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In recent years, studies have shown that independent components of local windows

of natural images resemble the receptive fields of cells in the early stages of

the mammalian visual pathway. However, the role of the independence in visual

recognition is not well understood. In this paper, we argue that the independence

resolves the curse of dimensionality by reducing the complexity of probability

models to the linear order of the dimension. In addition, we show empirically that

the complexity reduction does not deteriorate the recognition performance on all

the datasets we have used based on an independent spectral representation. In this

representation, an input image is first decomposed into independent channels given

by the estimated independent components from training images and each channel’s

response is then summarized using its histogram as an estimate of the underlying

probability model along that dimension. We demonstrate the sufficiency of the

proposed representation for image characterization by synthesizing textures and

objects through sampling and for recognition by applying it to large datasets. Our

comparisons show that the independent spectral representation often gives better

recognition performance. c©2003 Optical Society of America

OCIS codes: 100.5010,100.2960,330.4060,330.6110

1. Introduction

Understanding vision has evolved to be one of the most fundamental problems in understanding in-

telligence and in designing intelligent machines.1 Since Marr’s influential paradigm of computational

vision,2 it has been widely accepted that vision can be understood as an information processing

system, where Bayesian inference3 has become a dominating approach. In the Bayesian framework,
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vision is formulated as a statistical inference problem:

P (S|I) =
P (I|S)P (S)

P (I)
∝ P (I|S)P (S), (1)

where I is an input image or image sequence in general and S represents plausible interpretations.

For an input image, the interpretations that a vision system should produce are the ones with

high posterior probability P (S|I), a principle dated back to Helmholtz.4 While this formulation

provides a formal framework to formulate vision problems in a principled way and many of the

classical ones have been elegantly reformulated in this framework (see Knill and Richards3 and

references therein for examples), it does not, however, imply a framework to implement an efficient

computational vision system. The curse of dimensionality5 and the lack of sufficient probability

models for vision problems have seriously limited the Bayesian framework’s applicability to complex

real world problems.

The curse of dimensionality5 is a widely observed phenomenon in computational modeling; in

the context of Bayesian framework it refers to that both representing and estimating high dimen-

sional probability models require resources that grow exponentially with the dimension (see Section

2 for further explanations). As a result, this formal framework is often twisted to incorporate un-

principled rules and knowledge to expedite the inference process. While impressive results can be

obtained, this twist seems to invalidate the formality of the framework itself. Given the curse of

dimensionality, it seems that the only computationally feasible approach to vision is to create suffi-

cient models that are not subject to the curse of dimensionality. A plausible solution is to reduce the

dimensions through some dimension reduction techniques, such as principal component analysis6–8

and impose probability models in the reduced dimensions. Given the great variability in natural

images, while the number of dimensions can be reduced significantly within one class of images,

such as faces, the number of dimensions required to model different classes of images seems still too

high to be computationally feasible. Independence9 offers an alternative and general principle to
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overcome the problem, the idea of which has been proposed in the context of projection pursuit10

and unsupervised learning.11 Under the independence assumption, the complexity of probability

models does not grow exponentially and thus more dimensions can be handled computationally.

Studies in this direction have been fruitful in relating independent components of natural images

to the properties of the receptive fields of cells in the early stages of the mammalian visual pathway

(see e.g. Field,12,13 Olshausen and Field,14 and Bell and Sejnowski;15 Simoncelli and Olshausen,16

and Srivastava et al.17 for reviews). In general, independent components are estimated using local

windows (of a specified size) sampled from a set of natural images and thus the independence is

a property imposed on the ensemble of the training image windows of a specified size. Given that

the primary role of a vision system is to perform recognition, i.e., to differentiate objects based on

the images, a critical question is how to relate the independence to the recognition performance.

Recently, the significance of these studies has been questioned based on the argument that the

principles used in deriving those properties may not play an important role for visual recogni-

tion. Vasconcelos and Carneiro18 demonstrated empirically using image retrieval experiments that

independent components often give worse performance than commonly used bases.

