sim 1 / 4$. Thus, the upper bound on the expected complexity is of the order of magnitude of $m^{5 / 8}$.

3.4. Exercises.

1. Show that when a characteristic function ϕ is absolutely integrable, then the distribution has a bounded continuous density f. Is the density also unlformly continuous?
2. Construct a symmetric real characteristic function for a distribution with a density, having the property that ϕ takes negative and positive values.
3. Consider symmetric nonnegative characteristic functions ϕ, and define $\nu_{2 n}=\int t^{2 n} \phi(t) d t$.
A. Show that $\nu_{2 n}{ }^{1 /(2 n)}=o(n)$ implles that $\left(x^{2 n} \nu_{2 n}\right) /(2 n)$! is summable for all $x>0$.
B. Show that f is unimodal and has a unlque mode at 0 (Feller, 1971, p. 528).
C. In the alternating serles algorithm for this class of densitles given In the text, why can we take $b=\mu_{1}$ or $b=\sigma$ in the formula for the dominating
curve where μ_{1} is the first absolute moment for f and σ is the standard deviation for f ?
D. A continuation of part C. If all operations in the algorlthm take one unlt of time, glve a useful sufficient condition on ϕ for the expected time of the algorlthm to be finite.
4. The following is an important symmetric nonnegative characteristic function:

$$
\phi(t)=\sqrt{\left.\frac{\sqrt{2 t}}{\sinh (\sqrt{2 t}}\right)}=\frac{1}{\sqrt{1+2 \frac{\downarrow t}{3!}+2 \frac{d^{t} ل^{2}}{5!}+\cdots}}
$$

(see e.g. Anderson and Darling, 1952). Near $t=0$, ϕ varles as $1-|t| / 6$. This implles that the flrst absolute moment is infinite. Find a dominating curve for this particular characteristic function, verlfy that the denslty f is determined by its Taylor serles about 0 , and give all the detalls of the alternating serles method for this distribution.
5. The following characteristlc function appears as the limit of a sequence of characterlstlc functions in mathematical statistics (Anderson and Darling, 1852):

$$
\phi(t)=\left(\frac{-2 \pi i t}{\cos \left(\frac{\pi}{2} \sqrt{1+8 i t}\right)}\right)^{\frac{1}{2}}
$$

Give a finlte time random varlate generator for this distrlbution. Ignore efficiency issues (e.g., the expected time is allowed to be infinite).
6. Glve the full detalls of the proof that the expected number of evaluations of ϕ in the series method for generating the sum of m Ild unlform $[-1,1]$ random variables (Example 3.6) is $O\left(m^{(5+\epsilon) / 8}\right)$ for all $\epsilon>0$.
7. How can you Improve on the expected complexity in Example 3.6?

4. THE SIMULATION OF SUMS.

4.1. Problem statement.

Let X be a random varlable with density f on the real llne. In this section we consider the problem of the simulation of $S_{n}=X_{1}+\cdots+X_{n}$ where X_{1}, \ldots, X_{n} are lld random varlables distributed as X. The nalve method

```
Naive method
S\leftharpoondowno
FOR }i:=1`\textrm{TO}n\mathrm{ DO
    Generate }X\mathrm{ with density f.
    S\leftarrowS+X
RETURN S
```

takes worst-case or expected time proportlonal to n depending upon whether X can be generated in constant worst-case or constant expected time. We say that a generator is unformly fast when the expected time $E\left(T_{n}\right)$ needed to generate S_{n} satlsfles

$$
\sup _{n \geq 1} E\left(T_{n}\right)<\infty .
$$

This supremum is allowed to depend upon f. Note that the uniformity is with respect to n and not to f. This differs from our standard notion of unlformity over a class of distributions.

In trying to develop uniformly fast generators, we should get a lot of help from the central limit theorem, which states that under some conditions on the distribution of X, the sum S_{n}, properly normalized, tends in distribution to one of the stable laws. Ideally, a unlformly fast generator should return such a stable random varlate most of the time. What complicates matters is that the distribution of S_{n} is not easy to describe. For example, in a rejection based method, the computation of the value of the density of S_{n} at one point usually requires time increasing with n. Needless to say, it is this hurdle which makes the problem both challenging and interesting.

In a first approach, we will cheat a bit: recall that if ϕ is the characteristic function of X, then S_{n} has characteristlc function ϕ^{n}. If we have a unlformly fast generator for the famlly $\left\{\phi, \phi^{2}, \ldots, \phi^{n}, \ldots\right\}$, then we are done. In other words, we reduce the problem to that of the generation of random varlates with a glven characteristic function, discussed \ln section 3 . The reason why we call thls cheating is that ϕ is usually not avallable, only f.

In the second approach, the problem is tackled head on. We will first derive Inequallities which relate the density of S_{n} to the normal density. In proving the Inequalitles, we have to rederive a so-called local central limit theorem. The inequalitles allow us to design unlformly fast rejection algorithms which return a stable random varlate with high probabllity. The tlghtness of the bounds allows us to obtaln this result desplte the fact that the density of S_{n} can't usually be computed in constant time. When the density can be computed in constant time, the algorithm is extremely effcient. This is the case when the density of S_{n} has a relatively simple analytic form, as in the case of the exponential density when
S_{n} is gamma (n).
Other solutions are suggested in the exercises and in later sections, but the most promising generally applicable strategles are definitely the two mentioned above.

4.2. A detour via characteristic functions.

S_{n} has characteristic function ϕ^{n} when X has characteristic function ϕ. Thls fact can be used to generate S_{n} efficlently provided that all the ϕ_{n} 's belong to a famlly of characteristlc functions for which a good efficlent generator is avallable.

One such famlly is the family of Polya characterlstlc functions dealt with in section IV.8.7. In particular, if ϕ is Polya, so is ϕ^{n}. Based upon Theorems IV.8.8 and IV.b.g, we can conclude the following:

Theorem 4.1.

If ϕ is a Polya characteristic function, then $X \leftarrow \frac{Y}{Z}$ has characteristlc functlon ϕ^{n} when Y, Z are independent random varlables, Y has the FVP density (defined in Theorem N.6.9), and Z has distribution function

$$
F(s)=1-\phi^{n}+s n \phi^{\prime}(s) \phi^{n-1}(s) \quad(s>0) .
$$

Here ϕ^{\prime} is the right-hand derivative of ϕ. When F is absolutely continuous, then it has density

$$
s^{2} n(n-1) \phi^{\prime 2}(s) \phi^{n-2}(s)+s^{2} n \phi^{\prime \prime}(s) \phi^{n-1}(s) \quad(s>0)
$$

When ϕ is expllcitly given, and it often is, this method should prove to be a formidable competitor. For one thing, we have reduced the problem to one of generating a random varlate with an explicitly given distribution function or density, i.e. we have taken the problem out of the domaln of characteristic functions.

The princlple outlined here can be extended to a few other classes of characterlstlc functions, but we are stlll far away from a generally applicable technlque, let alone a universal black box method. The approach outlined in the next section is better sulted for thls purpose.

4.3. Rejection based upon a local central limit theorem.

We assume that f is a zero mean denslty with finlte variance σ^{2}. Summing n ild random variables with this density is known to glve a random varlable with approximately normal ($0, n \sigma^{2}$) distribution. The study of the closeness of thls approximation is the subject of the classical central llmit theory. The only things that can be of use to us are precise (i.e., not asymptotic) Inequalltles which clarlfy just how close the density of S_{n} is to the normal ($0, n \sigma^{2}$) density. For a smooth treatment, we put two further restrictions on f :
A. The density f has an absolutely integrable characteristic function ϕ. Recall that thls implles among other things that f is bounded and continuous.
B. The random varlable X has finite third absolute moment not exceeding β : $E\left(|X|{ }^{3}\right) \leq \beta<\infty$.
Condition A allows us to use the simple Inversion formula for characteristic functhons, while condition B guarantees us that the error term is $O(1 / \sqrt{n})$. Densitles f satlsfying all the conditions outllned above are called regular. Clearly, most zero mean densitles occurring in practice are regular. There is only one large class of exceptions, the distributlons in the domaln of attraction of stable laws. By forcing the varlance to be finlte, we can only have convergence to the normal distribution. In exercise 4.1, which is more a research project than an exercise, the reader is challenged to repeat thls section for distributions whose sums converge to symmetric stable laws with parameter $\alpha<2$. For once we will do things backwards, by giving the results and their implications before the proofs, which are deferred to next section.

The fundamental result upon which this entire section rests is the following form of a local central limit theorem:

Theorem 4.2.

Let f be a regular density, and let f_{n} be the density of $S_{n} /(\sigma \sqrt{n})$. Let g be the standard normal density. There exist sequences a_{n} and b_{n} only depending upon f such that

$$
\left|f_{n}(x)-g(x)\right| \leq h_{n}(x)=\min \left(a_{n}, \frac{b_{n}}{x^{2}}\right),
$$

and

$$
\max \left(a_{n}, b_{n}\right)=O\left(\frac{1}{\sqrt{n}}\right)
$$

For a proof and references, see section 4.4. Explicit values for a_{n} and b_{n} follow. It is Important to note that

$$
g-h_{n} \leq f_{n} \leq g+h_{n},
$$

where $\int h_{n}=O(1 / \sqrt{n})$. In other words, the inequallty is eminently sulted for use in a rejection algorithm with squeezing. Both g and h_{n} can be considered as very easy densitles from a random variate generation polnt of vlew. Furthermore, the obvious rejection algorlthm, described in Example II.3.6, has rejection constant $1+\int h_{n}$ tending to 1 as $n \rightarrow \infty$. There is even more good news: if the lower bound is used for squeezing, then the expected number of evaluations of f is at most $2 \int h_{n}=O(1 / \sqrt{n})=O(1)$. The cumbersome part is the evaluation of f_{n}.

There are essentially two possibillties when it comes to evaluating f_{n} : first, f_{n} is expllcitly known. This is for example the case when f is an exponential density centered around its mean, and f_{n} is the density of a linearly transformed gamma (n) density. In the case of the gamma density, we can easlly compute the different constants in the bound of Theorem 4.2. as is done in exercise 4.2. Another example for the sums of unform random varlables follows in a separate section.

To compute f_{n} via convolutions is all but impossible. The only other alternatlve is to write f_{n} as a serles based upon the inversion formula for ϕ^{n}, and to apply the serles method. Here too the hurdles are formidable.

4.4. A local limit theorem.

It is the purpose of this section to prove Theorem 4.2. The proof is quite long, and is given in full because we require explicit knowledge of the bounding sequence, and a careful derlvation of the bounds to keep the constants as small as possible. Local llmit theorems of the type needed by us have been derived in a number of papers, see e.g. Inzevitov (1977), Survila (1984) and Maejima (1980). An excellent general reference is Petrov (1975). For example, Survila (1984) has obtalned the exlstence of a constant C depending upon f only such that for regular f,

$$
\left|f_{n}(x)-g(x)\right| \leq \frac{C}{1+x^{2}}
$$

Ibraglmov and Linnik (1971) have obtalned an upper bound of the type $\frac{C}{\sqrt{n}}$.
Note that Survila's bound does not tend to zero with n. The Ibragimov-Linnik upper bound is called a unlform estimate in the local central llmit theorem. Such unlform estimates are useless to us because the upper bound when integrated with respect to x is not finite. The bound which we derive here uses well-known tricks of the trade, documented for example in Petrov (1975) and Maellma (1980).

Let us start slowly with a few key lemmas.

Lemma 4.1.

For any real t,

$$
\left|e^{i t}-\sum_{j=0}^{n-1} \frac{(i t)^{j}}{j!}\right| \leq \frac{t^{n}}{n!} \quad(n \geq 0)
$$

Lemma 4.2.

Let ϕ be the characteristic function for a regular density f. Then the following inequalltles are valld:

$$
\begin{aligned}
& \left|\phi(t)-1+\frac{\sigma^{2} t^{2}}{2}\right| \leq \frac{\beta|t|^{3}}{\theta}, \\
& \left|\phi^{\prime}(t)+t \sigma^{2}\right| \leq \frac{\beta}{2} t^{2}, \\
& \left|\phi^{\prime \prime}(t)+\sigma^{2}\right| \leq \beta|t|
\end{aligned}
$$

Proof of Lemma 4.2.

Since three absolute moments exist, we notlce that the first three derlvatives of ϕ exlst and are continuous functions given by the formulas (Feller, 1971, p. 512)

$$
\phi^{(j)}(t)=\int e^{i t x}(i x)^{j} f(x) d x \quad(j=0,1,2,3) .
$$

Observe that

$$
\begin{aligned}
& \left|\phi(t)-1+\frac{\sigma^{2} t^{2}}{2}\right| \leq \int\left|e^{i t u}-1-i t u+\frac{t^{2} u^{2}}{2}\right| f(u) d u \\
& \leq \int\left|\frac{|t|^{3}|u|^{3}}{8}\right| f(u) d u=\frac{\beta}{8}|t|^{3} .
\end{aligned}
$$

Next,

$$
\phi^{\prime}(t)+\frac{\sigma^{2} t}{2}=\int\left(e^{i t u}-1-i t u\right) i u f(u) d u
$$

Thus,

$$
\left|\phi^{\prime}(t)+\frac{\sigma^{2} t}{2}\right| \leq \int\left|\frac{t^{2} u^{2}}{2}\right||u| f(u) d u \leq \frac{\beta}{2} t^{2} .
$$

Finally,

$$
\phi^{\prime \prime}(t)+\sigma^{2}=-\int\left(e^{i t u}-1\right) u^{2} f(u) d u
$$

Thus,

$$
\left|\phi^{\prime \prime}(t)+\sigma^{2}\right| \leq \int|t u| u^{2} f(u) d u \leq \beta|t|
$$

Lemma 4.3.

Consider the absolute differences

$$
A_{m}(t)=\left|\left(1-\frac{t^{2}}{2 n}\right)^{m}-e^{-\frac{t^{2}}{2}}\right| \quad(m=n-2, n-1, n)
$$

For $t^{2} \leq n$, we have

$$
\begin{aligned}
& A_{n}(t) \leq \frac{t^{4}}{4 n} e^{-\frac{t^{2}}{2}} \\
& A_{n-1}(t) \leq \frac{1}{2(n-1)} e^{\frac{1}{2(n-1)}} e^{-\frac{t^{2}}{2}}, \\
& A_{n-2}(t) \leq \frac{2}{n-2} e^{\frac{2}{n-2}} e^{-\frac{t^{2}}{2}}
\end{aligned}
$$

If all Integrals shown below are over $\{|t| \leq \sqrt{n}\}$, then we have

$$
\begin{aligned}
& \int A_{n}(t) d t \leq \frac{3}{4 n} \sqrt{2 \pi}, \int t^{2} A_{n}(t) d t \leq \frac{15}{4 n} \sqrt{2 \pi}, \\
& \int A_{n-1}(t) d t \leq \frac{3}{4 n} \sqrt{2 \pi}+\frac{\sqrt{2 \pi}}{2(n-1)} e^{\frac{1}{2(n-1)}}, \\
& \int t^{2} A_{n-1}(t) d t \leq \frac{15}{4 n} \sqrt{2 \pi}+\frac{\sqrt{2 \pi}}{2(n-1)} e^{\frac{1}{2(n-1)}}, \\
& \int A_{n-2}(t) d t \leq \frac{3}{4 n} \sqrt{2 \pi}+\frac{2 \sqrt{2 \pi}}{n-2} e^{\frac{2}{n-2}}, \\
& \int t^{2} A_{n-2}(t) d t \leq \frac{15}{4 n} \sqrt{2 \pi}+\frac{2 \sqrt{2 \pi}}{n-2} e^{\frac{2}{n-2}} .
\end{aligned}
$$

Proof of Lemma 4.3.

First,

$$
\begin{aligned}
& e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n-2} \leq e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n-1} \\
& \leq e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \leq e^{-\frac{t^{2}}{2}}\left(1-e^{-\frac{n t^{4}}{8 n^{2}\left(1-\frac{t^{2}}{2 n}\right)}}\right) \\
& \leq e^{-\frac{t^{2}}{2}}\left(1-e^{-\frac{n t^{4}}{4 n^{2}}}\right) \\
& \leq e^{-\frac{t^{2}}{2}} \frac{t^{4}}{4 n}
\end{aligned}
$$

Here we used the inequallity $\log (1-u) \geq-u-u^{2} /(2(1-u)) \geq-u-u^{2}$ valld for $0 \leq u \leq 1 / 2$. Since

$$
0 \leq e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n}
$$

the bound for A_{n} is proved. For the other bounds, consider A_{m} in general. Clearly,

$$
\left(1-\frac{t^{2}}{2 n}\right)^{m}-e^{-\frac{t^{2}}{2}} \leq e^{-\frac{t^{2}}{2}\left(e^{t^{2}\left(\frac{1}{2}-\frac{m}{2 n}\right)-t^{4} \frac{m}{8 n^{2}}}-1\right)}
$$

For $m=n-i$, the exponent is at most $t^{2} i /(2 n)-t^{4}(n-i) /\left(8 n^{2}\right)$. This function is at most $i^{2} /(2(n-i))$. By the Inequallty $e^{u}-1 \leq u e^{u}$ valld for $u \geq 0$, we finally conclude that the expression on the right hand side of the last inequallty is at most

$$
e^{-\frac{t^{2}}{2}} \frac{i^{2}}{2(n-i)} e^{\frac{i^{2}}{2(n-i)}} .
$$

This proves all the pointwise inequallites for A_{m}. The integral inequalities are obtalned by integrating the pointwise inequallites over the whole real line (this can only make the upper bounds larger). One needs the facts that for a normal random varlable $N, E\left(N^{2}\right)=1, E\left(N^{4}\right)=3$, and $E\left(N^{6}\right)=15$.

Lemma 4.4.

For regular f, and $|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}$, we have

$$
\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}+\left|A_{n}(t)\right|
$$

Integrated over the given interval for t, we have

$$
\int\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t \leq \frac{16 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{3}{4 n} \sqrt{2 \pi} .
$$

Proof of Lemma 4.4.

Note that

$$
\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-\left(1-\frac{t^{2}}{2 n}\right)^{n}\right|+\left|A_{n}(t)\right|
$$

The last term is taken care of by applying Lemma 4.3. Here we need the fact that the glven interval for t is always included in $[-\sqrt{n}, \sqrt{n}]$, so that the bounds of Lemma 4.3 are Indeed applicable. By Lemma 4.2, the first term can be written as

$$
\left(1-\frac{t^{2}}{2 n}\right)^{n}\left|\left(1+\frac{\theta \beta|t|^{3}}{6 \sigma^{3} n^{\frac{3}{2}}\left(1-\frac{t^{2}}{2 n}\right)}\right)^{n}-1\right|
$$

where $|\theta| \leq 1$. Using the fact that $(1+u)^{n}-1 \leq n|u| e^{n|u|}$ for all $n>0$, and all $u \in R$, thls can be bounded from above by

$$
e^{-\frac{t^{2}}{2}} \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{\frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}}} \leq e^{-\frac{t^{2}}{4}} \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}}
$$

To obtaln the integral inequality, use Lemma 4.3 again, and note that $\int|t|^{3} e^{-t^{2} / 4} d t=18$.

Lemma 4.5.

For regular f,

$$
\sup _{x}\left|f_{n}(x)-g(x)\right| \leq a_{n}
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi} \frac{18 \beta}{3 \sigma^{3} \sqrt{n}}\left(1+\frac{1}{2} e^{-\frac{9 \sigma^{0} n}{32 \beta^{2}}}\right) \\
& +\frac{1}{2 \pi} \frac{3}{4 n} \sqrt{2 \pi}+\frac{1}{2 \pi} \sup _{|t| \geq \frac{4 \sigma^{2}}{3 \beta}}|\phi(t)|^{n-1} \sigma \sqrt{n} \int|\phi|
\end{aligned}
$$

f_{n} is the density of $S_{n} /(\sigma \sqrt{n})$ and g is the normal density. Also,

$$
a_{n} \sim \frac{8 \beta}{3 \pi \sigma^{3} \sqrt{n}}
$$

as $n \rightarrow \infty$.

Proof of Lemma 4.5.

By the inversion formula for absolutely integrable characteristic functions, we see that

$$
\begin{aligned}
& 2 \pi\left|f_{n}(x)-g(x)\right| \leq \int\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \\
& \leq \int_{D}\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t+\int_{D^{\circ}}\left(\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)\right|+e^{-\frac{t^{2}}{2}}\right) d t
\end{aligned}
$$

where D is the interval defined by the condition $|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}$, and D^{c} is the complement of D. The integral over D is bounded in Lemma 4.4 by

$$
\frac{16 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{3}{4 n} \sqrt{2 \pi} .
$$

The integral over D^{c} does not exceed

$$
\sup _{|t| \geq \frac{4 \sigma^{2}}{3 \beta}}|\phi(t)|^{n-1} \sigma \sqrt{n} \int|\phi|+\frac{8 \beta}{3 \sigma^{3} \sqrt{n}} e^{-\frac{9 \sigma^{6} n}{32 \beta^{2}}},
$$

where we used a well-known inequallty for the tall of the normal distribution, i.e. ∞ $\int_{u} g \leq g(u) / u$. This concludes the proof of Lemma 4.5.

Lemma 4.6.

For regular f, and

$$
|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}
$$

we have

$$
\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}
$$

Integrated over the given interval for t, we have

$$
\int\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t \leq \frac{18 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{3}{4 n} \sqrt{2 \pi} .
$$

Proof of Lemma 4.6.

Note that

$$
\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-\left(1-\frac{t^{2}}{2 n}\right)^{n-1}\right|+\left|A_{n-1}(t)\right|
$$

The last term is taken care of by applying Lemma 4.3. Here we need the fact that the given interval for t is always included in $[-\sqrt{n}, \sqrt{n}]$, so that the bounds of Lemma 4.3 are Indeed applicable. By Lemma 4.2, the flrst term can be written as

$$
\left(1-\frac{t^{2}}{2 n}\right)^{n-1}\left|\left(1+\frac{\theta \beta|t|^{3}}{8 \sigma^{3} n^{\frac{3}{2}}\left(1-\frac{t^{2}}{2 n}\right)}\right)^{n-1}-1\right|
$$

where $|\theta| \leq 1$. Using the fact that $(1+u)^{n-1}-1 \leq n|u| e^{n|u|}$ for all $n>0$, and all $u \in R$, this can be bounded from above by

$$
\frac{e^{-(n-1) t^{2}}}{2 n} \frac{\left.\beta \backslash t\right|^{3}}{3 \sigma^{3} \sqrt{n}} e^{\frac{\left.\beta \backslash t\right|^{8}}{3 \sigma^{3} \sqrt{n}}} \leq e^{-\left(1-\frac{1}{2 n}\right) \frac{t^{2}}{4}} \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}}
$$

To obtain the integral inequallty, use Lemma 4.3 agaln, and note that $\int|t|^{3} e^{-t^{2} / 4} d t=16$.

Lemma 4.7.

Let g be the normal density and let f_{n} be the density of the normalized sum $S_{n} /(\sigma \sqrt{n})$ for ind random varlables with a regular density f. Let ϕ be the charactertstlc function for f. Then

$$
\left|f_{n}(x)-g(x)\right| \leq \frac{b_{n}}{x^{2}}
$$

where

$$
\begin{aligned}
& b_{n}=\frac{4 \beta}{3 \pi \sigma^{3} \sqrt{n}} e^{-\frac{9 \sigma^{0} n}{32 \beta^{2}}}+\frac{\sqrt{8}}{\pi} e^{-\frac{9 \sigma^{6} n}{64 \beta^{2}}} \\
& +\frac{1}{2 \pi} \rho^{n-2} \sigma \sqrt{n} \int|\phi|+\frac{1}{2 \pi} \rho^{n-3} \sigma^{3} n^{\frac{3}{2}} \int t^{2}|\phi| \\
& +\frac{1}{2 \pi}\left(\frac{208 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{18 \sqrt{2 \pi}}{4 n}\right) \\
& +\frac{1}{\sqrt{4 \pi n(n-1)}}+\frac{3}{(n-2) \sqrt{2 \pi}} \\
& +\frac{1}{n \sigma^{2} \sqrt{2 \pi}}+\frac{\beta}{\sigma^{3} \sqrt{n}}\left(\frac{1}{\sigma^{2} \sqrt{8 \pi}}+2\right) .
\end{aligned}
$$

Here $\rho=\sup _{|t| \geq \frac{3 \sigma^{2}}{4 \beta}}|\phi(t)|$. Note that as $n \rightarrow \infty, \quad b_{n} \sim \frac{b}{\sqrt{n}}$ where $b=\frac{\beta}{\sigma^{3}}\left(\frac{1}{\sigma^{2} \sqrt{8 \pi}}+2+\frac{208}{6 \pi}\right)$.

Proof of Lemma 4.7.

As in Lemma 4.5, we define the interval D by the condition $|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}$, and let D^{c} be the complement of D. Let I be the interval defined by $|t| \leq \frac{3 \sigma^{2}}{4 \beta}$, and let I^{c} be the complement of I. By Lemma 4.2, it is easy to see that for $t \in I,|O(t)| \leq 1-\sigma^{2} t^{2} / 4$. Thus,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{D}\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)\right| d t \\
& \leq \frac{1}{2 \pi} \int_{D}\left|1-\phi\left(\frac{t}{\sigma \sqrt{n}}\right)\right|\left|\phi\left(\frac{t}{\sigma \sqrt{n}}\right)\right|^{n-1} d t \\
& \leq \frac{1}{2 \pi} \int \frac{t^{2}}{2 n} e^{-\frac{(n-1) t^{2}}{4 n}} d t \\
& =\frac{1}{4 \pi n} \sqrt{2 \pi} \sqrt{\frac{2 n}{n-1}}
\end{aligned}
$$

$$
=\frac{1}{\sqrt{4 \pi n(n-1)}} .
$$

Similarly,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{D} t^{2}\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-\phi^{n-2}\left(\frac{t}{\sigma \sqrt{n}}\right)\right| d t \\
& \leq \frac{1}{2 \pi} \int_{D} t^{2}\left|1-\phi^{2}\left(\frac{t}{\sigma \sqrt{n}}\right)\right|\left|\phi\left(\frac{t}{\sigma \sqrt{n}}\right)\right|^{n-2} d t \\
& \leq \frac{1}{2 \pi} \int \frac{t^{4}}{n} e^{-\frac{(n-2) t^{2}}{4 n}} d t \\
& =\frac{1}{2 \pi n} \sqrt{2 \pi} 3 \frac{2 n}{n-2} \\
& =\frac{3}{(n-2) \sqrt{2 \pi}} .
\end{aligned}
$$

So far for the prellminary computations. We begin with the observation that

$$
x^{2}\left(f_{n}(x)-g(x)\right)=\frac{1}{2 \pi} \int\left(\left(t^{2}-1\right) e^{-\frac{t^{2}}{2}}-\phi_{n}^{\prime \prime}(t)\right) e^{-i t x} d t
$$

where ϕ_{n} is the characteristic function corresponding to f_{n}. Obvlously,

$$
x^{2}\left|f_{n}(x)-g(x)\right| \leq \frac{1}{2 \pi} \int\left|\left(t^{2}-1\right) e^{-\frac{t^{2}}{2}}-\phi_{n}^{\prime \prime}(t)\right| d t
$$

The second derivative of the n-th power of $\phi(t /(\sigma \sqrt{n}))$ is

$$
\frac{n-1}{\sigma^{2}} \phi^{\prime 2} \phi^{n-2}+\frac{1}{\sigma^{2}} \phi^{\prime \prime} \phi^{n-1},
$$

where all the omitted arguments are $t /(\sigma \sqrt{n})$. By the triangle inequality, we obtaln

$$
\begin{aligned}
& x^{2}\left|f_{n}(x)-g(x)\right| \leq \frac{1}{2 \pi} \int\left|\left(t^{2}-1\right) e^{-\frac{t^{2}}{2}}-\phi_{n}^{\prime \prime}(t)\right| d t \\
& \begin{aligned}
& \leq \frac{1}{2 \pi}\left(\int\left|e^{-\frac{t^{2}}{2}}-\phi^{n-1}(t /(\sigma \sqrt{n}))\right| d t+\int t^{2}\left|e^{-\frac{t^{2}}{2}}-\phi^{n-2}(t /(\sigma \sqrt{n}))\right| d t\right. \\
&+\int e^{-\frac{t^{2}}{2}}\left|\frac{n-1}{\sigma^{2}} \phi^{\prime 2}(t /(\sigma \sqrt{n}))-t^{2}\right| d t \\
&\left.\quad+\int e^{-\frac{t^{2}}{2}}\left|\sigma^{-2} \phi^{\prime \prime}(t /(\sigma \sqrt{n}))+1\right| d t\right) \\
&=J_{1}+J_{2}+J_{3}+J_{4} .
\end{aligned}
\end{aligned}
$$

From Lemma 4.2, we recall

$$
\begin{aligned}
& \left|\frac{\sqrt{n} \phi^{\prime}}{\sigma}+t\right| \leq \frac{\beta t^{2}}{2 \sigma^{3} \sqrt{n}} \\
& \left|\frac{\phi^{\prime \prime}}{\sigma^{2}}+1\right| \leq \frac{\beta|t|}{\sigma^{3} \sqrt{n}}
\end{aligned}
$$

Using the fact that $\left|\phi^{\prime}(t /(\sigma \sqrt{n}))\right| \leq E(|X|) /(\sigma \sqrt{n}) \leq 1 / \sqrt{n}$, we have

$$
\begin{aligned}
& \left|\frac{n \phi^{\prime 2}}{\sigma^{2}}-t^{2}\right| \leq\left|\frac{\sqrt{n} \phi^{\prime}}{\sigma}-t\right|\left|\frac{\sqrt{n} \phi^{\prime}}{\sigma}+t\right| \\
& \leq\left(\frac{1}{\sigma^{2}}+|t|\right) \frac{\beta t^{2}}{2 \sigma^{3} \sqrt{n}} .
\end{aligned}
$$

Using the fact that $\int|t|^{i} e^{-t^{2} / 2} d t$ takes the values $\sqrt{2 \pi}, 2, \sqrt{2 \pi}$ and 4 for $i=0,1,2,3$ respectively, we see that

$$
\begin{aligned}
& J_{3}+J_{4} \leq \int\left|\sigma^{-2} \phi^{\prime 2} e^{-\frac{t^{2}}{2}}\right| d t+\frac{1}{\sqrt{2 \pi}} \frac{\beta}{2 \sigma^{5} \sqrt{n}}+\frac{2 \beta}{\pi \sigma^{3} \sqrt{n}} \\
& \leq \frac{1}{n \sigma^{2} \sqrt{2 \pi}}+\frac{\beta}{\sigma^{3} \sqrt{n}}\left(\frac{1}{\sigma^{2} \sqrt{8 \pi}}+2\right)
\end{aligned}
$$

This leaves us with J_{1} and J_{2}. Here we will spllt the integrals over D and D^{c}. First of all,

$$
\begin{aligned}
& \frac{1}{2 \pi}\left(\int_{D} \left\lvert\, e^{\left.\left.-\frac{t^{2}}{2}-\phi^{n-1}(t /(\sigma \sqrt{n}))\left|d t+\int_{D} t^{2}\right| e^{-\frac{t^{2}}{2}}-\phi^{n-2}(t /(\sigma \sqrt{n})) \right\rvert\, d t\right)} \begin{array}{l}
\leq \frac{1}{2 \pi}\left(\int_{D}\left|e^{-\frac{t^{2}}{2}}-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t+\int_{D} t^{2}\left|e^{-\frac{t^{2}}{2}}-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t\right) \\
+\frac{1}{2 \pi}\left(\int_{D}\left|\phi^{n-1}(t /(\sigma \sqrt{n}))-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t\right. \\
\left.+\int_{D} t^{2}\left|\phi^{n-2}(t /(\sigma \sqrt{n}))-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t\right) .
\end{array} . \quad \begin{array}{l}
\end{array}\right.\right) .
\end{aligned}
$$

The last two terms were bounded from above earller on in the proof by

$$
\frac{1}{\sqrt{4 \pi n(n-1)}}+\frac{3}{(n-2) \sqrt{2 \pi}} .
$$

By Lemma 4.4, we have for $t \in D$,

$$
\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}+\left|A_{n}(t)\right|
$$

Thus, by Lemma 4.3, and the following integrals:

$$
\int|t|^{3} e^{-\frac{t^{2}}{4}} d t=16
$$

$$
\begin{aligned}
& \int|t|^{5} e^{-\frac{t^{2}}{4}} d t=192 \\
& \int|t|^{4} e^{-\frac{t^{2}}{2}} d t=3 \sqrt{2 \pi} \\
& \int|t|^{6} e^{-\frac{t^{2}}{4}} d t=15 \sqrt{2 \pi}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{D}\left(1+t^{2}\right)\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t \\
& \leq \frac{1}{2 \pi} \int\left(1+t^{2}\right)\left(\frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}+\frac{t^{4}}{4 n} e^{-\frac{t^{2}}{2}}\right) d t \\
& =\frac{1}{2 \pi}\left(\frac{208 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{18 \sqrt{2 \pi}}{4 n}\right) .
\end{aligned}
$$

Flnally, we have to evaluate the integrals $\ln J_{1}+J_{2}$ taken over D^{c}. These are estlmated from above by

$$
\frac{1}{2 \pi} \int_{D^{*}}\left(1+t^{2}\right) e^{-\frac{t^{2}}{2}} d t+\frac{1}{2 \pi} \rho^{n-2} \sigma \sqrt{n} \int|\phi|+\frac{1}{2 \pi} \rho^{n-3} \sigma^{3} n^{\frac{3}{2}} \int t^{2}|\phi|
$$

where $\rho=\sup _{I^{c}}|\phi|$. The reglon D^{c} is defined by the condition $|t|>c$ for some constant c. The first term in the last expression can thus be rewritten as

$$
\begin{aligned}
& \frac{1}{\pi} \int_{u>c^{2} / 2}\left((2 u)^{\frac{1}{2}}+\sqrt{2 u}\right) e^{-u} d u \\
& \leq \frac{1}{c \pi} e^{-\frac{c^{2}}{2}}+\frac{\sqrt{8}}{\pi} e^{-\frac{c^{2}}{4}} \\
& =\frac{4 \beta}{3 \pi \sigma^{3} \sqrt{n}} e^{-\frac{9 \sigma^{0} n}{32 \beta^{2}}}+\frac{\sqrt{8}}{\pi} e^{-\frac{9 \sigma^{0} n}{64 \beta^{2}}}
\end{aligned}
$$

Collecting bounds gives the desired result.

For the bound of Lemma 4.7 to be useful, it is necessary that f not only be regular, but also that its characteristic function satisfy

$$
\int t^{2}|\phi(t)| d t<\infty
$$

This implies that f has two bounded continuous derivatives tending to 0 as $|x| \rightarrow \infty$, and in fact

$$
f^{\prime \prime}(x)=-\frac{1}{2 \pi} \int e^{-i t x} t^{2} \phi(t) d t
$$

(see e.g. Kawata, 1972, pp. 438-439). This smoothness condition is rather restrictive and can be considerably weakened. The asymptotic bound $b /\left(x^{2} \sqrt{n}\right)$ remains valld if $\int t^{2}|\phi(t)|^{k}<\infty$ for some positive integer k (exercise 4.4). Lemmas 4.5 and 4.7 together are but special cases of more general local llmit theorems, such as those found In Maellma (1980) and Inzevitov (1977), except that here we explicitly compute the unlversal constants in the bounds.

4.5. The mixture method for simulating sums.

When a density f can be written as a mixture

$$
f(x)=\sum_{i=1}^{\infty} p_{i} f_{i}(x)
$$

where the f_{i} 's are simple densitles, then simulation of the sum S_{n} of n ild random varlables with density f can be carrled out as follows.

The mixture method for simulating sums

Generate a multinomial (n, p_{1}, p_{2}, \ldots) random sequence N_{1}, N_{2}, \ldots (note that the N_{i} 's sum to n). Let K be the index of the largest nonzero N_{i}.
$X \leftarrow 0$
FOR $i:=1$ TOK DO
Generate S, the sum of N_{i} iid random variables with common density f_{i}.
$X \leftarrow X+S$
RETURN X

The valldity of the algorithm is obvious. The algorithm is put in Its most general form, allowing for infintte mixtures. A multinomlal random sequence is of course defined in the standard way: Imagine that we have an Infinite number of urns, and that n balls are independently thrown in the urns. Each ball lands with probablilty p_{i} in the i-th urn. The sequence of cardinalitles of the urns is a multinomial (n, p_{1}, p_{2}, \ldots) random sequence. To slmulate such a sequence, note that N_{1} is binomial (n, p_{1}), and that given N_{1}, N_{2} is binomlal ($n-N_{1}, p_{2} /\left(1-p_{1}\right)$), etcetera. If K is the Index of the last occupled urn, then it ls easy to see that the multinomlal sequence can be generated in expected time $O(E(K))$.