In this paper, by viewing images as realizations sampled from the underlying probability dis-

tribution, we argue that the linear representation given by projecting the input onto the independent

bases is not statistically meaningful. This perspective requires that an image be characterized by the

underlying probability models, not directly by the pixel values in the input. This leads us to propose

an independent spectral representation. In this representation, independent components estimated

from input image windows are used as filters, which are called independent filters, to differentiate

this view from that as a set of linear bases of the entire input images. This is also consistent with

studies on comparing independent components with the receptive fields in the visual system.15 In

analogy to the spatial/frequency channels in the visual system,19,20 an independent filter also gives
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rise to an independent channel, the response of which is modeled as the convolution of the input

with the independent filter. The response from each independent channel is represented by its his-

togram as an estimation of the underlying probability model along this independent dimension.

We systematically demonstrate the sufficiency of the proposed representation through synthesizing

textures and objects. Then we show through recognition experiments on texture classification and

face recognition that the independent spectral representation produces the best results on all the

datasets we have used.

The paper is organized as follows. Section 2 introduces independent components of image win-

dows and the independent spectral representation of images. Section 3 uses texture and object

synthesis to demonstrate the sufficiency of the proposed representation. Section 4 shows our exper-

imental results on texture, face, and infrared face datasets. Section 5 discusses a number of issues

and Section 6 concludes the paper.

2. Independent Spectral Representations of Images

A. Independent Filters of Images

In image analysis, it is often desirable to represent the input image in a (sub)space to reveal some of

the characteristics of the data and reduce the dimension, where linear representation is often used

due to its computational and analytical properties. Under the linear representation, an observed

image window I of size n×m = N , represented as a vector ~y = (I1,1, I1,2, . . . , In,m)
′

= (y1, . . . , yN )
′

,

is assumed to be generated by a linear combination of hidden but fixed K factors S = (~S1, . . . , ~SK).

Here
′

indicates transpose operation and each Si is a vector of length N . This leads to the following

linear generative model:

~y =
K∑

i=1

xi
~Si = S~x, (2)
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where ~x = (x1, . . . , xK)
′

is called the representation of ~y under S. Under the linear assumption,

recovering the representation given an input is through pseudo inverse, given by,

~x = W~y. (3)

We assume each column of S and each row of W have a unit length. In the probabilistic modeling of

images, S and W are estimated from a set of training images ~y(1), . . . , ~y(M). These training images

are assumed to be samples from a model with the same underlying factors. More formally, each yi

is assumed to be a random variable and thus each xi is also a random variable. Each training image

~y(m) is viewed as one sample in the joint space given by y1, . . . , yN . By imposing different statistical

properties on the space given by ~x, different techniques have been proposed to estimate S and W

from the training set. For example, principal component analysis6,7 captures the most variance in

the space given by ~x. The principal components are orthonormal and thus W = S′. One of the major

limitations of principal components is that they can only capture second-order statistics. Higher

order statistics, which are shown to be important for effective natural image representations,14 are

ignored in principal components. To overcome this limitation, independent component analysis9 is

proposed, where S and W are estimated by minimizing the statistical dependence of the resulting

representation in the given set. Formally, we have,

W∗ = arg min
W

KL(p(~x), p(x1) · · · p(xK)), (4)

where ~x = W~y as in Eq. (3), KL is the Kullback-Leibler divergence, p(~x) the joint distribution,

and p(xi) the ith marginal distribution. The right term in Eq. (4) is the mutual information among

x1, . . . , xK . Here p(~x) and p(xi) are estimated from training images ~y(1), . . . , ~y(M). The direct cal-

culation of independent components for a large K is computationally not feasible as it requires

to estimate the full joint distribution and evaluate the mutual information. In practice, many al-

gorithms have been proposed by optimizing some criteria related to statistical independence (see
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Hyvärinen21 for a survey).

In this paper, the independent components of a specified window size are computed using

the FastICA algorithm by Hyvärinen22 and the rows of the estimated W are used as independent

filters. The algorithm was derived based on a first order approximation of negentropy, which can

be used to evaluate mutual information.9 This iterative algorithm was empirically shown to be 10

to 100 times faster than many ICA algorithms.22

To calculate the independent filters, first 40,000 image windows of a specified size from 3×3 to

25× 25 are extracted from the training images. These image windows are used as observations and

the FastICA algorithm is applied on the set to estimate S and W at the same time. Fig. 1 shows

independent components estimated using samples from a texture dataset with different window

sizes. Note that S and W in independent component analysis are not in general orthonormal; to be

computationally efficient, we have also orthonormalized W by Wo = (W′W)−1/2W. These filters

resemble orientation-sensitive derivative filters. Note that the independent filters depend on the

window size and do not match analytical filters, even though some of the independent filters may

have a similar shape with some analytical filters, such as Gabor filters.

Assuming that the resulting representations of the given filters are statistically independent,

the Kullback-Leibler distance between two joint distributions is the sum of their corresponding

marginal distributions as shown by the following equation:

KL(p1(x1, · · · , xK), p2(x1, · · · , xK))

=
∫
x1

· · ·
∫
xK

p1(x1, · · · , xK) log p1(x1,···,xK)
p2(x1,···,xK)dx1 · · · dxK

=
∫
x1

· · ·
∫
xK

p1(x1) · · · p1(xK)
∑K

i=1 log p1(xi)
p2(xi)

dx1 · · · dxK

=
∑K

i=1

∫
xi

p1(xi) log p1(xi)
p2(xi)

dxi

=
∑K

i=1 KL(p1(xi), p2(xi))

(5)

where pi(x1, · · · , xK) is the joint distribution and pi(xj) the jth marginal distribution. Equation
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(5) implies that under the independence assumption we can compare probability models of images

by comparing the marginal distributions.

Compared to the joint representation, the marginal distribution representation provides a low

complexity representation without loss of information if the independent filters are completely in-

dependent. Equation (5) shows a distinctive advantage of an independent representation. That is, it

greatly reduces the structural complexity of representing the probability distributions. To illustrate,

suppose that probability distributions are represented discretely using Li bins along dimension xi.

To represent the joint distribution of K dimensions, we need
∏K

i=1 Li cells. For example, if K = 11

and Li = 10, ∀i, it would require 1011 cells to represent the joint distribution, which would use

roughly all the neurons in the brain! On the other hand, representing all the marginals requires

only
∑K

i=1 Li cells. For the above example, we only need 110 cells. In addition, the number of

samples needed to estimate the distributions is also reduced significantly. To emphasize this sig-

nificant advantage of independent representations, Fig. 2 shows the number of cells needed for a

joint distribution and the corresponding marginal distributions. It is clear that independent com-

ponents resolve the curse of dimensionality, which is a fundamental factor in determining whether

a successful method for low dimensions can be extended to high dimensional cases.

B. Independent Spectral Representations

It is clear from the definition that independent filters and the corresponding representations are

derived based on a set of unlabeled images and the independence property is valid on the ensem-

ble of the images used in estimating independent components. Because of this setting, a direct

use of independent components on a single image window is not statistically meaningful. Given

that the primary goal of a vision system is to differentiate desirable objects such as food sources

from dangerous objects, distinguishing and recognizing different natural images is clearly critical.

A plausible visual representation therefore must be reasonably accurate for recognition. This raises
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a fundamental question for independent components. To be useful, a representation based on inde-

pendent components must be derived, which can be used to effectively distinguish among objects

associated with natural images.

Given a large image of an object, by breaking the image into overlapping windows of a spec-

ified size, we estimate the marginal distributions using the representations of these windows and

thus the underlying joint distribution. If we ignore the spatial dependence of the image windows,

we can use the empirical histogram of the representations of the image windows as the maximum

likelihood estimate of the corresponding marginal distribution.23 Also the convolution with a par-

ticular image window is the dot product between the window and the mirrored filter and thus Eq.

(3) can be implemented using convolution. These observations lead to the following representation

of an image. Given a set of independent filters, we convolve the input image with the filters. The

histogram of the filtered image is computed which gives an estimate of the marginal distribution

along the dimension given by the filter. As shown in Eq. (5), the marginal distributions along

different dimensions together represent the underlying joint probability distribution under the in-

dependence assumption. Thus the histograms of filtered images provide a characterization of the

input image. In the context of spectral representation,24 we call this representation independent

spectral representation as the filters are assumed to be independent. Note that the independent

spectral representation is conceptually different from commonly used linear representations where

Eq. (3) is viewed as a means for dimension reduction (e.g. Sirovich and Kirby8 and Socolinsky and

Selinger25). In the latter one, the recognition is done based on the projection of each image as a

whole. While it can be effective for recognition on some datasets (see Section 4 for examples), it is

not consistent with the probabilistic view of image modeling.