The mixture method is efficlent if sums of ild random variables with densitles f_{i} are easy to generate. This would for example be the case if f were a
finte mixture of stable, gamma, exponentlal or normal random varlables. Perhaps the most intrlguing decomposition is that of a unimodal density: every unlmodal density can be written as a countable mixture of uniform densitles. Thls statement is intultively clear, because subtracting a function of the form $c I_{[a, b]}(x)$ from f leaves a unimodal plece on $[a, b]$ and two unimodal talls. This can be repeated for all pleces individually, and at the same time the integral of the leftover function can be made to tend to zero by the Judiclous cholce of rectangular functions (see exercise 4.5). If we can generate sums of 11 d unform random variables uniformly fast (with respect to n), then the expected tlme taken by the mlxture method is $O(E(K)$). A few remarks about generating unlform sums are glven in the next section.

4.6. Sums of independent uniform random variables.

In this section we consider the distribution of

$$
S_{n}=\sum_{i=1}^{n} U_{i}
$$

where U_{1}, \ldots, U_{n} are lld unlform $[-1,1]$ random varlables. The distrlbution can be described in a varlety of ways:

Theorem 4.3.

The characteristic function of S_{n} is

$$
\left(\frac{\sin (t)}{t}\right)^{n}
$$

For all $n \geq 2$, the density f_{n} can be obtalned by the inversion formula

$$
f_{n}(x)=\frac{1}{2 \pi} \int\left(\frac{\sin (t)}{t}\right)^{n} \cos (t x) d t
$$

Thls ylelds

$$
f_{n}(x)=\frac{1}{(i-1)!} \frac{1}{2} \sum_{k=0}^{i-1}(-1)^{k}\binom{i}{k}(x-(2 k-n))^{i-1}
$$

where $2 i-2-n<x<2 i-n ; i=1,2, \ldots, n$.

Proof of Theorem 4.3.

The characteristlc function is obtained by using the definition. Since the characteristic function of S_{n} for all $n \geq 2$ is absolutely integrable, f_{n} can be obtained by the given inversion integral. There is also a direct way of computing the distribution function F_{n} and density of S_{n}; its derivation goes back to the nineteenth century (see e.g. Cramer (1951, p. 245)). Different proofs include the geometric approach followed by us in Theorem I.4.4 (see also Hall (1927) and Roach (1983)), an induction argument (Olds, 1952), and an appllcation of the residue theorem (Lusk and Wright, 1982). Taking the derlvative of F_{n} given in Theorem I.4.4 glves the formula

$$
\frac{1}{(n-1)!}\left(x_{+}{ }^{n-1}-n(x-1)_{+}{ }^{n-1}+\binom{n}{2}(x-2)_{+}{ }^{n-1}-\cdots+(-1)^{n}\binom{n}{n}(x-n)_{+}{ }^{n-1}\right)
$$

for the density of the sum of n ild uniform $[0,1]$ random varlables. The the density of sums of symmetric uniform random varlables is easily obtained by the transformation formula for densities.

It is easy to see that the local llmit theorems developed in Lemmas 4.5 and 4.7 are applicable to this case. There is one small technical hurdle since the characteristic function of a unlform random varlable is not absolutely integrable. This is easily overcome by noting that the square of the characteristic function is absolutely Integrable. If we recall the rejection algorithm of section 4.3, we note that the expected number of iterations is $O(1 / \sqrt{n})$ and that the expected number of evaluations of f_{n} is $O(1 / \sqrt{n})$. Unfortunately, this is not good enough, slnce the evaluation of $f_{n}(x)$ by the last formula of Theorem 4.3 takes time roughly proportional to n for nearly all x of interest. This would yleld a global expected time roughly increasing as \sqrt{n}. The formula for f_{n} is thus of limited value. There are two solutions: elther one uses the serles method based upon a serles expansion for f_{n} which is tallored around the normal density, or one uses a local llmit theorem with $O(1 / n)$ error by using as maln component the normal density plus the first term in the asymptotic expansion which is a normal density multlplled with a Hermite polynomial (see e.g. Petrov, 1975). The latter approach seems the most promising at thls point (see exerclise 4.6).

4.7. Exercises.

1. Let f be a density, whose normallzed sums tend in distribution to the symmetric stable (α) density. Assume that the stable density can be evaluated exactly in one unlt of time at every polnt. Derlve first some Inequalltles for the difference between the density of the normalized sum and the stable density. These non-unlform inequalitles should be such that the integral of the error bound with respect to x tends to 0 as $n \rightarrow \infty$. Hint: look for error terms of the form $\min \left(a_{n}, b_{n}|x|^{-c}\right)$ where c is a positive constant, and a_{n}, b_{n} are positive number sequences tending to 0 with n. Mimic the derivatlon of the local limit theorem in the case of attraction to the normal law.
2. The gamma density. The zero mean exponential density has characteristic function $\phi=e^{-i t} /(1-i t)$. In the notation of thls chapter, derive for this distribution the following quantities:
A. $\sigma=1, \beta=\frac{12}{e}-2$.
B. $\int|\phi|=\infty, \int|\phi|^{2}=\pi$.
C. $\sup _{|t| \geq c}|\phi(t)|=1 / \sqrt{1+c^{2}} \quad(c>0)$.

Note that the bounds in the local lumlt theorems are not directly applicable since $\int|\phi|=\infty$. However, this can be overcome by bounding $\int|\phi|^{n}$ by $s \int|\phi|^{2}$ where s is the supremum of $|\phi|$ over the domaln of integration, to the power $n-2$. Using this device, derlve the rejection constant from the thus modifled local limit theorem as a function of n.
3. A continuation of exerclse 2. Let f_{a} be the normalized (zero mean, unit varlance) gamma (a) density, and let g be the normal density. By direct means, find sequences a_{n}, b_{n} such that for all $a \geq 1$,

$$
\left|f_{a}(x)-g(x)\right| \leq \min \left(a_{n}, \frac{b_{n}}{x^{2}}\right)
$$

and compare your constants with those obtalned in exerclse 2. (They should be dramatically smaller.)
4. Prove the clalm that in Lemma 4.7, $b_{n} \sim b /\left(x^{2} \sqrt{n}\right)$ when the condition $\int t^{2}|\phi(t)| d t<\infty$ is relaxed to

$$
\int t^{2}|\phi(t)|^{k} d t<\infty
$$

where $k>0$ is a fixed integer.
5. Conslder a monotone density f on $[0, \infty)$. Glve a constructive completely automatic rule for decomposing this density as a countable mlxture of unlform densitles, i.e. the decomposition should be obtalnable even if f is only given in black box format, and the countable mixture should give us the monotone denslty again in the sense that the L_{1} distance between the two densities is zero (this allows the functions to be different on possibly uncountable sets of zero measure). Can you make a statement about the rate of decrease of p_{i} for the following subclasses of monotone densities: the log-
concave densitles, the concave densitles, the convex densitles? Prove that when $p_{i} \leq c e^{-b i}$. for some $b, c>0$ and all i, then $E(K)=O(\log (n))$, where K is the largest integer in a sample of size n drawn from probabillty vector p_{1}, p_{2}, \ldots. Conclude that for important classes of densitles, we can generate sums of n ild random varlates in expected time $O(\log (n))$.
6. Gram-Charlier series. The standard approximation for the density f_{n} of $S_{n} /(\sigma \sqrt{n})$ where S_{n} is the sum of n lid zero mean random variables with second moment σ^{2} is g where g is the normal density. The closeness is covered by local central llmit theorems, and the errors are of the order of $1 / \sqrt{n}$. To obtaln errors of the order of $1 / n$ it is necessary to user a finer approximation. For example, one could use an extra term in the GramCharller serles (see e.g. Ord (1972, p. 28)). This leads to the approximation by

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\left(1+\frac{\mu_{3}}{8 \sigma^{3} \sqrt{n}}\left(x^{3}-x\right)\right),
$$

where μ_{3} is the third moment for f. For symmetric distributions, the extra correction term is zero. This suggests that the local llmit theorems of section 4.3 can be improved. For the symmetric unlform density, find constants a, b such that $\left|f_{n}-g\right| \leq \frac{1}{n} \min \left(a, b x^{-2}\right)$. Use this to design a unlformly fast generator for sums of symmetric uniform random varlables.
7. A continuation of the previous exerclse. Let $a \in R$ be a constant. Give a random varlate generator for the following class of densitles related to the Gram-Charller serles approximation of the previous exerclse:

$$
g(x)=c\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\left(1+a\left(x^{3}-x\right)\right)\right)_{+},
$$

where c is a normallzation constant.

5. DISCRETE EVENT SIMULATION.

5.1. Future event set algorithms.

Several complex systems evolving in tlme fall into the following category: they can be charactertzed by a state, and the state changes only at discrete times. Systems falling into this category include most queueing systems such as those appearing in banks, elevators, computer networks, computer operating systems and telephone networks. Systems not included in this category are those which change state continuously, such as systems driven by differentlal equations (physical or chemical processes, traffic control systems). In discrete event slmulation of such systems, one keeps a subset of all the future events in a future event set, where an event is deflned as a change of state, e.g. the arrival or departure of
a person in a bank. By taking the next event from the future event set, we can make time advance with blg Jumps. After having grabbed thls event, it is necessary to update the state and if necessary schedule new future events. In other words, the future event set can shrink and grow in its lifetime. What matters is that no event is mlssed. All future event set algorithms can be summarized as follows:

Future event set algorithm

Time $\leftarrow 0$.
Intialize State (the state of the system).
Initialize FES (future event set) by scheduling at least one event.
WHILE NOT EMPTY (FES) DO
Select the minimal time event in FES, and remove it from FES.
Time \leftarrow time of the selected event, i.e. make time progress.
Analyze the selected event, and update State and FES accordingly.

For worked out examples, we refer the readers to more speclallzed texts such as Bratley, Fox and Schrage (1983), Banks and Carson (1984) or Law and Kelton (1982). Our maln concern is with the complexity aspect of future event set algorithms. It is difficult to get a good general handle on the tlme complexity due to the state updates. On the other hand, the contribution to the time complexity of all operations involving FES, the future event set, is amenable to analysis. These operations include
A. INSERT a new event in FES.
B. DELETE the minlmal time event from FES.
C. CANCEL a particular event (remove it from FES).

There are two kinds of INSERT: INSERT based upon the time of the event, and INSERT based upon other information related to the event. The latter INSERT is required when a simulation demands information retrieval from the FES other than selection of the minimal time event. This is the case when cancelations can occur, l.e. deletlons of events other than the minimal time event. It can always be avoided by leaving the event to be canceled in FES but marking it "canceled", so that when it is selected at some polnt as the minimal time event, it can Immediately be discarded. In most cases we have to use a dual data structure which allows us to implement the operations INSERT, DELETE and elther CANCEL or MARK efflclently. Typically, one part of the data structure consists of a dictionary (ordered according to keys used for cancellng or marking), and another part is a priority queue (see Aho, Hopcroft and Ullman (1983) for our terminolgy). Since the number of elements in FES grows and shrinks with time, it is difficult to unlformize the analysis. For thls reason, sometimes the following assumptlons are made:
A. The future event set has n events at all times. This Implles that when the minimum time event is deleted, the empty slot is immediately filled by a new event, l.e. the DELETE and INSERT operations always go together.
B. Intlally, the future event set has n events, with random times, all lld with common distribution function F on $[0, \infty)$.
C. When an event with event time t is deleted from FES, the new event replacing it in FES has time $t+T$, where T also has distribution function F.
These three assumptions taken together form the basls of the so-called hold model, colned after the SIMULA HOLD operation, which combines our DELETE and INSERT operatlons. Assumptions B and C are of a stochastlc nature to facllItate the expected time analysis. They are motivated by the fact that in homogeneous Polsson processes, the inter-event times are independent exponentlally distributed. Therefore, the distribution function F is typlcally the exponential distribution. The quantity of interest to us is the expected time needed to execute a HOLD operation. Unfortunately, thls quantlity depends not only upon n, but also on F and the tlme instant at which the expected time analysis is needed. Thls is due to the fact that the times of the events in the FES have distributions that vary. It is true that relative to the minimum time in the FES, the distributlon of the $n-1$ non-minlmal times approaches a llmit distrlbution, which depends upon F and n. Analysls based upon this llmit distribution is at times risky because it is difflcult to pinpolnt in complex systems when the steady state is almost reached. What complicates matters even more is the dependence of the limlt distribution upon n. The limlt of the llmit distribution with respect to n, a double llmit of sorts, has density ($1-F(x)$)/ $\mu(x>0)$ where μ is the mean for F (Vaucher, 1977). The analyses are greatly facllitated if this limit distribution is used as the distribution of the relative event times in FES. The results of these analyses should be handled with great care. Two extensive reports based upon this model were carrled out by Kingston (1985) and McCormack and Sargent (1981). An alternative model was proposed by Reeves (1984). He also works with this limiting distribution, but departs from the HOLD model, In that events are inserted, or scheduled, in the FES according to a homogeneous Polsson process. This implies that the slze of the FES is no longer flxed at a glven level n, but hovers around a mean value n. It seems thus safer to perform a worst-case time analysis, and to include an expected time analysis only where exact calculations can be carried out. Luckily, for the important exponentlal distribution, this can be done.

Theorem 5.1.

If assumptions A-C hold, and F is the exponential (λ) distribution, if k HOLD operations have been carried out for any integer k, if X^{*} is the minimal event time in the FES, and $X_{1}, X_{2}, \ldots, X_{n-1}$ are the $n-1$ non-minimal event times in the FES (unordered, but in order of their insertion in the FES), then $X_{1}-X *, \ldots, X_{n-1}-X *$ are lld exponentlal (λ) random varlables.

Proof of Theorem 5.1.

This is best proved inductively. Initlally, we have n exponentially distributed tlmes. The assertion is certainly true, by the memoryless property of the exponentlal distribution. Now, take the minimum time, say M, remove it, and Insert the time $M+E$ in the FES, where E is exponential (λ). Clearly, all n times in the FES are now Ild with an exponential (λ) distribution on $[M, \infty)$. We are thus back where we started from, and can apply the memoryless property again.

Reeves's model allows for a simple direct analysis for all distribution functlons F. Because of its importance, we will brlefly study his model in a separate section, before moving on to the description of a few possible data structures for the FES.

5.2. Reeves's model.

In Reeves's model, the FES is Inttally empty. Insertions occur at random times, which correspond to a homogeneous Polsson process with rate λ. The time of an inserted event is the insertion time plus a delay time which has distribution function F. A few propertles will be needed further on, and these are collected in Theorem 5.2:

Theorem 5.2.

Let $0<T_{1}<T_{2}<\cdots$ be a homogeneous Polsson process with rate $\lambda>0$ (the T_{i} 's are the insertion times), and let X_{1}, X_{2}, \ldots be ind random variables with common distribution function F on $[0, \infty)$. Then
A. The random varlables $T_{i}+X_{i}, 1 \leq i$, form a nonhomogeneous Polsson process with rate function $\lambda F(t)$.
B. If N_{t} is the number of events in FES at time t, then N_{t} is Polsson $\left(\lambda \int_{0}(1-F)\right) . N_{t}$ is thus stochastically smaller than a Polsson $(\lambda \mu)$ random varlable where $\mu=\int_{0}^{\infty}(1-F)$ is the mean for F.
C. Let $V_{i}, i \leq N_{t}$, be the event times for the events in FES at time t. Then the random varlables $V_{i}-t$ form a nonhomogeneous Polsson process with rate function $\lambda(F(t+u)-F(u)), u \geq 0$.

Proof of Theorem 5.2.

Most of the theorem is left as an exerclse on Polsson processes. The maln task is to verify the Polsson nature of the defined processes by checking the Independence property for nonoverlapping intervals. We wlll malnly point out how the varlous rate functlons are obtalned.

For part A, let L be the number of insertions up to time t, a Polsson (λt) random varlable, and let M be the number of $T_{i}+X_{i}$'s not exceeding t. Clearly, by the uniform distribution property of homogeneous Polsson processes, M is distributed as

$$
\sum_{i=0}^{L} I_{\left\{t U_{i}+X_{i} \leq t\right]}
$$

where the U_{i} 's are lid unlform [0,1] random variables. Note that this is a Polsson sum of lld Bernoull random varlables. As we have seen elsewhere, such sums are agaln Polsson distributed. The parameter is $\lambda t p$ where $p=P\left(t U_{1}+X_{1} \leq t\right)$. The parameter can be rewritten as

$$
\begin{aligned}
& \lambda t P\left(X_{1} \leq t U_{1}\right)=\lambda t \int_{0}^{1} F(t u) d u \\
& =\lambda \int_{0}^{t} F(u) d u
\end{aligned}
$$

For part B, the rate function can be obtained similarly by writing N_{t} as a Polsson (λt) sum of ild Bernoulli random varlables with success probabllity $p=P\left(t U_{1}+X_{1}>t\right)$. This is easily seen to be Polsson $\left(\lambda \int_{0}(1-F)\right)$. For the second statement of part B, recall that the mean for distribution function F is $\int_{0}^{\infty}(1-F)$.

Finally, consider part C. Here agaln, we argue analogously. Let M be the number of events in FES at time t with event times not exceeding $t+u$. Then M is a Polsson (λt) sum of lld Bernoull random variables with success parameter p glven by

$$
\begin{aligned}
& P\left(t \leq t U_{1}+X_{1}<t+u\right)=\int_{0}^{1}(F(t z+u)-F(t z)) d z \\
& =\frac{1}{t} \int_{0}^{t}(F(z+u)-F(z)) d z
\end{aligned}
$$

The statement about the rate function follows directly from this.

The asymptotics in Reeves's model should not be with respect to N_{t}, the slize of the FES, because this oscllates randomly. Rather, it should be with
respect to t, the time. The first important observation is that the expected slize of the FES at tlme t is $\lambda \int_{0}(1-F) \rightarrow \lambda \mu$ as $t \rightarrow \infty$, where μ is the mean for F. If μ Is small, the FES is small because events spend only a short time in FES. On the other hand, If $\mu=\infty$, then the expected size of the FES tends to ∞ as $t \rightarrow \infty$, i.e. we would need infinite space in order to be able to carry out an unllmited time slmulation. The situation is also bad when $\mu<\infty$, although not as bad as in the case $\mu=\infty$: It can be shown (see exerclses) that lim $\sup _{t \rightarrow \infty} N_{t}=\infty$ almost surely. Thus, in all cases, an unllmited memory would be required. This should be vlewed as a serlous drawback of Reeves's model. But the insight we galn from his model is invaluable, as we wlll find out in the next section on linear lists.

5.3. Linear lists.

The oldest and simplest structure for an FES is a llnear llst in which the elements are kept according to increasing event times. For what follows, it is all but irrelevant whether a linked list implementation or an array implementation is chosen. Deletion is obvlously a constant time operation. Insertion of an element In the i-th position takes time proportional to i if we start searching from the front (small event tlmes) of the llst, and to $n-i+1$ if we start from the back and n is the cardinality of the FES. We can't say that the time is $\min (i, n-i+1)$ because the value of i is unknown beforehand. Thus, one of the questions to be studied is whether we should start the search from the front or the back.

By Theorem 5.2, part C, we observe that at tlme t_{0}, the expected value of the number of events exceeding the currently inserted element (called $M_{t_{0}}$) is

$$
\begin{aligned}
& E\left(M_{t_{0}}\right)=\lambda \int_{0}^{\infty} \int_{t}^{\infty}\left(F\left(t_{0}+u\right)-F(u)\right) d u d F(t) \\
& =\lambda \int_{0}^{\infty}\left(F\left(t_{0}+u\right)-F(u)\right) \int_{0}^{u} d F(t) d u \\
& =\lambda \int_{0}^{\infty} F(u)\left(F\left(t_{0}+u\right)-F(u)\right) d u
\end{aligned}
$$

Here we used a standard interchange of integrals. Since the expected number of elements in the FES is $\lambda \int_{0}^{\infty}\left(F\left(t_{0}+u\right)-F(u)\right) d u$, the expected value of the number of event times at most equal to the event time of the currently inserted element (called $L_{t_{0}}$) Is

$$
E\left(L_{t_{0}}\right)=\lambda \int_{0}^{\infty}(1-F(u))\left(F\left(t_{0}+u\right)-F(u)\right) d u
$$

We should search from the back when $E\left(M_{t_{0}}\right)<E\left(L_{t_{0}}\right)$, and from the front otherwise. In an array Implementation, the search can always be done by binary search In logarithmic time, but the updating of the array calls for the shift by one positlon of the entlre lower or upper portion of the array. If one imagines a circular array implementation with free wrap-around, of the sort used to implement queues (Standish, 1980), then it is always possible to move only the smaller portion. The same is true for a linked list Implementation if we keep pointers to the front, rear and middle elements in the llnked list and use double linking to allow for the two types of search. The middle element is first compared with the inserted element. The outcome determines in which half we should insert, where the search should start from, and how the middle element should be updated. The last operation would also require us to keep a count of the number of elements in the llnked list. We can thus conclude that for a llnear list insertion, we can find an implementation taking time bounded by $\operatorname{mln}\left(M_{t_{0}}, L_{t_{0}}\right)$. By Jensen's Inequallty, the expected time for insertion does not exceed

$$
\min \left(E\left(M_{t_{0}}\right), E\left(L_{t_{0}}\right)\right) .
$$

The fact that all the formulas for expected values encountered so far depend upon the current time t_{0} could deprive us from some badly needed insight. Lucklly, as $t_{0} \rightarrow \infty$, a steady state is reached. In fact, thls is the only case studled by Reeves (1984). We summarize:

Theorem 5.3.

In Reeves's model, we have

$$
\begin{aligned}
& E\left(M_{t_{0}}\right) \uparrow \lambda \int_{0}^{\infty} F(1-F) \text { as } t_{0} \rightarrow \infty \\
& E\left(L_{t_{0}}\right) \uparrow \lambda \int_{0}^{\infty}(1-F)^{2} \text { as } t_{0} \rightarrow \infty
\end{aligned}
$$

Proof of Theorem 5.3.

We will only consider the first statement. Note that $E\left(M_{t_{0}}\right)$ is monotone \uparrow in t_{0}, and that for every t_{0}, the value does not exceed $\lambda \int_{0}^{\infty} F(1-F)$. Also, by Fatou's lemma,

$$
\operatorname{lm} \operatorname{lnf}_{t_{0} \rightarrow \infty} E\left(M_{t_{0}}\right) \geq \lambda \int_{0}^{\infty} \ln \operatorname{lnf}_{t_{0} \rightarrow \infty} F(u)\left(F\left(t_{0}+u\right)-F(u)\right) d u=\lambda \int_{0}^{\infty} F(1-F)
$$

Remark 5.1. Front or back search.

From Theorem 5.3, we deduce that a front search is indicated when $\int(1-F)^{2}<\int F(1-F)$. It is perhaps interesting to note that equallity is reached for the exponential distribution. Barlow and Proschan (1875) deflne the NBUE (NWUE) distributions as those distributions for which for all $t>0$,

$$
\int_{t}^{\infty}(1-F) \leq(\geq) \mu(1-F(t)),
$$

where μ is the mean for F. Examples of NBUE (new better than used in expectation) distributions include the unlform, normal and gamma distributions for parameter at least one. NWUE distributions include mixtures of exponentials and gamma distributions with parameter at most one. By our orlginal change of Integral we note that for NBUE distributions,

$$
\begin{aligned}
& \lambda \int_{0}^{\infty} F(1-F)=\lambda \int_{0}^{\infty}\left(\int_{t}^{\infty}(1-F)\right) d F(t) \\
& \leq \lambda \mu \int_{0}^{\infty}(1-F(t)) d F(t)=\frac{\lambda \mu}{2}
\end{aligned}
$$

Since the asymptotic expected size of the FES is $\lambda \mu$, we observe that for NBUE distributions, a back search is to be preferred. For NWUE distributions, a front search is better. In all cases, the trick with the median polnter (for linked lists) or the medlan comparison (for clrcular arrays) automatically selects the best search mode.

Remark 5.2. The HOLD model.

In the HOLD model, the worst-case Insertion time can be as poor as n. For the expected insertion time, the computations are simple for the exponential distribution function. In vlew of Theorem 5.1, it is easy to see that the expected number of comparisons in a forward scan is $\frac{n+2}{2}-\frac{1}{n+1}=\frac{n}{2}+\frac{n}{n+1}$. The expected number of backward scans is equal to this, by symmetry. For all distributions F having a density, the expected insertion time grows linearly with n (see exerclses).

A brief historical remark is in order. Linear lists have been used extenslvely in the past. They are simple to implement, easy to analyze and use minimal
storage. Among the possible physical implementations, the doubly linked 1 ist is perhaps the most popular (Knuth, 1969). The asymptotic expected insertion time for front and back search under the HOLD model was obtalned by Vaucher (1977) and Englebrecht-Wiggans and Maxwell (1978). Reeves (1984) dlscusses the same thing for his model. Interestingly, if the slze n in the HOLD model is replaced by the asymptotic value of the expected slze of the FES, $\lambda \mu$, the two results colnclde. In partlcular, Remark 5.1 applles to both models. The polnt about NBUE distributions in that remark is due to McCormack and Sargent (1981). The idea of using a median pointer or a median comparison goes back to Prltsker (1978) and Davey and Vaucher (1980). For more analysis involving linear llsts, see e.g. Jonassen and Dahl (1975).

The simple linear list has been generallzed and improved upon in many ways. For example, a number of algorlthms have been proposed which keep an additional set of pointers to selected events in the FES. These are known as multlple pointer methods, and the implementations are sometimes called indexed llnear list implementations. The polnters partition the FES into smaller sets contalning a few events each. Thls greatly facllitates insertlon. For example, Vaucher and Duval (1875) space polnter events (events polnted to by these polnters) equal amounts of time (Δ) apart. In view of thls, we can locate a partlcular subset of the FES very quickly by making use of the truncation operation. The subset is then searched in the standard sequential manner. Ideally, one would llke to have a constant number of events per interval, but this is difficult to enforce. In Reeves's model, the analysis of the Vaucher-Duval bucket structure is easy. We need only concern ourselves with insertions. Furthermore, the time needed to locate the subset (or bucket) In which we should insert is constant. The buckets should be thought of as small linked lists. They actually need not be globally concatenated, but within each list, the events are ordered. The global time interval is divided into intervals $[0, \Delta),[\Delta, 2 \Delta), \ldots$. Let A_{j} be the j-th interval, and let $F\left(A_{j}\right)$ denote the probabllity of the j-th interval. For the sake of slmplicity, let us assume that the tlme spent on an insertion is equal to the number of events already present in the interval into which we need to Insert. In any case, Ignoring a constant access time, this will be an upper bound on the actual insertion time. The expected number of events \ln bucket $A_{j}=[(j-1) \Delta, j \Delta)$ under Reeves model at time t is given by

$$
\int_{A_{j}-t} \lambda(F(t+u)-F(u)) d u
$$

where $A_{j}-t$ means the obvlous thing. Let J be the collection of all Indices for which A_{j} overlaps with $[t, \infty)$, and let B_{j} be $A_{j} \cup[t, \infty)$. Then the expected time Is

$$
\sum_{j \in J} \int_{B_{j}-t} \lambda(F(t+u)-F(u)) d u F\left(B_{j}-t\right)
$$

In Theorem 5.4, we derive useful upper bounds for the expected time.

Theorem 5.4.

Consider the bucket based linear list structure of Vaucher and Duval with bucket width Δ. Then the expected time for inserting (scheduling) an event at tlme t in the FES under Reeves's model is bounded from above by
A. $\lambda \mu$.
B. $\lambda \Delta$.
C. $\lambda C \mu \Delta$, where C is an upper bound for the density f for F (thls point is only applicable when a density exists).
In particular, for any t and F, taking $\Delta \leq \frac{c}{\lambda}$ for some constant c guarantees that the expected time spent on insertions is bounded by c.

Proof of Theorem 5.4.

Bound A is obtained by noting that each $F\left(B_{j}-t\right)$ in the sum is at most equal to 1 , and that $F(t+u) \leq 1$. Bound B is obtalned by bounding

$$
\int_{B_{j}-t} \lambda(F(t+u)-F(u)) d u
$$

by $\lambda \Delta$, and observing that the terms $F\left(B_{j}-t\right)$ summed over $j \in J$ yleld the value 1. Finally inequallty C uses the fact that $F\left(B_{j}-t\right) \leq C \Delta$ for all j.

Theorem 5.4 is extremely Important. We see that it is possible to have constant expected time deletlons and insertions, unlformly over all F, t and λ, provided that Δ is taken small enough. The bound on Δ depends upon λ. If λ is known, there is no problem. Unfortunately, λ has to be estlmated most of the time. Recall also that we are in Reeves's idealized model. The present analysls does not extend beyond thls model. As a rule of thumb, one can take Δ equal to $1 / \lambda$ where λ is the expected number of points inserted per unlt of time. This should insure that every bucket has at most one polnt on the average. Taking Δ too small is harmful from a space polnt of vlew because the number of intervals into which the FES is cut up is

$$
\left\lceil\left(\max \left(Y_{i}\right)-t\right) / \Delta\right\rceil
$$

where the Y_{i} 's are the scheduled event times at time t. Taking the expected value, we see that thls is bounded from above by

$$
1+\frac{E\left(\max \left(Y_{1}, \ldots, Y_{N}\right)\right)}{\Delta}
$$

where N is Polsson $(\lambda \mu)$. Recall that for an upper bound the Y_{i} 's can be considered as ild random variables with density ($1-F) / \mu$ on $[0, \infty)$. This allows us to get a good Idea of the expected number of buckets needed as a function of the
expected FES slze, or λ. We offer two quantitative results.

Theorem 5.5.

The expected number of buckets needed in Reeves's model does not exceed

$$
1+\frac{\sqrt{\frac{\lambda}{3} E\left(X^{3}\right)}}{\Delta},
$$

where X has distribution function F. If $\Delta \sim \frac{c}{\lambda}$ as $\lambda \rightarrow \infty$ for some constant c, then thls upper bound \sim

$$
\frac{1}{c \sqrt{3}} \sqrt{E\left((\lambda X)^{3}\right)} .
$$

Furthermore, if $E\left(e^{u X}\right)<\infty$ for some $u>0$, and Δ is as shown above, then the expected number of buckets is $O(\lambda \log (\lambda))$.

Proof of Theorem 5.5.

For the flrst part of the Theorem, we can assume without loss of generallty that X has finlte third moment. We argue as follows:

$$
\begin{aligned}
& E\left(\max \left(Y_{1}, \ldots, Y_{N}\right)\right) \leq E\left(\sqrt{\sum_{i \leq N} Y_{i}^{2}}\right) \\
& \leq \sqrt{E(N) E\left(Y_{1}^{2}\right)} \quad(\text { Jensen' } \text { s Inequality }) \\
& =\sqrt{\lambda \mu E\left(X^{3}\right) /(3 \mu)}=\sqrt{\lambda E\left(X^{3}\right) / 3}
\end{aligned}
$$

The last step follows from the simple observation that

$$
\begin{aligned}
& \int_{0}^{\infty} x^{2} \frac{1-F(x)}{\mu} d x=\int_{0}^{\infty} x^{2} \int_{x}^{\infty} \frac{1}{\mu} d F(t) d x \\
& =\int_{0}^{\infty} \frac{1}{\mu} \int_{0}^{t} x^{2} d x d F(t) \\
& =\frac{1}{3 \mu} E\left(X^{3}\right)
\end{aligned}
$$

The second statement of the Theorem follows in three llnes. Let u be a fixed constant for which $E\left(e^{u X}\right)=a<\infty$. Then, using X_{1}, \ldots, X_{n} to denote an IId sample with distribution function F,

$$
\begin{aligned}
& E\left(\max \left(Y_{1}, \ldots, Y_{n}\right)\right) \leq E\left(\max \left(X_{1}, \ldots, X_{n}\right)\right) \\
& \leq E\left(\frac{1}{t} \log \left(\sum_{i \leq N} e^{u X_{1}}\right)\right) \\
& \leq \frac{1}{t} \log \left(E(N) E\left(e^{u X_{1}}\right)\right)=\frac{1}{t} \log (\lambda \mu a) .
\end{aligned}
$$

This concludes the proof of Theorem 5.5.

Except when F has compact support, the expected number of buckets needed grows superlinearly with λ, when Δ is plcked as a constant over λ. The sltuation is worse when Δ is plcked even smaller. Thls is a good example of the tlme-space trade-off, because taking Δ larger than $1 / \lambda$ effectively decreases the space requirements but slows down the algorlthm. However, large Δ 's are uninterestlng since we will see that there are nonlinear data structures which will run in expected or even worst-case tlme $O(\log (\lambda))$. Thus, there is no need to study cases in which the Vaucher-Duval structure performs worse than thls. Vaucher and Duval (1975) and Davey and Vaucher (1980) clrcumvent the superlinear (in λ) storage need by collapsing many buckets in one blg bucket, called an overflow bucket, or overfiow list. Denardo and Fox (1978) consider a hlerarchy of bucket structures where bucket width decreases with the level.

Varlous other multiple pointer structures have been proposed, such as the structures of Franta and Maly $(1977,1978)$ and Wyman (1978). They are largely simllar to the Vaucher-Duval bucket structure. One nice new idea surfacing in these methods is the following. Assume that one wants to keep the cardinality of all sublists about equal and close to a number m, and assume that the FES has about n elements. Therefore, about n / m polnters are needed, which in turn can be kept in a llnear list, to be scanned sequentlally from left to right or right to left. The time needed for an insertion cannot exceed a constant times $\frac{n}{m}+m$ where the last term accounts for the sequentlal search into the selected sublist. The optimal choice for m is thus about \sqrt{n}, and the resulting complexity of an Insertion grows also as \sqrt{n}. The difficulty with theses structures is the dynamic balancing of the sublist cardinallties so that all sublists have about m elements. Henrlksen (1977) proposes to keep about m events per sublist, but the polnter records are now kept in a balanced blnary search tree, which is dynamically adjusted. The complexity of an insertion is not immediately clear since the updating of the polnter tree requires some complicated work. Without the updating, we would need time about equal to $\log \left(\frac{n}{m}\right)+m$ just to locate the polnt of insertion of one event. This expression is minimal for constant m ($m=4$ is the usual recommendation for Henrlksen's algorithm (Kingston, 1984)). The complexity of insertion without updating is $\Theta(\log (n))$. For a more detalled expected time analysis, see Kingston (1984). In the next section, we discuss $O(\log (n))$ worstcase structures which are much simpler to Implement than Henriksen's structure, and perform about equally well in practice.

5.4. Tree structures.

If the event tlmes are kept in a binary search tree, then one would suspect that after a while the tree would be skewed to the rlght, because elements are deleted from the left and added mostly to the right. Interestingly, this is not always the case, and the explanatlon parallels that for the forward and backward scanning methods in linear llsts. Consider for example an exponential F in the HOLD model. As we have seen in Theorem 5.1, all the relative event times in the FES are lld exponentlally distrlbuted. Thus, the binary search tree at every point in time is distributed as for any binary search tree constructed from a random permutation of $1, \ldots, n$. The propertles of these trees are well-known. For example, the expected number of comparisons needed for an insertion of a new element, distributed as the n other elements, and independent of it, is $\sim 2 \log (n)$ (see e.g. Knuth (1973) or Standish (1980)). The expected tlme needed to delete the smallest element is $O(\log (n))$. First, we need to locate the element at the bottom left, and then we need to restore the binary tree in case the deleted element had right descendants, by putting the bottom left descendant of these right descendants in its place. Unfortunately, one cannot count on F belng exponential, and some distributions could lead to dangerous unbalancing, elther to the left or the right. Thls was for example polnted out by Kingston (1985).

For robust performance, it is necessary to look at worst-case insertion and deletion times. They are $O(\log (n))$ for such structures as the $2-3$ tree, the AVL tree and the heap. Of these, the heap is the easlest to implement and understand. The overhead with the other trees is excessive. Suggested for the FES by Floyd In a letter to Fox In the late stxtles, and formallzed by Gonnet (1978), the heap compares favorably in the extensive tlming studies of McCormack and Sargent (1981), Ulrich (1978) and Reeves (1984). However, in Isolated applications, It is clearly inferlor to the bucket structures (Franta and Maly, 1978). This should come as no surprise slnce properly designed bucket structures have constant expected time insertions and deletlons. If robustness is needed such as in a general purpose software package, the heap structure is warmly recommended (see also Ulrich (1978) and Kingston (1985)).

It is possible to streamline the heap for use in discrete event simulation. The first modification (Franta and Maly, 1978) conslsts of combining the DELETE and INSERT operations into one operation, the HOLD operation. Since a deletion calls for a replacement of the root of the heap, it would be a waste of effort to replace It by the last element in the heap, flx the heap, then insert a new element In the last positlon, and flnally fix the heap agaln. In the HOLD operation, the root position can be filled by the new element directly. After this, the heap needs only be fixed once. This improvement is most marked when the number of HOLD operations is relatively large compared to the number of bare DELETE or INSERT operations. A second improvement, suggested by Kingston (1985), conslsts of using an m-ary heap Instead of a binary heap. Good experimental results were obtalned by him for the ternary heap. This Improvement is based on the fact that insertions are more efflclent for large values of m, whlle deletions become only slightly more time-consuming.

5.5. Exercises.

1. Prove Theorem 5.2.
2. Consider Reeves's model. Show that when $\mu<\infty, \lim \sup _{t \rightarrow \infty} N_{t}=\infty$ almost surely.
3. Show that the gamma ($a)(a \geq 1)$ and unlform $[0,1]$ distributions are NBUE. Show that the gamma $(a)(a \leq 1)$ distribution is NWUE.
4. Generalize Theorem 5.5 as follows. For $r \geq 1$, the expected number of buckets needed in Reeves's model does not exceed

$$
1+\frac{\left(\frac{\lambda}{r+1} E\left(X^{r+1}\right)\right)^{\frac{1}{r}}}{\Delta}
$$

where X has distribution function F. If $\Delta \sim \frac{c}{\lambda}$ as $\lambda \rightarrow \infty$ for some constant c, then this upper bound \sim

$$
\left.\frac{1}{c}\left(\frac{E\left((\lambda X)^{r+1}\right.}{r+1}\right)\right)^{\frac{1}{r}}
$$

5. Assume that F is the absolute normal distribution function. Prove that if Δ is $1 / \lambda$ in the Vaucher-Duval bucket structure, then the expected number of buckets needed is $O(\lambda \sqrt{\log (\lambda)})$ and $\Omega(\lambda \sqrt{\log (\lambda)})$ as $\lambda \rightarrow \infty$.
6. In the HOLD model, show that whenever F has a density, the expected time needed for insertion of a new element in an ordered doubly linked list is $\Omega(n)$ and $O(n)$.
7. Consider the binary heap under the HOLD model with an exponential distribution F. Show that the expected time needed for inserting an element at time t in the FES is $O(1)$.
8. Glve a heap-based data structure for implementing the operations DELETE, INSERT and CANCEL in $O(\log (n))$ worst-case tlme.
9. Consider the HOLD model with an ordinary binary search tree implementation. Find a distribution F for which the expected insertion time of a new element at time $t>0$ is $\Omega(\psi(n)$) for some function ψ increasing faster than a logarithm: $\lim _{n \rightarrow \infty} \psi(n) / \log (n)=\infty$.

6. REGENERATIVE PHENOMENA.

6.1. The principle.

Many processes in slmulation are repetitive, i.e. one can identify a null state, or origin, to which a system evolving in time returns, and glven that the system is in the null state at a certaln time, the future evolution does not depend upon what has happened up to that point. Consider for example a slmple random walk in which at each tlme unit, one step to the right or left is taken with equal probabllity $1 / 2$. When the random walk returns to the orlgin, we start from scratch. The future of the random walk is independent of the history up to the point of return to the orlgin. In some slmulations of such processes, we can efficlently sklp ahead In time by generating the waiting time untll a return occurs, at least when thls walting time is a proper random variable. Systems in which the probabllity of a return is less than one should be treated differently.

The galn in efficiency is due to the fact that the walting time untll the flrst return to the orlgin is sometimes easy to generate. We will work through the example of the stmple random walk in the next section. Regenerative phenomena are ublquitous: they occur in queuelng systems (see section b.3), in Markov chalns, and renewal processes in general. Heyman and Sobel (1982) provide a solld study of many stochastic processes of practical Importance and pay particular attention to regenerative phenomena.

6.2. Random walks.

The one-dimensional random walk is defined as follows. Let U_{1}, U_{2}, \ldots be ild $\{-1,1\}$-valued random varlables where $P\left(U_{1}=1\right)=P\left(U_{1}=-1\right)=\frac{1}{2}$. Form the partlal sums

$$
S_{n}=\sum_{i=1}^{n} U_{i}
$$

Here S_{n} can be considered as a gambler's gain of coln tossing after n tosses provided that the stake is one dollar; n is the time. Let T be the time untll a first return to the origin. If we need to generate S_{n}, then it is not necessary to generate the individual U_{i} 's. Rather, it suffices to proceed as follows:
$X \leftarrow 0$
WHILE $X \leq n$ DO
Generate a random variate T (distributed as the waiting time for the first return to the origin).
$X \leftarrow X+T$
$V \leftarrow X-T, Y \leftarrow 0$
WHLE $V<n$ DO
Generate a random $\{1,-1\}$-valued step U.
$Y \leftarrow Y+U, V \leftarrow V+1$
IF $Y=0$ THEN $V \leftarrow X-T$ (reset V by rejecting partial random walk)
RETURN Y

The principle is clear: we generate all returns to the orlgin up to tlme n, and slmulate the random walk explicitly from the last return onwards, keeping in mind that from the last return onwards, the random walk is conditional: no further returns to the origin are allowed. If another return occurs, the partial random walk is rejected. The example of the simple random walk is rather unfortunate in two respects: first, we know that S_{n} is binomlal ($n, \frac{1}{2}$). Thus, there is no need for an algorlthm such as the one described above, which cannot possibly run in unfformly bounded time. But more importantly, the method described above is intrinsically Inefficlent because random walks spend most of their time on one of the two sldes of the orlgin. Thus, the last return to the orlgin is likely to be $\Omega(n)$ away from n, so that the probabllity of acceptance of the explicltly generated random walk, which is equal to the probabllity of not returning to the origin, is $O\left(\frac{1}{n}\right)$. Even if we could generate T in zero time, we would be looking at an overall expected time complexity of $\theta\left(n^{2}\right)$. Nevertheless, the example has great didactical value.

The distribution of the time of the first return to the origin is given in the following Theorem.

Theorem 6.1.

In a symmetric random walk, the time T of the first return to the origin satisfles

$$
\begin{aligned}
& P(T=2 n)=p_{2 n}=\frac{1}{n 2^{2 n-1}}\binom{2 n-2}{n-1} \quad(n \geq 1), \\
& P(T=2 n+1)=0 \quad(n \geq 0)
\end{aligned}
$$

If $q_{2 n}$ is the probabllity that the random walk returns to the origin at time $2 n$, then we have
A. $\quad p_{2 n}=q_{2 n} /(2 n-1)$;
B. $p_{2 n} \sim 1 /\left(2 \sqrt{\pi} n^{3 / 2}\right)$;
C. $E(T)=\infty$;
D. $p_{2 n}=q_{2 n-2}-q_{2 n}$;
E. $\quad p_{2}=\frac{1}{2}, p_{2 n+2}=p_{2 n}\left(1-\frac{1}{2 n}\right)\left(1+\frac{1}{n}\right)$.

Proof of Theorem 6.1.

This proof will be given in full, because it is a beautlful illustration of how one can compute certaln renewal time distributlons via generating functions. We begin with the generating function $G(s)$ for the probablilites $q_{2 i}=P\left(S_{2 i}=0\right)$ where $S_{2 i}$ is the value of the random walk at tlme $2 i$. We have

$$
\begin{aligned}
& G(s)=\sum_{i} q_{2 i} s^{i}=\sum_{i=1}^{\infty} 2^{-2 i}\binom{2 i}{i} s^{i} \\
& =\sum_{i=1}^{\infty}\binom{-\frac{1}{2}}{i}(-s)^{i}=\frac{1}{\sqrt{1-s}}-1
\end{aligned}
$$

Let us now relate $p_{2 n}$ to $q_{2 i}$. It is clear that

$$
q_{2 n}=p_{2 n}+\sum_{i=1}^{n-1} p_{2 n-2 i} q_{2 i}
$$

If $H(s)$ is the generating function for $p_{2 n}$, then we have

$$
\begin{aligned}
& H(s)=\sum_{n=1}^{\infty} q_{2 n} s^{n} \\
& =\sum_{n=1}^{\infty}\left(p_{2 n} s^{n}+\sum_{i=1}^{n-1} p_{2 n-2 i} s^{n-i} q_{2 i} s^{i}\right) \\
& =H(s)+\sum_{i=1 n}^{\infty} \sum_{n=i+1}^{\infty} p_{2 n-2 i} s^{n-i} q_{2 i} s^{i}
\end{aligned}
$$

$$
=H(s)+\sum_{i=1}^{\infty} q_{2 i} s^{i} \sum_{n=1}^{\infty} p_{2 n} s^{n}=H(s)+G(s) H(s)
$$

Therefore,

$$
H(s)=\frac{G(s)}{1+G(s)}=1-\sqrt{1-s}=\sum_{i=1}^{\infty}\binom{\frac{1}{2}}{i}(-1)^{i-1} s^{i}
$$

Equating the coefficlent of s^{i} with $p_{2 i}$ gives the distribution of T. Statement A is easlly verlfled. Statement B follows by using Stirling's formula. Statement C follows directly from B. Finally, D and E are obtalned py simple computations.

Even though T has a unlmodal distribution on the even integers with peak at 2, generation by sequential inversion started at 2 is not recommended because $E(T)=\infty$. We can proceed by rejection based upon the following inequalities:

Lemma 6.1.

The probabllitles $p_{2 n}$ satlsfy for $n \geq 1$,

$$
1-\frac{1}{2 n} \leq \frac{p_{2 n}}{\frac{1}{2 \sqrt{\pi}\left(n-\frac{1}{2}\right)^{\frac{3}{2}}}} \leq e^{\frac{1}{12(2 n-1)}} \leq e^{\frac{1}{12}}
$$

Proof of Lemma 6.1.

We rewrite $p_{2 n}$ as follows:

$$
\begin{aligned}
& p_{2 n}=\frac{\Gamma(2 n-1)}{2 n 2^{2 n-2} \Gamma^{2}(n)} \\
& =\frac{e^{-(2 n-1)}(2 n-1)^{2 n-1} \sqrt{2 \pi / 2 n-1} e^{\frac{\theta}{12(2 n-1)}}}{2 n 2^{2 n-2} e^{-2 n} n^{2 n} \frac{2 \pi}{n}} \\
& =\frac{e\left(1-\frac{1}{2 n}\right)^{2 n-1} e^{\frac{\theta}{12(2 n-1)}}}{n \sqrt{2 \pi(2 n-1)}}
\end{aligned}
$$

for some $0<\theta<1$. An upper bound is provided by

$$
=\frac{e^{\frac{1}{12(2 n-1)}}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}}
$$

A lower bound is provided by

$$
\begin{aligned}
& =\frac{e\left(1-\frac{1}{2 n}\right)^{2 n}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} \\
& \geq \frac{\left(1+\frac{1}{2 n}\right)^{2 n}\left(1-\frac{1}{2 n}\right)^{2 n}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} \\
& \geq \frac{\left(1-\frac{1}{4 n^{2}}\right)^{2 n}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} \\
& \geq \frac{\left(1-\frac{1}{2 n}\right)}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} .
\end{aligned}
$$

Generation can now be dealt with by truncation of a contlnuous random varlate. Note that $p_{2 n} \leq c g(x)$ where

$$
\operatorname{cg}(x)=\left\{\begin{array}{l}
\frac{1}{2} \quad(n=1, n-1<x<n) \\
\frac{e^{\frac{1}{12}}}{\sqrt{4 \pi}\left(x-\frac{1}{2}\right)^{\frac{3}{2}}} \quad(n>1, n-1<x<n)
\end{array}\right.
$$

where

$$
c=\frac{1}{2}+\frac{2 e^{\frac{1}{12}}}{\sqrt{\pi}} .
$$

Random variates with density g can quite easlly be generated by Inversion. The algorithm can be summarized as follows:

Generator for first return to origin in simple random walk
UNTIL False

The rejection constant c is a good indicator of the expected time spent before halting provided that $p_{2 X}$ can be evaluated in constant time uniformly over all X. However, if $p_{2 X}$ is computed directly from its definition, i.e. as a ratlo of factorlals, then the computation takes time roughly proportional to X. Assume that it is exactly X. Without squeeze steps, the expected time spent computing $p_{2 X}$ would be c times $E(X)$ where X has density g. This is ∞ (exercise 6.1). However, with the squeeze steps, the probabllity of evaluating $p_{2 X}$ expllcltly for flxed value of X decreases as $\frac{1}{X}$ as $X \rightarrow \infty$. This implles that the overall expected time of the algorithm is finite (exercise 6.2).

6.3. Birth and death processes.

A blrth and death process is a process with states $0,1,2,3, \ldots$, In which the time spent \ln state i is distributed as an exponentlal random varlate divided by $\lambda_{i}+\mu_{i}$, at which time the system Jumps to state $i+1$ (a birth) with probabillty $\lambda_{i} /\left(\lambda_{i}+\mu_{i}\right)$, and to state $i-1$ (a death) otherwlse. Simple examples include
A. The Polsson process: $\lambda_{i} \equiv \lambda>0, \mu_{i} \equiv 0$. Blrths correspond essentlally to events such as arrivals in a bank.
B. The Yule process: $\lambda_{i} \equiv \lambda i>0, \mu_{i} \equiv 0$. Here we also require that at time 0 , the state be 1 . This is a particular case of a pure blrth process. The state can be identlfled with the size of a glven population in which no deaths can occur.
C. The $\mathrm{M} / \mathrm{M} / 1$ queue: $\lambda_{i} \equiv \lambda>0, \mu_{i} \equiv \mu>0, \mu_{0}=0$. Here the state can be identlfled with the slize of a queue, a blrth with an arrival, and a death with a departure. The condition $\mu_{0}=0$ is natural since nobody can leave the queue when the queue is empty.
In all these examples, simulation can often be accelerated by making use of first-passage-time random variables. Formally, we define the first passage time from i to $j(j>i), T_{i j}$, by

$$
T_{i j}=\operatorname{lnf}\left\{t: X_{t}=j \mid X_{0}=i\right\}
$$

Here X_{t} is the state of the system (an integer) at time t, and X_{0} is the initial state. Let us consider the $\mathrm{M} / \mathrm{M} / 1$ queue. The busy perlod of such a queue is T_{10}. If the system starts in state 0 (empty queue), and we deflne a system cycle as the minimal time untll for the first time another empty queue state is reached after some busy period, i.e. after at least one person has been \ln the queue, then the system cycle is distributed as $E / \lambda+T_{10}$, where E is an exponential random variate, Independent of T_{10}. The only $\mathrm{M} / \mathrm{M} / 1$ queues of interest to us are those which have with probabllity one a finte value for T_{10}, i.e. those for which $\mu \geq \lambda$ (Heyman and Sobel, 1982, p. 91). The actual derlvation of the distribution of T_{10} would lead us astray. What matters is that we can generate random varlates distributed as T_{10} quite easily. This should of course not be done by generating all the arrivals and departures untll an empty queue is reached, because the expected time of this method is not uniformly bounded over all values of $\lambda<\mu$. This is best seen by noting that $E\left(T_{10}\right)=1 /(\mu-\lambda)$.

The $\mathrm{M} / \mathrm{M} / 1$ queue provides one of the few instances in which the distribution of the first passage times is analytically manageable. For example, $2 \sqrt{\lambda \mu} T_{10}$ has density

$$
f(x)=e^{-\frac{x}{2}\left(\xi+\frac{1}{\xi}\right)} I_{1}(x) \frac{\xi}{x} \quad(x>0)
$$

where $\xi=\sqrt{\frac{\mu}{\lambda}}$ and I_{1} is the Bessel function of the first kind with Imaginary argument (see section LX.7.1 for a definition). Direct generation can be carried out based upon the following result.

Theorem 6.2.

When E is exponentially distributed, Y is a random varlable with density

$$
g(y)=c \frac{\sqrt{y(1-y)}}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1+2 y} \quad(0<y<1)
$$

where $\quad c=\frac{4 \xi}{\pi} \quad$ and $\quad \xi=\sqrt{\frac{\mu}{\lambda}}$, and E, Y are independent, then $E /\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right)$ has density f, and $E /(\mu+\lambda+2 \sqrt{\mu \lambda}(2 Y-1))$ is distributed as T_{10}.

Proof of Theorem 6.2.

Thls theorem Illustrates once agaln the power of integral representations for densities. By an integral representation of I_{1} (Magnus et al, 1986, p. 84),

$$
\begin{aligned}
& f(x)=e^{-\frac{x}{2}\left(\xi+\frac{1}{\xi}\right)} I_{1}(x) \frac{\xi}{x} \\
& =e^{-\frac{x}{2}\left(\xi+\frac{1}{\xi}\right)} \frac{\xi}{x} \frac{x}{\pi} \int_{-1}^{1} e^{-z x} \sqrt{1-z^{2}} d z \\
& =\int_{0}^{1}\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 y-1\right) e^{-x\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 y-1\right)} \frac{4 \xi}{\pi} \frac{\sqrt{y(1-y)}}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 y-1} d y \\
& =E\left(\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right) e^{-x\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right)}\right)
\end{aligned}
$$

where Y has density g. Given Y, this is the density of $E /\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right)$.

Generation of Y can be taken care of very simply by rejection. Note that

$$
g(y) \leq\left\{\begin{array}{l}
c \frac{\sqrt{y(1-y)}}{2 y} \\
c \frac{\sqrt{y(1-y)}}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1}
\end{array}\right.
$$

where $c=\frac{4 \xi}{\pi}$. The top upper bound, proportional to a beta $\left(\frac{1}{2}, \frac{3}{2}\right)$ density integrates to ξ. The bottom upper bound, proportional to a beta $\left(\frac{3}{2}, \frac{3}{2}\right)$ density, integrates to $(\xi /(\xi-1))^{2}$. One should always pick the bound which has the
smallest integral. The cross-over point is at $\xi=\frac{1}{2}(3+\sqrt{5}) \approx 2.6$.

$$
\begin{aligned}
& \text { Generator for } \mathrm{g} \\
& \text { CASE } \\
& \xi \leq \frac{3+\sqrt{5}}{2}: \\
& \text { REPEAT } \\
& \text { Generate a uniform }[0,1] \text { random variate } U \text {. } \\
& \text { Generate a beta }\left(\frac{1}{2}, \frac{3}{2}\right) \text { random variate } Y \text {. } \\
& \text { UNTIL } \frac{U}{1-U} \leq \frac{2 Y}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1} \\
& \xi>\frac{3+\sqrt{5}}{2} \text { : } \\
& \text { REPEAT } \\
& \text { Generate a uniform }[0,1] \text { random variate } U \text {. } \\
& \text { Generate a beta }\left(\frac{3}{2}, \frac{3}{2}\right) \text { random variate } Y \text {. } \\
& \operatorname{UNTIL} \frac{U}{1-U} \leq \frac{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1}{2 Y} \\
& \text { RETURN } Y
\end{aligned}
$$

The expected number of iterations is $\min \left(\xi,\left(\frac{\xi}{\xi-1}\right)^{2}\right)$. This is a unimodal function In ξ, taking the value 1 as $\xi \downarrow 1$ and $\xi \uparrow \infty$. The peak 1 s at $\xi=(3+\sqrt{5}) / 2$. The algorithm is uniformly fast with respect to $\xi \geq 1$. In the case $\xi=1$ the acceptance condition is automatically satisfled, and the combination of the g generator with the property of Theorem 6.2 is reduced to a generator already dealt with in Theorem IX.7.1.

6.4. Phase type distributions.

Phase type distributions (or simply PH-distributions) are the distributions of absorption times in absorbing Markov chalns, which are useful in studyIng queues and rellabllity problems. We consider only discrete (or: discrete-time) Markov chalns with a finite number of states. An absorption state is one which, when reached, does not allow escape. Even if there is at least one absorption state, it is not at all certaln that it will ever be reached. Thus, phase type distributions can be degenerate.

Any state can also be "promoted" to absorption state to study the tlme needed untll thls state is reached. If we promote the starting state to absorption state immedlately after we leave it, then this promotion mechanism can be used to simulate Markov chalns by the shortcuts discussed in this section, at least if we can get a good handle on the tlmes untll absorption.

Discrete Markov chains can always be slmulated by using a simple discrete random varlate generator for every state transltion (Neuts and Pagano, 1981). This generator is not unlformly fast over all Markov chains with m states and nondegenerate phase type distribution. In the search for unlformly fast generators, simple shortcuts are of little help.

For example, when we are in state i, we could generate the (geometrically distributed) tlme untll we first leave i in constant expected time. The corresponding state can also be generated unlformly fast by a method such as Walker's, because we have a slmple conditional discrete distribution with $m-1$ outcomes. This method can be used to ellminate the times spent idling in Individual states. It cannot ellminate the times spent in cycles, such as in a Markov chain in which with high probability we stay in a cycle visiting states $i_{1}, i_{2}, \ldots, i_{k} \ln$ turn. Thus, it cannot posslbly be unfformly fast over all Markov chains with m states.

It seems that in this problem, unlform speed does not come cheaply. Some preprocessing involving the transition matrlx seems necessary.

6.5. Exercises.

1. Consider the rejection algorithm for the time $2 X$ untll the flrst return to the orlgin in a symmetric random walk given in the text. Show that when the time needed to compute $p_{2 X}$ is equal to X, then the expected time taken by the algorithm without squeeze steps is ∞.
2. A contlnuation of exercise 1. Show that when squeeze steps are added as in the text, then the algorithm halts in finite expected time.
3. Discrete Markov chains. Conslder a discrete Markov chaln with m states and Initial state 1 . You are allowed to preprocess at any cost, but just once. What sort of preprocessing would you do on the transition matrix so that you can design an algorithm for generating the state S_{n} at time n in expected time unlformly bounded over n. The expected time is however allowed to increase with m. Hint: can you decompose the transition matrix using a spectral representation so that the $n-$ th power of it can be computed unlformly quickly over all n ?
4. The lost-games distribution. Let X be the number of games lost before a player is ruined in the classical gambler's ruin problem, l.e. a gambler adds one to hls fortune with probabllity p and loses one unit with probabllity $1-p$. He starts out with r unlts (dollars). The purpose of this exerclse is to design an algorithm for generating X in expected time uniformly bounded in
r when $p<1-p$ is fixed. Unlform speed in both r and p would be even better. Notice first that the restriction $p<1-p$ is needed to insure that X is a proper random varlable, l.e. to Insure that the player is rulned with probabllity one.
A. Show that when $p<1-p$, the player will eventually be rulned with probabllity one.
B. Show that X has discrete distribution given by

$$
P(X=n)=\binom{2 n-r}{n} p^{n-r}(1-p)^{n} \frac{r}{2 n-r} \quad(n=r, r+1, \ldots)
$$

(Kemp and Kemp, 1988).
C. Suppose that customers arrive at a queue according to a homogeneous Poisson process with parameter λ, that the service time is exponential with parameter $\mu<\lambda$, and that the queue has inltially r customers. Show that the number of customers served untll the queue first vanishes has the lost-games distribution with parameters r and $p=\lambda /(\lambda+\mu)$.
D. Using Stlrling's approximation, determine the general dependence of $P(X=n)$ upon n, and use it to deslgn a unlformly fast rejection algorlthm.
For a survey of these and other walting time mechanlsms, see e.g. Patil and Boswell (1975).

7. THE GENERALIZATION OF A SAMPLE.

7.1. Problem statement.

As in section XIV.2, we will discuss an incompletely specifled random varlate generation problem. Assume that we are given a sample X_{1}, \ldots, X_{n} of nd R^{d}-valued random vectors with common unknown density f, and that we are asked to generate a new independent sample Y_{1}, \ldots, Y_{m} of independent random vectors with the same density f. Stated in thls manner, the problem is obviously unsolvable, unless we are incredibly lucky.

What one can do is construct a density estimate $f_{n}(x)=f_{n}\left(x, X_{1}, \ldots, X_{n}\right)$ of $f(x)$, and then generate a sample of size m from f_{n}. Thls procedure has several drawbacks: first of all, f_{n} is typlcally not equal to f. Also, the new sample depends upon the original sample. Yet, we have very few options avallable to us. Ideally, we would llke the new sample to appear to be distributed as the orlginal sample. This will be called sample indistinguishabillty. Thls and other issues will be discussed in this section. The materlal appeared originally in Devroye and Gyorf (1985, chapter 8).

7.2. Sample independence.

There is little that can be done about the dependence between X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} except to hope that for n large enough, some sort of asymptotic independence is obtained. In some applications, sample independence is not an issue at all.

Since the Y_{i} 's are conditionally independent given X_{1}, \ldots, X_{n}, we need only conslder the dependence between Y_{1} and X_{1}, \ldots, X_{n}. A measure of the dependence is

$$
D_{n}=\sup _{A, B}|P(Y \in A, X \in B)-P(Y \in A) P(X \in B)|
$$

where the supremum is with respect to all Borel sets A of R^{d} and all Borel sets B of $R^{n d}$, and where $Y=Y_{1}$ and X is our shorthand notation for $\left(X_{1}, \ldots, X_{n}\right)$. We say that the samples are asymptotically independent when

$$
\lim _{n \rightarrow \infty} D_{n}=0
$$

In situations in which X_{1}, \ldots, X_{n} is used to design or bulld a system, and Y_{1}, \ldots, Y_{m} is used to test it, the sample dependence often causes optimistlc evaluations. Without the asymptotic independence, we can't even hope to diminIsh thls optlmistic blas by increasing n.

The Inequallty in Theorem 7.1 below provides us with a sufficlent condition for asymptotic independence. First, we need the following Lemma.

Lemma 7.1. (Scheffe, 1947).
For all densitles f and g on R^{d},

$$
\int|f-g|=2 \sup _{B}\left|\int_{B} f-\int_{B} g\right|
$$

where the supremum is with respect to all Borel sets B of R^{d}.

Proof of Lemma 7.1.

Let us take $B=\{f>g\}$, and let A be another Borel set of R^{d}. Because $\int(f-g)=0$, we see that

$$
\int|f-g|=2 \int_{B}(f-g)
$$

Thus, we have shown that $\int|f-g|$ is at most twice the supremum over all Borel sets of $\left|\int_{B}(f-g)\right|$. To show the other half of the Lemma, note that if B^{\prime} denotes the complement of B, then

$$
\begin{aligned}
& \left|\int_{A}(f-g)\right|=\left|\int_{A \cap B}(f-g)+\int_{A \cap B^{\prime}}(f-g)\right| \\
& \leq \max \left(\int_{A \cap B}(f-g), \int_{A \cap B^{\prime}}(f-g)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max \left(\int_{B}(f-g), \int_{B^{\prime}}(g-f)\right) \\
& =\frac{1}{2} f|f-g| \quad(\text { all } A) .
\end{aligned}
$$

Scheffe's lemma tells us that if we assign probabllitles to sets (events) using two different densitles, then the maximal difference between the probabillties over all sets is equal to one half of the L_{1} distance between the densitles. From Lemma 7.1, we obtain

Theorem 7.1.

Let f_{n} be a density estimate, which itself is density. Then

$$
D_{n} \leq E\left(\int\left|f_{n}-f\right|\right)
$$

Proof of Theorem 7.1.

Let X_{1}, \ldots, X_{n+1} be 11d. Then

$$
\begin{aligned}
& D_{n} \leq \sup _{A, B}\left|P(Y \in A, X \in B)-P\left(X_{n+1} \in A, X \in B\right)\right| \\
& +\sup _{A, B}\left|P\left(X_{n+1} \in A, X \in B\right)-P\left(X_{n+1} \in A\right) P(X \in B)\right| \\
& +\sup _{A, B}\left|P\left(X_{n+1} \in A\right) P(X \in B)-P(Y \in A) P(X \in B)\right| \\
& \leq \sup _{A, B} E\left(I_{X \in B}\left|\int_{A} f_{n}-\int_{A} f\right|\right)+0+\sup _{A}\left|P\left(X_{n+1} \in A\right)-P(Y \in A)\right| \\
& \leq \sup _{A} E\left(\left|\int_{A} f_{n}-\int_{A} f\right|\right)+\sup _{A}\left|\int_{A} E\left(f_{n}\right)-\int_{A} f\right| \\
& \leq E\left(\sup _{A}\left|\int_{A} f_{n}-\int_{A} f\right|\right)+\frac{1}{2} \int\left|E\left(f_{n}\right)-f\right| \\
& =E\left(\frac{1}{2} \int\left|f_{n}-f\right|\right)+\frac{1}{2} \int\left|E\left(f_{n}\right)-f\right| .
\end{aligned}
$$

We see that for the sake of asymptotic sample Independence, it suffices that the expected L_{1} distance between f_{n} and f tends to zero with n. This is also called consistency. Conslstency does not imply asymptotic Independence: Just let f_{n} be the unlform density \ln all cases, and observe that $D_{n} \equiv 0$, yet
$\int\left|f_{n}-f\right|$ is a positive constant for all n and all nonuniform f.

7.3. Consistency of density estimates.

A density estimate f_{n} is consistent if for all densities f,

$$
\lim _{n \rightarrow \infty} E\left(\int\left|f_{n}-f\right|\right)=0
$$

Consistency guarantees that the expected value of the maximal error committed by replacing probabilitles deflned with f with probabilitles defined with f_{n} tends to 0. Many estimates are consistent, see e.g. Devroye and Gyorf (1985). Parametric estimates, l.e. estimates in which the form of f_{n} is fixed up to a finlte number of parameters, which are estlmated from the sample, cannot be conslstent because f_{n} is required to converge to f for all f, not a small subclass. Perhaps the best known and most wldely used conslstent denslty estimate is the kernel estimate

$$
f_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right),
$$

where K is a glven density (or kernel), chosen by the user, and $h>0$ is a smoothing parameter, which typlcally depends upon n or the data (Rosenblatt, 1958; Parzen, 1962). For conslstency it Is necessary and sufficlent that $h \rightarrow 0$ and $n h^{d} \rightarrow \infty$ in probablity as $n \rightarrow \infty$ (Devroye and Gyorf, 1985). How one should choose h as a function of n or the data is the subject of a lot of controversy. Usually, the cholce is made based upon the approximate minimization of an error criterion. Sample independence (Theorem 7.1) and sample indistingulshability (next section) suggest that we try to minimize

$$
E\left(\int\left|f_{n}-f\right|\right)
$$

But even after narrowing down the error criterion, there are several strategles. One could minlmize the supremum of the criterion where the supremum is taken over a class of densities. This is called a minimax strategy. If f has compact support on the real llne and a bounded continuous second derlvative, then the best cholces for individual f (i.e., not in the minimax sense) are

$$
\begin{aligned}
& h=C n^{-\frac{1}{5}} \\
& K(x)=\frac{3}{4}\left(1-x^{2}\right) \quad(|x| \leq 1)
\end{aligned}
$$

where C is a constant depending upon f only:

$$
C=\left(\sqrt{\frac{15}{2 \pi}} \frac{\int \sqrt{f}}{\int\left|f^{\prime \prime}\right|}\right)^{\frac{2}{5}}
$$

The optimal kernel colncldes with the optimal kernel for L_{2} criterla (Bartlett, 1983). The optlmal formula for h, which depends upon the unknown density f, can be estimated from the data. Alternatively, one could compute the formula for a given parametric density, a rough guess of sorts, and then estimate the parameters from the data. For example, if this is done with the normal density as initlal guess, we obtaln the recommendation to take

$$
h=\left(\frac{15 e \sqrt{2 \pi}}{8 n}\right)^{\frac{1}{5}} \hat{\sigma},
$$

where $\hat{\sigma}$ is a robust estimate of the standard deviation of the normal density (Devroye and Gyorfl, 1985). A typlcal robust estlmate is the so-called quick-anddirty estimate

$$
\hat{\sigma}=\frac{X_{(n p)}-X_{(n q)}}{x_{p}-x_{q}},
$$

where x_{p}, x_{q} are the p-th and q-th quantlles of the standard normal density, and $X_{(n p)}$ and $X_{(n q)}$ are the p-th and q-th quantlles \ln the data, l.e. the ($n p$)-th and ($n q$) -th order statlistics.

The construction given here with the kernel estimate is slmple, and yields fast generators. Other constructions have been suggested in the literature with random varlate generation in mind. Often, the expllcit form of f_{n} is not given or needed. Constructions often start from an emplitical distrlbution function based upon X_{1}, \ldots, X_{n}, and a smooth approximation of thls distribution function (obtalned by interpolation), which is directly useful in the inversion method. Guerra, Tapla and Thompson (1978) use Aklma's (Aklma, 1970) quasl-Hermite plecewise cublc Interpolation to obtain a smooth monotone function colnclding with the emplrical distribution function at the points X_{i}. Recall that the emplrical distribution is the distribution which puts mass $\frac{1}{n}$ at polnt X_{i}. Hora (1983) gives another method for the same problem. Butler (1970) on the other hand uses Lagrange's quadratic interpolation on the inverse emplitcal distribution function to speed random varlate generation up even further.

7.4. Sample indistinguishability.

In simulations, one important qualitative measure of the goodness of a method is the indistingulshability of X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{m} for the given sample size m. Note that we have forced both sample sizes to be the same, although for the construction of f_{n} we keep on using n points. The indistingulshabllity could be measured quantltatively by

$$
\begin{aligned}
& S_{n, m}=\sup _{A}\left|E(N(A))-E\left(M(A) \mid X_{1}, \ldots, X_{n}\right)\right| \\
& =m \sup _{A}\left|\int_{A} f-\int_{A} f_{n}\right|
\end{aligned}
$$

$$
=\frac{m}{2} \int\left|f_{n}-f\right|
$$

Here, A is a Borel set of $R^{d}, N(A)$ is the cardinallty of A for the original sample (the data, artifictally inflated to size m), and $M(A)$ is the cardinallty of A for the artificlal Y_{i} sample. By cardinality of a set, we mean the number of data polnts falling in the set.

When $S_{n, m}$ is smaller than one, then the expected cardinallty of a set A with a perfect sample of size m differs by at most one from the conditional expected cardinality of the generated sample of size m. We say that f_{n} is k excellent for samples of size m when

$$
E\left(S_{n, m}\right) \leq k
$$

This is equivalent to asking that the expected L_{1} distance between f and f_{n} is at most $2 k / m$. The notion of 1-excellence is very strong. For example, for most nonparametrlc estlmates such as the kernel estlmate 1-excellence forces us to use phenomenally large values of n for even moderate values of m. Devroye and Gyorfl (1985) have shown that for all kernel estlmates (regardless of cholce of K and h), and for all densitles f, 1-excellence is not achievable for samples of size $m=1000$ unless $n \geq 4,000,000$. For $m=10,000$, we need $n \geq 1,300,000,000$. For the histogram estimate, the situation is even worse.

But even 1-excellence may not be good enough for one's appllcation. For one thing, no assurances are given as to the discrepancy in moments between the generated sample and the original sample.

7.5. Moment matching.

Some statisticlans attach a great deal of importance to the moments of the densitles f_{n} and f. For $d=1$, the i-th moment mismatch is deflned as

$$
M_{n, i}=\int x^{i} f_{n}-\int x^{i} f \quad(i=1,2,3, \ldots)
$$

Clearly, $M_{n, i}$ is a random varlable. Assume that we employ the kernel estimate with a zero mean finlte varlance (σ^{2}) kernel K. Then, we have

$$
\begin{aligned}
& M_{n, 1}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-E\left(X_{i}\right)\right), \\
& M_{n, 2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{2}-E\left(X_{i}^{2}\right)\right)+h^{2} \sigma^{2} .
\end{aligned}
$$

This follows from the fact that f_{n} is an equiprobable mixture of densities K shifted to the X_{i} 's, each having varlance $h^{2} \sigma^{2}$ and zero mean. It is interesting to note that the distribution of $M_{n, 1}$ is not influenced by h or K. By the weak law of large numbers, $M_{n, 1}$ tends to 0 in probabllity as $n \rightarrow \infty$ when f has a finite first moment. The story is different for the second moment mismatch.

Whereas $E\left(M_{n, 1}\right)=0$, we now have $E\left(M_{n, 2}\right)=h^{2} \sigma^{2}$, a positlve blas. Fortunately, h is usually small enough so that this is not too big a blas. Note further that the varlances of $M_{n, 1}, M_{n, 2}$ are equal to

$$
\frac{\operatorname{Var}\left(X_{1}\right)}{n}, \frac{\operatorname{Var}\left(X_{1}{ }^{2}\right)}{n}
$$

respectlvely. Thus, h and K only affect the blas of the second order mismatch. Making the blas very small is not recommended as it Increases the expected L_{1} error, and thus the sample dependence and distingulshabllity.

7.6. Generators for f_{n}.

For the kernel estlmate, generators can be based upon the property that a random varlate is distributed as an equlprobable mixture, as is seen from the following trivial algorithm.

Mixture method for kernel estimate

Generate Z, a random integer uniformly distributed on $\{1,2, \ldots, n\}$.
Generate a random variate W with density K.
RETURN $X_{Z}+h W$

For Bartlett's kernel $K(x)=\frac{3}{4}\left(1-x^{2}\right)_{+}$, we suggest elther rejection or a method based upon properties of order statistics:

Generator based upon rejection for Bartlett's kernel

REPEAT
Generate a uniform $[-1,1]$ random variate X and an independent uniform [0,1] random variate U.
UNTIL $U \leq 1-X^{2}$
RETURN X

```
The order statistics method for Bartlett's kernel
Generate three iid uniform [-1,1] random variates }\mp@subsup{V}{1}{},\mp@subsup{V}{2}{},\mp@subsup{V}{3}{}\mathrm{ .
IF | V | | >max(| V1|,| 涪|)
    THEN RETURN }X\leftarrow\mp@subsup{V}{2}{
    ELSE RETURN }X\leftarrow\mp@subsup{V}{3}{
```

In the rejection method, X is accepted with probabllity $2 / 3$, so that the algorithm requires on average three independent unlform random varlates. However, we also need some multiplications. The order statlstics method always uses preclsely three independent unlform random varlables, but the multipllcations are replaced by a few absolute value operations.