The use of histograms of filtered images has been proposed for texture modeling. Motivated

by psychophysical studies,26,27 Marginal distributions of filtered images have been used effectively
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for texture synthesis28–30 and texton and texture discrimination.24 They have also been extended

empirically to object recognition 31,32 and segmentation.33 While these representations rely the

independence assumption implicitly, the assumption was not formulated formally.

3. Texture and Object Synthesis Using Independent Spectral Representations

From its definition, the independent spectral representation represents the object in an image

using probability models of local windows, which ignores the positional sensitive information in

the image, resulting in translation invariant feature statistics. While it is desirable for cases where

global topological structures are not important such as textures, it seems that the independent

spectral representation may be an oversimplified representation that is only effective for certain

types of images.

To address this issue and demonstrate the sufficiency of the proposed representation, we utilize

texture and object synthesis to systematically generate images that share a given independent

spectral representation. Given a spectral representation (pIobs(x1), . . . , pIobs(xK)) estimated from

an observed image Iobs, the synthesis is to draw elements randomly from the set:

Ω(Iobs) = {I|pI(xi) = pIobs(xi), i = 1, . . . , K}.

Here we use pI(xi) to indicate that p(xi) is estimated from image I. An exhaustive search among

all the possible images is computationally not feasible. We utilize a sampling procedure by inducing

the following probability model on all images,

q(I|T, pIobs(x1), pIobs(xK)) ∝ exp(−
K∑

i=1

D(pI(xi), pIobs(xi))/T ), (6)

where T is a parameter corresponding to the temperature and D is a distance measure between

two marginal distributions. In our implementation, we have used the Lp (with p = 1 and p = 2)

norm distance between the vectors corresponding to the marginal distributions; other distances can
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also be used. Under this probability model, the problem of generating images from Ω(I obs) is to

generate high probability samples under q. Following Zhu et al.,30 we use a Gibbs sampler with

annealing; other statistical sampling techniques can also be used. Fig. 3 shows four examples of

synthesized textures through matching independent spectral representations. In all these examples,

the independent spectral representation is first calculated from the observed image shown on the

left in each panel. The two on the right in each panel are typical samples. Note that while these

images in each panel have similar appearance, they are very different in the RMS distance sense.

A direct application of the above sampling procedure to synthesizing objects with global topo-

logical structures is not satisfactory as the translation greatly affects the appearance of the synthe-

sized object. To overcome this problem, we propose to use some objects as the boundary condition

for sampling in that those pixels are fixed and are not updated. Fig. 4 shows an example. Fig. 4(a)

shows the observed image of a telephone and Fig. 4(b) shows the image with the boundary condition.

Fig. 4(c) shows a typical initial condition for sampling, which is a white noise image. Fig. 4(d)-(f)

show three typical synthesized images by running the Gibbs sampler three times with different

initial conditions. We can see that all the synthesized images capture the topological structures of

the telephone object even though there are considerable variations in pixel values. The effectiveness

of the independent spectral representation is due to the local constraints from different filters that

are sensitive to local patterns and the global constraints imposed by the marginals. Note that the

shapes of filters are critical. For comparison, Fig. 4(g) shows a synthesized example using principal

filters, i.e, the principal components estimated from 40,000 image windows of different sizes. Even

though the Gibbs sampler remains effective, the synthesized image does not capture the topological

structures. Figure 5 shows three more object synthesis examples. In all the examples, the global

topological structures and local structures are effectively captured by their independent spectral

representation.
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4. Recognition Experiments

To demonstrate the advantages of the proposed representation for recognition, we have applied

it to texture classification and face recognition, representing two typical recognition problems in

computer vision. For each dataset, we first estimate the independent filters using the FastICA

algorithm on 40,000 samples with different window sizes randomly picked from the training images.

We use window sizes from 3×3 to 25×25 and result in a total of 483 filters. We have used the rows

of estimated W ’s as filters. (We have experimented with filters given by Wo and obtained similar

results.) We then choose 40 filters using a proposed filter selection algorithm (see below). Each

image is then represented by its independent spectral representation using the 40 chosen filters.