7.7. Exercises.

1. Monte Carlo integration. To estimate $\int H(x) f(x) d x$, where H is a glven function, and f is a density, the Monte Carlo method uses a sample of size n drawn from f (say, X_{1}, \ldots, X_{n}). The nalve estimate is

$$
\frac{1}{n} \sum_{i=1}^{n} H\left(X_{i}\right)
$$

When n is small, this estimate has a lot of bullt-In varlance. Compute the varlance and assume that it is finite. Then construct the bootstrap estimate

$$
\frac{1}{m} \sum_{i=1}^{m} H\left(Y_{i}\right)
$$

where the Y_{i} 's are lid random variables with density f_{n}, the kernel estlmate of f based upon X_{1}, \ldots, X_{n}. The sample slze m can be taken as large as the user can afford. Thus, in the limit, one can expect the bootstrap estimate to provide a good estimate of $\int H(x) f_{n}(x) d x$.
A. Show that $\left|\int H f-\int H f_{n}\right| \leq 2(\sup H) \int\left|f-f_{n}\right| \quad$ (Devroye and Gyorfi, 1985).
B. Compare the mean square errors of the nalve Monte Carlo estimate and the estimate $\int H f_{n}$ (the latter is a llmit as $m \rightarrow \infty$ of the bootstrap estimate).
C. Compute the mean square error of the bootstrap estlmate as a function of n and m, and compare with the nalve Monte Carlo estimate. Also
consider what happens when you let $m \rightarrow \infty$ in the expression for the mean square error.
2. The generators for the kernel estlmate based upon Bartlett's kernel in the text use the mlxture method. Stlll for Bartlett's kernel, derlve the Inversion method with all the detalls. Hint: note that the distribution function can be written as the sum of polynomials of degree three with compact support, and can therefore be considered as a cublc spllne with at most $2 n$ breakpolnts when there are n data polnts (Devroye and Gyorf, 1985).
3. Bratley, Fox and Schrage (1983) consider a density estlmate f_{n} which provides fast generation by inversion. The X_{i} 's are ordered, and f_{n} is constant on the intervals determined by the order statistics. In addition, in the intervals to the left of the minimum and to the right of the maximum exponentlal talls are added. The constant pleces and exponentall talls integrate to $1 /(n+1)$ over their supports, i.e. all pleces are equally llkely to be plcked. Rederive their fast Inversion algorithm for f_{n}. Is their estimate asymptotically independent? Show that it is not consistent for any density f. To cure the latter problem, Bratley, Fox and Schrage suggest coalescing breakpoints. Consider coalescing breakpoints by letting f_{n} be constant on the intervals determined by the $k-$ th, $2 k-\mathrm{th}, 3 k-\mathrm{th}, \cdots$ order statistics. How should one define the helghts of f_{n} on these intervals, and how should k vary with n for consistency?
4. For the kernel estlmate, show that for any denslty K, any f, and any sequence of numbers $h>0$ with $h \rightarrow 0, n h^{d} \rightarrow \infty$, we have $E\left(\int\left|f-f_{n}\right|\right) \rightarrow 0$ as $n \rightarrow \infty$. Proceed as follows: first prove the statement for continuous f with compact support. Then, using the fact that any measurable function in L_{1} can be approximated arbltrarlly closely by continuous functions with compact support, wrap up the proof. In the first half of the proof, it is useful to spllt the integral by considering $\left|f-E\left(f_{n}\right)\right|$ separately. In the second half of the proof, you will need an embedding argument, in which you create a sample which with a few deletions can be considered as a sample drawn from f, and with a few different deletions can be considered as a sample drawn from the L_{1} approximation of f.

Chapter Fifteen
 THE RANDOM BIT MODEL

1. THE RANDOM BIT MODEL.

1.1. Introduction.

Chapters I-XIV are based on the premises that a perfect unlform $[0,1]$ random varlate generator is avallable and that real numbers can be manipulated and stored. Now we drop the first of these premises and instead assume a perfect blt generator (i.e., a source capable of generating ild $\{0,1\}$ random varlates B_{1}, B_{2}, \ldots), whlle still assuming that real numbers can be manlpulated and stored, as before: this is for example necessary when someone gives us the probabllities p_{n} for discrete random varlate generation. The cost of an algorlthm can be measured in terms of the number of bits requlred to generate a random varlate. This model is due to Knuth and Yao (1976) who introduced a complexity theory for nonunlform random varlate generation. We will report the maln ldeas of Knuth and Yao in thls chapter.

If random blts are used to construct random varlates from scratch, then there is no hope of constructing random varlates with a denslty \ln a finlte amount of time. If on the other hand we are to generate a discrete random varlate, then it is possible to find finlte-tlme algorithms. Thus, we will malnly be concerned with discrete random varlate generation. For continuous random varlate generation, it is possible to study the relatlonship between the number of input blts needed per n blts of output, and to develop a complexity theory based upon this relationship. This will not be done here. See however Knuth and Yao (1978).

1.2. Some examples.

Assume first that we wish to generate a blnomial random varlate with parameters $n=1$ and $p \neq \frac{1}{2}$. This can be considered as the slmulation of a blased coin fllp, or the simulation of the occurrence of an event having probabillty p. If p were $\frac{1}{2}$, we could Just extt with B_{1}. When p has binary expansion

$$
p=0 . p_{1} p_{2} p_{3} \cdots
$$

It suffices to generate random bits untll for the first time $B_{i} \neq p_{i}$, and to return 1 If $B_{i}<p_{i}$ and 0 otherwise:

```
Binomial (1,p) generator
\(i \leftarrow 0\)
REPEAT
    \(i \leftarrow i+1\)
    Generate a random bit \(B\).
UNTIL \(B \neq p_{i}\)
RETURN \(X \leftarrow I_{B<p_{i}}\)
```

If we deflne the unlform $[0,1]$ random varlate

$$
U=0 . B_{1} B_{2} B_{3} \cdots,
$$

then it is easy to see that this simple algorithm returns

$$
I_{U \leq p}
$$

Interestingly, the probabllity of exiting after i blts Is 2^{-i}, so that the expected number of blts needed is precisely 2 , independent of p. We recognize in thls example the inversion method.

The rejection method too has a nice analog. Suppose that we want to generate a random integer X where $P(X=i)=p_{i}, 1 \leq i \leq n$, and that all probabllltles p_{i} are multiples of $\frac{1}{M}$, where $2^{k-1}<M \leq 2^{k}$ for some integer k. Then we can consider consecutive k-tuples in the sequence B_{1}, B_{2}, \ldots and set up a table with 2^{k} entries: M entries are used for storing integers between 1 and M, and the remaining entrles are 0. If $p_{i}=l_{i} / M$, then the integer i should appear l_{i} times in the table. An integer o indicates a rejection. Now use

Rejection algorithm

REPEAT

Generate k random bits, forming the number $Z \in\left\{0,1, \ldots, 2^{k}-1\right\}$.
UNTIL $Z<M$
RETURN $X \leftarrow A[Z]$ (where A is the table of M integers)

In thls algorlthm, the expected number of blts required is k divided by the probabllity of immedlate acceptance, i.e.

$$
\frac{k}{\frac{M}{2^{k}}} \leq 2 k=2\left\lceil\log _{2} M\right\rceil
$$

In both examples provided here, we can consider the complete unbounded binary tree in which we travel down by turning left when $B_{i}=0$ and rlght when $B_{i}=1$. In the rejection method, we have designated M nodes at the k-th level as terminal nodes. The remaining nodes at the k-th level are "rejection nodes", and are in turn roots of slmllar subtrees. Since these rejection nodes are identifled with the overall root, we can superimpose them on the root, and form a pseudotree with some loopbacks from the k-th level to the root. But then, we have a finlte directed graph, or a finlte state machine.

In the inversion method, the expansion of p determines an unbounded path down the tree, and so does the expansion of U. Since we need only determine whether one path is to the left or the right of the other path, it suffices to travel down untll the paths separate. With probabillty $\frac{1}{2}$, they separate right away. Otherwise, they separate with probability $\frac{1}{2}$ at the next level, and so forth.

What we will do in the sections that follow is
(1) Develop a lower bound for the expected number of blts in terms of p_{1}, p_{2}, \ldots, the probabllity vector of the discrete random varlate.
(11) Develop black box methods and study thelr expected complexity.

2. THE KNUTH-YAO LOWER BOUND.

2.1. DDG trees.

Suppose that we wish to generate a discrete random varlate X wlth probablllty vector p_{1}, p_{2}, \ldots. The probabllity vector can be finlte or infinite dimenslonal. Every algorithm based upon random bits can be represented as a binary tree (which is usually infinlte), contalning nodes of two types:
(1) Branch nodes (or Internal nodes), having two chlldren. We can travel to the left child when a 0 bit is encountered, and to the right child otherwise.
(i1) Terminal nodes without chlldren. These nodes are marked with an Integer to be returned.
It is instructive to verify that this structure is present for the examples of the previous sectlon. For example, for the binomlal ($1, p$) generator, consider the path for p, and assign terminal nodes marked 1 to all left chlldren of nodes on the path that do not belong to the path themselves, and terminal nodes marked 0 to all right children of nodes on the path that do not belong to the path themselves.

Let us introduce the notation $t_{i}(k)$ for the number of terminal nodes on level k (the root is on level 0) which are marked i. Then we must have

$$
\sum_{k \geq 0} \frac{t_{i}(k)}{2^{k}}=p_{i} \quad(\text { all } i)
$$

When these conditlons are satlsfled, we say that we have a DDG-tree (discrete distribution generating tree, terminology introduced by Knuth and Yao, 1978). The corresponding algorithms are called DDG-tree algorithms. DDG-tree algorithms halt with probabllity one because the sum of the probabilltles of reaching the terminal nodes is

$$
\sum_{i} \sum_{k \geq 0} \frac{t_{i}(k)}{2^{k}}=\sum_{i} p_{i}=1
$$

2.2. The lower bound.

Let us introduce the function $\chi(x)=x \bmod 1=x-\lfloor x\rfloor$, the fractional part of x. Define furthermore

$$
\nu(x)=\sum_{k \geq 0} \frac{\chi\left(2^{k} x\right)}{2^{k}} \quad(0 \leq x \leq 1),
$$

and the entropy function

$$
H(x)=x \log _{2} \frac{1}{x} \quad(x>0) .
$$

Theorem 2.1

Let N be the number of random blts taken by a DDG-tree algorlthm. Then:
A. $E(N) \geq \sum_{i} \nu\left(p_{i}\right)$.
B. Let $H\left(p_{1}, p_{2}, \ldots\right)=\sum_{i} H\left(p_{i}\right)$ be the entropy of the probability distribution (p_{1}, p_{2}, \ldots). Then

$$
H\left(p_{1}, p_{2}, \ldots\right) \leq \sum_{i} \nu\left(p_{i}\right)
$$

C. $\sum_{i} \nu\left(p_{i}\right) \leq H\left(p_{1}, p_{2}, \ldots\right)+2$.

Proof of Theorem 2.1.

We begin with an expression for $E(N)$:

$$
\begin{aligned}
& E(N)=\sum_{k \geq 0} P(N>k) \\
& =\sum_{k \geq 0} \frac{b(k)}{2^{k}}
\end{aligned}
$$

where $b(k)$ is the number of internal (or: branch) nodes at level k. We obtaln the lower bound by finding a lower bound for $b(k)$. Let us use the notation $t(k)$ for the number of terminal nodes at level k. Thus,

$$
\begin{aligned}
& b(0)+t(0)=1 \\
& b(k)+t(k)=2 b(k-1) \quad(k \geq 1)
\end{aligned}
$$

Using these relations, we can show that

$$
b(k)=\sum_{j>k} \frac{t(j)}{2^{j-k}}
$$

(Note that this is true for $k=0$, and use induction from there on.) But

$$
\sum_{j>k} \frac{t_{i}(j)}{2^{j}}=p_{i}-\sum_{0 \leq j \leq k} \frac{t_{i}(j)}{2^{j}} \geq \frac{\chi\left(2^{j} p_{i}\right)}{2^{j}}
$$

Thls is true because the left-hand-sum is nonnegative, and the right-hand-sum is an integer multiple of 2^{-k}. Combining all of this ylelds

$$
b(k) \geq \sum_{i} \chi\left(2^{k} p_{i}\right)
$$

This proves part A. Part B follows if we can show the following:

$$
H(x) \leq \nu(x) \leq H(x)+2 x \quad(\text { all } x)
$$

Note that thls is more than needed, but the second part of the Inequally will be useful elsewhere. For a number $x \in[0,1)$, we will use the notation $x=0 . x_{1} x_{2} \ldots$ for the binary expansion. By definition of $\nu(x)$,

$$
\begin{aligned}
& \nu(x)=\sum_{k \geq 0} 2^{-k} \sum_{j>k} \frac{x_{j}}{2^{j-k}} \\
& =\sum_{j \geq 00 \leq k \leq j} \frac{x_{j}}{2^{j}} \\
& =\sum_{j \geq 0} \frac{j x_{j}}{2^{j}}
\end{aligned}
$$

Now, $\nu(0)=H(0)=0$. Also, if $2^{-k} \leq x<2^{1-k}$,

$$
\begin{aligned}
& \nu(x)=\sum_{j \geq k} \frac{j x_{j}}{2^{j}} \\
& \geq \sum_{j \geq k} \frac{\log _{2}\left(\frac{1}{x}\right) x_{j}}{2^{j}} \\
& =H(x)
\end{aligned}
$$

Also, because $x_{k}=1$,

$$
\begin{aligned}
& H(x)+2 x-\nu(x)=\sum_{j \geq k} \frac{\left(\log _{2}\left(\frac{1}{x}\right)+2-j\right) x_{j}}{2^{j}} \\
& >\sum_{j \geq k} \frac{(k+1-j) x_{j}}{2^{j}} \\
& =2^{-k}-\sum_{j \geq k+2} \frac{(j-k-1) x_{j}}{2^{j}} \\
& >2^{-k}-\sum_{j \geq 1} \frac{j}{2^{j+k+1}} \\
& =0 .
\end{aligned}
$$

The lower bound of Theorem 2.1 is related to the entropy of the probability vector. Let us briefiy look at the entropy of some probabllity vectors: if $p_{i}=\frac{1}{n}, 1 \leq i \leq n$, then

$$
H\left(p_{1}, \ldots, p_{n}\right)=\log _{2} n .
$$

In fact, because H is invariant under permutations of its arguments, and is a concave function, it is true that for probabllity vectors

$$
\begin{aligned}
& \left(p_{1}, \ldots, p_{n}\right),\left(q_{1}, \ldots, q_{n}\right) \\
& \quad H\left(p_{1}, \ldots, p_{n}\right) \leq H\left(q_{1}, \ldots, q_{n}\right),
\end{aligned}
$$

when the p_{n} vector is stochastlcally smaller than the q_{n} vector, l.e. If the p_{i} 's and q_{i} 's are in increasing order, then

$$
\begin{aligned}
& p_{1} \leq q_{1} ; \\
& p_{1}+p_{2} \leq q_{1}+q_{2} \\
& \cdots \\
& p_{1}+p_{2}+\cdots+p_{n} \leq q_{1}+q_{2}+\cdots+q_{n}
\end{aligned}
$$

Thls follows from the theory of Schur-convexity (Marshall and Olkin, 1979). In particular, for all probabillty vectors (p_{1}, \ldots, p_{n}), we conclude that

$$
0 \leq H\left(p_{1}, \ldots, p_{n}\right) \leq \log _{2} n
$$

Both bounds are attalnable. In a sense, entropy increases when the probability vector becomes smoother, more unlform. It is smallest when there is no randomness, i.e. all the probablity mass is concentrated in one point. According to Theorem 2.1, we are tempted to conclude that unlform random varlates are the costllest to produce. This is indeed the case if we compare optimal algorithms for distributions, and if the lower bounds can be attalned for all distributions (this will be dealt with in the next sub-section). If we consider discrete distributions with n infintte, then it is possible to have $H\left(p_{1}, p_{2}, \ldots\right)=\infty$. To construct counterexamples very easlly, we note that if the p_{n} 's are \downarrow, then

$$
H\left(p_{1}, \ldots\right) \geq E(\log (X))
$$

where X is a random variate with the given probabllity vector. To see this, note that $p_{n} \leq \frac{1}{n}$, and thus that $-p_{n} \log \left(p_{n}\right) \geq p_{n} \log (n)$. Thus, whenever

$$
p_{n} \sim \frac{c}{n \log ^{1+\epsilon}(n)},
$$

as $n \rightarrow \infty$, for some $\epsilon \in(0,1]$, we have inflnite entropy. The constant c may be difficult to calculate except in special cases. The following example is due to Knuth and Yao (1976):

$$
p_{1}=0 ; p_{n}=2^{-\left\lfloor\log _{2}(n)\right\rfloor-2\left\lfloor\log _{2}\left(\log _{2}(n)\right)\right\}-1} \quad(n \geq 2) .
$$

Note that thls corresponds to the case $\epsilon=1$. Thus, we note that for any DDG-tree algorthm, $E(\log (X))=\infty$ Implles $E(N)=\infty$, regardless of whether the probabllity vector is monotone or not. The explanation is very simple: $E\left(\log _{2}(X)\right)$ is the expected number of bits needed to store, or describe, X. If this is ∞, there is little hope of generating X requiring only $E(N)<\infty$ provided that the distribution of X is sufficlently spread out so that no bits are "redundant" (see exerclses).

2.3. Exercises.

1. The entropy. This is about the entropy H of a probabillty vector (p_{1}, p_{2}, \ldots). Show the following:
A. There exists a probabllity vector such that $E\left(\log _{2}(X)\right)=\infty$, yet $E(N)<\infty$. Here X is a discrete random varlate with the glven probabllity vector. Hint: clearly, the counterexample is not monotone.
B. Is it true that when the probability vector is monotone, then $E\left(\log _{2}(X)\right)<\infty$ Implles $H\left(p_{1}, \ldots\right)<\infty$?
C. Show that the p_{n} 's deflned by

$$
p_{1}=0 ; p_{n}=2^{-\left\{\log _{2}(n)\right\}-2\left\{\log _{2}\left(\log _{2}(n)\right)\right\}-1} \quad(n \geq 2)
$$

form a probability vector, and that its entropy is ∞.
D. Show that if one finlte probabllity vector is stochastically larger than another probabllity vector, then its entropy is at most equal to the entropy of the second probabllity vector.
E. Prove that when $x \in[0,1]$ is a power of 2 , we have $\nu(\dot{x})=H(x)$, and that for any $x \in[0,1], \nu(x)=2^{n} \nu\left(\frac{x}{2^{n}}\right)-n x$.

3. OPTIMAL AND SUBOPTIMAL DDG-TREE ALGORITHMS.

3.1. Suboptimal DDG-tree algorithms.

We know now what we can expect at best from any DDG-tree algorithm in terms of the expected number of random bits. It is another matter altogether to construct feasible DDG-tree algorithms. Some algorithms require unwieldy set-up times and/or calculations whlch would overshadow the contribution to the total complexity from the random blt generator. In fact, most practical DDG-tree algorithms correspond to algorithms described in chapter III. Let us quickly check what kind of DDG-tree algorithms are hidden in that chapter.

In section III.2, we introduced inversion of a unlform $[0,1]$ random varlate U. In sequentlal inversion, we compared U with successive partial sums of p_{n} 's. This corresponds to the following inflnite DDG-tree: consider all the paths for the partlal sums, l.e. the path for p_{1}, for $p_{1}+p_{2}$, etcetera. In case of a finlte vector, we define the last cumulative sum by the binary expansion $0.111111111 \ldots$... Then generate random bits untll the path traveled by the random bits devlates for the first time from any of the p_{n} paths. If that path in question is for p_{n}, then return n if the last random blt was 0 (the corresponding bit on the path is 1), and return $n+1$ otherwise. This method has two problems: first, the set-up is impossible except in the following special case: all p_{n} 's have a finlte binary expanston, and the probabillty vector is finite. In all other cases, the DDG-tree must be constructed as we go along.

The analysis for this DDG-tree algorithm is not very difficult. Construct (Just for the analysis) the trle in which terminal nodes are put at the points where the paths for the p_{n} 's diverge for the first time. For example, for the probabllity vector

$$
\begin{aligned}
& p_{1}=0.00101 \\
& p_{2}=0.001001 \\
& p_{3}=0.101101
\end{aligned}
$$

we have the cumulative probabillties $0.00101,0.010011,0.1111111111 . .$. Thus, we can put terminal nodes at the positions 00,01 , and 1 . It is easy to see that once the terminal nodes are reached, then on the average 2 more random bits are needed. Thus, $E(N)=2+$ expected depth of the terminal nodes in the trle defined above. In our example, this would yield $E(N)=2+\frac{1}{2} 1+\frac{1}{2} 2=\frac{7}{2}$. In another example, if all the p_{n} 's are equal to $2^{-k}, 1 \leq n \leq 2^{k}$, for some integer k, then $E(N)=2+k$, which grows as $\log _{2} n$. In general, we have

$$
E(N) \leq 2+\sum_{i=1}^{n} p_{i}\left\lceil\log _{2}\left(\frac{1}{p_{i}}\right)\right\rceil \leq 3+H\left(p_{1}, \ldots, p_{n}\right)
$$

This follows from a simple argument. Consider the unlform $[0,1]$ random varlate U formed by the random bits of the random bit generator. Also mark the partial sums of p_{i} 's on $[0,1]$, so that $[0,1]$ is partitioned into n intervals. The expected depth of a terminal node in the trie is

$$
\int_{0}^{1} D(x) d x
$$

where $D(x)$ is the smallest nonnegative Integer k such that the 2^{k} dyadic part1thon of $[0,1]$ is such that only one of the partlal sums (0 is also consldered as a partial sum) falls in the same Interval. The i-th partial sum "controls" an interval in which $D(x) \leq\left\lceil\log _{2}\left(\frac{1}{p_{i}}\right)\right\rceil$, and the slze of the interval itself is a power of 2. Thus,

$$
\int_{0}^{1} D(x) d x \leq \sum_{i=1}^{n} p_{i}\left\lceil\log _{2}\left(\frac{1}{p_{i}}\right)\right\rceil
$$

from which we derive the result shown above. We conclude that sequentlal search type DDG-tree algorlthms are nearly optimal for all probabllty vectors (compare with Theorem 2.1).

The method of guide tables, and the Huffman-tree based methods are slmllar, with the sole exception that the probability vector is permuted in the Huffman tree case. All these methods can be translated into a DDG-tree algorithm of the type described for the sequential search method, and the performance bounds given above remaln valld. In view of the lower bound of Knuth and Yao, we don't galn by using speclal truncation-based tricks, because truncathon corresponds to search into a trie formed with equally-spaced points, and
takes time proportlonal to $\log _{2}$ of the number of intervals.
Thus, It comes as no surprise that the allas method (section III.4) has an unimpressive DDG-tree analog. We can conslder the following DDG-tree algorithm: first, generate a unlform $\{1, \ldots, n\}$-valued random integer (thls requires on the average $\geq \log _{2} n$ and $\leq 1+\log _{2} n$ random blts, as we remarked above). Then, having picked a slab, we need to make one more comparison between a unlform random varlate and a threshold, which takes on the average 2 comparisons by the binomlal ($1, p$) algorithm described in section XV.1. Thus,

$$
2+\log _{2} n \leq E(N) \leq 3+\log _{2} n
$$

This performance grows with n, while for the optimal DDG-tree algorlthms we will see that there are sequences of probabllity vectors for which $E(N)$ remain bounded as $n \rightarrow \infty$. In many cases, the allas algorlthm does not even come close to the lower bound of Theorem 2.1.

The rejection method corresponds to the following DDG-tree: construct a DDG-tree in the obvlous fashion with two types of terminal nodes, terminal nodes corresponding to a successful return (acceptance), and rejection nodes. Make the rejection nodes roots of isomorphic trees agaln, and continue at Infinitum.

3.2. Optimal DDG-tree algorithms.

The notation of section XV. 2 is inherited. We start with the following Theorem, due to Knuth and Yao (1978). It states that optimal algorithms achleving the lower bound do Indeed exlst.

Theorem 3.1.

Let ($p_{1}, p_{2}, \ldots, p_{n}$) be a discrete probabillty vector (where n may be infinite). Assume first that $\sum_{i=1}^{n} \nu\left(p_{i}\right)<\infty$. Then there exists a DDG-tree algorithm for which

$$
E(N)=\sum_{i=1}^{n} \nu\left(p_{i}\right)
$$

In fact, the following statements are equivalent for any DDG-tree algorithm:
(1) $P(N>k)$ is minimized for all $k \geq 0$ over all DDG-tree algorithms for the glven distribution.
(11) For all $k \geq 0$ and all $1 \leq i \leq n$, there are exactly $p_{i k}$ terminal nodes marked i on level k where $p_{i k}$ denotes the coefficlent of 2^{-k} in the binary expansion of p_{i}.
(III) $E(N)=\sum_{i=1}^{n} \nu\left(p_{i}\right)$.

Assume next that $\sum_{i=1}^{n} \nu\left(p_{i}\right)=\infty$. Then, statements (1) and (11) are equivalent.

Proof of Theorem 3.1.

We inherlt the notation of the proof of Theorem 2.1. By inspecting that proof, we note that a DDG-tree algorithm attains the lower bound (if it is finlte) if and only if for all i and k, we have equallty in

$$
\sum_{j>k} \frac{t_{i}(j)}{2^{j}}=p_{i}-\sum_{0 \leq j \leq k} \frac{t_{i}(j)}{2^{j}} \geq \frac{\chi\left(2^{j} p_{i}\right)}{2^{j}}
$$

Thls means that

$$
\sum_{j=0}^{k} t_{i}(j) 2^{k-j}=\left\lfloor 2^{k} p_{i}\right\rfloor
$$

But this says simply that $t_{i}(k)$ is $p_{i k}$ for all k. The number of terminal nodes at level k for integer i is 0 or 1 depending upon the value of the k-th bit in the blnary expanslon of p_{i}. To prove that such DDG-trees actually exist, define $t_{i}(k)$ and $t(k)$ by

$$
\begin{aligned}
& t_{i}(k)=p_{i k} \\
& t(k)=p_{1}(k)+\cdots+p_{n}(k)
\end{aligned}
$$

Thus, we certainly have

$$
\begin{aligned}
& \sum_{k \geq 0} 2^{-k} t_{i}(k)=p_{i} \\
& \sum_{k \geq 0} 2^{-k} t(k)=1
\end{aligned}
$$

A DDG-tree with these conditions exists if and only if the integers $b(k)$ defined by

$$
\begin{aligned}
& b(0)+t(0)=1 \\
& b(k)+t(k)=2 b(k-1) \quad(k \geq 1)
\end{aligned}
$$

are nonnegative. But the $b(k)$'s thus deflned have a solution

$$
b(k)=\sum_{j>k} \frac{t(j)}{2^{j-k}}
$$

Hence $b(k) \geq 0$, and such trees exist. This proves all the statements Involving (iii). For the equivalence of (1) and (ii) in all cases, we note that in Theorem 2.1, we have obtalned a lower bound for $b(k)$ for all k, and that the construction of the present theorem glves us a tree for which the lower bound is attalned for all k. But $P(N>k)=\frac{b(k)}{2^{k}}$, and we are done.

Let us give an example of the optimal construction.

Example 3.1. (Knuth and Yao, 1976)
Consider the transcendental probabilities

$$
\begin{array}{|ll|}
\hline p_{1}=\frac{1}{\pi} & =0.010100010111110 \ldots \\
p_{2}=\frac{1}{e} & =0.010111100010110 \ldots \\
p_{3}=1-p_{1}-p_{2} & =0.010100000101010 \ldots \\
\hline
\end{array}
$$

The optlmal tree is inherently infinite and cannot be obtalned by a finlte state machine (thls is possible if and only if all probabillties are rational). The optimal tree has at each level between 0 and 3 terminal nodes, and can be constructed without too much trouble. Basically, all internal nodes have two chlldren, and at each level, we put the terminal nodes to the right on that level. This usually glves an asymmetric left-heavy tree. Using the notation I for Internal node, and $1,2,3$ for terminal nodes for the integers $1,2,3$ respectively, we can speclfy the optimal DDG-tree by speclfying the nature of all the nodes on each level, from
left to rlght. In the present example, this glves

Level	Nodes			
0	I			
1	I	I		
2	I	1	2	3
3	I	I		
4	I	1	2	3
5	I	2		
6	I	2		
7	I	2		
8	I	1		
9	I	I		
10	I	I	1	3
11	I	I	1	2
12	I	I	1	3
13	I	I	1	2
14	I	1	2	3
15	I	I		

3.3. Distribution-free inequalities for the performance of optimal DDG-tree algorithms.

We have seen that an optimal DDG-tree algorithm requires on the average

$$
E(N)=\sum_{i=1}^{n} \nu\left(p_{i}\right)
$$

random bits. By an inequallty shown in Theorem 2.1, $H(x) \leq \nu(x)<H(x)+2 x, x \in[0,1]$, we see that for optimal algorlthms,

$$
\begin{aligned}
& \sum_{i=1}^{n} H\left(p_{i}\right)=H\left(p_{1}, \ldots, p_{n}\right) \\
& \leq E(N) \leq H\left(p_{1}, \ldots, p_{n}\right)+2
\end{aligned}
$$

Thus, the performance is roughly speaking proportional to the entropy of the distrlbution. In general, this quantly is not known beforehand. Often one wants a prlorl guarantees about the performance of the algorlthm. Thus, distrlbution-free bounds on $E(N)$ for the optlmal algorlthm can be very useful. We offer:

Theorem 3.2. (Knuth and Yao, 1976)
Let p_{1}, \ldots, p_{n} be a finite probablity vector. Then,

$$
2-2^{2-n} \leq \sum_{i=1}^{n} \nu\left(p_{i}\right) \leq\left\lceil\log _{2}(n)\right\rceil+(n-1) 2^{1-\left\lceil\log _{2}(n)\right\rceil} .
$$

Proof of Theorem 3.2.

By definition of χ and ν,

$$
\chi\left(2^{k} p_{1}\right)+\cdots+\chi\left(2^{k} p_{n}\right) \leq \min \left(2^{k}, n-1\right)
$$

for all $k \geq 0$. The $n-1$ upper bound follows by noting that the left hand side is less than n, and that it is Integer valued because it can be written as

$$
2^{k}-\left\{2^{k} p_{1}\right\}-\cdots-\left\{2^{k} p_{n}\right\} .
$$

Thus,

$$
\begin{aligned}
& \sum_{i=1}^{n} \nu\left(p_{i}\right)=\sum_{k \geq 0} \sum_{i=1}^{n} 2^{-k} \chi\left(2^{k} p_{i}\right) \\
& \leq \sum_{k \geq 0} 2^{-k} \min \left(2^{k}, n-1\right) \\
& =\sum_{0 \leq k \leq\left\lfloor\log _{2}(n-1)\right.} 1+\sum_{k>\left\lfloor\log _{2}(n-1)\right.} \frac{n-1}{2^{k}} \\
& =1+\left\lfloor\log _{2}(n-1)\right\}+\frac{n-1}{2^{\left\{\log _{2}(n-1)\right\rfloor}}
\end{aligned}
$$

The upper bound follows when we note that $\left\{\log _{2}(n-1)\right\}=\left\lceil\log _{2}(n)\right]-1$. Let us now turn to the lower bound. Using the notation of the proof of Theorem 2.1, an optimal DDG-tree always has

$$
\begin{aligned}
& \sum_{i=1}^{n} \nu\left(p_{i}\right)=\sum_{k \geq 1} \frac{k t(k)}{2^{k}} \\
& =\sum_{k \geq 1} \frac{k(2 b(k-1)-b(k))}{2^{k}} \\
& =\sum_{k \geq 0} \frac{b(k)}{2^{k}} .
\end{aligned}
$$

Slnce $\sum_{k \geq 0} b(k) \geq n-1$ (there are $\geq n$ terminal nodes, and thus $\geq n-1$ Internal nodes), and since conditional on the latter sum being equal to s, the minimum of $\sum_{k \geq 0} \frac{b(k)}{2^{k}}$ is reached for $b(0)=\cdots=b(s-1)=1$, we see that

$$
\sum_{i=1}^{n} \nu\left(p_{i}\right) \geq 2-2^{1-s} \geq 2-2^{2-n}
$$

3.4. Exercises.

1. The bounds of Theorem 3.2 are best possible. By inspection of the proof, construct for each n a probabillty vector p_{1}, \ldots, p_{n} for which the lower bound is attalned. (Conclude that for this family of distributions, the expected performance of optimal DDG-tree algorithms is uniformly bounded in n.) Show that the upper bound of the theorem is attalned for

$$
p_{i}= \begin{cases}2^{-q}\left(\frac{2^{n}-2^{i-1}-1}{2^{n}-1}\right)+2^{-q} \quad, 1 \leq i \leq 2^{q}+1-n \\ 2^{-q}\left(\frac{2^{n}-2^{i-1}-1}{2^{n}-1}\right) & , 2^{q}+1-n<i \leq n\end{cases}
$$

where $q=\left\lceil\log _{2}(n)\right\rceil$ (Knuth and Yao, 1976).
2. Describe an optimal DDG-tree algorithm of the shape described in Example 3.1, which requires storage of the probability vector only. In other words, the tree is constructed dynamically. You can assume of course that the p_{n} 's can be manlpulated in your computer.
3. Finite state machines. Show that there exists a finlte state machine (edges correspond to random bits, nodes to internal nodes or terminal nodes) for generating a discrete random varlate X taking values in $\{1, \ldots, n\}$ if and only if all probabilities involved are rational. Give a general procedure for constructing such finte state machines from (not necessarlly optimal) DDG-trees by introducing rejection nodes and feedbacks to internal nodes. For simulating one die, find a finlte state machine requiring on the average $\frac{11}{3}$ random bits. Is this optimal ? For simulating the sum of two dice, find a finlte state machine which requires on the average $\frac{78}{18}$ random blts. For slmulating two dice (NOT the sum), find a finite state machine which requires on the average $\frac{20}{3}$ random bits. Show that all of these numbers are optimal. Note that in the last case, we do better than just simulating one die twice with the first algorlthm since this would have eaten up $\frac{22}{3}$ random blts on the average (Knuth and Yao, 1976).
4. Conslder the following 5 -state automaton: there is a START state, two terminal states, A and B, and two other states, S1 and S2. Transitions between states occur when bits are observed. In particular, we have:

$$
\begin{aligned}
& \text { START }+0 \rightarrow \mathrm{~S} 1 \\
& \text { START }+1 \rightarrow \mathrm{~S} 2 \\
& \mathrm{~S} 1+0 \rightarrow \mathrm{~A} \\
& \mathrm{~S} 1+1 \rightarrow \mathrm{~S} 2 \\
& \mathrm{~S} 2+0 \rightarrow \mathrm{~B} \\
& \mathrm{~S} 2+1 \rightarrow \mathrm{START}
\end{aligned}
$$

If we start at START, and observe a perfect sequence of random bits, then what is $P(A), P(B)$? Compute the expected number of blts before halting. Finally, construct the optlmal DDG-tree algorthm for thls problem and find a finlte-state equivalent form requiring the same expected number of blts.

REFERENCES

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Tables, Dover Publlcatlons, New York, N.Y., 1970.
A.G. Adams, "Algorithm 39. Areas under the normal curve," Computer Journal, vol. 12, pp. 197-198, 1989.
A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, Mass., 1983.
J.H. Ahrens and U. Dleter, "Computer methods for sampling from the exponential and normal distributions," Communications of the $A C M$, vol. 15, pp. 873-882, 1972.
J.H. Ahrens and U. Dleter, "Extensions of Forsythe's method for random sampllng from the normal distribution," Mathematics of Computation, vol. 27, pp. 927-937, 1973.
J.H. Ahrens and U. Dleter, "Computer methods for sampling from gamma, beta, Polsson and blnomial distributions," Computing, vol. 12, pp. 223-246, 1974.
J.H. Ahrens and U. Dleter, "Sampling from binomial and Polsson distrlbutions: a method with bounded computation tlmes," Computing, vol. 25, pp. 193-208, 1980.
J.H. Ahrens and U. Dleter, "Generating gamma varlates by comparison of probability densitles," Institute of Statistics, Technical University Graz, Graz, Austria, 1981.
J.H. Ahrens and K.D. Kohrt, "Computer methods for efficient sampling from largely arbitrary statistical distributions," Computing, vol. 26, pp. 19-31, 1981.
J.H. Ahrens and U. Dleter, "Computer generation of Polsson deviates from modifled normal distrlbutlons," ACM Transactions on Mathematical Software, vol. 8, pp. 183-179, 1982.
J.H. Ahrens and U. Dleter, "Generating gamma varlates by a modifled rejection technlque," Communications of the ACM, vol. 25, pp. 47-54, 1982.
J.H. Ahrens, K.D. Kohrt, and U. Dieter, "Algorlthm 599. Sampling from gamma and Polsson distrlbutions," ACM Transactions on Mathematical Software, vol. 9, pp. 255-257, 1983.
J.H. Ahrens and U. Dleter, "Sequentlal random sampllng," ACM Transactions on Mathematical Software, vol. 11, pp. 157-189, 1985.
J. Altchison, "Inverse distributlons and Independent gamma-distributed products of random varlables," Biometrika, vol. 50, pp. 505-508, 1963.
H. AkIma, "A new method of interpolation and smooth curve fitting based on local procedures," Journal of the ACM, vol. 17, pp. 589-602, 1970.
B.J. Alder and T.E. Walnwright, "Phase transition in elastic disks," Physical Review, vol. 127, pp. 359-381; 1982.
M.M. All, N.N. Mikhall, and M.S. Haq, "A class of bivariate distributions including the bivarlate loglstlc," Journal of Multivariate Analysis, vol. 8, pp. 405-412, 1978.
T.W. Anderson and D.A. Darling, "Asymptotlc theory of certaln goodness of fit criteria based on stochastic processes," Annals of Mathematical Statistics, vol. 23, pp. 193-213, 1952.
D.F. Andrews and C.L. Mallows, "Scale mixtures of normal dlstributions," Journal of the Royal Statistical Society Series B, vol. 38, pp. 99-102, 1974.
N.P. Archer, "The generation of plecewise linear approximations of probabllity distribution functions," Journal of Statistical Computation and Simulation, vol. 11, pp. 21-40, 1980.
G. Arfwedson, "A probabllity distrlbution connected with Stirling's second class numbers," Skandinavisk Aktuarietidskrift, vol. 34, pp. 121-132, 1951.
A.N. Arnason, "Simple exact, efficient methods for generating beta and Dirichlet varlates," Utilitas Mathematica, vol. 1, pp. 249-290, 1972.
B.C. Arnold, "A note on multivariate distributions with specifled marginals," Journal of the American Statistical Association, vol. 62, pp. 1480-1461, 1987.
B.C. Arnold and R.A. Groeneveld, "Some propertles of the arcsine distribution," Journal of the American Statistical Association, vol. 75, pp. 173-175, 1980.
D.B. Arnold and M.R. Sleep, "Unlform random number generation of n balanced parenthesis strings," ACM Transactions on Programming Languages and Systems, vol. 2, pp. 122-128, 1980.
A.C. Atkinson and M.C. Pearce, "The computer generation of beta, gamma and normal random variables," Journal of the Royal Statistical Society Series A, vol. 139, pp. 431-461, 1976.
A.C. Atkinson and J. Whittaker, "A switching algorithm for the generation of beta random variables with at least one parameter less than one," Journal of the Royal Statistical Society Series A, vol. 139, pp. 482-487, 1976.
A.C. Atkinson, "An easily programmed algorithm for gewnerating gamma random varlables," Applied Statistics, vol. 140, pp. 232-234, 1977.
A.C. Atkinson, "A famlly of switching algorithms for the computer generation of beta random varlables," Biometrika, vol. 68, pp. 141-145, 1979.
A.C. Atkinson and J. Whlttaker, "The generation of beta random varlables with one parameter greater than one and one parameter less than one," Applied Statistics, vol. 28, pp. 90-93, 1979.
A.C. Atkinson, "The simulation of generallsed Inverse gaussian, generalised hyperbollc, gamma and related random varlables," Research Report 52, Department of Theoretlcal Statistics, Aarhus Unlversity, Aarhus, Denmark, 1979.
A.C. Atkinson, "Recent developments in the computer generation of Polsson random varlables," Applied Statistics, vol. 28, pp. 280-263, 1979.
A.C. Atkinson, "The computer generation of Polsson random varlables," Applied Statistics, vol. 28, pp. 29-35, 1979.
A.C. Atkinson, "The simulation of generallzed inverse gaussian and hyperbollc random varlables," SIAM Journal on Statistical Computation, vol. 3, pp. 502-515, 1982.
S. Baase, Computer Algorithms: Introduction to Design and Analysis, AddisonWesley, Reading, Mass., 1978.
M. Badel, "Generation de nombres aleatolres correles," Mathematics and Computers in Simulation, vol. 21, pp. 42-49, 1979.
B.J.R. Balley, "Alternatives to Hastings’ approximation to the inverse of the normal cumulative distrlbution functlon," Applied Statistics, vol. 30, pp. 275-276, 1981.
G. de Balbine, "Note on random permutations," Mathematics of Computation, vol. 21, pp. 710-712, 1967.
J. Banks and J.S. Carson, Discrete Event Simulation, Prentlce-Hall, Englewood Cllffs, N.J., 1984.
G. Barbu, "On computer generation of a random variable by transformations of unlform varlables," Bull. Math. Soc. Sci. Math. Romanie, vol. 26, pp. 129-139, 1982.
R.E. Barlow, A.W. Marshall, and F. Proschan, "Propertles of probabllity distrlbutions with monotone hazard rate," Annals of Mathematical Statistics, vol. 34, pp. 375-389, 1983.
R.E. Barlow and F. Proschan, Mathematical Theory of Reliability, John Wlley, New York, N.Y., 1965.
R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, New York, N.Y., 1975.
D.R. Barnard and M.N. Cawdery, "A note on a new method of histogram sampllng," Operations Research Quarterly, vol. 25, pp. 319-320, 1974.
O. Barndorff-NIelsen, "Exponentlally decreasing distrlbutions for the logarithm of partlcle size," Proceedings of the Royal Society of London Series A, vol. 353, pp. 401-419, 1977.
O. Barndorff-Nielsen and C. Halgreen, "Inflnite divisibllity of the hyperbolic and generallzed Inverse gaussian distributlons," Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 38, pp. 309-311, 1977.
O. Barndorff-Nielsen, "Hyperbolic distributions and distributions on hyperbolae," Scandinavian Journal of Statistics, vol. 5, pp. 151-157, 1978.
O. Barndorff-Nielsen and P. Blaesild, "Hyperbollc DIstributions," Encyclopedia of Statistical Sclences, John Wlley, New York, N.Y., 1980.
O. Barndorff-Nielsen, J. Kent, and M. Sorensen, "Normal varlance-mean mixtures and z distrlbutions," International Statistical Review, vol. 50, pp. 145-158, 1982.
V. Barnett, "Some blvarlate unlform distributions," Communications in Statistics, vol. A9, pp. 453-481, 1980.
D.R. Barr and N.L. Slezak, "A comparison of multivarlate normal generators," Communications of the ACM, vol. 15, pp. 1048-1049, 1972.
R. Bartels, "Generating non-normal stable varlates using llmit theorem propertles," Journal of Statistical Computation and Simulation, vol. 7, pp. 199-212, 1878.
R. Bartels, "Truncation bounds for infinite expanslons for the stable distributlons," Journal of Statistical Computation and Simulation, vol. 12, pp. 293-302, 1981.
M.S. Bartlett, "Statistical estimation of density functions," Sankhya Series A, vol. 25, pp. 245-254, 1963.
D.E. Barton, "The matching distributions: Polsson llmiting forms and derlved methods of approximation," Journal of the Royal Statistical Society, Series B, vol. 20, pp. 73-92, 1958.
D.E. Barton and C.L. Mallows, "Some aspects of the random sequence," Annals of Mathematical Statistics, vol. 36, pp. 238-280, 1965.
D. Basu and R.C. Tiwarl, "A note on the Dirlchlet process," in Statistics and Probability: Essays in Honor of C.R. Rao, ed. G. Kallanpur, P.R. Krishnalah, J.K. Ghosh, pp. 89-103, North-Holland, 1982.
J.D. Beasley and S.G. Springer, "The percentage points of the normal distribution," Applied Statistics, vol. 28, pp. 118-121, 1977.
J.R. Bell, "Algorlthm 334. Normal random devlates," Communications of the $A C M$, vol. 11, p. 498, 1968.
R.B. Bendel and A.A. Affi, "Comparison of stopping rules in forward stepwise regresslon," Journal of the American Statistical Association, vol. 72, pp. 46-53, 1977.
R.B. Bendel and M.R. Mickey, "Population correlation matrices for sampling expertments," Communications in Statistics, Section Simulation and Computation, vol. 7, pp. 183-182, 1978.
J.L. Bentley and J.B. Saxe, "Generating sorted lists of random numbers," ACM Transactions of Mathematical Software, vol. 6, pp. 359-384, 1980.
H. Bergstrom, "On some expanslons of stable distrlbutions," Arkiv fur Mathematik, II, vol. 18, pp. 375-378, 1952.
M.B. Berman, "Generating gamma distributed variates for computer simulation models," Technical Report R-641-PR, Rand Corporation, 1871.
D.J. Best, "Letter to the edltor," Applied Statistics, vol. 27, p. 181, 1978.
D.J. Best, "A simple algorlthm for the computer generation of random samples from a Student's t or symmetric beta distribution," in COMPSTAT 1978: Proceedings in Computational Statistics, ed. L.C.A. Corsten and J. Hermans, pp. 341-347, Physlca Verlag, Wlen, Austrla, 1978.
D.J. Best, "Some easlly programmed pseudo-random normal generators," Australian Computer Journal, vol. 11, pp. 80-62, 1979.
D.J. Best and N.I. Flsher, "Efficlent simulation of the von Mises distrlbution," Applied Statistics, vol. 28, pp. 152-157, 1979.
D.J. Best, "A note on gamma varlate generators with shape parameter less than unlty," Computing, vol. 30, pp. 185-188, 1983.
W.H. Beyer, Handbook of Tables for Probability and Statistics, Cleveland: The Chemical Rubber Co., 1968.
G.P. Bhattacharjee, "Algorlthm A. 32. The incomplete gamma integral," Applied Statistics, vol. 19, pp. 285-287, 1970.
B.C. Bhattacharyya, "The use of McKay's Bessel function curves for graduating frequency distrlbutions," Sankhya Series A, vol. 6, pp. 175-182, 1942.
A. Bignami and A. de Mattels, "A note on sampling from combinations of distributlons," Journal of the Institute of Mathematics and its Applications, vol. 8, pp. 80-81, 1971.
P. Blaesild, "The shape of the generallzed Inverse gaussian and hyperbollc distributions," Research Report 37, Department of Theoretical Statistics, Aarhus University, Aarhus, Denmark, 1978.
M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, "Time bounds for selection," Journal of Computers and System Sciences, vol. 7, pp. 448-461, 1973.
L.N. Bolshev, "On transformations of random varlables," Theory of Probability and its Applications, vol. 4, pp. 136-149, 1959.
L.N. Bolshev, "Asymptotic Pearson transformatlons," Theory of Probability and its Applications, vol. 8, pp. 129-155, 1963.
L.N. Bolshev, "On a characterization of the Polsson distribution and its statistlcal applications," Theory of Probability and its Applications, vol. 10, pp. 446-456, 1965.
L. Bondesson, "On slmulation from infinitely divisible distributions," Advances in Applied Probability, vol. 14, pp. 855-869, 1982.
G.E.P. Box and M.E. Muller, "A note on the generation of random normal deviates," Annals of Mathematical Statistics, vol. 29, pp. 810-611, 1958.
J.M. Boyett, "Random $R \times C$ tables with given row and column totals," Applied Statistics, vol. 28, pp. 320-332, 1979.
P. Bratley, B.L. Fox, and L.E. Schrage, A Guide to Simulation, Springer-Verlag, New York, N.Y., 1983.
R.P. Brent, "A gaussian pseudo-random number generator," Communications of the $A C M$, vol. 17, pp. 704-706, 1974.
G.W. Brown and J.W. Tukey, "Some dlstributlons of sample means," Annals of Mathematical Statistics, vol. 17, pp. 1-12, 1946.
M.C. Bryson and M.E. Johnson, "Constructing and simulating multivariate distrlbutions using Khintchine's theorem," Technical Report LA-UR 81-442, Los Alamos Sclentific Laboratory, Los Alamos, New Mexico, 1981.
M.C. Bryson and M.E. Johnson, "Constructing and simulating multivariate distributions using Khintchine's theorem," Journal of Statistical Computation and Simulation, vol. 16, pp. 129-137, 1982.
I.W. Burr, "Cumulative frequency functions," Annals of Mathematical Statistics, vol. 13, pp. 215-232, 1942.
I.W. Burr and P.J. Cislak, "On a general system of distributions. I. The curveshape characterlstics. II. The sample medlan," Journal of the American Statistical Association, vol. 63, pp. 627-635, 1968.
I.W. Burr, "Parameters for a general system of distributions to match a grid of a3 and a4," Communications in Statistics, vol. 2, pp. 1-21, 1973.
J.C. Butcher, "Random sampling from the normal distribution," Computer Journal, vol. 3, pp. 251-253, 1961.
E.L. Butler, "Algorlthm 370. General random number generator," Communications of the ACM, vol. 13, pp. 49-52, 1970.
T. Cacoullos, "A relation between t and F distributions," Journal of the American Statistical Association, vol. 60, pp. 528-531, p. 1249, 1965.
A.G. Carlton, "Estimating the parameters of a rectangular distribution," Annals of Mathematical Statistics, vol. 17, pp. 355-358, 1946.
C.P. Chalmers, "Generation of correlation matrices with given eigen-structure," Journal of Statistical Computation and Simulation, vol. 4, pp. 133-138, 1975.
J.M. Chambers, C.L. Mallows, and B.W. Stuck, "A method for simulating stable random varlables," Journal of the American Statistical Association, vol. 71, pp. 340-344, 1976.
H.C. Chen and Y. Asau, "On generating random varlates from an emplrical distribution," AIIE Transactions, vol. 6, pp. 183-168, 1974.
R.C.H. Cheng, "The generation of gamma varlables with non-integral shape parameter," Applied Statistics, vol. 28, pp. 71-75, 1977.
R.C.H. Cheng, "Generating beta variates with nonintegral shape parameters," Communications of the ACM, vol. 21, pp. 317-322, 1978.
R.C.H. Cheng and G.M. Feast, "Some slmple gamma varlate generators," Applied Statistics, vol. 28, pp. 290-295, 1979.
R.C.H. Cheng and G.M. Feast, "Gamma varlate generators with Increased shape parameter range," Communications of the ACM, vol. 23, pp. 389-393, 1980.
K.C. Cherlan, "A blvarlate correlated gamma-type dlstrlbution function," Journal of the Indian Mathematical Society, vol. 5, pp. 133-144, 1941.
M.A. Chmlelewski, "Elliptically symmetric distributions: a review and blbliography," International Statistical Review, vol. 49, pp. 67-74, 1981.
Y.S. Chow, "Some convergence theorems for independent random variables," Annals of Mathematical Statistics, vol. 37, pp. 1482-1493, 1968.
Y.S. Chow and H. Telcher, Probability Theory. Independence. Interchangeability. Martingales., Springer-Verlag, New York, N.Y., 1978.
E. CInlar, Introduction to Stochastic Processes, Prentlce-Hall, Englewood Cllff, N.J., 1975.
J.M. Cook, "Ratlonal formulae for the production of a spherlcally symmetric probabllity distribution," Mathematics of Computation, vol. 11, pp. 81-82, 1957.
R.D. Cook and M.E. Johnson, "A family of dlstrlbutions for modeling nonelliptically symmetric multivariate data," Journal of the Royal Statistical Society, Series B, vol. 43, pp. 210-218, 1981.
B.E. Cooper, "Algorlthm AS2. The normal integral," Applied Statistics, vol. 17, pp. 186-187, 1888.
D.R. Cox and P.A.W. Lewls, The Statistical Analysis of Series of Events, Methuen, London, 1966.
H. Cramer, Mathematical Methods of Statistics, Princeton Unlversity Press, Princeton, New Jersey, 1951.
J.S. Dagpunar, "Sampling of varlates from a truncated gamma distribution," Journal of Statistical Computation and Simulation, vol. 8, pp. 59-64, 1978.
M. Darboux, "Sur les developpements en serle des fonctions d'une seule variable," Journal de Mathematiques Series 3, vol. 2, pp. 291-294, 1878.
D.A. Darllng, "The Kolmogorov-Smlrnov, Cramer-von Mises tests," Annals of Mathematical Statistics, vol. 28, pp. 1-20, 1855.
D. Davey and J.G. Vaucher, "Self-optlmizing partition sequencing sets for discrete event slmulation," INFOR, vol. 18, pp. 21-41, 1980.
F.N. David and E. Fix, "Rank correlation and regression in a non-normal surface," Proceedings of the Fourth Berkeley Symposium, vol. 1, pp. 177-197, 1961.

Ju.S. Davidovic, B.I. KorenblJum, and B.I. Hacet, "A property of logarithmically concave functlons," Dokl. Akad. Nauk SSR, vol. 185, pp. 477-480, 1969.
P.J. Davis and P. Rablnowltz, Methods of Numerical Integration, Academlc Press, New York, 1975.
I. Deak, "Comparison of methods for generating unlformly distrlbuted random points in and on a hypersphere," Problems of Control and Information Theory, vol. 8, pp. 105-113, 1979.
I. Deak and B. Bene, "Random number generation: a blbliography," Working paper, Computer and Automation Instltute, Hungarian Academy of Sclences, 1979.
I. Deak, "The ellipsold method for generating normally distributed random vectors," Zastosowania Matematyki, vol. 17, pp. 95-107, 1879.
I. Deak, "Fast procedures for generating stationary normal vectors," Journal of Statistical Computation and Simulation, vol. 16, pp. 225-242, 1980.
I. Deak, "An economical method for random number generation and a normal generator," Computing, vol. 27, pp. 113-121, 1981.
I. Deak, "General methods for generating non-unlform random numbers," Technleal Report DALTR-84-20, Department of Mathematics, Statistics and Computing Sclence, Dalhousle Unlversity, Hallfax, NovaScotla, 1884.
E.V. Denardo and B.L. Fox, "Shortest-route methods:1. reaching, pruning, and buckets," Operations Research, vol. 27, pp. 181-188, 1979.
L. Devroye and A. Naderisamani, "A blnomlal random varlate generator," Technlcal Report, School of Computer Sclence, McGill University, Montreal, 1980.
L. Devroye, "Generating the maximum of independent identically distributed random varlables," Computers and Mathematics with Applications, vol. 8, pp. 305-315, 1980.
L. Devroye, "The computer generation of Poisson random variables," Computing, vol. 26, pp. 197-207, 1981.
L. Devroye and C. Yuen, "Inversion-with-correction for the computer generation of discrete random varlables," Technlcal Report, School of Computer Sclence, McGlll University, Montreal, 1981.
L. Devroye, "Programs for generating random varlates with monotone densitles," Technical report, School of Computer Sclence, McGill University, Montreal, Canada, 1981.
L. Devroye, "Recent results in non-unform random varlate generation," Proceedings of the 1981 Winter Simulation Conference, Atlanta, GA., 1981.
L. Devroye, "The computer generation of random varlables with a given characteristlc function," Computers and Mathematics with Applications, vol. 7, pp. 547 552, 1981.
L. Devroye, "The serles method in random varlate generation and its application to the Kolmogorov-Smlrnov distribution," American Journal of Mathematical and Management Sciences, vol. 1, pp. 359-379, 1981.
L. Devroye and T. Klincsek, "Average time behavior of distributive sorting algorlthms," Computing, vol. 28, pp. 1-7, 1981.
L. Devroye, "On the computer generatlon of random convex hulls," Computers and Mathematics with Applications, vol. 8, pp. 1-13, 1982.
L. Devroye, "A note on approximations in random variate generation," Journal of Statistical Computation and Simulation, vol. 14, pp. 149-158, 1982.
L. Devroye, "The equivalence of weak, strong and complete convergence in L_{1} for kernel denslty estlmates," Annals of Statistics, vol. 11, pp. 896-904, 1983.
L. Devroye, "Random varlate generation for unimodal and monotone densitles," Computing, vol. 32, pp. 43-68, 1984.
L. Devroye, "A slmple algorlthm for generating random varlates with a logconcave denslty," Computing, vol. 33, pp. 247-257, 1984.
L. Devroye, "On the use of probability inequalitles in random varlate generatlon," Journal of Statistical Computation and Simulation, vol. 20, pp. 91-100, 1984.
L. Devroye, "Methods for generating random varlates with Polya characteristlc functlons," Statistics and Probability Letters, vol. 2, pp. 257-281, 1984.
L. Devroye, "The analysls of some algorlthms for generating random varlates with a given hazard rate," Naval Research Logistics Quarterly, vol. 0, pp. 0-0, 1985.
L. Devroye and L. Gyorfl, Nonparametric Density Estimation: The L_{1} Vlew, John Whey, New York, N.Y., 1885.
L. Devroye, "An automatic method for generating random varlables with a given characteristic function," SIAM Journal of Applied Mathematics, vol. 0, pp. 0-0, 1986.
U. Dleter and J.H. Ahrens, "A comblnatorial method for the generation of normally distributed random numbers," Computing, vol. 11, pp. 137-146, 1873.
P.J. Diggle, J.E. Besag, and J.T. Gleaves, "Statistical analysis of spatial point patterns by means of distance methods," Biometrics, vol. 32, pp. 659-667, 1976.
S.D. Dubey, "A compound Welbull distribution," Naval Research Logistics Quarterly, vol. 15, pp. 178-188, 1968.
D. Dugue and M. Glrault, "Fonctions convexes de Polya," Publications de l'Institut de Statistique des Universites de Paris, vol. 4, pp. 3-10, 1955.
W.H. Dumouchel, "Stable distributions in statistical inference," Ph.D. Dissertatlon, Department of Statistles, Yale University, 1871.
R. Durstenfeld, "Random permutation," Communications of the ACM, vol. 7, p. 420, 1964.
A. Dvoretzky and H. Robbins, "On the parking problem," Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 8, pp. 209-225, 1964.
R. Englebrecht-Wiggans and W.L. Maxwell, "Analysis of the time indexed list procedure for synchronization of discrete event procedures," Management Science, vol. 24, pp. 1417-1427, 1978.
P. Erdos and M. Kac, "On certaln llmit theorems of the theory of probabllity," Bulletin of the American Mathematical Society, vol. 52, pp. 292-302, 1946.
P. Erdos and A. Renyl, "On random graphs," Publ. Math. Debrecen, vol. 6, pp. 290-297, 1959.
P. Erdos and A. Renyl, "On the evolution of random graphs," Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 5, pp. 17-61, 1960.
J. Ernvall and O. Nevalainen, "An algorlthm for unblased random sampling," Computer Journal, vol. 25, pp. 45-47, 1982.
V.N. Faddeeva, Computational Methods of Linear Algebra, Dover Publ., 1959.
R. Fagin and T.G. Price, "Efflctent calculation of expected miss ratios in the Independent reference model," SIAM Journal on Computing, vol. 7, pp. 288-297, 1978.
R. Fagin, J. Nlevergelt, N. Plppenger, and H.R. Strong, "Extendible hashing - a fast access method for dynamlc files," ACM Transactions on Mathematical Software, vol. 4, pp. 315-344, 1978.
E. Fama and R. Roll, "Some propertles of symmetric stable distributions," Journal of the American Statistical Association, vol. 83, pp. 817-836, 1988.
C.T. Fan, M.E. Muller, and I. Rezucha, "Development of sampllng plans by using sequentlal (Item by ltem) selection technlques and digital computers," Journal of the American Statistical Association, vol. 57, pp. 387-402, 1982.
D.J.G. Farlle, "The performance of some correlation coefflcients for a general blvariate dlstribution," Biometrika, vol. 47, pp. 307-323, 1960.
W. Feller, "On the Kolmogorov-Smlrnov limit theorems for emplrical distributlons," Annals of Mathematical Statistics, vol. 19, pp. 177-189, 1948.
W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, John Wlley, New York, N.Y., 1985.
W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, John Wiley, New York, N.Y., 1971.
C. Ferrerl, "A new frequency distribution for single varlate analysis," Statistica Bologna, vol. 24, pp. 223-251, 1964.
G.S. Fishman, "Sampling from the gamma distribution on a computer," Communications of the ACM, vol. 19, pp. 407-409, 1975.
G.S. Flshman, "Sampling from the Polsson distribution on a computer," Computing, vol. 17, pp. 147-156, 1976.
G.S. Fishman, Principles of Discrete Event Simulation, John Wlley, New York, N.Y., 1978.
G.S. Fishman, "Sampllng from the blnomlal distribution on a computer," Journal of the American Statistical Association, vol. 74, pp. 418-423, 1979.
A.I. Flelshman, "A method for simulating non-normal distributions," Psychometrika, vol. 43, pp. 521-532, 1978.
J.L. Folks and R.S. Chhikara, "The inverse gaussian distribution and its statistical applicatlon. A revlew," Journal of the Royal Statistical Society, Series B, vol. 40, pp. 263-289, 1978.
G.E. Forsythe, "von Neumann's comparison method for random sampllng from the normal and other distributions," Mathematics of Computation, vol. 26, pp. 817-826, 1972.
B.L. Fox, "Generation of random samples from the beta and F distributions," Technometrics, vol. 5, pp. 269-270, 1963.
B.L. Fox, "Monotonicity, extremal correlations, and synchronization: Impllcations for nonunlform random numbers," Technical Report, Universite de Montreal, 1980.
J.R. Fraker and D.V. Rippy, "A composite approach to generating autocorrelated sequences," Simulation, vol. 23, pp. 171-175, 1974.
J.N. Franklin, "Numerical slmulation of stationary and nonstationary Gausslan random processes," SIAM Review, vol. 7, pp. 68-80, 1885.
W.R. Franta and K. Maly, "An eflclent data structure for the simulation event set," Communications of the ACM, vol. 20, pp. 596-802, 1977.
W.R. Franta and K. Maly, "A comparlson of heaps and TL structure for the slmulation event set," Communications of the ACM, vol. 21, pp. 873-875, 1878.
M. Frechet, "Sur les tableaux de correlation dont les marges sont donnees," Annales de l'Universite de Lyon, Sec. A, Series 3, vol. 14, pp. 53-57, 1951.
M. Frechet, "Remarques au sujet de la note precedente," Comptes Rendus de l'Academie des Sciences de Paris, vol. 246, pp. 2719-2720, 1958.
E. Fredkin, "Trie memory," Communications of the ACM, vol. 3, pp. 490-499, 1960.
M.F. Freeman and J.W. Tukey, "Transformations related to the angular and square-root," Annals of Mathematical Statistics, vol. 21, pp. 607-611, 1950.
D.P. Gaver, "Analytical hazard representations for use in rellabllity, mortality and slmulation studles," Communications in Statistics, Section Simulation and Computation, vol. B8, pp. 91-111, 1979.
H. Gebeleln, "Das statistische Problem der Korrelation als Varlations- und Elgenwertproblem und sein Zusammenhang mit der Ausgleichungsrechnung," Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 21, pp. 364-379, 1941.
H. Gehrke, "Einfache sequentlelle Stichprobenentnahme," Diplomarbeit, University of Klel, West Germany, 1984.
E. Olusegun George and M.O. Ojo, "On a generallzation of the logistic distributlon," Annals of the Institute of Statistical Mathematics, vol. 32, pp. 181-168, 1980.
E. Olusegun George and G.S. Mudholkar, "Some relationships between the loglstic and the exponentlal distrlbutions," In Statistical Distributions in Scientific Work, ed. C. Tallle, G.P. Patil, B.A. Baldessarl, vol. 4, pp. 401-409, D. Reldel Publ. Co., Dordrecht, Holland, 1981.
I. Gerontides and R.L. Smith, "Monte Carlo generation of order statistics from general distributlons," Applied Statistics, vol. 31, pp. 238-243, 1982.
J.D. Glbbons, Nonparametric Statistical Inference, McGraw-Hill, New York, 1971.
M. Glrault, "Les fonctions caracteristlques et leurs transformations," Publications de l'Institut de Statistique des Universites de Paris, vol. 4, pp. 223-298, 1954.
N. Glick, "Breaking records and breaking boards," American Mathematical Monthly, vol. 85, pp. 2-26, 1978.
H.J. Godwin, Inequalities on Distribution Functions, Charles Griffn, London, 1964.
G.H. Gonnet, "Heaps applled to event driven mechanisms," Communications of the $A C M$, vol. 19, pp. 417-418, 1978.
R.D. Gordon, "Values of Mills' ratlo of area to bounding ordinate and of the normal probabllity integral for large values of the argument," Annals of Mathematical Statistics, vol. 12, pp. 384-386, 1941.
A. Grassia, "On a famlly of distributlons with argument between 0 and 1 obtalned by transformation of the gamma and derived compound distributions," Australian Journal of Statistics, vol. 19, pp. 108-114, 1977.
F.A. Grayblll, Introduction to Matrices with Applications in Statistics, Wadsworth, Belmont, CA., 1969.
P.J. Green and R. Sibson, "Computing Dirlchlet tesellations in the plane," Computer Journal, vol. 21, pp. 168-173, 1978.
A.J. Greenwood, "A fast generator for gamma-distrlbuted random varlables," in COMPSTAT 1974, Proceedings in Computational Statistics, ed. G. Bruckmann, F. Ferschl, L. Schmetterer, pp. 19-27, Physica-Verlag, Vlenna, Austria, 1974.
A.J. Greenwood, "Moments of the time to generate random varlables by rejectlon," Annals of the Institute of Statistical Mathematics, vol. 28, pp. 399-401, 1976.
U. Grenander and M. Rosenblatt, "Statistical spectral analysis of time series arisIng from statlonary stochastic processes," Annals of Mathematical Statistics, vol. 24, pp. 537-558, 1953.
V.O. Guerra, R.A. Tapla, and J.R. Thompson, "A random number generator for contlnuous random varlables based on an interpolation procedure of Aklma," Proceedings of the 1978 Winter Simulation Conference, pp. 228-230, 1978.
E.J. Gumbel, "Ranges and mldranges," Annals of Mathematical Statistics, vol. 15, pp. 414-422, 1944.
E.J. Gumbel, Statistics of Extremes, Columbla Unlversity Press, New York, N.Y., 1958.
E.J. Gumbel, "Distrlbutions a plusleurs varlables dont les marges sont donnees (with remarks by M. Frechet)," Comptes Rendus de l'Academie des Sciences de Paris, vol. 246, pp. 2717-2720, 1958.
E.J. Gumbel, "Distributions des valeurs extremes en plusieurs dimensions," Publications de l'Institut de Statistique des Universites de Paris, vol. 9, pp. 171-173, 1960.
E.J. Gumbel, "Bivarlate exponential distrlbutions," Journal of the American Statistical Association, vol. 55, pp. 698-707, 1960.
E.J. Gumbel, "Sommes et differences de valeurs extremes independantes," Comptes Rendus de l'Academie des Sciences de Paris, vol. 253, pp. 2838-2839, 1981.
E.J. Gumbel, "Bivariate logistlc dlstributlons," Journal of the American Statistical Association, vol. 56, pp. 335-349, 1961.
G. Guralnik, C. Zemach, and T. Warnock, "An algorlthm for uniform random samplling of points in and on a hypersphere," Information Processing Letters, vol.