The classification is done using a standard multiple layer perceptron neural network trained with

back propagation;34 we have used the nearest neighbor rule and other classifiers and in most cases

we have obtained comparable results.

In this section, we first present our filter selection algorithm and then our recognition results on

a texture dataset, a face dataset, and two infrared datasets. We have included the infrared datasets

to show that the proposed representation is generalizable to sensors other than visible ones.

A. Filter Selection Algorithm

As we discussed earlier, the FastICA algorithm estimates the independent filters at a particular

window size. By applying the algorithm with different window sizes, we obtain a large number of

independent filters. In this paper, we have in total 483 filters at scales from 3× 3 to 25× 25. These

filters however are redundant and not necessary for a particular dataset. The redundancy is due to

that the marginal distribution of two different filters can be identical if the filters are identical after

a translation. Filters at different scales may also have similar marginal distributions as they are

estimated separately. In addition, the large number of filters is computationally expensive as the
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calculation of the independent spectral representation requires convolution with different filters.

To select a small number of filters for recognition, here we use a filter selection algorithm

that was proposed by Liu and Wang for texture classification.32 We have extended this algorithm

by bootstrapping the design samples into multiple sets of training and validation sets. The basic

idea is to choose filters one by one so that the performance estimated on the validation set is

maximized. More formally, we divide all the available design samples into L training-validation

pairs, T (1), V (1), . . . , T (L), V (L), where T (i)∪V (i) is the full set, and T (i)∩V (i) = φ, for i = 1, . . . , L.

Then we estimate the recognition performance on V (i) using the training samples in T (i) and

the filters in C, denoted by F (V (i)|T (i), C). The average performance is taken as an estimate of

the recognition performance of the filters in C. We choose the filter that works the best with

the currently chosen ones. This procedure is repeated until the performance does not increase

significantly by adding one more filter. This greedy algorithm is computationally efficient and our

results indicate the selected filters are sufficient for our recognition experiments even though the

chosen filters are not guaranteed to be the optimal set. The algorithm is outlined below, where W

is the set of the candidate independent filters estimated from the given dataset, C the subset of

filters that has been chosen so far, L a parameter that specifies the number of training-validation

pairs, and ε a threshold.

Filter Selection Algorithm

W = { ~W1, · · · , ~WK}, C = φ

Generate randomly L training-validation pairs T (1), V (1), . . . , T (L), V (L).

repeat

for each filter ~Wα in W

calculate F (C ∪ ~Wα) = 1/L
∑L

i=1 F (V (i)|T (i), C ∪ ~Wα)

α∗ = maxα F (C ∪ ~Wα)
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E = F (C ∪ ~Wα∗) − F (C)

if E > ε then

C = C ∪ ~Wα∗ , W = W \ ~Wα∗

until E ≤ ε

B. Texture Classification

We have applied our method to the problem of texture classification, which has been studied exten-

sively as a separate topic in computer vision. We argue that texture models should be consistent

with perceptual models for objects as they need to be addressed within one generic recognition

system; we demonstrate in this paper that our method can be applied equally well to texture

classification as well as to face and object recognition.

To demonstrate the effectiveness of our approach, we use a dataset consisting of 40 textures, as

shown in Fig. 6. Each texture image is partitioned into non-overlapping patches with size 32×32 and

then all the obtained patches are divided into a training set and a test set with no common patch

between the two sets. We first estimate the independent filters using the FastICA algorithm on

40,000 samples randomly picked from the training set. We then apply our filter selection algorithm

to select 40 filters from all the independent filters. The neural network trained with the chosen

filters is then used to classify the patches in the test set. To avoid the bias due to the choice of the

training set, we randomly choose the training set for each texture and run our algorithm many times

for a better evaluation. We also change the number of patches in the training set to demonstrate

the generalization capability of our representation.

The 40 selected filters are shown in Fig. 7. We can see that our algorithm chose filters whose

shape is comparable with dominant local texture patterns. Table 1 shows the classification result

with 100 trials for each setting. This dataset is very challenging in that some of textures are

perceptually similar to other textures in the dataset and some are inhomogeneous with significant
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variations. With as few as 8 training patches, our method achieves a correct classification rate of

92% on average. With half patches used for training, we achieve an average classification rate over

96%.

For comparison, Table 1 also shows the results using principal and independent component

representations directly on each 32 × 32 image patch. Each training patch is represented by a

vector and we then train a classifier using the vectors in the training set. The trained classifier

is then used to classify test patches also represented by a vector. As discussed earlier, clearly the

direct use of linear representations is not effective for texture classification.

To further demonstrate the effectiveness of the proposed representation, we have applied our

method to two challenging texture groups for classification used by Randen and Husoy35 in a

comprehensive comparative study. The two groups, shown in Fig. 8, are difficult due to the sig-

nificant variations and inhomogeneity within each texture type and the similarities between some

textures. These factors result in large within-class distances and possible small between-class dis-

tances, making the classification of these groups very challenging. The average recognition rate of

all the methods studied in Randen and Husoy35 is 52.6% for Fig. 8(a) and 54.0% for Fig. 8(b) with

the best recognition rate of 67.7% and 72.2% respectively.

Here we use the same experimental setting as in Randen and Husoy.35 A separate training

group is used to estimate the independent filters. Then 40 filters are selected and a multiple layer

perceptron is trained using 32 × 32 image windows from the training images. Then the trained

multiple layer perceptron is used to classify 32×32 window patches in the test images. Fig. 9 shows

the results from all the methods in Randen and Husoy35 along with ours for comparison. For Fig.

8(a), our method gives a correct classification rate of 91.01% and For Fig. 8(b) 91.72%. Clearly

our method gives a significant improvement over all the methods studied in Randen and Husoy.35

This is because that the independent spectral representation is based on the underlying probability
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model of an image, not the image itself.

While texture classification using filters has been studied extensively, its performance is far

from satisfactory partially due to that no filters are optimal for all textures and partially due to the

need of more invariant texture features. As in the examples shown here, there are often considerable

variations within one texture type and remarkable similarities between different textures, making

the generic texture classification problem very challenging. Here we resolve the filter design problem

by deriving filters as independent components of images and address the feature extraction by using

the underlying probability model of the image. While more thorough experiments and analysis are

to be further investigated, the results are convincing. We expect that the proposed method would

provide a significant performance improvement for texture classification.

C. Face Recognition

We have also applied our method to face recognition using ORL,36 a standard face dataset. The

dataset consists of faces of 40 different subjects with 10 images each. The images were taken at

different times with different lighting conditions on a dark background. While only limited side

movement and tilt were allowed, there was no restriction on facial expression.

The procedure is the same as that for texture classification. We first calculate 483 independent

filters using the FastICA algorithm and then select 40 from them. We vary the number of the

training faces per subject and the remaining images are used for testing. As we did for texture

classification, we randomly choose the training images from the dataset to avoid the potential

bias due to the choice of training faces. The results are shown in Table 2. Here the variation of

the performance is significant, especially the difference between the best and worst, indicating the

choice of the training set can affect the recognition performance significantly. Our performance is

significantly better than that of PCA and ICA essentially because different lighting conditions and

facial expression make the pixel-wise based linear representation not reliable for recognition.37 The
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results obtained here are also significantly better than those obtained by Zhang et al.37 on the same

dataset.

D. Infrared Face Recognition

To demonstrate that the proposed method can be generalized to images from other sensors, here we

apply our method to two infrared face datasets shown Fig. 10. As in the texture and face recognition

case, we first estimate the independent filters from 40,000 samples of each window size randomly

picked from the training images with window sizes from 3 × 3 to 25 × 25. Then filters are selected

from all the estimated independent filters.

The first dataset, partially shown in Fig. 10(a), consists of nine subjects, each with about

30 pictures under different poses and facial expressions. As oppose to video face recognition, the

infrared sensor is not sensitive to lighting conditions.38 We use roughly half of the images as training

and the rest as test. We have obtained 99.05% correct recognition rate, which is considerably better

than those methods reported in Srivastava and Liu38 on the same dataset.

We have also applied our method to a large dataset, some of which are shown in Fig. 10(b).

Here we use longwave infrared images of 63 subjects with a total of 3893 images. Compared to

the dataset in Fig. 10(a), the variation within each class is relatively small. As in the other cases,

we estimated 483 independent filters and then apply our filter selection algorithm. Because of the

relative small variations within each class, our filter selection algorithm selected only one filter

which gives perfect classification on all the validation sets. Thus instead of using 40 filters, only

one filter is used and the performance on the test set is 99.43%.