21, pp. 17-21, 1985.
P. Hall, "The distrlbution of means for samples of size N drawn from a population in which the varlate takes values between 0 and 1 , all such values being equally probable," Biometrika, vol. 19, pp. 240-244, 1927.
J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, Methuen, London, 1964.
G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, Cambridge Unlverslty Press, London, U.K., 1952.
C.M. Harris, "The Pareto distribution as a queue service disclpline," Operations Research, vol. 16, pp. 307-313, 1968.
J.F. Hart, Computer Approximations, John Wlley, New York, N.Y., 1968.
C. Hastlngs, Approximations for Digital Computers, Princeton University Press, Princeton, New Jersey, 1855.
R.M. Helberger, "Generation of random orthogonal matrices," Applied Statistics, vol. 27, pp. 199-206, 1978.
J.O. Henriksen, "An improved events llst algorithm," in Proceedings of the 1977 Winter Simulation Conference, pp. 554-557, 1977.
C. Heyde, "On a property of the lognormal distribution," Journal of the Ryal Statistical Society, Series B, vol. 25, pp. 392-383, 1963.
D.P. Heyman and M.J. Sobel, Stochastic Models in Operations Research, Vol. 1, McGraw-Hill, New York, 1982.
T. Hlckey and J. Cohen, "Unlform random generation of strings in a context-free language," SIAM Journal on Computing], vol. 12, pp. 645-655, 1983.
J.S. Hicks and R.F. Wheeling, "An efflcient method for generating unlformly distributed points on the surface of an n-dimenslonal sphere," Communications of the $A C M$, vol. 2, pp. 17-19, 1959.
I.D. Hill, "Remark ASR2. A remark on algorlthm AS2," Applied Statistics, vol. 18, pp. 299-300, 1969.
I.D. Hill, "Algorithm AS66. The normal Integral," Applied Statistics, vol. 22, pp. 424-427, 1973.
T.W. Hill, "On determining a distribution function known only by its moments and/or moment generating function," Ph. D. Dissertation, Arlzona State Unlverslty, 1969.
D. Hitchin, "Remark ASR8. A remark on algorlthms AS4 and AS5," Applied Statistics, vol. 22, p. 428, 1973.
W. Hoeffding, "Masstabinvarlante Korrelationstheorle," Schriften des Mathematischen Instituts und des Instituts fur Angewandte Mathematik der Universitat Berlin, vol. 5, pp. 179-233, 1940.
R.G. Hoffman, "The simulation and analysis of correlated binary data," in Proceedings of the Statistical Computing Section, pp. 340-343, Amerlcan Statlstlcal Assoclation, 1979.
S.C. Hora, "Estlmation of the Inverse function for random varlate generation," Communications of the ACM, vol. 26, pp. 590-594, 1983.
F.C. Hsuan, "Generating unlform polygonal random palrs," Applied Statistics, vol. 28, pp. 170-172, 1979.
T.C. Hu and A.C. Tucker, "Optimal computer search trees and varlable-length alphabetic codes," SIAM Journal of Applied Mathematics, vol. 21, pp. 514-532, 1971.
D. Huffman, "A method for the construction of minlmum-redundancy codes," Proceedings of the IRE, vol. 40, pp. 1098-1101, 1952.
T.P. Hutchinson, "Compound gamma blvarlate distrlbutions," Metrika, vol. 28, pp. 263-271, 1981.
I.A. Ibraglmov, "On the composition of unimodal distributions," Theory of Probability and its Applications, vol. 1, pp. 255-280, 1956.
I.A. Ibragimov and K.E. Chernin, "On the unimodallty of stable laws," Theory of Probability and its Applications, vol. 4, pp. 417-419, 1859.
I.A. Ibragimov and Yu.V. Linnlk, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1971.
P. Inzevitov, "An estimate of the remalnder of the asymptotic expansion in the local limit theorem for densitles," Lithuanian Mathematical Journal, vol. 17, pp. 111-120, 1977.
P.A. Jacobs and P.A.W. Lewis, "A mixed autoregressive-moving average exponential sequence and point process, EARMA(1,1)," Advances in Applied Probability, vol. 9, pp. 87-104, 1877.
B. Jansson, Random Number Generators, pp. 189-191, V. Pettersons Bokindustri Aktlebolag, Stockholm, 1986.
M.D. Johnk, "Erzeugung von Betavertellten und Gammavertellten Zufallszahlen," Metrika, vol. 8, pp. 5-15, 1964.
D.G. Johnson and W.J. Welch, "The generation of pseudo-random correlation matrices," Journal of Statistical Computation and Simulation, vol. 11, pp. 55-89, 1980.
M.E. Johnson, "Models and Methods for Generatlng Dependent Random Vectors," Ph.D. Dlssertation, University of Iowa, 1976.
M.E. Johnson and J.S. Ramberg, "Elliptically symmetric distributions: characterlzations and random variate generation," Proceedings of the American Statistical Association, Statistical Computing Section, pp. 262-265, 1977.
M.E. Johnson and J.S. Ramberg, "A blvarlate distrlbution system with speclfied marginals," Technical Report LA-6858-MS, Los Alamos Sclentific Laboratory, Los Alamos, New Mexico, 1977.
M.E. Johnson and P.R. Tadlkamalla, "Computer methods for sampling from the gamma distribution," in Proceedings of the Winter Simulation Conference, Miami Beach, Florida, pp. 131-134, 1878.
M.E. Johnson and M.M. Johnson, "A new probability distrlbution with applicatlons in Monte Carlo studies," Technical Report LA-7095-MS, Los Alamos Sclentific Laboratory, Los Alamos, New Mexico, 1978.
M.E. Johnson, "Computer generation of the exponentlal power distribution," Journal of Statistical Computation and Simulation, vol. 9, pp. 238-240, 1979.
M.E. Johnson and A. Tenenbeln, "Blvariate distributions with glven marginals and fixed measures of dependence," Technical Report LA-7700-MS, Los Alamos Sclentlific Laboratory, Los Alamos, New Mexico, 1979.
M.E. Johnson, G.L. Tletjen, and R.J. Beckman, "A new famlly of probability distrlbutions with applicatlons to Monte Carlo studies," Journal of the American Statistical Association, vol. 75, pp. 278-279, 1980.
M.E. Johnson and A. Tenenbeln, "A bivarlate distribution family with specifled marginals," Journal of the American Statistical Association, vol. 78, pp. 198-201, 1981.
N.L. Johnson, "Systems of frequency curves generated by methods of translatlon," Biometrika, vol. 38, pp. 149-176, 1849.
N.L. Johnson and C.A. Rogers, "The moment problem for unimodal distrlbutlons," Annals of Mathematical Statistics, vol. 22, pp. 433-439, 1951.
N.L. Johnson, "Systems of frequency curves derlved from the first law of Laplace," Trabajos de Estadistica, vol. 5, pp. 283-291, 1954.
N.L. Johnson and S. Kotz, Distributions in Statistics: Discrete Distributions, John Wlley, New York, N.Y., 1969.
N.L. Johnson and S. Kotz, Distributions in Statistics: Continuous Univeriate Distributions - 1, John Wlley, New York, N.Y., 1970.
N.L. Johnson and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions - 2, John Wlley, New York, N.Y., 1970.
N.L. Johnson and S. Kotz, "Developments in dlscrete distributions," International Statistical Review, vol. 50, pp. 71-101, 1882.
A. Jonassen and O.J. Dahl, "Analysls of an algorithm for priorlty queue adminlstratlon," BIT, vol. 15, pp. 409-422, 1975.
T.G. Jones, "A note on sampling from a tape-fle," Communications of the ACM, vol. 5, p. 343, 1962.
B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution, Lecture Notes in Statlstlcs 9, Springer-Verlag, Berlin, 1982.
V. Kachitvichyanukul, "Computer Generation of Polsson, Binomlal, and Hypergeometric Random Varlates," Ph.D. Dissertation, School of Industrial Engineering, Purdue University, 1982.
V. Kachltvichyanukul and B.W. Schmelser, "Computer generation of hypergeometric random varlates," Journal of Statistical Computation and Simulation, vol. 22, pp. 127-145, 1985.
F.C. KamInsky and D.L. Rumpf, "Simulating nonstationary Poisson processes: a comparison of alternatives including the correct approach," Simulation, vol. 28, pp. 17-20, 1977.
M. Kanter, "Stable densities under change of scale and total varlation Inequalltles," Annals of Probability, vol. 3, pp. 897-707, 1975.
J. Kawarasaki and M. Slbuya, "Random numbers for simple random sampling without replacement," Keio Mathematical Seminar Reports, vol. 7, pp. 1-8, 1982.
T. Kawata, Fourier Analysis in Probability Theory, Academic Press, New York, N.Y., 1972.
J. Kellson and F.W. Steutel, "Mixtures of distributions, moment Inequallties and measures of exponentlallty and normallty," Annals of Probability, vol. 2, pp. 112-130, 1974.
D. Kelker, "Distribution theory of spherical distributions and a location-scale parameter generalization," Sankhya Series A, vol. 32, pp. 419-430, 1970.
D. Kelker, "Infinlte divislblilty and varlance mixtures of the normal distributlon," Annals of Mathematical Statistics, vol. 42, pp. 802-808, 1971.
F.P. Kelly and B.D. Ripley, "A note on Strauss' model for clustering," Biometrika, vol. 63, pp. 357-380, 1978.
A.W. Kemp and C.D. Kemp, "An alternative derlvation of the Hermite distrlbutlon," Biometrika, vol. 53, pp. 627-828, 1966.
A.W. Kemp and C.D. Kemp, "On a distribution assoclated with certain stochastlc processes," Journal of the Royal Statistical Society, Series B, vol. 30, pp. 160163, 1968.
A.W. Kemp, "Effcient generation of logarithmically distributed pseudo-random varlables," Applied Statistics, vol. 30, pp. 249-253, 1981.
A.W. Kemp, "Frugal methods of generating blvarlate dlscrete random varlables," In Statistical Distributions in Scientific Work, ed. C. Tallle et al., vol. 4, pp. 321-329, D. Reldel Publ. Co., Dordrecht, Holland, 1981.
A.W. Kemp, "Conditionality propertles for the blvarlate logarithmic distribution with an application to goodness of flt," In Statistical Distributions in Scientific Work, ed. C. Tallle et al., vol. 5, pp. 57-73, D. Reldel Publ. Co., Dordrecht, Holland, 1981.
C.D. Kemp and A.W. Kemp, "Some propertles of the Hermite distribution," Biometrika, vol. 52, pp. 381-394, 1965.
C.D. Kemp and H. Papageorglou, "Bivarlate Hermite distributions," Bulletin of the $I M S$, vol. 5, p. 174, 1976.
C.D. Kemp and S. Loukas, "The computer generation of blvarlate discrete random varlables," Journal of the Royal Statistical Society, Series A, vol. 141, pp. 513-519, 1978.
C.D. Kemp and S. Loukas, "Fast methods for generating blvarlate discrete random varlables," In Statistical Distributions in Scientific Work, ed. C. Tallle et al., vol. 4, pp. 313-319, D. Reldel Publ. Co., Dordrecht, Holland, 1981.
D.G. Kendall, "On some modes of population growth leading to R.A. Fisher's logarithmic serles distribution," Biometrika, vol. 35, pp. 6-15, 1948.
M. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 1, Macmillan, New York, 1977.
W.J. Kennedy, Jr. and J.E. Gentle, Statistical Computing, Marcel Dekker, New York, 1980.
G. Kimeldorf and A. Sampson, "One-parameter famlles of blvarlate distributions with fixed marglnals," Communications in Statistics, vol. 4, pp. 293-301, 1975.
G. Kimeldorf and A. Sampson, "Uniform representations of blvarlate distributions," Communications in Statistics, vol. 4, pp. 817-827, 1875.
G. Klmeldorf and A. Sampson, "Monotone dependence," Annals of Statistics, vol. 6, pp. 895-803, 1978.
A.J. KInderman, J.F. Monahan, and J.G. Ramage, "Computer generation of random varlables with normal and student's t distribution," Proceedings of the American Statistical Association, Statistical Computing Section, pp. 128-131, Washington, D.C., 1975.
A.J. Kinderman and J.G. Ramage, "The computer generation of normal random varlables," Journal of the American Statistical Association, vol. 71, pp. 893-896, 1976.
A.J. KInderman, J.F. Monahan, and J.G. Ramage, "Computer methods for sampllng from Student's t-distrlbution," Mathematics of Computation, vol. 31, pp. 1009-1018, 1977.
A.J. KInderman and J.F. Monahan, "Computer generation of random variables using the ratlo of unlform deviates," ACM Transactions on Mathematical Software, vol. 3, pp. 257-260, 1877.
A.J. Kinderman and J.G. Ramage, "FORTRAN programs for generating normal random varlables," Technical Report 23, Department of Statistics, The Wharton School, Unlversity of Pennsylvanla, Phlladelphla, PA., 1977.
A.J. KInderman, J.F. Monahan, and J.G. Ramage, "FORTRAN programs for generatlng Student's t random varlables," Technical Report No. 24, Department of Statistlcs, The Wharton School, University of Pennsylvanla, 1977.
A.J. Kinderman and J.F. Monahan, "Recent developments in the computer generation of Student's t and gamma random varlables," Proceedings of the ASA Statistical Computing Section, pp. 90-84, 1978.
A.J. Kinderman and J.F. Monahan, "New methods for generating student's t and gamma varlables," Technlcal Report, Department of Management Sclence, Callfornia State University, Northrldge, CA., 1979.
J.H. Kingston, "Analysis of Henrlksen's algorithm for the simulation event list," Technical Report 232, Basser Department of Computer Science, Unlversity of Sydney, Australla, 1984.
J.H. Kıngston, "Analysls of tree algorithms for the slmulation event llst," Acta Informatica, vol. 22, pp. 15-33, 1985.
P. Klingsberg, Doctoral Dissertation, Unlversity of Washington, Seattle, Washington, 1977.
K. Knopp, Theorie und Anwendung der unendlichen Reihen, Springer-Verlag, Berlin, 1964.
G.D. Knott, "A numbering system for blnary trees," Communications of the $A C M$, vol. 20, pp. 113-115, 1977.
D.E. Knuth, The Art of Computer Programming, Vol. 1. Fundamental Algorithms, Addison-Wesley, Reading, Mass., 1988.
D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1969.
D.E. Knuth, The Art of Computer Programming, Vol. 8: Searching and Sorting, Addison-Wesley, Reading, Mass., 1973.
D.E. Knuth and A.C. Yao, "The complexity of nonunlform random number generation," In Algorithms and Complexity, ed. J.E. Traub, pp. 357-428, Academlc Press, New York, N.Y., 1878.
K.D. Kohrt, "Efflclent sampling from non-uniform statistical distributions," Diploma Thesis, University Klel, Klel, West Germany, 1880.
A.N. Kolmogorov, "Sulla determinazione empirlca di una legge di distribuzione," Giorn. Inst. Ital. Actuari, vol. 4, pp. 83-91, 1933.
S. Kotz and R. Srinivasan, "Distribution of product and quotlent of Bessel functlon varlates," Annals of the Institute of Statistical Mathematics, vol. 21, pp. 201-210, 1989.
C.J. Kowalski, "Non-normal blvariate distributions with normal marginals," The American Statistician, vol. 27, pp. 103-106, 1973.
R.A. Kronmal and A.V. Peterson, "On the allas method for generating random varlables from a discrete distribution," The American Statistician, vol. 33, pp. 214-218, 1979.
R.A. Kronmal and A.V. Peterson, "The allas and allas-rejection-mlxture methods for generating random varlables from probablity distributions," in Proceedings of the 1979 Winter Simulation Conference, pp. 269-280, 1979.
R.A. Kronmal and A.V. Peterson, "Programs for generating discrete random Integers using Walker's allas method," Department of Blostatistics, University of Washington, 1979.
R.A. Kronmal and A.V. Peterson, "Generating normal random varlables using the allas-rejection-mixture method," Proceedings of the 1979 ASA Annual Meeting, Computer Section, Washington, D.C., 1980.
R.A. Kronmal and A.V. Peterson, "A varlant of the acceptance-reJection method for computer generatlon of random varlables," Journal of the American Statistical Association, vol. 76, pp. 446-451, 1981.
R.A. Kronmal and A.V. Peterson, "An acceptance-complement analogue of the mixture-plus-acceptance-rejection method for generating random varlables," ACM Transactions on Mathematical Software, vol. 10, pp. 271-281, 1984.
W.H. Kruskal, "Ordinal measures of assoclation," Journal of the American Statistical Association, vol. 53, pp. 814-881, 1958.
N.H. Kulper, "Tests concerning random polnts on a clrcle," Koninklijke Nederlandse Akademie van Wetenschappen, vol. A63, pp. 38-47, 1960.
S. Kullback, "An application of characteristlc functions to the distribution problem of statistics," Annals of Mathematical Statistics, vol. 5, pp. 264-305, 1934.
R.G. Laha, "On some properties of Bessel function distributions," Bulletin of the Calcutta Mathematical Society, vol. 48, pp. 59-71, 1954.
R.G. Laha, "An example of a non-normal distribution where the quotlent follows the Cauchy law," Proceedings of the National Academy of Sciences, vol. 44, pp. 222-223, 1958.
V.C. Lakhan, "Generating autocorrelated psuedo-random numbers with specific distributions," Journal of Statistical Computation and Simulation, vol. 12, pp. 303-309, 1881.
H.O. Lancaster, "Correlation and complete dependence of random varlables," Annals of Mathematical Statistics, vol. 34, pp. 1315-1321, 1963.
A.M. Law and W.D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, New York, 1982.
A.J. Lawrance and P.A.W. Lewis, "A moving average exponential polnt process, EMA(1)," Journal of Applied Probability, vol. 14, pp. 98-113, 1977.
A.J. Lawrance and P.A.W. Lewls, "The exponentlal autoregresslve moving average EARMA (p, q) process," Journal of the Royal Statistical Society Series B, vol. 42, pp. 150-181, 1980.
A.J. Lawrance and P.A.W. Lewis, "A new autoregressive time serles model in exponentlal varlables," Advances in Applied Probability, vol. 13, pp. 826-845, 1981.
D.H. Lehmer, "The machine tool of comblnatorics," in Applied Combinatorial Mathematics, ed. E. Beckenbach, pp. 19-23, John Wlley, New York, N.Y., 1984.
R. Lelpnik, "The lognormal distribution and strong non-uniqueness of the moment problem," Theory of Probability and its Applications, vol. 26, pp. 850852, 1881.
C.G. Lekkerkerker, "A property of log-concave functlons I, II," Indagationes Mathematicae, vol. 15, pp. 505-521, 1953.
G. Letac, "On bullding random varlables of a given distribution," Annals of Probability, vol. 3, pp. 298-306, 1975.
P. Levy, "Sur certalns processus stochastlques homogenes," Compositio Mathematica, vol. 7, pp. 283-339, 1940.
P.A.W. Lewls and G.S. Shedler, "Simulation of nonhomogeneous Polsson point processes with log-llnear rate function," Biometrika, vol. 63, pp. 501-505, 1978.
P.A.W. Lewis and G.S. Shedler, "Simulation of nonhomogeneous Polsson point processes with degree-two exponentlal polynomlal rate functlon," Operations Research, vol. 27, pp. 1026-1040, 1979.
P.A.W. Lewls and G.S. Shedler, "Simulation of nonhomogeneous Polsson processes by thinning," Naval Research Logistics Quarterly, vol. 26, pp. 403-413, 1879.
S.T. Ll and J.L. Hammond, "Generation of pseudorandom numbers with spectfled unlvarlate distrlbutlons and correlation coefflclents," IEEE Transactions on Systems, Man and Cybernetics, vol. 5, pp. 557-581, 1975.
J. LlebleIn, "Propertles of certain statlstics Involving the closest palr in a sample of three observations," Journal of Research of the National Bureau of Standards, vol. 48, pp. 255-288, 1852.
Yu.V. Linnlk, "Linear forms and statistical criterla: I, II," Selected Translations in Mathematical Statistics and Probability, vol. 3, pp. 1-40, 41-90, 1982.
Yu.V. Linnlk, "Linear forms and statistical crlteria,I,II," Selected Translations in Mathematical Statistics and Probability, vol. 3, pp. 1-90, 1982.
M. Loeve, Probability Theory, Van Nostrand, Princeton, New Jersey, 1963.
H.W. Lotwick, "Simulation of some spatial hard core models and the complete packing problem," Journal of Statistical Computation and Simulation, vol. 15, pp. 295-314, 1982.
E. Lukacs, "A characterization of the gamma distribution," Annals of Mathematical Statistics, vol. 26, pp. 319-324, 1955.
E. Lukacs and R.G. Laha, Applications of Characteristic Functions, Griffln, London, 1964.
E. Lukacs, Characteristic Functions, Griffin, London, 1970.
D. Lurle and H.O. Hartley, "Machine-generation of order statistics for Monte Carlo computatlons," The American Statistician, vol. 28, pp. 28-27, 1972.
D. Lurle and R.L. Mason, "Emplrical Investigation of several technlques for computer generation of order statlstics," Communications in Statistics, vol. 2, pp. 363-371, 1973.
E.J. Lusk and H. Wright, "Deriving the probabllity density for sums of unlform random varlables," The American Statistician, vol. 36, pp. 128-130, 1982.
I. Lux, "A spectal method to sample some probabillty denslty functions," Computing, vol. 20, pp. 183-188, 1978.
I. Lux, "Another spectal method to sample probabllity density functions," Computing, vol. 21, pp. 359-364, 1979.
M.D. Maclaren, G. Marsaglia, and T.A. Bray, "A fast procedure for generating exponentlal random varlables," Communications of the $A C M$, vol. 7, pp. 298-300, 1984.
M. Maejlma, "The remalnder term in the local llmit theorem for independent random varlables," Tokyo Journal of Mathematics, vol. 3, pp. 311-329, 1980.
W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlln-Heldelberg, 1986.
S. Malmquist, "On a property of order statlstics from a rectangular distribution," Skandinavisk Aktuarietidskrift, vol. 33, pp. 214-222, 1950.
B. Mandelbrot, "The variation of certaln speculatlve prices," Journal of Business, vol. 38, pp. 349-419, 1963.
D. Mannion, "Random space-filling in one dimension," Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 9, pp. 143-153, 1964.
N. Mantel, "A characteristic function exerclse," The American Statistician, vol. 27, p. 31, 1973.
K.V. Mardia, "Multivarlate Pareto distributions," Annals of Mathematical Statistics, vol. 33, pp. 1008-1015, 1962.
K.V. Mardia, Families of Bivariate Distributions, Grıffin, London, 1970.
K.V. Mardia, "A translation famlly of blvarlate distributions and Frechet's bounds," Sankhya Series A, vol. 32, pp. 119-122, 1970.
K.V. Mardia, "Statistlcs of directional data," Journal of the Royal Statistical Society Series B, vol. 37, pp. 349-383, 1975.
G. Marsaglla, "Expressing a random varlable in terms of unlform random varlables," Annals of Mathematical Statistics, vol. 32, pp. 894-898, 1861.
G. Marsaglla, "Generating exponential random varlables," Annals of Mathematical Statistics, vol. 32, pp. 899-902, 1961.
G. Marsaglla, "Generating discrete random variables in a computer," Communications of the ACM, vol. 6, pp. 37-38, 1863.
G. Marsaglla, M.D. Maclaren, and T.A. Bray, "A fast procedure for generating normal random variables," Communications of the ACM, vol. 7, pp. 4-10, 1964.
G. Marsaglia and T.A. Bray, "A convenlent method for generating normal random varlables," SIAM Review, vol. 8, pp. 260-264, 1964.
G. Marsaglla, "Choosing a point from the surface of a sphere," Annals of Mathematical Statistics, vol. 43, pp. 845-648, 1972.
G. Marsaglla, K. Ananthanarayanan, and N.J. Paul, "Improvements on fast methods for generating normal random varlables," Information Processing Letters, vol. 5, pp. 27-30, 1876.
G. Marsaglla, "Random number generation," in Encyclopedia of Computer Science, ed. A. Ralston and C.L. Meek, pp. 1192-1197, Petrocelli/Charter, New York, N.Y., 1976.
G. Marsaglla, "The squeeze method for generating gamma varlates," Computers and Mathematics with Applications, vol. 3, pp. 321-325, 1977.
G. Marsaglia, "Generating random varlables with a t-dlstribution," Mathematics of Computation, vol. 34, pp. 235-236, 1979.
G. Marsaglia, "The exact-approximation method for generating random varlables In a computer," Journal of the American Statistical Association, vol. 79, pp. 218221, 1984.
G. Marsaglla and W.W. Tsang, "A fast, easlly implemented method for sampling from decreasing or symmetric unimodal density functions," SIAM Journal on Scientific and Statistical Computing, vol. 5, pp. 349-358, 1984.
G. Marsaglia and I. Olkin, "Generating correlation matrices," SIAM Journal on Scientific and Statistical Computations, vol. 5, pp. 470-475, 1984.
A.W. Marshall and I. Olkin, "A multivarlate exponentlal distribution," Journal of the American Statistical Association, vol. 62, pp. 30-44, 1967.
A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, London, England, 1979.
A.W. Marshall and I. Olkin, "Domalns of attraction of multivarlate extreme value distributlons," Annals of Probability, vol. 11, pp. 188-177, 1983.
J.H. May and R.L. Smith, "Random polytopes: their definttion, generation and aggregate propertles," Mathematical Programming, vol. 24, pp. 38-54, 1982.
W.M. McCormack and R.G. Sargent, "Analysls of future event set algorithms for discrete event slmulation," Communications of the ACM, vol. 24, pp. 801-812, 1981.
E.J. McGrath and D.C. Irving, "Techniques for efflcient Monte Carlo simulation: volume 2: random number generation for selected probabllity distributions," Technical Report SAI-72-590-LJ, Sclence Appllcations, Inc., La Jolla, CA., 1973.
A.T. McKay, "A Bessel function distributlon," Biometrika, vol. 24, pp. 38-44, 1932.
J.K.S. McKay, "Algorithm 262. Number of restricted partitions of N," Communications of the $A C M$, vol. 8, p. 493, 1965.
J.K.S. McKay, "Algorithm 263. Partltlon generator," Communications of the ACM, vol. 8, p. 493, 1965.
J.K.S. McKay, "Algorithm 264. Map of partitions into Integers," Communications of the ACM, vol. 8, p. 493, 1965.
P. McMullen, "The maximum number of faces of a convex polytope," Mathematika, vol. 17, pp. 179-184, 1970.
J.R. Michael, W.R. Schucany, and R.W. Haas, "Generating random variates using transformatlons with multiple roots," The American Statistician, vol. 30, pp. 88-90, 1978.
G.A. Mikhallov, "On modelling random varlables for one class of distribution laws," Theory of Probability and its Applications, vol. 10, pp. 681-682, 1965.
G.A. Mlkhallov, "On the reproduction method for slmulating random vectors and stochastic processes," Theory of Probability and its Applications, vol. 19, pp. 839843, 1974.
L. Mirsky, Introduction to Linear Algebra, Oxford University Press, 1955.
R. von Mises, "On the asymptotic distribution of differentiable statistical functlons," Annals of Mathematical Statistics, vol. 18, pp. 309-348, 1947.
R. von Mises, A Mathematical Theory of Probability and Statistics, Academlc Press, New York, N.Y., 1964.
R.L. Mitchell, "Table lookup methods for generating arbitrary random numbers," IEEE Transactions on Computers, vol. C-28, pp. 1006-1008, 1977.
S.S. Mitra, "Distribution of symmetrlc stable laws of Index 2 to the power -n," Annals of Probability, vol. 9, pp. 710-711, 1981.
S.S. Mitra, "Stable laws of index $2^{-n}, "$ Annals of Probability, vol. 10, pp. 857859, 1982.
D.S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
J.F. Monahan, "Extensions of von Neumann's method for generating random varlables," Mathematics of Computation, vol. 33, pp. 1065-1069, 1879.
W.J. Moonan, "Linear transformation to a set of stochastlcally dependent normal varlables," Journal of the American Statistical Association, vol. 52, pp. 247-252, 1957.
P.A.P. Moran, "A characterization property of the Polsson distribution," Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 206-207, 1951.
P.A.P. Moran, "Testing for correlation between non-negatlve varlates," Biometrika, vol. 54, pp. 385-394, 1967.
B.J.T. Morgan, Elements of Simulation, Chapman and Hall, London, 1884.
D. Morgenstern, "Einfache Beisplele zweldimensionaler Vertellungen," Mitteilungsblatt fur Mathematische Statistik, vol. 8, pp. 234-235, 1958.
L.E. Moses and R.V. Oakford, Tables of Random Permutations, Allen and Unwin, London, 1963.
M.E. Muller, "An Inverse method for the generation of random varlables on large-scale computers," Math. Tables Aids Comput., vol. 12, pp. 167-174, 1958.
M.E. Muller, "The use of computers in inspection procedures," Communications of the $A C M$, vol. 1, pp. 7-13, 1958.
M.E. Muller, "A comparison of methods for generating normal devlates on digital computers," Journal of the ACM, vol. 6, pp. 376-383, 1859.
V.N. Murty, "The distribution of the quotient of maximum values in samples from a rectangular distribution," Journal of the American Statistical Association, vol. 50, pp. 1138-1141, 1955.
M. Nagao and M. Kadoya, "Two-varlate exponentlal distribution and its numerlcal table for engineering application," Bulletin of the Disaster Prevention Research Institute, vol. 20, pp. 183-215, 1971.
R.E. Nance and C. Overstreet, "A blbllography on random number generation," Computing Reviews, vol. 13, pp. 495-508, 1972.
S.C. Narula and F.S. Ll, "Approximations to the chl-square distribution," Journal of Statistical Computation and Simulation, vol. 5, pp. 267-277, 1977.
A. Nataf, "Determination des distributions de probabllites dont les marges sont donnees," Comptes Rendus de l'Academie des Sciences de Paris, vol. 255, pp. 42-43, 1962.
J. von Neumann, "Varlous techniques used in connection with random digits," Collected Works, vol. 5, pp. 768-770, Pergamon Press, 1963. also: In Monte Carlo Method, Natlonal Bureau of Standards Serles, Vol. 12, pp. 38-38, 1951
M.F. Neuts and M.E. Pagano, "Generating random varlates from a distrlbution of phase type," Technical Report 73B, Applled Mathematics Institute, Universlty of Delaware, Newark, Delaware 19711, 1981.
M.J. Newby, "The simulation of order statistics from life distributions," Applied Statistics, vol. 28, pp. 298-301, 1979.
T.G. Newman and P.L. Odell, The Generation of Random Variates, Griffn, London, 1971.
J. Neyman and E.S. Pearson, "On the use and interpretation of certaln test criterla for purposes of statistical inference I," Biometrika, vol. 20A, pp. 175-240, 1928.
A. Nijenhuls and H.S. Wulf, Combinatorial Algorithms, Academic Press, New York, N.Y., 1975.
J.E. Norman and L.E. Cannon, "A computer program for the generation of random varlables from any discrete distrlbution," Journal of Statistical Computation and Simulation, vol. 1, pp. 331-348, 1872.
R.M. Norton, "Moment propertles of the arc sine law," Sankhya Series A, vol. 40, pp. 182-198, 1978.
R.E. Odeh and J.O. Evans, "The percentage points of the normal distribution," Applied Statistics, vol. 23, pp. 96-97, 1974.
E.G. Olds, "A note on the convolution of unlform distributions," Annals of Mathematical Statistics, vol. 23, pp. 282-285, 1852.
J.K. Ord, "The discrete Student's t distribution," Annals of Mathematical Statistics, vol. 39, pp. 1513-1516, 1988.
J.K. Ord, Families of Frequency Distributions, Grıffn, London, 1972.
A.M. Ostrowsk1, Solutions of Equations in Euclidean and Banach Spaces, Academlc Press, New York, N.Y., 1973.
W.J. Padgett, "Comment on Inverse gausslan random number generation," Journal of Statistical Computation and Simulation, vol. 8, pp. 78-79, 1978.
E. Parzen, "On the estimation of a probabllity density function and the mode," Annals of Mathematical Statistics, vol. 33, pp. 1065-1070, 1962.
W.M. Patefleld, "An efficlent method of generating random $R \times C$ tables with given row and column totals," Applied Statistics, vol. 30, pp. 91-97, 1981.
I.D. Patel, "A generalized logarlthmic serles distribution," Journal of the Indian Statistical Association, vol. 19, pp. 129-132, 1981.
J.K. Patel, C.H. Kapadia, and D.B. Owen, Handbook of Statistical Distributions, Marcel Dekker, New York, N.Y., 1978.
G.P. Patll and V. Seshadrl, "Characterization theorems for some unlvarlate probabllity distributlons," Journal of the Royal Statistical Society, Series B, vol. 28, pp. 286-292, 1984.
G.P. Patll and M.T. Boswell, "Chance mechanlsms for discrete distributions in sclentlfic modellng," In Statistical Distributions in Scientific Work, ed. G.P. Patll et al., vol. 2, pp. 11-24, D. Reldel Publ. Co., Dordrecht, Holland, 1875.
G.P. Patil, M.T. Boswell, and D.S. Frlday, "Chance mechantsms in computer generation of random varlables," In Statistical Distributions in Scientific Work, ed. G.P. Patll et al., vol. 2, pp. 37-50, D.Reldel Publ. Co., Dordrecht, Holland,
1975.
V. Paulauskas, "Convergence to stable laws and the modellng," Lithuanian Mathematical Journal, vol. 22, pp. 319-326, 1982.
E.S. Paulson, E.W. Holcomb, and R.A. Leltch, "The estlmation of the parameters of the stable laws," Biometrika, vol. 62, pp. 163-170, 1975.
J.A. Payne, Introduction to Simulation. Programming Techniques and Methods of Analysis, McGraw-Hill, New York, 1982.
W.H. Payne, "Normal random numbers: using machine analysis to choose the best algorithm," ACM Transactions on Mathematical Software, vol. 3, pp. 346358, 1977.
W.F. Perks, "On some experlments in the graduation of mortallty statistics," Journal of the Institute of Actuaries, vol. 58, pp. 12-57, 1932.
A.V. Peterson and R.A. Kronmal, "On mixture methods for the computer generation of random varlables," The American Statistician, vol. 36, pp. 184-191, 1982.
A.V. Peterson and R.A. Kronmal, "Analytic comparison of three general-purpose methods for the computer generation of discrete random varlables," Applied Statistics, vol. 32, pp. 276-286, 1983.
V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, New York, 1975.
R.L. Plackett, "A class of blvarlate distributions," Journal of the American Statistical Association, vol. 60, pp. 516-522, 1865.
R.L. Plackett, "Random permutations," Journal of the Royal Statistical Society, Series B, vol. 30, pp. 517-534, 1968.
R.J. Polge, E.M. Holliday, and B.K. Bhagavan, "Generation of a pseudo-random set with desired correlation and probabllity distribution," Simulation, vol. 20, pp. 153-158, 1973.
G. Polya, "Remarks on computing the probability integral in one and two dimenslons," In Proceedings of the First Berkeley Symposium on Mathematical Statistics and Probability, ed. J. Neymann, pp. 63-78, Unlversity of Callfornla Press, 1949.
A. Prekopa, "On logarithmic concave measures and functions," Acta Scientiarium Mathematicarum Hungarica, vol. 34, pp. 335-343, 1973.
S.J. Press, "Stable distributions: probabllity, inference, and applications in finance - a survey, and a revlew of recent results," In Statistical Distributions in Scientific Work, ed. G.P. Patll et al., vol. 1, pp. 87-102, D. Reldel Publ. Co., Dordrecht, Holland, 1975.
B. Price, "Replicating sequences of Bernoulli trials in slmulation modeling," Computers and Operations Research, vol. 3, pp. 357-381, 1976.
A.A.B. Pritsker, "Ongolng developments in GASP," In Proceedings of the 1976 Winter Simulation Conference, pp. 81-83, 1976.
M.H. Quenoulle, "A relation between the logarlthmic, Polsson and negative blnomlal serles," Biometrics, vol. 5, pp. 182-164, 1949.
D.H. Raab and E.H. Green, "A cosine approximation to the normal distribution," Psychometrika, vol. 28, pp. 447-450, 1981.
M. Rablnowltz and M.L. Berenson, "A comparison of various methods of obtalnIng random order statistics for Monte Carlo computations," The American Statistician, vol. 28, pp. 27-29, 1974.
N.A. Rahman, "Some generallsations of the distributions of product statlstics arising from rectangular populations," Journal of the American Statistical Association, vol. 59, pp. 557-563, 1964.
J.S. Ramberg and B.W. Schmeiser, "An approximate method for generating symmetric random varlables," Communications of the $A C M$, vol. 15, pp. 987-990, 1972.
J.S. Ramberg and B.W. Schmelser, "An approximate method for generating asymmetrlc random varlables," Communications of the $A C M$, vol. 17, pp. 78-82, 1974.
J.S. Ramberg, "A probabllity distribution with applications to Monte Carlo simulatlon studles," in Statistical Distributions in Scientific Work, ed. G.P. Patll et al., vol. 2, pp. 51-64, D. Reldel Publ. Co., Dordrecht, Holland, 1975.
J.S. Ramberg and P.R. Tadikamalla, "On the generation of subsets of order statistlcs," Journal of Statistical Computation and Simulation, vol. 6, pp. 239-241, 1978.
J.S. Ramberg, P.R. Tadikamalla, E.J. Dudewlcz, and E.F. Mykytka, "A probability distributlon and its uses in fitting data," Technometrics, vol. 21, pp. 201-214, 1979.
C.M. Reeves, "Complexity analyses of event set algorlthms," Computer Journal, vol. 27, pp. 72-78, 1984.
D.A. Relles, "A slmple method for generating binomial random variables when n Is large," Journal of the American Statistical Association, vol. 67, pp. 812-813, 1972.
A. Renyl, "On a one-dimensional problem concerning random space-filling," Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 3, pp. 109-127, 1958.
A. Renyl, "On measures of dependence," Acta Mathematica Academia Scientifica Hungarica, vol. 10, pp. 441-451, 1959.
P.R. Rider, "The distribution of the product of maximum values in samples from a rectangular distribution," Journal of the American Statistical Association, vol. 51, pp. 1142-1143, 1955.
B.D. Ripley, "Modelling spatlal patterns," Journal of the Royal Statistical Society, Series B, vol. 39, pp. 172-212, 1977.
B.D. Ripley, "Simulating spatial patterns: dependent samples from a multivarlate denslty," Journal of the Royal statistical Society, series C, vol. 28, pp. 109-112, 1979.
B.D. Rlpley, "Computer generation of random varlables: a tutorlal," International Statistical Review, vol. 51, pp. 301-319, 1983.
S.A. Roach, "The frequency distribution of the sample mean where each member of the sample is drawn from a different rectangular distrlbution," Biometrika, vol. 50, pp. 508-513, 1963.
I. Robertson and L.A. Walls, "Random number generators for the normal and gamma distrubutions using the ratio of unforms method," Technical Report AERE-R 10032, U.K. Atomlc Energy Authority, Harwell, Oxfordshlre, 1880.
C.L. Roblnson, "Algorithm 317. Permutation.," Communications of the ACM, vol. 10, p. 729, 1967.
J.M. Robson, "Generation of random permutations," Communications of the $A C M$, vol. 12, pp. 634-635, 1969.
B.A. Rogozin, "On an estimate of the concentration function," Theory of Probability and its Applications, vol. B, pp. 94-97, 1981.
G. Ronning, "A slmple scheme for generating multivariate gamma distributions with non-negative covarlance," Technometrics, vol. 19, pp. 179-183, 1977.
M. Rosenblatt, "Remarks on some nonparametric estimates of a density function," Annals of Mathematical Statistics, vol. 27, pp. 832-837, 1958.
H.L. Royden, "Bounds on a distribution function when its flrst n moments are given," Annals of Mathematical Statistics, vol. 24, pp. 361-378, 1953.
H.L. Royden, Real Analysis, Macmillan, London, U.K., 1988.
P.A. Rubin, "Generating random points in a polytope," Communications in Statistics, Section Simulation and Computation, vol. 13, pp. 375-396, 1884.
R.Y. Rubinstein, Simulation and the Monte Carlo Method, John Wlley, New York, 1981.
R.Y. Rubinstein, "Generating random vectors uniformly distributed Inside and on the surface of different reglons," European Journal of Operations Research, vol. 10, pp. 205-209, 1982.
F. Ruskey and T.C. Hu, "Generating binary trees lexicographically," SIAM Journal on Computing, vol. 6, pp. 745-758, 1977.
F. Ruskey, "Generating t-ary trees lexicographically," SIAM Journal on Computing, vol. 7, pp. 424-439, 1878.
T.P. Ryan, "A new method of generating correlation matrices," Journal of Statistical Computation and Simulation, vol. 11, pp. 79-85, 1980.
H. Sahal, "A supplement to Sowey's blbllography on random number generation and related toplcs," Journal of Statistical Computation and Simulation, vol. 10, pp. 31-52, 1979.
W. Sahler, "A survey of distrlbution-free statistics based on distances between distrlbution functions," Metrika, vol. 13, pp. 149-169, 1968.
H. Sakasegawa, "On a generation of pseudo-random numbers," Annals of the Institute of Statistical Mathematics, vol. 30, pp. 271-279, 1978.
O.V. Sarmanov, "The maximal correlation coefficlent (nonsymmetric case)," Selected Translations in Mathematical Statistics and Probability, vol. 2, pp. 207210, 1962.
O.V. Sarmanov, "The maximal correlation coefflclent (symmetric case)," Selected Translations in Mathematical Statistics and Probability, vol. 4, pp. 271-275, 1963. S.P. Satterthwalte and T.P. Hutchinson, "A generallzation of Gumbel's blvarlate loglstic distribution," Metrika, vol. 25, pp. 183-170, 1978.
I.R. Savage, "Probabllity Inequalltles of the Tchebycheff type," Journal of Research of the National Bureau of Standards, vol. 85, pp. 211-222, 1981.
H. Scheffe, "A useful convergence theorem for probabllity distributions," Annals of Mathematical Statistics, vol. 18, pp. 434-458, 1947.
E.M. Scheuer and D.S. Stoller, "On the generation of normal random vectors," Technometrics, vol. 4, pp. 278-281, 1982.
B.W. Schmelser, "Methods for modeling and generating probabillstlc components In digltal computer slmulation when the standard distributions are not adequate: a survey," in Winter Simulation Conference, pp. 1-7, 1977.
B.W. Schmeiser, "Generation of the maximum (minlmum) value in digital computer slmulation," Journal of Statistical Computation and Simulation, vol. 8, pp. 103-115, 1878.
B.W. Schmelser, "Random varlate generation: a survey," In Proceedings of the 1980 Winter Simulation Conference, pp. 79-104, Orlando, Florlda, 1980.
B.W. Schmelser and R. Lal, "Squeeze methods for generating gamma varlates," Journal of the American Statistical Association, vol. 75, pp. 879-882, 1980.
B.W. Schmelser and A.J.G. Babu, "Beta varlate generation via exponentlal majorlzing functlons," Operations Research, vol. 28, pp. 917-928, 1980.
B.W. Schmelser, "Generation of varlates from distribution talls," Operations Research, vol. 28, pp. 1012-1017, 1980.
B.W. Schmelser, "Multivariate modeling in slmulation: a survey," in $A S Q C$ Technical Conference Transactions, pp. 252-281, Atlanta, 1980.
B.W. Schmelser and V. Kachltvichyanukul, "Polsson random varlate generation," Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, Indiana, 1981.
B.W. Schmelser and R. Lal, "Blvarlate gamma random vectors," Operations Research, vol. 30, pp. 355-374, 1982.
B.W. Schmelser, "Recent advances in generating observations from discrete random variables," In Computer Science and Statistics: The Interface, ed. J.E. Gentle, pp. 154-160, North-Holland, 1983.
A. Schonhage, M. Paterson, and N. Plppenger, "Finding the medlan," Journal of Computers and System Sciences, vol. 13, pp. 184-199, 1978.
W.R. Schucany, "Order statistics in slmulation," Journal of Statistical Computation and Simulation, vol. 1, pp. 281-288, 1972.
E.F. Schuster, "Generating normal varlates by summing three uniforms," in Proceedings of Computer Science and Statistics: 15th Symposium on the Interface, Houston, Texas, 1983.
R. Seldel, "A convex hull algorithm optimal for point sets in even dimensions," Technical Report 81-14, Department of Computer Sclence, UBC, Vancouver, B.C., 1981.
J. Selgerstetter, "Pole-seeking Brownian motion and blrd navigation," Journal of the Royal Statistical Society Series B, vol. 36, pp. 411-412, 1974.
J.G. Shanthlkumar, "Discrete random varlate generation using unlformization," Technical Report 83-002, Dept. of Systems and Industrial Engineering, Unlversity of Arizona, Tucson, AZ., 1983.
J.G. Shanthikumar, "Discrete random varlate generation using uniformization," European Journal of Operational Research, vol. 21, pp. 387-398, 1985.
J.A. Shohat and J.D. Tamarkin, "The Problem of Moments," Mathematical Survey No. 1, American Mathematical Soclety, New York, 1943.
R.W. Shorrock, "On record values and record times," Journal of Applied Probability, vol. 8, pp. 316-326, 1972.
J. Shuster, "On the inverse gausslan distribution function," Journal of the American Statistical Association, vol. 83, pp. 1514-1516, 1968.
M. Slbuya, "On exponentlal and other random varlable generators," Annals of the Institute of Statistical Mathematics, vol. 13, pp. 231-237, 1881.
M. Sibuya, "A method for generating uniformly distributed points on n dimensional spheres," Annals of the Institute of Statistical Mathematics, vol. 14, pp. 81-85, 1962.
M. Sibuya, "Further consideration on normal random varlable generator," Annals of the Institute of Statistical Mathematics, vol. 14, pp. 159-185, 1962.
M. Slbuya, "Generallzed hypergeometric, digamma and trigamma distributions," Annals of the Institute of Statistical Mathematics, Series A, vol. 31, pp. 373-380, 1979.
H.A. Simon, "On a class of skew distrlbution functions," Biometrika, vol. 41, pp. 425-440, 1954.
H.A. Simon, "Some further notes on a class of skew distribution functions," Information and Control, vol. 3, pp. 90-98, 1960.
B.D. Slvazllan, "On a multivarlate extension of the gamma and beta distributlons," SIAM Journal of Applied Mathematics, vol. 41, pp. 205-209, 1981.
B.D. Sivazlian, "A class of multivarlate distributions," Australian Journal of Statistics, vol. 23, pp. 251-255, 1981.
N.V. Smirnov, "On the distribution of the ω^{2} criterion of von Mises," Rec. Math., vol. 2, pp. 973-993, 1937.
N.V. Smirnov, "On the estimation of the discrepancy between emplrical curves of distribution for two Independent samples," Bulletin Mathematique de l'Universite de Moscou, vol. 2, 1939.
E.R. Sowey, "A chronological and classiffed blbllography on random number generation and testing," International Statistical Review, vol. 40, pp. 355-371, 1972.
E.R. Sowey, "A second classlfied bibllography on random number generation and testIng," International Statistical Review, vol. 46, pp. 89-102, 1978.
M.D. Springer, The Algebra of Random Variables, John Wlley, New York, N.Y., 1979.
E.W. Stacy, "A generallzation of the gamma distribution," Annals of Mathematical Statistics, vol. 33, pp. 1187-1192, 1982.
E. Stadlober, "Generating Student's t varlates by a modified rejection method," Proceedings of the 2nd Pannonian Symposium on Mathematical Statistics, pp. 0-0, 1981.
T.A. Standish, Data Structure Techniques, Addlson-Wesley, Reading, Mass., 1980.
J.F. Steffensen, "On certaln Inequallties between mean values, and thelr applicatlon to actuarlal problems," Skandinavisk Aktuarietidskrift, vol. 1, pp. 82-97, 1918.
J.F. Steffensen, "On a generalization of certain Inequalltles of Tchebychef and Jensen," Skandinavisk Aktuarietidskrift, vol. 8, pp. 137-147, 1925.
A. Stuart, "Gamma-distributed products of independent random varlables," Biometrika, vol. 49, pp. 584-565, 1982.
M.T. Subbotin, "On the law of frequency of errors," Matematicheskii Sbornik, vol. 31, pp. 296-301, 1923.
P.V. Sukhatme, "Tests of slgnificance for samples of the chl square population with two degrees of freedom," Ann. Eugen., vol. 8, pp. 52-56, 1937.
P. Survila, "A local limit theorem for densitles," Lithuanian Mathematical Journal, vol. 4, pp. 535-540, 1984.
P.R. Tadikamalla and M.E. Johnson, "Rejection methods for sampling from the normal distribution," Proceedings of the First International Conference on Mathematical Modeling, pp. 573-578, St. Louls, Missouri, 1977.
P.R. Tadikamalla, "Computer generation of gamma random varlables," Communications of the ACM, vol. 21, pp. 419-422, 1878.
P.R. Tadikamalla, "Computer generation of gamma random varlables - II," Communications of the ACM, vol. 21, pp. 925-929, 1978.
P.R. Tadlkamalla and M.E. Johnson, "A survey of computer methods for sampling from the gamma distribution," Proceedings of the Winter Simulation Conference, vol. 1, pp. 131-134, 1978.
P.R. Tadikamalla, "Random sampling from the generalized gamma distribution," Computing, vol. 23, pp. 199-203, 1979.
P.R. Tadikamalla, "A slmple method for sampllng from the Polsson distributlon," Working Paper 385, Graduate School of Business, Unlversity of Plttsburgh, Plttsburgh, PA., 1979.
P.R. Tadikamalla and M.E. Johnson, "A survey of gamma varlate generators," Technical Report LA-UR-3035, Los Alamos Sclentific Laboratory, Los Alamos, New Mexico, 1980.
P.R. Tadikamalla, "A look at the Burr and related distributions," International Statistical Review, vol. 48, pp. 337-344, 1980.
P.R. Tadikamalla, "Random sampling from the exponential power distribution," Journal of the American Statistical Association, vol. 75, pp. 683-686, 1980.
P.R. Tadikamalla and M.E. Johnson, "A complete gulde to gamma varlate generation," American Journal of Mathematical and Management Sciences, vol. 1, pp. 213-238, 1981.
P.R. Tadikamalla, "On a famlly of distributions obtalned by the transformation of the gamma distribution," Journal of Statistical Computation and Simulation. vol. 13, pp. 209-214, 1981.
K. Takahasi, "Note on the multivariate Burr's distribution," Annals of the Institute of Statistical Mathematics, vol. 17, pp. 257-280, 1985.
J. Talacko, "Perks' distributions and thelr role in the theory of Wiener's stochastlc varlables," Trabajos de Estadistica, vol. 7, pp. 159-174, 1956.
D.R.S. Talbot and J.R. Whlls, "The effectlve sink strength of a random array of volds," Proceedings of the Royal Society of London, Series A, vol. 370, pp. 351374, 1980.
J.C. Tanner, "A derlvation of the Borel distribution," Biometrika, vol. 38, pp. 383-392, 1951.
M.A. Tanner and R.A. Thisted, "A remark on AS127. Generation of random orthogonal matrices," Applied Statistics, vol. 31, pp. 100-192, 1982.
Y. Tashiro, "On methods for generating uniform random points on the surface of a sphere," Annals of the Institute of Statistical Mathematics, vol. 29, pp. 295-300, 1977.
D. Telchroew, "The mixture of normal distributions with different varlances," Annals of Mathematical Statistics, vol. 28, pp. 510-512, 1957.
J. Teuhola and O. Nevalalnen, "Two effclent algorithms for random sampling without replacement," International Journal of Computational Mathematics, vol. 11, pp. 127-140, 1982.
G. Tinhofer, "On the generation of random graphs with given properties and known distrlbution," In Graphs, Data Structures, Algorithms, ed. M. Nagl, pp. 265-297, Carl Hanser Verlag, Munchen, West Germany, 1878.
G. Tinhofer, Zufallsgraphen, Carl Hansen Verlag, Munchen, West Germany, 1980.
G. Tinhofer and H. Schreck, "Linear time tree codes," Computing, vol. 33, pp. 211-225, 1984.
E.C. Titchmarsh, The Theory of Riemann Zeta-Functions, Oxford University Press, Oxford, 1951.
F.I. Toranzos, "An asymmetric bell-shaped frequency curve," Annals of Mathematical Statistics, vol. 23, pp. 467-489, 1952.
K.S. Trivedı, Probability and Statistics, with Reliability, Queuing, and Computer Science Applications, Prentlce Hall, Englewood Cllffs, New .Jersey, 1982.
A.E. Trojanowskı, "Ranking and listlng algorlthms for k-ary trees," SIAM Journal on Computing, vol. 7, pp. 492-509, 1978.
J.W. Tukey, "The practical relationshlp between the common transformations of percentages of counts and of amounts," Technlcal Report 36, Statistical Techniques Research Group, Princeton Unlversity, 1960.
E.G. Ulich, "Event manipulation for discrete simulations requiring large numbers of events," Communications of the ACM, vol. 21, pp. 777-785, 1978.
G. Ulrich, "Computer generation of distributions on the m-sphere," Applied Statistics, vol. 33, pp. 158-163, 1984.
I. Vaduva, "On computer generation of gamma random varlables by rejection and compositlon procedures," Mathematische Operationsforschung und Statistik, Series Statistics, vol. 8, pp. 545-578, 1877.
J.G. Vaucher and P. Duval, "A comparison of slmulation event list algorlthms," Communications of the $A C M$, vol. 18, pp. 223-230, 1975.
J.G. Vaucher, "On the distribution of event times for the notices in a simulation event list," INFOR, vol. 15, pp. 171-182, 1977.
J.S. Vitter, "Optlmum algorithms for two random sampling problems," Proceedings of the 24th IEEE Conference on FOCS, pp. 65-75, 1983.
J.Ş. Vltter, "Faster methods for random sampling," Communications of the ACM, vol. 27, pp. 703-718, 1984.
J.S. Vitter, "Random sampling with a reservolr," ACM Transactions on Mathematical Software, vol. 11, pp. 37-57, 1985.
A.J. Walker, "New fast method for generating discrete random numbers with arbitrary frequency distributions," Electronics Letters, vol. 10, pp. 127-128, 1974.
A.J. Walker, "An efficlent method for generating dlscrete random varlables with general distributlons," ACM Transactions on Mathematical Software, vol. 3, pp. 253-256, 1977.
C.S. Wallace, "Transformed rejection generators for gamma and normal pseudorandom varlables," Australian Computer journal, vol. 8, pp. 103-105, 1978.
M.T. Wasan and L.K. Roy, "Tables of inverse gaussian probablitles," Annals of Mathematical Statistics, vol. 38, p. 299, 1987.
G.S. Watson, "Goodness-of-fit tests on a clrcle.I.," Biometrika, vol. 48, pp. 109114, 1961.
G.S. Watson, "Goodness-of-fit tests on a clrcle.II.," Biometrika, vol. 49, pp. 5763, 1982.
R.L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, N.Y., 1977.
W. Whitt, "Bivarlate distributions with given marginals," Annals of Statistics, vol. 4, pp. 1280-1289, 1976.
E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambrldge, 1927.
J. Whittaker, "Generating gamma and beta random varlables with non-Integral shape parameters," Applied Statistics, vol. 23, pp. 210-214, 1974.
W.A. Whitworth, Choice and Chance, Cambridge University Press, Cambrldge, 1897.
D.V. Widder, The Laplace Transform, Princeton University Press, Princeton, N.J., 1941.
H.S. Wilf, "A unfled setting for sequencing, ranking and random selection of comblnatorlal objects," Advances in Mathematics, vol. 24, pp. 281-291, 1977.
H.S. Wilf, "The unlform selection of free trees," Journal of Algorithms, vol. 2, pp. 204-207, 1981.
S.S. Wllks, Mathematical Statistics, Wlley, New York, 1982.
E.B. Wilson and M.M. Hilferty, "The distribution of chl-square," Proceedings of the National Academy of Sciences, vol. 17, pp. 884-688, 1931.
C.K. Wong and M.C. Easton, "An efflclent method for weighted sampling without replacement," SIAM Journal on Computing, vol. 9, pp. 111-113, 1980.
N.C. Wormald, "Generating random regular graphs," Journal of Algorithms, vol. 5, pp. 247-280, 1984.
F.P. Wyman, "Improved event-scanning mechanisms for discrete event slmulatlon," Communications of the ACM, vol. 18, pp. 350-353, 1975.
S.J. Yakowitz, Computational Probability and Simulation, Addison-Wesley, Reading, Mass., 1977.
C. Yuen, "The Inversion method in random varlate generation," M.Sc. Thesis, School of Computer Sclence, McGill University, Montreal, Canada, 1981.
M. Zelen and N.C. Severo, "Probabllity functions," In Handbook of Mathematical Functions, ed. M. Abramowitz and I.A. Stegun, pp. 925-995, Dover Publications, New York, N.Y., 1872.
K.S. Zlganglrov, "Expression for the Wald distribution in terms of normal distribution," Radiotekhnika Electronika, vol. 7, pp. 184-168, 1962.
S. Zlmmerman, "An optlmal search procedure," American Mathematical Monthly, vol. 66, pp. 690-893, 1859.
V.M. Zolotarev, "On analytic propertles of stable distrlbution laws," Selected Translations in Mathematical Statistics and Probability, vol. 1, pp. 207-211, 1958.
V.M. Zolotarev, "On the representation of stable laws by integrals," Selected Translations in Mathematical Statistics and Probability, vol. 6, pp. 84-88, 1986.