5. Discussion

Based on the assumption that filters are statistically independent, we have proposed the indepen-

dent spectral representation as feature statistics for images and demonstrated its effectiveness for

17



recognition on several datasets. There are theoretical as well as computational issues regarding the

independence assumption. Theoretically, filters that are completely independent may not exist for

image datasets as images form manifolds that are intrinsically nonlinear.39 This implies that depen-

dence must exist in general among linear independent components, which leads to recent studies

on modeling the dependence (e.g. Hyvärinen and Hoyer40,41 and Wainwright et al.42). Computa-

tionally, as discussed in Sect. 2, the estimation of independent components requires the evaluation

of a joint distribution in a high dimensional space; this makes it computationally infeasible to com-

pute the globally optimal independent components given by Eq. (4). In this regard, independent

component algorithms such as the FastICA algorithm22 used here are significant in that they make

it possible to compute approximate solutions of an infeasible problem. Nevertheless, none of the

existing algorithms can guarantee the global optimality of its solution.

Given the theoretical and computational problems of estimating independent components, it

would be important to study how the performance of the independent spectral representation relies

on the independence of “independent” components. We argue that the effectiveness of the inde-

pendent spectral representation can be more general. In other words, the recognition performance

using the independent spectral representation can be effective even when there is significant de-

pendence among the filters. It is obvious that the completely independent filters are preferred as

they guarantee that the independent spectral representation is equivalent to the joint one. When

there exists dependence among the filters, the independent spectral representation incurs an infor-

mation loss. Whether this loss is critical for recognition performance depends on the training and

test set. As shown by Domingos and Pazzani43 for the naive Bayesian classifier case, this does not

incur any recognition performance loss under conditions where independence is violated by a large

margin. Given this, we argue that the independent spectral representation may provide a robust

representation even the filters are not independent. To support this argument, we have used filters
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that are known to be dependent for comparison. Here we use principal components as filters. Note

that the principal components here are calculated from the 40,000 samples with different window

sizes from training images and they are not the principal components of entire images. Principal

filters do not correlate with each other. However, if there exists higher than the second order sta-

tistical dependence, the principal components are statistically dependent. The procedure we use

for recognition is essentially the same except that we use principal filters in place of independent

filters. We found the performance is comparable with that of using independent components even

though the independent spectral representation gives better performance in general. Table 3 gives

an example using the texture dataset shown in Fig. 6.

In the spectral representation framework,24 the filters determine the recognition performance

on a particular dataset. Our method proposed here can be seen as a two-step approximate algorithm

of finding optimal filters for recognition. In the first step, independent filters are learned in an

unsupervised way by maximizing a criterion related to statistical independence implemented by the

FastICA algorithm.22 In the second step, optimal filters among the independent ones are selected by

the filter selection algorithm. Instead of selecting filters from the independent ones, it is conceptually

more appealing to learn the optimal filters by maximizing the recognition performance over all

the possible filters. This, however, is a computationally challenging optimization task due to the

dimension of the search space and the computational cost of estimating the performance for a given

set of filters. While our empirical results have shown the independent filters provide satisfactory

results on the datasets we have used, it would be interesting to compare the independent filters

with the learned optimal filters for recognition. This needs to be further investigated.
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6. Conclusion

In this paper we have proposed an independent spectral representation for recognition based on

images. In this representation, the filters are estimated from training images as independent compo-

nents of local image windows of different sizes. The sufficiency of the representation is demonstrated

through texture and object synthesis experiments. For recognition on a particular dataset, a subset

of filters is selected to maximize the recognition performance. We have shown empirically using dif-

ferent kinds of datasets its effectiveness for recognition and obtained significant improvement over

commonly used linear representations. Our results support that independent components provide

an effective way to overcome the curse of dimensionality by reducing the complexity of probability

models and the complexity reduction does not incur a significant loss of recognition performance

in the proposed representation framework.

We emphasize that our representation is proposed within the linear representation framework

under the independence assumption. While our representation makes it clear that an image should

be characterized by the underlying probability model and improves the recognition performance on

the datasets we have used, by no means this study implies that the proposed representation or its

kind is sufficient for general visual recognition. The linear representation is a crude imaging model

and the estimation procedure of the underlying probability model we have used is valid only in

the linear representation framework. It seems clear however that sufficient probability models not

subject to the curse of dimensionality would be critical for an efficient implementation of a general

vision system. We hope that our study is useful in that direction.
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List of Figures

Fig. 1. Independent filters computed from the 40-texture dataset shown in Fig. 6. In each

panel, each image in the left corresponds to one column of S, in the middle corresponds to

one row of W, and in the right corresponds to one row of Wo. (a)-(c) Independent filters

of scales 5 × 5, 7 × 7, and 11 × 11 respectively.

Fig. 2. The number of required cells to represent a joint distribution (solid line) and the

corresponding distributions discretely with respect to the dimensionality, assuming each

dimension is quantized into 10 bins. The vertical axis is shown in logarithmic scale.

Fig. 3. Synthesized textures through matching independent spectral representations. In each

panel, the left shows the original image and the remaining two show two typical examples of

synthesized images. (a) A texture with rough periodic elements. (b) A texture with stochastic

horizontal elements. (c) A texture with no obvious repeated patterns. (d) A texture with

detailed elements.
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Fig. 4. Synthesized images of an object. (a) A telephone object given as an image. (b) The

input with the boundary condition used for synthesis. (c) Initial condition for synthesis,

which is a white noise image. (d)-(f) Three synthesized images of the object through match-

ing independent spectral representation. (g) A synthesized image using principal filters.

Fig. 5. Synthesized images of objects and faces. In each panel, the left most is the input

image and the rest are typical synthesized examples by matching independent spectral rep-

resentations. Here similar objects are used as boundary conditions as in Fig. 4 but are not

shown here. (a) An stapler. (b) and (c) Two faces.

Fig. 6. Forty natural textures used in the classification experiments (available at

http://www-dbv.cs.uni-bonn.de/image/texture.tar.gz). The input image size is 256 × 256.

Fig. 7. 40 filters selected for the texture dataset shown in Fig. 6.

Fig. 8. 10-texture image groups used in Randen and Husoy.35 Each image is 128 × 128.

(a) The texture images in Figure 11(h) of Randen and Husoy.35 (b) The texture images in

Figure 11(i) of Randen and Husoy.35

Fig. 9. Correct classification rate for all the methods in Randen and Husoy35 for Fig. 8(a)

and (b) respectively and the proposed method. In each plot, each data point represents

one result (corresponding to one texture classification method) in Tables 3, 6, 8, and 9 of

Randen and Husoy,35 and the dashed line is the result of the proposed method.
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Fig. 10. (a) Example images from the FSU IR face database (available

at http://fsvision.fsu.edu). (b) Long wave infrared image examples from

a dataset of 3893 images generated by Equinox company (available at

http://www.equinoxsensors.com/products/HID.html.
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Figure 3, Liu and Cheng
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Figure 4, Liu and Cheng
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Figure 5, Liu and Cheng
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Figure 6, Liu and Cheng
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Figure 7, Liu and Cheng
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Figure 8, Liu and Cheng
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Figure 10, Liu and Cheng
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Table 1. Average recognition results for the texture dataset shown in Fig. 6

Training/test per texture

Methods 32 / 32 22 / 42 16 / 48 8 / 56

PCA 22.84% 20.57% 18.74% 15.88%

ICA 23.17% 21.80% 20.32% 18.54%

Proposed 97.81% 97.44% 95.42% 92.19%
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Table 2. Recognition results for ORL face dataset of 100 trials

Training/test face images per subject

Different Average rate Best rate Worst rate

Methods 5/5 3/7 5/5 3/7 5/5 3/7

PCA 94.53% 88.00% 98.5% 92.14% 89.0% 80.71%

ICA 94.00% 85.95% 97.50% 92.50% 89.0% 75.36%

Proposed 97.88% 92.74% 100% 96.77% 95.00% 87.14%

41



Table 3. Average recognition results using principal and independent filters for the texture

dataset shown in Fig. 6

Training/test per texture

Methods 32 / 32 22 / 42 16 / 48 8 / 56

Principal filters 95.44% 94.64% 94.67% 92.24%

Independent filters 97.81% 97.44% 95.42% 92.19%
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