INDEX

2-3 tree 613

2-3 tree
in discrete event simulation 747
Abramowitz, M. 297302391415678
absolute continuity 172
absolute value transformation 147
absorbing Markov chain 757
acceptance complement method
for discrete distributions 116
acceptance-complement method 75
accelerated 78
for Cauchy distribution 81451
for Poisson distribution 502
for t distribution 446
of Ahrens and Dieter 7779
squeeze principle for 78
aceptance-complement method
for nearly flat densities 79
adaptive inversion method 38
adaptive strip method 367
adjacency list 669
admissible algorithm 9
admissible generator 910
Afli, A.A. 606
Aho, A.V. 9092214372669
Ahrens, J.H. 367276778498121145359 379380383391396397405413420 423424425432502507518523538 617

Ahrens-Dieter generator
for exponential distribution 397
Aitchison, J. 504

Akima, H. 763
Alder, B.J. 372
algorithm B2PE
for beta distribution 305309
algorithm B4PE
for beta distribution 305
algorithm of Nijenhuis and Wilf
for classical sampling 618
algorithm 2
Ali, M.M. 578
alias method
algorithm 108
bit-based 777
set-up 109
with two tables 109
alias-urn method 110
almost-exact inversion method 133
for exponential distribution 134
for gamma distribution 137139141145
for monotone densities 134
for normal distribution 135380
for t distribution 143
alternating series method 153
analysis of 154
exponential version of 154
for exponential distribution 158
for Kolmogorov-Smirnov distribution 162
for Raab-Green distribution 158
analytic characteristic function 685
Ananthanarayanan, K. 359
Anderson, T.W. 168716
Anderson-Darling statistic 168

Andrews, D.F. 326
approximations for inverse of normal distribution function 36
arc sine distribution 429481
as the projection of a radially symmetric random vector 230
deconvolution method 239
polar method for 482
properties of 482
Archer, N.P. 687
Arfwedson's distribution 497
Arfwedson, G. 497
Arnason, A.N. 432
Arnold, B.C. 482583
Arnold, D.B. 592656
Asau, Y. 96
assessment of generators 8
association 574576589
asymmetric Kolmogorov-Smirnov statistics 167
asymmetric mixtures 71
asymptotic independence 760
Atkinson's algorithm
for Poisson distribution 518
Atkinson, A.C. 121379380404432439440 443480502505507518

Atkinson-Whittaker method
for beta distribution 440443
autocorrelation matrix 571
AVL tree
in discrete event simulation 747
avoidance problems 372
grid method for 373
Baase, S. 214
Babu, A.J.G. 304305309432
Badel, M. 571
Bailey, B.J.R. 36
balanced binary search tree in discrete event simulation 746
balanced parentheses 652
ball-in-urn method 608609
for multinomial distribution 558
for random bipartite graphs 671
Banks, J. 4736
Barbu, G. 204

Barlow, R.E. 260277343356742
Barnard, D.R. 367
Barndorff-Nielsen, O. 329330478483
Barnett, V. 582
Barr, D.R. 566
Bartels's bounds 460461
Bartels, R. 458459460462
Bartlett's kernel 762765767
inversion method for 767
order statistics method for 766
rejection method for 765
Bartlett, M.S. 762
Barton, D.E. 168519
Basu, D. 594
batch method
for exponential distribution 223
Beasley, J.D. 36
Beckman, R.J. 175
Bell, J.R. 236380
Bendel, R.B. 606
Bene, B. 4
Bentley, J.L. 215
Berenson, M.L. 215220
Bergstrom, H. 459460
Bergstrom-Feller series for stable distribution 459460461

Berman's method analysis of 419
for beta distribution 418
for gamma distribution 419420
Berman's theorem 416
Berman, M.B. 416420
Bernoulli distribution 486521 properties of 689

Bernoulli generator 769
Bernoulli number 490493550
Bernoulli trial 521
Berry-Esseen theorem
application of 225
Besag, J.E. 372
Bessel function distribution 469 type I 469
type II 469
Bessel function 469
integral representation for 470
modified 469
of the first kind 473755
of the second kind 469
Best's rejection method
for gamma distribution 410
Best, D.J. 379380405407410420426436
447450473474476
beta distribution 428
algorithm B2PE for 305309
algorithm B4PE for 305
algorithm BA for 438
algorithm BB for 438
algorithm BC for 439
as an IHR distribution 343
Atkinson-Whittaker method for 440443
Berman's method for 418
Cheng's rejection method for 438
deflnition 7
Forsythe's method for 432
inversion-rejection method for 339347
Johnk's method for 418432439
log-concavity of 287
of second kind 25
of the second kind 428429437444
properties of 416428429
rejection method for 432
relation to binomial distribution 536
relation to Cauchy distribution 429
relation to Dirichlet distribution 595
relation to F distribution 429
relation to gamma distribution 429432 595
relation to multivariate Pearson II distribution 237
relation to multivariate Pearson VII distribution 238
relation to order statistics 17
relation to Pearson VI distribution 429
relation to Snedecor distribution 429
relation to t distribution 429
relation to uniform distribution on unit sphere 227
relation to uniform order statistics 210 431
relation to z distribution 330
shape of 428
strip method for 432
uniform order statistics method for 431
universal method for 432
with one or two parameters less than one 439

Beyer, W.H. 245

Bhagavan, B.K. 571
Bhattacharjee, G.P. 678
Bhattacharyya, B.C. 482
Bignami, A. 74
binary search tree 89613
in discrete event simulation 747748
inorder traversal of 89
nearly optimal 94
set-up of 90
binary tree
equivalent 652
inorder traversal of 653
representation of 652
similar 652
Binet's series 491497
for the log-gamma function 491
binomial distribution 486496520 coin flip method for 524
convergence to normal distribution 526 deflnition 84
first walting time method for 525
first waiting time property 522
generating function of 521
genesis 521
inequalities for 527544
inversion method for 524
properties of 497521526
recursive method for 523536537545
rejection method for 115523526529 533543
relation to beta distribution 536
relation to geometric distribution 522
relation to hypergeometric distribution 545
relation to Poisson distribution 543
second waiting time method for 525
second waiting time property 522
sequential search method for 89
splitting algorithm for 527
table method for 523
universal rejection method for 495
bipartite graph 671
birth and death process 755
bisection method 3238 analysis 38
bit vector 613
bivariate dependence 576
bivariate distributions transformations of 577
bivariate exponential distribution 583584
of Johnson and Tenenbein 585591
of Lawrance and Lewis 585 of Marshall and Olkin 585 of Moran 585 trivariate reduction for 592
bivariate extreme value distribution 563
bivariate gamma distribution 586 composition method for 587 trivariate reduction for 587588
bivarlate geometric distribution trivariate reduction for 592
bivariate Hermite distribution 592
bivariate multinormal distribution 566
bivariate normal distribution 581
bivariate Poisson distribution 592 trivariate reduction for 592
bivariate uniform distribution 576578589
bivariate Weibull distribution trivariate reduction for 592
black box method 286
for characteristic function 696
for log-concave densities 290
Blaesild, P. 478
Blum, M. 431
Bolshev, L.N. 25136144518
Bondesson, L. 458
Boole's rule 701
bootstrap estimate 766
Borel-Tanner distribution 520
Boswell, M.T. 4759
bounded densities 43
grid method for 376
inversion-rejection method for 332
rejection method for 43
strip method for 360
bounded monotone densities inversion-rejection method for 345
Box, G.E.P. 206235380
Box-Muller method
for normal distribution 235
Boyett, J.M. 608
Bratley, P. 429251736767
Bray, T.A. 359380383388392397
Brent, R. 295
Brent, R.P. 121380

Brown, G.W. 457
Bryson, M.C. 603604
bucket searching 215218
bucket sorting 215219
analysis of 216224
bucket structure 613
in discrete event simulation 743744745
Burr distribution 476477
inversion method for 477
Burr family 476477685
Burr XII distribution 423432437
generator for 411
Burr, I.W. 476
busy period
of a queue 755
Butcher, J.C. 391
Butler, E.L. 763
Cacoullos's theorem 452
Cacoullos, T. 446452
Cannon, L.E. 106
Cantelli's inequality 33
car parking problem 372 search tree for 374
Carleman's condition 684
Carlton, A.G. 24
Carson, J.S. 4736
Catalan's constant 120
Cauchy distribution 445450
acceptance-complement method for 81 451
as a normal scale mixture 326
as a stable distribution 183455
as dominating distribution 45
closure under addition 25
definition 7
inversion method for 29450
Kronmal-Peterson generator for 82
polar method for 451
properties of 452
ratio-of-uniforms method for 201
relation to beta distribution 429
relation to gamma distribution 427
relation to normal distribution 240451 452
relation to uniform distribution in unit circle 234
tail of 453

Cawdery, M.N. 367
Cayley's theorem 662
central limit theorem 21136222
for binomial distribution 526
local 719
Chalmers, C.P. 606
Chambers, J.M. 184185459
characteristic function 619695 black box method for 696 definition 5
inequalities for 707721 of uniform distribution 708 Polya 718
rejection method for 697
with compact support 706712
Chebyshev's inequality 321
Chen, H.C. 96
Cheng's rejection method
for beta distribution 438
for gamma distribution 411413423
Cheng, R.C.H. 194203405406411412413 423432437438439477
Cherian, K.C. 587
Chernin, K.E. 183184455459
Chhikara, R.S. 148
chi-square distribution 403
properties 13
Chmielewski, M.A. 226
Chow, Y.S. 5215063225323
Cinlar, E. 246251257261
circle avoidance problem 372
circle parking problem 374
circular array
in discrete event simulation 741
Cislak, P.J. 476
classical sampling 612
algorithm of Nijenhuis and Wilf for 618
analysis of 614615
with membership checking based on a hash table 616
with membership checking 613
closed hashing 613617
codeword 662
coding function 559643
for binary tree 657658
for edges in a graph 668
for random partition 661
Cohen, J. 673
coin fip method
for binomial distribution 524
coin flips
simulation of 104
compact support 43
comparison-based inversion methods 88
compiled code 8
complete binary tree 90
complexity 2
composition method with quick acceptance 263
composition method 6668
analysis of 69
based upon hazard rates 262
for bivariate gamma distribution 587
for discrete distributions 116
for multivariate distributions 557
for normal distribution 67
for order statistics 224
for Poisson processes 253
for polynomial densities 7172
modifled 69
composition-rejection method
for gamma distribution 420
for normal distribution 380382
for t distribution 446453
compound Poisson distribution 487
compound Weibull distribution 414
comprehensive family 581
concave distribution 172
concave monotone densities
inequalities for 328
universal rejection method for 329
conditional density 555
conditional distribution method 555
for Gumbel's bivariate exponential family 584
for Morgenstern's family 580
for multinomial distribution 558559731
for multinormal distribution 556
for multivariate Cauchy distribution 555
for normal distribution 556
for random $R \times C$ table 610
tables for 561
connected graph 668
consistency 762
consistent density estimate 762
context-free language 673
contingency table 608
continuous mixtures deflnition 16
convergence to the stable distribution 468
convergent series method 152 analysis of 156
convex characteristic function 186
convex densities 179
generator for 180 inequalities for 311
inversion-rejection method for 355 universal rejection method for 313
convex density
inequalities for 322
convex distribution 172
convex hull 571
convex polygon in the plane 570
convex polytope 568
convolutions 19
Cook, J.M. 241
Cook, R.D. 600602
Cook-Johnson distribution 600602 properties of 601

Cooper, B.E. 678
Cornish-Fisher approximation 136
correlated random variates 29
correlation coefficient 573
covariance matrix 564 random vector with given 565
Cox, D.R. 258
Cramer, H. 733
cumulative hazard rate 260
cyclic rate function 256
Dagpunar, J.S. 426
Dahl, O.J. 743
Darboux's formula 460462
Darboux, M. 460462
Darling, D.A. 168716
Davey, D. 743746
David, F.N. 587
Davidovic, Ju.S. 309

Davis, P.J. 701704
DDG tree algorithm 771
analysis of $\mathbf{7 7 2}$
optimal 777
suboptimal 775
DDG tree 771
for rejection method 777
relation to finite state machine $\mathbf{7 8 2}$
de Balbine, G. 648651
de Matteis, A. 74
Deak, I. 477232566
decoding function 559
decoding method 643
for random binary tree 657
for random permutation 644
Robson's 648
decoding with rejection 645
decomposition of a polytope 570
deconvolution method 239
for arc sine distribution 239
Denardo, E.V. 746
densities with known moments 324
density estimate 759
consistency of 762
density 5
inequalities for 696698705
dependence 573
depth of a node 649
derivatives of characteristic function inequalities for 703
Devroye, L. 43549151162167169187216 218261264268277278288331334 406422502507523544568621624 625626675676680696759762763 764766767

DHR distributions 261
dynamic thinning method for 268283
inversion method for 267
inversion-rejection method for 342344 properties of 277
diagonal matrix 605
dice
simulation of 103
Dieter, U. 727677121145379380383391
 502507518523538617
digamma distribution 553

Diggle, P.J. 372
Dirichlet distribution 593
generalization of 596
relation to beta distribution 595 relation to gamma distribution 594 relation to uniform spacings 593
Dirichlet tessellation 374
discrete distribution generating tree 771
discrete distribution 83 inequalities for 497 universal rejection method for 497
discrete dynamic thinning method 283
discrete event simulation 735
discrete hazard rate function 278
discrete Markov chain 757758
discrete mixtures 66 deflnition 16
discrete normal distribution rejection method for 117
discrete random variable 83
discrete t distribution 497
discrete thinning method analysis of 282 for logarithmic series distribution 282 for negative binomial distribution 284
discrete uniform distribution 88
distribution function 5 inequalities for 321
distributions on hyperspheres 571
Dubey, S.D. 414
Dudewicz, E.J. 483
Dugue, D. 186
Dumouchel, W.H. 458
Durstenfeld, R. 648
Duval, P. 743744746
Dvoretzky, A. 373
dynamic hashing 38
dynamic thinning method analysis of 269 for DHR distributions 268
Easton, M.C. 619
economical method 77
eigenvalue 605
empiric distribution function 167
energy spectrum of fission neutrons 191
Englebrecht-Wiggans, R. 743
entropy 771775
equiprobable mixture 106
Erdos, P. 170668
Erdos-Kac distribution 170
series method for 170
Ernvall, J. 617
error estimates
for inversion formula 702
Euler's constant 424552639680
Evans, J.O. 36
event simulator 673
event-driven simulation 736
expected complexity 2
experimental method
for geometric distribution 499
explicit approximations for inverse of distribution function 35
explicit factorial model 631
exponential class of distributions 38
exponential distribution
Ahrens-Dieter generator for 397
almost-exact inversion method for 134
alternating series method for 158
as an IHR distribution 343
batch method for 223
definition 7
generating iid random variates 223
inequalities for 157
inversion method for 29
Marsaglia's generator for 394396
memoryless property of 219393
memoryless property 212
mixtures of 16
Monahan's algorithm for 132
order statistics of 219
properties of 125393395
properties 12
ratio-of-uniforms method for 200
rectangle-wedge-tail method for 397
relation to exponential integral distribution 176
relation to normal distribution 240
relation to Poisson process 248
relation to Weibull distribution 414
series method for 168
truncated 157
uniform spacings method for 394
von Neumann's method for 125
exponential function
inequalities for 721
exponential inequalities 142
exponential integral distribution
properties of 191
relation to exponential distribution 176
exponential inter-arrival time method
for Poisson distribution 504
exponential mixtures 176
exponential order statistics 219
exponential power distribution 174
log-concavity of 287
multivariate properties of 244
rejection method for 302
relation to gamma distribution 175193 420
exponential scale mixture 329
exponential spacings method
for exponential order statistics 219
for Poisson process 249
for uniform order statistics 214
exponential spacings 211
extendible hashing 104
extremal value distribution
relation to logistic distribution 39
extreme value distribution
bivariate 563
log-concavity of 287
relation to Weibull distribution 414
F distribution
definition 23
relation to beta distribution 429
relation to gamma distribution 23428
relation to t distribution 446
factorial moment generating function 486
factorial moment 486
factorial representation 644
factorials
evaluation of 489
Faddeeva, V.N. 565
Fagin, R. 104
Fama, E. 458
Fan, C.T. 620624
Farlie, D.J.G. 578589
Feast, G.M. 194203406

Fejer-de la Vallee Poussin density 187459 718
rejection method for 187
Fejer-de la Vallee Poussin distribution 169
Feller, W. 161168172184246326329452 453454455457459460468469470 563654684683715721
Ferreri's system 482
Ferreri, C. 482
finite mixtures 66
finite state machine
relation to DDG tree 782
first passage time distribution 150
first waiting time method for binomial distribution 525
first-passage-time in $M / M / 1$ queue rejection method for 757
first-passage-time 755
distribution of 755
Fisher's approximation 136
Fisher's transformation 406
Fisher, N.I. 473474476
Fisher-von Mises distribution 571
Fishman, G.S. 45002505523543
Fix, E. 58் 7
Fleishman's family 694
Fleishman, A.I. 694
Floyd, R.W. 431747
folded normal distribution 469
Folks, J.L. 148
Forsythe's method 123
analysis of 124132
for beta distribution 432
for normal distribution 380
for the exponential distribution 125
Monahan's generalization of 127
Forsythe, G.E. 121123380
Forsythe-von Neumann method 121 for gamma distribution 130420
Fox, B.L. 429251431580736746747767
Fraker, J.R. 571
Franklin, J.N. 571
Franta, W.R. 746747
Frechet bounds 586

Frechet distributions 578579
Frechet's extremal distributions 579580581 600
discrete form for 593
Frechet's family 581
Frechet's inequalities 579586593
Frechet, M. 578581
Fredkin, E. 104
free tree 662
Freeman, M.F. 136
Freeman-Tukey approximation 136
Friday, D.S. 4
full correlation range 582
future event set algorithm 736
future event set 736
gambler's ruin problem 758759
gamma distribution 401
algorithm G4PE for 426
algorithm GB for 405411413420423
algorithm GBH for 406
algorithm GC for 405
algorithm GO for 405413423
algorithm GRUB for 406
algorithm GS for 420424425426
algorithm RGS for 426
algorithm TAD2 for 405
algorithm XG for 405410
almost-exact inversion method for 137 145
as a DHR distribution 267
as an IHR distribution 343
as an NBUE distribution 742
as an NWUE distribution 742
Berman's method for 419420
Best's rejection method for 410
characteristic function of 734
Cheng's rejection method for 411413 423
closure under addition 20
composition-rejection method for 420
convergence to normal distribution 58
definition 7
distribution of ratio 25
Forsythe-von Neumann method for 130 420
generator for 182
inequalities for 408425734
Johnk's method for 418420
local central limit theorem for 404
log-concavity of 287406

Marsaglia's algorithm RGAMA for 406 normal approximations for 136 properties of 182402423428 properties 1323
ratio-of-uniforms method for 203406 recursive properties of 181
rejection method for 132304405415 419426
relation to beta distribution 403429595
relation to Cauchy distribution 427
relation to Dirichlet distribution 594
relation to exponential distribution 402
relation to exponential power distribution 175193420
relation to generalized inverse gaussian distribution 478
relation to Johnson-Tietjen-Beckman distribution 175
relation to normal distribution 23402
relation to Pareto distribution 194
relation to Pearson VI distribution 427
relation to Stacy's generalized gamma distribution 423
relation to t distribution 15427445
relation to uniform distribution on unit sphere 227
relation to uniform order statistics 210
sample maximum of 678
strip method for 406
thinning method for 277
Wilson-Hilferty approximation-based method for 139141
Wilson-Hilferty transformation for 137
with parameter less than one 415419 424425
gamma function 490491493
gamma-integral distribution 191
Gaver, D.P. 261277
Gebelein, H. 574
Gehrke, H. 631
general alias algorithm 111
general position 568
generalization of a sample 759
generalized Cauchy distribution 452
generalized gaussian distribution 323
inequalities for 323
universal rejection method for 324
generalized hyperbolic distribution 478
generalized inverse gaussian distribution 478
log-concavity of 287479
properties of 479
rejection method for 479480
generalized Liouville distribution 599
generalized logarithmic series distribution 549
generalized logistic distribution 330480
relation to beta distribution 480
generating function 83486
generator
admissible 910
portability 8
readability 8
set-up time 8
speed 8
Gentle, J.E. 4
geometric distribution 487498
definition 84
experimental method for 499
inversion method for 87499500
memoryless property of 500
properties of 498
relation to binomial distribution 522
relation to logarithmic series distribution 547
sequential test method for 280
geometrical puzzles 111
Gerontides, I. 215220
ghost point method
analysis of 629
in sequential sampling 626628
ghost sample method
in sequential sampling 621626
Gibbons, J.D. 574
Girault, M. 186
Gleaves, J.T. 372
Glick, N. 649
Godwin, H.J. 322685691
Gonnet, G.H. 747
Gordon's inequality 681
Gordon, R.D. 681
grade correlation 574
Gram-Charlier series 735
Grassia's distribution 444445
Grassia, A. 444
Graybill, F.A. 565
Green, E.H. 158
Green, P.J. 372374

Greenwood, A.J. 63141406
Grenander, U. 171
grid method 368
analysis of 370371
for bounded densities 376
for Riemann integrable densities 377
for unimodal density 377
in avoidance problems 373
size of directory 370
grid
directory 368
Groeneveld, R.A. 482
grouping method
for order statistics 220
Guerra, V.O. 763
guide tables
algorithm 97
definition 96 set-up 98

Gumbel's bivariate exponential family 583 591 conditional distribution method for 584

Gumbel's bivariate logistic distribution relation to Cook-Johnson distribution 602
Gumbel's family 578
Gumbel, E.J. 287330578583584
Guralnik, G. 232
Gyorf, L. 759762763764766767
Haas, R.W. 145
Hacet, B.I. 309
halfnormal distribution as an IHR distribution 343
Halgreen, C. 478
Hall, P. 733
Hammersley, J.M. 29
Hammond, J.L. 571
Handscomb, D.C. 29
Hankel determinant 683
Haq, M.S. 578
Hardy, G.H. 338
Harris, C.M. 194
Hart, J.F. 626
Hartley, H.O. 215
hashing with chaining 617

Hastings, C. 36
hazard rate 260341
relation to nonhomogeneous Poisson process 260
heap 92
in discrete event simulation 747748
heapsort 214
Heiberger, R.M. 607
height-balanced tree 613
Henriksen's algorithm 746
Henriksen, J.O. 746
Hermite distribution 592
Hermite polynomial 733
Heyde's family 693
Heyde, C. 693
Heyman, D.P. 749755
Hickey, T. 673
Hicks, J.S. 243
hierarchical bucket structure
in discrete event simulation 746
Hilferty, M.M. 136
Hill, 1.D. 678
Hill, T.W. 685
histogram method 103
histogram 685687
Hitchin, D. 678
Hoeffding, W. 580588
Hoffman, R.G. 571
Holcomb, E.W. 458
HOLD model 742743
analysis of 748
Holliday, E.M. 571
Hopcroft, J.E. 9092214372669
Hora, S.C. 763
Horner's rule 141
Horspool, N. 101
Hsuan, F.C. 570
Hu, T.C. 91657
Hu-Tucker algorithm 91
Huffman tree 91776
analysis of 93
construction of 92
Huffman, D. 91

Hutchinson, T.P. 558600602
hybrid rejection method 115
hyperbola distribution 483
hyperbolic cosine distribution 330
hyperbolic distribution 483
log-concavity of 483
rejection method for 483
relation to generalized inverse gaussian distribution 483484
hyperbolic secant distribution 471
inequalities for 472
inversion method for 472
log-concavity of 287
propertles of 472
rejection method for 472
relation to Cauchy distribution 472
relation to normal distribution 472
hypergeometric distribution 544
properties of 545619
rejection method for 545
relation to binomial distribution 545
universal rejection method for 545
hyperrectangle parking problem 374
hypoexponential distribution
generators for 121
Ibragimov, I.A. 183184288455459720
IHR distributions 261
inversion-rejection method for 342
properties of 343356
inctdence matrix 671
inclusion-exclusion principle 21519
incremental method
for uniform distribution on hypersphere 243
independence 6
indicator function 8
inequalities
for exponential distribution 55
for tails of distribution functions 321
inequality
Chebyshev's 321
Markov's 321
Narumi's 321
integral representation
for Bessel function of first kind 756
for stable distribution 459
invariance under monotone transformations 574
inverse gaussian distribution 148478
generator of Michael, Schucany and Haas for 149
properties of 148150
inverse-of-f method 178
application of 315
for normal distribution 178
inversion by correction
algorithm 99
analysis 98
modified algorithms 100
inversion formula 700719
inversion inequalities 625
inversion method 2728261
approximations 35
by sequential search 776
for Bartlett's kernel 767
for binomial distribution 524
for Burr distribution 477
for Cauchy distribution 29450
for DHR distributions 267
for discrete distributions 85
for exponential distribution 29
for exponential family of distributions 38
for generating the maximum 675
for geometric distribution 87499500
for hyperbolic secant distribution 472
for logarithmic series distribution 546
for logistic distribution 39471
for maxima 30
for multivariate discrete distributions 560
for normal distribution 380
for order statistics 30
for Pareto distribution 29262
for Poisson distribution 502505
for Poisson processes 251252
for power function distribution 262
for Rayleigh distribution 29
for stable distribution 458
for t distribution 445
for t3 distribution 37
for tail of extreme value distribution 276
for tail of Rayleigh distribution 29
for tail of the Cauchy distribution 453
for triangular density 29
for Weibull distribution 262
for wrapped Cauchy density 474
in sequential sampling 621624
numerical approximation algorithms for 31
inversion of a many-to-one transformation

146
inversion
by binary search 8993
by correction 98
by hashing 96
by sequential search 85
by truncation of a continuous random variable 87
inversion-rejection method 331
analysis of 337342345351
for beta distribution 339347
for bounded densities 332
for bounded monotone densities 345
for convex densities 355
for DHR distributions 342
for IHR distributions 342
for Lipschitz densities 348
for monotone densities 336341
optimization of 339347
inversion-with-correction 625
Inzevitov, P. 720731
Irving, D.C. 4480
Jackson-de la Vallee Poussin distribution 169
Jacobian 14
Jacobs, P.A. 571
Jansson, B. 4648
jigsaw puzzle method 67
Johnk's method
analysis of 419
for beta distribution 418432439
for gamma distribution 418420
Johnk's theorem 416
Johnk, M.D. 416420432
Johnson's family 484
Johnson's system 484685
Johnson, D.G. 606
Johnson, M.E. 175237244404576582583 585586587590591592600602603 604

Johnson, M.M. 175
Johnson, N.L. 784379480484496498552 555600602604688

Johnson-Ramberg bivariate uniform family 592

Johnson-Ramberg method
for normal distribution 244
for radially symmetric distributions 237

Johnson-Tenenbein family 582583 properties of 590
Johnson-Tietjen-Beckman distribution 175 relation to gamma distribution 175
Jonassen, A. 743
Jones, T.G. 620
Jorgensen, B. 287478
k-excellence 764
Kac, M. 170
Kachitvichyanukul, V. 502507523545
Kadoya, M. 583590
Kaminsky, F.C. 261
Kanter, M. 183184455459
Kapadia, C.H. 322
Kawarasaki, J. 631
Kawata, T. 731
Keilson, J. 329
Kelker, D. 226228326
Kelly, F.P. 372
Kelton, W.D. 4736
Kemp's generator for logarithmic series distribution 548
Kemp, A.W. 86546547559560593759
Kemp, C.D. 559560561592593759
Kendall's tau 574
Kendall, D.G. 547
Kendall, M. 678691694
Kendall-Stuart density 694
Kennedy, W.J. 4
Kent, J. 329330
kernel estimate 687762
analysis of 767
consistency of 767
in Monte Carlo integration 766
mixture method for 765
Khinchine's theorem 172687
Kimeldorf, G. 574575576589590
Kimeldorf-Sampson bivariate uniform distribution 589

Kinderman, A.J. 194195201203379380383 390391406446454

Kinderman-Ramage generator
for normal distribution 391

Kingston, J.H. 737746747
Klincsek, T. 216218
Klingsberg's algorithm 664665
Klingsberg, P. 663
Knopp's series 493
for the log-gamma function 493
Knopp, K. 493498
Knott, G.D. 657
Knuth, D.E. 4214502618638743747768 771774777779781
Knuth-Yao lower bound 772
Kohrt, K.D. 368498359
Kolmogorov, A.N. 161168
Kolmogorov-Smirnov distribution 161
alternating series method for 162
series expansions for 161
Kolmogorov-Smirnov statistic 168
Korenbljum, B.I. 309
Kotz, S. 784379469480496498552555 600602604

Kowalski, C.J. 603
Krein's condition 684
Kronmal, R.A. 758182108110359369451
Kruskal, W.H. 574
Kuiper's statistic 168
Kuiper, N.H. 168
Kullback, S. 402423
labeled free tree $66^{\circ} 5$
Laha's distribution 451
Laha, R.G. 451469
Lakhan, V.C. 571
Lal, R. 426587588591
Lancaster, H.O. 589
Laplace distribution
as a normal scale mixture 326
as dominating distribution 44
generators for 119
properties of 401
relation to normal distribution 25
Law, A.M. 4736
Lawrance, A.J. 571583585586591
Lawrance-Lewis bivariate exponential distribution 585
Lehmer's factorial representation 644

Lehmer, D.H. 644
Leipnik, R. 694
Leitch, R.A. 458
Lekkerkerker, C.G. 288
Letac's lower bound 52 application of 124
Letac, G. 52
Levy's representation for stable distribution 454

Levy, P. 457
Lewis, P.A.W. 251253256258259261264 571583585586591

Li, F.S. 136
Li, S.T. 571
library traversal 561
Lieblein, J. 26
line distribution 571572
linear list
back search in 742
front search in 742
in discrete event simulation 740
linear selection algorithm 431
linear transformations 12563
Linnik's distribution 186
generator for 190
properties of 189
Linnik, Yu.V. 186720
Llouville distribution 596 generalization of 599 of the first kind 596 properties of 598 relation to Dirichlet distribution 598
Lipschitz condition 63320
Lipschitz densities
inequalities for 320322
inversion-rejection method for 348 proportional squeeze method for 63 strip method for 366 universal rejection method for 323

Littlewood, J.E. 338
local central limit theorem 719720
application of 58 for gamma distribution 404
Loeve, M. 697
log-concave densities 287 black box method for 290
inequalities for 288290295296299321 325
optimal rejection method for 293294 properties of 309
rejection method for 291292298301
cail inequalities for 308
universal rejection method for 301325
loga-ithm
inequalities for 140168198508540722
logz-ithmic series distribution 488545
definition 84
discrete thinning method for 282
inversion method for 546
Kemp's generator for 548
properties of 284546547
rejection method for 546549
relation to geometric distribution 547
sequential test method for 282
logistic distribution 471518
as a normal scale mixture 326
as a 2 distribution 330
definition 39
generators for 119
inequalities for 471
inversion method for 38471
log-concavity of 287
properties of 472480
properties 39
rejection method for 471
relation to extremal value distribution 39
relation to extreme value distribution 472
lognormal distribution 392484
moments of 693
lost-games distribution 758759
Lotwick, H.W. 372374
Loukas, S. 559560561592593
lower triangular matrix 564
Lukacs, E. 186469694
Lurie, D. 215
Lusk, E.J. 733
Lux's algorithm 61
Lux, I. 60176
Lyapunov's inequality 324
m-ary heap
in discrete event simulation 747
M/M/1 queue 755759
Maclaren, M.D. 359380397

INDEX

Maclaurin series 460
Maejima, M. 720731
Magnus, W. 470756
Mallows, C.L. 168184185326459
Malmquist's theorem 212
Malmquist, S. 212
Maly, K. 746747
Mandelbrot, B. 454
Mannion, D. 373
Mantel, N. 25
many-to-one transformations 145
Mardia's generator
for Plackett's family 589
Mardia, K.V. 473576581587588589
marginal density 555
marginal distribution 6
marginal random variable 6
Markov chain
transition matrix 758
Markov's inequality 321
Marsaglia's algorithm RGAMA
for gamma distribution 406
Marsaglia's almost-exact inversion method 136

Marsaglia's approximation 136
Marsaglia's generator
for exponential distribution 394396
Marsaglia's method
for tail of the normal distribution 381
Marsaglia's table look-up method 106
Marsaglia, G. $4 \quad 53 \quad 67 \quad 106 \quad 133 \quad 135 \quad 136 \quad 137$ $\begin{array}{lllllllllllllll}141 & 143 & 144 & 236 & 241 & 242 & 359 & 378 & 380\end{array}$ 381382383388392394395397406 446605606

Marsaglia-Bray generator . for normal distribution 390392

Marshall, A.W. 277343356563576583585 774

Mason, R.L. 215
matched moment generator 690 for unimodal distribution 691
matching distribution 519
rejection method for 520
maximal correlation 29574580
maximum of a uniform sample 210
maximum
distribution of 19
inversion method for 30675
of a gamma sample 678
of a normal sample 678
quick elimination algorithm for 676
record time method for 679680
simulation of 674
Maxwell distribution
relation to normal distribution 176
Maxwell, W.L. 743
May, J.H. 568
McCallum, D. 112
McCormack, W.M. 737743747
McGrath, E.J. 4480
McKKay, A.T. 482
McKay, J.K.S. 661
McMullen, P. 571
mean value 5
median of a uniform sample 18
median 5
density of 18
mergesort 214
method of guide tables 9697 analysis of 97
method of Lewis and Shedler 264
method of Michael, Schucany and Haas 146
method of percentiles 484
Michael, J.R. 145
Mickey, M.R. 606
Mikhail, N.N. 578
Mikhailov's theorem 177
Mikhailov, G.A. 176177191571
minimal spacing 213
minimax strategy 762
mirror principle 295
for random walk 654
for unimodal densities 329
Mirsky, L. 682
Mitchell, R.L. 367
Mitra, S.S. 457
Mitrinovic, D.S. 681
mixture method
for kernel estimate 765
for simulating sum 731
mixtures of distributions 16
mixtures of triangles 179
mixtures with negative coefficients 74
mode 5
modifled Bessel function
of the first kind 473
of the third kind 478483484
modiffed composition method 69
moment generating function 322486
moment matching
in density estimates 764
moment mismatch 764
moment problem 682
moment 5
Monahan's algorithm 127
for exponential distribution 132
Monahan's theorem 127
Monahan, J.F. 127132194195201203406 446454
monotone correlation 574
monotone densities
almost-exact inversion method for 134
generator for 174
inequalities for 311313321330331
inverse-of-f method for 178
inversion method for 39
inversion-rejection method for 336341
order statistics of 224
splitting algorithm for 335
strip method for 362
universal rejection method for 312316 317
monotone dependence 575
monotone discrete distributions 114
rejection method for 115
monotone distributions
inequalities for 173
properties of 173
monotone transformations 220
Monte Carlo integration 766
Monte Carlo simulation 580
Moonan, W.J. 565
Moran's bivariate exponential distribution 585

Moran, P.A.P. 518583585586
Morgan, B.J.T. 4°
Morgenstern's family 578590 conditional distribution method for 580
Morgenstern, D. 578
Moses, L.E. 648
Mudholkar, G.S. 472
Muller, M.E. 206235379380617620624
multinomial distribution 558 ball-in-urn method for 558 conditional distribution method for 558 559731
relation to binomial distribution 558 relation to Poisson distribution 518563
multinomial method for Poisson distribution 563
multinormal distribution 566
conditional distribution method for 556
multiple pointer method in discrete event simulation 743746
multiple table look-up 104
multiplicative method for Poisson distribution 504
multivariate Burr distribution 558600 relation to Cook-Johnson distribution 602
multivariate Cauchy distribution 238555 conditional distribution method for 555
multivariate Cauchy dsistribution 589
multivariate density 6
multivariate discrete distributions 559 inversion method for 560
multivariate inversion method analysis of 560561
multivariate Khinchine mixtures 603
multivariate logistic distribution 600 relation to Cook-Johnson distribution 602
multivariate normal distribution 603604 relation to Cook-Johnson distribution 602
multivariate Pareto distribution 589600604 relation to Cook-Johnson distribution 602604
multivariate Pearson II distribution 237 relation to beta distribution 237
multivariate Pearson VII distribution 238
relation to beta distribution 238
multívariate transformations of random variables 14

Murty, V.N. 26
Mykytka, E.F. 483
Naderisamani, A. 523544
Nagao, M. 583590
Nagao-Kadoya distribution 583590
naive method
for sum of independent random variables 717

Nance, R.E. 4

... Narula, S.C. 136
Narumi's inequality 321329
Nataf, A. 576
NBUE distribution 742
nearly flat densities
aceptance-complement method for 79
rejection method for 80
negative binomial distribution 284488543
as an IHR distribution 284
definition 84
discrete thinning method for 284
generators for 543
properties of 488
negative mixture algorithm of Bignami and de Matteis 74
negative stable distribution 455
Neuts, M.F. 758
Nevalainen, O. 617
Newby, M.J. 220
Newman, T.G. 4416
Newton-Cotes integration formulas 701
Newton-Raphson iterations 341
Newton-Raphson method 33
convergence of 3637
Neyman, J. 24
Nievergelt, J. 104
Nijenhuis, A. 617618642645661
non-lattice distributions 496
nonhomogeneous Poisson process properties of 254
normal distribution 379
almost-exact inversion method for 135

380
approximation by sum of uniform random variables 25144
as a stable distribution 183455
as an NBUE distribution 742
Box-Muller method for 235
closure under addition 19
composition method for 67
composition-rejection method for 380 382
conditional distribution method for 556
convergence to 22
definition 7
Forsythe's method for 380
inequalities for 169384385386
inverse-of-f method for 178
inversion method for 36380
Johnson-Ramberg method for 244
Kinderman-Ramage generator for 391
log-concavity of 287
Marsaglia-Bray generator for 390392
moments of 693
polar method for 235242380
Polya's approximation for 135
properties 132326
radial symmetry of 228
ratio-of-uniforms method for 199380
rectangle-wedge-tail method for 380
rejection from Cauchy density 45
rejection from Laplace density 44
rejection method for 5662380391
relation to Cauchy distribution 240
relation to exponential distribution 240
relation to Rayleigh distribution 240381
relation to t distribution 15
sample maximum of 678
series method for 169380
table method for 380
tail of the 380
transformations of 136
trapezoidal method for 383391
normal random vector method
for uniform distribution on hypersphere 230
normal scale mixtures 325687
inequalities for 327
normalizing transformations 136
Norman, J.E. 106
Norton, R.M. 482
numerical integration 700
numerical inversion algorithms 31
convergence of 35

NWUE distribution 742
Oakford, R.V. 648
Oberhettinger, F. 470756
Odeh, R.E. 36
Odell, P.L. 4416
Ojo, M.O. 480
Olds, E.G. 733
Olkin, I. 563576583585605606774
Olusegun George, E. 472480
open hashing 613
operations on random variables 11
optimal binary search tree 91
optimal DDG tree algorithm
analysis of 778780
optimal rejection method for log-concave densities 293294
Ord, J.K. 84469497735
order statistics method for Bartlett's kernel 766
for Poisson processes 258
order statistics 207 deflinition 17 exponential 211
from an arbitrary distribution 220
inversion method for 30 of a mixture 224 of a monotone densities 224 of the Weibull distribution 220
ordered polytope 571
ordinal measures of association 574
Ostrowski, A.M. 34
overflow bucket
in discrete event simulation 746
overflow list
in discrete event simulation 746
oversampling 635636 analysis of 637
Overstreet, C. 4
Owen, D.B. 322
Padgett, W.J. 149
Pagano, M.E. 758
Papageorgiou, H. 593
parametric form of a density 13
Pareto distribution as a DHR distribution 267344
definition 7
dynamic thinning method for 270
inversion method for 29262
relation to gamma distribution 194
partitions into intervals 67
Parzen, E. 762
Pascal's triangle 659
Patefield, W.M. 609610
Patel, I.D. 549
Patel, J.K. 322
Paterson, M. 431
Patil, G.P. 4518759
Paul, N.J. 359
Paulauskas, V. 458
Paulson, E.S. 458
Payne, J.A. 4
Payne, W.H. 379
Pearce, M.C. 121379380404432
Pearson family 480481
Pearson IV distribution 308480
Pearson product moment correlation coefficient 573

Pearson system 480481
Pearson V distribution 456
Pearson VI distribution
relation to beta distribution 429
relation to gamma distribution 427
Pearson's system 685
Pearson, E.S. 24
Peizer-Pratt approximation 136
Perks distribution 472
log-concavity of 287
rejection method for 472
Perks, W.F. 287
perturbation matrix 606
Peterson, A.V. 758182108110359369451
Petrov, V.V. 58225496720733
PH-distribution 757
phase type distribution 757
Pippenger, N. 104431
Plackett's family 578581582588590
Mardia's generator for 589
Plackett, R.L. 578588590648

Planck distribution 552
relation to Zipf distribution 552
Poisson distribution 487501
acceptance-complement method for 502
Atkinson's algorithm for 518
convergence to normal distribution 501 518
deflnition 84
exponential inter-arrival time method for 504
inequalities for 506509515
inversion method for 502505
multinomial method for 563
multiplicative method for 504
properties of 501503504506518
recursive method for 518
rejection method for 502511518
relation to multinomial distribution 518
sequential search method for 86
Poisson point process 246
Poisson process 246755
composition method for 253
exponential spacings method for 249
homogeneous 246252
inversion method for 251252
nonhomogeneous 250
on unit circle 250
order statistics method for 258
properties of 247738
relation to exponential distribution 248
the uniform distribution method for 248
thinning method for 253255
polar method 225
for arc sine distribution 482
for Cauchy distribution 451
for normal distribution 235242380
for symmetric beta distribution 437
polar representation
for stable distribution 455
Polge, R.J. 571
Polya characteristic function 186695718
Polya characteristic functions
representation of 186
Polya, G. 135338
Polya-Aeppli distribution 468
polynomial densities
composition method for 7172
polynomial density algorithm of Ahrens and Dieter 73
portability 89
positive stable distribution 455463
power distribution
definition 24
properties of 24
power function distribution inversion method for 262
power of a gamma random variable 423
power transformations 13
Pratt, V. 431
Prekopa, A. 309
Press, S.J. 454
Price, T.G. 571
Pritsker, A.A.B. 743
probabilistic shortcut 674
probability vector 83
projection method 572
proportional squeeze method 57 application of 63
proportional squeezing 56
Proschan, F. 260277343356742
Prufer's construction 662663
quantile 5
quasi-empirical method of Bratley, Fox and Schrage 767

Quenouille, M.H. 488
queueing system 735755
quick acceptance step 54
quick elimination algorithm
analysis of 676
for generating the maximum 676
quick elimination principle 675
quick-and-dirty estimate 763
quicksort 214
Raab, D.H. 158
Raab-Green density 147
Raab-Green distribution
alternating series method for 158
improved alternating series method for 160

Rabinowitz, M. 215220
Rabinowitz, P. 701704
radial transformations 229
radially symmetric distributions 225
Johnson-Ramberg method for 237
properties of 227
Rahman, N.A. 24
Ramage, J.G. 379380383390391446454
Ramberg, J.S. 215237244482483587592
random $R \times C$ table 608
conditional distribution method for 610
random binary search tree 649650 height of 651
random binary tree 652 decoding method for 657 rejection method for 655 sequential sampling for 656657
random bipartite graph 671
random bipartite graphs ball-in-urn method for 671
random bit model 768
random codeword 659
random combinatorial objects 642
random connected graph rejection method for 669
random correlation matrix 605
random cubic graph 672
random free tree 662663
with given number of nodes and leaves 666
random graph 667 rejection method for 672
random heap 651
random labeled free tree 663
random orthogonal matrix 606607
random orthonormal matrix 607
random partition 658659 coding function for 661 of integers 661
recurrence-based method for 660
random permutation 612644648
decoding method for 644
Robson's decoding method for 648 swapping method for 646
random r-regular graph 672
random rooted tree 658
random rotation 607
random sampling 611
random string of balanced parentheses sequential sampling for 657
random string 673
random subset
recurrence-based method for 647
random sum 487
random trie 651
random uniform rotation 607
random unlabeled free tree 666
random variable 5
random variate 2
random vector 6
random walk 470654749
first return to origin 754
properties of 751752
range of a uniform sample 213
rank correlation 574
rate function 250
cyclic 256
log-linear 259
log-quadratic 259
piecewise constant 259
ratio of gamma random variables 428
ratio-of-uniforms method 194
algorithm 196
analysis of 204
for Cauchy distribution 201
for exponential distribution 200
for gamma distribution 203406
for normal distribution 199380
for t distribution 200204446
for t3 distribution 202448
with two-sided squeezing 187
Rayleigh distribution 176469
inversion method for 29
relation to normal distribution 240381
record time method
for generating the maximum 679680
record 649
rectangle-wedge-tall method
analysis of 399
for exponential distribution 397
for normal distribution 380
rectangular rule 700
recurrence
for combinatorial objects 646
recurrence-based method
for random partition 660
for random subset 647
recursive generator 181
recursive method
for binomial distribution $523 \quad 536 \quad 537$ 545
for Poisson distribution 518
recursive methods based upon representations 180
recycling random variates 58
Reeves's model 738740 analysis of 741744745748
Reeves, C.M. 737741743747
regenerative phenomena 749
regula falsi method 33
regular density 719
rejection constant 42
rejection method for order statistics
analysis of 222
rejection method
bit-based 770
definition 42
development of 43
for Bartlett's kernel 765
for beta distribution 432
for binomial distribution $115 \quad 523526$ 529533543
for bounded densities with compact support 43
. for characteristic function 697
for discrete normal distribution 117
for discrete random variates 113
for exponential power distribution 302
for Fejer-de la Vallee Poussin density 187
for first return to origin in random walk 754
for flrst-passage-time in $M / M / 1$ queue 757
for gamma distribution $48 \quad 132 \quad 304405$ 415419426 .
for generalized inverse gaussian distribution 479480
for hyperbolic distribution 483
for hyperbolic secant distribution 472
for hypergeometric distribution 545
for Lipschitz densities 63
for log-concave densities 291292298301
for logarithmic series distribution 546 549
for logistic distribution 471
for matching distribution 520
for monotone discrete distributions 115
for multivariate distributions 557
for nearly flat densities 80
for normal distribution 4445380391
for order statistics 221
for Perks distribution 472
for Poisson distribution 502511518
for random binary tree 655
for random connected graph 669
for random graph 672
for Stacy's generalized gamma distribution 423
for symmetric beta distribution $60 \quad 193$ 434
for symmetric binomial distribution 539
for t distribution 446447450
for tail of the Cauchy distribution 453
for tail of the gamma density 421422 425
for truncated gamma distribution 166
for uniform distribution in unit circle 233
for uniform distribution on hypersphere 231
for uniform distribution on unit circle 235
for von Mises distribution 473476
for Zipf distribution 550
generalization of 4960
in avoidance problems 372
in sequential sampling 621631634
optimization of 62512
properties 42
Sibuya's modifled 62
Vaduva's generalization of $\mathbf{4 7}$
validation 40
with recycling 59
reliability theory 260
Relles, D.A. 523538
Renyi, A. 373574589668
representations of densities as integrals 171
reservoir sampling 638639
with geometric jumps 640
residual density 382385
residual life density 330
inequalities for 330
universal rejection method for 330
restricted density 67
Rezucha, I. 620624
Rider, P.R. 24
Riemann integrability 362

Riemann integrable densities
grid method for 377
strip method for 362
Riemann zeta function 550
Ripley, B.D. 484372374473
Rippy, D.V. 571
Rivest, R.L. 431
Roach, S.A. 733
Robbins, H. 373
Robertson, I. 203
Robinson, C.L. 648
Robson's decoding method
for random permutation 648
Robson, J.M. 648
robust scale estimate 763
Rogers, C.A. 688
Rogozin, B.A. 496
Roll, R. 458
Ronning, G. 588
Rosenblatt, M. 171762
rotation 563
Roy, M.K. 150
Royden, H. 172
Royden, H.L. 686687
Rubin, P.A. 570
Rubinstein, R.Y. 34232243567570
Rumpf, D.L. 261
Ruskey, F. 657
Ryan, T.P. 606
Sahai, H. 4
Sahler, W. 168
Sakasegawa, H. 380
sample independence 760
sample indistinguishability 763
sampling without replacement 544611
Sampson, A. 574575576589590
Sargent, R.G. 737743747
Sarmanov, O.V. 574
Satterthwaite, S.P. 600602
Savage, I.R. 322
Saxe, J.B. 215
scale mixture 557
scale parameter 7
Scheffe's lemma 760
Scheffe's theorem 575590760
Scheffe, H. 590760
Scheuer, E.M. 566
Schmeiser, B.W. 484304305308309426
432482483502507545562571587 588591

Schonhage, A. 431
Schrage, L.E. 429251736767
Schreck, H. 657
Schucany, W.R. 145215
Schur convexity 774
Schuster, E.F. 392
search tree
in car parking problem 374
secant method 3338
convergence of 36
second waiting time method
for binomial distribution 525
Seidel, R. 571
Seigerstetter, J. 473
selection sort 217
sequential sampling 619
for random binary tree 656657
for random string of balanced parentheses 657
ghost point method in 626628
ghost sample method in 621626
inversion method in 621624
rejection method in 621631634
spacings method for 621
sequential search method 85
for binomial distribution 89
for Poisson distribution 86
Kemp's improvement of 86
reorganization of 88
sequential search 776
sequential test method 279
analysis of 279
for geometric distribution 280
for logarithmic series distribution 282
series method 151
based upon numerical integration 709
for characteristic functions with compact support 713
for characteristic functions 709
for Erdos-Kac distribution 170
for exponential distribution 168
for normal distribution 169380
for symmetric stable distribution 465 466467
for very smooth densities 700
Seshadri, V. 518
set-up time 8910
Severo, N.C. 4
Severo-Zelen approximation 136
Shanthikumar, J.G. 279280281283284
shape parameter 7
Shedler, G.S. 251253256259261264
Shohat, J.A. 682685686
Shorrock, R.W. 120
Shuster, J. 148
Sibson, R. 372374
Sibuya's modifled rejection method 62
Sibuya, M. 62232380396553631
Simon, H.A. 553
simple distribution 8
simple random variable 8
simplex 207568593
Simpson's rule 701
simulation of sum 716
singular distribution 571
Sivazlian, B.D. 596598599
skewness-kurtosis plane 484688
Sleep, M.R. 656
Slezak, N.L. 566
Smirnov, N.V. 161168
Smith, R.L. 215220568
smoothing parameter 762
Snedecor distribution 429
Sobel, M.J. 749755
Soni, R.P. 470756
Sorensen, M. 329330
sorting 214
Sowey, E.R. 4
spacings method
for sequential sampling 621
for uniform distribution on hypersphere 242

Spearman's rho 574
speed 8
splitting algorithm
for binomial distribution 527
for monotone densities 335
Springer, M.D. 1125469562685
Springer, S.G. 36
square root method 565
square root transformations 13
squeeze method 54
analysis of 65
application of 57
for normal distribution 56
for symmetric beta distribution 64
for uniform distribution in unit circle 233
squeeze principle 53
application of 141
for strip method 360
Srinivasan, R. 469
stable distribution 454
closure under additions 455
convergence to 468
generator of Chambers, Mallows and Stuck for 185459
inequalities for 461463
integral representation for 185459
inversion method for 458
Kanter's method for 183459
Levy's representation for 454
polar representation for 455
properties of 183184185455456457
representation for 183
with exponent $1 / 2150$
Stacy's generallzed gamma distribution 423
rejection method for 423
relation to gamma distribution 423
Stacy, E.W. 423
Stadlober, E. 1077446
standard sequential sampling 619620
Standish, T.A. 741747
Steffensen's inequality 338
Steffensen, J.F. 338
Stegun, I.A. 297302391415678
Steutel, F.W. 329
Stieltjes's counterexample 694
Stirling number 658660
of the second kind 658 recurrence for 659

Stirling's series 490
Stoller, D.S. 566
stopping time 50
strip method 359
adaptive 367
analysis of 361363
for beta distribution 432
for bounded densities 360
for gamma distribution 406
for Lipschitz densities 366
for monotone densities 362
for Riemann integrable densities 362
Strong, H.R. 104
Stuart's theorem 182420423596
Stuart, A. 182420423596678691694
Stuck, B.W. 184185459
Subbotin, M.T. 175
suboptimal DDG tree algorithm 775
Sukhatme, P.V. 211
sum of independent random variables 19708 714716
convergence to stable law 734
mixture method for 731
naive method for 717
simulation of 496
sum of independent uniform random variables 21
sum of uniform random variables 732
uniformly fast method for 735
sum-of-uniforms method 204
sup correlation 574
Survila, P. 720
swapping method 612
for random permutation 646
symmetric beta distribution 193433
analysis of 433
convergence to normal distribution 433
generators for 6365
inequalities for 434441442
polar method for 437
rejection from normal density for 193
rejection method for 60434
relation to t distribution 436446
squeeze method for 64
Ulrich's polar method for 437
symmetric binomial distribution 538
inequalities for 540
rejection method for 539
symmetric stable distribution 186455
as a normal scale mixture 326
generator for 188
properties of 189
series method for 465466467
t distribution 10445
acceptance-complement method for 446
almost-exact inversion method for 143
as a normal scale mixture 326
composition-rejection method for 446 453
convergence to normal distribution 447
discrete 497
inequalities for 203447448453454
inversion method for 445
properties 15
ratio-of-uniforms method for 200204 446
rejection method for 446447450
relation to beta distribution 429
relation to F distribution 446
relation to gamma distribution 427445 452
relation to multivariate Cauchy distribution 555
relation to symmetric beta distribution 436446
table method for 446
with three degrees of freedom 37
with two degrees of freedom 407408429
t3 distribution 446
ratio-of-uniforms method for 202449
table look-up method 102
Marsaglia's 106
table look-up 102
multilevel 106
table method
for binomial distribution 523
for normal distribution 380
for t distribution 446
Tadikamalla, P.R. 215404405420423445 477483518
tail of extreme value distribution inversion method for 276
tail of log-concave densities 308
tail of Rayleigh distribution Inversion method for 29
tail of the Cauchy distribution 453 inversion method for 453
rejection method for 453
tail of the gamma density 420
rejection method for 421422425
tail of the normal distribution 681
Marsaglia's method for 381
properties of 391
Takahasi, K. 558600602
Talacko, J. 287471472
Talbot, D.R.S. 372
Tamarkin, J.D. 682685686
Tanner, J.C. 520
Tanner, M.A. 607
Tapia, R.A. 763
Tarjan, R.E. 431
Tashiro, Y. 232
Taylor's series 55
for characteristic function 684
for densities 698
for logarithm 508
for normal distribution 384
Teicher, H. 5215063225
Teichroew's distribution 391
Teichroew, D. 391
Tenenbein, A. 576582583585586590591
Teuhola, J. 617
thinning method 264
analysis of 264266
for discrete distributions 280
for gamma distribution 277
for Poisson processes 253255
Thisted, R.A. 607
Thompson, J.R. 763
Tietjen, J.L. 175
time series 571
Tinhofer's graph generators 669
Tinhofer's random graph generator 670
Tinhofer, G. 657669670
Titchmarsh, E.C. 550
Tiwari, R.C. 594
Toranzos's system 482
Toranzos, F.I. 482
transformation of a homogeneous Poisson process 257
transformation
of beta random variables $\mathbf{4 4 4}$
transformations of random variables 11
transition matrix 758
translation parameter 7
trapezoidal method
for normal distribution 383391
trapezoidal rule 701
triangle 569
triangular density 2223
inversion method for 29
triangulation 570
trie 104
trigamma distribution 553
trivariate reduction 587
for bivariate exponential distribution 592
for bivariate gamma distribution 587588
for bivariate geometric distribution 592
for bivariate Poisson distribution 592
for bivariate Weibull distribution 592
Trivedi, K.S. 246
Trojanowski, A.E. 657
truncated distributions 38
truncated exponential distribution 401
truncated extreme value distribution
as an IHR distribution 343
truncated gamma distribution
rejection method for 166
Tsang, W.W. 359
Tucker, A.C. 91
Tukey's lambda distribution 482
convergence to exponential distribution 483
convergence to logistic distribution 483 generalization of 482483 properties of 483
Tukey, J.W. 136457482
two-way contingency table 608
Ullman, J.D. 9092214372669
Ulrich's polar method
for symmetric beta distribution 437
Ulrich, E.G. 571747
Ulrich, G. 436
uniform distribution in hyperellipsoid 567
uniform distribution in simplex 568
uniform distribution in triangle 569
uniform distribution in unit circle 556 properties of 234
rejection method for 233
relation to Cauchy distribution 234 squeeze method for 233
uniform distribution on 3d hypersphere generator for 241
uniform distribution on 4d hypersphere generator for 241
uniform distribution on a compact set 368
uniform distribution on a convex set 371
uniform distribution on a star 243
uniform distribution on convex polytope 568
uniform distribution on hypersphere
incremental method for 243
normal random vector method for 230
properties of 227
rejection method for 231
spacings method for 242
uniform spacings method for 231
uniform distribution on unit circle
efficient rejection method for 235
uniform distribution 732
as a beta distribution 428
as an NBUE distribution 742
as the projection of a radially symmetric random vector 230
characteristic function of 708
definition 7
distribution of midrange 24
distribution of products 24
distribution of ratio of maxima 26
distribution of sum 21
in and on circle 233
mixtures of 16
properties 25
sum of independent random variables 144
uniform line density 572
uniform order statistics method
for beta distribution 431
uniform order statistics 636
exponential spacings method for 214
relation to beta distribution 431
sorting method for 214
uniform spacings method for 214
uniform Poisson process
on unit circle 250
uniform scale mixture 687688
uniform spacings method
for exponential distribution 394
for uniform distribution on hypersphere 231
for uniform order statistics 214
uniform spacings 207
properties of 208210212
relation to Dirichlet distribution 593
relation to exponential distribution 208
uniform sum 732
density of 732733
unimodal density
grid method for 377
unimodal distribution 172687707
inequalities for 173494
matched moment generator for 691
rectangular decomposition of 734
universal rejection method for 495
unit sphere
volume of 226
universal generator
a la Letac 65
universal method 286
for beta distribution 432
universal rejection method
analysis of 317
for binomial distribution 495
for convex densities 313
for discrete distribution 497
for generalized gaussian distribution 324
for hypergeometric distribution 545
for Lipschitz densities 323
for log-concave densities 301325
for monotone densities 312316317
for residual life density 330
for unimodal distribution 495
Vaduva's gamma generator 130424 analysis of 131
Vaduva's rejection method 48
Vaduva, I. 47130404415419420424
variance reduction 580
variance 5
Vaucher, J.G. 737743744746
very smooth densities
series method for 700
Vitter, J.S. 621631635638
volume
of unit sphere 226
von Mises distribution 473
inequalities for $\mathbf{4 7 4}$
rejection method for 473476
von Mises's statistic 168
von Mises, R. 685686
von Neumann's exponential generator 125 182
analysis of 126
von Neumann, J. 121126380391
Wainwright, T.E. 372
waiting time method 71
waiting time 749759
Wald's distribution 148
Wald's equation 50
application of 54
second moment analog 63
Walker, A.J. 107369
Wallace, C.S. 380
Walls, L.A. 203
Warnock, T. 232
Wasan, L.T. 150
Watson's statistic 168
Watson, G.N. 161377435489490491508 552
Watson, G.S. 168
Weibull distribution 414
as a DHR distribution 267
as an IHR distribution 343
inversion method for 262
log-concavity of 287
order statistics of 220
properties of $\mathbf{4 2 4}$
relation to exponential distribution 414
relation to extreme value distribution 414
relation to multivariate Burr distribution 558
weighted sampling without replacement 619
Welch, W.J. 606
Wheeden, R.L. 217
Wheeling, R.F. 243
Whitt, W. 574580586588
Whittaker, E.T. 161377435489480491508 552

Whittaker, J. 416432439440443
Whitworth's formula 213

Whitworth, W.A. 213
Widder, D.V. 682683685694
Wilf, H.S. 617618642645661666
Wilks, S.S. 594
Willis, J.R. 372
Wilson, E.B. 136
Wilson-Hilferty approximation 136
Wilson-Hilferty transformation 137406
Wong, C.K. 619
Wormald, N.C. 671672
wrapped Cauchy density 473 inversion method for 474
Wright, H. 733
Wyman, F.P. 746
Yakowitz, S.J. 4
Yao, A.C. 768771774777779781
Young's inequality 338
Yuen, C. 38621624625626
Yule distribution 553
Yule process 755
z distribution 329
as a normal scale mixture 330 generators for 330 relation to beta distribution 330
Zelen, M. 4
Zemach, C. 232
Zigangirov, K.S. 150
Zimmerman, S. 91
Zipf distribution 550
rejection method for 550
Zolotarev, V.M. 183184185455459
Zygmund, A. 217

[^0]: It is easy to determine the valldity of this algorlthm. Note also that no expenslve computations are Involved.

